
DENIS POLKHOVSKIY
COMPARISON BETWEEN CONTINUOUS
INTEGRATION TOOLS

Master of Science thesis

Examiner: Dr. Terhi Kilamo
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 6th April 2016

i

ABSTRACT

DENIS POLKHOVSKIY: Comparison between Continuous
Integration tools
Tampere University of Technology
Master of Science thesis, 54 pages, 0 Appendix pages
May 2016
Master’s Degree Programme in Information Technology
Major: Pervasive Systems
Examiner: Dr. Terhi Kilamo
Keywords: integration, development models, tools, continuous integration

Nowadays many tasks are performed by the help of various software in each aspect
of our life. This software involvement becomes deeper and deeper every day, which
leads to a need to release products faster to the market, considering the intense com-
petition among companies. For this reason, companies start to enhance benefits of
development models with use of Continuous Integration. Today, there are many CI
tools available on the market that can be used for the software integration process
and choosing right tool is becoming a hard task.
During this research, it was clarified and shown the overview of most common CI
instruments. Then, it was performed comparison and was provided decision matrix
for Continuous Integration frameworks. Based on comparison, Jenkins was preferred
over other tools, since it is a free open-source project with providing great flexibility
to many different development methodologies. This Continuous Integration frame-
work fits to majority defined requirements and meets our thesis research questions.
In addition, this thesis project can be helpful as short guide, where is suited basic
knowledge for starting work with CI and it allows to dive into CI process, and learn
in parallel from where it takes origins.

ii

PREFACE

This Master of Science Thesis was written in the Department of Pervasive Comput-
ing at Tampere University of Technology.
I have found the writing of this thesis to be the hardest work within my period of
study in Finland. I am sure it would not be possible to complete the thesis without
the support of many people.
I would firstly thank my supervisor Dr. Terhi Kilamo for her guidance, sharp techni-
cal eye, patience, comments, advice and suggestions for research directions in writing
this Master’s Thesis. As well, I would like to primarily express my gratitude to Pro-
fessor Mikko Tiusanen for his contribution and provided opportunity to start writing
the thesis with him. I would like to thank the Tampere University of Technology
for the opportunity to receive a Master’s Degree. I would like to thank all my close
people, especially my brother who has always inspired me to work. Finally, I would
like to thank my mother for her constant encouragement.

Tampere, 22.05.2016

Denis Polkhovskiy

iii

TABLE OF CONTENTS

1. Introduction . 1

2. Development Models . 4

2.1 Traditional Model . 6

2.2 Lean Software Development Models 8

2.2.1 Scrum . 11

2.2.2 Extreme Programming . 15

2.2.3 DevOps . 16

3. Continuous Integration . 18

3.1 Elements of Continuous Integration System 20

3.2 Integration Process . 23

3.3 Advantages of CI . 25

3.4 Negative Aspects of CI . 27

4. Thesis Approach . 28

5. Results . 32

5.1 Choice Criteria for Optimal Continuous Integration Tool 32

5.2 Continuous Integration Frameworks 35

5.2.1 Jenkins . 35

5.2.2 Bamboo . 37

5.2.3 CircleCI . 38

5.2.4 Codeship . 40

5.2.5 TeamCity . 41

5.2.6 Travis . 43

5.3 Decision Matrix for Continuous Integration Frameworks 44

6. Discussion . 46

7. Conclusion . 48

iv

Bibliography . 49

1

1. INTRODUCTION

Nowadays many tasks are performed by the help of various software in each aspect
of our life. This software involvement becomes deeper and deeper every day [35],
which leads to a need to release products faster to the market, considering the intense
competition among companies. For this reason, companies cannot create software
products without using software development models [50]. Today, it goes progres-
sion from traditional software development methods towards Agile methodology in
the software business [62]. In Agile methods you get feedback from customer fre-
quently, by these actions you increase customer involvement and improve a quality
of software development, allowing to meet customer expectations [45]. Moreover,
today companies start to enhance benefits of development models with use of Con-
tinuous Integration. Generally, it allows to release and repair any issues faster, and
get quicker feedback. According to Martin Fowler [46], by using this technique you
can save a lot of money and time during integration phase, he claims that integration
phase is usually most unpredictable and time-consuming part of development. In
software development models, software integration is the process of bringing software
parts together into one working system. Integration phase is performed at the end of
a development workflow. Because of that, a lot of issues and problems occur in the
code that contain interaction between individual parts of the system, as a result it
extends time needed for correction of this problems and it makes more complicated
to further predict amount of possible errors [45]. Consequently, it brings a significant
increase of overall project cost and release time [46]. When the software becomes
bigger in size and complexity of project is increased, it is getting hard for developers
to maintain high level of quality. There is no easy solution to this problem, but
one possible way of solving integration problem and tracking quality of the project
is start to using Continuous Integration practice in the software development [46].
Continuous Integration is one of the existed methods in software business, which is
used for improvement and automation of the software development. In comparison
to traditional software integration phase, where this phase is a large step of devel-
opment, integration occurs constantly [45]. The main advantage is that software is

1. Introduction 2

integrated after any changes in subcomponents or subsystems of a system [46]. As a
rule, each new change submitted by a developer is being built using a code base and
automatically checked by predetermined techniques like automated testing, static
code analysis and etc. The Continuous Integration tools are automated and there
is no need for a developer to interfere with CI process [45].

Nowadays, there are many CI tools available on the market that can be used for the
software integration process. Clearly, with so many existing Continuous Integration
tools, it might be challenging to choose which one fits your needs. Today, most of the
companies at the market provide CI products with similar services [46]. Moreover, it
does not mean that the most expensive commercial product is better than low cost
or open-source tool [45]. Generally, all of these tools are trying to make the process
of building software automated. In spite of this fact, Continuous Integration tools
have their own strengths and weaknesses, therefore choosing right tool for a job is
really important. The wrong choice can reduce overall flexibility; it can increase
time for performing ordinary actions or it can lead to some others problems in
Continuous Integration process [46]. We just need to investigate them, and then
summarize features they have and what kind of work they can do before taking
decision. However, this field is a quite new and grows very fast, new tools are
released almost every year and many developers are involved in this field. It makes
this area very interesting in terms of availability of products that are presented on
the market today.

The nature of the thesis is a look into Continuous Integration as a part of the software
development process. Whereas, the main problem in this thesis is exploring CI tools
and making a comparison of them with each other by defined criteria and answer to
question which tool meets to our requirements.

The object of this thesis consists of software methodology study where Continuous
Integration is applied. Moreover, studying Continuous Integration process cannot
take place without investigation of the software development process field. Then,
it includes survey of literature and web-based sources, in order to find criteria and
requirements for examining CI servers.

Finally, the main goal of the thesis aims to show analysis and comparison of selected
tools and to choose tool for CI implementation which meets ours criteria. Thus, the
research questions that we want to state in this thesis include:

1. Introduction 3

-"Which criteria and requirements are appropriate for examining CI tools?"

-"Which tool is good as entry-level tool for getting acquainted with CI area?"

-"Which tool satisfies mostly to our criteria and requirements?"

According to end results, we have studied thoroughly CI process. Then, it was
clarified most common CI instruments and shown the overview of CI tools. In the
end of thesis, it was provided comparison table. Next, we have answered for research
questions and we have chosen one CI tool, which meets best for defined criteria.

This thesis consists of 7 chapters, where chapter 2 presents preliminary knowledge
about a modern software development models. Next, in chapter 3, we provide
essential information about CI as a single process and explain all relevant details.
Further, in chapter 4, we state out thesis approach and explain it in a detailed
manner. Then we provide results of literature and web-based review in chapter
5, describing important features and defined main criteria and requirements for CI
tools comparison. Also, we present our surveys related to existing CI tools and its
features. Finally, we conclude this chapter with providing a table with comparison
of CI tools based on predefined data and the evaluation of them. Further, in chapter
6 of this thesis we show our observations and give answers to research questions.
Lastly, in final chapter we argues about the strengths and weaknesses of the thesis
and we set out possible future research ideas.

4

2. DEVELOPMENT MODELS

The term "Continuous Integration" goes hand in hand with system development
models [13]. The Continuous Integration emerged at same time with the evolution
of these models. As a key to better understanding of the CI as a process, we require
a comprehension of main principles of development techniques.

Software Development process can be described as a sequence of steps, which a
company does regularly during software product development [38]. Different models
of this process exist, but it can be divided to traditional and lean models. Each
of software development models describe their approach in the form of tasks or
operations that take place during the process [50]. Nevertheless, it is important to
select the right software development model, because this choice has high influence
on a success of the development [58]. However, thoughtless choice can cause a rise
in software costs [38]. In addition, it can cause the violation of deadlines and quality
decrease of developed software [45].

Software development methodologies have evolved since 1970’s [36]. The first model
that appeared in this evolution was the waterfall model. Then it arised such models
as prototyping model, incremental model, spiral model, RAD model. Finally, Agile
saw the light in 2001. However, it was formulated and introduced in 1974 by Ed-
monds in his research paper [65]. Presently the process of software development is
going through an evolutionary movement, from traditional software methodologies
like waterfall model in the direction of agile methodologies. Many companies are
moving to agile software development to improve quality and reduce delivery time
[36]. This methodology serves as excellent choice to be adopted in modern software
development process to replace the traditional heavy weight development life cycle
[51]. According to BengLeau et al. [51], they differentiated traditional approaches
as heavy weight methodologies and agile methods are called as light weight method.
In this paper [51], approaches are divided on the following basis - user requirements,
rework cost, development direction, testing, customer involvement, extra quality

2. Development Models 5

and project scale.

Helena Olsson and Jan Bosch presented a developed model "The stairway to heaven"
in their study [56], which shows how software companies follow when evolving their
software development processes. "The stairway to heaven" model is presented in
Figure 2.1 below. We decided to include their "new" model, because it describes
and shows the evolution path from traditional development to agile practices and
further to continuous integration and beyond. They used this model as a background
for understanding the challenges associated with moving beyond agile practices and
towards continuous integration and deployment of software.

Figure 2.1 "The stairway to heaven" [56]

"The stairway to heaven" has several stages and for each of them, there are typical
barriers and key focus areas that need to be handled to move from one step to the
next. Whereas, first stage is transition from traditional development to agile. Then,
it follows achieving continuous integration and adopting continuous deployment.
Consequently, the final stage of "The stairway to heaven" is where the entire research
and development system reacts and works based on instant customer feedback and
actual deployment of software functionality is seen as a way of experimenting and
testing what the customer needs. At this stage, deployment of software is seen more
as a starting point for further "tuning" of functionality rather than delivery of the
final product [55].

