
TUUKKA KATAJA, JUHO TEPERI
IMPROVING AND EVALUATING CLOJURE WEB APPLICATION
ARCHITECTURE

Master of Science Thesis

Examiner: Prof. Hannu-Matti Järvinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 3rd June, 2015

I

ABSTRACT

TUUKKA KATAJA, JUHO TEPERI: Improving and Evaluating Clojure Web Applica-
tion Architecture
Tampere University of Technology
Master of Science Thesis, 78 pages, 10 Appendix pages
June 2016
Master’s Degree Programme in Information Technology
Major: Software Engineering, Pervasive Systems
Examiner: Prof. Hannu-Matti Järvinen
Keywords: software architecture, web applications, Decision-Centric Architecture
Review, Clojure

In this study, the software architecture of Clojure-based web applications was improved,
based on findings in previous projects where the authors have been involved. These
projects are briefly introduced to provide context for the proposed improvements. Then,
potential solutions were evaluated and a web application was built based on these solu-
tions. In addition, some new fundamental architecture-related ideas were studied to gain
more understanding of how to implement forthcoming projects. As a result, a reference
architecture was created based on the implemented example application.

Decisions related to the reference architecture were then evaluated using the Decision-
Centric Architecture Review method. This method produced structured documentation
about the feasibility of architectural choices. Based on the results, some decisions were
considered beneficial and should be taken into account in future projects whereas some
were considered to have minor impact or even major negative impact.

II

TUUKKA KATAJA, JUHO TEPERI: Clojure web-sovellusten arkkitehtuurin kehitys ja
arviointi
Tampereen teknillinen yliopisto
Diplomityö, 78 sivua, 10 liitesivua
Kesäkuu 2016
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotuotanto, Pervasive Systems
Tarkastajat: Prof. Hannu-Matti Järvinen
Avainsanat: ohjelmistoarkkitehtuuri, web-sovellukset, Decision-Centric Architec-
ture Review, Clojure

Tässä työssä kehitettiin Clojure-pohjaisten web-sovellusten ohjelmistoarkkitehtuuria pe-
rustuen havaintoihin projekteissa, joissa työn tekijät ovat olleet mukana. Projektit esitel-
lään lyhyesti taustatietona tarvittaville parannuksille. Työssä käydään läpi erilaisia mah-
dollisia ratkaisuja ja työn tuloksena syntyi esimerkkisovellus. Kokemusten perusteella
tehtyjen parannusten lisäksi työssä käsitellään uusia perustavanlaatuisia arkkitehtuuri-
ratkaisuita, joita voidaan mahdollisesti hyödyntää tulevissa projekteissa. Työn tuloksena
syntyi viitearkkitehtuuri, joka pohjautuu toteutettuun esimerkkisovellukseen.

Työssä tehdyt arkkitehtuuripäätökset arvioidaan DCAR-menetelmällä. Kyseinen mene-
telmän avulla päätöksistä saatiin jäsennettyä dokumentaatiota arkkitehtuuriparannusten
kelvollisuudesta. Tulosten perusteella joitakin hyödyllisiä arkkitehtuuripäätöksiä kannat-
taisi ottaa huomioon tulevissa projekteissa. Jotkin päätöksistä olivat vähäpätöisempiä tai
niillä oli jopa merkittävä negatiivinen vaikutus.

III

TABLE OF CONTENTS

1. Introduction . 1

2. Background . 3

2.1 About Metosin Ltd . 3

2.2 About Clojure . 3

2.3 About ClojureScript . 4

2.4 Case Projects . 5

2.4.1 Case X . 5

2.4.2 Case Y . 8

2.4.3 Case Z . 10

2.5 Focal Points for Architectural Improvements 11

2.6 Specification of an Example Project . 13

3. Decision-Centric Architecture Review . 15

4. Evaluating Data Persistence and API Solutions 19

4.1 Data Persistence . 19

4.1.1 Document-model (MongoDB) . 19

4.1.2 Relational Mixed with Document Model (PostgreSQL) 21

4.1.3 Fact-Based Temporal Database (Datomic) 22

4.1.4 Storing Events and Event Sourcing 24

4.1.5 Capturing Data Changes with PostgreSQL and Bottled Water 26

4.2 Database Choices for the Example Application 28

4.3 Application Programming Interface (API) 29

4.3.1 HTTP, Representational State Transfer, REST HTTP APIs 30

4.3.2 Compojure-api Library for Building Web APIs 32

4.3.3 Remote Procedure Calls (RPC) over HTTP 34

4.3.4 Kekkonen Library . 35

IV

4.3.5 Side Effects of Commands and Real-Time Events 38

4.4 Backend Technology Choices for Example Application 40

5. Evaluating Frontend Technologies . 41

5.1 Web Development Background . 41

5.1.1 Model-View-Controller . 42

5.2 Rendering and State Management . 43

5.2.1 React . 43

5.2.2 Om . 45

5.2.3 Reagent . 49

5.2.4 Re-frame . 51

5.3 Fetching Data . 53

5.3.1 Previously Used Approaches . 54

5.3.2 Relay . 55

5.3.3 Om.next . 57

5.4 Frontend Technology Choices for Example Application 59

6. Implementation . 61

6.1 Backend . 61

6.1.1 Data Persistence . 61

6.1.2 API . 65

6.1.3 Backend Implementation Conclusion 68

6.2 Frontend . 69

6.2.1 Data Fetching Implementation . 69

6.2.2 Live Updates . 72

6.2.3 Component Schema Validation . 73

6.2.4 Frontend Implementation Conclusion 74

7. Architecture Evaluation Results . 75

7.1 Evaluation Session and Results . 75

V

8. Conclusion . 78

Bibliography . 79

A. Contributions . 85

B. Architecture Decisions . 86

VI

LIST OF FIGURES

2.1 High-level overview of the system X. 6

3.1 Summarization of DCAR review steps and artifacts produced during each
step. Adapted from [18, p.72]. 18

4.1 Overview of the interaction between PostgreSQL, Bottled Water exten-
sion, Kafka and the application backend. 28

4.2 High-level conceptual view of Kekkonen library 36

4.3 Diagram of interaction between the backend and the frontend over HTTP
and WebSocket. 38

5.1 Message flow between parts of the MVC model. Adapted from [62, p.5]. . 42

5.2 Diagram of how Om cursors can be used to acccess subtrees of application
state. 47

5.3 Visualization of dataflow in Re-frame architecture. Adapted from [66]. . . 52

6.1 Sequence diagram depicting how command triggered from user interface
is processed. 71

VII

LIST OF TABLES

2.1 Architecture-related patterns and their presence in each case project and
the reference architecture . 13

4.1 JSON data type improvements in PostgreSQL database 21

6.1 Example of token data . 62

7.1 Summary of the results of the Decision-Centric Architecture Review . . . 76

VIII

LIST OF PROGRAMS

4.1 Basic Compojure-api example application 33

4.2 Basic Kekkonen example using the CQRS model 37

5.1 Simple React component . 43

5.2 Basic Om example . 46

5.3 Basic Reagent example . 49

5.4 Reagent local state example . 50

5.5 Reagent reaction example . 51

5.6 Code demonstrating data in a tree format with duplicated entities. 58

5.7 Code demonstrating normalized data in a graph format. 58

6.1 Example SQL to demonstrate change data capturing. 64

6.2 Example of a Kekkonen handler for adding new account. 64

6.3 Example of a Kekkonen handler for adding new account with explicit
WebSocket broadcast. 65

6.4 Example of Kekkonen CQRS API and interceptors 67

6.5 Log output produced by interceptors when invoking Kekkonen handler
defined in the listing 6.4 . 68

6.6 Example of data fetching frontend code 70

6.7 Example frontend code for remote mutation implementation 71

6.8 Example of re-frame subscription used built data for components from
application state . 72

6.9 Example of Schema annotated Reagent Component function 73

IX

LIST OF ABBREVIATIONS AND TERMS

ACID Atomicity, Consistency, Isolation and Durability properties of a database
API Application Programming Interface provides means to interact with the

software component.
AST Abstract Syntax Tree is an internal data representation of parsed code.
ATAM Architecture Tradeoff Analysis Method is an architecture review method.
CQRS Command-Query Responsibility Segregation is an API design pattern.
DCAR Decision-Centric Architecture Review is an architecture review method.
DOM Document Object Model is an interface to manipulate browser docu-

ment contents.
EDN Extensible Data Notation is an extensible data format.
FRP Functional Reactive Programming is a functional programming pattern.
JSON JavaScript Object Notation is a data format.
JSONB PostgreSQL’s internal format of JSON that allow e.g. efficient indexing.
JSX Javascript syntax extension that enables inlined markup for React.
JVM Java Virtual Machine
MVC Model-View-Controller is an architecture pattern designed for UI pro-

gramming.
REPL Read-Eval-Print-Loop allows interaction with compiler/interpreter.
REST Representational State Transfer is an architectural style for distributed

(hypermedia) applications
RPC Remote Procedure Call allows invoking procedures over network.
SPA Single-Page Application is a browser application written in JavaScript

and requiring only initial pageload.
VDOM Virtual presentation of DOM that e.g. React uses.
WS WebSockets allow TCP/IP like communication in web application.
Avro Data serialization system
Backend Server application that usually provides API for client(s).
Frontend User-facing client application that often communicates with backend.
Audit Logging Keeping track of events to e.g. identify who did what and when.
React Javascript rendering library
S-expression Notation for expressing nested lists
Lisp One of the oldest high-level programming languages where code and

data are expressed similarly using S-expressions.

1

1. INTRODUCTION

Modern web development techniques are evolving rapidly. New ways to develop web
applications are introduced by companies such as Netflix or Facebook in form of libraries
such as React, Relay and Falcor to name a few [1] [2] [3]. These libraries are trying
to address the increasing complexity of applications running in browsers. In addition,
compile-to-JavaScript languages bring flexibility to client-side development. Languages
such as Scala or Clojure offer production-ready implementations targeting the JavaScript
execution environments, bringing powerful tools within the reach of frontend developers
[4] [5]. Our tool of choice for both server-side and client-side development has been
Clojure, meaning that developers can benefit from their Clojure knowledge as much as
possible.

The web development community continues to look for better ways to implement non-
trivial client-side applications. For instance, there exists many architectural patterns de-
signed around React alone. As mentioned, it is not uncommon to use other languages
than JavaScript to implement client-side applications and finding a better way to structure
applications is desired since best practices have not yet been established. The purpose
of this thesis is to improve the architecture of web-based Clojure applications. The need
for architectural improvements stem from observed shortcomings in previous projects the
authors of this thesis have been involved in. During these projects, there has usually been
a shortage of time due to constrained resources, making it difficult to make a major study
on architecture. This thesis is a great opportunity for such a study.

With better architecture, agility of development and easier maintenance of software can be
pursued. Moreover, architecture that is flexible or extensible provides potential leverage.
Since ClojureScript has been available for serious production use only for a few years,
the interoperation between Clojure and ClojureScript can be improved. Also, problems
like user interface rendering and data fetching that React, Relay and Falcor are trying to
address, are also present in the Clojure ecosystem. However, there are some solutions such
as React for rendering and Om.next for data fetching. Even if server side development can

Chapter 1. Introduction 2

be considered more matured, it has room for improvement also. A simple and robust way
to persist and query data combined with easy-to-build and easy-to-consume APIs would
be welcomed enhancements.

The first step towards an improved architecture involves examining the projects where
authors have been part of the team. Secondly, solutions to improving the technology
stack or architecture are evaluated. Thirdly, an example application is implemented and
the resulting reference architecture is evaluated using the Decision-Centric Architecture
Review method to produce analyzed documentation about the architectural decisions.

The reader of this thesis is expected to have basic knowledge of modern web develop-
ment. This thesis has two authors and their individual contributions are available in the
Appendix A.

Chapter 2 provides background information such as technology used and introduces the
case projects. It also describes the focal points for the architectural improvements based
on the case projects and has a specification for the example project. The Decision-Centric
Architecture Review method is introduced in Chapter 3.

Chapter 4 covers the evaluation of data persistence and API solutions. Databases used
in the case projects are examined as well as some potential choices that have not been
in use. The API portion of the chapter covers a previously used API library and a more
recent one that has been introduced in some projects. In addition, real-time updates are
addressed in this chapter.

Chapter 5 addresses frontend-related matters. Rendering, state management and data
fetching are discussed and some existing solutions are introduced. Chapter 6 is about the
implementation of both the backend and the frontend. Chapter 7 concludes the architec-
ture evaluation session that was held and its results. Appendix B contains the documented
decisions that worked as a basis for the evaluation session. Chapter 8 concludes the thesis.

3

2. BACKGROUND

This chapter contains some prerequisite information for this thesis such as the introduction
of example projects and technology used. Example projects are referred to in subsequent
chapters. Also, focal points for the architectural improvements are stated and specification
of example application is presented.

2.1 About Metosin Ltd

Metosin is a software consulting company specializing in agile development and Clojure
programming language. The projects done are mostly web applications. Those include a
backend software and a frontend user interface. The backend often communicates with
external systems, implemented by other parties.

2.2 About Clojure

Clojure is a Lisp dialect targeting Java Virtual Machine (JVM). Clojure is a functional
dynamically typed programming language with strong focus on immutable data and con-
currency [6].

Clojure was written to make Lisp available for a matured platform such as JVM. Im-
mutable data structures and functional programming are core concepts of Clojure. An-
other important design goal for the multi-core era was to make concurrent programming
easier. Immutable data can be freely shared between the threads but when changing state
is crucial, Clojure’s software transactional memory implementation is designed to help
the programmer. Clojure discourages the use of mutable state and mutable objects are
considered harmful because of e.g. more difficult testing and problems related to them in
concurrent applications. However, polymorphism part of Object-oriented programming
(OOP) is considered beneficial. Instead of inheritance it is achieved with language feature
called multimethods and protocols. [6]

2.3. About ClojureScript 4

In Clojure, the concept of state and identity is separated opposed to what is typical in
object-oriented languages. Identity is “a stable logical entity associated with a series of
different values over time” and “a value is something that does not change” [7] While
this is the basis of Clojure’s approach on concurrency, it is also beneficial when reasoning
about single-threaded applications. Pure functions operating on pure values, producing
new pure values, are easier to test than stateful objects. Clojure has a wide offering of
data structures (sets, maps, vectors etc.) with a variety of core functions that can be used
to operate on them.

Another important characteristic of Clojure is its interactive development flow. Clojure is
a compiled language and its compiler is made available at runtime. Read-eval-print loop
(REPL) can be used to define or redefine Clojure constructs when running the application
[8, ch10]. For example, one can setup a project running a web server and interactively
develop the application with instant feedback. Compared to some other technology stack
where there could be a rather time-consuming compilation and restart phase of the whole
software after every change, this is a rather productive way of developing software.

Clojure also compiles to JavaScript with ClojureScript compiler. This allows using the
same language to write code targeting both the backend and the frontend environment.
Some parts of the application logic that are not platform-specific can be shared between
the different environments. Being able to use Clojure in the frontend development is bene-
ficial since the same mindset can be used when developing the backend and the frontend.
Clojure is also available for .NET ecosystem with an implementation for the Common
Language Runtime.

2.3 About ClojureScript

JavaScript is the only language which is supported by all web browsers. It is also used
on mobile devices and for server and command line programming through a JavaScript
engines such as Node.js. As a language JavaScript is however not very modern.

There are ongoing efforts to modernize JavaScript (ECMAScript 6 and 7 standards). It is
argued that JavaScript cannot be improved in timely manner because it is so widespread
[9]. It would take a rather long time to ensure that new standards are available in e.g. all
the mobile and desktop browsers.

ClojureScript targets common JavaScript environments like browsers and Node.js. Java-
Script is also usable in mobile devices. [9]

2.4. Case Projects 5

To create efficient, small and compatible (with all browsers) code ClojureScript lever-
ages Google Closure1 compiler. Closure compiler emits code which works even in older
browsers. The compiler has many advanced optimization methods like the whole program
dead code elimination and function inlining.

Using regular JavaScript libraries with ClojureScript (because of Closure Compiler opti-
mizations) requires the use of extern files describing the interface published by JavaScript
library. Community maintains a collection2 of these files for common JavaScript libraries.

2.4 Case Projects

Some previously encountered problems are described in this section.

While the Clojure(Script) stack and tooling have evolved greatly during its use at Metosin
there are some fundamental architecture-related questions:

• How to implement efficient and simple backend-frontend communication for an
application with non-trivial business logic?

• What data persistence solution would best support this communication model and
implementation?

Some ad hoc solutions have already been invented and used on some projects. Diverging
solutions between projects results in an increased maintenance burden and it becomes
harder for a person to shift between projects. Proper research is needed to find common
problems and to try to find more general solutions.

Next, some cases are introduced. In every project some of these challenges have been
occurring and those have been solved in some ways. The projects are presented in the
order that they were implemented, to see the progress.

2.4.1 Case X

System X is a part of a distributed system and works as an API service and reporting
UI between several other services. System X is responsible for receiving and mediating

1Despite having a similar name to Clojure and being leveraged by ClojureScript Compiler, Google
Closure project is not related to the Clojure language.

2http://cljsjs.github.io

http://cljsjs.github.io

2.4. Case Projects 6

orders for other systems. There is one external master system where orders are created
and managed. This master system sends the orders to the system X. These orders are
then routed based on postal codes to several other systems, managed by other companies.
Other systems also send updates to orders which are sent back to the master system.
System X stores incoming and outgoing messages (subsequently referred to as events)
between the systems to achieve e.g. traceability. Any event can result in multiple messages
being sent to other systems. Figure 2.1 shows a high-level overview of the system X and
related systems.

Figure 2.1: High-level overview of the system X.

System X uses MongoDB [10] as a document storage. Orders are stored as one large
document which contains the current state of order. In addition to order collection, all the
events are stored in a separate collection. Each event contains identity for corresponding
order which relates to information about its origin system and recipient. System X is
always either the origin or the recipient.

The event collection has the following use cases:

1. It is displayed on the user interface to manually ensure that the system is working
correctly, providing traceability.

2. It is used in a couple of places for business logic.

3. It is used as a master data source if the orders are missing some data.

2.4. Case Projects 7

Point 1 should be self-explanatory. It is used for checking that correct messages are being
sent to correct recipients.

Point 2 is a result of adding a feature without careful planning. In few cases, the process-
ing logic depends on information if a message has already been sent to a specific system.
Instead of querying the event collection, a better alternative would be to update the order
(effectively a view) when these previous events are processed. Then the processing logic
would only depend on the state of the order, which would be simpler and more clear.

Point 3 is probably the most interesting. Because event collection contains all the un-
processed messages that have affected the state of the system it is always possible to go
through the events to find some information that was not originally saved to the order
documents. This is very useful for database migrations.

