
MIKKO KULMALA
IMPROVING NETWORK SECURITY WITH SOFTWARE-
DEFINED NETWORKING

Master of Science Thesis

Examiner: Professor Jarmo Harju
Examiner and topic approved by
the Council of the Faculty of
Computing and Electrical Engineering
on 9 December 2015

i

ABSTRACT

MIKKO KULMALA: Improving network security with software-defined networking
Tampere University of Technology
Master of Science Thesis, 48 pages, 3 Appendix pages
April 2016
Master’s Degree Programme in Signal Processing and Communications Engineering
Major: Communication Networks and Protocols
Examiner: Professor Jarmo Harju
Keywords: SDN, software-defined networking, information security, computer networking

Software-defined networking (SDN) is a new technology in computer networks, which
enables the management of the network and the development of new network func-
tions in a higher level of abstraction than in traditional networks. In the SDN
concept, the management of the network can be centralized to a specific SDN con-
troller instead of managing each network device separately through a vendor-specific
interface. This enables new possibilities for designing computer networks and makes
the administration easier than before.

In this thesis we are considering the security improvements in computer networks
achieved by the software-defined networking. The purpose of the research is to find
out if the current maturity of the SDN technology allows traditional networks to
be replaced by SDN and what kind of security enhancing network functions can
be implemented with the SDN technology. We are also discovering existing SDN
applications and solutions presented in former research.

Based on the research, the solutions providing improved network security can be
divided to two categories. First is the SDN security applications and second is
the solutions that are providing better network management. Many of the pro-
posed solutions are still under development and they will need more research and
development contribution before they are ready for the production use. During the
research, it became clear that the SDN technology brings new security threats for
consideration because of the centralized network management and the management
performed by software. In particular the attacks against the management network
and the usage of the third party software are possible security threats. Currently,
migration from a traditional network to an SDN based network needs still much
resources, but in the future the technology will definitely become more common.

ii

TIIVISTELMÄ

MIKKO KULMALA: Verkon tietoturvan kehittäminen ohjelmisto-ohjatuilla verkoilla
Tampereen teknillinen yliopisto
Diplomityö, 48 sivua, 3 liitesivua
Huhtikuu 2016
Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma
Pääaine: Tietoliikenneverkot ja protokollat
Tarkastaja: professori Jarmo Harju
Avainsanat: SDN, ohjelmisto-ohjatut verkot, tietoturva, tietoliikenneverkot

Ohjelmisto-ohjatut verkot (software-defined networking, SDN) on uusi tietoliiken-
neverkoissa hyödynnettävä teknologia, joka mahdollistaa verkkojen hallinnan ja toi-
minnallisuuksien määrittelyn aiempaa korkeammalla tasolla ohjelmallisesti. Käy-
tettäessä ohjelmisto-ohjattuja verkkoja verkkolaitteita ei enää tarvitse konfiguroi-
da yksittäin valmistajakohtaisen rajapinnan avulla vaan verkkojen hallinta voidaan
keskittää erityiselle verkkoon sijoitetulle SDN-ohjaimelle. Tämä luo uusia mahdol-
lisuuksia tietoliikenneverkkojen suunnitteluun ja tekee verkkojen ylläpidosta sekä
toiminnallisuuden muuttamisesta aiempaa vaivattomampaa.

Diplomityössä käsitellään ohjelmisto-ohjatuilla verkoilla saavutettavia tietoliikenne-
verkon toiminnallisuuksia, jotka edistävät verkon tietoturvaa. Työn tarkoituksena on
selvittää, onko SDN-teknologia jo tarpeeksi kehittynyttä, jotta sillä voidaan korvata
perinteisiä tietoliikenneverkkoja, ja millaisia tietoturvaa edistäviä toimintoja tekno-
logialla voidaan saavuttaa. Työssä tutustutaan myös valmiisiin tietoturvaa edistäviin
SDN-sovelluksiin sekä aiemmassa tutkimuksessa esiteltyihin ratkaisuihin.

Tutkimuksen perusteella tietoturvaa edistävät toiminnot voidaan jakaa kahteen
osaan, tietoturvaa edistäviin SDN-sovelluksiin ja parempaa verkon hallintaa tarjoa-
viin ratkaisuihin. Monet esitetyistä ratkaisuista ja tarjolla olevista SDN-sovelluksista
ovat kuitenkin vielä kehityksensä alussa ja vaativat lisää tutkimusta ja tuotekehi-
tystä. Tutkimuksessa havaittiin, että ohjelmisto-ohjatut verkot tuovat myös uusia
tieoturvauhkia keskitetyn hallinnan sekä verkon ohjelmistopohjaisen hallinnan vuok-
si. Etenkin hallintaverkkoon kohdistuvat hyökkäykset sekä kolmannen osapuolen so-
vellusten käyttö verkon hallintaan ovat esimerkkinä tietoturvauhista. Tällä hetkellä
perinteisen verkon päivittäminen ohjelmisto-ohjatuksi verkoksi vaatii vielä paljon
resursseja, mutta teknologia yleistyy varmasti tulevaisuudessa.

iii

PREFACE

This thesis was done in the Department of Pervasive Computing at Tampere Uni-
versity of Technology. The topic was provided by Prof. Jarmo Harju.

I would like to thank my supervisor Prof. Jarmo Harju for giving me opportu-
nity to work for the department and guiding me during the work. I would also
like to thank M.Sc. Joona Kannisto for giving me valuable feedback and guidance
through this process and M.Sc. Markku Vajaranta for giving me advice regarding
the experiments.

I am grateful to the staff of the Faculty of Computing and Electrical Engineering
for providing me needed guidance during my studies. Special thanks to my friends
at TeLE for helping me to maintain a balance between work and social life. Last
but not least, I would like to express my gratitude to Laura for supporting me and
encouraging me during my studies.

Tampere, 17 April 2016

Mikko Kulmala

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Software-defined networking . 3

2.1 Concept and architecture . 3

2.2 Controller . 5

2.2.1 HP VAN SDN controller . 6

2.2.2 Open source SDN controllers and frameworks 6

2.3 Northbound API and application layer 7

2.4 Southbound API and infrastructure layer 8

2.4.1 OpenFlow protocol . 10

2.4.2 SDN capable networking device 13

2.5 Network function virtualization . 13

3. Network security: Principles, techniques and challenges 15

3.1 Principles of information security . 15

3.2 Network security . 16

3.2.1 Security threats . 17

3.2.2 Layered security . 17

3.2.3 Security policies . 19

3.3 Security techniques . 19

3.3.1 Firewall . 19

3.3.2 Intrusion detection system . 21

3.3.3 Network management and monitoring 22

3.4 Challenges . 23

4. SDN and network security . 24

4.1 Security improvement with SDN . 24

4.2 Network management benefits . 26

v

4.3 Security problems, drawbacks and challenges of SDN 27

5. SDN security applications and solutions 30

5.1 SDN test environment . 30

5.2 Developing SDN applications . 32

5.2.1 Example of using RESTapi . 32

5.2.2 Nodecutter SDN application . 32

5.3 Comparison of security applications in HP SDN App Store 33

5.3.1 BlueCat DNS Director . 34

5.3.2 HPE Network Protector . 35

5.3.3 HPE Network Visualizer . 36

5.4 Network operating systems . 36

6. Discussion . 39

6.1 Security enhancement with software-defined networking 39

6.2 Challenges in software-defined networking 40

6.3 Current state of the SDN concept . 40

7. Conclusions . 42

Bibliography . 43

APPENDIX A. Example of using RESTapi for flow modification 49

vi

LIST OF FIGURES

1.1 An example of SDN enabled network. 2

2.1 SDN architecture. 4

2.2 Traditional infrastructure layer and infrastructure layer managed by
SDN controller. 5

2.3 OpenDaylight architecture. 7

2.4 Infrastructure layer in SDN network. 9

2.5 OpenFlow switch specification. 11

2.6 An example of OpenFlow rule. 12

3.1 A model of layered security. 18

5.1 SDN test environment. 31

5.2 Modified flow shown in topology view of HP VAN Controller. 33

5.3 Topology view of ONOS network operating system. 37

vii

LIST OF TABLES

5.1 Technical specifications of the installed SDN controller 31

5.2 Security-minded applications in HP SDN App Store 34

viii

LIST OF ABBREVIATIONS AND SYMBOLS

API Application programming interface
BGP Border gateway protocol
DDoS Distributed denial of service
DoS Denial of service
IDS Intrusion detection system
IoT Internet of things
IPS Intrusion prevention system
OSPF Open shortest path first
OVS Open vSwitch
REST Representational state transfer
SDK Software development kit
SDN Software-defined networking

1

1. INTRODUCTION

Technologies used to design, build and manage communication networks have stayed
unchangeable during last decades. At the same time, the amount of network con-
nected devices has grown exponentially which means that also the size and number
of communication networks has increased. Accordingly, the existing networks in
companies and data centers have become much more complex and harder to admin-
istrate.

While the number of IT services is growing, companies are moving them out from
self managed and self hosted infrastructure. Also the building and using of cloud
environments have become more popular and the new technologies like Internet of
Things (IoT) have created the idea that every single device has to be connected
to the Internet. All of these things are bringing the security to essential part of
networking and specially in cloud and data center environments the security is an
important matter.

The next big movement in communications engineering is to migrate traditional
and static Ethernet networks to much more dynamic and easily manageable ones.
The new concept, software-defined networking (SDN), transforms the layer 2 Ether-
net networks to centrally managed layer 2 clouds, where the network traffic can be
controlled using higher level programming language. That allows us to build more
efficient and more secure networks when the network resources can be allocated on
demand instead of dividing the network to smaller logically separated ones before-
hand. In Figure 1.1 there is an example of a small SDN network where the traffic
of one network client is considered as untrusted and for that reason is forwarded
through firewall.

In this thesis, we are exploring solutions based on SDN network, which are providing
better network security. We are also finding out existing SDN applications built
specially for enhanced security purposes. The purpose of this work is to find out
present state of SDN concept and evaluate it’s maturity for wider use on production

1. Introduction 2

FirewallServer

Client 3Client 2Client 1

SDN controller
SDN switches

Figure 1.1 An example of SDN enabled network.

environments.

The second chapter describes the concept and architecture of software-defined net-
working. We are also getting familiar with key elements of SDN network and general
benefits of SDN. Chapter 3 focuses on network security and security techniques and
challenges where SDN could be helpful. Chapter 4 reviews related work on SDN
for network security and in Chapter 5 the exploration of existing SDN solutions is
performed. The discussion is carried out in Chapter 6 and finally the conclusion is
presented on Chapter 7.