Generally, companies choose development models based on their own requirements,
it often occurs to be a reason that some methodology fits better the development of
a particular software. However, Agile is the most popular methodology nowadays

2.1. Traditional Model 6

[3]. Nevertheless, another common methodology is a "Waterfall Model", but in
comparison with Agile, it is quite old model and it is not so flexible [38]. In contrast
to Agile, waterfall model detects most of issues only at the end of procedure, because
testing is performed after development stage [33]. Whereas in Agile tests occur much
more often, because development is divided into "sprints" and working this way leads
to early detection of many problems [5]. In addition, it saves a lot of company’s
money in the long term perspective [50].

2.1 Traditional Model

Waterfall model the best known and oldest representative of Traditional Software
Models [38]. Dr. Winston W Royce published the article "Managing the develop-
ment of large software systems" in 1970 [57]. Today, this article is considered as the
first work that describes the waterfall model. Royce described waterfall model as
more grandiose approach of software development compared to the small principle of
analysis and coding, which was widely distributed at this time [57]. It was the first
model, which formalized the structure of the stages in software development, with

Figure 2.2 General overview of Waterfall model.

2.1. Traditional Model 7

emphasis to the initial requirements, design and intention to create documentation
at an early stage of the development process [18].

A distinctive feature of the waterfall methodology is that it is a "top-down" devel-
opment technique with independent phases, the process is continued by using the
ordered series of steps, because of that it produces a framework for software devel-
opment. Commonly, unmodified waterfall model includes six distinct phases, which
is shown in Figure 2.2.

In waterfall model, each next stage of software development starts only after full
completion of the previous stage [33]. Hence, the output from completed stage
is used as an input in the next process. For instance, the output of software re-
quirements phase is software requirements’ document that is applied as the input
document to analysis stage. Each phase has specific requirements for input and
output.

The transition from one phase to another goes through a formal review. This means
that customer gets an overview of the development process. Besides that, the soft-
ware quality is checked. As a rule, passed review phase means that agreement
between the development team and the customer has been achieved. When this
phase is accomplished, developers can move to the next phase.

As concerning advantages of waterfall model [18]. It has an easy entry period for new
programmers into project during the maintenance phase, because of serious technical
documentation. In Waterfall, phases are quite well defined and accessibly. There is
no overlapping of phases, only one phase at a time during development period [32].
The time of completion of each phase is used as a step and due to milestones clearly
defined by developers [26]. It allows members of the project, who completed their
work on the carried out stage, to take part in other projects. Then, this approach
fits in small projects very well. Moreover, reduction of rollback probability, since
the process of development is consequent [26]. Furthermore, since requirement and
design phases receive a lot of attention and are accomplished before implementation
phase, minimum loss of time and effort is achieved, as well as reduction of a chance
to fail customer expectation [26]s. In addition, this model is very easy to understand,
since main goal of a process is to perform all necessary actions.

In reference to disadvantages of Waterfall model. Firstly, it is not good idea to use
Waterfall in object-oriented projects [26]. In large projects, process of evaluation of

2.2. Lean Software Development Models 8

the required time and budget for a each stage is very complicated. Next, Waterfall
is not flexible as Agile methodology [4]. Also, there is no preproduction model being
made before the finishing of the development process. Testing is performed after the
completion of development; it means that there is a great chance to find more bugs
and going to previous phases for fixing them is very difficult. Whereas, bugs have
characteristic to be cumulative, with increasing number of bugs, it is getting harder
to fix every single one [46]. The Waterfall model is not designed for dynamic changes
in the requirements of a project during the life cycle, all requirements must be defined
in the beginning of development, but customers often do not know exactly all needed
requirements, if they keep adding requirements after the requirement phase, it makes
model less effective and causes many problems. As a result, re-engineering of the
project may decimate its budget. It may become hard to define the amount of work
done. A statement, such as "35 percent of work is done", is pointless and it is not an
indicator of a current state of a project for a project manager. The customer hardly
has the opportunity to become familiar with the system in advance, it happens only
at the end of the life cycle. The customer is not able to see intermediate results,
and user feedback cannot be sent back to the developers. Since a finished product
is not available until the end of the process, the user takes part in the development
process only at the beginning (during gathering of requirements) and at the end
(during deployment and maintenance phase). Users cannot ensure the quality of
the developed product before the end of development process. They are unable to
evaluate the quality because they do not see prototypes of finished products. The
user has not a possibility to gradually get used to the system. The learning process
occurs in the end of the life cycle, when the software is already deployed. There
is a need for strict control and supervision, because the Waterfall model does not
provide ability to modify the requirements iteratively.

Beside of waterfall’s disadvantages, this model remains one of the most popular
methods in the IT area [18]. Waterfall model’s functions very good in projects, where
requirements are well defined and understandable in an early stage, and cannot be
changed during development. In addition, it is recommended for projects with small
budget [33].

2.2 Lean Software Development Models

Lean and agile are very close terms with very similar philosophy [5] and they share
many of the same principles and many Agile principles are borrowed from Lean [23],

2.2. Lean Software Development Models 9

although lean is more general term and lean’s ideas fit in very well with the agile
software development. Also, according to Fowler article [5], he claims that if use
agile you also use Lean at same time or vice versa. Agile software development
is a set of principles and rules which determine what software is developed [42].
Basic principles of Agile is shown on Figure 2.3. Agile methodology is not a single
method of development, but a group of software development methods. The term
of Agile has emerged during a meeting of seventeen software developers, who named
themselves as "The Agile Alliance". After that, it was published as the "Manifesto
for Agile Software Development" in 2001, which was signed by all participants of
this meeting. The idea of this manifesto has emerged based on need of alternative
model for heavyweight software development models, like waterfall approach, which
was standard at that time.

Figure 2.3 Typical view of Agile model [44].

Most agile methodologies aim to minimize risk by developing software, as a series
of short cycles, that are called iterations, they typically last from one to two weeks.
Each iteration itself looks like a miniature software project and includes all the tasks
required for software functionality growth: planning, requirements analysis, design,
coding, testing and documentation [2]. Although, a single iteration is usually not
enough for releasing new version of the product, it means that the software project
is ready for release at the end of each iteration. After each iteration, the team
performs a reassessment of development requirements [60].

Agile-methods focus on direct face-to-face communication [58]. Most agile-teams

2.2. Lean Software Development Models 10

placed in the same office; sometimes it is called the open-plan (bullpen) office. In
addition, it includes a product owner. It can be a customer or his/her authorized
representative, who defines product requirements. This role can be performed by
a project manager, business-analyst or a client. Furthermore, the office may also
include testers, interface designers, technical authors and managers.

Following Figure 2.4 presents main values, described in Agile manifesto, for software
development process, where authors evaluate values from the left part more than
from the right [42].

Figure 2.4 Values of Agile manifesto.

Individuals and interactions over processes and tools. It means that communication
and collaboration between developers is the main factor that leads to success.

Working software over comprehensive documentation. Creating working software is
main aim of development process rather providing perfect documentation

Customer collaboration over contract negotiation. Involving customer to process is
very important, only by working closely and frequently with him; software achieved
good quality and met customer expectations. Because of good customer collabora-
tion, agile projects are more than two times successful in comparison with traditional
projects.

2.2. Lean Software Development Models 11

Responding to change over following a plan. Customer do know all requirements
in the beginning of development. It is common problem that customer wants to
add new requirements or some features during a development process to a project.
Whereas Agile techniques allows it, in comparison with traditional models where
all steps are planned and customer can be unhappy in the end, because he got not
exact product what he wants to see.

Beside of stated values in Agile manifesto, it was defined 12 principles how agile
process have to follow [42]. These principles are in original order:

"- Our highest priority is to satisfy the customer through early and continuous de-
livery of valuable software.
- Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.
- Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.
- Business people and developers must work together daily throughout the project.
- Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done
- The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.
- Working software is the primary measure of progress.
- Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.
- Continuous attention to technical excellence and good design enhances agility.
- Simplicity - the art of maximizing the amount of work not done - is essential.
- The best architectures, requirements, and designs emerge from self-organizing teams.
- At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly."

2.2.1 Scrum

Scrum is an incremental and iterative Agile method [58]. Scrum clearly focuses
on the quality control of the development process. Scrum is a set of principles
used in development process, that allow, in strictly defined periods, provide work-
ing software to the customer with incremented features. Required functionality is
determined at the planning meeting before the start of the next sprint and cannot

2.2. Lean Software Development Models 12

change during the whole sprint. Small fixed sprints add predictability and flexi-
bility to the development process. This approach was described first by Hirotaka
Takeuchi and Ikudziro Nonaka in 1986 [63]. They noted that the projects with small,
cross-functional teams, usually systematically produce better results.

Following team structure for each sprint is allocated by the Scrum method [58]:

• Scrum Master.

• Product owner.

• Team.

Scrum Master has the most important role in the methodology. Scrum Master
is responsible for the success of Scrum in the project. In essence, Scrum master is
the interface between the management and the team. The basic role of the Scrum
Master is to maximize efficiency of the team by removing all obstacles and outside
influences, also he/she provides assistance, training and he/she motivates the team.
All these actions allow team to become more focused on the work. As a rule, this
role in the project is taken by the project manager.

Scrum Master includes following main responsibilities:

• Creating an atmosphere of trust.

• Removal of obstacles.

• Making problems visible and questions obvious.

• Responsible for compliance practices and processes in the team.

Scrum Master organizes daily 15 minute meetings and he/she reviews the progress
with the team [58]. He/she follows progress through the list of tasks that must be
completed during a Scrum sprint, which called Sprint Backlog. Also, he/she notes
the status of all tasks in the sprint. Scrum master can also help product owner with
creation of Sprint Backlog for the team.

Product Owner is a person who is responsible for development of the project.
Product Owner makes the final decision on the project, because of that it is always

2.2. Lean Software Development Models 13

one person, not a group or a committee. He/she is the link between the devel-
opment team and stakeholders. He/she pursues a goal to maximize the quality of
developed product and work of the team. One of the main tools of the product
owner is the product backlog. The product backlog contains tasks that are required
to accomplished. They are sorted in priority order. Product owner responsibilities
include:

• Forming a vision of the product.

• Managing profitability.

• Managing expectations of customers or all stakeholders.

• Coordinating and prioritizing tasks in the spring backlog.

• Providing requirements to the team in the clear form.

• Interacting with the team and stakeholders.

• Accepting code at the end of each sprint.

Product owner assigns tasks to the team, but he/she is not entitled to assign tasks
to specific members of project team during the sprint.

Developing Team in Agile methodology is self-organized and self-managed. The
team is liable to Product owner for implementation of designated work in the sprint.
Teamwork is evaluated as the work of single group. In Scrum, the contribution of
individual members of the project team is not measured, because it disarranges
self-organized teams [25].

According to The Scrum Guide, developer team has following duties [64]:

• Responsible for evaluating elements of sprint backlog.

• Make decisions about design and implementation,

• Be self-organizing, nobody can specify to the team how to implement tasks of
backlog.

• Whole team is responsible for the work - not individual members.

2.2. Lean Software Development Models 14

• Be multifunctional: team should have all necessary skills for a product release.

• Developing software and providing it to a customer.