In several cases it has been noticed that the order documents do not contain some field
which previously was not interesting. Because reporting is one of the main purposes of
the system, it is beneficial that when a new field is added to orders, the field can also
be added to all the orders in the system based on the historical events. One example of
harnessing the event data is:

1. A new feature is added to store a new field on the order document.

2. Find the orders that do not have the new field (created before the feature).

3. For each order, find the first message originating from the master system where the
new field is derived.

4. Update each order by adding the new field value derived from the historical event.

In case of the system X, storing the events has proven out to be valuable for e.g. achieving
traceability and adding new reporting capabilities afterwards.

The frontend of the system X is built using Google’s AngularJS framework [11] and is
planned to be rewritten with ClojureScript since all of other maintained frontend projects
have been written using it. As frontend part is rather small, a rewrite is considered benefi-
cial since new development will be faster and maintenance will require less effort. This is
due to the potential reuse of code in form of libraries and developers being more familiar
with the stack.

AngularJS is a large and complete JavaScript framework. It includes great amount of
functionality which is required because JavaScript is a low-level language and lacks many

2.4. Case Projects 8

modern features. AngularJS tries to evade JavaScript’s problems by providing implemen-
tations for many of these missing features: modules, dependency injection, easier asyn-
chronous programming model and application state management [11]. Many of these
features are available in the ClojureScript language or there are some libraries offering
the functionality.

Important points:

• storing history as events

• using events to debug the system

• using events to derive new valuable business data

• plans to harmonize the frontend technologies used between projects.

2.4.2 Case Y

Y is a project where sensitive data is created and processed. One of the essential re-
quirements related to data was that there must be audit log for several database tables.
Information such as the last modifier and related timestamp are stored in the audited ta-
bles. Some tables have the whole history preserved. Project Y is written using Clojure
and ClojureScript and uses a relational database to store the data.

History tables can be used to store the changes related to any row in a given table.
Database triggers can be used to append a row to history table after each change to the
original row. Project Y uses this strategy to preserve the history.

Project Y involves multiple user roles that define what actions are available to the user
and what data can be seen. The user interface has to adapt for different roles and actions
need to be restricted or made available based on some business rules. Since the frontend
code was also written in Clojure, some logic could be shared between the backend and
frontend.

The backend and the frontend communicate over HTTP. Some parts of the API can be
described being RESTful3 meaning that the domain objects are modeled as resources
with URI mappings. These resources are manipulated using the HTTP verbs. The API

3Using Richardson Maturity Model, which describes to what degree the web technologies are applied
[12, pp. 18–20], RESTful parts of the API in this application are level two in a scale of zero to three.

2.4. Case Projects 9

also has parts which are more like Remote Procedure Calls (RPC) over the HTTP4. This
means that functions are made invokable by exposing them via HTTP POST endpoints
and arguments are given in an HTTP POST method body.

Initially, RESTful APIs did work rather well for some parts since some entities were in-
dependent resources with simple create, read, update and delete operations. Fundamental
problems began to show up when updates to a resource caused side effects to another
resource. The problem was solved on the client side by reloading the data that was al-
tered by the side effects. However, the solution does not work when there is a need for
functionality where multiple users can simultaneously modify entities and changes have
to be reflected in real time to other users. This is because the changes are only loaded
after user’s own actions and it does not take into account the actions of the other users.
Another API-related observation was that wrapping some backend functionality behind
HTTP API required more work than it should since the built frontend application is the
only client and invoking actions should be made more straightforward.

Case Y was the first major project where ClojureScript was used to build the frontend.
The project has been going on for over a year and during this time there have been major
changes in ClojureScript ecosystem. Initially, the frontend was built using Om library
[13] but after half a year the code was ported to use Reagent library [14]. As both are
ClojureScript wrappers for React JavaScript library, the porting was not hard, but because
of it, the code base still contains some idiosyncrasies caused by Om.

The libraries guide towards a good model of rendering the data received from backend,
but they do not address the problems such as how to handle the side-effects, for example,
how to save form data to the backend. It is simple enough to send HTTP requests to the
backend over the API, but there are many requirements that add to the complexity. Some
errors can only be detected by the backend so the response might contain an error which
needs to be displayed to the user. Some backend calls are quite slow and user needs to
see when an operation is in progress. These were solved per case using ad hoc solutions
which add considerable complexity to the project.

Important points:

• storing history using history tables for audit log purposes worked OK

• shared (validation) logic between the server and the client

4RPC over HTTP is discussed in more detail in section 4.3.3

2.4. Case Projects 10

• optimal way to handle the side effects is still unknown

• more straightforward client-server interaction mechanism needed

• simultaneous editing for multiple users requires real-time communication support.

2.4.3 Case Z

This project is one of the systems integrated into project X. Whereas project X works as
a message mediator and reporting interface, this system works as a client to project X.
Project Z is used by multiple businesses to manage their data within project X’s system.

The application is implemented using Clojure and ClojureScript. For this project Post-
greSQL was selected as a database system instead of MongoDB. This is because Post-
greSQL provides transactions and is fully ACID-compliant [15].

As the experiences with storing all events were good with previous projects, storing events
was also implemented in this project. Because the event schema is quite flexible and
dynamic, PostgreSQL document database features were chosen to store the event data as
JavaScript Object Notation (JSON). This works well as event data does not usually need
to be queried. PostgreSQL also allows indexing and querying JSON data if needed [16].

For this project, the event logging was somewhat enriched when compared to the Project
X. Now both the request and response are logged as one event, instead of separate received
and responded events. This helps with reading and debugging the logged data.

The data in the system belongs always to a single tenant (usually a company) and the
tenants can only access their own data. User has multiple roles to manage permissions.
An administrator role exists to debug the system state and to create new tenants and users.
For tenant users there are two roles, and tenant administrator role which can add new
users and normal tenant user.

The communication between the client and the backend is implemented using a Com-
mand Query Responsibility Segregation (CQRS) model using Kekkonen Clojure library5

implemented by Metosin. CQRS is a pattern where operations that update the data (com-
mands) are separated from the operations that read the data (queries) [17]. The API is
modeled using queries which retrieve some data from the system, without side-effects,
and commands which cause side-effects in data. The commands themselves do not return
any results, but instead the client can run some queries again to retrieve the changed state.

5https://github.com/metosin/kekkonen

https://github.com/metosin/kekkonen

2.5. Focal Points for Architectural Improvements 11

In this project, the frontend was built from the beginning using the latest version of
Reagent library6. This helped to write more idiomatic code but the same fundamental
problems of handling side-effects from Project Y still exist and are solved ad hoc.

Important points:

• improved stored event data compared to Project X

• using PostgreSQL’s document features (JSON)

• communication using CQRS model helps, but it is still frontend code’s responsibil-
ity to know what side effects a command causes

• user role and tenancy logic are implemented ad hoc inside queries and commands.

2.5 Focal Points for Architectural Improvements

The three cases introduced previously have some common unaddressed architectural chal-
lenges that need to be resolved. These challenges are addressed in the example application
that is built to test architectural solutions. The architecture of the example application will
be referred to as reference architecture.

Audit logging has been present in two of the case projects and it will be addressed in the
reference architecture. History has been preserved in the case projects in various ways.
Project X used event storing that was successfully used for debugging or deriving new
valuable data from history. Project Y used history tables to store full history of some
tables due to customer requirements. REST-style APIs have been used in the past. One
reason for that is that previously frontends were built using various JavaScript frame-
works such as AngularJS and generic interface was not considered a disadvantage. Using
Clojure(Script) in the frontend together with more straightforward interoperation with
backend is improved by using CQRS-style APIs instead of RESTful APIs. This means
that instead of wrapping the domain data and functionality in RESTful resources, they are
made more directly available via simple commands and queries. Reference architecture
will also address live updates (or real time updates) as it would have been very beneficial
to have some solutions available in the case project Y.

Databases used in the case projects are MongoDB and PostgreSQL. Project X uses only
document model but projects Y and Z are mostly relational with some document-like

6https://reagent-project.github.io

https://reagent-project.github.io

2.5. Focal Points for Architectural Improvements 12

data where suitable. MongoDB has some use cases and is more pleasant to work with
Clojure data structures than PostgreSQL. On the other hand, it lacks e.g. transactions and
PostgreSQL is improving its document-storing and querying capabilities. There are also
promising databases such as Datomic available, which will be examined more closely.

As ClojureScript has only been available for quite a short period, there is a room for
improvement on the client side of the stack. As mentioned above, shifting from REST
to CQRS means that the frontend must also be improved in that area. Addressing the
communication between the backend and the frontend is important but as user interfaces
become more and more complex, how the application state is stored is another important
concern. How to store the frontend state needs further studying.

Picking technology for use in customer projects is not only a matter of picking the one
which is technically the most promising. For example, there might be some requirement
that forces selecting a specific database solution due to e.g. support provided for it. In
contrast, some startup prototyping a product with a potentially short lifespan could make
less conservative choices to gain more agility.

Table 2.1 introduces features in case projects and in the reference architecture. Check-
marks (3) are used to annotate the presence of a feature in each project. Ballot marks
(7) indicate where the feature is not present but would have been beneficial. Functionali-
ty/features will be explained in more detail in forthcoming chapters.

2.6. Specification of an Example Project 13

Table 2.1: Architecture-related patterns and their presence in each case project and the reference
architecture

Functionality/feature Case X Case Y Case Z Reference architecture

Backend

Audit logging 3 3 3

Preserving history 3 3 3 3

REST-style API 3 3

CQRS-style API 3 3 3

Live updates 7 3

Document data model 3 3 3 3

Relational data model 3 3 3

Frontend

CQRS-client 3 3

App state as tree 3 3

App state as graph 3 3

State management conventions 3

Live updates 7 3

2.6 Specification of an Example Project

For purpose of this thesis, an example application is built to address aforementioned
problems and to study different kind of software stacks and architectural choices. A
lightweight specification of this application is introduced in this section. The example
application is a time-tracking service that allows logging of working hours for various
projects that user is working on. It supports multiple users. Some reporting views are
also implemented. Other features include e.g. real time updates to UI. For example, if
someone is looking at a monthly report and users are modifying data, changes are visible
without a page reload.

Planned features:

1. User management

1. User accounts can be registered

2.6. Specification of an Example Project 14

2. User accounts can be suspended

3. User login/logout

4. Password retrieval

2. Project management

1. Projects can be created

2. Project attributes can be edited

3. Projects can be archived

4. Users can be assigned to projects

3. Logging of hours

1. User can create entries to specific project

2. User can modify created entries

3. User can mark entries as removed

4. Monthly reporting view of logged hours

5. Real time changes in UI

1. Real time sync of entries

6. Audit trail

During the building of the example project, some technical spikes are done to test feasi-
bility of technology choices introduced later on this thesis, without consuming too much
resources on them.

15

3. DECISION-CENTRIC ARCHITECTURE REVIEW

As mentioned in the background chapter, based on the observations on earlier projects, the
aim of this thesis is to improve the architecture of the forthcoming projects. Therefore,
some architecture evaluation method is necessary to produce useful information about
possible improvements. Authors of this thesis have been familiarized with two methods
during the university course:

• Architecture Tradeoff Analysis Method (ATAM)

• Decision-Centric Architecture Review

Decision-Centric Architecture Review is chosen as an evaluation method and is briefly
introduced in this chapter. It was selected due to the agility of the method and e.g. the
documentation that it produces were considered a great fit for this thesis.

The main motivation behind architecture evaluation is to systematically find flaws in
the architecture as early as possible to avoid higher costs in finding them in the later
phase of software lifecycle. Software development being more and more agile, thus
resource-consuming analysis is avoided and there existed a need for a more agile eval-
uation method. DCAR was developed together with industry to satisfy the requirement of
being more lightweight than some other alternatives. [18, p.69]

Being lightweight (half-day session with 3-5 members), DCAR aims to choose a specific
set of decisions for analysis instead of more thorough analysis in other methods. Relation-
ships between architectural decisions are recognized and decision forces behind them are
identified. These decision forces can contradict with each other. [18, p.70] For example,
some bleeding edge document database could be selected for performance reasons and to
allow more agile development. However, that particular choice could lead to weaker data
integrity and reliability. After finding out these forces, DCAR participants will evaluate
the decisions and check if those are still valid given the current situation [18, p.71].

Chapter 3. Decision-Centric Architecture Review 16

Preparation Step

A session date is chosen, participants are invited, the lead architect prepares an architec-
ture presentation with e.g. high-level views, architectural patterns, technologies. Another
presentation with management and customer perspective is prepared with details about
the product, its domain and other important business-related matters. Material is given to
participants before the DCAR session. [18, p.71]

Introducing DCAR

The DCAR evaluation method is introduced by showing the session schedule, steps in-
volved, the scope of the evaluation, what is produced during the session and responsibili-
ties and roles for each participant. [18, p.71]

Business-Related Representation

15-20 minute representation about business-related matters is given to expose decision
forces related to business. Review team collects these forces and might ask additional
questions to find out more. [18, p.72]

Architecture Representation

45-60 minutes is used for highly interactive architecture representation given by the lead
architect. Review team will complete the architecture decision list that was produced in
the first step. In addition, a list of decision forces is completed. [18, p.72]

Finalizing The List of Decisions and Forces

One person is responsible to produce a relationship diagram during the previous steps
that has all the gathered decisions with depends on or caused by relationships marked
between them. Motivation for the relationship diagram is to aid the reviewers to estimate
the importance of each decision and to find out if they are also decision forces for some
other decisions. [18, p.73]

Decision Priorization

Decisions must be prioritized since usually the number of the decisions found is too large
to go through within a session. Prioritization depends on context but usually selection
criteria involve e.g. those causing high risk or high cost. Each reviewer has 100 points
that they can allocate freely to any decisions based on the selection criteria. During the

Chapter 3. Decision-Centric Architecture Review 17

process, each point allocation is discussed and decision evaluation ordering is achieved.
Typical reasonable amount of decisions for half-day evaluation varies between 7 to 10.
[18, p.74]

Decision Documentation

Decisions picked to evaluation in the previous step are documented by each person se-
lecting two to three decisions they can reason about. Architectural problem, solution,
known alternative solutions, existing or new forces in favor or against related to decision
are documented using given template. [18, p.74]

Decision Evaluation

15-20 minutes is used for each documented decision to review it, to discuss about it, to
identify more related forces. Meantime, the decision documentation and the decision-
relationship diagram is updated. Forces in favor and against are discussed and finally
reviewers rate the evaluated decision and give their rationale behind the rating. Rating
and the rationale are documented into the template mentioned in the previous step. [18,
p.74]

Reporting and Retrospective

The Decision-Centric Architecture Review method produces artifacts during the steps
(Diagram 3.1) and review team will use those to a write report which is then discussed
with the architect. It is beneficial to arrange this retrospective as soon as possible when
the session is still in the recent memory of the participants. [18, p.75]

Chapter 3. Decision-Centric Architecture Review 18

Figure 3.1: Summarization of DCAR review steps and artifacts produced during each step.
Adapted from [18, p.72].

Some parts of the evaluation method might be omitted for the purposes of this thesis. For
example, there are no business aspects related to the example project and DCAR contains
some business-related steps and aspects.

19

4. EVALUATING DATA PERSISTENCE AND API
SOLUTIONS

In this chapter, the used backend-related technologies are discussed and evaluated based
on the real-world project experience. As mentioned in the background section, the tool of
choice, when writing backend code, has mostly been Clojure but different database solu-
tions have been in use. In addition, API-related choices and technologies are addressed in
this section.

4.1 Data Persistence

There is abundance of databases to choose from. Various logical data models exist such
as relational, document, key-value, graph etc. The scope of the study is limited to familiar
models and one new interesting model that has aroused interest. Used database solutions
are evaluated based on the experience gained from projects. Some important criteria for
selecting a database and associated libraries in no particular order:

• preserving Clojure types (dates, sets, vectors)

• ability to store documents

• easiness of generating queries programmatically

• transactions.

4.1.1 Document-model (MongoDB)

By now, a couple of different database solutions have been in use with differing data
models. For example, project X was based on a document-oriented database called Mon-
goDB. Schema-less solution has proven to work rather well when persisting Clojure data
structures such as maps. This requires less work compared with mapping Clojure data

4.1. Data Persistence 20

back and forth between, for instance, a relational database and an application. On the
other hand, flexibility coming with schema-lessness means that the application itself is
responsible for ensuring data constraints.

Unfortunately, MongoDB is not fully ACID-compliant and enables atomicity only on
document-level [19]. MongoDB has only recently (available for version 3.2) added sup-
port for (left outer) joins [20]. With earlier versions, data was denormalized or joins
were required to be implemented on the application level. MongoDB is also rather new
technology and is not as proven as, for example, some relational database solutions.

The used MongoDB client is a library called Monger [21] which makes it easy to store
Clojure maps into the database. Clojure types are widely supported and many of the core
data types can be easily persisted [22]. Queries are formed by using plain Clojure data
structures [23]. Thus, generating queries programmatically is possible.

To conclude, MongoDB has proven out to be suitable for relatively simple domains where
non-relational data needs to be easily persisted and other than trivial document-level atom-
icity is not necessary. Used together with Monger library, it allows Clojure data structures
to be persisted without too much of additional work. Querying is easy since those are
formed from Clojure data structures. If non-trivial transactions are required or the data
model is not document-like, there are more suitable data storage solutions.

Experienced strengths:

• lack of schema allows more agility during the development

• less burdensome to map the data between the DB and the Clojure application than
e.g. with relational databases.

Experienced weaknesses:

• the application is responsible for most of the data validation

• missing joins (before version 3.2) leading to denormalization or application-level
joins

• no transactions (only document-level atomicity)

• rather new technology compared to more conservative data storage solutions.

4.1. Data Persistence 21

4.1.2 Relational Mixed with Document Model (PostgreSQL)

Recently, the chosen technology in projects for storing relational data has been Post-
greSQL. The development of PostgreSQL has been going on for almost two decades, it
is a mature and stable ACID-compliant database. [24] It is rather feature-rich and offers
great amount of functionality. It is quite flexible when it comes to the data model. Post-
greSQL is an object-relational database, having even document-oriented properties since
recently introduced JavaScript Object Notation (JSON) data type.

Compared with MongoDB, PostgreSQL is fully ACID-compliant and supports transac-
tions meaning that changes made inside a transaction are persisted (written permanently
on disk) completely or not at all. Also, wide variety of joins are supported to combine
data between tables in contrast to recently introduced left outer join in MongoDB.

Where PostgreSQL is not on par with MongoDB is the easiness of persisting Clojure
data. Some additional work is required if (potentially nested) Clojure maps are going
to be persisted into normalized tables adhering to a relational model. Similarly, reading
the values from PostgreSQL might require joining the data from multiple tables and then
converting the result to Clojure data. One potentially interesting approach would be to
use PostgreSQL as a document database by utilizing its JSON data type.

JSON data type was introduced in version 9.2 (released in 2012) and the development
around JSON is still ongoing and active [25], [26], [27]. The interesting major features of
PostgreSQL regarding JSON are introduced in the Table 4.1.

