
MATIAS LEHTINEN
VERIFICATION OF A MODULAR GRAPH BASED IMAGE
PROCESSING SYSTEM

Master of Science thesis

Examiner: Prof. Karri Palovuori
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 9th December 2015

i

ABSTRACT

MATIAS LEHTINEN: Verification of a modular graph based image processing
system
Tampere University of Technology
Master of Science thesis, 61 pages, 0 Appendix pages
May 2016
Master’s Degree Programme in Electrical Engineering
Major: Electronics product design
Examiner: Prof. Karri Palovuori
Keywords: Verification, graph, image processing system, heterogeneous

Electronic devices today have become complex. Any non-trivial device consists of
both hardware and software. Tightening time to market and cost requirements put
pressure on the development process of the devices. Software and hardware needs
to be developed concurrently and must be verified in an early phase of product
development.

This thesis introduces a graph based image processing system. Image processing
system is a complex system that usually consists of software, firmware and hardware.
The possibilities and methods of graph verification are investigated in this thesis.
Graphs can be used to handle the complexity of the system by encapsulating the
functionality of the underlying implementations. Graphs provide modularity and
configurability that can be utilized in the development and verification of the system.
Reuse of software is increased due to the consistent and defined nature of graphs
and their vertices. Software development shift left can be enabled by performing
graph vertex verification in isolation by using pre-silicon development platforms.

In this thesis, image processing system graphs were also used in a real life product
development project. Graph verification was initiated early in the product
development. Shift left was exercised by utilizing the graph verification in several
pre-silicon platforms. Functional, performance and stability testing was
implemented. Both complete graphs and their vertices were verified in isolation.
Graph verification provided many benefits to the product development.
Implementations could be tested in several different environments in isolation
using only a light test framework. Issues could be found and fixed early.
Performance bottlenecks could be pinpointed and acted upon.

With the foundations laid in this project, it would be possible in the future to take
more advantage of graphs. More advanced automated image quality testing would
allow efficient verification. Finer granularity graphs would allow more configurability
and more focused testing. Shift left could be further increased by adapting the
development of the algorithms to use graphs. This would lower the gap between
algorithms and actual vertex implementations and also introduce the available test
infrastructure to algorithm development.

ii

TIIVISTELMÄ

MATIAS LEHTINEN: Modulaarisen graafipohjaisen kuvankäsittelyjärjestelmän
verifiointi
Tampereen teknillinen yliopisto
Diplomityö, 61 sivua, 0 liitesivua
Toukokuu 2016
Sähkötekniikan koulutusohjelma
Pääaine: Elektroniikan tuotesuunnittelu
Tarkastajat: Prof. Karri Palovuori
Avainsanat: Verifiointi, graafi, kuvankäsittelyjärjestelmä, heterogeeninen

Nykyaikaiset elektroniset laitteet ovat monimutkaistuneet. Mikä tahansa
arkipäiväinenkin laite koostuu sekä laitteistosta että ohjelmistosta. Samalla
vaatimukset kustannuksista ja ajasta alkukehityksestä markkinoille siirtymiseen
ovat kiristäneet kehitysprosessia. Ohjelmisto ja laitteisto on kehitettävä rinnakkain,
ja nämä on kyettävä verifioimaan laitekehityksen varhaisessa vaiheessa.

Tämä diplomityö esittelee graafipohjaisen kuvankäsittelyjärjestelmän, joka koostuu
tyypillisesti ohjelmistosta, sulautetusta ohjelmistosta ja laitteistosta. Työssä
tutkitaan graafien verifioinnin mahdollisuuksia ja menetelmiä. Graafien avulla
järjestelmän monimutkaisuutta hallitaan eristämällä ja piilottamalla itse toteutus.
Graafien modulaarinen lähestymistapa tuo etuja järjestelmän kehittämiseen ja
verifioimiseen. Ohjelmiston uudelleenkäyttömahdollisuudet kasvavat graafien
määritellystä ja johdonmukaisesta luonteesta johtuen. Ohjelmistokehityksen
aikaistaminen on mahdollista verifioimalla graafien solmuja eristyksissä käyttäen
kehitysympäristöjä ilman valmista laitteistoa.

Tässä työssä kuvankäsittelyjärjestelmägraafeja käytettiin myös todellisessa
tuotekehityshankkeessa. Graafien verifiointi aloitettiin tuotekehityksen varhaisessa
vaiheessa. Ohjelmistokehityksen aikaistaminen oli mahdollista hyödyntämällä
graafien verifioimista useissa kehitysympäristöissä. Toiminnallisuus-, suorituskyky-
ja vakaustestaus toteutettiin. Sekä kokonaisia graafeja että yksittäisiä solmuja
verifioitiin eristyksissä. Graafien verifiointi mahdollisti useita etuja tuote-
kehityksessä. Toteutukset oli mahdollista testata useissa eri ympäristöissä käyttäen
hyödyksi kevyttä testiohjelmistoa. Ongelmat löydettin ja korjattiin varhaisessa
vaiheessa. Suorituskykypullonkaulat oli mahdollista havaita ja purkaa.

Tämän työn pohjalta on tulevaisuudessa mahdollista hyödyntää graafeja yhä
paremmin. Kehittyneemmät automatisoidut kuvanlaatutestit mahdollistaisivat
tehokkaan verifionnin. Hienojakoisemmat graafit mahdollistaisivat joustavamman
konfiguroinnin ja kohdistetumman testauksen. Ohjelmistokehityksen aikaistamista
olisi mahdollista lisätä entisestään ottamalla graafit käyttöön myös algoritmi-
kehityksessä. Tämä pienentäisi kuilua algoritmien ja solmutoteutusten välillä
tuoden samalla graafitestauksen hyödyt algoritmikehitykseen.

iii

PREFACE

This thesis has given me an opportunity to research the area that I have been
working on, and writing the thesis has been a great experience. I have been able to
broaden my knowledge on the subject, and I have learned much new that can be
applied in the future.

I would like to thank my colleagues for all the support that I have received during the
writing of my thesis. I would especially like to thank Teemu Tuominen and Janne
Kotka for instructing me and supporting me to keep the thesis writing ongoing.

I would also like to thank my family and my friends for their support. Finally, I would
like to thank my beloved fiancée Enni for supporting, loving and understanding.

Tampere, 17.4.2016

Matias Lehtinen

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Image capture pipeline . 4

2.1 Image quality . 5

2.2 Image sensors . 7

2.3 3A . 9

2.3.1 Auto exposure . 9

2.3.2 Auto focus . 10

2.3.3 Auto white-balance . 11

2.4 Preprocessing . 11

2.5 Demosaicking . 12

2.6 Postprocessing . 14

2.7 Format conversion . 15

2.7.1 YUV . 15

2.7.2 Compression . 16

3. Graphs . 18

3.1 Basic graph theory . 18

3.2 Directed graphs . 20

3.3 Data flow . 21

3.4 Software frameworks . 23

3.5 Graph implementation . 25

3.6 Graphs in an image processing system 29

4. Verification of image processing graphs . 33

4.1 Utilizing the modularity of graphs . 34

4.2 Graph verification . 36

4.2.1 Functionality . 37

4.2.2 Performance . 39

4.2.3 Stability . 40

v

4.3 Automating the test execution . 41

5. Usage in a product development project 42

5.1 Test framework . 43

5.2 Test implementation . 43

5.2.1 Functionality . 43

5.2.2 Performance . 45

5.2.3 Stability . 45

5.3 Test environments . 46

5.3.1 Software stub . 46

5.3.2 Software API emulation . 47

5.3.3 Hybrid system emulation . 48

5.3.4 Host PC and FPGA . 49

5.3.5 Actual device . 50

6. Future possibilities . 52

7. Conclusions . 54

Bibliography . 56

vi

LIST OF FIGURES

2.1 An example camera pipeline . 4

2.2 CCD and CMOS image sensors [12, p. 6] 7

2.3 Bayer RGGB color filter array . 8

2.4 Common demosaicking artifacts [42, p. 14] 13

2.5 Different YUV subsampling ratios. The above pixel array describes
the luma samples and the below pixel array describes the chroma
sample pairs. 16

3.1 Example applications of graphs . 18

3.2 Example graph diagram . 19

3.3 Example subgraph diagrams of graph in figure 3.2 20

3.4 Example directed graph diagram . 21

3.5 Example directed acyclic graph diagram 22

3.6 Flexibility in relation to efficiency in different technologies 25

3.7 Traditional hardware and software development schedule 26

3.8 Shift left software development schedule 27

3.9 Example software stacks without and with graphs 28

3.10 Image processing data flow graph . 29

4.1 Traditional testing of a processing system 35

4.2 Example testing of subgraphs in isolation 35

4.3 Usage of different development platforms in testing 36

4.4 Testing the graph bit exactness against reference data 37

vii

5.1 Graph functional verification. Implemented graph vertices are verified
using IQM (Image Quality Metric) against a reference. 44

5.2 Software stubs in early development 46

5.3 Software API emulation using an earlier product. Firmware performs
the emulation by mapping old hardware to mimic future hardware
behavior. 47

5.4 Hybrid system emulation using both software and RTL to emulate
the behavior of the hardware. 49

5.5 Hybrid FPGA emulation. Graph framework and test related
vertices are running on a generic Linux PC. FPGA is used to
emulate hardware that the graph vertices are implemented for. 50

viii

LIST OF ABBREVIATIONS

3A 3 Algorithms
ADC Analog-To-Digital Converter
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
BSD Berkeley Software Distribution
CCD Charge Coupled Device
CFA Color Filter Array
CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
DAG Directed Acyclic Graph
DMOS Difference Mean Opinion Score
DSP Digital Signal Processor
FPGA Field-Programmable Gate Array
FPS Frames Per Second
GPU Graphics Processing Unit
HDR High Dynamic Range
IQM Image Quality Metric
MOS Mean Opinion Score
MSE Mean Squared Error
MTBF Mean Time Between Failures
OS Operating System
PSNR Peak Signal-to-Noise Ratio
RTL Register-Transfer Level
SoC System on a Chip
SSIM Structural Similarity Index
V4L2 Video4Linux2
VIF Visual Information Fidelity
VLIW Very Long Instruction Word
VSNR Visual Signal-to-Noise Ratio

1

1. INTRODUCTION

Electronic devices today are becoming more and more complex, including more
functionality and more performance demanding features than ever. However, the
cost to create such devices is not allowed to rise. Rather, the costs need to go down,
while the time to market for products is squeezed into a minimum. Competition,
especially in the lower segment of devices, makes sure of this with more and more
companies emerging and competing in the same technological area.