• Have control over their own progress (together with the Scrum Master).

• Liable to Product Owner for the result.

Size of the team is limited. Typically, it is around seven persons. Scrum team is
cross-functional, it consists of people with different skills like developers, analysts,
testers. There are no predefined and divided roles in the team, that limit the scope
of team members. For purpose of easy communication, team must be located in
the same place. The team should be provided all necessary things for a comfortable
work, such as blackboards, flip charts, essential tools and development environment.
Result of the sprint depends on all of these conditions.

Figure 2.5 describes schematic representation of Scrum workflow. The basis of
pipeline is a sprint during which whole work on the product is performed. At the end
of Sprint new working version of the product is obtained. Sprint is always limited
in the time (1-4 weeks).

Sprint Planning is organized before each Sprint, where Product Backlog is estimated
and eventually Sprint Backlog is formed. It includes tasks (Story, Bugs, Tasks),
that earlier have to be solved in the current sprint. Each sprint should have a
purpose. It serves as motivating factor for the team and this purpose is achieved by
accomplishing tasks from the Sprint Backlog [64].

Another important part of scrum methodology is a Daily Scrum, where each team
member has to answer following questions: "What I did yesterday?", "What I am
planning to do today?", "What kind of obstacles I have encountered?".

The purpose of Daily Scrum is to determine status, progress of work in the Sprint.
Also to early detect possible issues and develop solutions that will allow to adapt
the project strategy in order to achieve Sprint’s success.

At the end of Sprint, Sprint Review and Sprint Retrospective take place. The
purpose of them is evaluation of effectiveness (performance) of the team in the past
Sprint. Also, other tasks are prediction of expected performance (productivity) in
the next sprint, identification of existing problems, estimation of the probability of
completion all the necessary work on the product and etc.

2.2. Lean Software Development Models 15

Figure 2.5 Schematic representation of Scrum workflow [44].

2.2.2 Extreme Programming

According to Lowell Lindstrom [52], Extreme Programming is most pervasive Agile
Software Development Methodology. He characterized Extreme Programming as
exciting, popular, controversial approach of software development. Based on this
information, we decide to introduce XP as another important representative of Agile
methodology.

Extreme Programming is incremental and iterative Agile method. It is lightweight,
efficient, flexible, low-risk and predictable way of software development.

Creator of XP methodology is Kent Beck. In 1996, this technique was used first
time during a failed attempt to save a project that developed a salaries calculating
system in Chrysler. In 2000, this project was closed, whereas XP had already gained
popularity and spread among software developers.

XP inherits all general principles of agile methodologies, which are reached with the
help of twelve engineering practices. Most interesting technologies and practices of
XP are provided further [52].

The project team must include representative of the customer. He/she has

2.2. Lean Software Development Models 16

detailed knowledge about required functionality and he/she prioritizes specific re-
quirements. Then, his work involve evaluation of developed project quality. Tech-
nically, the customer representative can be an employee of Development Company.
For instance, it can be a product manager or a business analyst.

The life cycle of XP project consists of series of releases [52]. Each release is a
complete version of the product, which customer can use. In addition, each release
contains additional functionality compared to the previous release. Release occurs
every one or more iterations, which last from one to four weeks [37].

In XP practice, it is not recommended to spend a lot of time on planning. The
planning process is called the game. A detailed plan is prepared only for the next
iteration and for the next one or two releases [52].

2.2.3 DevOps

We decided to include DevOps since continuous integration is a key component of
DevOps [14]. Nearly all in DevOps is continuous: such as integration, deployment,
delivery or testing [11]. Moreover, Devops is extension of Agile practices and was
basically born from increasing popularity of agile development [34].

DevOps is an approach based on lean and agile principles in which stakeholders and
the development, operations, other departments cooperate to deliver software in a
continuous way that enables the business catch market opportunities more quiclty
and reduce the time to include customer feedback [59].

The term DevOps is put together from the two terms "Development" and "Oper-
ation", which are two classic departments in software companies. Development is
responsible for all changes, bug fixes and development of the software. Operations
is responsible for the software’s stability. Both departments have interest that often
conflict between each others [49]. The area around DevOps is expected to solve this
conflict and bring back agility to the static and slow current "Development - Opera-
tions" structure, which is continuously blocking itself [49]. Graphical representation
of DevOps structure is shown on Figure 2.6

There exist many different definitions of DevOps, but Michael Huttermann in his
book "DevOps for Developers?" [49] gives his explanation of this practice:

2.2. Lean Software Development Models 17

Figure 2.6 DevOps as the intersection of development, technology operations and quality
assurance [44].

"DevOps is a mix of patterns intended to improve collaboration between development
and operations. DevOps addresses shared goals and incentives as well as shared
processes and tools. Because of the natural conflicts among different groups, shared
goals and incentives may not always be achievable. However, they should at least be
aligned with one another. DevOps respects the fact that companies and projects have
specific cultures and that people are more important than processes, which, in turn,
are more important than tools. DevOps accepts the inevitability of conflicts between
development and operations [49]."

18

3. CONTINUOUS INTEGRATION

The concept of Continuous Integration started to commonly appear at the beginning
of 2000’s after publishing article [46] by Martin Fowler and Matthew Foemmel. How-
ever, this phrase has seen first use in "Object-Oriented Analysis and Design with
Applications" [47] by Grady Booch in 1994. Afterwards, Extreme Programming
was invented, including Continuous Integration term, by Kent Beck during his work
on the Chrysler Comprehensive Compensation System payroll project [46]. Then
article was published by Beck where he put stress on the importance of Continuous
Integration in 1998 [40]. Furthermore, Beck accurately described Continuous Inte-
gration in his first full book on Extreme Programming [41]. Finally, Paul Duvall,
Steve Matyas and Andrew Glover proceeded the work related to CI and they have
announced a whole book about CI. This book is still continues to be the one of the
main resources about the CI. The CI nowadays has become a popular technique for
developing software. We can see popularity tendency based on Google trends service
on Figure 3.1 has risen almost twice.

Figure 3.1 Correlation of "Continuous Integration" search requests in a Google Trends

One of the biggest problems in software development is integration [46]. In a small
project with one developer it does not cause many problems, but if we imagine a
software project in which several programmers are making code individually and
after some time they need to merge and built their codes, this process might cause

3. Continuous Integration 19

a lot of errors, conflicts and quality problems. Integration part is unpredictable pro-
cess, it can be very expensive and lead to project delay [45]. Continuous Integration
deals with these risks much faster due to small daily increments in a project. Fowler
and Foemmel in their popular article [46] give the definition of CI as follows:

"Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading
to multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible. Many teams find
that this approach leads to significantly reduced integration problems and allows a
team to develop cohesive software more rapidly [46]."

According to Duvall’s book [45], this definition implies that:

• To be sure that any changes in project will not break the integration, devel-
opers have to build software on their own work machines before they commit
code to the version control repository

• All developers have to submit their code to a revision control more than one
time per day or at least once.

• One build machine is used as CI server, where integration happens several
times a day.

• Every build have to pass one hundred percent of tests to be recognized as
eligible.

• Correction of errors has the highest priority.

• The results of the build and unit tests are automatically posted to a web site,
such as the Hudson web server, where all team members can be informed of
the current state of the software.

• All developers of project can see current results of integration through a web
site, which used for notifying team members by CI software, such as The
Jenkins or The Cruise Control.

• CI reduces the collective responsibility of the group and reduces the complexity
of the project, due to reduction of the amount of manual work performed at
each change in the developed software.

3.1. Elements of Continuous Integration System 20

Whereas, Patrick Cauldwell in his book "Code Leader: Using People, Tools, and
Processes to Build Successful Software" [43] shortly describes the philosophy of CI
as "integrate early and often", because more often you integrate the less work it is
for everyone, and includes there two biggest goals of any CI effort:

1. To make sure that there is always a testable version of your software that
reflects the latest code.

2. To alert developers to integration problems as quickly as possible.

3.1 Elements of Continuous Integration System

A general Continuous Integration pipeline starts from submitting code to the repos-
itory. Any team members of average project can trigger CI workflow, it can be
developers, database analyst or some other team members, who change code or
make any changes in a project. The scheme of classic CI server working cycle is
illustrated in Figure 3.2.

Figure 3.2 The CI server working cycle.

An average CI system [45] has following order of typical steps:

1. Developer submits code to the version control repository.

2. The CI is checking the version control repository for changes, with some in-
terval.

3.1. Elements of Continuous Integration System 21

3. When CI server detects any changes in the repository, CI server gets last
version of code for the version control repository and then performs building.
Script, responsible for integrating software, is created.

4. After that, CI server sends feedback with result of building to team members
of this project. Feedback can be sent by different methods, such as SMS,
e-mail, lava-lamps and etc.

5. Then, The CI server goes to step 2 and continues this behavior before any
changes in the repository occur.

Following notations clarify elements of CI work-flow [45].

First rule of developers is to run private builds. Each developer has to run private
builds after finishing his tasks. If integration of this code with the rest of the code of
the team is successful, he/she submits his/her code to the version control repository.
It is very important step, since it prevents from submission of a broken code.

Version Control Repository is essential part of CI system. It is also known as
Software Configuration Management. Commonly, all software projects have version
control repository, even if they do not use CI. The main purpose of such repository
is to control changes in the source code and other software elements; for instance,
in documentation. This repository is used as unified codebase for all source code.
It stores all versions of source code and all files, that were included in the project
during process of development. According to Duvall’s book [45], it is recommended
to read "Software Configuration Management Patterns" by Stephen Berczuk and
Brad Appleton for learning effective techniques of source configuration management
processes.

Continuous Integration Server is the most important part of the whole system.
A Continuous Integration Server creates an integration build when any changes
in the version control repository are made. Usually server is configured to track
any changes in version control repository within period of few minutes. On the
other hand, if you do not want to wait this time before CI detects a change in a
repository, you can reduce the delay by setting up a post commit hook. Therefore
Version Control Repository can notify CI server that a build needs to be created.
CI server gets files of source code and runs build scripts.
Typically, CI servers give user convenient options for displaying builds results. The

3.1. Elements of Continuous Integration System 22

simple form is a web page, some of CI server’s software already comes with a web
application. Hence you can see the results and build reports in this application.
As a result, using a CI server allows to reduce the number of custom scripts that
are needed to be written in any case. Nowadays, many CI servers are free and
open-source.

Build Script can be single one or a set of scripts, which are used to compile,
inspect and deploy software. Build script can be used even without implemented CI
system. The most famous build script tools are called Ant, NAnt, MSbuild, Rake
and Make. This tools make software build cycle automatic, thus it saves a lot of
time for developers.

Feedback mechanism is considered as one of the most important tasks in CI,
because it provides immediate results after creation of integration build. If the feed-
back shows that the build failed, developers can start fixing problem immediately.
The feedback can be given to user in different ways. There are a lot of variants:
it depends on creativity of developers. For example, the simple form is a SMS or
e-mail, but in some cases it can be lava lamp or even traffic light. On Figure 3.3,
lava lamps notifies developer about success and fail results of building, where green
is success and red lamp is fail.