Table 4.1: JSON data type improvements in PostgreSQL database

Version Changes

PostgreSQL 9.2 [25]
Introduced JSON data type meant for storing JSON-data
Validation of JSON string
Built-in functions that can convert rows and arrays to JSON

PostgreSQL 9.3 [26] Operators to access JSON object fields within given path

PostgreSQL 9.4 [27]
JSONB data type that is stored as a binary instead of text
JSONB indexing

PostgreSQL 9.5 [28] JSONB data modifying functions

Introduction of JSONB data format was something that could make PostgreSQL a serious
competitor for document stores such as MongoDB performance-wise [29]. Using Post-
greSQL as a document storage could be now combined with its transactional features that

4.1. Data Persistence 22

are inadequate in MongoDB for many purposes. However, two criteria are still behind
when compared with MongoDB and Monger. First, storing JSON loses type information
since it supports numbers, strings, booleans, nulls, arrays, and objects [30]. Second, li-
brary support for programmatically querying JSON is not on the same level as Monger
queries used with MongoDB. If these problems could be addressed, it would be a proper
replacement for MongoDB in forthcoming projects.

Experienced strengths:

• maturity

• enables different data models (relational, object-relational, document)

• ACID-compliant.

Experienced weaknesses:

• suitability for document storage (MongoDB replacement) needs more examination

• lack of types when used as document storage with JSON

• when using relational model, Clojure data mapping needs extra work

• when denormalized data is required, it is not as easy as with MongoDB.

4.1.3 Fact-Based Temporal Database (Datomic)

Whereas MongoDB and PostgreSQL are already in use in Metosin’s production software,
Datomic is something that needs more exploration before any decision can be made of us-
ing it. Datomic is an ACID-compliant database that has interesting and potentially valu-
able properties compared with previously mentioned databases. Datomic is a database
where immutable facts are stored over time superseded by facts written in the future [31].
Allowing queries with time specified, it is a temporal database which preserves all the
history of everything ever written into it. This property of involving time might have po-
tential business value or it might help with requirements such as keeping the history of
the modifications for auditing purposes etc. If this kind of functionality is required, one
has to build these on top of the previously mentioned database solutions.

Datomic stores datoms, facts about some entities, which are the basic unit of stored in-
formation. Entities are collections of related facts. In every Datomic database, a schema

4.1. Data Persistence 23

must exist. The schema defines what kind of attributes can exist in the database. These
attributes can be freely associated to any entities in the database. Datomic does not dictate
what kind of attributes can be related to an entity, leaving this as the responsibility of the
application itself. [32], [33] This offers a rather flexible way to model the data, which
can still be constrained by the schema. One strong point of Datomic within our context is
the use of Clojure language since it is already being used to write almost all backend and
frontend code. Clojure can be used to write custom aggregates, predicates etc. to be used
within queries.

Datomic query format is based on Datalog query system. Queries are written in Extensible
Data Notation (EDN) format. Queries can be thus created programmatically since EDN
consists of data structures such as e.g. strings, lists and maps. Datalog is declarative like
SQL. One fundamental difference between SQL and Datalog is that whereas the former
requires explicit joins, the latter combined with query engine makes them implicit. [34]

Compared with PostgreSQL, Datomic has a rather limited set of types and cannot be
extended. This thesis and the example project is a good ground for testing Datomic’s
suitability for our purposes compared with two other mentioned databases.

Datomic has a feature called transaction notifications which allows every peer that is
connected to system’s transactor to be notified of new facts written into the database.
Connected peers will receive transaction reports that consists of value of the database
before and after the transaction. Also, reports contain a set of facts written in a transaction.
[35] This feature can be used to implement the real-time features of the example project.
Whenever some entity is changed, all the connected clients will get changes related to
entities that are subject of interest of each client.

Potential strengths:

• built-in history-preserving capabilities

• potential benefit from existing Clojure knowledge

• fully ACID-compliant.

4.1. Data Persistence 24

Potential weaknesses:

• rather new technology

• closed source

• low-level API, might need some library to make usage more comfortable [36].

4.1.4 Storing Events and Event Sourcing

With MongoDB and PostgreSQL, the obvious way to store some state would be insert-
ing documents (in case of document stores) or corresponding rows into tables (in case
of relational DBs) that represent some value. Modifying the state would be done with
updates to documents or rows as well as deleting would be mapped to delete operations
of those databases. In this case, the database would only be able to store the current state.
However, there are alternatives to modifying state in-place. As was described in two of
the example projects, some events were stored to have the history of the interaction be-
tween the systems. Storing events and using them can be taken to the next level and the
application state could be determined by processing events in order.

The main principle of the event sourcing is to ensure that the application state is cap-
tured as a sequence of stored events. The application state (and all the past states) can be
constructed by processing the stored log of events. Events are created after successfully
processing commands. For each modification related to a modeled domain object there is
a corresponding event object. For example, this enables complete rebuild of the applica-
tion state by reprocessing the events on the initial application state. Another interesting
example that event sourcing enables is temporal queries which are achieved by rerunning
events until a specific point at history. This also allows e.g. speculation by inserting and
processing some sequence of events at that point and observing the resultant state. [37]

When the application state that is persisted into a database is changed by e.g. object-
relational mapper frameworks such as Hibernate or Entity framework, change is consid-
ered to be implicit [38]. For example, domain objects are mutated in the application code
and finally persisted into the database by the framework. Change can be made explicit by
using domain events that explicitly state the change [38]. A domain event can be mod-
eled with some object such as ItemRemoved which could e.g. contain information about
when a specific item was removed. By not storing the current state, coupling between
the representation and storing mechanism is removed [38]. This means that various kinds

4.1. Data Persistence 25

of representations can be achieved by processing the explicit changes which is a very
powerful concept.

One way to delete things when using implicit changes is to simply delete the object in the
database or at least mark it as deleted. If history tracking is necessary, some other tech-
nique must be used. However, deletion as a concept is rather different when using event
sourcing. There must exist an event that reverses some earlier event. Reversal transac-
tions will not lose the history and on the other hand it simplifies the storage mechanism
(e.g. easier partitioning) because it can be append-only [38].

The efficiency of calculating the current state with a large number of events might become
a concern. The processed state can be persisted, for example, after a certain threshold in
number of events is exceeded. These rolling snapshots are used to prevent a loading of too
many events, but it is only necessary to be used heuristically when performance causes
problems [38], [39].

Undoing the effects of the faulty events can be handled with a few different strategies. One
would be to roll back to some previous state and replaying the events without incorrect
ones in the sequence. This can be also done with reversing events. A reversing event is a
type of event that undoes the effect of some other event. This is merely an optimization
since rollback and replay can be used to the same purpose [37].

As mentioned in the project case section, projects have usually been integrated into vari-
ous external systems. When an event-sourced system system resends messages during the
replaying of the events, external systems probably do not work very well since they were
not designed for replays. There are a few ways to tackle this problem. During the replays,
those messages that are not safe to resent should be disabled. Another solution would
be to buffer external messages so that events can be reprocessed freely before external
changes have been occurred. External queries can also be problematic if replaying the
events cause queries to external systems. This might be problematic because the query
result might be different or the query might not work at all during the replay.

Changing the application logic of an event-sourced system itself has its own challenges.
For example, if there is a new feature that adds a new mandatory data field. Then there
either must be code that is compatible with both the old and new data or migration code
that sets some sensible default value to previous data. Also, these changes might have to
be reflected to external systems as well.

4.1. Data Persistence 26

While event sourcing has interesting properties and possibilities, the whole application
has to be designed around it. If the application has many integrations to external systems,
using event sourcing might make the system rather complicated or at least more expensive
to implement. As Greg Young states in his talk [39], careful and potentially expensive
analysis is required and event sourcing is not suitable for every domain. Event Store is a
database specifically built for storing events [40] but since event stores are rather simple
append-only storages, an event store could be built on top of existing storage solutions.

As mentioned in Young’s talk [39], business value can still be gained without using the
event sourcing. This is due to preserving potentially valuable historical data. As was
noticed in the example case earlier, if some event log is available, it can be valuable. It
requires more thorough analysis in our case to determine whether to just refine the concept
of a plain event log or would it be useful to take a more radical approach of adopting event
sourcing.

Potential strengths:

• data is not lost, whole history is preserved

• decoupling the views from storing mechanisms.

Potential weaknesses:

• not suitable for every domain

• many new unfamiliar concepts

• low number of libraries and various event storages.

4.1.5 Capturing Data Changes with PostgreSQL and Bottled
Water

Bottled Water is a tool that uses PostgreSQL’s logical decoding feature to produce a
stream of persistent changes based on the database modifications [41]. Logical decoding
feature allows the extracting of the database changes, based on the PostgreSQL’s transac-
tion log (write-ahead log) [42]. For each committed insert, update or delete, an event is
produced. This event is then encoded in Avro format and sent to Kafka messaging system.
Avro is a data serialization system that has JSON-based schema declaration [43]. Bottled
Water uses it to lossless type conversion [41].

4.1. Data Persistence 27

The Kafka messaging system maintains the feeds of messages that belong to some topic.
Some processes can work as producers by publishing messages to Kafka topics whereas
some processes can work as consumers, processing the messages. Kafka guarantees that
messages sent appear in the same order as they were sent to consumers. Typical use cases
for Kafka are using it as message broker or using it for log aggregation, stream processing
or event sourcing. [44]

For each table present in PostgreSQL, there will be a topic in Kafka. For each committed
insert, update or delete operation to some row, there will be a message with corresponding
topic in Kafka. Bottled Water also consists of a client that receives Avro-encoded data
from the database and forwards it to Kafka. [41]

Now any number of consumers could be set up to listen to changes in PostgreSQL. Post-
greSQL with Bottled Water provides interesting possibilities to achieve some of the prop-
erties discussed earlier, such as audit logging, preserving history etc. Now, every change
in the database could be consumed by multiple processes. If there is a need to persist a
history e.g. for audit logging purposes, a consumer can be setup to listen to changes to
tables that need audit logging and store the changes using some other durable storage.
Also in case of event stores, there was an argument in favor related to decoupling views
from data storage. With this mechanism, one could use more traditional architecture and
database such as PostgreSQL and still build interesting views based on the change data
produced by the Bottled Water.

To conclude, Bottled Water is a very interesting approach to get the change data out of
PostgreSQL. Choosing the event sourcing approach would be indeed interesting but it
requires a total mindset shift compared with more typical architectures. With Bottled
Water, some of the benefits of the event-sourced model such as audit logging or power to
build various views could be achievable with more familiar overall architecture.

In Figure 4.1 the communication between PostgreSQL, Bottled Water extension, Kafka
and the application backend is illustrated and explained.

4.2. Database Choices for the Example Application 28

Figure 4.1: Overview of the interaction between PostgreSQL, Bottled Water extension, Kafka and
the application backend.

Potential strengths:

• keep familiar model to query and mutate the data while having the capability of
preserving the history

• could be plugged into existing software to produce change data.

Potential weaknesses:

• Bottled Water is still in alpha-stage

• more complicated infrastructure (requires Kafka, PostgreSQL extensions etc.)

4.2 Database Choices for the Example Application

After briefly evaluating the databases, the features of those, the potential and experienced
strengths and weaknesses, some of them has to be chosen for further testing with the
example application.

MongoDB was previously used in a few of Metosin’s projects. While it is rather easy to
use with Clojure, the lack of transactions is considered a severe deficiency. Meanwhile,

4.3. Application Programming Interface (API) 29

PostgreSQL’s document-storing features are improving, making MongoDB less and less
interesting choice for future projects. Thus, MongoDB is left out as a choice for the
example application.

PostgreSQL and relational model is not that easy to use with Clojure. One of the reasons is
that mapping between Clojure data structures and relational data requires some additional
work. As mentioned above, PostgreSQL’s improving JSON support makes it more and
more suitable choice for document-storing purposes. PostgreSQL is thus rather flexible
solution as data storage while being a very conservative choice due to near two decades
of development. There is also an interesting ongoing project called Bottled Water which
extends PostgreSQL to enable the tracking of the changes. PostgreSQL is in use in some
of Metosin’s projects and has been a recent choice for new projects. Thus, it is picked for
further evaluation in the example project.

There is no popular event sourcing library available for Clojure. One open source library
called Rill [45] is available in GitHub but it seems to be in alpha-stage without much doc-
umentation available. Event sourcing could be prototyped rather easily. Events could be
appended into some in-memory location but while there is nothing (at least documented)
available, everything should be created from the beginning. Thus, the event sourcing
option is not evaluated within this thesis.

Datomic is generally a rather unknown choice for a database while it is quite known in
the Clojure community due to being invented by the designer of the Clojure language.
Datomic is very different compared with MongoDB and PostgreSQL (data model, query
language to mention a few). It is picked for evaluation in the example project, since it is a
good place to test this interesting but still bleeding edge technology, instead of some real
customer projects where picking it might be too risky.

4.3 Application Programming Interface (API)

PostgreSQL and Datomic were picked as the databases for the example project. Another
important concern about the backend is to what kind of API is exposed to the frontend
and what is the communication mechanism. Typically, some sort of RESTful approach
has been used over HTTP where modeling the domain works in resource-centric manner.
If some parts of the API are more easily modeled as actions, RPC-style API has been
favored.

4.3. Application Programming Interface (API) 30

4.3.1 HTTP, Representational State Transfer, REST HTTP APIs

Hypertext Transfer Protocol (HTTP) is a request-response protocol initially designed for
simple raw data transfer over the Internet. HTTP usually works on top of TCP/IP con-
nections. Current protocol version (HTTP/1.1) points out multiplicity of concerns such as
content-type negotiation, available methods, status codes, connection persistence, caching
etc. [46] HTTP/1.1 is a text-based protocol and HTTP/2 (currently proposed draft) is
binary-based and mainly addresses the performance concerns occurring in current ver-
sion but also introduces new functionality such as server-pushed responses to a client.
[47]

Representational State Transfer (REST) is an architectural style with emphasis on state-
less client-server communication with good caching capabilities and uniform interface.
Client-server communication improves the portability of the user interface. Stateless
client-server communication means that every request contains every bit of required in-
formation to operate, without having some related context on the server. Stateless com-
munication improves e.g. scalability due to the server not having to manage resources
over requests. Caching improves network efficiency by requiring requests to be marked
as cacheable or non-cacheable. [48]

REST includes a concept of a uniform interface which is designed for purposes of hy-
permedia data transfer and is optimized for the common case of the web. The uniform
interface consists of the identifications of the resources, the manipulation of the resources
through presentations, self-descriptive messages and hypermedia as the engine of appli-
cation state (HATEOAS). [48]

REST HTTP APIs are based on the REST architectural style. One important concept is
a resource. Resources such as videos, documents, business processes or even devices are
exposed to the web [12, p.4]. To access or manipulate resources over some protocol such
as HTTP, unique identifiers are assigned to them [12, p.5].

Another important concept is the representation of a resource. Representation is a view
of some resource at some point in time. Software components are communicating by
transferring run-time negotiated representations of some resources. There might be many
different representations for the same resource such as JSON, XML, image, plain text etc.
While the multitude of available representations for some resources is natural for human
consumers, a more limited set of structural formats is more suitable for system-to-system
interaction. [12, p.7-8]

4.3. Application Programming Interface (API) 31

Resources are being manipulated and accessed via uniform interface consisting of small
number or verbs [12, p.11]. In the case of REST HTTP APIs, these verbs are HTTP
methods such as GET, POST, PUT and DELETE to name a few. When some of the verbs
are used on some resource, a response with descriptive HTTP status code is returned.

Hypermedia as the engine of application state (HATEOAS) is a central concept in REST
architectural style. It is analogous to human browsing some web pages and then navi-
gating to other places using hyperlinks. HATEOAS enables the application state to be
transitioned from one state to another by using links that are not possibly known in ad-
vance by the software client [12, p.13].

One way to classify services that are exposed on the web is called Richardson Maturity
Model. This model introduces four levels that indicate how much of the web technology
is used to implement the service. [12, p.18-19]:

Level zero services expose single URI which is accessed using an HTTP POST method.
Payload is sent in the body of a request. [12, p.19]

Level one services expose multiple URIs that are accessed using a single HTTP verb
such as HTTP GET. For example, operation names and parameters can be part of
the URI. [12, p.19-20]

Level two services allow the manipulation of the resources with a larger set of HTTP
verbs and resources are mapped to numerous URIs. [12, p.20]

Level three services use previously mentioned HATEOAS concept to inform clients about
possible state transitions.

RESTful APIs in the example cases can be considered level two in the above classification
system. Level three APIs have not been built since the benefits of the HATEOAS or even
the possibility of implementing it in practice in our cases have been uncertain.

RESTful APIs have been proven out to be successful when the server and API users (fron-
tend and other services) are completely separated. One proof of the success of RESTful
APIs is that large portion of public APIs (e.g. Twitter, GitHub) have been built using this
methodology. However, the benefits of the RESTful model are not that obvious when both
backend and frontend are closely tied together and no public API is exposed. When the
objective is to solve a business problem using as little effort and development resources as

4.3. Application Programming Interface (API) 32

possible, this kind of mapping from a business domain to well-constructed RESTful API
resources can be both unnecessary and costly. For example, in our projects it has been
noticed that designing a good RESTful API requires:

• mapping of business domain to some sensible resources

• designing URIs for the resources

• choosing which (HTTP) verbs map to which operations

• picking descriptive status codes for different situations.

To conclude, we have built some RESTful APIs that can be considered level two in
Richardson Maturity Model. The benefits of the clear and intuitive RESTful APIs can-
not be denied when building public API for multiple possible client software, but that
is not the common case for us and a more suitable way for tightly-coupled client-server
communication is sought.

4.3.2 Compojure-api Library for Building Web APIs

One important feature for some cases (public API) is to provide documentation for the
API. The most difficult part of creating the documentation is that it should always be kept
up-to-date. One solution to this is to automatically generate the documentation from the
source code; this way the documentation should always represent the current version of
the API. This is possible with Clojure, and for example Metosin has built several libraries
with a support for auto-generated API documentation. Compojure-api1 is one of those
libraries. It is a library that imitates a common Clojure routing library named Compojure2

and adds functionality on top of it.

Compojure-api widely utilizes a library called Schema3 which allows describing data
declaratively with schemas. It also allows annotating types of parameters and return
values with optional run-time validation. Other capabilities are data coercion and data
generation for tests to name a few. [49] Compojure-api also uses the defined schemas to
generate API documentation using OpenAPI specification (formerly Swagger API speci-
fication).

1https://github.com/metosin/compojure-api
2https://github.com/weavejester/compojure
3https://github.com/plumatic/schema

https://github.com/metosin/compojure-api
https://github.com/weavejester/compojure
https://github.com/plumatic/schema

4.3. Application Programming Interface (API) 33

Routes in Compojure and Compojure-api are defined per HTTP terms: Each route corre-
sponds to a specific HTTP method and endpoint (uri).