Software is becoming pervasive in the products we use today. Any non-trivial device
today consists of both hardware and software. There are several reasons for the
popularity of software. Software is flexible, it is in general easy to develop, relatively
easy to reuse and most importantly cheap when compared to pure hardware [28]. In
other words, the easiest way to add features is to use software. However, software
has its disadvantages when compared to hardware. The two most important factors
are performance and energy efficiency [28]. A hardware implementation surpasses
software in these and will be present in devices requiring either of the advantages.

To make things more complicated, software can be run on several platforms. There
may be multiple CPUs (Central Processing Unit), GPUs (Graphics Processing Unit)
or DSPs (Digital Signal Processor) that all are programmed differently. Or the
software may only be some control logic for a fixed function hardware block in a
SoC (System on a Chip), an ASIC (Application Specific Integrated Circuit) or an
FPGA (Field-Programmable Gate Array). [10]

All the different processors and hardware blocks have their advantages and
disadvantages. Depending on the requirements of a certain computation task, the
most suitable compute device is chosen. As the nature of the tasks that need to be
performed vary from one to another, the best results can usually be received by
utilizing multiple compute devices. The combination of different compute devices
is called heterogeneous computing, and several standards are emerging with the
aim of simplifying the usage and unifying the APIs (Application Programming
Interface) [24,30].

1. Introduction 2

In order to succeed in the increasing demands to the cost of the device and the time
to market requirements, while still being capable of handling the complexity of the
devices, several aspects in the development process need to be thought of. Existing
implementations need to be reused as much as possible with the minimum required
changes. Different use cases need to be easily configured from whatever building
blocks are available. Most importantly, components need to be functionally verified
as early as possible.

Traditionally hardware and software has been developed sequentially [53]. Software
development has only been able to commence after the real hardware is available. In
the past, when the software stacks were relatively simple, this may not have been a
problem. However, with today’s complex hardware and software stacks in addition
to the ever more demanding time to market requirements, this process has become
infeasible.

In order to squeeze the total time required to develop a product into the time frame
required, it is necessary to start developing software earlier than traditionally is
done. In this context, shift left means moving development that has traditionally
begun after the actual hardware is available in parallel with the development of the
hardware. This however raises important questions. How to develop program code
for a platform that does not exist yet? How to verify that the hardware is going
to be implemented in a way that the users expect? How are the different blocks
consisting of software, firmware and hardware going to work together in the final
product?

The purpose of this thesis is to investigate the aforementioned problems in the
context of an image processing system for mobile devices. Image processing pipeline
is an example of a highly complex and computationally demanding system and
usually includes software, firmare and hardware. Especially in mobile devices, both
the small physical size of the device and the rather restricted hardware budget create
pressure on the actual image processing. Not only does the image format need to
be converted and compressed, but also multiple correction algorithms need to be
applied in order to provide an image with satisfactory quality [48].

Graphs are introduced as an option to handle the requirements of different use cases
and products. Graphs help to cope with the increasing complexity of both hardware
and software. They provide a generic way to integrate complex processing entities
into the software stack. At the same time graphs allow the required modularity
and flexibility without the burden of increasingly complex software exposed to the
software stack above. The increased modularity allows convenient reuse of software

1. Introduction 3

and hardware building blocks. Moreover, graphs allow development and testing to
begin very early in the development phase continuing all the way until the final
product.

In this thesis, a standard image processing pipeline is first explained. Graphs are
then introduced and their usage in image processing pipelines is explained. The
possibilities and methods of verifying image processing graphs are investigated.
Verification is then used in a real product development project utilizing the
modularity obtained from the graphs, starting from the early phases of
development and continuing all the way until the final product. Finally, several
future improvements and possibilities are considered.

The thesis is organized as follows. Chapter 2 introduces and explains the image
capture pipeline. Chapter 3 provides information about graphs and their usage
in the image capture pipelines. Verification of image processing graphs is then
investigated in chapter 4. Chapter 5 follows a product development project using
image processing graphs. In chapter 6, future improvements are discussed. Finally,
chapter 7 concludes the thesis.

4

2. IMAGE CAPTURE PIPELINE

In digital photography, image processing plays a key role in the process of obtaining
actual human readable images to the screen of a camera. What might seem a simple
process from the point of view of the user, is in fact often a very complex one,
requiring seamless functionality between different hardware and software blocks. [3]

The image capture process begins with capturing light through the lens system
onto a sensor. The light received by the sensor will then be converted into electric
signals and is furthermore passed forward to be processed. A series of analyzing and
processing is performed, until finally a complete image with the required corrections,
resolution and format is displayed on the screen or saved to the memory of the
device. [48] An example image pipeline is shown in figure 2.1.

AF

AE

Pre-
processing

White
Balance

Demosaicking

Post-
processing

Format
conversion

Compression

DisplayStorage

Sensor

Figure 2.1 An example camera pipeline

This example pipeline is only a basic representation of what an image capture
pipeline may look like. The amount of different computations, and the order of
those computations, change from one product to another. There is no standard

2.1. Image quality 5

image capture pipeline, but each pipeline is designed to fit the needs and
constraints of a certain product. However, using some common elements found in
many real image capture pipelines, a basic example pipeline can be created. The
following sections describe the different blocks found in the figure 2.1 in more
detail.

2.1 Image quality

In an ideal case, the captured image that is viewed by the user is an exact
representation of the scene that was photographed. However, in a real world the
image is subject to many different distortions that happen during the various
stages of the image capture pipeline. Image acquisition, processing, transmission
and compressing all add some kind of an error to the data. Many of the steps in
the processing pipeline try to correct these errors aiming to an enhanced image
quality. Because of the limitations in each product, the final outputted image will
always contain some errors. [58]

In order to investigate the quality of a captured image, evaluation is required.
Image quality assessment can be split into two methods: subjective and objective
assessment. In a subjective evaluation [26] the image quality is assessed by
humans, while in an objective evaluation [55] the quality is assessed via metrics
predicting the image quality automatically. Both methods have their strengths and
weaknesses. Depending on the need, either or both methods can be used.

Since most of the images are processed to be eventually viewed by human beings,
subjective assessment produces the most reliable outcome [58]. Traditionally, in a
subjective assessment the overall quality for the images is evaluated by multiple
viewers. Test sequences are presented to the subjects using a specified method and
are then rated for quality [26]. Of these ratings a metric called MOS (Mean Opinion
Score) or DMOS (Difference Mean Opinion Score) can be calculated to determine
the quality of the image [45]. While subjective assessment is reliable, it is slow
and expensive and can be very inconvenient, therefore being not suitable for many
applications.

Objective assessment on the other hand aims to accurately and automatically
measure the different aspects of what human viewers perceive as being good
quality. Different metrics are available to be used to measure the quality. The
metrics can be classified based on the availability of the perfect quality reference
image. Full reference quality assessment assumes that a perfect quality reference
image is available, reduced reference quality assessment only has partial data

2.1. Image quality 6

available from the reference image, and no reference quality assessment has no
reference image at all. Objective image quality assessment without any reference
data is very difficult and hence full reference assessment is mostly used. [58]

Many objective image quality assessment algorithms have been proposed.
Traditionally, the most common full reference image quality assessment metrics
have been MSE (Mean Squared Error) and PSNR (Peak Signal-to-Noise Ratio).
MSE can be presented the following way [58]:

1

N

N∑
i=1

(xi − yi)
2 (2.1)

where N is the number of pixels in the image and xi and yi are the i-th pixels in the
reference and distorted images, respectively.

PSNR can be presented based on MSE the following way [58]:

10log10
L2

MSE
(2.2)

where L is the dynamic range of the pixel values.

The issue with MSE and PSNR is that while they do measure the signal fidelity,
they do not accurately predict the human perception of the image quality [56].
This difference is a result of the human visual system characteristics which perceive
certain errors in the image differently than what could be interpreted directly from
the data.

More advanced metrics that correlate better with the actual perceived image quality
have been proposed [15, 40, 45, 56]. SSIM [57] (Structural Similarity Index) takes
advantage of the fact that the human visual system is highly adapted for extracting
structural information. VIF [49] (Visual Information Fidelity) measures the loss of
information extracted by the brain by modeling a natural image source, distortion
channel and the human visual system. VSNR [9] (Visual Signal-to-Noise Ratio)
is a wavelet-based measurement that takes into account the human visual system
capabilities of seeing distortions.

Research shows that with the more advanced objective image quality metrics a better
correlation can be achieved between objective and subjective evaluation results than
what is achievable with the traditional metrics [40]. However, objective assessment

2.2. Image sensors 7

still does not match the results of subjective evaluation. Nevertheless, especially
with the recent developments in the field, objective assessment can be utilized in
the image quality evaluation.

2.2 Image sensors

Digital cameras use most commonly two types of sensors: CCD (Charge Coupled
Device) and CMOS (Complementary Metal-Oxide Semiconductor). The two types
of sensors both sense light through similar mechanics utilizing the photoelectric
effect. For each pixel in the sensor, received photons are transformed to an electric
charge. The difference between these sensors is how the information stored as a
charge is converted to voltage and transferred out of the pixel array. [47, pp. 55-61].

For a CCD sensor, charge is shifted from each capacitor (pixel) to another and
the conversion from the charge to voltage is done in the last capacitor. Once this
process has been repeated enough, the entire contents of the sensor have been read.
For a CMOS sensor, each pixel itself contains a circuit that converts the charge to
a voltage. These values can then be read one pixel at a time, allowing also to only
read part of the image data if required. [12, p. 5] Both types of sensors can be seen
in figure 2.2.