Figure 3.3 Lava lamp shows results of building.

Integration build machine is a machine which used only for one assigned task:
be responsible for integrating software. The integration build machine contains the
CI server, which tracks any changes in version control repository.

3.2. Integration Process 23

3.2 Integration Process

According to "Continuous Integration: improving software quality and reducing
risk" by Duvall [45], there are four compulsory features used to implement CI.
Firstly, it is a connection to a repository. Secondly, you need build script. Then,
it is important to have some feedback mechanism. Lastly, you need CI server for
integration of changes in a source code. These compulsory features are considered
as the base behavior for a successful CI system. Components of integration process
is explained below.

Source Code Compilation is one of the simplest and most common features in CI
system [45]. Compilation is a process of creation of human-readable executable code
from source code. Source code compilation depends on the type of the programming
language in a project. Compilation process may vary if you use dynamic language
in your software development. Examples of dynamic languages are Python, PHP
and Ruby. When you use these languages, you do not create binary code, but per-
form strict checking, which can be considered as compilation in this case. Dynamic
languages have some benefits in other actions during a CI build.

Database Integration is one of the most essential details of software application
is the database. It must be involved in the integration phase. The implementation
of CI system can guarantee integration of database by means of version control
repository in a project. In this case, repository serves as unified source.
Continuous Integration in databases includes three main principles of operation:

• It verifies the state of the database after changes were made.

• It always runs tests after any changes have been applied.

• It updates when any changes in a target database are made.

Combination of these techniques shows that Continuous Integration can detect any
problems which have not been noticed by Database administrator starting from
deployment to production. On Figure 3.4, you can see CI working process, where
CI provides database integration during a build.

Another essential part of CI system is testing. Due to the automated testing, devel-
opers are confident about changes, because it shows their correctness. Automated

3.2. Integration Process 24

Figure 3.4 Database integration [45].

testing detects most of severe problems in the project. Tools such as Junit, NUnit
and Xunit are considered to be most common unit testing tools. Also, most of these
tools produce comprehensive reports to users and they come in form of charts, web
pages or graphical reports. Unit testing checks the reliability of the code. Besides
that, there are other types of tests. Component tests check the functionality and
search defects in an application. System tests check functional and non-functional
requirements of the whole system. Functional tests are based on the functions per-
formed by the system and can be carried out at all levels of testing.

Inspection is the analysis of the code based on a set of predefined rules. Automated
code inspection can be used to improve the quality of the software using specific
rules. For instance, developers can set the rule that size of class cannot exceed more
than five hundred lines of uncommented code in a project. Inspection is used for
checking correctness of the written code and code duplication, additionally it is used
for keeping architectural layers intact. Continuous inspection reduces the period of
time between the detection and solving of the problem. Regardless of the kind
of anomalies existing in the code, inspection would nevertheless notice suspicious
piece of code, that has high probability of error occurrence. Despite the fact that
inspection will not detect all problems, it alleviates developer’s work and allow
them to focus on important and complex pieces of code. The automated inspection
produces result very similar to the one produced by a group of reviewers.

3.3. Advantages of CI 25

Typical deployment process is divided in six steps. First step is label repository’s
elements. Usually it is performed at the end of a project stage. Second step is main-
taining clean environment without assumptions. It means that you need to maintain
good conditions for successful integration build by removing all files, servers, con-
figuration changes from integration machine. It would be better, if this process
would be strict. Third step is making and marking a build right from the version
control repository and installing it on the target computer. Fourth step is achieving
successful automated tests. They are: unit test, functional test, system test and
component test. They are run by developers to make sure the software is ready and
can be used in the next stage of development or can be provided to customer. Fifth
step is generating automated build feedback reports. At the Sixth step is possibility
to roll back the build is reviewed. It means that if something would be abnormal,
you can still deliver the latest viable version to user. If all of this steps have been
passed, you will get successful deployment.

There is common belief that the best type of documentation for the source code is
the ability to write a simple and short code with appropriate classes, variables and
methods. CI simplifies the process of documentation creation. Tools such Maven,
JavaDoc and NDoc are often used to write documentation in CI. In addition, these
tools can also provide class diagrams and other information related to software de-
velopment based on the committed source code to the version control repository. By
using all this tools, you can get important benefits such as receiving documentation
from source-code and project status in real-time.

3.3 Advantages of CI

In general, the use of Continuous Integration brings a lot of benefits to software
development. Mark Duvall in his book [45] distinguishes five main properties of CI.
Further sub-parts describe these properties in details and explain what they may
offer to project.

One of the greatest properties of CI is risk reduction. It is achieved due to frequent
integrations during a day. It makes easier to find problems in the project and monitor
software health. Also it reduces amount of assumptions, risks of low-quality software,
lack of project visibility and risk of late defect detection. In comparison with late
testing, some defects or errors are detected earlier due to inspections, integrations
and conduction of tests runs several times per day. In other words, bugs are found

3.3. Advantages of CI 26

when the code is submitted to repository. Thus more obvious control of software
health is achieved. It allows to track complexity and other health attributes of
project over time. Reduction of assumptions occur because of automated processes
that stay unchanged by development team, which lead to decreased probability of
human-induced mistake occurrence.

Continuous Integration brings reduction of repetitive manual processes and
automates repetitive processes. These processes include code compilation, testing,
database integration, inspection, deployment and feedback. CI reduces amount of
repetitive manual processes and allows to save time, money and spend less effort
on the project. In addition, reduction of repetitive manual processes allows team-
members not to spent time to non valuable work and be focused on necessary work,
also it makes possible to avoid mistakes in these processes by human.

One of the most obvious advantages of Continuous Integration is the ability to
generate deployable software at any moment. The importance of deployable
software is very high, because it is one of the most significant features for customers.
Frequent deployment helps to eliminate borders between customers and developers.
According to work cycle in CI detection of errors occur after making changes in a
code and integration phase and at the same time all team members are informed
about problems and they try to fix them as soon as possible. While in other projects
without similar practices, due to late integration and testing that occurs right before
delivery to customer, issues appear only in the end. It can cause delay of release due
to elimination of found defects and can take a long time since it is unpredictable
process, because errors are cumulative. It is very hard to remove bugs, if you have
a lot of them. Besides that there is another psychological problem. This problem is
called the Broken Windows syndrome. It means that people are less motivated to
search for bugs and fix them, when project has a lot of them.

Continuous Integration enables better project sisibility and makes project more
transparent to the team during development. Due to up-to-date information, it is
getting easy to lead project more effectively. It brings positive effects such as effective
decisions and it reveals trend tendencies. Since the integration is very frequent
process, it is easier to notice all trend tendencies, that are based on successful or
failed builds; overall quality is also improved due to CI.

Another main CI property that it establishes greater product confidence and
it gives great confidence creating process of software. The knowledge of code change

3.4. Negative Aspects of CI 27

impact on software makes all team-members more confident in their actions. With-
out frequent integrations, some team members may feel not so confident, because
they are not able to see how they affect the project in general.

3.4 Negative Aspects of CI

Though much was said about benefits of CI, there are some negative aspects of CI.
Duvall presents in his book combination of different circumstances [45].

Firstly, it is prejudice. Often CI system is considered to be increasing overall cost
of the project. However, present projects have phases such as integration, testing,
inspection, and deployment despite the CI system absence. It is much easier to con-
trol reliable CI system than to try to manage manual processes. Curiously enough,
the CI system is considered unnecessary by members of complex projects where CI
would be very useful. Projects members think that there is too much extra work for
setting up CI.

Secondly, it is believed that the implementation of CI system on current projects
would cause many changes in many processes. The most effective method of CI
implementation is an incremental approach. It implies that builds and tests occur
only one time per day and eventually increase the frequency as everyone gets familiar
with it.

Thirdly, wrong application of CI practice may lead to many failed builds. Generally,
it happens when developers do not create private builds before submitting their code
to repository. For instance, developer can submit corrupted files that lead to tests
failure.

Fourthly, it is additional expenses for buying hardware for CI, also it may be required
to pay for software, if it is not open-source. In comparison with future expenses for
finding and fixing problems in last phases of software development, this costs are
reasonable.

According to Cauldwell [43], other barriers why every team do not practice Continu-
ous Integration already, firstly because it is hard to establish a solid CI practice and
it needs good technical experience. Secondly, it is difficult to persuade developers to
be involved, because of habitual style of working, into the idea that it is important
and that CI is good idea.

28

4. THESIS APPROACH

In previous chapters concept of Continuous Integration was introduced and clari-
fied. As stated in the first chapter, the main research problem of this study was to
show comparison of continuous integration tools. As reminder, underlining research
questions were presented in the beginning as follows:

Which criteria and requirements are appropriate for examining CI tools?

Which tool is good as entry-level tool for getting acquainted with CI area?

Which tool satisfies mostly to our criteria and requirements?

According to "Conducting online surveys" book by Valerie M. Sue [61], research
process can be divided into three types: exploratory, descriptive, and explanatory
research. Whereas, individual study can be consisted of different purposes and
includes two or all three categories of research types. For instance, research projects
can be explore and describe; explore, describe and explain; or describe and explain
[53].

Exploratory research aims to explore issue or a topic. It is used when it is needed
to identify a problem, clarify concepts, define the involved issues or reach a greater
understanding of an issue. Exploration can begin with a literature search, a focus
group discussion, or case studies. Data from exploratory studies tends to be qualita-
tive. Examples include brainstorming sessions, interviews with experts, and posting
a short survey to a social networking website. Exploratory research is a significant
first stage in the research design process.

Descriptive research is used for describing things, events, or situations [54]. The
difference between exploratory and descriptive research is that, when using descrip-
tive technique, you have a clearer idea of what is needed and you are looking for
answers to more clearly defined questions. Descriptive studies might tell you, for

4. Thesis Approach 29

example, the size of a market, the structure of the market, developments over time,
attitudes of particular groups of people and etc. A study of this type could start
with questions such as: "What similarities or contrasts exist between A and B?"
Where A and B different tools which is used for same purposes. Such descriptive
comparisons can produce useful insights and lead to hypothesis-formation.

The primary purpose of explanatory research is to look for explanations of the nature
of certain relationships. The data are quantitative and almost always require the
use of a statistical test to establish the validity of the relationships. Explanatory
research addresses the why questions: Why do people choose brand A and not brand
B?What might explain this? This research answers for these types of questions allow
to rule out rival explanations, come to a conclusion and helps in developing causal
explanations.

Table 4.1 Differences between qualitative and quantitative methods.