1 (ns example
2 (:require [compojure.api.sweet :refer :all]
3 [ring.util.http-response :refer :all]
4 [schema.core :as s]))
5
6 (def pizzas (atom []))
7
8 (s/defschema Pizza
9 {:name s/Str

10 :size (s/enum :L :M :S)
11 :origin {:country (s/enum :FI :PO)
12 :city s/Str}})
13
14 (def app
15 (api
16 {:swagger
17 {:ui "/api-docs"
18 :spec "/swagger.json"
19 :data {:info {:title "Sample API"
20 :description "Compojure Api example"}
21 :tags [{:name "api", :description "sample api"}]}}}
22 (context "/api" []
23 :tags ["api"]
24 (GET "/pizza" []
25 :return [Pizza]
26 (ok @pizzas))
27 (POST "/pizza" []
28 :return Pizza
29 :body [pizza Pizza]
30 :summary "echoes a pizza"
31 (swap! pizza conj pizza)
32 (ok pizza))))

Program 4.1: Basic Compojure-api example application

In Program 4.1, atom is used as an in-memory store (line 6). The schema for application
data is described using the Schema library (line 8). Application has a GET route (line 24)
to allow clients to requests all the pizzas stored in the atom. There is also a POST method
(line 27) defined for the same endpoint. As seen in the example, return type of the data is

4.3. Application Programming Interface (API) 34

annotated with Pizza schema. Also, the request body must conform to the same schema.
Compojure-api validates the schema and if the data does not validate against the given
schema, the client automatically receives an error response. JSON has a very limited set
of types and it lacks, for example, type to represent dates. For example, if application
has defined some field to be a date in a schema, Compojure-api coerces a predefined
date-representing string to a date object.

Using Compojure-api library, the API is build by defining endpoints and available HTTP
methods. While it does not force to build the API using RESTful architecture, it certainly
makes it easy and thus encourages developers to use that approach. As was mentioned
earlier, alternative approaches are under examination since RESTful API design might
require some additional effort. More straightforward communication between the server
and the client is desirable e.g. in the cases where frontend and backend are tightly-coupled
and public API for multiple consumers is not a goal.

Important points:

• always up-to-date API documentation

• automatic input data validation (and coercion)

• routes/endpoints defined using the HTTP terms (methods, URI)

• RESTful API design is not always the right approach.

4.3.3 Remote Procedure Calls (RPC) over HTTP

Remote Procedure Call (RPC) can be defined as a “synchronous language-level transfer
of control between programs in disjoint address spaces whose primary communication
medium is narrow channel” [50, p.9]. One motivation of RPC is to make calling some
procedure in a remote machine as simple as it would be on a local machine [51].

JSON-RPC (version 2.0) is a stateless protocol that uses JSON to encode request and
response objects. The protocol does not define what the transport mechanism should be.
It can be used for example between multiple processes over a socket connection or it can
be used on top of HTTP.

Requests are JSON objects that consist of:

• protocol version (e.g. “2.0”)

4.3. Application Programming Interface (API) 35

• the name of the operation (method)

• parameters array holding the argument objects

• id that will be the same as in a related response object.

Responses are JSON objects that consist of:

• protocol version

• result only present in successful invocations

• error only present in case of failures

• id that was sent in the request object.

Protocol also describes notifications (requests without id), the format of error object, some
error codes and batching. [52]

Using RPC-like communication over HTTP seems noteworthy when implementing the
communication between the backend and the frontend. Not only because the specification
and the idea are simple but also because resource-centric RESTful API does not always
map that well to problem domain or even the programming paradigm.

If the problem domain consists of many actions or operations on some data, it is not that
natural fit for RESTful API that emphasizes resources that are manipulated with a limited
set of verbs combined with error code mapping to appropriate HTTP status codes. For
example, to decide if registering a new user is an HTTP POST to some specific URI with
some specific response status code is more complicated than invoking a register-user RPC
operation with either a result or some error returned.

Also, it is typical of functional programming is to use functions that operate on some
values and produce new values. These functions map more easily to a procedure that is
executed with some input than into a resource that is manipulated with predefined vocab-
ulary.

4.3.4 Kekkonen Library

The Kekkonen library is Metosin’s attempt to provide easy way to define APIs using
e.g. CQRS model instead of RESTful architecture. Parts of the Compojure-api that were

4.3. Application Programming Interface (API) 36

considered good, have also been built into Kekkonen. Some examples of such parts are
live API documentation and automatic input validation and coercion. Instead of focusing
on resources, endpoints and HTTP methods, plain Clojure data and domain functions are
important.

Specifically tagged Clojure functions (called handlers) are organized into virtual name-
spaces. These namespaces are registered into a dispatcher. Clients invoke handlers by
creating invocation context that is passed to the dispatcher. This organization is illustrated
in Figure 4.2. The client uses a fully qualified name of the handler consisting of the
namespace part and the handler name. [53]

Figure 4.2: High-level conceptual view of Kekkonen library

The core of Kekkonen does not dictate used transport mechanism and provides mainly
means to define handlers, organize them into virtual namespaces and to create the dis-
patcher that can be used to invoke the handlers. The library is written in this way to allow
using e.g. HTTP, WebSockets as a transport layer. The library provides CQRS imple-
mentation on top of HTTP that allows tagging Clojure functions either as commands or
queries. Commands use HTTP POST to invoke remote execution and queries use HTTP
GET. Kekkonen also provides ClojureScript client to enable very simple interaction be-
tween the backend and the client.

4.3. Application Programming Interface (API) 37

1 (ns example
2 (:require [kekkonen.cqrs :refer :all]
3 [plumbing.core :refer [defnk]]
4 [schema.core :as s]))
5
6 (s/defschema Pizza
7 {:name s/Str
8 :size (s/enum :L :M :S)
9 :origin {:country (s/enum :FI :PO)

10 :city s/Str}})
11
12 (defnk ^:query get-pizzas [pizzas]
13 (success @pizzas))
14
15 (defnk ^:command add-pizza! [pizzas [:data pizza :- Pizza]]
16 (swap! pizzas conj pizza)
17 (success pizza))
18
19 (def api
20 (cqrs-api {:swagger {:info {:title "Kekkonen Sample API"}}
21 :swagger-ui {:path "/api-docs"}
22 :core {:handlers {:pizza [#’get-pizzas #’add-pizza!]}
23 :context {:pizzas (atom [])}}}))

Program 4.2: Basic Kekkonen example using the CQRS model

Program 4.2 shows Kekkonen API providing similar functionality as Compojure-api ex-
ample Program 4.1. Instead of defining a route for getting pizzas with the corresponding
HTTP method, function in line 12 is annotated as a query and return value is wrapped in a
success response. Similarly, side-effecting mutation to an in-memory database of pizzas
is tagged as a command in line 15. CQRS-API is defined using cqrs-api helper function,
in line 19, allowing the (remote) invocation of given commands and queries.

Important points:

• focus on domain functions and data

• good parts from the Compojure-api such as live API documentation and automatic
input data validation (and coercion)

• supports e.g. CQRS model

• very simple interaction between ClojureScript client and Clojure server.

4.3. Application Programming Interface (API) 38

4.3.5 Side Effects of Commands and Real-Time Events

Blog post Hybrid Microservices introduces an idea where REST microservices are aug-
mented with eventing mechanism between components [54]. Components publish events
whenever side effects (changes) are occurring and other components can subscribe to
event streams.

This idea can be modified to fit this thesis purposes. Since the CQRS model is used, com-
mands of the backend producing side effects are viable source for events. The backend is
the event producing component whereas the frontend is a component subscribing to the
produced event streams. Command responses could then indicate immediate side-effects
with the response whereas events could indicate the effects of long-running tasks. Event-
ing mechanism also allows, for instance, push notifications to be sent to the client. This
idea is illustrated in the Figure 4.3.

Figure 4.3: Diagram of interaction between the backend and the frontend over HTTP and Web-
Socket.

Like in the Hybrid Microservices article, events would have fields that identify the event,
the event payload itself and a timestamp. Backend should be able to offer event streams to
the frontend per event identifier basis. Possible viable (emulated or real) push mechanisms
to implement event streams include HTTP polling, HTTP long polling, HTTP streaming
and WebSockets.

4.3. Application Programming Interface (API) 39

HTTP polling is an emulated push mechanism where clients poll the server periodically
to receive asynchronous events. It can be implemented with standard HTTP requests.
Continuous polling will consume bandwidth since there will be a request and a response
for each periodically-made request and corresponding response. Continuously polling has
a tradeoff between responsiveness and used resources such as bandwidth. If the polling
interval is increased, responsiveness also increases but more resources are consumed and
the other way around. [55, p.2]

To address the latency problems with continuous polling, HTTP Long Polling was intro-
duced. The server waits until it has something to deliver to the client for each request.
After delivering the event to the client within the response, the client initiates a new long
polling request. This means that the server has always one long-polling connection open
for the client and data is delivered as soon as possible. [55, p.3-4] Problems related to
HTTP Long Polling include such as HTTP protocol overhead and latency related to initi-
ate new long-polling request. [55, p.4-5]

HTTP Streaming is a mechanism that does not terminate the connection after the server
has delivered data to the client. Client initiates communication and waits for a response.
The server can then send chunks of data to the client without the termination of the con-
nection. [55, p.6-7] One of the main problems related to the HTTP Streaming include
network intermediaries such as proxies and gateways that can delay the forwarding of the
response as allowed by the HTTP protocol. [55, p.8]

WebSocket is a protocol designed to resemble raw TCP connections in the context of
HTTP infrastructure [56, p.9]. The protocol is separate from HTTP protocol built on top
of the TCP layer, avoiding for example overhead related to transferring HTTP headers.
However, it uses HTTP protocol to do the handshake (or to upgrade the connection in
WebSocket terminology). It is designed to be functional on HTTP(s) ports 80 and 443 and
to support HTTP proxies and intermediaries. [56, p.3] WebSocket is widely supported
(having multiple libraries or server implementations) in popular server-side languages
such as Java or C#. Also, modern browsers support it via the WebSocket API [57]. There
are also many options to use WebSockets on Clojure backend and ClojureScript frontend.
Drawbacks of WebSockets include that it makes the server stateful. Stateless services are
more trivial to scale horizontally (i.e. to add more machines to serve more users).

However, a single node setup should cover quite many use cases before scaling becomes

4.4. Backend Technology Choices for Example Application 40

a real problem. Httpkit4 is an event-driven HTTP server for Clojure that can handle up to
600,000 concurrent HTTP connections on a modern desktop machine [58]. Httpkit also
offers a WebSocket server that is not benchmarked but probably should handle similar
order of magnitude of concurrency since it is rather minimal protocol on top of raw TCP.

4.4 Backend Technology Choices for Example Application

The backend technology stack was evaluated in this chapter based on the experiences
gained so far and potential strengths and weaknesses of yet untested but promising solu-
tions. Feasibility of these choices will be experimented against the specification of the
application build for the thesis. Final architecture will then be evaluated using the DCAR
method to document and understand its pros and cons.

Databases to experiment with are PostgreSQL and Datomic. The former is proven pro-
duction-suitable solution. However, combined with Bottled Water’s change-tracking ca-
pability, it is something that need further analysis. The latter is more unknown technology.
However, its synergies with Clojure backend are something that requires experimenting
with together with different kind of data model, query language etc.

In addition to the database layer, the API layer was also evaluated. Compojure-api has
been used to offer mostly RESTful APIs but a common use case being such that the only
API user is a tightly-coupled frontend, shift to Kekkonen library aims at more straightfor-
ward interaction. The API layer is completed with possibility to subscribe event streams
e.g. for real-time changes or the results of long-running tasks initiated by commands,
provided by WebSocket based API.

4http://www.http-kit.org

http://www.http-kit.org

41

5. EVALUATING FRONTEND TECHNOLOGIES

This chapter describes the currently used frontend solutions and explores new technolo-
gies related to the observed problems. Since focusing on Clojure the technologies are
those that can be used with ClojureScript. Most of ClojureScript web technologies are
built on top of React JavaScript library, this is evident from the latest Clojure user survey
which shows that eighty percent of people using ClojureScript use React [59].

Before going into the workings of React, the reasons for its existence are explored. After
the currently used libraries have been described, some more recent and unproven tech-
nologies are introduced.

5.1 Web Development Background

The web development has evolved alongside regular UI programming and has taken influ-
ence from architecture models used there. Before the emergence of Ajax (asynchronous
JavaScript and XML) practice the web applications were mostly backend applications
which generated HTML. JavaScript was only used to enhance experience. [60, p.1-2]

Backend applications were often build using Model-View-Controller model [61, p.6].
When web application UIs moved from the server to the browser, the same architecture
models were brought along [61, p.6]. These new browser-centric web applications are
often built as Single Page Applications (SPA). In a Single Page Application the page is
loaded only once. This means that all the content has to be rendered using JavaScript and
Document Object Model (DOM). DOM is an interface allowing the manipulation of the
page contents using JavaScript.

Common JavaScript frameworks using MVC are AngularJS and Ember.js. Other simi-
lar patterns are Model-View-ViewModel used by KnockoutJS and Model-View-Presenter
used by Backbone.js.

5.1. Web Development Background 42

5.1.1 Model-View-Controller

Model-View-Controller (MVC) is a common architecture pattern used in user interface
software. MVC was developed at Xerox PARC in 1970’s by Trygve Reenskaug. The
general concept was first described by Pope and Krasner [62].

Model

ViewControllerUser input Display output

Model access and
editing messages

Dependants change messagesDependants change messages

View messages

Figure 5.1: Message flow between parts of the MVC model. Adapted from [62, p.5].

In MVC, the application is separated into three parts, as shown in Figure 5.1. The parts
are decoupled for flexibility and better reuse. [63, p.4]

Models correspond to domain-specific entities and manage their state. Models are sepa-
rated from views and controllers. This allows using the single model with multiple views
and controllers. [63, p.4]

Controller handles the user input, for example, from an input device such as mouse.
The controller sends messages to models to update the state. Controllers can use the
model state to decide how they work, for example some input could be disabled in certain
application state. [63, p.5]

View displays the entities represented by the models for the user. The model notifies
related views about its updates. View uses these update messages to refresh the view seen
by the user. [63, p.4]

MVC model is usually implemented using Object-Oriented Programming (OOP). Ac-
cording to David Nolen [64], MVC offers sound separation of concerns. However, Nolen
says that the implementations leaves to be desired. One of the problems is the stateful
objects. According to Nolen, it should be possible to separate useful properties from

5.2. Rendering and State Management 43

MVC and get rid of the stateful objects. This is possible using immutable data structures
provided by Clojure.

5.2 Rendering and State Management

This section introduces React and some wrappers for ClojureScript. These libraries
mostly address rendering the view, and might have some opinions on state management.

5.2.1 React

React is a JavaScript library for building user interfaces. React is created at Facebook and
is now used by many large companies such as Netflix, Instagram and Airbnb. [61, p.3]

React is a library with one main responsibility: it renders the user interface from data. It
does not dictate how to structure applications or how to fetch or how to handle application
state. [61, p.5]

React is quite different from traditional practices in web development. React does not em-
brace Model View Controller (MVC) architecture. In React the application is structured
using UI components. The idea of an UI component is similar to functions in functional
programming. Components should be reusable like functions. Some think that React
should be considered as the view part of the MVC architecture, but Freddy Rangel dis-
agrees. [61, p.5-6]

Rangel writes that using React only as a view layer would negate many benefits of React
[61, p.6-8]. He justifies this by arguing that instead of separating markup and display logic
they belong together. React Components combine both markup and logic. According to
Rangel, it is possible to achieve better separation than with MVC by leaving the separa-
tion to developer. Developers can separate logic and markup by creating small reusable
components. The simplest components are idempotent functions so they are easy to unit
test.

1 var HelloWorld = React.createClass({
2 render: function (props) {
3 return React.DOM.div(null, "Hello " + props.name + "!");
4 }
5 });

Program 5.1: Simple React component

5.2. Rendering and State Management 44

Program 5.1 shows a simple pure React component. This component uses the name prop-
erty it received to build the text it displays to user. The interesting bit about the function
is that it returns a special data structure defining the markup of the component. In this
example, the data is constructed using functions but React also provides a JavaScript lan-
guage extension called JSX where the markup can be defined as embedded HTML inside
the JS code. Using JSX requires preprocessing the code before browsers can evaluate it.

In addition to components using basic HTML nodes in the markup, the markup can also
contain other components. This allows reusing components anywhere they are needed.
Components and their children HTML nodes and other components form a component
tree.

Components use two types of data. The first type of data is properties the components
received from their parents. Another source of data is the local state contained by the
component. [61, p.12]

Traditionally, JavaScript frameworks try to synchronize data and state using data-binding.
Rangel argues that this has not worked well as the frameworks try to hide data-binding
behind leaky abstractions. React tries to solve this by providing data-binding using plain
old JavaScript functions, so that the leaks in the abstraction are easy to understand and
predict. [61, p.9-10].

This same simple approach is used both to update the state when user interacts with the
application, and to update view when state changes. When component’s state changes, the
whole component is re-rendered. This is fast because rendering a component only needs
to create the data presenting the markup, it does not really need to update the DOM.

Usually updating DOM is the bottleneck of JavaScript application. To optimize DOM
updates, React utilizes technique called Virtual DOM. The values returned from a com-
ponent render methods are used to construct the representation of desired the DOM tree.
This desired DOM tree and current DOM tree are compared to find optimal strategy to
update the real DOM to match the desired DOM. [61, p.16]

The comparison can be performed quickly as the DOM tree has some restrictions which
allows making some assumptions for the comparison. This optimized tree comparison
can be done in O(n) time. [61, p.17-22]

To avoid the need to use DOM event handlers, React instead only sets a single event
handler on the document itself. React then reimplements event handling by passing the

5.2. Rendering and State Management 45

events from document to correct components and elements itself. [61, p.22-23]

In addition to the render method, components can have other methods. These lifecycle
methods allow setting the initial data of the component and customizing the component
for better performance or to integrate a traditional JavaScript library with React.

Important points:

• component local state

• explicit state updates

• data is passed from parents to children

• virtual DOM comparison to calculate optimal DOM updates.

5.2.2 Om

Om is a React wrapper for ClojureScript. It does not try to hide underlying the React
object model. Components are defined as objects implementing one or multiple Om in-
terfaces which correspond directly to the React component methods. Macros can be used
to simplify the creation of these objects.

Though Om does not try to hide React, it offers some additional features. One of these is
global state management. Program 5.2 contains an example Om application.

The application state is managed using Clojure atom which is a data structure used to
manage shared state. Though browser environment is single-threaded, atoms are useful
because their state can be observed for changes (watched). Om uses this to trigger re-
render of the application. In the example application state in line 4 contains a Clojure
map with two properties and the values of the properties are also maps. The state is
managed using a single atom. This has several benefits:

• a single source of truth

• solves synchronization between stateful components

• easy transactional updates

• undo and redo.