(a) CCD (b) CMOS

Figure 2.2 CCD and CMOS image sensors [12, p. 6]

Both sensors have their strengths and weaknesses. CCD has been around in digital
cameras for a longer period and has been traditionally providing a better image

2.2. Image sensors 8

quality. However, CMOS technology has been rapidly developing and has narrowed
down much of the quality gap between the two types of sensors. Because of the
limitations in the CCD technology, such as price and power usage, CMOS has been
widely used in the lower-end segment of digital cameras, while CCD has been the
choice for higher end products. [12]

Both of the sensor types described above are monochromatic and hence cannot
make a distinction between different wavelengths of light. There exists several ways
to overcome this issue. One way is to use multiple separate sensors, each dedicated
to a single color, so that when all the images are combined a full colored image
can be reproduced. Another method is to use the silicon itself as a filter since the
light penetration of the silicon is dependent on the wavelength of the light. This
method was used in the Foveon X3 sensor [17], where three photodiodes were stacked
on top of each other, each capturing red, green or blue color. However, the most
common solution is to pass the light through a CFA (Color Filter Array), so that
each pixel only receives light of a certain color, and then later interpolate the full
colored image. [12, pp. 8-9]

The most common color filter array filter is the Bayer filter [4], which has 50% green,
25% red and 25% blue pixels [42, pp. 3-7]. This filter is also called GBRG, GRBG,
BGGR or RGGB depending on the order of the pixels in one 2x2 bayer quad. The
reason for twice the amount of pixels used for green as is for red or blue, is because
the human eye behaves in a similar way, being more sensitive to green than to other
colors [22, pp. 44-45]. An example color filter array can be seen in figure 2.3. This
color filter array is RGGB, as can be seen from the pixel order starting from the
upper left corner.

Figure 2.3 Bayer RGGB color filter array

2.3. 3A 9

Once all the voltage data is read, the pixel values are passed through an ADC
(Analog-To-Digital Converter), which transfers the generated digital information
further to be processed. [12, p. 5]

Two types of sensor solutions exist in the digital camera domain. SoC sensors contain
an integrated SoC, which performs all or part of the required processing internally in
the sensor module, and only needs to be controlled by the host as required, providing
images ready to be displayed on the screen or saved to the device. Raw image sensors
on the other hand only output the captured raw data for which additional processing
is still needed. [12, p. 5] In this thesis, the word sensor refers to a raw sensor without
any additional processing capabilities.

2.3 3A

3A (3 Algorithms) is the automatic selection of the control values for focus, exposure
and white-balance [1]. These three key values greatly affect the quality of the output
images [38, p. 694]. Especially in mobile cameras, a majority of the images is taken
by simply pointing the device and clicking the shutter release button instead of
carefully selecting the suitable values for each by hand. This makes the functionality
of 3A, its convergence speeds and human noticeable behaviors in different scenarios
crucial to a camera device.

2.3.1 Auto exposure

Auto exposure means adjusting the amount of light on the sensor in order to be
able to utilize the full dynamic range of the sensor. The adjustment can be done
via aperture setting (unless the device has a fixed aperture), shutter speed and
ISO speed. Over-exposed and under-exposed images result in lost details that are
impossible to be corrected later, so being able to set the exposure values correctly
is crucial. [47, p. 238] [48, p. 36]

The image received from the sensor is divided into multiple sub-blocks that are
also called AE windows. For each window the average and peak luminance values
are calculated. The best fitting combination of the configuration values are then
generated automatically by a special algorithm. The values are used in the image
sensor for the next image to be captured. This loop is repeated continuosly, as the
environment can change from one frame to another. [47, pp. 238-239] [48, p. 36]

In a scene that has large brightness variations, the limitations of the sensor results
in a situation in which details are inevitably lost, as the dynamic range of the sensor

2.3. 3A 10

is insufficient. A solution to this problem is called HDR (High Dynamic Range).
In HDR images, multiple frames are captured vith varying exposure settings, each
frame having the correct values to capture a certain section of the scene. The
information from the images is then combined together using a special algorithm,
resulting in an image with a substantially higher dynamic range than what would
have been achievable with capturing only a single frame. [29]

2.3.2 Auto focus

Auto focus, as the name suggests, is focusing the image automatically to a certain
point by moving the lens, so that the desired object in the image is not blurred.
Two types of auto focus exists: passive auto focus and active auto focus. The
difference between these two types is that active auto focus sends some kind of a
signal to estimate the distance to the subject, while passive auto focus relies on the
information obtained from the image to achieve the desired focus. [48, pp. 36-37]

Active auto focus can send ultrasound [6] or light [59], either in the infrared or visible
range, to the object where the focus is desired. The signal is then reflected back
from the object to the camera. From the intensity or angle of the returning signal,
or the time it takes the signal to return back to the camera, distance between the
camera and the object can be calculated, and the lens moved accordingly. [48, p.
36]

In passive auto focus, the captured image is first analyzed for the focus, after which
the lens is moved a bit and the image is analyzed again. Depending on whether the
move resulted in a better or worse focus, the lens is moved accordingly trying to
achieve the correct focus. This loop is iterated as long as it is required to achieve a
satisfactory focus. [47, pp. 240-241] [48, pp. 36-37]

Two types of analysis techniques are currently used in passive auto focus. One way
is to use the contrast found in the image to find out the current focus [20]. The
intensity between adjacent pixels increases when the area is focused, so the correct
focus can be found by looking for the maximum intensity difference. The other
method is to use phase detection auto focus [51], which compares the light coming
through the opposite sides of the lens by using two or more small image sensors. If
the object is not in focus, the images are out of phase. The correct lens position can
be calculated from the resulted values. [48, pp. 36-37]

2.4. Preprocessing 11

2.3.3 Auto white-balance

In the human vision, white is perceived as white even under different lighting.
Fluorescent, incandescent and daylight are all of different color, but for example
white walls are still seen as white. This is called color constancy. For digital
cameras the same is not true. Color intensities will be captured exactly the way
the objects emit the different wavelengths of light. A white wall in a red light will
be a red wall in the picture. In order to correct this, white balance correction is
required. [42, pp. 267-268]

White balance correction is all about neutralizing the color of the light source in the
image. First the image needs to be analyzed and the color of the surrounding light
needs to be detected. As the automatic detection has its flaws, this can usually be
also selected by the user from a set of possible pre-defined light sources. After the
color of the surrounding light is known, the image can be corrected to look like it
had been taken in white light. [42, p. 268]

The actual correction usually happens by setting the gains of each independent
three color signals. Various algorithms exist to produce the correct gain values.
One example is the gray world assumption, in which it is assumed that the mean
values for all the three color channels should be equal. The gains for two of the
three channels can hence be adjusted so that all the three channels have an equal
mean value. [42, p. 280]

2.4 Preprocessing

The image received from the sensor is in a raw bayer format, each pixel only
containing the amount of light received through the specific color filter on top of
the given pixel as was described in section 2.2. This data is by no means perfect
and requires a substantial amount of processing to produce a satisfactory
image [48, p. 38].

Preprocessing deals with the defects in the captured bayer image before a full color
image is produced by demosaicking. As all the original pixel values are still available,
defects related to individual pixels need to be handled while the image is still in this
format and the errors are not mixed with other pixels during interpolation. Another
reason for performing corrections as early in the processing chain as possible is
to avoid amplifying the defects by algorithms later on. On the other hand, some
corrections cannot be performed in the bayer format since the algorithms require the

2.5. Demosaicking 12

full color image and need to be performed after the demosaicking. [42, pp. 7-9] [48, p.
38]

Some common corrections usually performed in the preprocessing phase are listed
below.

Defective pixel correction Some of the pixels in the sensor may be defective.
Without correction these pixel values would show up as errors in the image
after the demosaicking, as the values of the color image pixels are interpolated
from the neighboring pixels. Defective pixel values can be replaced using
average values from the surrounding pixels. [44]

Linearization Not all the data received from the sensor is linear because of the
electronics involved in the sensor. Therefore, linearization is required, which
means transforming the raw measured nonlinear data into a linear space. [48, p.
38]

Dark current compensation Receiving no light at all into the sensor does not
actually produce zero values as could be expected. This phenomenon happens
because a current is flowing through the photodiodes even when no photons are
received. To account for this, an average dark current value can be calculated,
which then needs to be subtracted from the values received from the sensor in
order to capture the black level correctly. [42, p. 70] [48, p. 38]

Lens shading correction The optics of the camera also produce some artifacts.
Lens shading, also called vignetting, appears in the corners of the image due
to the physical properties of the lens. This needs to be linearized, requiring
the usage of lens shading correction. [60]

Flare compensation In images that have a high source of light, light scatters in
the optics of the camera, which causes a shift in the received energy. This
distortion is called the lens flare, for which a flare compensation is needed.
Plainly, flare compensation reduces the pixel values in the image near the
affected pixels. [48, p. 38]

2.5 Demosaicking

After the required analyzations and corrections are finished in the RAW bayer
format, the image needs to be converted from a grayscale bayer to a full color
image. This step is called demosaicking, and is usually the most compute intensive
step in the processing pipeline [22, p. 44].

2.5. Demosaicking 13

In order to be able to represent a full color image, each pixel needs three color values.
Traditionally in computer images the values have been red, green and blue. In single
sensor systems, a color filter array is used as is explained in section 2.2. This means
that for each pixel in the image, two out of three color image values are missing.
The missing values need to be estimated based on the rest of the image. [22, p. 44]

Demosaicking is also called color filter array interpolation since each missing value
needs to be interpolated from the surrounding pixels. Naturally, whenever data
is interpolated, accuracy is lost as the result is only an estimation of the original.
Several different algorithms exist to perform the demosaicking. Different algorithms
may trade image quality in favor of performance while some may produce more
artifacts than others to the image that need to be corrected in post-processing. [22]

Demosaicking has a high impact to the rest of the pipeline and to the overall quality
of the outputted image. The output quality has to meet the requirements, and
any artifacts generated by the algorithm need to be corrected later. Some common
artifacts are shown in figure 2.4.

(a) Zipper effect (b) Color shift

(c) Aliasing artifact (d) Blur

Figure 2.4 Common demosaicking artifacts [42, p. 14]

2.6. Postprocessing 14

2.6 Postprocessing

After all the required preprocessing steps and the successive demosaicking is
complete a viewable image exists. This image is in a color space that has all the
required color components for each pixel in order to reproduce a complete color
image. However, some corrections are still to be done in this step now that the
proper image with separate color channels is available. Also, the previous steps in
the pipeline introduce some artifacts and distortions that need to be corrected in
order to produce an image with an acceptable quality. This part of the pipeline is
called postprocessing.

Some common corrections usually performed in the postprocessing phase are listed
below.