Quantitative method Qualitative method
Applied in
following tech-
niques

Exploratory, descriptive and
explanation

Exploratory and descriptive

Questions and
responses

Who, what, when, where, how
many?
Relatively superficial and ra-
tional responses
Measurement, testing and
validation

Why?
Below the surface and emo-
tional responses
Understanding, exploration
and idea generation

Sample size Relatively large Relatively small
Data collection Not very flexible

Interviews and observation
Standardised
More closed questions

Flexible
Interviews and observation
Less standardised
More open-ended questions

Data Numbers, percentages, means
Less detail or depth
Nomothetic description
Context poor
High reliability, low validity
Statistical inference possible

Words, pictures
Detailed and in-depth
Ideographic description
Context rich
High validity, low reliability
Statistical inference not
possible

Additionally, Hague et al. [48] tell that researches can include such data collection
methods as qualitative and quantitative. A useful way to distinguish between the

4. Thesis Approach 30

two methods is to think of qualitative methods as providing data in the form of
words and quantitative methods as generating numerical data [53]. Following table
4.1 clarifies these data collection and shows theirs differences [53].

Consequently, our literature research would be multi-dimensional and it is consisted
of explorative, descriptive and explanation techniques with qualitative and quanti-
tative collection of data. Generally, collecting of relevant data for thesis is based
on secondary sources (desk research). It means that for survey is used information
which was previously printed or published for other purposes and publicly available.
It includes published research reports, surveys from interviews, books, web-sources
and other existing material.

As concerns main research problem, this survey can be considered as explore, de-
scribe and explain with exploiting qualitative and quantitative data gathered by
desk research. Before making comparison and evaluation of CI tools, we need to
give answer for first question. In order to answer, it would be used explorative
technique with collected qualitative data from secondary sources for finding criteria
or desirable qualities. In next step, for selection of tools was used same research
method, but with quantitative data. Concerning second and third questions, our
strategy is based on descriptive and explanatory technique. We would analyze gath-
ered information from previous steps and find new one from secondary sources such
as official web pages, journals, web articles, books, forums, question-and-answer
websites. Finally, we collect qualitative data from questionnaires on one of the most
popular software review platforms with audience more than 400000 users [1] and
would use exploratory and Descriptive types of research. Questionnaire consist of
following questions:

1. How likely is it that you would recommend this particular tool to a friend or
colleague?

2. What do you like best?

3. What do you dislike?

4. What business problems are you solving?

5. For which purposes do you use this particular tool?

4. Thesis Approach 31

According to analysis of information our basic principle consists of the following
steps. Firstly, we read through all gathered information from questionnaires, inter-
views, etc. Beside of that, we review aims concerning research questions, since it
helps us to organize data and focus on analysis. Further, we categorize informa-
tion according to each measure associated with description, statements, similarities,
thoughts and opinions into similar categories, e.g., average description, strengths,
weaknesses, repetition frequency of statements, etc. Next, we attempt to identify
patterns, or associations and causal relationships in the categories for each CI in-
strument. Subsequently, we have the intention to summarize and bring all output
from previous steps to single whole and try to show differences and general picture
of researched tools. Finally, we design comparison table with researched tools and
gathered data.

32

5. RESULTS

In today’s world because of the fast grow and big variety of choices in the Infor-
mation Technology market, selection of right tools is becoming a very hard task.
Frequently, criteria are not clear and they are not defined at the beginning of tool
choosing process for Continuous Integration deployment. It is important to find out
what qualities of CI are required when choosing the tools. Due to this problem, in
this chapter, we try to carry out the research based on literature and web forums
of developers to determine which criteria, requirements and features of CI tools
are common, optimal and important despite of differences between projects. First
section of this chapter describes main requirements in evaluating CI tools based
on selection of literature, including Duval’s book, web-forums and some Internet
platforms, where people share opinions. Goal of second section to present our de-
scription of Continuous Integration tools based on gathered information from more
than one hundred reviews, forums and official tool’s pages. As a consequence of first
two sections, in third section our aim to present a comparison table.

5.1 Choice Criteria for Optimal Continuous Integration Tool

Paul Duvall, in his book "Continuous Integration: Improving Software Quality and
Reducing Risk" [45], states that the best CI tool should both save time and costs
of a project. Also good CI tool must serve the team of developers in many projects,
rather than in one. Although it is not always like that, he said that tool selection
is not a lifelong contract, whereas it just means that tool should fit your needs
well and you should know how to work with it. He also points that due to some
circumstances, the team of developers might want to change a tool in middle of
the development process. According to his past development experience, he had
to change tools in the middle of the process of development and this change was
justified.

Obviously, functionality is one of the most significant factors in choosing CI tool.

5.1. Choice Criteria for Optimal Continuous Integration Tool 33

It includes following features.

• Build execution is base functionality feature of CI tool. Duvall claims that real
CI system must be polling-driven, whereas schedule-driven with predetermined
schedule for build execution is not true Continuous Integration tool. However,
there exists another type of build execution - event driven. It means that build
is performed after any changes in repository are made. It sounds better, but
it can require additional time configuring version control repository, while in
a polling-driven system it is not required.

• Undoubtedly, maintaining the version control system, which is used in a de-
velopment, is an important factor. We should pay attention to factors, such
as how CI tool interacts with methods of repository use. At least, CI server
have to recognize changed files and their versions.

• Feedback is key factor of CI. Different types of feedback are supported by CI;
you just need to consider system with appropriate options that fit in a project.

• User interface is not essential criterion for CI tool, although should be taken
into considerable, because good designed interface can save your time at early
periods of time while working with CI tool. User interface can be provided
in different forms; for instance, it can be a web application interface or some
other interface.

• Different CI tools include security features built-in in their system. It means
that these tools include authentication and authorization, which allow control
access to results review and a configuration modification.

• Extensibility. This term implies that possibility to extend functionality can
be significant factor in choosing CI tool.

• Build tool integration.

• Build labeling.

Compatibility is a criterion that defines how well CI tool is integrated with other
elements of development process. You need to find answers to series of questions
regarding compatibility. Firstly, you have to ensure that current build configuration
by CI tool is supported. Secondly, installation of additional software for CI tool

5.1. Choice Criteria for Optimal Continuous Integration Tool 34

may reveal some difficulties. Sometimes tool can require installation of additional
software, for instance it can be a new execution environment. Thirdly, language
compatibility between tool and developed project is another problem. There are
a big variety of CI tools to choose. Some of them are created for working with
specific programming languages while others like CruiseControl can work with any
programming language. If you do not know what kind of projects would be devel-
oped in the future, it would be better idea to start from CI tools, which supports
many programming languages. Nevertheless, if you are sure of your requirements in
advance, it would be better to choose tool that is designed for one language, because
you do not need support of others.

Clearly, reliability is important, because CI tool with a long period of existence on
the market and good reputation would be more reliable choice than a tool which is
still in beta-version state and just appeared at the market. Another crucial factor is
communities related to this tool. If the size of community is big with large amount
of developers and users, it can indicate that there are a lot of materials and answers
to questions, and it would be easy to find solutions to problems, which might appear
during a period of a tool usage.

In comparison with reliability, longevity is a factor that concerns future of the tool,
while reliability shifts attention to past and present of tool’s lifespan. In addition,
as with the previous factor, the size of community and popularity between users
and developers is important. Although, it is not obvious, longevity is higher in tools
with open source code, since community of users is constantly kept up-to-date them.
Furthermore, good CI tool with diverse functionality is used longer than a tool with
poor functionality.

Another considerable criterion is usability. If tool is easy to configure and use,
it means a lot. Using different CI tools for a long period of time will help you
to realize that it is important. Mostly, you can reveal one common difference in
usability among diversity of tools, which is new project configuration process.

Money is always relevant, it is a reason why free, open-source or commercial
criterion is shown. Nowadays, there are a lot of free and commercial software avail-
able on the market. Commercial tool is not always better than free one; comparison
and consideration of all factors before choosing a tool should be performed.

5.2. Continuous Integration Frameworks 35

5.2 Continuous Integration Frameworks

At this point, we have explored different web-sources. Mainly, we studied Google
trends, forums, Stackshare and G2 Crowd platforms. Therefore, we have selected
following six most faced and popular tools for today.

5.2.1 Jenkins

Jenkins is cross-platform and leading award-winning open-source Continuous Inte-
gration server based on Java platform, what main goals are building and testing
software continuously and monitoring executions of externally run jobs [21]. It can
be said that it is most popular CI tool. Open-source and ability for extension are
main factors of success. It was created by Kohsuke Kawaguchi in 2004 and, initially,
it was called Hudson, but in 2011 it was renamed to Jenkins because of disputes
with Oracle [39]. The tool simplifies the process of integration of changes in to the
project and delivery of fresh builds to users. There are already more than 1200 plug-
ins available, that extend Jenkins functionality [21]. Community of Jenkins consists
more than 100 thousands users and it grows very fast, as for December 28 it was
around 127,000 [29].

Jenkins’ interface is represented as series of web pages. User interface of Jenkins is
shown on the Figure 5.1.

Figure 5.1 Jenkins main screen

Jenkins takes first [28] and second [6] places among most popular CI tools in G2
Crowd and Stackshare portals for today. Also, according to ZeroTurnAround survey,

5.2. Continuous Integration Frameworks 36

Jenkins holds dominant position with 70 percent among other tools on the market
in 2013 [19].

Jenkins is used by variety of companies, most notable of them: Facebook, Sony,
Yahoo, Ebay, Netflix, Tumblr, Linkedin, Vine, Hootsuite, Etsy [20].

According to Jenkins official web-site [21], Jenkins offers the following features:

1. Easy installation.

2. Easy configuration: Jenkins can be configured entirely from their web graphi-
cal user interface.

3. Rich plugin ecosystem: Jenkins integrates with virtually every service control
manager or build tool that exists.

4. Extensibility: Most parts of Jenkins can be extended and modified, and it is
easy to create new Jenkins plugins. It allows you to customize Jenkins for
your needs.

5. Distributed builds: Jenkins can distribute build/test loads to multiple comput-
ers running under different operating systems (OS X, Linux, and Windows).

Other Jenkins features [28]:

• Change set support

• Permanent links

• RSS/E-mail/IM Integration

• After-the-fact tagging

• JUnit/TestNG test reporting

• File fingerprinting

Based on different forums and resources, where users provide their opinions and
reviews, we can construct general list of Jenkins CI properties, by showing pros and
cons. Most Stackshare users emphasize such Jenkins features [20]: firstly it can be

5.2. Continuous Integration Frameworks 37

hosted internally (211 votes); secondly, it is free and open-source(169 votes); then
it is great to build, deploy or launch anything async (125); fourthly they underline
that it has big variety of plugins with good documentation (90) and there are tons of
integrations (71). According to G2 Crowd [22], most of Jenkins users claim that they
are very happy with this product. Most of them say that Jenkins is very powerful
tool with easy initial setup and straightforward configuration. Users denote that
the tool is open-source. The process of data deployment is well visualized. Jenkins
supports several service control systems, including popular GitHub and SVN. There
is excellent support of Maven and Java. Community of Jenkins users is very large
and active. It means that there is a wide array of documentation which can be helpful
in resolving some issues and there is impressive amount of plugins for diverse and
specific sets of tasks. Most of the user’s reviews lead to conclusion that Jenkins is
a valuable member of development life cycle, and it savesd them countless work-
hours. It takes time to set it up properly and there is an adoption barrier. If you
have finished the whole system setup, it will meet your requirements and needs.