5.2. Rendering and State Management 46

1 (ns dippa.om
2 (:require [om.core :as om]))
3
4 (def app-state (atom {:player {:name "Juho"} :game {:score 9000}}))
5
6 (defn player-component [state owner]
7 (reify
8 om/IRender
9 (render [this]

10 (om/div
11 (om/h1 "Hello World " (:name @state))
12 (om/label "Name")
13 (om/input #js {:value (:name @state)
14 :on-change (fn [e]
15 (let [v (.. e -target -value)]
16 (om/transact state assoc :name v)))})))))
17
18 (defn game-component [state owner]
19 (reify
20 om/IRender
21 (render [this]
22 (om/div
23 (om/h1 "Score " (:score @state))
24 (om/button #js {:on-click #(om/transact state update :score inc)}
25 "Play!")))))
26
27 (defn main-component [app-state owner]
28 (reify
29 om/IRender
30 (render [this]
31 (om/div
32 (om/build player-component (:player app-state))
33 (om/build game-component (:game app-state))))))
34
35 (om/root main-component app-state {:target (js/document.getElementById "app")})

Program 5.2: Basic Om example

A single source of truth makes it easier to reason about the state and helps with debugging.
Keeping the state in a single atom solves the synchronization between stateful components
by making it unnecessary. It is also easier to update the state transactionally as all the
updates can be made in a single operation. Using a single atom allows the implementation

5.2. Rendering and State Management 47

of undo and redo trivially by keeping track of the previous states. This is cheap because
of immutable data structures and structural sharing.

Not all components are interested in the complete application state but only in parts of
it. For this use Om provides cursors. Cursors have a reference to the original atom and a
path which the cursor is interested in. Cursor’s value is the value of the atom in a given
path. Writes update the atom in the given path. This way the components do not need to
consider what is the absolute path of their data in the application state. Om cursors are
similar to functional lenses.

CircleCI who is a prominent Om-using company has written about the problems in the
Om and especially those related to the cursors [65]. The problems they encountered were
the same as what we encountered in a project using Om. The main problems are related
to the application state and the cursors. Cursors make structuring application state hard
and while cursors work fine in simple cases, they make non-trivial cases really complex.

Figure 5.2 depicts the application state, components and the cursors passed to compo-
nents of the example application. The root component receives the complete application
state and splits it to two cursors it passes down to AuthorList and Game components.

App state
{:authors [{:name "Juho"}

{:name "Tuukka"}]
:game {:score 9000}}

[{:name "Juho"}
{:name "Tuukka"}]

{:name "Juho"} {:name "Tuukka"}

{:score 9000}

Cursor: [:authors]
Component: AuthorList

Cursor: [:authors 0]
Component: Author

Cursor: [:authors 1]
Component: Author

Cursor: [:game]
Component: Game

Figure 5.2: Diagram of how Om cursors can be used to acccess subtrees of application state.

In this simple case, the application state is structured as a tree where every node corre-
sponds to a node in the component tree. In real-world cases, this is problematic because
of two reasons: a component might require data from two branches, and it might be hard
to know all data needed by all the descendants beforehand. An example would be a user

5.2. Rendering and State Management 48

name autocomplete component in the leaf of the component tree which requires a list of
all users in the system. In this case, the list of the users would need to be passed through
all the components from the root component to the autocomplete component, even though
the components in the path do not need the data.

Another problem with cursors is that while simple updates are easy, more complex up-
dates are difficult to implement. For instance, Author component can easily read and
update the author name. Besides simple updates, a common operation in a list component
would be to remove items. It would make sense to render the remove button in Author
component, so that each item has its own button. But as the Author component has only
cursor to a single item, it cannot remove the single item from the complete list. Because
of this, the remove remove functionality needs to be implemented in the AuthorList
component and somehow triggered by remove button in Author component.

Important points:

• single application state

• exposes underlying React object model

• cursors are problematic.

5.2. Rendering and State Management 49

5.2.3 Reagent

Reagent is a React wrapper for ClojureScript. Unlike Om, Reagent tries to represent id-
iomatic Clojure interface. This means that it hides React Component methods and the
components are implemented as normal functions. Reagent provides some tools for han-
dling the application state, but it does not have as strict conventions as Om. Reagent
supports keeping the application state in a single atom, but does not enforce that. Reagent
has support for cursors but also offers other solutions.

1 (ns dippa.reagent
2 (:require [reagent.core :as r]))
3
4 (def app-state (r/atom {:player {:name "Juho"} :game {:score 9000}}))
5
6 (defn player-component [data]
7 [:div
8 [:h1 "Hello World " (:name data)]
9 [:label "Name"]

10 [:input {:value (:name data)
11 :on-change (fn [e]
12 (let [v (.. e -target -value)]
13 (swap! app-state update :player assoc :name v)))}]])
14
15 (defn game-component [data]
16 [:div
17 [:h1 "Score " (:score data)]
18 [:button
19 {:on-click #(swap! app-state update-in [:game :score] inc)}
20 "Play!"]])
21
22 (defn main-component []
23 [:div
24 [player-component (:player @app-state)]
25 [game-component (:game @app-state)]])
26
27 (r/render-component [main-component] (js/document.getElementById "app"))

Program 5.3: Basic Reagent example

Program 5.3 contains simple Reagent sample application. In Reagent, the component
contents are defined using Clojure data structures. The vector-based markup format is

5.2. Rendering and State Management 50

called Hiccup and it is often used in Clojure to construct HTML. This format has a few
benefits in comparison with the functions used by Om:

• empty attribute maps can be skipped

• attributes are defined as Clojure maps instead of JavaScript objects

• attribute names can be written in idiomatic Clojure using name-case instead of
camelCase used by React.

1 (defn component-2 [data]
2 (let [state (r/atom {:name "Foo Bar"})]
3 (fn [data]
4 [:div
5 [:h1 "Hello " @name]
6 [:input {:type "text"
7 :value @name
8 :on-change #(reset! state (.. % -target -value))}]])))

Program 5.4: Reagent local state example

Similar to Om, the state in Reagent is managed using Clojure atoms. But Reagent has its
own custom atom implementation which must be used instead of the Clojure built-in atom.
In Reagent, the components can use the state from any atoms they can access, e.g. from
local or other namespaces. This allows splitting the state to multiple atoms. Components
can also contain local state by creating an atom in function closure, as shown in Program
5.4.

Reagent also has Functional Reactive Programming (FRP) features. As mentioned, the
Reagent has custom an atom implementation often referred as ratom. Another FRP-like
tool is reaction which wraps a computation so that it is re-run when any of its inputs
change. [66]

Program 5.5 shows a simple example of using reactions. Value of reaction b depends on
ratom a. When the value of a changes, the reaction computation is re-run and value of b
changes. If value of a stays the same, e.g. (reset! a 1), the computation is not run.

5.2. Rendering and State Management 51

1 (def a (r/atom 5))
2 (def b (r/reaction (+ @a 2)))
3 @b ;; => 7
4 (reset! a 1)
5 @b ;; => 3

Program 5.5: Reagent reaction example

Input to reaction can also be another reaction. This allows chaining multiple reactions
together. This can be used to run expensive computations when the inputs really change.

Important points:

• hides React model behind idiomatic Clojure code

• FRP style features

5.2.4 Re-frame

Re-frame is an architecture model and example implementation for Reagent. Reagent
itself does not enforce any architecture choices and Reagent application can be structured
around multiple atoms or a single atom. Re-frame forces the application state to be stored
in single atom and enforces ideas how to manage state. [66]

Using a single atom for the application state is similar to Om. The benefits are the same.
Most importantly the single source of truth makes it easier to reason about the state and
makes the updates easier.

Re-frame provides two core features: subscriptions for reading data from the application
state, and events and handlers for updating the application state. Subscriptions are an
additional layer on top of Reagent reactions. Events and handlers provide clear convention
how to update the application state. These features build on top of Reagent’s FRP features
and seek to provide higher-level utilities for using the FRP features.

The idea behind these features is to enforce unidirectional data flow. The data flow is
demonstrated in Figure 5.3. The data flows in one direction forming a cycle. It can also
be thought as two separate flows, render flow where view is constructed from application
state and shown to user, and event flow where user actions update application state. [66]

5.2. Rendering and State Management 52

app-db components Hiccup Reagent

VDOM React DOM

handlers

render flowevent flow

events

Figure 5.3: Visualization of dataflow in Re-frame architecture. Adapted from [66].

The first step of the render flow is the that the components depend on the application state.
Components use the application state directly or through reactions and subscriptions. It is
possible that the data flows through multiple computations (in reactions and subscriptions)
before it is passed into a component. The rest of the render-flow happens inside Reagent.
Components return the Hiccup style representation of desired DOM, Reagent turns that
data into React DOM elements and React will then synchronize the changes to real DOM.

Benefits of the re-frame subscriptions over pure reactions are that they can be defined
without using macros and that they allow using middleware pattern to reuse common
logic.

The second flow, event flow, starts from the DOM events sent by React. In re-frame
model the DOM event handlers are written to dispatch re-frame events which get handled
by re-frame handlers. The advantage of handling all the events in re-frame handlers is
that instead of directly accessing and updating the application state atom, the handlers
are pure functions from a current state to a new state. This makes them easier to test and
understand [66]. Similar to subscriptions, handlers can also use middleware pattern to
reuse common logic.

Because handlers are pure functions, they cannot directly update the application state
asynchronously. Instead a handler can asynchronously dispatch a new event to a second
handler. The second handler will update the application state using the response from the
asynchronous operation. This model is used when communicating with a server. The first
handler starts an HTTP request and the second handles the response. [66] In this case, the

5.3. Fetching Data 53

model simplifies the testing of the handler responsible for handling the response.

The handlers should make it easier to talk with the server and handle errors in a unified
way. Still re-frame does not offer much help with how to select which data to load from
the server and leaves it up to the user to decide structure for the application state.

Important points:

• two unidirectional data flows

• event handlers are pure functions

• asynchronous handlers can dispatch new events.

5.3 Fetching Data

Above libraries deal mostly with rendering data and managing the application state. The
libraries do not try to provide solutions on how to fetch data from external services. In
this section, the libraries which offer solutions to this are explored.

Metosin projects thus far have used REST-influenced communication where entities in
the database are published as resources. In projects with CQRS style APIs, the queries
are also very similar to REST model. With highly denormalized data, such as MongoDB
documents this can work relatively well. When a page is loaded in the optimal case,
only one document or list of documents is loaded. However, data should probably not be
modeled based on the API requirements of server-client communication but based on the
domain logic. In some cases, these lead to the same result.

Even when an API is modeled after the domain logic, one page in an application can
require data from multiple queries. In the example project Y, one page is making seven
HTTP requests to load different resources needed to show the page. This is suboptimal.

Next, some methods to fetch data are introduced. First, some previously used approaches
are described followed by two declarative solutions that have not been tested yet. There
are also other solutions like Netflix’s Falcor, but that does not directly integrate with React
so it is left out of this study.

5.3. Fetching Data 54

5.3.1 Previously Used Approaches

The data fetch has to be triggered by something. Some data is used by many parts of the
application and can be loaded when the application is opened. Most of the data is related
to current view. The view is selected based on UI route, which often uses URI hash. This
allows changing the view using normal hyperlinks. Hash change events can be listened to
and they can be used to trigger the data fetches.

In the previous applications, this has been implemented using a multimethod, which has
an implementation for each route. The code calls either HTTP client or Kekkonen client
to start an asynchronous request to the server. After a response is received, it is stored in
the application state. Usually each view has its own path inside the application state, so
that data of different views does not clash.

In this model, the route change handlers define what data is loaded, and the components
of the view are coupled together. If the components require some new data, the route
change handler has to be updated. There are also other complications. The data does not
necessarily have to be loaded each time the route changes, so the code often has to take
into account what parameter changes require loading new data.

Another perspective to data fetching is how to update the application state after some
backend mutations. Four different approaches can be distinguished based on the respon-
sibilities of the backend and the frontend:

1. Frontend is responsible for knowing what was changed and how to load changed
data.

2. Backend is responsible for knowing what was changed and how to pass the data to
frontend, frontend updates the state.

3. Backend is responsible for knowing what queries were changed and executing the
queries and passing the response to frontend which updates the state.

4. Backend is responsible for knowing what queries were changed and passes a list of
the queries to frontend which executes interesting queries.

The different approaches differ also on the number and contents of the responses. In the
approach 1 the mutations do not have to respond with other data besides response status.
This keeps all the frontend-related code decoupled from the backend code. This is the
approach used in most of the previous projects.

5.3. Fetching Data 55

In the approaches 2-4 the backend has to be coupled in some degree with the frontend.
The problem is that backend cannot really know what data the frontend is interested in.
Making assumptions will be really hard or impossible if there are multiple clients using
the same backend.

The approach 4 should be the most flexible as the backend is only passing information
about changes to the frontend instead of the real changes. In this approach, the frontend
can select what changes it is interested in, and only execute those queries.

If each query is loaded using a separate HTTP request, the approach might have perfor-
mance issues. This could be solved by batching several queries into a single request, but
this further complicates the implementation.

Previous approaches only addressed updating the UI view of the user who makes the
change. Sometimes it is desired that certain updates are propagated to all the users. A
WebSocket connection can be used in this case to provide a low-latency two-way com-
munication.

To broadcast update notifications to interested users, the backend needs to keep track of
the users and their subscriptions. Frontend has to define the subscription and pass it to
backend. This could be done in route change handlers, where data fetching occurs.

The problem is that all these solutions are complicated to implement and requires some
co-operation between backend and frontend. In the following chapter two existing solu-
tions are explored.

5.3.2 Relay

Relay is a React architecture model and implementation from Facebook. The problems,
it tries to solve is how frontend application should communicate with backend.

This is further complicated by several different client applications which might require
different data: a mobile client does not need all the data used by a desktop client. HTTP
request round-trips are also slow over a mobile connection so the amount of requests
should be minimized.

5.3. Fetching Data 56

Simple solution would be to have React root component to load all the data for all its
children. This has a problem with coupling all the components to the root component. To
solve this Relay introduces three concepts: [67]

• declarative data requirements

• colocated data requirements

• mutations.

Declarative data requirements mean that developer only declares the data requirements
for the components and Relay will take care of loading the data automatically. This means
that one does not need to write imperative code to communicate with the server. [2]

Colocation means that the queries are written next to the component code itself. This
is a logical place for the data requirements and will help understanding the application.
All the data should be loaded in a single request and the loading should be started before
the component tree has been rendered the first time. To allow this the data requirements
are defined as static methods of the components. This way the component tree can be
introspected to determine the data requirements without rendering the components. Colo-
cation is implemented by providing higher order React components: Relay Containers.
Containers are a way to wrap regular React components and attach queries to them. [67,
2]

Mutations are a way to send updates from frontend to backend. They declare what data
might change in response to mutation, and the data declaration can be used to automat-
ically load changed data. Mutations also provide optimistic updates and error handling.
[2]

The queries and mutations are written in a language called GraphQL. The language allows
describing precisely the data requirements. This means that it is, for example, possible to
select which fields of an object are required, so that no unnecessary data is loaded. It is
also possible to join objects, where in a REST style API loading a list of objects could
take n + 1 calls to load a list and object related to each list item. In GraphQL, the same
data can be loaded with one query. [68]

Relay forces the components to have explicit data requirements, that is, components can-
not access data even if it was required by another component. This is to prevent problems
of changing the data requirements of a component affecting other components. [67]

5.3. Fetching Data 57

Relay requires a backend which can respond to the GraphQL queries and mutations. The
project provides a Node.js library. It is possible to either create compatible server imple-
mentation or to implement custom network implementation for a client which can talk
with different server implementations. The default implementation does not use HTTP
cache but instead manually caches query responses in local state. [68, 69]

Important points:

• declarative data requirements

• all data can be loaded in single request.

5.3.3 Om.next

Om.next is a ClojureScript library and architecture model which takes inspiration from
Datomic database as well as Relay and Falcor libraries.

Similar to Relay, data requirements are colocated with the components as static methods
so that the query can be determined without instantiating the components. Also similar
to Relay, it is possible to determine the complete query without rendering the application,
and load all the data in a single query. [70]

Data requirements are represented using S-expressions, that is, they can be written in
Clojure. This query syntax is very similar to Datomic pull syntax. Some query features
include: [70]

• selecting the fields of an object to load

• parameterized reads, for example (:user/pic {:size :small})

• joins.

In Relay, the GraphQL language specifies how queries work. Om.next, however, requires
the developer to implement query evaluation themselves. Om.next includes a parser which
turns the query into simple Abstract Syntax Tree (AST) which will be evaluated by de-
veloper provided read-function. The read function must return a value based on the given
query AST. [70]

The read function can also specify that query should be sent to a server. A part of a query
can be loaded from a local state while the query could also load other data from a server.

5.3. Fetching Data 58

Om.next parser can be used in both ClojureScript frontend and Clojure backend. This
means that the server will also implement a read function that is very similar to one in
frontend. In backend, the read function will retrieve data from a database instead of local
application state. [70]

The state is updated using transactions. Transactions consist of mutations and queries
that will change in response to the mutation. Similar to read function, the developer will
implement mutate-function that will do the real work. Mutations can both update the local
application state and send the mutation to a remote server. It is possible to implement
optimistic updates easily by doing both in the mutate-function: local application state is
updated immediately and the same query is sent to the remote, when the remote responds,
the application state is updated again if needed. [70]

Remote mutations can describe what changes they will cause, but that does not force the
client to load everything that changed. Client will only load the queries included in the
transaction. [70]

1 {:list/one [{:name "John" :points 0}
2 {:name "Mary" :points 0}]
3 :list/two [{:name "Mary" :points 0 :age 27}
4 {:name "Gwen" :points 0}]}

Program 5.6: Code demonstrating data in a tree format with duplicated entities. [70]

1 {:list/one [[:person/by-name "John"]
2 [:person/by-name "Mary"]]
3 :list/two [[:person/by-name "Mary"]
4 [:person/by-name "Gwen"]]
5 :person/by-name {"John" {:name "John" :points 0}
6 "Mary" {:name "Mary" :points 0 :age 27}
7 "Gwen" {:name "Gwen" :points 0}}}

Program 5.7: Code demonstrating normalized data in a graph format. [70]

Usually, the data is in a tree model, like in Program 5.6. While this data is easy to render,
it is hard to update. In the tree model the same data might be duplicated in multiple
branches. By normalizing the data, it is possible to de-duplicate the data. An example of
this is displayed in Program 5.7. Om.next can automatically normalize data based on the
queries of the components. [70]

5.4. Frontend Technology Choices for Example Application 59

For inserting new items Om.next provides a feature called temporary ids. This is copied
from Datomic. Temporary ids are useful when inserting multiple items in a transaction
that might need to refer to one-another. Once the transaction is executed in remote, the
remote will respond with a mapping table from temporary id to real id and based on this
data, the frontend will replace temporary ids in the local application state. David Nolen
says this will make it easy to create applications that work in offline mode and synchronize
data to remote when possible. [70]

It is also possible to update the local application state of the frontend manually outside
mutate function. This allows loading streaming updates from backend, for example, over
WebSocket. [70] Using the complete application query might be useful for subscribing to
update notifications.