Demosaicking artifact correction Some of the artifacts present in the image
depend on the processing algorithms used. For example, the demosaicking
algorithm may produce, depending on the input image and the algorithm used,
zipper effect, color shift, aliasing artifacts or blur (figure 2.4). These artifacts
need to be corrected while still retaining the sharpness of the image. [48, pp.
40-41]

Geometric distortion correction The lens optics introduce distortion that
affects the image. Geometric distortion, for example barrel distortion,
misplaces information geometrically. In other words, pixels in the image
present information that should be elsewhere. [61] In addition, various
wavelengths behave differently in the lens because of different refraction
indexes, creating chromatic aberration where different colors are not focusing
correctly in the same place. [36] Geometric distortion correction is performed
to correct these artifacts.

Color correction Colors captured by the sensors do not match that what is
considered a pleasant image by humans since the color sensitivity of the
sensor is different than that of the human eye. The captured image needs to
be transformed into a calibrated color space which is the purpose of color
correction. [42, pp. 77-78] [48, p. 40]

Edge enhancement The human eye is very sensitive to sharp edges [48, p. 41].
Therefore, a step that performs edge enhancement, or in other words
sharpening, is usually performed. The purpose of this processing is to make
the image look sharper by amplifying the high-frequency components of the
image. [42, p. 80]

2.7. Format conversion 15

As part of the correction algorithms required depend on the previous steps in the
pipeline, postprocessing needs to be adapted to the sensor, preprocessing and
demosaicking algorithms used. Therefore, there may be great variance in the post
processing between devices, and each device needs to be configured separately.

2.7 Format conversion

Depending on the device and the use case of the processing pipeline, additional color
space conversions may be required. While the RGB format may be useful in some
of the aforementioned image processing algorithms, it is not a practical format to
store the data.

For RGB formats, each color channel has the equal amount of information. For
example RGB888 uses a total of 24 bits to store the information for each pixel [52].
The larger the images are, the higher the burden is to store, transmit and display
the data. Therefore, other formats with a lower bit rate are needed.

2.7.1 YUV

A frequently used way to reduce the amount of data used for an image is to take
advantage of the biological capabilities of the human vision system. The human
eye is less sensitive to color differences than it is to luminance differences [25]. The
method taking advantage of this fact reduces the amount of data of color in the
image, while still keeping the same amount of data for the brightness. This is called
chroma subsampling [14].

Obviously this kind of data reduction is impossible to do in the RGB color space as
the brightness of each pixel is a combination of each color value, all three represented
separately. The solution for this is to use an image format where luminance and
chrominance values are separated. These formats are referred as Y ′C ′BC ′R, where Y ′

is the luminance, C ′B is the difference between blue and the luminance, and C ′R is
the difference between red and the luminance. [27, pp. 16-18]

After the chrominance has been separated from the luminance, the data of the
chrominance can be reduced while still sustaining the original luminance
information. Usually this chroma subsampling is notated as a three part ratio
A:B:C [52]. The ratio tells us that in a sample region that is A pixels wide and 2
pixels high, there are B horizontal chroma samples, and C changes in the
chrominance values between the first and the second row. Some commonly used
examples are given below and can be seen in figure 2.5.

2.7. Format conversion 16

4:4:4 Each pixel has both luminance and chrominance samples. This format has
no chroma subsampling at all. Full horizontal and vertical resolution.

4:4:0 Each pixel in the first row has chrominance samples, but these are shared
between two rows. Full horizontal resolution, 1⁄2 vertical resolution.

4:2:2 For 4 pixels in the first row, two chrominance samples exist. Each row has
its own samples. 1⁄2 horizontal resolution, full vertical resolution.

4:1:1 For 4 pixels in the first row, only a single chrominance sample exists. Each
row has its own samples. 1⁄4 horizontal resolution, full vertical resolution.

+

(a) 4:4:4

+

(b) 4:4:0

+

(c) 4:2:2

+

(d) 4:1:1

Figure 2.5 Different YUV subsampling ratios. The above pixel array describes the luma
samples and the below pixel array describes the chroma sample pairs.

Depending on the required quality of the output and the restraints of the storage
size of the image, an appropriate subsampling ratio is chosen. Of course it goes
without saying that the less there are chroma samples, the lower the quality of the
image will be.

Different YUV formats exist even with the same subsampling ratio. Luma and
chroma values can be combined into macro pixels (packed formats), or they can be
in separate planes (planar formats). The chroma planes may also be interleaved in
different ways or the image may have some padding. The range of different YUV
formats is vast. [16]

2.7.2 Compression

While the chroma subsampling in the YUV formats lowers the bandwidth needed
for the images and may be enough to satisfy the needs of storing, transferring and
displaying a single image, this still leaves the images with a storage size too large
for many uses. For example, in mobile devices the available disk space for storage

2.7. Format conversion 17

may be a bottleneck especially in the lower end segment. Compression is needed to
overcome this problem.

A commonly used compression method for digital images is JPEG (Joint
Photographic Experts Group) [54]. This method is lossy, meaning that
information is lost in the process. However, JPEG takes advantage of the human
visual system in a way that makes high compression possible without reducing the
quality of the image below a satisfactory level.

JPEG compression is done to images in the YUV color space. The chroma
subsampling already explained in the section 2.7.1 is also usually used in the
JPEG compression. The YUV image is then split into 8x8 blocks called
macroblocks. After this, macroblocks are converted into frequency domain by
DCT (Discrete Cosine Transform). The values are then quantized by dividing each
component by a constant and rounding them to the nearest integer, reducing
information in the high frequency domain. The resulted values are finally encoded
using run-length encoding and huffman coding. [54]

JPEG standard supports different compression ratios enabling the user to select the
best tradeoff between image quality and the resulting image size. In practice, the
compression ratio is chosen by setting the quantization table [54], which is the only
lossless part of the JPEG encoding apart from the chroma subsampling. Images
compressed with a low ratio are usually indistinguishable from uncompressed ones
by the naked eye, while higher ratios might still be adequate for certain use cases
but have noticeable artifacts.

Video capture, where multiple frames are captured and combined together,
requires much more information to be stored than what is the case with still
images. Therefore, compression is especially important with videos. JPEG can
also be used for video compression [39]. However, it is quite inefficient since no
temporal redundancy is used. This means that pixels having the same data from
one frame to another is not exploited in the compression.

Several compression standards specifically aimed to be used for video compression
exist. Common video coding formats include Motion JPEG [39], MPEG-4 [46] and
H.264 [2] among others. Motion JPEG is the video compression based on the JPEG
image compression. MPEG-4 and H.264 on the other hand use several frames to
compress the stream, taking advantage also of the temporal redundancy in addition
to the spatial redundancy.

18

3. GRAPHS

Graph is a set of points and lines connecting the points. Graphs can be used to
describe many different situations in real word and have applications in a variety
of different areas [8]. An example application of the graphs in the physical world is
to represent all the possible routes from one place to another like a subway map.
Another everyday example is a company organization chart. Example illustrations
of these graphs can be seen in figure 3.1

(a) Route map (b) Organization chart

Figure 3.1 Example applications of graphs

These graphs can be used to solve problems like what is the fastest or shortest
route from one place to another, or who is the manager of a given person in the
organization. Of everyday graphs similar to these, a mathematics branch called
graph theory has emerged, dating back to 1735 and the Königsberg bridge
problem [8]. The following sections give an overview of the graph theory and their
applications in the computing domain.

3.1 Basic graph theory

A graph consists of a finite set of objects called vertices and a finite set of unordered
pairs of the vertices. A graph can be represented as a diagram where vertices are
points, and the elements of the ordered set, called edges, are lines connecting the
points. [7, p. 1] [13, p. 2] An example graph can be seen in figure 3.2.

3.1. Basic graph theory 19

GGG

v4

v5

v1 v2

v3

e5

e7

e2

e1

e3

e4

e6

Figure 3.2 Example graph diagram

In this graph, V is the set of vertices, and E is the set of edges. The graph itself is
labeled with a letter, in this case G = (V,E). The two vertices of an edge are called
the end vertices. An edge, which has the same vertex as both of its end vertices, is a
loop. Edges with the same end vertices are parallel. Edges that share one end vertex
are adjacent. The amount of adjacent edges to a vertex is the degree of the vertex.
A graph that has neither loops nor parallel edges is simple. [7, pp. 1-3] [13, pp. 2-5]
Similar labeling and terminology will be used throughout this thesis.

In the graph in figure 3.2, we have both parallel edges and a loop, therefore the
graph is not simple. Edges e2 and e3 both have the same end vertices and are hence
parallel. Edge e7 has the same vertex as its both end vertices, which means the edge
is a loop.

Subgraph is a graph that is part of another graph. In other words, all its vertices
and edges are in the other graph. More formally, g ⊆ G if E(g) ⊆ E(G) and
V (g) ⊆ V (G) [13, p. 4]. Two example subgraph diagrams of the graph in figure
3.2 are presented in figure 3.3. It should be noted that the graph representation in
the graph diagram, meaning the placement of the vertices and edges in the drawing,
has no meaning. Two graphs are equal if they both contain the same edges and
vertices [7, p. 2].

A walk is a finite sequence of alternating vertices and edges. Each walk begins
and ends with a vertex, and each edge is incident with both the preceding and
the following edge. Starting from the initial vertex and concluding to the terminal
vertex, the length of the walk equals the number of edges in the walk. Vertices vit−1
and vik are the end vertices of ejt(t = 1, ..., k). A walk with the length of 0 only

3.2. Directed graphs 20

v4

v5

v1 v2

e1

e5

e7

Figure 3.3 Example subgraph diagrams of graph in figure 3.2

consists of a single vertex. A walk is open if vi0 6= vik and closed if vi0 = vik. [7, p. 12]
For example a walk in the graph in figure 3.2:

v1,e1,v2,e3,v3,e2,v2,e4,v4

has the length of 4 and is open since the end vertices are not the same (v1 6= v4).

Another walk:

v2,e4,v4,e5,v5,e6,v2

has the length of 3 and is closed since both the end vertices are the same (v2 = v2).

A trail is a walk, which contains each edge at most once. Both examples above are
trails, since no edge appears more than once in either walks. A trail is a path if it
does not contain any vertex more than once, not including the end vertices that can
be the same. [7, p. 12] The second example is a path since no vertex except the end
vertices appears more than once. The first example on the other hand contains v2
twice and is not a path. Path is a cycle if both the start and the end vertices are
the same [7, p. 7]. The path in the second example is a cycle. Trails and paths in
a graph G are also subgraphs of the graph G.