3

2. SOFTWARE-DEFINED NETWORKING

Traditionally we have been using subnetting for dividing large networks to smaller
logical ones. Different subnets are combined to each other with routers, and traffic
management is done by routers and firewalls between logical networks. Now that
different kind of cloud services have become popular, we will need more efficient
ways to handle networking problems.

This chapter covers the fundamentals of software-defined networking and compares
SDN to traditional networking. We are looking at the architecture of SDN and how
the networking elements are communicating with each other. Also SDN controllers
and SDN capable networking switches are introduced in this chapter.

2.1 Concept and architecture

While the importance of information networks has been growing in all kind of com-
panies during the last decade, also the work needed for network administration has
become more critical and time-consuming. The larger the network grows the more
networking devices is needed. Usually each networking device, for example switch,
has its own vendor-specific operating system and configuration syntax. Actually
we can say that the controller layer and the data layer are both in one specific
networking device.

The basic concept of SDN is to separate the control layer and centralize it to one
single point of network which means that every single network device need only take
care of data layer and move data packets from one point to another based on the
forwarding decisions made by the SDN controller [1]. Thus every switch is controlled
from one specific controller through application programming interface (API) and
the controller is commanded with application layer SDN applications. The basic
SDN architecture is shown in Figure 2.1 and the SDN controller is described more
accurately in Section 2.2.

2.1. Concept and architecture 4

ONF SOLUTION BRIEF
OpenFlow-enabled SDN and Network Functions Virtualization

3 of 12© Open Networking Foundation. All rights reserved.

SDN Overview

Software Defined Networking is a new architecture that has been designed to enable

more agile and cost-effective networks. The Open Networking Foundation (ONF) is

taking the lead in SDN standardization, and has defined an SDN architecture model as

depicted in Figure 1.

APPLICATION LAYER

CONTROL LAYER

INFRASTRUCTURE
LAYER

Network
Services

Business Applications

Network Services

APIAPIAPI

The ONF/SDN architecture consists of three distinct layers that are accessible through

open APIs:

•	 The Application Layer consists of the end-user business applications that

consume the SDN communications services. The boundary between the

Application Layer and the Control Layer is traversed by the northbound API.

•	 The Control Layer provides the logically centralized control functionality that

supervises the network forwarding behavior through an open interface.

•	 The Infrastructure Layer consists of the network elements (NE) and devices that

provide packet switching and forwarding.

According to this model, an SDN architecture is characterized by three key attributes:

•	 Logically centralized intelligence. In the ONF SDN architecture, network

control is distributed from forwarding using a standardized southbound interface:

OpenFlow. By centralizing network intelligence, decision-making is facilitated

FIGURE 1

ONF/SDN architecture

Figure 2.1 SDN architecture [2].

The application layer or management plane is the layer above the SDN controller
where the whole SDN network is managed. The managing element may be one
specific SDN application written for some specific task of a much more complex
system. For example OpenStack cloud computing platform can manage network by
using its own network management module.

SDN controller configures flows to SDN switches and controls how the nodes con-
nected to the switch can communicate. With flows we can isolate networking devices
connected to the switch and control the traffic on OSI layer 2 [3, p. 50], although
devices are still connected to the same L3 subnet. That is a much more convenient
way to do isolation than we have used before. In traditional network we have used
VLANs (Virtual LAN) for L2 separation and subnets for L3 separation of devices.
That means we are used to do a lot of work when a new device or a group of de-

2.2. Controller 5

vices requiring a separate logical network are connected to an existing network. The
difference between switch fabric built by traditional switches and SDN switches is
shown in Figure 2.2.

SDN controller

Data plane
Control plane

Data plane
Control plane

Data plane
Control plane

Data plane
Control plane

Data plane Data plane Data plane

Data plane

Control plane

Figure 2.2 Traditional infrastructure layer and infrastructure layer managed by SDN
controller.

2.2 Controller

SDN controller is the most important part of the SDN network because it is the
brain of the network. The function of the controller is to manage and control SDN
capable network elements in the network and handle the control plane which is
detached from the actual forwarding devices. That means the network elements
should only take care of moving traffic between devices according to the rules that
the controller has created. Usually SDN controller is only one software running
on a standard computer hardware or a virtual machine. Most controllers have
two main application programming interfaces which are called northbound API and
southbound API. Northbound API is the interface which is used to command the
controller with external SDN applications or network orchestrator. Southbound API
is respectively the interface which is used to the communication between the SDN
controller and a network element. Interfaces are described in more detail in Section
2.3 and 2.4.

Currently there are many commercial and open-source controllers available and there
are many differences between them, such as the features of controller and the target
use case. Some controllers (e.g. POX [4]) are simple, easy to learn and easy to
develop whereas others are much more complex, feature-rich and therefore usually

2.2. Controller 6

more harder to get familiar with. The used programming language affects to the
efficiency of controller. Diverse features and APIs are needed if we want to build
more complex cloud networking system. In this thesis we are using commercial
controller from HP for testing purposes. HP’s controller is one of the most popular
commercial SDN controllers and it is built with Java programming language. It is
also quite well documented and community supported which helps developing and
testing SDN applications.

2.2.1 HP VAN SDN controller

HP is one of the big companies that have really invested in SDN solutions during
the last years. HP VAN SDN controller is probably the best known commercial
SDN controller at the moment and therefore we are also using it in this thesis. HP
offers also SDN App Store which includes ready-to-go SDN applications and is also
a place to discuss and participate to an SDN community. [5]

HP VAN SDN controller is Java-based software which runs on Linux operating
system in a server class hardware or a virtual platform. The controller has an open
API which allows users to develop 3rd party SDN applications. HP also offers quite
extensive documentation of interfaces and also an SDK (Software development kit)
for developing applications directly to the SDN controller. [6]

2.2.2 Open source SDN controllers and frameworks

There are multiple open source projects in progress and some of these have a little
different approach towards the SDN concept. Floodlight [7] is popular, easy to use
and open community controller developed by Big Switch Networks. It is a good
starting point for studying SDN and creating SDN environment. Trema [8] is a
simple framework that allows one to build an own controller with simple Ruby
scripts. The framework also includes a network emulator which helps verifying the
functions of the controller. There are also many other alternatives available but as
in open source projects usually, the developing of some projects has stopped.

The most complex and enterprise class open source SDN controller is OpenDaylight
platform [9]. It is modular and highly scalable controller for building and managing
networks of different size. It is also possible to integrate OpenDaylight with Open-
Stack cloud operating system, which makes it a good choice for cloud environments.

2.3. Northbound API and application layer 7

FlowVisor [10] is slightly different than traditional controllers because it acts a
transparent proxy between OpenFlow switches and multiple SDN controllers. In this
way it can divide the network to slices and delegate control of each slice to different
controller. There are also more comprehensive open source projects in progress.
Open Network Operating System (ONOS) [11] is introduced as an SDN operating
system which is matured and production ready platform for creating applications
and services. The mission of ONOS is to produce a system that will allow service
providers to build real software-defined networks.

2.3 Northbound API and application layer

The northbound API is a way to manage the controller and the whole SDN network.
By developing so called external SDN applications we can modify network structure
and policies. Northbound API is usually implemented using restful API (repre-
sentational state transfer) which makes managing of the controller easy with basic
HTTP-methods like POST, GET, PUT and DELETE. Overview of OpenDaylight
SDN controller architecture is represented in Figure 2.3.

Figure 2.3 OpenDaylight architecture [12].

Applications which are controlling SDN network using northbound API are called
external SDN applications because they are running outside the controller and are
using the programming interface for communication. That kind of applications are

2.4. Southbound API and infrastructure layer 8

able to manage the controller and send instructions for it. They can not hold the
real time status of the controller and operations inside external application can’t be
triggered by the controller because the interface is one-way communication channel.
One use case for external SDN application could be for instance a piece of software
which modifies the data path of one specific defective device in network which is
generating abnormal traffic. The decision is based on information gathered by the
network monitoring appliance.

The element sending instructions to SDN controller can be also a much more com-
plex system than only an application built for deploying specific function to network.
OpenStack cloud operating system is a large and modular open source software
platform which can manage the whole cloud environment including compute, stor-
age and networking resources [13]. Another example of using northbound REST
API is the integration of OpenDaylight controller and OpenStack cloud operating
system. OpenStack Neutron communicates with OpenDaylight controller through
northbound API using OpenStack ML2 plugin. That means we can use OpenDay-
light SDN controller to manage the whole cloud network of OpenStack environment.

2.4 Southbound API and infrastructure layer

The main goal that we are trying to achieve with SDN is to make the infrastructure
layer easier to manage. Traditionally every switch and router on specific networking
domain have to learn their own environment with routing protocols (e.g. OSPF
and BGB) and keep their own forwarding table up to date. When a new device is
connected to the network, it will advertise itself and existing devices should update
their forwarding table accordingly. [1]

In software-defined networking this environment learning is centralized to SDN con-
troller and switches are managed by the controller through southbound API. The
controller is keeping up the view of the network and it is configuring necessary
flows to every switch under the controller. Switches will keep up flow tables which
tell where to forward packets. If switch can’t make decision based on beforehand
programmed flows, it will execute the configured default action that can be for ex-
ample sending the packet to the controller. The relation between the controller and
OpenFlow switches is illustrated in Figure 2.4.

SDN controller can handle the managing of forwarding devices by both proactive and

2.4. Southbound API and infrastructure layer 9

Figure 2.4 Infrastructure layer in SDN network [1].

reactive way. Proactive method needs the flow configuration before the traffic enters
the network, so the forwarding switch has the needed forwarding rules installed
already when the first packet arrives to the device. Instead of proactive method,
reactive method needs the first packet before the needed flows will take place in
the switch. When the switch notices that it does not have any matching flow for
incoming traffic, it will send the packet to the controller through a secure channel.
The controller then generates the needed forwarding flow and sends the packet back
to the switch and installs the flow in to the switch. When the next packet of the
same data stream arrives to the switch, it will match to the newly installed flow and
the switch can forward it right away.

While OpenFlow is a widely used protocol in SDN solutions, it is not the only choice
for communication between SDN controller and forwarding elements. SDN concept
does not care how the communication is implemented. ForCES [14] is proposed to
one possible southbound protocol and also for example NETCONF [15] and LISP
[16] have their own use cases.