Testing frontend applications has been traditionally hard and it is often hard to test fron-
tend on many devices. In Om.next, it is possible to use unit testing to prove that the
queries and mutations work as desired. This is enough, because parsing creates a UI data
tree and components are pure functions from UI data tree to DOM. This testing approach
works well with property-based testing. Using test.check library, it is possible to generate
transactions, similar to those triggered by a real user. [70]

Huey Petersen has used both Relay and Om.next. He wrote about his experiences with
both libraries [71]. His conclusion is that Om.next does not directly compare to Relay.
This is because of Om.next leaving much of the functionality up to the developer to imple-
ment, while Relay includes existing implementations. This means that Om.next is more
extensible but is also a lower level tool than Relay. Petersen predicts that developers will
build frameworks on top of Om.next to provide the features included in Relay.

Important points:

• normalized data in graph allows easy updates in local-state

• Datalog-like query language

• flexible but low-level

• unit testable state transitions.

5.4 Frontend Technology Choices for Example Application

Previous choices for projects have been AngularJS, Knockout, Om and Reagent. The
first two being pure JavaScript solutions have already been deemed uninteresting. Om

5.4. Frontend Technology Choices for Example Application 60

was the first used ClojureScript frontend solution and several applications were built with
it. During a larger project, many problems mentioned above were encountered with Om.
The larger project was refactored to use Reagent and it proved to be more flexible. All of
the Om projects maintained since have been ported to use Reagent.

While Reagent is flexible, it also has a downside that is easy to do things wrong with it.
Conventions of re-frame look promising and worth to try out.

While Om.next provides very interesting features, based on a few small prototypes, it is
still very unfinished. Constant breaking changes and missing documentation make it still
an ineligible choice for real projects. It is, however, a project worth following closely.
If the ideas in Om.next prove out to be good, they will probably be adapted for use in
Reagent and re-frame and some new libraries.

Using normalized data, like in Om.next, in the application state should be easy to adapt
to a Reagent application. This will be tested with the example project.

61

6. IMPLEMENTATION

This chapter is an overview of the implemented application in which architectural choices
were tested in practice. The backend and the frontend are described in their own sections.

6.1 Backend

The planning of the backend architecture involved issues such as how to store the data
and how to structure the API to allow easy interaction with ClojureScript frontend. In
addition, there were previously unaddressed issues to resolve such as feeding the real-
time changes to the frontend, initiated by the side-effects of commands invoked by the
frontend.

6.1.1 Data Persistence

A couple of data storage solutions were evaluated in the Chapter 4. Some of them were
familiar from previously implemented projects and some of them were completely unfa-
miliar. MongoDB and PostgreSQL are in use on multiple projects whereas event sourc-
ing based data model and Datomic have not been tested at all. Of the tested solutions,
MongoDB was dismissed mainly due to the lack of transactions and on the other hand
improving document-storage capabilities of the PostgreSQL. Event sourcing based data
model was rejected because of lacking libraries (or at least lacking documentation on the
very few existing). Also, it would have required plenty of more time and development
effort since it is rather different way to approach data modeling and how to implement
software around the concept.

Datomic and PostgreSQL were picked as database choices, but the former was dropped
out after having difficulties with it in some common use cases. When using Datomic, all
data must have a defined schema. The Datomic Entities consists of attributes adhering
to the schema. There is no easy way to store documents like it is in MongoDB and

6.1. Backend 62

PostgreSQL using JSON. Many projects have a use case for it such as storing varying
kind of token data. Typical way to implement workflows that do not rely on login are
modeled as presented in the Table 6.1. User navigates to URI where token id is present.
The frontend then fetches the data and dispatches it to a specific handler based on the
token type. Token data can be anything that frontend needs for example rendering the
view.

Table 6.1: Example of token data

token_id token_type token_data
B2viiotW5R3LyU5dIuKX password-reset {"account-id": 1}
ojH1Q9ln6mO6VggkeDEr password-reset {"account-id": 2}

Another use case would be the logging of the events where the data column can be any-
thing. Of course, it would be possible to define a schema for every token and event type
but that would reduce the flexibility significantly making the implementation more bur-
densome.

Datomic has a predefined set of types available and for example it lacks very common
types such as local dates or plain dates. So far, there is no mechanism to extend types
even though plans to implement type extension were mentioned in the September 2012
[72].

During the early phase of implementation, a decision was made to use PostgreSQL since
it satisfies the above-mentioned requirement of storing document-like data in a flexible
manner. Also, it has plenty of types available and allows defining new data types. Bottled
Water, an extension to capturing change data for PostgreSQL, was experimented with to
preserve the history.

The Bottled Water project is at alpha stage and setting it up required some experimenting
even when the project page offered quick-start Docker images for easier setup. Docu-
mentation was rather minimalistic but through trial and error, setup and usage succeeded.
For example, setting up required debug-level logging of third party libraries to figure out
the options that must be given when running Docker images to get the system running
properly.

6.1. Backend 63

First observation was that the Bottled Water does not support PostgreSQL schemas1. Post-
greSQL schemas can be used to group e.g. database tables to separate logical groups with
their own privileges [73]. For example, application domain related data could be in its
own schema whereas some system-level data with more restricted privileges could reside
in a dedicated schema. Another example would be the separation of the data on a multi-
tenant application. This allows using the same database instance for several (groups of)
users isolated from each other. With Bottled Water, this becomes impossible since schema
part is left out whenever change is forwarded to Kafka.

Second observation was that with Bottled Water the infrastructure becomes rather com-
plex. To make use of the Bottled water, following parts are required:

• Bottled Water extension to PostgreSQL

• Apache Kafka messaging system

• Apache ZooKeeper for centralized coordination

• Confluent Schema Registry for Avro schema retrieval.

In addition to a relatively great number of infrastructure-related dependencies, the appli-
cation software requires a Kafka client and it needs to communicate with the Schema Reg-
istry to get the Avro schema for Kafka message decoding. Also, mapping Avro-decoded
data back to Clojure data structures increases complexity.

However, after setting up the infrastructure and writing little amount of code to read
changes from Kafka topics, change data is available to use. Implemented software can be
configured to listen to any Kafka topic. For each topic, a handler can be implemented that
will be invoked when reading a message for that particular topic. The message is coerced
to Clojure data before invoking the handler with the message as a parameter.

1PostgreSQL schema is a somewhat confusingly named feature where tables, functions etc. can be
located in different namespaces. Not to be mixed with a term database schema that might be used to refer
the organization of the database in general.

6.1. Backend 64

1 CREATE TABLE account (
2 account_id SERIAL PRIMARY KEY,
3 name TEXT
4);
5
6 INSERT INTO account(name) VALUES (’tuukka.t.kataja@student.tut.fi’);
7
8 UPDATE account
9 SET name=’tuukka.kataja@metosin.fi’

10 WHERE account_id=1;

Program 6.1: Example SQL to demonstrate change data capturing.

When executing SQL presented in Program 6.1, a handler for the account topic would be
called with the following coerced Clojure data structures given as a parameter:

• {:account_id 1 :name "tuukka.t.kataja@student.tut.fi"} after the SQL insert

• {:account_id 1 :name "tuukka.kataja@metosin.fi"} after the SQL update

For example, in the project built for this thesis, this data is broadcasted to connected
clients using WebSockets to enable real-time updates in the user interface.

While Bottled Water works for communicating the side-effects of commands, it makes the
infrastructure and architecture more complex. Instead of using Bottled Water for sending
change data, changes could be simply manually emitted in the handler code.

1 (defnk ^:command add-account!
2 {:requires-session true}
3 [[:ctx db]
4 account :- domain/Account]
5 (let [added-account (first (jdbc/insert! db :app.account account))]
6 (success added-account)))

Program 6.2: Example of a Kekkonen handler for adding new account.

In the Program 6.2, handler for adding an account into the system is shown. The handler
function gets an account map as one parameter and it inserts it into the database. The
new account is immediately returned to the client. Behind the scenes, Bottled Water

6.1. Backend 65

extension sends the data to Kafka and the implemented system consumes it and sends it
over WebSocket to the connected clients.

1 (defnk ^:command add-account!
2 {:requires-session true}
3 [[:ctx db ws]
4 account :- domain/Account]
5 (let [added-account (first (jdbc/insert! db :app.account account))]
6 (websocket/notify! ws :account-added added-account)
7 (success added-account)))

Program 6.3: Example of a Kekkonen handler for adding new account with explicit WebSocket
broadcast.

In the Program 6.3, an alternative implementation for add-account! -command is
shown. Instead of attempting to automatically communicate the changes, a notify func-
tion is called so that everyone listening to the :account-added topic will receive the
created account. This solution would remove the infrastructure dependencies (Kafka,
ZooKeeper etc.) and make the software simpler. Also, this mechanism does not depend
on PostgreSQL and Bottled Water at all. While Bottled Water seemed interesting at first, it
does not only make the infrastructure more complicated, but it either is not really suitable
where it was thought to be a good fit.

The Bottled Water approach could still be useful in some other use cases. For example, if
the data needs to be stored in some other data storage, Kafka consumer could listen to the
changes and reconstruct the data accordingly. For example, if there were a separate data
storage for reporting purposes, changes could be consumed in the reporting system.

6.1.2 API

API of the implemented application is built using the Kekkonen library instead of the
Compojure-api that has been used in many previous projects. One motivation for this was
to allow the more straightforward exposal of domain data and functions to the frontend
without the additional burden of mapping them to the resource-centric model.

API is separated into commands and queries. Side-effecting operations such as adding
a new project and creating a user are annotated as commands whereas operations that
e.g. return data without side-effects are annotated as queries. These operations are plain

6.1. Backend 66

Clojure functions residing in namespaces that are given to Kekkonen making them avail-
able for clients to invoke.

Data is transmitted between the server and clients in transit format, making a richer set of
data structures available than, for instance, plain JSON offers. This makes e.g. transferring
of the Clojure data structures such as keywords, sets, maps between the server and the
client easy.

6.1. Backend 67

Kekkonen has an extension mechanism called interceptors. Interceptors are defined as
maps that have enter and leave functions taking invocation context as a parameter. Invo-
cation context includes e.g. information about:

• type of the invoked handler (command or query)

• the fully qualified name of the handler

• request map presenting the HTTP request.

Interceptors can be chained and there is an example of an API that is constructed using
two interceptors in the Program 6.4.

The enter functions of interceptors are executed in the order as defined in the map given
to cqrs-api function in the Program 6.4 and leave methods in reverse order. Interceptors
are a powerful extension mechanism and for example simple audit logging was trivial to
implement since invocation context contains information about the invoked handler such
as the name of the handler and data passed to it.

1 (def hello-interceptor
2 {:enter (fnk [:as ctx] (logging/infof "Hello from interceptor!") ctx)
3 :leave (fnk [:as ctx] (logging/infof "Bye from interceptor!") ctx)})
4
5 (def audit-interceptor
6 {:enter (fnk [:as ctx]
7 (assoc ctx :audit/start-time (System/currentTimeMillis)))
8 :leave (fnk [[:kekkonen.core/handler action type] data request :as ctx]
9 (let [account-id (get-in request [:identity :account-id])

10 now (System/currentTimeMillis)
11 duration-ms (- now (:audit/start-time ctx))]
12 (logging/infof "AUDIT: %s" {:account-id account-id
13 :duration-ms duration-ms
14 :type type
15 :action action
16 :data data})
17 ctx))})
18
19 (kekkonen/cqrs-api {:core {:handlers {:accounts ’backend.accounts}
20 :interceptors [hello-interceptor
21 audit-interceptor]}})

Program 6.4: Example of Kekkonen CQRS API and interceptors

6.1. Backend 68

1 2016-03-13 17:28:51.532 +0200 INFO [backend.handler] - Hello from interceptor!
2 2016-03-13 17:28:51.534 +0200 INFO [backend.handler] - AUDIT: {:account-id 1,

:duration-ms 2, :type :query, :action :accounts/get-entries, :data
{:account-id 1}}

↪→

↪→

3 2016-03-13 17:28:51.534 +0200 INFO [backend.handler] - Bye from interceptor!

Program 6.5: Log output produced by interceptors when invoking Kekkonen handler defined in
the listing 6.4

In addition to CQRS API, there is a WebSocket-based streaming API to push real-time
changes to the frontend. As mentioned in the description of database implementation,
database changes are pushed to connected clients using WebSockets. When a client has
initiated a WebSocket connection to the server, changes are sent as transit-encoded Clo-
jure maps with a type tag to allow frontend to act based on the type of the message.
For example, if the project is modified by the command invoked by the client, change is
streamed:

{:type :project-modified :project_id 1 :name "Diplomityö" :archived nil}

and the client can e.g. update its state to render the updates.

6.1.3 Backend Implementation Conclusion

Multiple alternative data storing solutions were considered. Previously used MongoDB
was dismissed in favor of a more robust ACID-compliant database. PostgreSQL was
considered a robust choice for many needs. It could replace MongoDB even when stor-
ing mostly document-like data due to its improving JSON-storing capabilities. Datomic
was chosen as a more experimental alternative but during the technical spike it proved
out to be rather challenging in some quite typical use cases. Event Sourcing was also
considered but it would have been a radically different approach and at least currently
lacks well-documented libraries for Clojure. Bottled Water extension to PostgreSQL was
experimented to capture data changes which could be used to store history and emit real-
time events to clients. However, it made the infrastructure complicated and did not fit the
use case that well.

In addition to testing different data storage solutions, new API library Kekkonen was also
tested. It brought more streamlined development experience and interaction between the

6.2. Frontend 69

server and the client while taking the good parts out of the previously used Compojure-
api library such as documentation generation. Interceptors allow extensibility and for
instance implementing simple audit logging was rather trivial. CQRS API was augmented
with WebSocket API to provide real time capabilities between the client and the server.

6.2 Frontend

The technologies for the example application were chosen from technologies introduced
in Chapter 5. Relay was rejected as it does not fit into our Clojure ecosystem. Though it is
possible to wrap Relay for ClojureScript use, it does not leverage Clojure data structures.
Om.next was rejected as we felt that it is not yet ready for production use, based previous
experiments by the second author. Re-frame was not previously used comprehensively
so that was chosen for the test application. Especially the conventions re-frame provides
over Reagent are interesting, as that was found to be lacking with the previous projects.

Because Relay and Om.next were rejected, data fetching was mostly implemented as
before. However, based on the ideas learned from Relay and Om.next, some conventions
were introduced to the application state structure.

Live updates were also found to be an area which required more study, as one project
would have benefited greatly from the knowledge. Because of this, live updates were
tested in the example application.

Re-frame provides conventions for state management by enforcing keeping the applica-
tion state in a single atom. It also recommends using subscriptions for accessing the
application state. However, it is still possible to directly access the application state atom.
This is useful if one wants to use new track-feature introduced in Reagent 0.6.0, which is
in some ways replacement for re-frame subscriptions. Handlers provide a convention for
updating the application state.

6.2.1 Data Fetching Implementation

Frontend uses the same kind of routing implementation as previous projects. URI hash
fragment is used to select a view and the view has a associated route change function. The
function loads the data required by the view.

The application state was modeled as a graph, like in Om.next. Entities are stored in maps

6.2. Frontend 70

and indexed by identifiers. The identifier can be used to refer to the entity from elsewhere
in the application state. Because the entity only exists on one place in the state, it is easy
to update.

1 (register-handler :load-account-entries
2 (fn [db [_ account-id]]
3 (a/go
4 (let [resp (a/<! (cqrs/query :accounts/get-entries {:account-id account-id}))]
5 (if (cqrs/success? resp)
6 (dispatch [:set-account-entries account-id (:body resp)]))))
7 db))
8
9 (register-handler :set-account-entries

10 (fn [db [_ account-id account-entries]]
11 (let [entries (index-by :account-project-entry-id account-entries)]
12 (assoc-in db [:account-entries account-id] entries))))

Program 6.6: Example of data fetching frontend code

Program 6.6 shows an example of two event handlers. The first event handler starts
a request using Kekkonen to the backend. The request is made asynchronously using
Core.async. The dispatch call in line 6 is called asynchronously after the response has
been retrieved. The second handler updates the application state using the response. In
line 11, the account-entries are converted to a map, this is to enable the data normalization.

When a command is executed, the frontend is responsible for determining and loading the
data that was changed. Figure 6.1 shows the high-level view of what parts of the system
take part in handling a command from the frontend.

6.2. Frontend 71

DOM Reagent Re-frame Backend

DOM click event
dispatch event

:entries/edit command
response

:entries/get query
response

KekkonenKekkonen

update state

render

Figure 6.1: Sequence diagram depicting how command triggered from user interface is pro-
cessed.

1 (register-handler :edit-entry
2 (fn [db [_ {:keys [data]}]]
3 (a/go
4 (let [resp (a/<! (cqrs/command :entries/edit data))]
5 (when (cqrs/success? resp)
6 (dispatch [:load-entry (:entry-id data)]))))
7 db))
8
9 (register-handler :load-entry

10 (fn [db [_ entry-id]]
11 (a/go
12 (let [resp (a/<! (cqrs/query :entries/get {:entry-id entry-id}))]
13 (when (cqrs/success? resp)
14 (dispatch [:update-entry-to-db (:body resp)]))))
15 db))
16
17 (register-handler :update-entry-to-db
18 (fn [db [_ {:keys [entry-id] :as entry}]]
19 (let [account-id (get-in db [:session :account])]
20 (assoc-in db [:account-entries account-id entry-id] entry))))

Program 6.7: Example frontend code for remote mutation implementation

6.2. Frontend 72

The Program 6.7 shows the event handlers used to save the modified entries to the back-
end. The first handler, edit-entry, starts an asynchronous HTTP request to the back-
end using Kekkonen. After the response is received another event is triggered. The first
handler does not touch the application state and just returns the untouched application
state forward. It would be possible to implement optimistic updates here by updating the
application state using the parameters of the event. The second handler is triggered by the
success of the response and will reload the changed entry using a query. The third handler
will save the response into the application state. Updating a single entry in the application
state is easy because the entries are stored in a map indexed by an identifier.

While the normalized application state allows easy updates, it makes the reads somewhat
harder. Each time the state is read for rendering, the possible links need to be followed.
Thanks to Reagent reactions and re-frame subscriptions, this is however easy to imple-
ment outside of the components.