A graph is connected if any of the vertices can be reached from any of the other
vertices by traversing the edges [7, p. 13]. In other words, a path exists from every
vertex to every other vertex. The graph in figure 3.2 is connected.

3.2 Directed graphs

The graphs presented earlier, in which all the edges are bidirectional, are undirected
graphs. Directed graphs, also called digraphs, are graphs in which the edges are
directed from one vertex to another. One vertex is a start, and the other is a
finish. These edges are also called arcs. [7, p. 171] Directed graphs can be drawn as

3.3. Data flow 21

undirected graphs but with arrows instead of lines representing edges. An example
directed graph is seen in 3.4.

DDDD

v4

v5v1 v2

v3

e1

e4

e5

e2

e3

Figure 3.4 Example directed graph diagram

Directed graphs also allow some additional definitions. A vertex that only has arcs
leading away from the vertex (indegree is zero) is called a source. Likewise, a vertex
that only has arcs leading into the vertex (outdegree is zero) is called a sink. Walks,
trails and paths work similarly with directed graphs as they do with undirected
graphs, expect that they take into account the direction of the graph. [13, p. 125]

One useful special case of graphs is a DAG (Directed Acyclic Graph). This graph
is directed and does not allow any cycles to occur. DAGs are useful in situations
where certain tasks have a strict priority relationship - a task cannot be done before
another is finished. All the precedence requirements are automatically described in
the graph by following the directions. The reason why some applications benefit
from DAGs that do not allow cycles is because a cycle would indicate a task that
is a prerequisite for itself and the prerequisites would be infinite. An example DAG
can be seen in 3.5.

3.3 Data flow

For applications that perform processing to data, the flow of the data can be
represented using directed graphs [5]. At simplest, the graph consists of a source,
vertex, sink and arcs combining the elements together. Source represents the
interface to which the data is fed into, vertex represents the computation
performed to the data, and the sink represents the interface where the processed
data is finally outputted. Data flow graphs can naturally be much more complex,
consisting of multiple sources, vertices and sinks. The example directed graph D in
figure 3.5 could also represent a data flow, v1 being the source and v4 the sink.

3.3. Data flow 22

DDDD

v4

v5 v6

v1 v2 v3

e5

e6

e3e1

e4

e2

Figure 3.5 Example directed acyclic graph diagram

In order to ease the usage of the data flow graphs in any real world applications,
several restrictions can be defined. Naturally, the vertices can only be dependent
on the data of the inbound arcs. However, it is typically allowed that data staying
constant over all the graph cycles can be provided by other means. This allows
for example configuring complex hardware to operate in a certain way. In addition
to the data resource restrictions, also the when and how the vertices are fired is
typically a part of the data flow graph models.

A widely known data flow graph model is SDF (Synchronous Data Flow) [37]. Each
vertex in the SDF graph needs to be a specific function that can be invoked after
the input data for that vertex is available. There cannot be any side effects for any
vertices. The only interactions between separate vertices can happen through the
arcs connecting them. The amount of items consumed and produced by each vertex
is known statically. Many applications and APIs especially in the imaging context
are defined after these basic foundations.

The independence of the vertices allows the graphs to be modular. Vertices can
be reused in different configurations and their ordering in the graph does not affect
the internal computation of a single vertex. In other words, the computations are
deterministic. Also, the granularity of the graph can vary significantly. A vertex
can be implemented by a subgraph that performs the computation in an arbitrary
number of vertices or all the subgraph vertices can be included in the SDF graph.

Since the vertices are black boxes to the outside observer, any form of operation
may occur behind the interfaces of the vertex. The implementation of a certain
vertex can be done on many different platforms like CPU, DSP or fixed hardware
blocks. Two graphs can be functionally equivalent even if different implementations

3.4. Software frameworks 23

are used. What matters is that for a given input to a graph, a known output can
be received.

SDF allows efficient scheduling of the different vertices since it is known exactly
when the vertices are ready to be executed. SDF graphs also provide the ability to
execute separate vertices concurrently. Since each vertex is independent, given that
the inputs for all the vertices going to be fired are ready and hardware resources are
available, they can be executed in parallel. [37]

3.4 Software frameworks

In order to take the aforementioned data flow graphs to a practical level in
imaging, a software based framework capable of presenting operations as a graph
to programmers is valuable. The frameworks can also allow running consecutive
elements in parallel which is called pipelining [23]. Depending on the resource
availability, pipelining can be used achieve notable performance increases.

There exists many different frameworks publicly available. All frameworks have
their own capabilities and limitations, and a framework best suiting the needs of
the product should be chosen. A short overview of widely used pipeline frameworks
available is given below.

OpenMAX

OpenMAX is a set of open cross-platform APIs defined by the Khronos
Group [31]. The main purpose of these APIs is to provide a set of standardized
layers enabling the development and integration of multimedia components across
different operating systems and platforms. The standard is split into three parts,
OpenMAX AL, OpenMAX IL and OpenMAX DL. Moving from the bottom of the
stack upwards, the OpenMAX DL is the development layer which defines a set of
low-level multimedia kernels that can be used to accelerate traditional
computational hotspots in media codecs [32]. OpenMAX IL is the integration layer
which defines the standardized API for different audio, video and imaging
components providing encapsulation and portability [33]. OpenMAX AL is the
application layer that defines a set of multimedia use cases to be used by
applications, like video playback or image capture, that can be constructed by
connecting multiple IL components together [34].

3.4. Software frameworks 24

OpenVX

OpenVX is an open standard for computer vision application acceleration defined
by the Khronos Group. The idea is to allow cross-OS (Operating System) and
cross-platform portability with minimum effects on the applications. OpenVX is
graph based, and the APIs are defined in C. The standard does not define the
implementation of the framework, but the APIs for building, verifying and
coordinating graph execution, and for accessing memory objects. [35]

Gstreamer

Gstreamer is a cross-OS multimedia framework written in C. The framework is
distributed under GNU Lesser General Public License, and is therefore open source
and copylefted. The supported platforms include Linux, Windows and OSX among
others. Gstreamer includes many plugins of its own, providing an extensive library
of elements, and supports extending its capabilities through plugins. Gstreamer also
has API bindings to many other programming languages than C which it natively
supports. [21]

DirectShow

DirectShow is a multimedia framework for Windows developed by Microsoft.
DirectShow consists of filters, which are the software components performing some
operations for the multimedia stream. Applications then perform tasks by creating
filter graphs which are constructed by connecting different filters together.
DirectShow can be used for video and audio playback and capture. [43]

V4L2

V4L2 (Video4Linux2) is a Linux kernel video capture and output driver framework.
It is written in C and is licensed as GNU General Public License. Different hardware
blocks are exposed as V4L2 devices, which can be configured and connected as
requested. Using media controller that is a part of V4L2, these devices can then
be used and connected together to form a graph. V4L2 can be used in a variety of
applications like image capture, radio controlling or digital video broadcast receiving.
[41]

3.5. Graph implementation 25

3.5 Graph implementation

Each graph is defined to a certain task. Data flows from the source through each
vertex and finally reaches the sink. With a sane input a valid output is received.
The vertices in the graph define what is to be done to the data. However, the graph
does not dictate how each vertex is to be implemented. The graph only governs the
order and the dependencies of the vertices.

The implementations for each vertex can be done on any supported compute
resource. With today’s SoCs, devices have become heterogeneous and
implementations can be for example pure hardware, firmware running on
specialized processors, or just software executed on a CPU [53]. Based on the
product requirements, appropriate implementations are designed. A figure showing
the tradeoff between efficiency and flexibility of some of the different technologies
can be seen in 3.6.

CPU

DSP

FPGA
ASIP

ASIC

F
le

xi
bi

lit
y

Efficiency

Figure 3.6 Flexibility in relation to efficiency in different technologies

Implementations can also combine multiple vertices into a single vertex if required.
This can be useful for example to allow performance enhancements via reducing
the memory bandwidth between vertices by performing all steps of an algorithm on
the same target without the need for host control. While the implementation can
be highly optimized for a given platform, this makes the granularity of the graph
coarser.

3.5. Graph implementation 26

Encapsulating the vertices behind a standardized API allows the development of
separate vertices in isolation. Vertex implementations could potentially be done by
separate teams or even companies. Ready implementations can then be connected
together using a common framework as the interoperability of the vertices is
guaranteed by the specification. Encapsulation also provides benefits related to
reuse. As the requirements for each product differ from one another, being able to
flexibly create new graphs reusing the already existing implementations is a major
advantage.

With software development starting very early in the process of developing the device
when the actual hardware implementation is not ready, the modularity provided by
the graphs is an efficient way to enable development of the software earlier than
traditionally. Traditionally software development has only begun after a prototype
hardware is available [53]. An example traditional schedule can be seen in figure 3.7.
However, with the complexity of today’s systems, this no longer fits the needs of the
time to market requirement of the products. A shift left approach is needed, in which
software development is performed concurrently with the hardware development.
The shift left software schedule can be seen infigure 3.8.

Hardware Software

Architecture

RTL

Silicon

Board Integration

Applications

Low level
SW

HW
bring up

Verification

Figure 3.7 Traditional hardware and software development schedule

Graphs provide a systematic way to utilize shift left. As the implementation of the
vertices in a graph is meaningless from the point of view of the user, work with several
of the technologies used in the development phase of the device can be enabled. At
the beginning of the product development, only rudimentary implementations of
different processing blocks may be available. Some of the implementations may be
missing and may need to be replaced for example with generic CPU software that is
lacking the image quality and processing speed present in the real implementations.

Gradually new implementations will be available. New development platforms will
be enabled. Development moves from software stubs to emulation and finally to real
prototypes. The hardware will start resembling more and more what it will be in
the final product.

3.5. Graph implementation 27

Hardware

Software

Architecture

RTL

Silicon

Board

Integration

Applications

Low level
SW

HW
bring up

Verification

Figure 3.8 Shift left software development schedule

A list of commonly used development platforms is given below.

Software stub can be used to begin development of software without any real
software or hardware implementations below. Stubs can implement the
required low level APIs by just providing some initial responses regardless of
the input.

Simulation is simulating the behavior of a system. Simulation does not perfectly
replicate the actual target being simulated but provides behavior similar to
that.

Software emulation is emulating the behavior of a system using software. This
can for example emulate the behaviour of lower level APIs to allow the
development and verification of higher level software layers.