2.4. Southbound API and infrastructure layer 10

2.4.1 OpenFlow protocol

OpenFlow is an open standard and currently the most popular protocol for commu-
nication between the SDN controller and OpenFlow enabled switches. OpenFlow
was designed at the Stanford University [17] on 2008 and currently it is managed
by the Open Networking Foundation (ONF) [18]. The basic concept of OpenFlow
is that switches have forwarding tables and an open API which OpenFlow con-
troller is using. Since the controller knows the view of the network, it will populate
the needed forwarding rules to the switch. The open standard allows connecting
different devices from multiple vendors to one OpenFlow capable controller. [1, 19]

The specification of an OpenFlow switch is shown in Figure 2.5. OpenFlow protocol
defines the specification for communication between an OpenFlow controller device
and an OpenFlow switch and the behaviour of data plane function in an OpenFlow
switch. The communication is performed through a secure channel where both
the OpenFlow control messages and the transferred data packets are moving from
the controller to a switch and vice versa. The switch includes pipeline processing
including multiple flow tables where the incoming data packet is processed. [19]

One OpenFlow entry in a forwarding table consists of match fields, statistics fields
and a set of instructions to apply to matching packets. When a new packet arrives
to the switch, it will be checked against match fields of the flow tables. If the
packet matches to some flow table entry, the actions are performed. Basic actions
for incoming packet are:

• forwarding the packet to one or multiple switch ports

• encapsulate the packet and send it to OpenFlow controller through secure
channel

• drop the packet

• modify fields of the packet

• send the packet to normal processing pipeline.

Possible match fields in initial OpenFlow V.1.0 specification are switch input port,
VLAN ID, VLAN priority, Ethernet source address, Ethernet destination address,

2.4. Southbound API and infrastructure layer 11

OpenFlow Switch Specification Version 1.5.1

1 Introduction

This document describes the requirements of an OpenFlow Logical Switch. Additional information
describing OpenFlow and Software Defined Networking is available on the Open Networking Foundation
website (https://www.opennetworking.org/). This specification covers the components and the basic
functions of the switch, and the OpenFlow switch protocol to manage an OpenFlow switch from a
remote OpenFlow controller.

Port

Port

Port

Port

OpenFlow
Channel

Flow
Table

Flow
Table

Flow
Table

Controller

Pipeline

OpenFlow Switch

OpenFlow
Channel Group

Table
Meter
TableControl Channel

Controller

Datapath

Protocol

Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table, which perform packet
lookups and forwarding, and one or more OpenFlow channels to an external controller (Figure 1). The
switch communicates with the controller and the controller manages the switch via the OpenFlow switch
protocol.

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and proactively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions to apply
to matching packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables of the pipeline (see
5.1). Flow entries match packets in priority order, with the first matching entry in each table being
used (see 5.3). If a matching entry is found, the instructions associated with the specific flow entry are
executed (see 5.5). If no match is found in a flow table, the outcome depends on configuration of the

11 © 2015; The Open Networking Foundation

Figure 2.5 OpenFlow switch specification [20].

Ethernet frame type, IP source address, IP destination address, IP protocol, IP Type
of Service (ToS), TCP/UDP source port and TCP/UDP destination port. Instead
of just forwarding the packet to the specific out port or port group, the OpenFlow
protocol also allows the switch to modify packet headers quite widely. Even the first
version of OpenFlow protocol enabled modification of MAC address, IP address,
VLAN ID and port of Ethernet packet and the next widely used version 1.3 brought
the ability to modify for example IPv6 headers, ARP headers and ICMP headers.
[19]

An example of OpenFlow rules in JSON format is shown in Figure 2.6. The example
rule matches to a packet which is coming in to the switch through port 4 and which
has source IPv4 address 10.0.1.1 and destination IPv4 address 10.0.2.2. The matched
packet is then forwarded out from switch port 1. Idle timeout field has a value 30

2.4. Southbound API and infrastructure layer 12

which means that the flow is automatically deleted 30 seconds after the last matched
packet. Hard timeout is 300 seconds which means that the flow will get deleted after
5 minutes even though there is matching traffic passing the switch all the time. The
flow entry has also table id and priority fields which will define the processing order
of all OpenFlow rules in a network switch. [19]

{
"flow": {

"cookie": "0x2031987",
"hard_timeout": 300,
"idle_timeout": 30,
"instructions": [

{
"apply_actions": [

{
"output": 1

}
]

}
],
"match": [

{
"in_port": 4

},
{

"ipv4_src": "10.0.1.1"
},
{

"ipv4_dst": "10.0.2.2"
},
{

"eth_type": "ipv4"
}

],
"priority": 59000 ,
"table_id": 0

}
}

Figure 2.6 An example of OpenFlow rule.

The journey of OpenFlow have started on 2007 when Ethane was presented in Stan-
ford University [21] and the first OpenFlow version 1.0 released on 2009. The biggest
improvement that the next version, OpenFlow V.1.1, brought, was the support for
multiple flow tables and group table for action buckets. After the version 1.1 the
management of OpenFlow was moved to Open Networking Foundation. While ver-
sions 1.2 and 1.3 added some functionality to OpenFlow, the version 1.3 has become

2.5. Network function virtualization 13

the last major milestone release and it is now widely used. [19] Currently the newest
version of OpenFlow specification is V.1.5 [20].

2.4.2 SDN capable networking device

The last key element of SDN enabled network in addition to SDN applications and
SDN controller is SDN capable networking elements. Usually we are speaking about
OpenFlow enabled network switches, which are able to communicate with SDN
controller by using OpenFlow protocol. The switch can be either physical or virtual
one depending on network clients and use case. Physical ones are used for instance
in office environment as an access switch where client computers are connected.
Virtual ones are very useful in cloud and data center environments where plenty of
virtualized networking or computing instances are connected to each other. There
are a number of SDN switches available, both commercial and open source ones.
[19]

Open vSwitch (OVS) is one of the most popular production quality open source
virtual switch and it supports OpenFlow protocol. It is originally designed by Nicira
which is now acquired by VMware. OVS software can be run on the top of the
hypervisor or in physical switch device. It is also videly used in virtualization and
cloud platforms such as XenServer and OpenStack. [22]

Multiple vendors are investing in OpenFlow enabled physical switches. In this thesis
we are using switches from HP because these are known as good production quality
devices and it is presumable that those will work nicely together with HP’s SDN
controller.

An OpenFlow enabled switch can operate in one of the two possible modes: pure
OpenFlow or hybrid mode. On pure OpenFlow mode, forwarding decisions are made
by OpenFlow pipeline processing and managed by OpenFlow controller. On hybrid
mode, the switch will operate simultaneously as a traditional network switch and as
an OpenFlow enabled one. [19]

2.5 Network function virtualization

Network function virtualization (NFV) is a concept where the functionality of a
physical network element is provided by virtualized software running on top of the

2.5. Network function virtualization 14

hypervisor. The network element can be for example a switch, router, firewall or an
IDS appliance. The main idea of virtualization of network functions is to make the
network more flexible and reduce development costs. Because the CPU power of
the traditional server hardware is growing all the time, it is much more convenient
to implement a network function on top of the server class hardware instead of
buying new network hardware from vendors. NFV is very useful in data center
environment where a service provider can easily implement the needed virtualized
network function based on request from a tenant. [1]

When considering SDN networks, NFV is very close to SDN concept and it is useful
to be included in SDN environments. While it makes doing different network related
tasks for certain traffic quite straightforward when the network appliance and the
computing resource are both running on top of the hypervisor, it will also make
it quite simple to deploy new network related functions like load balancer, VPN
server or network monitoring instance. If the amount of network traffic is growing,
it is straightforward to allocate more CPU time for virtualized network function
instance.[19]

15

3. NETWORK SECURITY: PRINCIPLES,

TECHNIQUES AND CHALLENGES

While the number of devices connected to the Internet has been growing all the
time and more valuable information is being transferred over the internet, network
security has become a very important question in all kind of business and companies.
Some companies are moving their services to the cloud and the others are providing
this environment where multiple business critical systems are running on the top of
the same physical server hardware. The amount of network traffic is growing and
service providers are forced to offer more effective and scalable network resources
without bypassing any security goals.

This chapter covers the basic background of network security. First we are describing
the basic principles of information and network security and common threats on
network security. After that we are focusing on the basic security techniques and
services in traditional communications network. Eventually, we consider the security
challenges in different kind of circumstances where the SDN concept could prove to
be better than the traditional solutions.

3.1 Principles of information security

Historically, information security has been divided to three different sections and
interaction between them: confidentiality, integrity and availability. This approach
is also called as the CIA triad. Achieving the needed level on one of these sections is
not a problem but usually it reduces security from the other perspectives. In other
words, reaching a good level of information security is always balancing between
these three main goals. [23]

Confidentiality denotes that only authorized parties are able to get access to infor-
mation. While information has always a value, it is important to take care of privacy

3.2. Network security 16

which is quite close to confidentiality. Common mechanisms to reach this goal are
encryption of data and authentication with user ID and password.

Integrity means the consistency of information. Unauthorized people should not be
able to modify information and information must be also protected against external
threats such as system crash or network break. The integrity of information can be
ensured for example with checksums.

Availability or planned availability is reached when authorized people can access
the information whenever they need to. Keeping hardware and software up to date
and in good condition is the key thing when ensuring availability. Capacity of
hardware and throughput, backups and redundant systems are issues that have to
be considered. Availability can be threatened by nonhuman threats such as power
interrupts or by human caused threats like denial of service attacks.

Specially in the field of communication networks there are two more important
properties that we have to take into account.

Authentication is the ability to verify users identity. The real life example of au-
thentication could be a customer who is going to bank and is intended to withdraw
money from a bank account. Before the customer can get money, he will tell his
claimed identity by showing an ID card and a bank officer will verify his identity by
comparing the picture on the ID card and the face of the customer.

Non-repudiation means that sender cannot deny having sent information and also
that the receiver cannot deny having received the information.

3.2 Network security

In this thesis we are focusing on network security, which is only a little part of larger
information security domain. In a computer network, there are many threats and
vulnerabilities that network administrators have to consider. When we are aware of
those, we have to protect the network and defend against them. In networking there
are multiple technical ways to protect networks, detect vulnerabilities and inspect
traffic.

3.2. Network security 17

3.2.1 Security threats

A security treat is a potential harm that may threaten our asset and threats can
be divided to multiple different sections. Threats can be caused by human and
by nonhuman events. A nonhuman event can be for example flood or fire, loss of
electrical power or failure of an important component such as hard disk. Threats
caused by humans can be either malicious or not. Benign threats are usually human
error that are common for all people. That kind of harms will come true if user
accidentally types wrong command to Unix shell, carelessly sends information to a
wrong receiver or drops his laptop on to the floor. [23]

Nevertheless, most of the security threats are human caused and malicious when
someone particularly wants to cause harm to vulnerable asset. CIA triad can be
analyzed also from the perspective of harm that a malicious threat will cause to our
asset. Harms can be categorized to four different types:

• interception

• interruption

• modification

• fabrication.