1 (register-sub :selected-entries
2 (fn [db _]
3 (let [calendar-account (subscribe [:selected-calendar-account])
4 account-entries (subscribe [:account-entries])]
5 (reaction (get @account-entries @calendar-account)))))
6
7 (register-sub :entries-by-date
8 (fn [db _]
9 (let [entries (subscribe [:selected-entries])]

10 (reaction (group-by :entry-date (vals @entries))))))

Program 6.8: Example of re-frame subscription used built data for components from application
state

Program 6.8 contains code which is responsible for taking the application state and using
it to create the data for components. The first subscription depends on the selected calen-
dar user, which is either current logged-in user or user selected from a dropdown. It also
depends on the entries of all the users and selects only the entries of the selected user.
Second subscription groups the entries to a map indexed by entry dates.

6.2.2 Live Updates

WebSocket-based implementation providing live updates was tested. In this solution, the
backend sends update notifications to every client. This was implemented using Post-

6.2. Frontend 73

greSQL together with Bottled Water which passes updates through Kafka to the Clojure
backend. The backend retrieves the data associated with the update and broadcasts this
to all clients. In the frontend a re-frame handler is called based on the updated entity and
this handler updates the application state accordingly.

In this simple test, this approach worked successfully. However, this solution has multiple
constraints. The backend implementation depends on the database for update events. Up-
dates are based on the database schema, that is, the update events correspond to database
rows. The data, the frontend is, interested in is often in different form. Also, in this ex-
ample application, all the updates were sent to every client. In other applications, every
client would not be interested in every change, and it might even be important that clients
do not see data they are not authorized to access.

6.2.3 Component Schema Validation

One minor annoyance with Reagent is that it is easy to provide components with parame-
ters of a wrong kind. As Clojure is not statically typed language, the errors are not found
until runtime and can cause UI breakage.

Prismatic Schema is used heavily in the backend to validate e.g. the user input. Schema
can also be used to annotate functions, their parameters and their return value. As com-
ponents in Reagent are plain functions, it is possible to use this to validate component
parameters.

1 (p/defnk entry
2 [entry :- Entry
3 account-id :- s/Str]
4 ...)

Program 6.9: Example of Schema annotated Reagent Component function

Program 6.9 contains an example of Schema-annotated Reagent component. The compo-
nent function is defined here using an alternative defnk-macro, which allows annotating
functions taking a single map as an argument more easily. This function takes as a param-
eter a map with three required keys: entry with the value which must be of an Entry-type
and account identifier of the current user.

6.2. Frontend 74

When Schema validation fails, the default error messages in the browser are hard to de-
cipher. This was solved in the example project by catching the validation exceptions and
displaying the error in a prettier way. This helps catching bad component parameters
faster. A problem remains that validation errors break React rendering loop so that the
application has to be completely reloaded after such an error.

6.2.4 Frontend Implementation Conclusion

While Relay and Om.next are promising, it seems that they are only the first solutions to
the problem. It will take time until they are production ready and new solutions might
still arise.

In addition to Om.next being unfinished, based on the previous prototypes using it, it also
seems to have a long learning curve. This is because the developer has to implement so
much of the functionality.

The ideas in Om.next and findings from the example project have generated some new
ideas about data fetching. In Relay and Om.next, the data requirements are colocated
with the components. This causes additional complexity in the implementation. The
reason is that the requirements need to be static properties of the components.

In Relay and Om.next, all the steps in rendering the UI are pure functions. In those cases,
the data requirements are a function of Component tree. By defining the data require-
ments as a function of route data it could be possible to implement simple declarative
data fetching.

In this thesis, the research focused on Clojure(Script) ecosystem and possibly this might
have filtered out some good approaches. FRP community and especially Elm program-
ming language community are good candidates for ideas worth exploring.

Re-frame was rather pleasant to use and proved that re-frame handlers are really useful in
comparison with writing event handlers inline or in ad-hoc functions. Re-frame subscrip-
tions are not as useful. Most use cases are better handled by track function introduced in
Reagent 0.6.0.

75

7. ARCHITECTURE EVALUATION RESULTS

Architecture-related decisions were evaluated using the DCAR method presented in the
Chapter 3 with minor modifications:

• Business-related parts were left out since there was no business aspect related to
example project build for this thesis.

• Decisions were not prioritized since their number was constrained.

• Decision documentation was prepared beforehand to make the session as lightweight
as possible. Documentation was finalized during the review.

7.1 Evaluation Session and Results

All of the major architectural decisions were evaluated using the DCAR method. The
method was even more lightweight than it would have been in a real-life project since
some parts were omitted. In a real project, business matters would have been taken into
account. Also, a real project would probably have greater amount of decisions that should
have been prioritized.

Three software developers from Metosin participated in the session. One of the reviewers
was the second author of this thesis and two were participating outside the project. De-
cisions were documented before the session and participants had the draft of this thesis
available before the session to allow them to familiarize themselves with the architecture,
the decisions and to some extent the considered alternatives.

During the session, decision documentation was augmented while discussing about the
decisions. After a brief conversation about the decisions, each participant gave their ra-
tionale and outcome. Detailed decision documentation can be found in the Appendix B
and the summary of the evaluation session is on the Table 7.1.

As seen on the Table 7.1, three out of four of the backend-related decisions were consid-
ered positive (3) and one out of four was negative (7). In the frontend-related decisions,

7.1. Evaluation Session and Results 76

Table 7.1: Summary of the results of the Decision-Centric Architecture Review

Decision Outcome Conclusion

Backend

PostgreSQL as database 3 ACID-compliant, feature-rich database
was considered as only viable option out
of the alternatives.

Bottled Water extension 7 Infrastructure-complicating, unproved
alpha-quality software with no fit for the
intended use case.

Kekkonen CQRS API 3 Simple backend-frontend communica-
tion due to simplicity compared to
RESTful API.

WebSocket API 3 With little more complexity, adds real-
time capability for backend-frontend
communication.

Frontend

Normalized application
state

3 Prefer easier updates over easier reads
to avoid e.g. buggy reads and hard-to-
reason logic.

Re-frame dispatchers &
handlers

3 Good documentation and conventions
makes it easier for new developers to
join teams.

Re-frame subscriptions = Neutral outcome since alternatives offer
easier solutions but this one comes with
the library anyway.

Component Schema vali-
dation

= Could be useful since validation could
be removed from production build.
Should be librarized.

two out of four decisions were considered as positive and the rest were considered neutral
(=).

Backend-related decisions and the evaluation results show that the usage of PostgreSQL
as a database was considered the most reasonable choice among the alternatives. How-
ever, Bottled Water extension to PostgreSQL proved out to be too immature for real us-
age and it was not suitable for the purposed use. During the projects, more streamlined
backend-frontend communication has been desired and Kekkonen CQRS API provides
that. During the writing of this thesis it has been introduced in production usage and the
development will be continued. As mentioned, the Bottled Water did not work very well

7.1. Evaluation Session and Results 77

when serving the frontend real-time changes based on the database changes. However,
WebSocket APIs should be used to augment the HTTP APIs with real-time capabilities.

Frontend-related decisions and corresponding evaluation results indicate that normalized
application state should be embraced. This helps avoiding duplicated data in the frontend
state. Duplicated data can lead to stale data being present in the application state. For
example, if the same object is present in two paths but the other one is not updated for
some reason. In previous projects stale data has caused some confusing problems.

Experiences from the previous projects are that more documented solutions and improved
conventions are required in the frontend development to e.g. alleviate the difficulties when
new developers join the project. Re-frame proved out to be a solution offering both the
documentation and conventions and it should be used. However, some parts of it could be
replaced with better solutions. One example is re-frame subscriptions that let components
to subscribe for state changes that could be substituted by Reagent’s track functionality.
However, more important is to choose one way and keep using it. Component schema
validation was considered useful for improving the development experience. However, it
adds some complexity and should be librarized.

78

8. CONCLUSION

The purpose of this thesis was to create improved architecture for web-based Clojure
applications, based on the shortcomings found in previous projects. Focal points for ar-
chitectural improvements originated from these past projects. After setting goals for im-
provements, different solutions and techniques were evaluated. Then an example applica-
tion was implemented by using the selected approaches. The architecture of the example
application was reviewed and the decisions made were documented and evaluated. The
result of this thesis was a collection of documented decisions that can be adapted to future
projects.

During the writing of this thesis, some of the ideas were adapted into on-going projects
proving the concrete usefulness of some results. It is recommended that forthcoming
projects adapt even more decisions since that would provide additional value for a little
effort. The results would have had only minor impact on two of the cases projects whereas
in one case there would have been a notable improvement in the development process and
the overall architecture.

The resulting reference architecture was surprisingly similar to those in existing projects.
The expectations were set high for some of the evaluated technologies but for various
reasons those had to be dismissed. However, it was still valuable to evaluate those tech-
nologies during the writing process even if they were not considered useful. In the future,
further development in those technologies might make them suitable for use. In addi-
tion, lightweight architecture evaluation was considered useful and should be done in
real projects whenever possible. The reference architecture and decisions can be further
maintained during future projects. Based on these findings new and existing open-source
libraries will be developed.

79

BIBLIOGRAPHY

[1] React | A JavaScript library for building user interfaces. [Accessed 28.4.2016].
Available: https://facebook.github.io/react/.

[2] Relay | A JavaScript framework for building data-driven React applications. [Ac-
cessed 25.3.2016]. Available: https://facebook.github.io/relay/.

[3] Falcor | A JavaScript library for efficient data fetching. [Accessed 28.4.2016].
Available: http://netflix.github.io/falcor/.

[4] Scala.js - A safer way to build robust front-end web applications! [Accessed 28.4.2016].
Available: https://www.scala-js.org.

[5] ClojureScript. [Accessed 28.4.2016]. Available: http : / / clojure . org /
about/clojurescript.

[6] Clojure - Rationale. [Accessed 18.1.2016]. Available: http://clojure.org/
about/rationale.

[7] Clojure - State. [Accessed 18.1.2016]. Available: http://clojure.org/
about/state.

[8] C. Emerick, B. Carper & C. Grand. Clojure Programming. O’Reilly, 2012, p. 630.
ISBN: 9781449394707.

[9] Rationale · clojure/clojurescript Wiki. [Accessed 25.1.2016]. Available: https:
//github.com/clojure/clojurescript/wiki/Rationale.

[10] Introduction to MongoDB. [Accessed 28.4.2016]. Available: https://docs.
mongodb.org/manual/introduction/.

[11] AngularJS — Superheroic JavaScript MVW Framework. [Accessed 28.3.2016].
Available: https://angularjs.org/.

[12] J. Webber, S. Parastatidis & I. Robinson. REST in Practice: Hypermedia and Sys-
tems Architecture. 1st. O’Reilly Media, Inc., 2010. ISBN: 9780596805821.

[13] Om. [Accessed 28.4.2016]. Available: https://github.com/omcljs/om.

[14] Reagent: Minimalistic React for ClojureScript. [Accessed 15.1.2016]. Available:
http://reagent-project.github.io/.

[15] About. [Accessed 28.4.2016]. Available: http://www.postgresql.org/
about/.

https://facebook.github.io/react/
https://facebook.github.io/relay/
http://netflix.github.io/falcor/
https://www.scala-js.org
http://clojure.org/about/clojurescript
http://clojure.org/about/clojurescript
http://clojure.org/about/rationale
http://clojure.org/about/rationale
http://clojure.org/about/state
http://clojure.org/about/state
https://github.com/clojure/clojurescript/wiki/Rationale
https://github.com/clojure/clojurescript/wiki/Rationale
https://docs.mongodb.org/manual/introduction/
https://docs.mongodb.org/manual/introduction/
https://angularjs.org/
https://github.com/omcljs/om
http://reagent-project.github.io/
http://www.postgresql.org/about/
http://www.postgresql.org/about/

BIBLIOGRAPHY 80

[16] PostgreSQL 9.4.5 Documentation - JSON Types - jsonb Indexing. [Accessed 14.1.2016].
Available: http : / / www . postgresql . org / docs / 9 . 4 / static /
datatype-json.html#JSON-INDEXING.

[17] CQRS. [Accessed 28.4.2016]. Available: http : / / martinfowler . com /
bliki/CQRS.html.

[18] U. van Heesch et al. Decision-Centric Architecture Reviews. IEEE Softw. 31.1 (Jan.
2014), pp. 69–76. ISSN: 0740-7459.

[19] Atomicity and Transactions — MongoDB Manual 3.2. [Accessed 15.1.2016]. Avail-
able: https://docs.mongodb.org/manual/core/write-operations-
atomicity/#transaction-like-semantics.

[20] lookup (aggregation) — MongoDB Manual 3.2. [Accessed 15.1.2016]. Available:
https://docs.mongodb.org/manual/reference/operator/

aggregation/lookup/#pipe._S_lookup.

[21] Monger, a MongoDB Clojure client for a more civilized age | MongoDB library for
Clojure. [Accessed 15.1.2016]. Available: http://clojuremongodb.info.

[22] Monger, a Clojure MongoDB client: Inserting documents | MongoDB library for
Clojure. [Accessed 15.1.2016]. Available: http://clojuremongodb.info/
articles/inserting.html.

[23] Monger, a Clojure MongoDB client: querying the database | MongoDB library
for Clojure. [Accessed 15.1.2016]. Available: http://clojuremongodb.
info/articles/querying.html.

[24] PostgreSQL: About. [Accessed 15.1.2016]. Available: http://www.postgresql.
org/about/.

[25] What’s new in PostgreSQL 9.2 - PostgreSQL wiki. [Accessed 15.1.2016]. Avail-
able: https://wiki.postgresql.org/wiki/What’s_new_in_
PostgreSQL_9.2#JSON_datatype.

[26] What’s new in PostgreSQL 9.3 - PostgreSQL wiki. [Accessed 15.1.2016]. Avail-
able: https://wiki.postgresql.org/wiki/What’s_new_in_
PostgreSQL_9.3#JSON:_Additional_functionality.

[27] What’s new in PostgreSQL 9.4 - PostgreSQL wiki. [Accessed 15.1.2016]. Avail-
able: https://wiki.postgresql.org/wiki/What’s_new_in_
PostgreSQL_9.4#JSONB_Binary_JSON_storage.

http://www.postgresql.org/docs/9.4/static/datatype-json.html#JSON-INDEXING
http://www.postgresql.org/docs/9.4/static/datatype-json.html#JSON-INDEXING
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
https://docs.mongodb.org/manual/core/write-operations-atomicity/#transaction-like-semantics
https://docs.mongodb.org/manual/core/write-operations-atomicity/#transaction-like-semantics
https://docs.mongodb.org/manual/reference/operator/aggregation/lookup/#pipe._S_lookup
https://docs.mongodb.org/manual/reference/operator/aggregation/lookup/#pipe._S_lookup
http://clojuremongodb.info
http://clojuremongodb.info/articles/inserting.html
http://clojuremongodb.info/articles/inserting.html
http://clojuremongodb.info/articles/querying.html
http://clojuremongodb.info/articles/querying.html
http://www.postgresql.org/about/
http://www.postgresql.org/about/
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.2#JSON_datatype
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.2#JSON_datatype
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.3#JSON:_Additional_functionality
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.3#JSON:_Additional_functionality
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.4#JSONB_Binary_JSON_storage
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.4#JSONB_Binary_JSON_storage

BIBLIOGRAPHY 81

[28] What’s new in PostgreSQL 9.5 - PostgreSQL wiki. [Accessed 15.1.2016]. Avail-
able: https://wiki.postgresql.org/wiki/What’s_new_in_
PostgreSQL_9.5#JSONB-modifying_operators_and_functions.

[29] M. Linster. Postgres Plus: the EDB blog | EnterpriseDB. [Accessed 15.1.2016].
Available: http://www.enterprisedb.com/postgres-plus-edb-
blog/marc- linster/postgres- outperforms- mongodb- and-

ushers-new-developer-reality.

[30] The application/json Media Type for JavaScript Object Notation (JSON). RFC
4627. June 2003. 10 pp.

[31] Architecture Overview | Datomic. [Accessed 25.1.2016]. Available: http://
docs.datomic.com/architecture.html.

[32] Entities | Datomic. [Accessed 25.1.2016]. Available: http://docs.datomic.
com/entities.html.

[33] Schema | Datomic. [Accessed 25.1.2016]. Available: http://docs.datomic.
com/schema.html.

[34] Datomic Queries and Rules | Datomic. [Accessed 25.1.2016]. Available: http:
//docs.datomic.com/query.html.

[35] Transactions | Datomic. [Accessed 25.1.2016]. Available: http://docs.datomic.
com/transactions.html.

[36] H. Hübner. Datomic in Practice. [Accessed 16.2.2016]. Available: https://
skillsmatter.com/skillscasts/7228-datomic-in-practice.

[37] M. Fowler. Event Sourcing. [Accessed 18.1.2016]. Available: http://martinfowler.
com/eaaDev/EventSourcing.html.

[38] Event Sourcing Basics — Event Store. [Accessed 20.1.2016]. Available: http:
//docs.geteventstore.com/introduction/event-sourcing-

basics/.

[39] G. Young. CQRS/DDD by Greg Young. [Accessed 20.1.2016]. Available: https:
//www.youtube.com/watch?v=KXqrBySgX-s.

[40] Event Store. [Accessed 20.1.2016]. Available: https://geteventstore.
com/.

https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.5#JSONB-modifying_operators_and_functions
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.5#JSONB-modifying_operators_and_functions
http://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
http://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
http://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
http://docs.datomic.com/architecture.html
http://docs.datomic.com/architecture.html
http://docs.datomic.com/entities.html
http://docs.datomic.com/entities.html
http://docs.datomic.com/schema.html
http://docs.datomic.com/schema.html
http://docs.datomic.com/query.html
http://docs.datomic.com/query.html
http://docs.datomic.com/transactions.html
http://docs.datomic.com/transactions.html
https://skillsmatter.com/skillscasts/7228-datomic-in-practice
https://skillsmatter.com/skillscasts/7228-datomic-in-practice
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://docs.geteventstore.com/introduction/event-sourcing-basics/
http://docs.geteventstore.com/introduction/event-sourcing-basics/
http://docs.geteventstore.com/introduction/event-sourcing-basics/
https://www.youtube.com/watch?v=KXqrBySgX-s
https://www.youtube.com/watch?v=KXqrBySgX-s
https://geteventstore.com/
https://geteventstore.com/

BIBLIOGRAPHY 82

[41] M. Kleppmann. Bottled Water: Real-time integration of PostgreSQL and Kafka.
[Accessed 15.1.2016]. Available: http://www.confluent.io/blog/
bottled-water-real-time-integration-of-postgresql-and-

kafka/.

[42] Logical Decoding Concepts. [Accessed 15.1.2016]. Available: http://www.
postgresql.org/docs/9.4/static/logicaldecoding-explanation.

html.

[43] Apache AvroTM 1.8.0 Specification. [Accessed 20.1.2016]. Available: https://
avro.apache.org/docs/current/spec.html.