Hardware emulation is emulating the behavior of a system using hardware. For
example, an FPGA can be used to emulate the system accurately with impacts
only to the performance.

Hardware prototype is a prototype of the actual device. Prototypes are the
development platforms closest to the actual finished products. They contain
the real hardware that is going to be in the final product although some changes
can still be done to later revisions.

3.5. Graph implementation 28

These development platforms can be used to enable software shift left and
verification beginning from the early stages of the product development until the
final product by using implementations for platforms available at each time.
Traditionally handling the complexity of different implementations and compute
resources has been hard. Individual blocks may have been tested independently,
but it has not been consistent across all algorithms. This means less reuse and
higher risk in further development phases.

Utilizing different resources require changes in the whole software stack which
potentially has an effect all the way up to the application layer. This makes
development and maintaining the software stack cumbersome. With graphs,
however, the complexity of the underlying computing can be abstracted and
managed in a simple way. Example software stacks without and with graphs can
be seen in figure 3.9.

Application

Driver

HW HW HW HW

Driver Driver Driver

(a) Traditional software stack

Application

Driver

HW HW HW HW

Driver Driver Driver

Graph

(b) Software stack using graphs

Figure 3.9 Example software stacks without and with graphs

Graphs can expose any external requirements needed, for example to allocate the
required memory buffers, to the layers above in a generic way independent of the
vertex implementations. This allows us to encapsulate the whole functional
complexity behind generic interfaces. In other words, the software stack above the
graph does not need to know about the implementation details of the graph, and
any changes to the implementations can be hidden from the applications.

3.6. Graphs in an image processing system 29

3.6 Graphs in an image processing system

The camera capabilities of a product can range from simple fixed surveillance
cameras to highly complex devices providing vast amounts of features and different
operating modes. As the devices have become more capable and rich in features,
handling the complexity of subsystems (e.g. camera) has become increasingly
difficult. For example in mobile devices, camera requires seamless cooperation
between traditionally separate domains like display, graphics, storage and a variety
of other sensors. As described in the previous section, graphs can be used to
handle and hide the complexity from the above software layers.

Camera pipelines introduced in chapter 2 can be modeled as data flow graphs. Image
comes in from a source, goes through the required processing vertices, and is finally
outputted through a sink. The example pipeline shown in figure 2.1 is represented
as a data flow graph in figure 3.10.

Sensor DPC Lin DCC LSC FC

Preprocessing

DM DMAC GDC CC EE

Postprocessing

Conversion Compression

Display Storage

Figure 3.10 Image processing data flow graph

Capturing and processing images can be divided into multiple different use cases.
Differences between use cases may be subtle or major, but nevertheless require
implementations that differ from each other. Graphs provide a means to handle
these different configurations.

Some of the differences may be supported by just reconfiguring the graphs while
others require completely new graphs and vertices. For example, in order to obtain

3.6. Graphs in an image processing system 30

better performance, some enhancements may be turned off by removing the related
vertices from the graph. Vertices may also support different configuration options,
for example to change the resolution or the intensity of the correction algorithms.

The following are examples of requirements in the graphs that may change from one
use case to another.

Frame rate is the amount of frames that pass through the processing system in a
given amount of time. Usually measured as FPS (Frames Per Second) that is
the average number of frames processed in a second.

Latency is the amount of time that it takes for a frame to travel from a source to
the sink. Can vary from one frame to another even if the average frame rate
over a longer time period is relatively constant.

Resolution is the amount of pixels in the images. Higher resolutions produce
images with more details and allow more aggressive cropping without resulting
in a pixelated image. On the downside, higher resolutions result in more
requirements for processing power and memory bandwidth.

Image quality is the quality of the outputted processed image. Depending on the
use case, different aspects of the image quality may be required or sacrificed
in favor for other requirements.

Number of sinks can vary from one use case to another. In addition to the main
image that is outputted, other versions of that image may be required. When
the use of the sink is known, a less or more demanding compute path may be
selected. The result may also be a side product of an intermediate algorithm
in the main path.

Additional processing may also be introduced in special imaging cases to analyze
the image in ways that the standard use cases do not. For example, computer
vision may perform a wide variety of algorithms to produce specific metadata
from the images.

The three basic use cases in a mobile camera are examples that have different
requirements from one another. When the user is preparing to take a picture, a
preview of the image to be captured is shown on the screen of the device
(viewfinder) before the user presses the button to do the actual capture. Since
each frame is only shown on the screen for a fraction of a second, the image quality
in the preview is not that important, and the resolution only needs to match the

3.6. Graphs in an image processing system 31

display of the device. The main thing that matters is that the user gets real time
information about what is going to be included in the captured image. Therefore,
low latency and adequate frame rate is required.

With the actual still image capture, however, image quality is one of the most
important factors. The captured image will be stored in the device memory in
addition to showing it on the screen, and the image quality should be as good as
possible. Resolution is preferably the highest available so that the images will look
good on a larger screen also. Frame rate is not that important as long as an image
can be acquired within a reasonable time frame. Traditionally, shutter lag is more
important than the processing latency.

While the preview and capture represent the two basic use cases in a mobile camera
that have different requirements, video can be considered being somewhere in the
middle. In video recording, the frame rate is a constant value that needs to be
acquired. Latency needs to be kept within boundaries or frames will be dropped.
Image quality is made as good as is possible with the performance requirements.

Apart from the three basic use cases in mobile cameras, the potential amount of
different configurations even in a mobile device is huge. Camera can be used in
a wide variety of different ways. Some users may be satisfied with a recognizable
face in video calls while others try to replace a professional digital camera with it.
On the other hand, what humans view as a high quality image may not be true
for certain algorithms trying to interpret information from it. Augmented reality
provides additional overlay to the environment captured by the camera requiring
recognition of the surrounding objects from the image. User recognition during
login or other secure access using face detection or iris scanner needs to obtain an
image from which the algorithm can recognize the user.

While there are certainly more than enough use cases in mobile cameras to make
them complex, the matter is further complicated once the same or similar platforms
are used in different products in the imaging context. Surveillance cameras for one
may include additional intelligence to track persons or vehicles. Robots require
knowledge about their environment and may need specialized cameras to obtain it.
Night vision devices concentrate on providing a viewable image from an otherwise
dark environment while the traditional quality of the image does not matter.

All these use cases combined with the configurability of image resolutions and other
parameters provide the reason for using graphs. Vertices can be reused, replaced
or reorganized. Implementations can be done on any compute resource available.

3.6. Graphs in an image processing system 32

Essentially, the complexity of the underlying processing system can be handled in a
single graph and be hidden from the above software layers.

33

4. VERIFICATION OF IMAGE PROCESSING

GRAPHS

Each image processing graph needs to be verified in order to ensure that the graphs
are working according to the specification. Verification is not a simple task, however.
What to verify from the graphs and how the data interfaces can be measured in a
way that supports the verification? Which methods should be used to ensure that
the image quality and performance meet the requirements?

Verification in general can be split into two different categories: static and
dynamic verification. Static verification (also called formal verification) means
statically verifying the implementations using mathematical formulations [18]. In
static verification, either two implementations are compared with each other or the
implementation is otherwise showed to satisfy the specification. Static verification
can theoretically show that the implementation satisfies the specification under all
inputs. However, in practice it can be infeasible to convert the implementations
into the required mathematical form.

Dynamic verification (also called testing) on the other hand means verifying the
implementations while the system is actually running using a finite set of test
cases [18, 50]. Input is provided to the implementations and the outcome is
examined. As dynamic verification only uses the input and output interfaces of the
implementations, there is no need to know the internal details of the
implementations, which in turn allows black box testing. Dynamic verification can
only be used to verify an implementation to a certain point, as in practice a
complete set of tests can be considered infinite [50]. The coverage of the test cases
is limited by resources available and the test cases need to be created based on risk
and prioritization.

There are several aspects to the graph verification. The functionality of the graph
needs to match that of the graph specification. Performance of the graph has to be
greater than or equal of what is required by the specification. The graph needs to
also be stable, or at least stable enough to exceed the required criteria. Since the
implementations behind the vertices are unrestricted, static verification that requires

4.1. Utilizing the modularity of graphs 34

details of the implementations is infeasible from a graph point of view. Therefore,
dynamic verification suits the needs of graph verification more adequately. Naturally,
this does not restrict the use of static verification separately in the development of
each implementation if deemed suitable and useful.

Fundamentally verification of image processing graphs is creating and using test
cases that verify the properties of the graph against the specification. As the
development of the project goes forward, new features will be gradually available
and integrated. Tests are implemented along the integration of the new features or
even before this utilizing the test driven approach [50]. After a test is passing, it
can always be executed with the other tests whenever tests are run, potentially
revealing regressions in the future.

In addition for the tests being used to catch any regressions, they should be
considered as a tool for the developer. When modifying features or adding new
ones, tests can be executed and used to drive the inputs of the system under
development. This substantially reduces the amount of dependencies when
compared to for example running the whole camera application. Changes to a
small subsystem can be more efficiently developed with a more concentrated test.

4.1 Utilizing the modularity of graphs

Traditionally, especially in the imaging context where implementations often use
hardware to perform the required algorithms, a use case would result in a single
functional unit that can be executed from software as required. Exposing only a
single big black box to the software causes testing having to be performed on top of
the whole use case. Any finer testing needs to be done at the level of firmware or
even hardware. There is a long gap between testing the blocks at such a low level,
compared to being able to test them at the actual software level where they will
eventually be used. Especially in the early stages of development where features are
not yet ready, this is inconvenient and risky. An example of testing complete use
cases with a traditional software stack utilizing hardware can be seen in figure 4.1.

Instead of exposing a use case as a whole to the software, smaller portions of the
system needs to be exposed. In software development, unit testing is a common
practice that has been used to isolate parts of the code and to show they are working
correctly [11]. Naturally, unit testing requires small portions of the system to be
available for such isolation. In order to perform unit testing for implementations
that utilize different processing elements, for example dedicated hardware, also the
hardware needs to be exposed in a way that allows the isolation to happen. This

4.1. Utilizing the modularity of graphs 35

f1 f2 f3 f4

Software layer

Output

Test application

Input

Figure 4.1 Traditional testing of a processing system

can easily result in complicated interfaces that lack consistency from each other and
are hard to test.