3.2.2 Layered security

Layered security (or defense in depth) is a security strategy where we have multiple
security layers around the secured device, data, an application or a network. That
means the possible attacker has to break multiple different security layers to get
in touch with the protected asset and every layer should slow the attacker down.
Layered security also means that every layer of security uses a different security
mechanism. The selection of different layers will depend on the possible threat,
vulnerabilities and the type of asset that we are protecting. [24]

One proposal of the layered security model adapted to network security is to divide
the security to four layers (Figure 3.1): passive protection, active protection, passive
monitoring and active monitoring. By using this kind of segmentation we can place

3.2. Network security 18

Figure 3.1 A model of layered security.

different network security techniques to different security layers of this proposed
model.

Passive protection is the most outer layer of the model and it includes protection
mechanisms that don’t need active concern. An example of that is the simple packet
filter firewall which implements the basic firewall rules. Second layer, active protec-
tion, includes techniques that are actively changing their functionality depending
on the current state of the network. Stateful firewall, application firewall and intru-
sion detection and prevention systems are on this layer. Passive monitoring is for
example gathering logs from network devices and traffic. If the gathered logs are
inspected manually, we have already moved to the layer of active monitoring. Active
monitoring includes also continuously performed analysis of the network, vulnera-
bility scans and for example penetration testing. Firewalls are discussed in Section
3.3.1, intrusion detection systems in Section 3.3.2 and networks management and
monitoring in Section 3.3.3.

3.3. Security techniques 19

3.2.3 Security policies

When we have identified security threats that threaten our secured asset or system,
we have to define proper security policies. A security policy is a rule in a high level
of abstraction, which is describing security goals of an organization. Policies are
based on the threat analysis and security needs. A policy can be for example the
rule that a user can access and read the data on a host but can’t modify it. In the
case of network security, security policies are usually defining the network devices
or logical networks that another device or network can communicate with. [23]

When the security policies are defined properly, we have to implement multiple secu-
rity mechanisms to a network which executes these policies, for example a network
monitoring appliance and a firewall. Policies are also defining how the network ad-
ministrator would develop and manage the network in a proper way. A security
policy can be enforced for example by implementing a firewall rule to a network
gateway which denies the all traffic from the Internet to a private network except
the traffic which is destined to a web server’s port 80. [23]

3.3 Security techniques

In this section, we are discussing of the basic security techniques in the field of
network security. We are discussing how to monitor and detect malicious traffic in
communication network and when such traffic is detected, how to stop the attack
and prevent the attacker to cause any damage against the protected assets.

3.3.1 Firewall

A Firewall is the most important security device for protecting network by prevent-
ing unwanted traffic and attacks. It is a device that filters network traffic between
a trusted network and an untrusted network. The filtering is done based on be-
forehand created firewall rules where the firewall compares a network packet going
through it. Usually the untrusted network is the Internet and the trusted and pro-
tected network is a private network of a company, campus or user’s home. Firewall
can locate also between two different logical networks that have different security
policies. For example if a company has a separate logical network which includes

3.3. Security techniques 20

services that will process highly confidential data, it is desirable to separate that
network from the others by using a firewall. [23]

Because a firewall is often the single point through which traffic is channeled between
two logical networks, the performance aspect is really important. Firewall is usually
a dedicated device which is specially designed to filter traffic effectively but it is also
possible to run a virtualized firewall instance on top of traditional server hardware.
Firewall can be also implemented as an application that runs on the top of the
operating system like a personal firewall in a home computer. [23]

Firewalls can be divided to three different main categories and each type of firewall
has its own specific use case. Different threats will also need different types of
firewalls. A packet filter firewall is the simplest possible firewall type. It is operating
on OSI layer 3 so it doesn’t care the data inside IP packet. Packet filter will check
only the packet headers and make the decision to forward or drop the packet based on
these. Usually the packet filter rules are made to match specific source or destination
IP address, port number or internet protocol type and packets are processed one by
one. If the matching firewall rule is not found, the default action, which can be deny
or permit, is performed. Packet filter firewall is also called as a stateless firewall,
because it does not keep up any kind of information regarding current network
connections. [23]

A stateful firewall is a firewall appliance, which will maintain some kind of state
concerning current traffic flows and network connections. With the information of
traffic the stateful firewall can make a bit diverse traffic filtering than the traditional
packet filtering firewall and it is therefore operating on OSI layer 4. One example
of stateful firewall could be ongoing port scan attack where the attacker is trying to
establish a connection to multiple randomly selected ports on a short time window
and the connection will fail. Stateful firewall can recognize and categorize this as
unwanted traffic and block all traffic from this specific source address. [23]

An Application firewall or an application gateway is operating on OSI layer 7 or
application layer and it is able to inspect passing traffic in more detail than a packet
filter. With application firewall it is possible to filter network traffic based on content
inside IP packets, so for example accessing some websites from one specific subnet
can be denied while the rest of HTTP traffic is working normally. Application
firewall allows content modification too from which the spam filtering proxy is a one
feasible practical example. [23]

3.3. Security techniques 21

3.3.2 Intrusion detection system

The fact is that even though we have carefully protected our network, implemented
firewalls to correct positions and fulfilled the other needs of security policies, there
is always the risk that some malicious attacker is able to intrude into our network.
Or the malicious actor can be found among people, who already have access to
our internal and protected network. A system, which monitors network traffic and
is trying to detect malicious activity, is called an intrusion detection system (IDS).
When IDS system is detecting some abnormal actions, it will trigger alert for network
administrator and upgrade the event to security logs. IDS works in communication
networks like a fire alarming system on building which triggers alarm when it detects
smoke. [23]

IDS system can be either a device or a piece of software running on a traditional
workstation. It has one or multiple sensors which could be monitoring traffic, audit-
ing vulnerabilities or misconfigurations, checking the integrity or data or systems,
and doing other kind of things that will help detecting unusual actions in the net-
work. There are two main types of intrusion detection systems available: a signature
based system and an anomaly detection system, which both have their own partic-
ular use case. [23]

A signature based intrusion detection system is looking for known patterns from
network traffic and actions which it will compare to signatures from already known
attack types. It is keeping the signature database up to date like a virus scanner.
Another commonly known type of IDS system is based on anomaly detection. That
kind of IDS system is using artificial intelligence and learning the usual and tradi-
tional transactions happening in the monitored network and when it notices some
abnormal or suspicious activity, for example in packet streams, it will trigger an
alarm. In other words, it is investigating the statistical probabilities of current ac-
tivities and generating alarms based on probabilities. The anomaly detection system
can use also things like a neural network to help decisions. [23]

An intrusion prevention system (IPS) is a system which has the functionality of IDS
system added to automatic response capability. It will automatically trigger some
needed operation to stop the detected intrusion. Usually it is desirable to have IDS
functionality on some level, because it is possible that the network administrator is
not able to solve security incidents immediately. Sometimes the term next generation
firewall is used to mean a device which will combine the functionality from IDS, IPS

3.3. Security techniques 22

and application firewalls. [23]

3.3.3 Network management and monitoring

Network management is a continuously performed action starting from the network
planning and continuing during the whole life of the network. Because the network
traffic is dynamically changing, the network needs to be dynamically changing also
to meet the needs. Network management is a diverse subject and it includes things
from capacity planning, network addressing and load balancing to actively performed
network monitoring and event management. Different kind of network management
tools can simplify the network administrator’s job significantly. For example a net-
work configuration management system can be used to help the configuration of
multiple network devices.

Network monitoring is a crucial part of the network management, which allows us
to manage other security functions such as IDS of IPS. It is also ensuring us to reach
our main security goals. The simplest possible way to perform network monitoring
is the gathering of logs from network’s services and network devices in our networks.
We can for example look at the authentication log of our SSH server and analyze
the frequency of brute force login attempts or we can analyze the health status of
our network device or server hardware by exploring the system log files. And again,
the amount of malicious and blocked network traffic is revealed from the packet log
of a firewall.

In small and non-critical environments manually made log analysis can be enough
but when we are managing more critical networks, log analysis should be automated.
The next level of automation could include the automatically sent e-mail to an
administrator when the hard disk breaks down in our RAID array of SDN controller.
Or possibly an automatically triggered alarm, if some network device appears to be
broken, for example, when it does not answer to ping.

When the managed network is big enough, some more convenient way to handle
security events is required. Security information and event management (SIEM) is
a piece of software or an appliance which collects data from security devices and
services in a network. It can analyze the data in a real-time and generate security
alerts to network administrators. Usually the data analysis is compared to the
history of security events when it is possible to detect unusual patterns, which may

3.4. Challenges 23

be indicators of an security incident. [23]

3.4 Challenges

As we have stated, the size and number of computer networks have grown during
the last years and is growing all the time. We have seen IoT emerging and cloud
services become everyday even in small companies which are moving services from
physical server hardware in to the cloud. At the same time the amount of malicious
traffic naturally has increased. This constant change will address more challenges
to maintain a high level of network security specially in the field of network man-
agement and intrusion detection and prevention. With software-defined networking,
we can try to answer these challenges.

24

4. SDN AND NETWORK SECURITY

During the last years the software-defined networking has received a lot of attention
from the research community. In this chapter we are exploring the related work
and discovering how the network security is proposed to be improved with the SDN
concept. Also possible security trade-offs and new issues are considered.

This thesis divides SDN related security improvements to two categories. The first
includes solutions that are clearly security related and are implementing some se-
curity functions to a computer network with SDN related techniques. The other
includes suggestions which are providing better network security by means of better
network management which is improved with SDN solutions.

4.1 Security improvement with SDN

Security improvement using SDN based solutions can be achieved by developing
new security functions which are answering to current security challenges better
than the old ones. Security improvement can be achieved also by implementing ex-
isting security functions more effectively so that the operational costs of the network
administration and execution of current security policies are being reduced.

Network monitoring and traffic analyzing are security functions that can be
performed using SDN based solutions. Network monitoring and implementing secu-
rity functions in SDN network is analyzed in a survey by J. François et al. [25]. One
example solution of traffic analysis and control in small office and home environment
is proposed by I. Hafeez et al. [26]. The solution consists of a secure box and a cloud
based traffic analyzer. The secure box is an enhanced SDN controller which controls
multiple access points and OpenFlow switches, and it replaces home gateway by al-
lowing hosts to connect to The Internet through it. The cloud-based traffic analyzer
runs virtual firewall and IDS functionality and can analyze the network traffic and
populate new security rules to defend against attacks.