On the other side, it has negative points. Jenkins might be quite resource hungry
software, in case you have installed a lot of plugins and you have a lot of build jobs
[15]. According to G2 Crowd [22], users tend to think that interface of Jenkins is
poor and old-fashioned. Also, some of them argue that it is not intuitive, because
sometimes it forces a user to makes so many clicks to find desirable information. As
it was said before, Jenkins is easy in initial setup, whereas to use complex plugins
is not as easy and needs some pre-configuration in administration. For some of
users, it was hard to deal with Jenkins documentation. Process of updating can be
painful, because plugins can crush after an update and it needs time for restoring
a system to functional state. In addition, the amount support is less in comparison
with commercial products.

5.2.2 Bamboo

Bamboo is a commercial Continuous Integration tool developed by Atlassian, but
it is free for open-source projects. It connects automated builds, tests and releases
together in a one workflow. Bamboo supports any languages and other spread
technologies like AWS CodeDeply, Docker, Amazon S3 buckets, Maven, Ant, Git,
Mercurial, and SVN. Bamboo finds new branches in Git, Mercurial, and SVN repos-
itories, and then automatically applies the main line’s CI scheme to them. Bamboo
provides deployments with the first-class treatment. Integration with Amazon S3,

5.2. Continuous Integration Frameworks 38

ready-to-use Docker agents and AWS CodeDeploy and Docker tasks make the de-
ployment process faster and easier. Bamboo provides good integration with Jira
with ability to extend even further. Bamboo can be extended by plugins in the
same manner as Jenkins. Build notifications can be modified based on the type of
event, and get sent by email, instant messages, RSS, or pop-up windows. Bamboo
supports easy migration from Jenkins [24].

Following companies use Bamboo: National Public Radio, LeapFrog, Williams-
Sonoma, Cisco, BMW, Kaiser Permanente, NASA [24].

According to G2 Crowd [22], Bamboo users say that it is very flexible tool with
good Atlassian products integration, like Jira and Fisheye. Bamboo documentation
is good and detailed. They say that Atlassian provides excellent support. One of
users, who have used Bamboo for seven years, says that each time when he asked for
the support in Atlassian, they were very helpful. It is easy configurable, it supports
many popular programming languages and Bamboo provides multiple notification
methods. Bamboo works fast and efficiently when configuration and environment
are properly set up. On the other hand, it has negative moments; if the project is
not open-source, Bamboo will be free only for first seven days. Some of reviewers
say that user-interface is not good and they hope that Atlassian will focus more on
mobile applications. First work experience with Bamboo can be complicated. For
some of users setup process was difficult and not clear enough to understand.

5.2.3 CircleCI

CircleCI provides easy setup and maintenance without any difficulties [8]. It eases
development for software teams in terms of building, testing and deploying fast and
systematically through different platforms. CircleCI supports all types of software
tests including web, mobile and container environments. CircleCI makes the process
of Continuous Integration simple and easy for any company [7].

Following companies use CircleCI: RedBull, Kickstarter, Stripe, Percolate, Teespring,
BOOTH, Couchsurfing, Harvest, Vusay and Gazelle [8].

CircleCI integrates with GitHub, Heroku, Amazon EC2, Rackspace Cloud Servers,
Joyent Cloud, Engine Yard Cloud, Nodejitsu, AppFog, dotCloud [8].

• Based on Stackshare quiz, following attributes of CirleCI are the most empha-

5.2. Continuous Integration Frameworks 39

sized for Stackshare’s community members [8]:

– Github integration, fast builds, easy setup, competitively priced, slack
integration, great customer support, docker support.

CircleCI Features [8]:

• Quick Setup. Process of setting up is around 20 seconds. CircleCI detects
test settings for a wide range of web apps with a single click, then settings on
CircleCI servers are sat up automatically.

• Deep Customization. CircleCI settings are very flexible, allowing to easy set
up almost anything required.

• Debug is made with ease. When tests are corrupted, CircleCI helps to fix
them. It auto-detects errors and provides great support.

• Smart Notifications. It can intelligently notify via email, Hipchat, Campfire
and others sources. Notifications contain only relevant information.

• Fast support. CircleCI respond to support requests very fast, users do not
need to wait more than 12 hours for a response.

• Automatic Parallelization. CircleCI can automatically parallelize tests with
up to 4 parallel flows via multiple machines.

• Continuous Deployment, build artifacts, clean build environments, GitHub
integration, fast tests, free Open Source support [12].

According to G2 Crowd [22] reviews, CircleCI is intuitive and extremely helpful
tool, even one of the reviewers claims that it is faster than Travis and simpler
than Jenkins. They characterize it as quick and easy to set up and benefitial to
development processes. Moreover, one reviewer found that their documentation is
good and when he had questions, CircleCI support helped him very fast. There
is a 14 day free trial period to try Circle CI, since it has time to see whether it
meets all team requirements or not. The user interface is very clean and easy to
understand. One of reviewers emphasized increased speed of parallel tests. There are
premade configurations with good integration to GitHub. Notifications are timely
and helpful, they can be sent by email, chat and webhook notifications. On the

5.2. Continuous Integration Frameworks 40

other side there are some disadvantages. For instance, there were some cases where
tests were broken because of CircleCI upgrades. Although, it is a small complaint,
but it would be better if it will be possible to define environment variable for all
projects. Sometimes tests cannot be passed because some extra configuration is
required. Also, CircleCI sends notifications to many emails each time when a push
is performed. One of reviewers said that user experience was not so comfortable
and it could be improved. In addition, it is not always updated with latest java
development kit versions.

5.2.4 Codeship

Codeship is a Continuous Integration and deployment tool for web applications,
including php, rails, java, python or go apps. It runs automated tests and configures
deployment after changes are made in a repository. It keeps managing and scaling
the infrastructure, thus it allows developers to be able to test and release more
frequently and receive fast feedback for improving the process of a development
software creation [10].

• Based on Stackshare quiz, following attributes of Codeship are most empha-
sized by Stackshare’s community members [10]:

– Easy deployment, simple setup, GitHub, Bitbucket and Slack integration,
intuitive and great UI, customer support, easy to get started.

Codeship’s features [10]:

• Running automated tests.

• Codeship is easily to set up with GitHub or Bitbucket and trigger automated
tests with a simple push to repository.

• Setting up powerful deployment pipelines that let to deploy with ease multiple
times per day.

• Intelligent notifications and integration keep team informed.

5.2. Continuous Integration Frameworks 41

Following companies use Codeship [10]: Bia2, Treehouse, Product Hunt, Banner-
man, Soylent, Podigee, Pipedrive, miDrive. Furthermore, it supports integration
with GitHub, Slack, Heroku, Bitbucket, Amazon EC2, HipChat and Capistrano.

According to G2 Crowd [22], almost all reviews point out that setup is very quick
and it easy to get started with. They say that in Codeship all things are much
easier and process of deploying much simpler than in Jenkins. It is easy to install
with GitHub and easy to configure tests, also it is very convenient to deploy to
Amazon Web Services. Some of reviews imply that user experience is very good in
Codeship. People liked how shared setup, testing and deployment are implemented
in Codeship. Most of them emphasize that process of working with Codeship is
simple and user-friendly. People describe user interface as intuitive and elaborate,
because all tools are powerful and work consistently and it does not take much
time for user to get familiar with GUI. For instance, if build fails, developer knows
that it the problem is with a code or a test and not with the platform. This
technique allows to troubleshoot and determine issues much faster. Some reviews
laid accent on the ability to support Secure Shell in a build environment. Some of
them recommend everyone to try out Codeship, especially small teams with tight
budget since Codeship offers a reasonable functionality in their free package.

Nevertheless, it has negative properties [9]. In some reviews, users suggested to
add support of storing artifacts. Then, there are slight problems with notifications.
Most of reviews tell us that there is lack of documentation and it should be extended,
because it bothers them, especially in comparison with Jenkins. In addition, some
people say that price is high and it would be better if they add more plugins.

5.2.5 TeamCity

TeamCity is a multifunctional Continuous Integration server, which is ready to work
right after installation. It supports many version control systems, authentication,
deployment and testing out of the box. TeamCity is extensible, for many operations
it does not even need to support Java. It is easy to setup and it is free for small teams
and open source projects. TeamCity is used by following known companies [27]:
Apple; Ebay; Jvm stack; Yammer; Stack exchange; NationBuilder; Stack Overflow.

Most relevant Team City’s features are described further.

Instant feedback on issues and test failures during a build progress. It does not re-

5.2. Continuous Integration Frameworks 42

quires user to wait for the end of the building to be able to see errors in compilation
or test failures.
Ability to run compilation and testing processes of modified code without a commit
to the version control system, directly from the IDE.
Simplified setup - it allows to create projects from just a VCS repository URL.
Run multiple builds and tests under different configurations and platforms simulta-
neously.
The hierarchical structure of projects, making it easy to set up rights and server
configuration.
Big statistical reports on results of the builds with information about build duration,
success rate, code quality, and custom metrics.
Great visual project representation. It tracks any changes made by any user in the
system, filters projects and chooses style of visual change status representation.
Management of common resources allows to get easily access to shared databases,
test devices, etc.
Configurable conditions of failures in a progress of build based on a variety of met-
rics, including number of failed tests, number of uncovered classes and modules,
additionally metrics excluding the degradation of the quality of code.
Unique features for server support in appropriate conditions: built-in cleaning build
stories, reports about occupied disk space and reports about health of the server.
Support of mixed authentication which allows to use different authentication meth-
ods (LDAP, Windows Domain, built-in) at the same time.
Excellent integration with version control systems: support multiple systems to a
single project, feature branching for the Mercurial and Git, advanced rules to start
building based on changes in version control systems.
Roles and user groups allow to set up an easy access to the server for all users.
Support of Ruby and XCode projects, intuitive web-interface, service message sup-
port, more than 100 free plug-ins available, easily-to-extend TeamCity functionality
and new integrations with Java API.