With graphs, the modularity required for isolated testing of small parts of the system
already exists. Each vertex is exposed to the software level. In addition to being
able to test the graph as a whole, subgraphs or even single vertices can be tested.
As was described in section 3.3, the only interactions between vertices can happen
through arcs connecting them and no side effects are allowed. This means that
the vertices are always guaranteed to have a compatible interface and they can be
isolated no matter how complicated the actual implementation is. An example of
testing the system using graphs and its subgraphs can be seen in figure 4.2. In this
graph, vertices v1 and v2 are tested in isolation, while the vertices v3 and v4 are
tested as a subgraph consisting of both vertices.

v4

Test application

v1 v2 v3

Figure 4.2 Example testing of subgraphs in isolation

Vertex or subgraph testing in isolation is especially useful in the early development
stages when new features are being integrated and need to be properly tested, but
while the complete graph is not fully implemented or integrated yet. Vertices can
be tested properly using the exact same interfaces and software layer as will be in
the final graph. This eases the final integration of the whole graph and lowers the
risk of unpredictable issues later.

4.2. Graph verification 36

Another benefit of the modularity is the ability to use test related vertices in the
graphs in addition to testing subgraphs in isolation. For example, if some of the
vertices are not yet implemented, unimplemented vertices can be replaced by a
reference implementation, or a mock-implementation that does not perform any
actual computation but serves as a placeholder and an API for the software layers
controlling the execution of the graph. If the hardware does not yet support the
features requested or the hardware does not yet exist, simulation or emulation can
be used in some vertices. Also, if some implementations are not completely ready,
additional vertices can be added to create subgraphs that fulfill the missing
computations of a vertex using software. An example configuration utilizing these
can be seen in figure 4.3.

v4v4

Mock API

v1 v2 v3

SWHWDSP

v4hw

Test application

v4sw

HW

Figure 4.3 Usage of different development platforms in testing

During the development and integration of new features it is often convenient to
be able to efficiently test the graphs with different inputs and configurations.
Because of the modularity of the graphs, there are virtually no limits on what kind
of infrastructure can be added to the graph. Vertices can be added anywhere in
the graph and the outputs of the vertices can be flexibly connected into the
surrounding infrastructure.

4.2 Graph verification

Verifying the graphs provide two types of approaches. The graph can be either
verified as a complete or split the into subgraphs or even single vertices, as described
in the previous section, and verify those independently. The best manner of approach
depends on the granularity of the graph but both approaches also supplement each
other.

4.2. Graph verification 37

Because the interfaces of the graphs and the vertices are compatible with each other
and specified in beforehand, software created for verifying the graphs can be easily
reused. Even complex implementations can be tested with little changes to the test
code. Once a basic test bench exists for the graphs, new tests can be easily created.

4.2.1 Functionality

Functional verification of a graph refers to verifying that the graph processes the
data according to the specification. For a known input, the output can be examined
using various methods. The data can be evaluated either objectively or subjectively.

Since the algorithms behind the vertices are known, a golden model can be used to
produce reference input and output data. With this input data, the output data
should match the reference no matter what the implementation behind the graph
is. This is called bit exactness and can be used to verify the graph implementation.
An example bit exactness test is shown in figure 4.4.

File source v1 v2 v3

Test image

Data comparison

Test application

Reference image

Figure 4.4 Testing the graph bit exactness against reference data

In this test additional test vertices are included to the graph to support loading the
input data and comparing the output data against the reference. These vertices
replace the original source and sink in the graph.

Modularity of the graphs can be utilized for bit exactness testing also. This is
especially useful in pinpointing the location of the problems in case the output
from the graph does not match the reference data. The graph failing the test can
be divided into smaller blocks, each of which is tested independently in isolation,
revealing the broken vertex by failing the isolated test. The finer the graph
granularity is, the more detailed is the test outcome.

4.2. Graph verification 38

Verifying the bit exactness of a graph against a golden model expects that the image
quality of the algorithms is already validated. Image quality can also be measured
using the graphs and the metrics introduced in section 2.1.

In subjective assessment, functional validation means that the output image is
visually inspected to identify whether the graph is executing according to the
requirements. This requires that the output image is converted into a
representation that is viewable by the user. Depending on the output format of the
graph and the stage of the processing, extra reference implementation vertices like
color converters can be added to the graph to make this convenient. A sink can
then be used to either save the converted image to file to be viewed by an external
application or to directly display it on the screen.

With a human being seeing the output image, an analysis of the image quality can
be done. As described in section 2.1, subjective assessment is the most reliable way
to evaluate the image quality. It is also easy to implement and requires only a small
test infrastructure on top of the graph.

Subjective assessment can also be used to inspect the effects of subgraphs or single
vertices to the image quality. This can be especially useful when the algorithms are
being still developed or their parameters are configured so that the best outcome can
be obtained. In the best case, the developer can isolate a single algorithm and use
a highly algorithm specific input data to see the effects of that specific algorithm.

As was described in section 2.1, the human visual system has its characteristics on
how it sees the effects of distortions in the image. Objective assessment can be
used to support the subjective evaluation to measure the image quality. Verifying
the output image against a reference using objective evaluation results in metrics
that can be easily interpreted. This can be especially useful if changes in the
algorithms result in small changes in the image quality that can be more easily
measured objectively than by the naked eye. From these metrics it can be
determined if the image quality is within the requirements. While not as reliable
as subjective evaluation, these metrics can be processed automatically without any
human intervening. Objective assessment allows for faster verification with more
coverage.

Being able to perform the objective assessment algorithms, some additional vertices
need to be added in a similar way as in figure 4.4. Instead of a bit exactness
comparison, the algorithm comparing the output and the reference data is run. The
resulting metric is then outputted and compared against the minimum requirements.

4.2. Graph verification 39

Objective assessment can also be utilized with subgraphs. In a similar way as the
subjective assessment can be used in development, objective evaluation provides
another way to determine the effects of a certain algorithm to the image. For
example, in case of a lossy compression vertex, calculating the difference between
the output and the input of that vertex provides good information about the quality
of the compression.

4.2.2 Performance

Performance is another important criteria of verifying the graphs. Depending on
the use case, the requirements may vary significantly from one graph to another.
In image processing, there are several different aspects to performance. The frame
rate at which the processing is executed needs to be high enough to support the use
case, but also the latency of the graph needs to be inside the specification.

Frame rate, as described in section 3.6, is the average number of frames in a given
amount of time. Frame rate can be verified by running the graphs for a long enough
period and calculating the average FPS from the amount of time the test lasted
and the number of frames that were processed. This measurement gives a general
overview of the processing performance of the pipeline.

However, average frame rate does not tell the whole truth about the performance. In
addition to being able to process frames fast enough in average, the processing time
of each individual frame is of importance. There may be variation in the time of
separate frames for example because of limited hardware resources and their shared
usage blocking the execution. Too long processing time for a single frame and the
frame may need to be skipped or lag may be otherwise visible in the output. Some
correction algorithms require the images to be captured within strict time limits or
otherwise the corrections may fail.

The variation in the times, also called jitter, can be verified by tracking the arrival of
the frames at key points in the graph. Jitter in the image capture can be calculated
based on the timestamps from the source, while deviations in the rest of the pipeline
can be obtained from the difference between the source timestamp and the sink
timestamp. Jitter for separate vertices can be calculated in a similar fashion. All
these values can then be compared against the requirements and used to help in
pinpointing the bottlenecks in automated testing.

Also the latency of the pipeline can be significant. For example, in case of heavy
internal parallelization in the pipelines, the frame rate of the pipeline and the

4.2. Graph verification 40

variation in the processing times can be within the specification, but the delay for
one frame to reach the output from the input may be too high. In some use cases
it is important to receive the processed image as soon as possible, perhaps even
more important than the ability to provide a high average frame rate. The average
latency can be calculated from the timestamps already introduced with jitter.

In graph performance measurements the performance of the complete graph is
what matters in the end as that is the true performance seen by the user.
However, when investigating performance issues, it is extremely useful to know as
much details as possible about what exactly is causing the low performance
numbers. For this, the ability of being able to test the vertices separately is of
great help. The performance tests can be used as a tool for high level profiling.
Depending on the graph granularity, areas that need optimizing can be identified.

4.2.3 Stability

While having the graph function as is defined by the specification and being able
to provide the performance required by the use case are fundamental aspects of
verifying pipelines, they are of no use if the stability of the graphs is poor. Instability
may manifest itself in several ways. Output from the graphs may be sometimes
corrupted, some of the processing elements may fail to execute successfully, or in
case of privileged access, the whole system may crash.

One way to catch instability problems is to simply run the graph for long periods
and observe for any anomalies in the output or errors in the execution of the graph.
Bit exactness comparison can be performed for each frame against a reference image.
Since stability issues usually occur quite randomly, this method will not catch all
stability related issues, but is rather a crude way to spot the most major issues.

A common cause for instability is related to concurrency. While graphs with SDF
already improve the situation for writing thread safe software, concurrency is still a
typical source of instability. In those graphs that support concurrent execution, it
must be made sure that there are no issues related to the parallelism. For example,
separate processing elements may depend on the same hardware resources, which
if not handled properly may cause stability issues. Concurrency can be tested in a
similar way as the other stability issues by utilizing multiple concurrent graphs at
the same time or by modeling concurrent vertices in the graph. As was the case
with the non-parallel stability testing, issues may not reproduce all the time since
the concurrent issues are timing dependent.

4.3. Automating the test execution 41

While stability issues are not easy to catch, they are still an important part of the
graph verification. A common metric called MTBF (Mean Time Between Failures)
describes the predicted time between failures for a system. Based on the required
MTBF, appropriate stability testing is needed to ensure the value can be reached.

4.3 Automating the test execution

A part of efficiently utilizing the power of modularity of the graphs and the
implemented tests is to frequently execute the tests, preferably after each change
or release impacting any component in the domain. The burden of running the
tests should be as low as possible, while still being able to achieve substantial
coverage of the graphs and the specified use cases. Ideally there is one test set that
can be automatically executed and which reports to the user about any occurred
failures.

Some of the tests introduced in the previous sections can be made automatic
straightforwardly while others are more complicated. Automation of subjective
testing is infeasible, so only objective testing can be used. Bit exactness test
automation is straightforward. For each test case there needs to be a set of input
and output data against which the graph output is verified. Objective image
quality assessment can be automated in the same way as the bit-exactness testing.
Performance test results can be compared against the specified requirements. For
each graph there can be limits for frame rate, latency and jitter.