4.1. Security improvement with SDN 25

FlowCover, a low-cost and high-accuracy monitoring scheme, is proposed in [27]. In
FlowCover the flow statistics is collected from the SDN controller which is connected
to every OpenFlow switch in the network and which is also performing the network
controlling and monitoring tasks. Flow statistics have been used for anomaly de-
tection also in [28] by using an sFlow-based mechanism. sFlow is a protocol for
gathering flow statistics from switches and it is being used as a network monitor-
ing mechanism also in OrchSec [29], which is an orchestrator-based architecture for
enhancing network security in SDN networks.

Implementing of security services and functions is needed in addition to
network monitoring and traffic analyzing. FRESCO [30] is an OpenFlow security
application development framework. It is an OpenFlow application which is designed
to help in developing and designing of security services to OpenFlow networks.
FRESCO framework includes a library of 16 reusable modules and it is trying to
simplify the developing of security applications by using its own FRESCO scripting
language. Much more security solutions relying on SDN technology is explored in a
survey [31].

Using software-defined networking for security enhancement in wireless mobile sys-
tems is discussed in [32]. The article proposes a security enhancement framework
for wireless mobile networks which is designed to help designing of IDS systems,
DoS prevention and secure handoff. The research advocates that the maturity and
the fast development of SDN makes it a good way to improve security in mobile
networks.

Moving target defense solution called OpenFlow random host mutation is introduced
and evaluated in [33]. The idea of moving target technology is to mutate end-
hosts’ IP addresses randomly and frequently which can defend them against different
scanning-based attacks. In this technique the IP address is unchangeable from the
perspective of end host and the randomly generated and frequently changing virtual
IP address is translated to the real IP right before the host by using OpenFlow rules.

Denial of service (DoS) or distributed denial of service (DDoS) have become
a common way to attack against computer networks. Using SDN for recognizing
that kind of attacks in particular is considered in [34] and defending against them
in [28].

4.2. Network management benefits 26

4.2 Network management benefits

Because the computer networks are continuously growing, the managing of the net-
works has become a factor which directly affects the level of network security. Be-
cause the SDN concept makes the L2 cloud of switches an entity which is managed
by a centralized controller, it definitely makes the network more secure also, at least
if the management has performed well. SDN will also simplify the operation in a
multitenant cloud and data center environment.

Hyajoon and Feamster are identifying key problems in a current network infrastruc-
ture and they are proposing improvements for network management [35]. According
to the proposal, three aspects can be improved:

• frequent changes on network condition and state,

• support for network configuration in a higher level programming language and

• perform network diagnostics and troubleshooting.

Hyajoon and Feamster have designed Procera which is an SDN based network man-
agement framework that helps network operators to manage the network infrastruc-
ture. The system defines northbound interface which allows creating event driven
and high-level reactive policies to the network by a high level programming language.
Procera has been deployed on campus and on home network.

Network security management problem is considered in [36]. The article is examining
effects that separation of a control and a data plane in SDN network has in terms of
network security compared to traditional network architecture. It is also considering
the infrastructure of an SDN network and a question of which services should be
left to the data plane and which should be taken to the separated controller plane.

Network slicing is discussed in [37]. Slice abstraction mechanism and algorithms
for compiling slices are also developed and a prototype of slicing is designed. An-
other proposition of slicing an SDN network to multiple logical networks, a network
virtualization layer called FlowVisor, is presented in [38]. The network slicing is a
solution where a network administrator has to build logically separated networks
inside a one SDN network. That is needed for example in a multitenant data center
environment where multiple customers are running their own network and services

4.3. Security problems, drawbacks and challenges of SDN 27

on top of the same hardware with other customers. Traditionally the network slicing
is performed by using VLANs in computer networks but in SDN networks, using si-
multaneously the old and the new technology only creates another unnecessary layer
of complexity. In the solution proposed in [37] the network slicing is performed by
programming while the FlowVisor acts as a proxy controller between SDN network
and multiple SDN controllers.

Overheads and costs that SDN technology is causing are analyzed and a model called
DevoFlow is proposed in [39]. The aim of DevoFlow is to pull some of the control
back to switches so that the control of the most important flows still remains to the
SDN controller. This reduces the load of the controller. DevoFlow is introducing two
new mechanisms: rule cloning and local actions which will accomplish the proposal
of transferring part of the control to the switches

Network hypervisor concept is proposed in [40]. The proposition is based on the fact
that different actors in the SDN ecosystem are thinking the current SDN concept in a
different way. That heterogeneity makes it difficult to develop SDN networks which
are connecting the network resources from multiple service providers. The new
abstraction layer, network hypervisor concept, is trying to solve that problem by
providing a new high level application programming interface which allows building
SDN applications which are running on top of multiple networks around the world.
The future vision is that there are multiple service providers who are offering the
base network and on top of the network hypervisor is being built virtual networks
called HyperNets which are then connecting users.

4.3 Security problems, drawbacks and challenges of SDN

Because many SDN solutions rely on centralized management of the whole network,
there are also many new security issues and new possible threats to take into ac-
count [41]. OpenFlow supports using TLS (Transport Layer Security) for securing
the connection between the controller and OpenFlow switches. Especially when op-
erating in environments where the physical security of OpenFlow enabled devices
cannot be guaranteed, this is certainly a necessary layer of security in OpenFlow
networks. In addition to new security risks, SDN has some drawbacks and it also
brings some new challenges to the design of computer networks.

The security threats on SDN are discussed generally in [42]. They are arguing that

4.3. Security problems, drawbacks and challenges of SDN 28

security needs to be considered when designing software-defined networks and they
are describing new fault and attack planes that SDN has and which are opening new
possible threats. They are also pointing out that traditional networks have kind of a
natural protection following from heterogeneity, closed devices, and decentralization
of control plane. The following seven potential new threat vectors are described in
the article and also possible solutions are proposed:

1. Forged or faked traffic flows.

2. Attacks on vulnerabilities in switches.

3. Attacks on control plane communications.

4. Attacks on and vulnerabilities in controllers.

5. Lack of mechanism to ensure trust between the controller and management
applications.

6. Attacks on and vulnerabilities in administrative stations.

7. Lack of trusted resources for forensics and remediation.

Two types of denial of service attacks in OpenFlow enabled networks are considered
in [43]. In the first one the attacker tries to exhaust the control plane bandwidth
with carefully selected packets which a switch has to redirect to the controller. The
other one aims at filling the memory of the switch with forwarding rules. Also the
DoS mitigation strategies are proposed. They claim that the first type of attack
can be prevented by rate limiting the number of packets sent to the controller. The
second type can be prevented by using optimal flow idle timeout value which is small
enough or by using a technique called flow aggregation.

The SDN concept brings a new aspect to security planning which is trusting to third
party applications. An automated framework for static analysis of SDN applications
called SHIELD is presented and evaluated in [44]. Also the malicious behavior
of SDN applications is defined and categorized. SHIELD consists of three main
components. Source code tracer, control flow analyzer and result manager. As a
result, 10 malicious behaviors are detected and categorized by the target which are
control channel, controller, other apps and system flow.

4.3. Security problems, drawbacks and challenges of SDN 29

The key challenges that prevent building a carrier grade SDN network are discussed
in [45]. Specially performance, scalability, security and interoperability issues are
considered along with the proposed solutions. The performance of OpenFlow en-
abled networks is examined in [46] by measuring the switching times of current
OpenFlow hardware. Also the forwarding speed and blocking probability model of
an OpenFlow network is derived and validated by simulation.

30

5. SDN SECURITY APPLICATIONS AND

SOLUTIONS

In this chapter we are discovering how network security could be improved with ap-
plications and solutions based on the SDN concept. We are getting to know existing
security appliances built by the Internet community and vendors, and we are also
describing ways to develop own SDN applications to carry out needed networking
and security functions.

5.1 SDN test environment

We have built a little test environment to the security laboratory for testing differ-
ent SDN solutions and help SDN related research in the future. The environment
consist of three HP 3800 series switches and one HP 5900 series switch and a few
desktop computers and rack servers acting as network clients and servers. We se-
lected HP VAN SDN Controller to our test environment mainly because it has quite
comprehensive documentation and we intended to explore SDN applications on HP
SDN application store later during this research. Products from the same vendor
are also supposed to co-operate well. The network diagram of the test environment
is shown in Figure 5.1.

In this thesis, we are using the portion of network which is located physically in the
security laboratory. In other words, we are using three HP 3800 switches connected
to each other and controlled by HP SDN controller. The internet access is provided
via Juniper SRX 220 router. The SDN controller is installed on the virtual machine
running on top of the VMware ESXi cluster. Technical specifications of the controller
are shown in Table 5.1. Because the main parts of the network are physically
located in the security laboratory, the network structure is easily changeable during
experiments.

On some of the experiments we are using software called Mininet instead of physical

5.1. SDN test environment 31

OpenFlow

Internet

HP VAN SDN
Controller

Juniper
SRX220

HP 3800
Series x 3

HP 5900
Series

Security
laboratory

Figure 5.1 SDN test environment.

Table 5.1 Technical specifications of the installed SDN controller

HP VAN SDN Controller
Controller version 2.6.8.0433
Operating system Ubuntu 14.04.3 LTS
Memory 32 GB
CPU 16 cores
HDD 32 GB

switch fabric. Mininet is an application that creates a realistic, easily customizable
virtual network including switches, hosts and SDN controller and it is meant spe-
cially to research, development and learning purposes. It is a really convenient way
to start become acquainted with SDN solutions. [47]

5.2. Developing SDN applications 32

5.2 Developing SDN applications

External SDN applications are programs that are built outside of the SDN controller.
They are performing needed functions by instructing the controller through a specific
application interface. Usually this interface is a RESTful API which is an easy way
to use the controller without a considerable understanding of the internal function
of the existing controller.

5.2.1 Example of using RESTapi

The simplest possible example of network modification using REST interface is the
manual flow configuration with a simple Python script. In Figure 5.2 we have four
OpenFlow switches connected to each other and one host connected to the bottom
left and to the bottom right switch. The leftmost host (red) is sending ICMP echo
request packets to the rightmost one (blue) and it is answering with ICMP echo
reply packets. As we can see, the graphical user interface of HP’s controller includes
a nice OpenFlow topology feature which shows the physical structure of the whole
OpenFlow network managed by the controller. In the topology view, we can select
the source and the destination hosts and the controller will colorize the flow path
showing the route that packets are using when moving from the source host to the
destination host.