According to G2 Crowd reviews [17], the installation of TeamCity is very easy and
quick. Moreover, user interface of TeamCity is simple and easy to get familiar
with and provides large variety of options. TeamCity reports project status and
relevant information for various users and even project stakeholders. TeamCity
includes documentation with a lot of examples and tutorials for different cases.
In addition, users say that it is easy find answers on the Internet, including such
topics as the platform setup, due to the fact that TeamCity has been present on the

5.2. Continuous Integration Frameworks 43

market for a long time and gained popularity among users. There is a long but very
straightforward process of setting up builds, which makes possible to modify options,
like making a schedule for a build trigger. One of the most popular features in
TeamCity is an automation of different aspects of the software development life cycle.
By automating development process users are able to gain more productivity. The
process allows to decrease deployment time and keeps track on easily configurations
of deployment process. Build configuration is very flexible. It includes building
source code with difference targets, shell scripting etc. Furthermore, reviews present
TeamCity as a good product for development team of any size. Moreover, it suits
to the companies with different environments and services, since it can be extended
to fit the projects. However, it has some shortcomings [17], some of reviewers say
that they were not satisfied with documentation and process of setting up and
upgrading process was also difficult. One of the reviewers dislikes explanation of
software specific terminology that mostly have to search the meanings of terms in
the Internet. It is said that tooltips can bring more meaningful and immediate
feedback than opening windows with big amount of information.

5.2.6 Travis

Travis CI is a web-based Continuous Integration server for open source and private
projects closely integrated in GitHub. In the beginning, Travis CI supported only
Ruby-on-Rails, but currently it supports almost all kinds of languages and platforms.
The main idea of Travis is an simple integration with GitHub and adding a single
file and a post-push webhook triggers in the hosted virtual machine [16].

Travis CI is used by many companies [30] like TimeHop, JVM Stack, 500px, Fluxible,
Moz, Heroku, Techstack, Code School.

Based on Stackshare quiz [30], the following attributes of Travis CI are the most
emphasized for Stackshare’s community members:

• GitHub integration

• Free for open source projects

• Easy to get started

• User-friendly interface

5.3. Decision Matrix for Continuous Integration Frameworks 44

• Automatic deployment

• Tutorials for each programming language

Based on G2 Crowd reviews [31], Travis CI can be characterized by following fea-
tures. Firstly, it is free for open source projects. Then, one of the main features that
it includes the most popular programming languages and server technologies. Travis
CI has clear configuration specification and it has wide user community. It provides
fast support and process of updating software in the stack. Furthermore, another
good feature is seamless integration with GitHub and it is even not necessary to go
into Travis CI’s website. Every pull request and commit presents current build sta-
tus in GitHub. Additionally, it saves time by running large test suites on a remote
system that allows developers to continue the work without stopping for waiting
their own workstations to run the test. The user interface is very responsive, most
users say that it is easy to use Travis CI and to do the work, configuration, easily
monitoring builds. Travis CI allows to deploy easy-to-perform tests concurrently. In
addition, it is free to have one private repository for students. But it has negative
moments. Several reviewers noted that in some cases setup process took significant
amount of time and it was not easy to understand all documentation. It can be not
stable sometimes. During compilation or running tests, it can freeze for unknown
reasons requiring manual interruptions. Most of the time this problem does not
happen but it occurs occasionally. Some users say that they would like to add SSH
to the build machine to debug a build failure, then to have an ability to manually
trigger a new build and to re-arrange or re-prioritize the builds. There is no good
support for Docker. Setting up the .travis.yml files can be tricky and require many
excessive commits to get a build working properly.

5.3 Decision Matrix for Continuous Integration Frameworks

This section presents comparison table 5.1 with researched Continuous Integration
tools. Besides of criteria presence, we try to show relation of some tools to others
by amount of ticks. Whereas tick with a star denotes limited functionality in this
type of criteria.

5.3. Decision Matrix for Continuous Integration Frameworks 45

Table 5.1 Decision Matrix for Continuous Integration Frameworks.

Criteria Jenkins Bamboo CircleCI Codeship TeamCity Travis
GitHub X X X X X X
Other reposi-
tories

X X X X X ×

Multi-
Language

X X X X X X

Feedback X X X X X X
Usability × X X X X X
Security X X X X X X
Extensibility XXX XX X X X X
Compatibility XXX X X X X X
Reliability XXX X X X X X
Longevity XXX X X X X X
Commercial × X X X X X
Totally free X × X* X* X* ×
Trial × X* X* × × ×
Free for open-
source

X X × X* X* X*

Support × X X × × ×
Easy entry pe-
riod

× × X X × ×

Flexibility X × × × × ×
Community XXX X × X X X

The table uses eighteen criteria to show relation and comparison for six selected CI
tools. It can be clearly seen that the Jenkins has biggest amount of ticks than other
five instruments. Furthermore, we can see that there are not significant differences
in criteria, whereas comparison can be provided based on relation to each other. For
instance, Jenkins provides biggest extensibility in comparison with other tools, due
to this fact, it was assigned three ticks.

46

6. DISCUSSION

There were not found surveys that were attempting to compare existing continuous
technologies and bring them together. In our section 5.1, after analyzing market of
CI users we emphasized main qualities and criteria for considering existing tools.
Furthermore, in section 5.2, we have explored besides of official pages of CI tools also
huge number of reviews and summarized gathered information to one description.
At this section, we have arrived to the point where we will begin presenting our
solution and choice among alternatives.

Consequently, the choice was not so easy since Jenkins and Codeship provides a
lot of valuable services and important features. Although, Codeship doesn’t have
so many disadvantages, the final decision came to Jenkins. Jenkins was preferred
over other tools since it allows to safe budget and provides beginner-friendly set of
CI tools. Firstly, it is a free open-source project. This factor was one of the most
common and important among reviewers. Secondly, Jenkins provides great flexibility
to so many different development methodologies and it has all of the features that
a developer might need. There are more than 1200 plug-ins that allow user you
to assemble desirable configuration. Jenkins also has the biggest community which
is very motivated to improve Jenkins and very active. Fourthly, it is good start
for understanding which criteria is most appropriate and crucial, and after that it
would be easier to change or choose new CI tool, on the contrary continue to choose
Jenkins. In comparison with Jenkins, Codeship has better UI and works better in
case when you have installed huge amount of plugins to Jenkins because it slows it
down. Additionaly, Codeship has better support service. Users say that in case they
had any issues and need any support they always got it incredibly soon. Despite
the fact, Codeship provides so many good service, it has a free plan with reduced
functionality for open source projects. It is still advanced version of CI tool, whereas
Jenkins is entry level tool in the area. Also, another crucial factor why Jenkins was
chosen, it has opportunity to find almost any answers for any issues. Lifespan of
Jenkins is the biggest in this area, whereas another old tool, like Cruise Control, is

6. Discussion 47

faded. Based on our research, we can argue that Jenkins beside that is perfect option
as entry tool, it can be claimed that it is good as usual tool and have tremendous
functionality. Jenkins definitely fits to majority requirements and criteria described
in section 5.1 and meets our thesis research questions.

48

7. CONCLUSION

The goal of this thesis, as it was stated in the first chapter, is to clarify the best
instruments, show the overview of CI tools and make a comparison. We expect that
after reading a thesis, results of survey will help making a decision of the tool to
some developer or at least to get some comprehension. We feel that it was taken
most latest and actual Continuous Integration tools on the market and used for
survey best available sources and researches.

After answering to thesis questions, we can express our thoughts, that you cannot
select ideal CI tool, as most effective and universal, before you will try at least
one of them, since each considerable case has own conditions and requirements.
Nevertheless, as it was said in previous chapter, Jenkins would be great choice as
best entry and flexible tool in an acquaintance with CI area and for a long work,
also it is good for defining specific requirements.

This thesis has shown that future work on this topic has great potential. The work
on a thesis gave us a lot of ideas. For instance, after deploying CI server, we can
make research based on ideal configuration and what kind of other tools is most
suitable in a work. In addition, it is possible to go in direction of developing some
specific plugins to Jenkins, if it is not available for some case. Then, it is very easy
to find other possibilities for future work into the CI topic.

In conclusion, this thesis project can be helpful for those who are looking a short
guide, where would be suited basic knowledge for starting work with CI. Since, this
thesis work allows to dive into CI process and learn in parallel from where it takes
origins. As a result, this research gives to the reader possibility to get acquainted
with most new popular tools, and get first imagination about CI without wasting
time for searching not always necessary information.

49

BIBLIOGRAPHY

[1] About g2 crowd page. https://www.g2crowd.com/about/. [Online; accessed
Jan. 2016].

[2] Agile practices. http://www.accegile.com/how-we-work/agile-practices.html.
[Online; accessed Jan. 2016].

[3] Agile: The world’s most popular innovation engine. http://www.forbes.com/
sites/stevedenning/2015/07/23/the-worlds-most-popular-innovation-engine/
#76df6aed2d4c. [Online; accessed Mar. 2016].

[4] Agile vs. waterfall website project manage-
ment methodologies. http://www.intechnic.com/blog/
agile-vs-waterfall-website-project-management-methodologies/. [Online;
accessed Mar. 2016].

[5] Agileversuslean. https://http://martinfowler.com/bliki/AgileVersusLean.html.
[Online; accessed Jan. 2016].

[6] Build automation software list. https://www.g2crowd.com/categories/
build-automation/products. [Online; accessed Jan. 2016].

[7] Circleci - continuous integration and deployment. https://angel.co/circleci. [On-
line; accessed Jan. 2016].

[8] Circleci continuous - integration for web apps. http://stackshare.io/circleci.
[Online; accessed Jan. 2016].

[9] Codeship. https://www.g2crowd.com/products/codeship/reviews. [Online; ac-
cessed Jan. 2016].

[10] Codeship - continuous integration and delivery made simple. http://stackshare.
io/codeship. [Online; accessed Jan. 2016].

[11] Continuous everything in devopsâwhat is the difference between ci, cd, cdâ?
https://www.accenture.com/us-en/blogs/blogs-continuous-everything-devops.
[Online; accessed May. 2016].

[12] Continuous integration and deployment. https://circleci.com/. [Online; ac-
cessed Jan. 2016].

https://www.g2crowd.com/about/
http://www.accegile.com/how-we-work/agile-practices.html
http://www.forbes.com/sites/stevedenning/2015/07/23/the-worlds-most-popular-innovation-engine/#76df6aed2d4c
http://www.forbes.com/sites/stevedenning/2015/07/23/the-worlds-most-popular-innovation-engine/#76df6aed2d4c
http://www.forbes.com/sites/stevedenning/2015/07/23/the-worlds-most-popular-innovation-engine/#76df6aed2d4c
http://www.intechnic.com/blog/agile-vs-waterfall-website-project-management-methodologies/
http://www.intechnic.com/blog/agile-vs-waterfall-website-project-management-methodologies/
https://http://martinfowler.com/bliki/AgileVersusLean.html
https://www.g2crowd.com/categories/build-automation/products
https://www.g2crowd.com/categories/build-automation/products
https://angel.co/circleci
http://stackshare.io/circleci
https://www.g2crowd.com/products/codeship/reviews
http://stackshare.io/codeship
http://stackshare.io/codeship
https://www.accenture.com/us-en/blogs/blogs-continuous-everything-devops
https://circleci.com/

BIBLIOGRAPHY 50

[13] Continuous integration and quality. http://www.summa-tech.com/blog/2013/
03/24/continuous-integration-and-quality. [Online; accessed Jan. 2016].