[44] Apache Kafka. [Accessed 20.1.2016]. Available: http://kafka.apache.
org/documentation.html#introduction.

[45] rill-event-sourcing/rill: Clojure Event Sourcing toolkit. [Accessed 25.1.2016]. Avail-
able: https://github.com/rill-event-sourcing/rill.

[46] Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. June 1999. 176 pp.

[47] Hypertext Transfer Protocol version 2. RFC 7540. May 2015. 96 pp.

[48] R. T. Fielding. “Architectural Styles and the Design of Network-based Software
Architectures”. AAI9980887. PhD thesis. 2000.

[49] plumatic/schema - Clojure(Script) library for declarative data description and val-
idation. [Accessed 3.2.2016]. Available: https://github.com/plumatic/
schema.

[50] B. Nelson. Remote Procedure Call. CMU-CS. Xerox Palo Alto Research Center,
1981.

[51] R. H. Arpaci-Dusseau & A. C. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. [Accessed 3.2.2016]. Arpaci-Dusseau Books, May 2015, p. 686. ISBN:
9781105979125.

[52] JSON-RPC 2.0 Specification. RFC. [Accessed 3.2.2016]. Available: http://
www.jsonrpc.org/specification.

[53] T. Reiman & J. Teperi. Basics. [Accessed 17.2.2016]. Available: https://github.
com/metosin/kekkonen/wiki/Basics.

[54] O. Lewis. Hybrid Microservices. [Accessed 27.1.2016]. Available: http : / /
owainlewis.com/articles/hybrid-microservices.

[55] S. Loreto et al. Known Issues and Best Practices for the Use of Long Polling and
Streaming in Bidirectional HTTP. RFC 6202. 2011.

http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/
http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/
http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/
http://www.postgresql.org/docs/9.4/static/logicaldecoding-explanation.html
http://www.postgresql.org/docs/9.4/static/logicaldecoding-explanation.html
http://www.postgresql.org/docs/9.4/static/logicaldecoding-explanation.html
https://avro.apache.org/docs/current/spec.html
https://avro.apache.org/docs/current/spec.html
http://kafka.apache.org/documentation.html#introduction
http://kafka.apache.org/documentation.html#introduction
https://github.com/rill-event-sourcing/rill
https://github.com/plumatic/schema
https://github.com/plumatic/schema
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
https://github.com/metosin/kekkonen/wiki/Basics
https://github.com/metosin/kekkonen/wiki/Basics
http://owainlewis.com/articles/hybrid-microservices
http://owainlewis.com/articles/hybrid-microservices

BIBLIOGRAPHY 83

[56] I. Fette & A. Melnikov. The Websocket Protocol. RFC 6455. 2011.

[57] Web Sockets. [Accessed 18.2.2016]. Available: http://caniuse.com/#feat=
websockets.

[58] 600k concurrent HTTP connections, with Clojure & http-kit. [Accessed 19.2.2016].
Available: http://www.http-kit.org/600k-concurrent-connection-
http-kit.html.

[59] State of Clojure 2015 Survey Results. [Accessed 28.4.2016]. Available: http:
//blog.cognitect.com/blog/2016/1/28/state-of-clojure-

2015-survey-results.

[60] M. Mikowski & J. Powell. Single Page Web Applications: JavaScript End-to-end.
1st. Manning Publications Co., 2013, p. 432. ISBN: 9781617290756.

[61] F. Rangel. React Under the Hood. Leanpub, Nov. 2015.

[62] G. E. Krasner & S. T. Pope. A Cookbook for Using the Model-view Controller User
Interface Paradigm in Smalltalk-80. J. Object Oriented Program. 1.3 (Aug. 1988),
pp. 26–49. ISSN: 0896-8438. Available: http://dl.acm.org/citation.
cfm?id=50757.50759.

[63] J. Vlissides et al. Design patterns: Elements of reusable object-oriented software.
18th ed. Reading: Addison-Wesley, 1995, p. 395. ISBN: 0201633612.

[64] D. Nolen. The Functional Final Frontier, Clojure/West 2014. [Accessed 2.2.2016].
Mar. 2014. Available: https://www.youtube.com/watch?v=DMtwq3QtddY.

[65] P. Jaros. Why We Use Om, and Why We’re Excited for Om Next | The CircleCI Blog.
[Accessed 25.1.2016]. Available: http://blog.circleci.com/why-we-
use-om-and-why-were-excited-for-om-next/.

[66] re-frame: Derived Values, Flowing. [Accessed 25.1.2016]. Available: https://
github.com/Day8/re-frame/blob/master/README.md.

[67] Thinking In Relay | Relay Docs. [Accessed 25.3.2016]. Available: https://
facebook.github.io/relay/docs/thinking-in-relay.html.

[68] Thinking In GraphQL | Relay Docs. [Accessed 25.3.2016]. Available: https://
facebook.github.io/relay/docs/thinking-in-graphql.html.

[69] Network Layer | Relay Docs. [Accessed 26.3.2016]. Available: https://facebook.
github.io/relay/docs/guides-network-layer.html.

[70] D. Nolen. Om Next, Clojure/conj 2015. [Accessed 26.3.2016]. Nov. 2015. Avail-
able: https://www.youtube.com/watch?v=MDZpSIngwm4.

http://caniuse.com/#feat=websockets
http://caniuse.com/#feat=websockets
http://www.http-kit.org/600k-concurrent-connection-http-kit.html
http://www.http-kit.org/600k-concurrent-connection-http-kit.html
http://blog.cognitect.com/blog/2016/1/28/state-of-clojure-2015-survey-results
http://blog.cognitect.com/blog/2016/1/28/state-of-clojure-2015-survey-results
http://blog.cognitect.com/blog/2016/1/28/state-of-clojure-2015-survey-results
http://dl.acm.org/citation.cfm?id=50757.50759
http://dl.acm.org/citation.cfm?id=50757.50759
https://www.youtube.com/watch?v=DMtwq3QtddY
http://blog.circleci.com/why-we-use-om-and-why-were-excited-for-om-next/
http://blog.circleci.com/why-we-use-om-and-why-were-excited-for-om-next/
https://github.com/Day8/re-frame/blob/master/README.md
https://github.com/Day8/re-frame/blob/master/README.md
https://facebook.github.io/relay/docs/thinking-in-relay.html
https://facebook.github.io/relay/docs/thinking-in-relay.html
https://facebook.github.io/relay/docs/thinking-in-graphql.html
https://facebook.github.io/relay/docs/thinking-in-graphql.html
https://facebook.github.io/relay/docs/guides-network-layer.html
https://facebook.github.io/relay/docs/guides-network-layer.html
https://www.youtube.com/watch?v=MDZpSIngwm4

BIBLIOGRAPHY 84

[71] H. Petersen. om.next from a Relay / GraphQL Perspective. [Accessed 25.3.2016].
Available: http://hueypetersen.com/posts/2016/02/13/om-
next-from-a-relay-graphql-perspective/.

[72] Dates with timezones. [Accessed 28.2.2016]. Available: https://groups.
google.com/forum/#!msg/datomic/0V5Ima9fw88/qNzjQBZEF5kJ.

[73] Schemas. [Accessed 12.3.2016]. Available: http://www.postgresql.org/
docs/9.4/static/ddl-schemas.html.

http://hueypetersen.com/posts/2016/02/13/om-next-from-a-relay-graphql-perspective/
http://hueypetersen.com/posts/2016/02/13/om-next-from-a-relay-graphql-perspective/
https://groups.google.com/forum/#!msg/datomic/0V5Ima9fw88/qNzjQBZEF5kJ
https://groups.google.com/forum/#!msg/datomic/0V5Ima9fw88/qNzjQBZEF5kJ
http://www.postgresql.org/docs/9.4/static/ddl-schemas.html
http://www.postgresql.org/docs/9.4/static/ddl-schemas.html

85

A. CONTRIBUTIONS

1. Introduction [both]

2. Background [both]

3. Decision-Centric Architecture Review [both]

4. Evaluating Data Persistence and API Solutions [Tuukka, 22 pages]

5. Evaluating Frontend Technologies [Juho, 20 pages]

6. Implementation

(a) Backend Implementation [Tuukka, 9 pages]

(b) Frontend Implementation [Juho, 6 pages]

7. Architecture Evaluation [both]

8. Conclusion [both]

86

B. ARCHITECTURE DECISIONS

Architecture decisions are documented here using the DCAR template as basis. Format
of the documentation for single decision is shown below.

Name Name of the decision

Problem Description of the problem

Solution / description of
decision

Description of the solution

Considered alternative
solutions

Description of alternative solutions

Argument in favor of de-
cision

List of arguments in favor of decision

Argument against the
decision

List of arguments against the decision

Outcome and rationale Rationale for posi-
tive outcome

Rationale for neutral
outcome

Rationale for nega-
tive outcome

Example documentation for decision

Appendix B. Architecture Decisions 87

Name PostgreSQL as database

Problem Selecting a database that enables flexible data modeling. Robust-
ness, reliability, ACID properties are high priority. Storing and
retrieving Clojure domain objects should be as straightforward
as possible.

Solution / description of
decision

PostgreSQL is a proven ACID-compliant relational database
with improving support for JSON to enable storage of document-
like data. Mapping Clojure data to relational model and vice
versa needs some additional work compared to working with e.g.
MongoDB but being otherwise more solid choice, PostgreSQL
is preferred over MongoDB. However, if solved domain prob-
lem requires storing simple document-like data without a need
for complex transactions, MongoDB should be considered as a
choice. Also, if the problem naturally maps to e.g. graph, look
for a graph database instead.

Considered alternative
solutions

Using MongoDB or Datomic as a database.

Argument in favor of de-
cision • Proven, feature-rich ACID-compliant open-source

database

• Bottled Water extension to allow streaming of change
data

Argument against the
decision • Working with Clojure data not as streamlined as it could

be

Outcome and rationale Mapping dynamic
Clojure data to re-
lational database is
errorprone but Post-
greSQL offers most
features anyhow.

Only viable option as
Datomic is not Open
Source and Mongo is
not ACID compliant.

Doesn’t properly
solve using Clojure
types, but neither do
alternatives.

Appendix B. Architecture Decisions 88

Name Bottled Water extension

Problem With most of the databases, data is updated in-place which leads
to losing history related to stored entities. In addition to solving
problems related to history preserving, access to emitted change
data enables real-time notifications of data changes where nec-
essary.

Solution / description of
decision

Bottled Water extension is enabled on the PostgreSQL database.
It provides the change data to Kafka where it can be consumed.
Change data could be consumed to store the history to some per-
sistent database. To implement real-time change notifications,
Kafka consumer was implemented to read changes and forward
them to connected websocket clients.

Considered alternative
solutions

To store the history of any database table could have been imple-
mented using history tables and triggers that would have been at
least infrastructure-wise more simpler approach.
Real time change notifications could been implemented by man-
ually notifying the clients whenever necessary.

Argument in favor of de-
cision • Bottled Water enables many use cases such as preserving

history or notifying users on changes.

Argument against the
decision • Experimental alpha software

• Adds lot of complexity to the infrastructure

Outcome and rationale Complicates in-
frastructure, alpha
quality and doesn’t
fit the use case
perfectly.

Interesting, but
adding complexity
& yet unproved. On
hold.

Too complicated
installation and
maintenance. Brings
more complexity
than added value

Appendix B. Architecture Decisions 89

Name Kekkonen CQRS API

Problem Modelling the problem domain data and functionality has been
done using plain Clojure data and functions. Exposing these to
the web UI clients have been previously done using REST like
APIs. Mapping Clojure data and functions to a resource-centric
API just to consume them again in Clojure(Script) code becomes
additional burden. Typical use case for us is to implement web
UI for the backend we are providing without a massive public
APIs for generic consumer.

Solution / description of
decision

Instead of mapping the problem domain and related functional-
ity into REST like API, use more streamlined approach to invoke
operations and transfer data between the server and the web UI.
This is achieved with Kekkonen library where API can be con-
structed commands and queries. Commands and queries are de-
fined as plain Clojure functions and data is transferred as Clojure
data structures between the backend and the frontend.

Considered alternative
solutions

If the API would be open to more consumers REST like map-
ping with various available content types would be another alter-
native. However, since Kekkonen generates always up-to-date
API documentation there is no reason why CQRS api could not
be used by other consumers as well.
All-in on Relay and GraphQL.

Argument in favor of de-
cision • CQRS API without mapping to resources allows more

straightforward interoperation between Clojure backend
and Clojurescript frontend

• Auto-generated documentation would help other con-
sumers integrate as well

• Possibly usable with Om.next

Argument against the
decision • CQRS API could be too specialised for third party con-

sumers

Outcome and rationale Simpler than REST
and makes develop-
ment more agile.

KISS, WASP,
VENOM +1 likes.

REST and CQRS
both have their own
use cases and their
usage in a project is
situational.

Appendix B. Architecture Decisions 90

Name Websocket API

Problem Applications that have multiple simultaneous users that require
real-time updates or notifications need a mechanism to deliver
those changes to the browser. For example in case project Y
there were some use cases where this kind of functionality would
have been beneficial.

Solution / description of
decision

Backend provides a Websocket API to stream changes to other
clients. In this example implementation, some of the changes
originated from Bottled Water are published to the browser
clients as well. This ensures that if multiple clients are in the
same view, everyone will see up-to-date data if some client
makes modifications.

Considered alternative
solutions

Stateless alternative could have been possible where clients
would simply poll the data by calling the API periodically.

Argument in favor of de-
cision • WebSockets are most common real-time commucation

method for browsers

• Low-latency duplex communication

• Allows the user to select data format (e.g. Transit)

• Good existing Clojure(Script) wrappers

• Many libraries provide some fallbacks if WebSocket
transit doesn’t work.

Argument against the
decision • Still might have some problem in enterprise envinron-

ments (firewalls)

Outcome and rationale Useful, but adds
some complexity.

Use a library, which
fallbacks to polling.
Real-time FTW!

Better than periodi-
cal polling or long
polling but requires
an easy to use Clo-
jure API. Could be
integrated to Kekko-
nen library.

Appendix B. Architecture Decisions 91

Name Normalized application state

Problem If application state is modelled as a tree, it contains denormalized data. This
means that same entity might reside in multiple branches of state tree. This
makes updates harder because entity has to be updated in all the places.

Solution / description of
decision

By normalizing the data and and modelling state as a graph the updates
become easy. Nodes can use "links" to refer to other nodes. The normal-
ization will be done manually.

Considered alternative
solutions • To ignore the prolem and keep data in tree & denormalized

• Use Relay & automatically normalized data

• Use Om.next & automatically normalized data

Argument in favor of de-
cision • Easy updates.

• Relay and Om.next have proved this works.

Argument against the
decision • Data has to be denormalized for rendering.

• Reading the data is a bit harder

Outcome and rationale

Reagent reaction/-
track allows easy
reads anyhow.

I have felt the mess
with denormal-
ized data, causing
buggy reads and
hard-to-reason
logic. Normalization
should be used.

No-brainer. Reduces
unnecessary HTTP
traffic.

Appendix B. Architecture Decisions 92

Name Re-frame dispatch & handlers

Problem No conventions for writing event handlers. Often event handler code has
been written inline inside the components. This makes it harder to read the
code. Some handler code has been written as normal functions in the same
namespace as the component.

Solution / description of
decision

Use well-documented convention from Re-frame: all handlers are regis-
tered via Re-frame. All events are dispatched to these handlers.

Considered alternative
solutions • Own implementation

Argument in favor of de-
cision • Re-frame is well documented

Argument against the
decision • Re-frame introduces some global state to manage the registered han-

dlers.

Outcome and rationale

Convention is good re-frame (or similar)
should be used,
despite not perfect,
good docs give a
baseline for new
developers to learn
it.

Good idea. Makes
it possible to clearly
separate the event
logic from global
state changes.

Appendix B. Architecture Decisions 93

Name Re-frame subscriptions

Problem Reagent code has usually used many ‘reactions‘ and most components have
been written in form-2 (they use closure). Closures make the code harder
to understand.

Solution / description of
decision

Re-frame subscriptions allows components to register named queries over
the application state.

Considered alternative
solutions • Using Reagent 0.6 ‘track‘

• Writing something similar ourselves

Argument in favor of de-
cision • Have some performance pros against bare reactions (no duplication)

• Middleware pattern can allow sharing common stuff

Argument against the
decision • Subscriptions still require using form-2 components (closures)

• Reagent track works without Closures and does the same

Outcome and rationale

Using track is easier
and does the same

track vs subscrip-
tions. Choose one,
stick to it. Neutral.

Track and subscrip-
tions both have
marginal benefits.
Use whatever you
like.

Appendix B. Architecture Decisions 94

Name Component Schema validation

Problem If components are called with wrong parameters, the errors might not show
instantly. The errors caused might be confusing.

Solution / description of
decision

Attach Schema declarations to Components. This can be used to validate
the parameters. Errors can be catched to show clean error messages to
developer.

Considered alternative
solutions • Static type analysis with Core.typed.

• React.js component validation

• Elm

Argument in favor of de-
cision • Better error messages

• Faster feedback

Argument against the
decision • More complexity

Outcome and rationale

Useful but should be
implemented in a li-
brary

Validation code can
be fully removed
from prod-build,
need to test pros vs
cons. Neutral.

Adds too many lines
of code for the added
value. Components
are kept pure and
simple so testing
them is unnecessary.

	Introduction
	Background
	About Metosin Ltd
	About Clojure
	About ClojureScript
	Case Projects
	Case X
	Case Y
	Case Z

	Focal Points for Architectural Improvements
	Specification of an Example Project

	Decision-Centric Architecture Review
	Evaluating Data Persistence and API Solutions
	Data Persistence
	Document-model (MongoDB)
	Relational Mixed with Document Model (PostgreSQL)
	Fact-Based Temporal Database (Datomic)
	Storing Events and Event Sourcing
	Capturing Data Changes with PostgreSQL and Bottled Water

	Database Choices for the Example Application
	Application Programming Interface (API)
	HTTP, Representational State Transfer, REST HTTP APIs
	Compojure-api Library for Building Web APIs
	Remote Procedure Calls (RPC) over HTTP
	Kekkonen Library
	Side Effects of Commands and Real-Time Events

	Backend Technology Choices for Example Application

	Evaluating Frontend Technologies
	Web Development Background
	Model-View-Controller

	Rendering and State Management
	React
	Om
	Reagent
	Re-frame

	Fetching Data
	Previously Used Approaches
	Relay
	Om.next

	Frontend Technology Choices for Example Application

	Implementation
	Backend
	Data Persistence
	API
	Backend Implementation Conclusion

	Frontend
	Data Fetching Implementation
	Live Updates
	Component Schema Validation
	Frontend Implementation Conclusion

	Architecture Evaluation Results
	Evaluation Session and Results

	Conclusion
	Bibliography
	Contributions
	Architecture Decisions