The reason why the flow is going through the top left switch and is not using the
shortest possible path is that we have manually added two flow table entries to
three switches and these will manipulate the flow’s path. The default operation
of the controller is to implement the basic L2 switch forwarding function and in
this particular case it means that when clients are starting to communicate with
each other, the controller is programming forwarding flows to the two switches on
the bottom of the topology and the traffic is being forwarded along the shortest
path. Now we have manually added new flows with higher priority and made the
desired flow modification. The example Python code performing this modification
is presented in Appendix A.

5.2.2 Nodecutter SDN application

The Nodecutter SDN application is a good starting point to get familiar with the
HP VAN SDN controller and specially the REST API of the controller. It is an

5.3. Comparison of security applications in HP SDN App Store 33

Figure 5.2 Modified flow shown in topology view of HP VAN Controller.

example application that is able to list all switches and devices in the current SDN
network and allows the network administrator to block traffic of one specific node
in the network. The application is written in Perl and it provides a simple web
interface. The operation of Nodecutter is presented in a comprehensive way in [48]
starting from producing a REST command with Curl.

5.3 Comparison of security applications in HP SDN App Store

HP is one of the big network device vendors which is seriously investing in SDN
solutions. It is also one of the biggest companies offering commercial SDN solutions
including physical devices, SDN controller and applications. In this section we are
investigating the HP SDN App Store [49] and SDN applications found from there.

Currently there are around 35 applications promoted in the app store which are
divided to different categories according to their use case. Unfortunately, after a
quick exploration in the app store, it is obvious that the most of the applications
seem to be more like a presentation of proposed application than a real working
solution under continuous development. Also the documentations of the applications
were quite compact in most cases.

The most interesting and finished SDN applications found in the app store and de-
signed to improve network security by implementing a security function or providing

5.3. Comparison of security applications in HP SDN App Store 34

a better network management are listed in Table 5.2. When selecting apps for fur-
ther examination, we observed the purpose of an app, the level of the documentation
and the vitality of the application.

Table 5.2 Security-minded applications in HP SDN App Store

Application Category
BlueCat DNS Director Security
HPE Network Protector Security
HPE Network Visualizer Orchestration and Visualization

The products developed by HP Enterprise are clearly the most production ready
solutions in the whole store. The BlueCat DNS Director is designed to work with
other security solutions from BlueCat. There are also a couple of little community
developed applications in the store which are implementing for example a network
monitoring function for one specific network path. However, we did not select them
for further examination mostly because the security relevance of them is so minor.

5.3.1 BlueCat DNS Director

BlueCat DNS Director [50] is an SDN application which is trying to enhance security
by controlling DNS queries. The application is intercepting DNS queries which are
targeted outside the corporate DNS server and the intercepted queries are redirected
to BlueCat DNS server which will apply needed security policies. After that the DNS
response is restructured so that it seems to come from the originally targeted DNS
server. The structuring and redirection is done by SDN flow rules and the client
cannot detect the interception.

That application allows the network administrator to take a control of all DNS traf-
fic in a company network. According to the developer of the application, this is
enhancing network security significantly specially in cases where company is accept-
ing new device policies like bring your own device and the administrators cannot
manage all the devices connected to the company network. That allows users to use
any reachable public DNS server and for example DNS tunneling which is a security
risk.

We deployed the application to HP VAN SDN controller and it seems to do what
it proposes. It is configuring needed flow rules to the OpenFlow switches when

5.3. Comparison of security applications in HP SDN App Store 35

a computer connected to SDN network is sending a DNS request to a destination
which is not classified as a trusted DNS server or the company’s own DNS server.
BlueCat DNS Director is designed to work together with BlueCat DNS server and
BlueCat Threat Protection solution which is doing the actual policy processing to
DNS queries. Because we don’t have these services available, the experiment of the
whole solution is not possible during this research.

5.3.2 HPE Network Protector

The HPE Network Protector is an SDN solution provided by HP Enterprise which is
proposing to implement multiple automated security functions to SDN networks. It
is an internal SDN application and it is installed directly into the HP VAN controller.
The HPE Network Protector has following four main features:

• simple security for bring your own device (BYOD)

• enables automated network-posture assessment

• provides real-time threat detection across enterprise campus networks

• proactive IT management of threats.

The network protector application is designed to be used in all kind of networks
from cloud to campus. It promotes to increase the visibility of threats specially in
environments where bring your own device policy is allowed. It also allows priori-
tizing specific DNS traffic which is providing better availability to business critical
applications while it is decreasing the priority of non-critical DNS traffic. The real-
time threat detection is based on threat characterization using cloud based data base
of malicious applications.The proactive IP management is performed with dynamic
flow-based access control lists. [51]

The Network Protector is trying to push security to L2 access switches without
additional security hardware when it is possible to block malicious traffic as early as
it is possible. The application is operating as a reactive security application meaning
that flow rules are created when there is active traffic arriving to a controlled network
element. That needs the SDN application to be implemented as near to the devices
as possible to minimize latency. The Network Protector is possible to scale to
manage up to 2000 OpenFlow devices or clients. [51]

5.4. Network operating systems 36

5.3.3 HPE Network Visualizer

The HP Network Visualizer is also an SDN application developed by HP Enterprise.
Where as the Network Protector is implementing network functions to SDN network,
the Network Visualizer is focusing to network monitoring problems. It is providing
dynamic traffic capture and real-time monitoring allowing better network diagnosis.
The main features of the Network Visualizer are:

• real-time visibility and diagnosis

• low cost, simple and automated troubleshooting

• fast transition from incident to fix and

• enhanced security.

HP claims that the Network Visualizer helps network troubleshooting, reduces the
operational expenses and provides better network security. It is able to monitor
multiple switches simultaneously using the leverage of SDN while in traditional
network the monitoring of single switch has to be done individually. The typical use
case for the Network Visualizer is in an office network when a network administrator
starts to solve for example a connection problem. The Network Visualizer can be
integrated with Active Directory, and the administrator can analyze the network
traffic for example with the user name of the user who made the support ticket. [52]

5.4 Network operating systems

In the open source SDN community, there has been a tendency to develop more
comprehensive solutions for managing the OpenFlow network instead of the SDN
controller. That is probably because many of the first open source SDN controllers
have been destined more or less for research and development purposes while there
are also many production quality commercial controllers and SDN solutions avail-
able.

The Open Network Operating System (ONOS) [11] is one of the most exciting new
solutions in the SDN ecosystem. It is an open source project lead by The Open
Networking Lab and supported by multiple commercial organizations. The ONOS

5.4. Network operating systems 37

is a software-defined networking operating system for service providers and it aims
to provide high availability, high performance and scalability. ONOS is a distributed
system, which provides abstractions to the northbound and the southbound inter-
faces, allowing to manage network in a high abstraction level.

The main concept in ONOS is to manage the communication between hosts by
installing intents instead of low level forwarding rules. The high-level intents are
compiled to the low-level paths between hosts which are then programmed to the
switches. The ONOS is monitoring the status of the forwarding elements in the
network in a real time. When ONOS detects that the link on the path is broken,
it immediately calculates the another path for the traffic and configures network
devices according that new route. An example of the intent configured between two
hosts is shown in Figure 5.3. [53]

Figure 5.3 Topology view of ONOS network operating system.

We did some straightforward experiments with ONOS and the network build by
Mininet. The ONOS seems to work as intended and it calculates the patch between
hosts rapidly. The communication intents between hosts are working as promised

5.4. Network operating systems 38

and when the link on the way of the current path goes down, ONOS immediately
programs another path for the traffic. Even though ONOS is not presented as a
SDN controller, the basic functionality of it seems to be quite identical to existing
SDN controllers. All in all, the ONOS is a very good competitor for the current
open source controllers like OpenDaylight.

39

6. DISCUSSION

In this thesis we have examined the SDN solutions and applications that are aimed
to improve network security directly or by means of better network management and
administration. We have also investigated the former research carried out in this
topic and considered the current maturity of the SDN technology. In this chapter,
we are discussing of the results of this thesis and the current status of the SDN
technology.

6.1 Security enhancement with software-defined networking

As we have shown in Chapter 4, a lot research has been done around the SDN
concept. Research community has developed frameworks, applications and solutions
which are aimed to address different kind of security threats in computer networks.
Nevertheless, many of the solutions are still more like a concept or a proposal than
a concrete and finished solution and it is clear that the SDN concept needs more
research during the following years.

The network management is another aspect which could be improved using SDN
based network architecture. According to the research, centralized management
and a better view of the network also improves the security of the network which
is obvious. The management aspect is relevant specially in the big and complex
networks. Also the highly dynamic and multitenant cloud environments are a good
place to consider the SDN architecture.

When the management of the network needs less effort, the operational expenses
are lower also. That allows a company to invest more to the network security than
it has invested before.

6.2. Challenges in software-defined networking 40

6.2 Challenges in software-defined networking

Even though the SDN concept brings a lot of possibilities to improving the security of
the network, it also brings some security issues that we have to consider. Because the
SDN network usually relies heavily on the centralized management of the network,
the management network between the controller and network forwarding devices is
a security risk that needs attention. The traffic in the management network can be
encrypted using TLS but it is still vulnerable for malicious actions. One possible
threat against the management network is a denial of service attack and that is
considered also in former research.

Another security issue in SDN network is the SDN controller. The controller is
managing the whole network and it makes the forwarding decisions for the packets
which do not mach to any of the existing flow rules in the switch. If it is possible
and the network is critical, the high availability on the controller layer should be
considered. For example the HP VAN SDN controller allows team configuration
where multiple separate controllers are operating in the same team and one of them
is the team manager. That increases the fault tolerance on the controller layer.

Because the network functions can be implemented with network applications in
the SDN concept, there is yet another layer of security threats present. Specially
when we are using a third party applications, we have to ensure that the applica-
tions are secure. The application security is present during the whole life of the
network and possible security vulnerabilities need regular inspection and update of
the applications.

6.3 Current state of the SDN concept

One of the targets of the thesis was to clarify the maturity of the SDN technology
and consider if it is high enough to take the SDN concept into the production
environment.

We have also been exploring the HP SDN App Store in this thesis. The purpose
was to examine the SDN applications provided in the store and try to determine if
these are finished enough to being implemented into the real production network.
The result was that only a few of the applications are on the level that they provide
something really remarkable to the SDN networks.

6.3. Current state of the SDN concept 41

The status of the SDN concept itself, including the leading management protocol
OpenFlow, is good enough to start utilizing the SDN network and it is a fact that
the SDN is the de facto technology in future networks. Currently migrating from the
conventional network architecture to the SDN concept needs sufficiently resources
from the company to develop also the management layer functionality. Only in that
way the company can really benefit from the SDN concept.