[14] Continuous integration in devops. https://insights.sei.cmu.edu/devops/2015/
01/continuous-integration-in-devops-1.html. [Online; accessed May. 2016].

[15] Continuous integration servers in comparison. http://www.warp1337.com/
content/continuous-integration-servers-comparison-shoot-out. [Online; ac-
cessed Jan. 2016].

[16] Devprod report revisited: Continuous integration
servers in 2013. (http://zeroturnaround.com/rebellabs/
devprod-report-revisited-continuous-integration-servers-in-2013/). [Online;
accessed Jan. 2016].

[17] Intelligent ci server. https://www.g2crowd.com/products/teamcity/reviews.
[Online; accessed Jan. 2016].

[18] Is agile or waterfall the best? the answer is not binary! http:
//www.uxcconsulting.com.au/media/UXCConsulting_WhitePaper_
IsAgileorWaterfalltheBest_web.pdf. [Online; accessed Jan. 2016].

[19] Java tools and technologies landscape for 2014. http://zeroturnaround.
com/rebellabs/java-tools-and-technologies-landscape-for-2014/12/. [Online;
accessed Jan. 2016].

[20] Jenkins - an extendable open source continuous integration server. http://
stackshare.io/jenkins. [Online; accessed Jan. 2016].

[21] Jenkins. an extendable open source automation server. https://jenkins-ci.org/.
[Online; accessed Jan. 2016].

[22] Jenkins is an award-winning application that monitors executions of repeated
jobs, such as building a software project or jobs run by cron. https://www.
g2crowd.com/products/jenkins/reviews. [Online; accessed Jan. 2016].

[23] Lean vs. agile. http://www.onedesk.com/2013/07/lean-vs-agile/. [Online; ac-
cessed Mar. 2016].

[24] Official bamboo page. https://www.atlassian.com/software/bamboo/. [Online;
accessed Jan. 2016].

http://www.summa-tech.com/blog/2013/03/24/continuous-integration-and-quality
http://www.summa-tech.com/blog/2013/03/24/continuous-integration-and-quality
https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-1.html
https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-1.html
http://www.warp1337.com/content/continuous-integration-servers-comparison-shoot-out
http://www.warp1337.com/content/continuous-integration-servers-comparison-shoot-out
(http://zeroturnaround.com/rebellabs/devprod-report-revisited-continuous-integration-servers-in-2013/) .
(http://zeroturnaround.com/rebellabs/devprod-report-revisited-continuous-integration-servers-in-2013/) .
https://www.g2crowd.com/products/teamcity/reviews
http://www.uxcconsulting.com.au/media/UXCConsulting_WhitePaper_IsAgileorWaterfalltheBest_web.pdf
http://www.uxcconsulting.com.au/media/UXCConsulting_WhitePaper_IsAgileorWaterfalltheBest_web.pdf
http://www.uxcconsulting.com.au/media/UXCConsulting_WhitePaper_IsAgileorWaterfalltheBest_web.pdf
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/12/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/12/
http://stackshare.io/jenkins
http://stackshare.io/jenkins
https://jenkins-ci.org/
https://www.g2crowd.com/products/jenkins/reviews
https://www.g2crowd.com/products/jenkins/reviews
http://www.onedesk.com/2013/07/lean-vs-agile/
https://www.atlassian.com/software/bamboo/

BIBLIOGRAPHY 51

[25] Review of methodology of scrum. http://ossystem.com.ua/de/blog/roundup_
methodology_scrum. [Online; accessed Jan. 2016].

[26] Sdlc - waterfall model. http://www.tutorialspoint.com/sdlc/sdlc_waterfall_
model.html. [Online; accessed Mar. 2016].

[27] Teamcity is an ultimate continuous integration tool for professionals. (http:
//stackshare.io/teamcity). [Online; accessed Jan. 2016].

[28] Top 10 continious integration tools. http://stackshare.io/
continuous-integration. [Online; accessed Jan. 2016].

[29] Total jenkins installations. http://stats.jenkins-ci.org/jenkins-stats/svg/
total-jenkins.svg. [Online; accessed Jan. 2016].

[30] Travis ci - a hosted continuous integration service for open source and private
projects. http://stackshare.io/travis-ci. [Online; accessed Jan. 2016].

[31] Travis ci - test and deploy with confidence. https://www.g2crowd.com/
products/travis-ci/reviews. [Online; accessed Jan. 2016].

[32] Understanding the pros and cons of the waterfall model
of software development. http://www.techrepublic.com/article/
understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/.
[Online; accessed Jan. 2016].

[33] The waterfall model explained. http://www.buzzle.com/editorials/
1-5-2005-63768.asp/. [Online; accessed Jan. 2016].

[34] We need more agile it now! http://www.drdobbs.com/architecture-and-design/
we-need-more-agile-it-now/240169361?queryText=Release%2Bmanagement.
[Online; accessed Mar. 2016].

[35] Why we should rethink the agile manifesto: Software is everywhere. http:
//www.jamasoftware.com/blog/rethink-agile-manifesto-software-everywhere/.
[Online; accessed Mar. 2016].

[36] S. K. Amanpreet Kaur Boparai, “Process of moving from traditional to agile
software development,” International Journal of Advanced Research in Com-
puter Science and Software Engineering, vol. 2, no. 1, pp. 586–591, 2015.

http://ossystem.com.ua/de/blog/roundup_methodology_scrum
http://ossystem.com.ua/de/blog/roundup_methodology_scrum
http://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.html
http://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.html
(http://stackshare.io/teamcity)
(http://stackshare.io/teamcity)
http://stackshare.io/continuous-integration
http://stackshare.io/continuous-integration
http://stats.jenkins-ci.org/jenkins-stats/svg/total-jenkins.svg
http://stats.jenkins-ci.org/jenkins-stats/svg/total-jenkins.svg
http://stackshare.io/travis-ci
https://www.g2crowd.com/products/travis-ci/reviews
https://www.g2crowd.com/products/travis-ci/reviews
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
http://www.buzzle.com/editorials/1-5-2005-63768.asp/
http://www.buzzle.com/editorials/1-5-2005-63768.asp/
http://www.drdobbs.com/architecture-and-design/we-need-more-agile-it-now/240169361?queryText=Release%2Bmanagement
http://www.drdobbs.com/architecture-and-design/we-need-more-agile-it-now/240169361?queryText=Release%2Bmanagement
http://www.jamasoftware.com/blog/rethink-agile-manifesto-software-everywhere/
http://www.jamasoftware.com/blog/rethink-agile-manifesto-software-everywhere/

BIBLIOGRAPHY 52

[37] K. Auer and R. Miller, Extreme programming applied. Addison-Wesley Indi-
anapolis, Indiana, 2002.

[38] S. Balaji and M. S. Murugaiyan, “Waterfall vs. v-model vs. agile: A comparative
study on sdlc,” International Journal of Information Technology and Business
Management, vol. 2, no. 1, pp. 26–30, 2012.

[39] A. Bayer, “Hudson’s future,” 2011.

[40] K. Beck, “Extreme programming: A humanistic discipline of software develop-
ment,” in Fundamental Approaches to Software Engineering. Springer, 1998,
pp. 1–6.

[41] K. Beck and C. Anders, “extreme programming explained: embrace change
addison-wesley,” Reading, Ma, 1999.

[42] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al., “The ag-
ile manifesto,” 2001.

[43] P. Cauldwell, Code Leader: Using People, Tools, and Processes to Build Suc-
cessful Software. John Wiley & Sons, 2008.

[44] W. Commons, “Wikimedia commons,” [Online; accessed Mar. 2016].

[45] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[46] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 2006.

[47] B. Grady, “Object-oriented analysis and design with applications,” 1994.

[48] P. N. Hague, N. Hague, and C.-A. Morgan, Market research in practice: How
to get greater insight from your market. Kogan Page Publishers, 2013.

[49] M. Httermann, DevOps for developers. Apress, 2012.

[50] S. Ian, “Software engineering eighth edition,” 2007.

[51] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, “Software development
life cycle agile vs traditional approaches,” in International Conference on In-
formation and Network Technology, vol. 37, no. 1, 2012, pp. 162–167.

BIBLIOGRAPHY 53

[52] L. Lindstrom and R. Jeffries, “Extreme programming and agile software devel-
opment methodologies,” Information systems management, vol. 21, no. 3, pp.
41–52, 2004.

[53] Y. McGivern, The practice of market research: an introduction. Pearson Higher
Ed, 2013.

[54] E. Mooi and M. Sarstedt, “A concise guide to market research: The process,”
Data, and Methods, 2011.

[55] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the" stairway to heaven"–a
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software,” in Software Engineering and Ad-
vanced Applications (SEAA), 2012 38th EUROMICRO Conference on. IEEE,
2012, pp. 392–399.

[56] H. H. Olsson and J. Bosch, “Towards agile and beyond: an empirical account
on the challenges involved when advancing software development practices,” in
Agile Processes in Software Engineering and Extreme Programming. Springer,
2014, pp. 327–335.

[57] W. W. Royce, “Managing the development of large software systems,” in pro-
ceedings of IEEE WESCON, vol. 26, no. 8. Los Angeles, 1970, pp. 328–388.

[58] K. Schwaber, Agile project management with Scrum. Microsoft Press, 2004.

[59] S. Sharma and B. Coyne, “Devops for dummies,” Limited IBM Edition’book,
2013.

[60] J. Shore and S. Warden, “The art of agile development. reilly media,” Inc.,
Sebastopol, 2008.

[61] V. M. Sue and L. A. Ritter, Conducting online surveys. Sage, 2012.

[62] G. Suganya and S. Mary, “Progression towards agility: A comprehensive sur-
vey,” in Computing Communication and Networking Technologies (ICCCNT),
2010 International Conference on. IEEE, 2010, pp. 1–5.

[63] J. Sutherland, “The roots of scrum: How the japanese experience changed
global,” 1993.

Bibliography 54

[64] J. Sutherland and K. Schwaber, “The scrum guide,” The Definitive Guide to
Scrum: The Rules of the Game, 2011.

[65] K. YAMADA et al., “Linear models vs agile models: Making the right model
decision,” Nagaoka University of Technology CiNii Books, vol. 2010, no. 50, pp.
85–88, 2010.

	Introduction
	Development Models
	Traditional Model
	Lean Software Development Models
	Scrum
	Extreme Programming
	DevOps

	Continuous Integration
	Elements of Continuous Integration System
	Integration Process
	Advantages of CI
	Negative Aspects of CI

	Thesis Approach
	Results
	Choice Criteria for Optimal Continuous Integration Tool
	Continuous Integration Frameworks
	Jenkins
	Bamboo
	CircleCI
	Codeship
	TeamCity
	Travis

	Decision Matrix for Continuous Integration Frameworks

	Discussion
	Conclusion
	Bibliography