42

7. CONCLUSIONS

Software-defined networking is a new concept to manage and configure computer
networks. The main idea of the SDN concept is to separate the controlling layer
of the computer network from the network switches and centralize it to the SDN
controller. That concept differs from the traditional networks where the network
controlling and forwarding decisions are handled in the network switches where also
the forwarding function is performed. The centralized management brings a new way
to control network functionality with one single application instead of configuring
tens or hundreds of devices independently.

In this thesis the SDN concept is considered specially from the perspective of network
security and the security improvements are explored. There are a lot of research
done in this topic and also a lot of the concepts, frameworks or solutions are pro-
posed for an enhanced security but still more research needs to be done. Also the
network vendors should invest more into the SDN development, so there will be
more comprehensive solutions available in the market.

We also explored the SDN applications provided in HP SDN App Store and tried to
find out if there are some interesting and promising SDN solutions available. Unfor-
tunately, the market of the SDN applications is still quite small and the deployment
of the SDN technology needs software development resources from the company.

The SDN will be the leading networking technology in the future but it still needs
a little time to evolve. Currently the SDN controllers and the OpenFlow protocol
seem to be quite ready but the development of the SDN applications and solutions
needs research and development contribution.

43

BIBLIOGRAPHY

[1] G. Lee, Cloud Networking: Understanding Cloud-based Data Center Networks.
Elsevier Science and Technology Books, Inc, 2014.

[2] Software-defined networking (sdn) definition. [Online]. [Accessed 16.4.2016].
Available: https://www.opennetworking.org/sdn-resources/sdn-definition.

[3] J. Kurose and K. Ross, Computer Networking: A Top-down Approach, ser.
Always learning. Pearson, 2013.

[4] The POX controller. [Online]. [Accessed 16.4.2016]. Available: https://github.
com/noxrepo/pox.

[5] Hewlett packard enterprise: Software defined networking. [Online]. [Accessed
16.4.2016]. Available: http://hp.com/networking/sdn.

[6] HP VAN SDN controller. [Online]. [Accessed 16.4.2016]. Available: http://
www8.hp.com/us/en/products/oas/product-detail.html?oid=5443917.

[7] Floodlight. [Online]. [Accessed 16.4.2016]. Available: http://www.
projectfloodlight.org/.

[8] Trema. [Online]. [Accessed 16.4.2016]. Available: https://trema.github.io/
trema/.

[9] OpenDaylight. [Online]. [Accessed 16.4.2016]. Available: https://www.
opendaylight.org/.

[10] FlowVisor. [Online]. [Accessed 16.4.2016]. Available: https://github.com/
opennetworkinglab/flowvisor/wiki.

[11] Open network operating system. [Online]. [Accessed 16.4.2016]. Available: http:
//onosproject.org/.

[12] OpenDaylight lithium overview. [Online]. [Accessed 16.4.2016]. Available: https:
//www.opendaylight.org/lithium.

[13] OpenStack. [Online]. [Accessed 16.4.2016]. Available: https://www.openstack.
org/software/.

https://www.opennetworking.org/sdn-resources/sdn-definition
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
http://hp.com/networking/sdn
http://www8.hp.com/us/en/products/oas/product-detail.html?oid=5443917
http://www8.hp.com/us/en/products/oas/product-detail.html?oid=5443917
http://www.projectfloodlight.org/
http://www.projectfloodlight.org/
https://trema.github.io/trema/
https://trema.github.io/trema/
https://www.opendaylight.org/
https://www.opendaylight.org/
https://github.com/opennetworkinglab/flowvisor/wiki
https://github.com/opennetworkinglab/flowvisor/wiki
http://onosproject.org/
http://onosproject.org/
https://www.opendaylight.org/lithium
https://www.opendaylight.org/lithium
https://www.openstack.org/software/
https://www.openstack.org/software/

BIBLIOGRAPHY 44

[14] E. Haleplidis, J. H. Salim, J. M. Halpern, S. Hares, K. Pentikousis, K. Ogawa,
W. Wang, S. Denazis, and O. Koufopavlou, “Network programmability with
forces,” IEEE Communications Surveys Tutorials, vol. 17, no. 3, pp. 1423–1440,
thirdquarter 2015.

[15] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a model-
driven sdn controller architecture,” inWorld of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014 IEEE 15th International Symposium on a, June
2014, pp. 1–6.

[16] OpenDaylight summit: LISP for SDN and NFV. [Online]. [Accessed 16.4.2016].
Available: http://events.linuxfoundation.org/sites/events/files/slides/LISP_
ODLSummit_2014.pdf.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69–74, Mar. 2008. Available: http://doi.acm.org/10.1145/1355734.1355746

[18] Open networking foundation. [Online]. [Accessed 16.4.2016]. Available: https:
//www.opennetworking.org/.

[19] P. Goransson and C. Black, Software Defined Networks: A Comprehensive Ap-
proach. Elsevier Science and Technology Books, Inc, 2014.

[20] OpenFlow Switch Specification Version 1.5.1, Open Networking Foundation,
March 2015, [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/openflow-
switch-v1.5.1.pdf.

[21] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007. Available:
http://doi.acm.org/10.1145/1282427.1282382

[22] Open vSwitch. [Online]. [Accessed 16.4.2016]. Available: http://openvswitch.
org/.

[23] C. Pfleeger, S. Pfleeger, and J. Margulies, Security in Computing. Pearson
Education, 2015.

http://events.linuxfoundation.org/sites/events/files/slides/LISP_ODLSummit_2014.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LISP_ODLSummit_2014.pdf
http://doi.acm.org/10.1145/1355734.1355746
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://doi.acm.org/10.1145/1282427.1282382
http://openvswitch.org/
http://openvswitch.org/

BIBLIOGRAPHY 45

[24] Whitepaper: Layered Security: Why It Works, SANS Institute, 2013, [Online].
Available: https://www.sans.org/reading-room/whitepapers/analyst/layered-
security-works-34805.

[25] J. François, L. Dolberg, O. Festor, and T. Engel, “Network security through
software defined networking: A survey,” in Proceedings of the Conference
on Principles, Systems and Applications of IP Telecommunications, ser.
IPTComm ’14. New York, NY, USA: ACM, 2014, pp. 6:1–6:8. Available:
http://doi.acm.org/10.1145/2670386.2670390

[26] I. Hafeez, A. Y. Ding, L. Suomalainen, S. Hätönen, V. Niemi, and S. Tarkoma,
“Demo: Cloud-based security as a service for smart iot environments,” in
Proceedings of the 2015 Workshop on Wireless of the Students, by the Students,
& for the Students, ser. S3 ’15. New York, NY, USA: ACM, 2015, pp. 20–20.
Available: http://doi.acm.org/10.1145/2801694.2802140

[27] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost flow monitoring
scheme in software defined networks,” in Global Communications Conference
(GLOBECOM), 2014 IEEE, Dec 2014, pp. 1956–1961.

[28] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effective and scalable
anomaly detection and mitigation mechanism on SDN environments,”
Computer Networks, vol. 62, pp. 122 – 136, 2014. Available: http:
//www.sciencedirect.com/science/article/pii/S1389128613004003

[29] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using network
monitoring and sdn control functions,” in Network Operations and Manage-
ment Symposium (NOMS), 2014 IEEE, May 2014, pp. 1–9.

[30] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson,
“Fresco: Modular composable security services for software-defined networks.”
in Network and Distributed System Security Symposium, 2013.

[31] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,” in
Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, Nov 2013, pp.
1–7.

https://www.sans.org/reading-room/whitepapers/analyst/layered-security-works-34805
https://www.sans.org/reading-room/whitepapers/analyst/layered-security-works-34805
http://doi.acm.org/10.1145/2670386.2670390
http://doi.acm.org/10.1145/2801694.2802140
http://www.sciencedirect.com/science/article/pii/S1389128613004003
http://www.sciencedirect.com/science/article/pii/S1389128613004003

BIBLIOGRAPHY 46

[32] A. Y. Ding, J. Crowcroft, S. Tarkoma, and H. Flinck, “Software
defined networking for security enhancement in wireless mobile networks,”
Computer Networks, vol. 66, pp. 94 – 101, 2014, leonard Kleinrock
Tribute Issue: A Collection of Papers by his Students. Available:
http://www.sciencedirect.com/science/article/pii/S1389128614001133

[33] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation:
Transparent moving target defense using software defined networking,” in
Proceedings of the First Workshop on Hot Topics in Software Defined Networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 127–132. Available:
http://doi.acm.org/10.1145/2342441.2342467

[34] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack detection
using nox/openflow,” in Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, Oct 2010, pp. 408–415.

[35] H. Kim and N. Feamster, “Improving network management with software de-
fined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119,
February 2013.

[36] R. L. Smeliansky, “Sdn for network security,” in Science and Technology Confer-
ence (Modern Networking Technologies) (MoNeTeC), 2014 International, Oct
2014, pp. 1–5.

[37] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 79–84. Available:
http://doi.acm.org/10.1145/2342441.2342458

[38] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar, “Flowvisor: A network virtualization layer,” OpenFlow Switch
Consortium, Tech. Rep, pp. 1–13, 2009, [Online]. Available: http://sb.tmit.
bme.hu/mediawiki/images/c/c0/FlowVisor.pdf.

[39] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and
S. Banerjee, “Devoflow: Cost-effective flow management for high performance
enterprise networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, ser. Hotnets-IX. New York, NY, USA: ACM, 2010,
pp. 1:1–1:6. Available: http://doi.acm.org/10.1145/1868447.1868448

http://www.sciencedirect.com/science/article/pii/S1389128614001133
http://doi.acm.org/10.1145/2342441.2342467
http://doi.acm.org/10.1145/2342441.2342458
http://sb.tmit.bme.hu/mediawiki/images/c/c0/FlowVisor.pdf
http://sb.tmit.bme.hu/mediawiki/images/c/c0/FlowVisor.pdf
http://doi.acm.org/10.1145/1868447.1868448

BIBLIOGRAPHY 47

[40] S. Huang and J. Griffioen, “Network hypervisors: Managing the emerging sdn
chaos,” in Computer Communications and Networks (ICCCN), 2013 22nd In-
ternational Conference on, July 2013, pp. 1–7.

[41] Principles and Practices for Securing Software-Defined Networks,
Open Networking Foundation, January 2015, [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/
technical-reports/Principles_and_Practices_for_Securing_Software-
Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf.

[42] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 55–60. Available:
http://doi.acm.org/10.1145/2491185.2491199

[43] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn net-
works,” in Integrated Network Management (IM), 2015 IFIP/IEEE Interna-
tional Symposium on, May 2015, pp. 1322–1326.

[44] C. Lee and S. Shin, “Shield: An automated framework for static analysis of
sdn applications,” in Proceedings of the 2016 ACM International Workshop
on Security in Software Defined Networks & Network Function Virtualization,
ser. SDN-NFV Security ’16. New York, NY, USA: ACM, 2016, pp. 29–34.
Available: http://doi.acm.org/10.1145/2876019.2876026

[45] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation
challenges for software-defined networks,” IEEE Communications Magazine,
vol. 51, no. 7, pp. 36–43, July 2013.

[46] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an openflow architecture,” in Tele-
traffic Congress (ITC), 2011 23rd International, Sept 2011, pp. 1–7.

[47] Mininet. [Online]. [Accessed 16.4.2016]. Available: http://mininet.org/.

[48] Tutorial for creating first external SDN application for HP SDN VAN con-
troller. [Online]. [Accessed 16.4.2016]. Available: http://networkgeekstuff.
com/networking/tutorial-for-creating-first-external-sdn-application-for-hp-

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
http://doi.acm.org/10.1145/2491185.2491199
http://doi.acm.org/10.1145/2876019.2876026
http://mininet.org/
http://networkgeekstuff.com/networking/tutorial-for-creating-first-external-sdn-application-for-hp-sdn-van-controller-part-33-node-cutter-sdn-application-in-perl-with-web-interface/
http://networkgeekstuff.com/networking/tutorial-for-creating-first-external-sdn-application-for-hp-sdn-van-controller-part-33-node-cutter-sdn-application-in-perl-with-web-interface/

Bibliography 48

sdn-van-controller-part-33-node-cutter-sdn-application-in-perl-with-web-
interface/.

[49] Hewlett packard enterprise: SDN dev center. [Online]. [Accessed 16.4.2016].
Available: http://www8.hp.com/us/en/networking/sdn/devcenter-index.html.

[50] BlueCat DNS Director, SDN App Store, HPE. [Online]. [Accessed 16.4.2016].
Available: https://saas.hpe.com/marketplace/sdn/bluecat-dns-director-beta.

[51] Technical white paper: HP Network Protector SDN Application, Hewlett
Packard Enterprise, 2015, [Online]. Available: http://h20195.www2.hp.com/
V2/GetDocument.aspx?docname=4AA5-7852ENW&cc=us&lc=en.

[52] Technical white paper: Being innovative with HP SDN Network Visualizer ap-
plication, Hewlett Packard Enterprise, 2016, [Online]. Available: http://www8.
hp.com/h20195/v2/GetPDF.aspx/4AA6-3816ENW.pdf.

[53] White paper: Introducing ONOS - a SDN network operating system for Ser-
vice Providers, ON.LAB, 2014, [Online]. Available: http://onosproject.org/wp-
content/uploads/2014/11/Whitepaper-ONOS-final.pdf.

http://networkgeekstuff.com/networking/tutorial-for-creating-first-external-sdn-application-for-hp-sdn-van-controller-part-33-node-cutter-sdn-application-in-perl-with-web-interface/
http://networkgeekstuff.com/networking/tutorial-for-creating-first-external-sdn-application-for-hp-sdn-van-controller-part-33-node-cutter-sdn-application-in-perl-with-web-interface/
http://networkgeekstuff.com/networking/tutorial-for-creating-first-external-sdn-application-for-hp-sdn-van-controller-part-33-node-cutter-sdn-application-in-perl-with-web-interface/
http://www8.hp.com/us/en/networking/sdn/devcenter-index.html
https://saas.hpe.com/marketplace/sdn/bluecat-dns-director-beta
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-7852ENW&cc=us&lc=en
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-7852ENW&cc=us&lc=en
http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA6-3816ENW.pdf
http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA6-3816ENW.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf

49

APPENDIX A. EXAMPLE OF USING RESTAPI

FOR FLOW MODIFICATION
1 #!/usr/bin/env python
2 # -*- coding: utf -8 -*-
3 import json
4 import hmac
5 import json
6 import requests
7 login ={"login":{"user":"sdn","password":"skyline","domain":"sdn"}}
8 host = "https ://130.230.115.203:8443"
9 dpid1="00:00:00:00:00:00:00:01"

10 dpid2="00:00:00:00:00:00:00:02"
11 dpid3="00:00:00:00:00:00:00:03"
12 dpid4="00:00:00:00:00:00:00:04"
13
14 def qheader(token):
15 return {’Content -Type’: ’application/json’, ’X-Auth -Token’ : token}
16
17 def get_token(logindata):
18 headers = {’Content -Type’: ’application/json’}
19 req = requests.post(host+’/sdn/v2.0/ auth’, headers=headers , data=json.dumps(

logindata), verify=’sdncertti ’)
20 # make an exectpion if not 200 ok
21 req.raise_for_status ()
22 # it loads the json from the string
23 authtoken = json.loads(req.text)
24 token = authtoken["record"]["token"]
25 return token
26
27 def addflow(flow ,dp,token):
28 req = requests.post(host+’/sdn/v2.0/of/datapaths/’+dp+’/flows’, headers=qheader

(token), data=flow , verify=’sdncertti ’)
29 req.raise_for_status ()
30 return req
31
32 flow31 ="""{
33 "flow": {
34 "cookie ": "0 x2031987",
35 "table_id ": 0,
36 "priority ": 59000 ,
37 "idle_timeout ": 30,
38 "hard_timeout ": 30,
39 "match": [{
40 "in_port ": 4
41 }, {
42 "ipv4_src ": "10.0.1.1"
43 }, {
44 "ipv4_dst ": "10.0.2.2"
45 }, {
46 "eth_type ": "ipv4"
47 }],
48 "instructions ": [{
49 "apply_actions ": [{
50 "output ": 1
51 }]
52 }]
53 }
54 }"""
55
56 flow32 ="""{
57 "flow": {
58 "cookie ": "0 x2031987",
59 "table_id ": 0,
60 "priority ": 59000 ,
61 "idle_timeout ": 30,
62 "hard_timeout ": 30,
63 "match": [{
64 "in_port ": 1
65 }, {
66 "ipv4_src ": "10.0.2.2"
67 }, {

APPENDIX A. Example of using RESTapi for flow modification 50

68 "ipv4_dst ": "10.0.1.1"
69 }, {
70 "eth_type ": "ipv4"
71 }],
72 "instructions ": [{
73 "apply_actions ": [{
74 "output ": 4
75 }]
76 }]
77 }
78 }"""
79
80 flow11 ="""{
81 "flow": {
82 "cookie ": "0 x2031987",
83 "table_id ": 0,
84 "priority ": 59000 ,
85 "idle_timeout ": 30,
86 "hard_timeout ": 30,
87 "match": [{
88 "in_port ": 2
89 }, {
90 "ipv4_src ": "10.0.1.1"
91 }, {
92 "ipv4_dst ": "10.0.2.2"
93 }, {
94 "eth_type ": "ipv4"
95 }],
96 "instructions ": [{
97 "apply_actions ": [{
98 "output ": 3
99 }]

100 }]
101 }
102 }"""
103
104 flow12 ="""{
105 "flow": {
106 "cookie ": "0 x2031987",
107 "table_id ": 0,
108 "priority ": 59000 ,
109 "idle_timeout ": 30,
110 "hard_timeout ": 30,
111 "match": [{
112 "in_port ": 3
113 }, {
114 "ipv4_src ": "10.0.2.2"
115 }, {
116 "ipv4_dst ": "10.0.1.1"
117 }, {
118 "eth_type ": "ipv4"
119 }],
120 "instructions ": [{
121 "apply_actions ": [{
122 "output ": 2
123 }]
124 }]
125 }
126 }"""
127
128 flow41 ="""{
129 "flow": {
130 "cookie ": "0 x2031987",
131 "table_id ": 0,
132 "priority ": 59000 ,
133 "idle_timeout ": 30,
134 "hard_timeout ": 30,
135 "match": [{
136 "in_port ": 1
137 }, {
138 "ipv4_src ": "10.0.1.1"
139 }, {
140 "ipv4_dst ": "10.0.2.2"
141 }, {
142 "eth_type ": "ipv4"
143 }],

APPENDIX A. Example of using RESTapi for flow modification 51

144 "instructions ": [{
145 "apply_actions ": [{
146 "output ": 4
147 }]
148 }]
149 }
150 }"""
151
152 flow42 ="""{
153 "flow": {
154 "cookie ": "0 x2031987",
155 "table_id ": 0,
156 "priority ": 59000 ,
157 "idle_timeout ": 30,
158 "hard_timeout ": 30,
159 "match": [{
160 "in_port ": 4
161 }, {
162 "ipv4_src ": "10.0.2.2"
163 }, {
164 "ipv4_dst ": "10.0.1.1"
165 }, {
166 "eth_type ": "ipv4"
167 }],
168 "instructions ": [{
169 "apply_actions ": [{
170 "output ": 1
171 }]
172 }]
173 }
174 }"""
175
176 token = get_token(login)
177
178 addflow(flow31 ,dpid3 ,token)
179 addflow(flow32 ,dpid3 ,token)
180 addflow(flow11 ,dpid1 ,token)
181 addflow(flow12 ,dpid1 ,token)
182 addflow(flow41 ,dpid4 ,token)
183 addflow(flow42 ,dpid4 ,token)

	Introduction
	Software-defined networking
	Concept and architecture
	Controller
	HP VAN SDN controller
	Open source SDN controllers and frameworks

	Northbound API and application layer
	Southbound API and infrastructure layer
	OpenFlow protocol
	SDN capable networking device

	Network function virtualization

	Network security: Principles, techniques and challenges
	Principles of information security
	Network security
	Security threats
	Layered security
	Security policies

	Security techniques
	Firewall
	Intrusion detection system
	Network management and monitoring

	Challenges

	SDN and network security
	Security improvement with SDN
	Network management benefits
	Security problems, drawbacks and challenges of SDN

	SDN security applications and solutions
	SDN test environment
	Developing SDN applications
	Example of using RESTapi
	Nodecutter SDN application

	Comparison of security applications in HP SDN App Store
	BlueCat DNS Director
	HPE Network Protector
	HPE Network Visualizer

	Network operating systems

	Discussion
	Security enhancement with software-defined networking
	Challenges in software-defined networking
	Current state of the SDN concept

	Conclusions
	Bibliography
	APPENDIX A. Example of using RESTapi for flow modification