Stability testing is more complicated to automate for several reasons. First of all, the
methods described in section 4.2.3 require long periods of execution which takes a
substantial amount of time. Secondly, problems with stability may cause issues that
render the platform unusable, resulting in a total crash or an unknown state of the
device. Many different methods like hardware watchdog timers for recovering from
total system lockups can be used to provide valuable information over long periods
of testing. If stability related problems are noticed, then testing can be manually
continued to further investigate the problem based on the information received from
the automated test. The most important thing of automated stability testing is to
be aware of any problems so that they can be acted upon.

42

5. USAGE IN A PRODUCT DEVELOPMENT

PROJECT

Image processing graphs were used from the beginning of the software development
of a mobile camera product all the way until the completion of the project. Graph
verification was started alongside the first graph implementations as a set of tests
that were continuously developed and improved alongside the graphs. The graphs
that were used were not full end-to-end graphs but only contained most of the image
processing part, leaving the image capture and some amount of processing outside
the graphs.

Graphs were used as a part of a complex camera software stack. Vertices were
implemented using a processing unit consisting of fixed imaging function hardware
and multiple VLIW (Very Long Instruction Word) processors. The vertices and
utilities to assist graph verification were implemented for a CPU. A proprietary
C-language based cross-OS graph framework was used to implement the required
functionality to construct and execute graphs. The same graph implementations
were used in multiple operating systems, but the main development and verification
was done in an Android environment.

Graphs were used directly on top of the kernel driver interfacing with the hardware
similarly as was shown in figure 3.9b. The graphs were isolated so that they can
be constructed and executed without dependencies throughout the whole software
stack, requiring only the input data and some resources that are requested in a
generic way. This allowed graph verification to happen in isolation with only a light
test framework around it, removing the need for supporting the rest of the complex
stack above it for verification purposes.

Shift left was utilized in the development. Two separate pre-silicon development
paths were used from the beginning of the project, one to enable the development of
the software stack above the graphs, and the other to enable the verification of the
graphs and the implementations behind them. Both paths utilized the properties
introduced by the graphs. The following sections describe the details of the product
development.

5.1. Test framework 43

5.1 Test framework

For a software based graph framework, a software based test framework is a logical
choice. Using an already existing framework to implement the tests instead of
creating everything from scratch introduces a great advantage: all the required
tools are already available. Implementing tests is only about writing the tests, thus
not having to use resources to create the plumbing below. This saves both effort
and time.

Since the framework used for the graphs was cross-OS capable and used in multiple
operating systems, this was also a requirement for the tests. There should be no
need to replicate similar tests between different platforms if the software interface
below the tests does not change. Naturally, the test framework must also support
the programming language of the software to be tested, which was in this project
C.

The requirements for the test framework led to the choice of Google Test. Google
Test [19] is an open-source cross-platform C++ test framework maintained by
Google and distributed using a BSD-style (Berkeley Software Distribution) license
making the use of the test framework quite unrestricted. Since C++ supports
calling C code, the programming language used for Google Test is an excellent
choice, allowing the test developers to use more modern tools included in C++ to
support testing, and also to provide the possibility to test any other related code
components possibly implemented in C++.

5.2 Test implementation

Tests were implemented during the product development starting from a few cases
running in emulation and resulting in a comprehensive set of tests in the final
product. For each new graph and vertex, tests were made when the features were
integrated. After the integration, the tests were used for regression testing for
every change affecting graphs or implementations below them that were
introduced. A model for test driven vertex development was made available but
was not fully put into use during the project.

5.2.1 Functionality

Two types of functional tests were implemented. The first type was a basic functional
test that uses arbitrary data as a frame input for each available graph, constructs

5.2. Test implementation 44

the graphs according to the graph description on the target device and tries to
execute the graph for multiple cycles. The testing was done without any meaningful
input data, but was rather to verify that the graph can be created according to the
description and that the graph is actually executable on the target device.

The second type was a frame content test that operates on the actual frame data
providing additional features to the verification. The inclusion of frame content data
allowed the users to provide input frame data to the graphs under testing and to
verify the output data by using subjective and objective assessment. Additional file
source and file sink or display sink were added to the graphs under test to support
the frame content verification. The verification of graphs using image quality metrics
can be seen in figure 5.1. A reference algorithm is used to provide a reference output
for implementations. Both the graph implementation and the reference algorithm
is configured using same reference parameters. Also, the same reference input is
used in both. Vertex outputs are then compared against the reference outputs using
image quality metrics.

Ref
Input

v
i1

v
r1

v
i2

v
r2

v
r3

v
i3

Ref
Param IQM

Ref
Param

Ref
ParamIQM IQM

Implementation

Reference

Figure 5.1 Graph functional verification. Implemented graph vertices are verified using
IQM (Image Quality Metric) against a reference.

The functional tests were used to test the functionality of all the required graphs
and use cases. With a list of input and output resolution configurations for a given
graph that were needed to be supported, tests could be created for each of these
configurations. With the test set it was possible to verify that all the required

5.2. Test implementation 45

configurations could be executed and that the output image was meeting the
requirements.

5.2.2 Performance

Performance tests were implemented for the graphs that were specified to have
performance requirements. Tests were made so that for each graph under test, the
average frame rate and the minimum and maximum execution times are reported.
Tests were also implemented for each vertex in the graphs so that performance
profiling could be done with a finer granularity, allowing more focused benchmarking
and performance bottleneck pinpointing.

The performance test executes the graph under test for several times in a similar way
as the basic functional tests do using arbitrary input frame data. The average frame
rate is then calculated based on the amount of frames processed and the time the
execution took in total. Latency is reported based on timestamps that are captured
before and after the graph execution.

The purpose of the performance testing was to verify that the graphs reach the
specified performance requirements. The processing speed capabilities of the
graphs in relation to the clock frequency were verified to make sure they fulfill the
requirements. Another purpose of the performance testing was to verify that the
bandwidth of the graphs exceed the requirements.

5.2.3 Stability

Stability testing was enabled by allowing the amount of iterations in the basic
functional tests to be increased. Graphs could be then executed for long periods in
order to spot any instability. Support for detecting any corruption in the output
was also added by comparing the output data against the output of the first
iteration.

Concurrent testing was also introduced. Multiple instances of the same graphs
supporting concurrency were created and then executed in separate threads for long
periods of time. Tests using combinations of different graphs reflecting real use cases
were implemented. The amount of threads for each test was controllable to vary the
amount of parallelism.

5.3. Test environments 46

5.3 Test environments

Several different test environments were used during the development of the product.
Development began with low level software stubs providing only the APIs against
which higher level components were initially developed. Gradually development
was moved through several different development platforms eventually resulting as
a layer in a full software stack in the real device.

Testing was a part of the development starting already in the very earliest phase.
Functionality for the tests was added piece by piece as the overall complexity of the
software increased and more features became available.

5.3.1 Software stub

The initial platform for the beginning of the software development was to use low
level software stubs. These stubs were made in the kernel mode driver level to
provide the low level API for the vertices used in the graphs. These stubs did not
have any real functionality, but they were merely implemented to allow early
development of the components above the kernel driver interface in the stack.
Software stubs were used in a previous platform running Android and were
executing solely on CPU. A figure of the software stubs and their relation to the
graph framework and the application can be seen in figure 5.2.

Graph framework

Stub Stub

Application

Kernel space

User space

Figure 5.2 Software stubs in early development

Software stubs were of great help when the initial implementations of the graph
framework and the firmware dependent vertices were implemented. Basic tests
running graphs in isolation could be performed for the software, allowing the core
of the flow to be implemented and tested before any real functionality was
available. Running the tests with the stubs also served as a proof of concept for

5.3. Test environments 47

the graph verification. It was showed that it is possible to isolate the graphs and
their vertices and to verify them without any additional software components
unrelated to the testing on top of the graphs.

5.3.2 Software API emulation

An earlier product was used to support development before any actual hardware
was available. Low level APIs were implemented using the old hardware to behave
similarly as the APIs would in the real future hardware. This software had the
functionality required to build coarse versions of the basic graphs. The emulation
setup can be seen in figure 5.3.

Firmware

HW HW

Software

API emulation

Earlier platform

Figure 5.3 Software API emulation using an earlier product. Firmware performs the
emulation by mapping old hardware to mimic future hardware behavior.

In this environment, the basic use cases could be tested using real image data. This
provided the means to actually test the whole graph from end to end, and to develop
many features that would have otherwise been postponed by the lack of hardware.
Even though the actual implementations and hardware were not part of this testing,
the data flows could be implemented and tested.

The functionality of this development platform also enabled the developing of the
software layers above graphs long before than what could have been done in a
traditional schedule. Since all the graphs and the vertices within the graphs are
exposed via the same API, the implementation details do not considerably alter the
way software higher in the stack uses the graphs. Software API emulation was the
first platform in which the graphs were used all the way from the user application,
proving that the graph approach works in practice.

5.3. Test environments 48

Software API emulation was used as the primary platform to further develop the
higher level software on top of the graphs. Even though the available graphs were
very limited from the feature perspective, they provided a real-time platform with
working use cases on top of which a substantial amount of the generic software
implementation could be done. This allowed the verification of the actual hardware
in the pre-silicon environments to be left out for the more focused graph verification.

A working environment with usable graphs also allowed the development of the
verification tests. All types of tests were developed for this environment and utilized
as a proof-of-concept and a reference for the future environments. Because of the
generic handling of the graphs, the tests could then be utilized with little changes
for the future real use cases.

5.3.3 Hybrid system emulation

Both software stubs and the software API emulation were very useful to implement
the early data flows with the graphs. This allowed early development of the higher
level software stack. However, they provided very little value to the verification of
the actual graphs running on the target hardware.

Hybrid system emulation was the first environment that represented the actual
hardware. The environment consisted of a combined set of virtual platforms
implemented in software and actual hardware RTL (Register-Transfer Level)
implementations running in emulation. Hybrid emulation provided accuracy in the
components where it was needed. At the same time hybrid emulation allowed
faster execution through the more inaccurate software implementations for the less
important blocks. Figure 5.4 shows the hybrid system emulation setup.

In this environment, the main area of focus was to verify that the hardware and the
firmware running on the hardware was working as was expected in a system-wide
environment. Real hardware, firmware and software could be executed all the way
up to the graphs. Because of the software API emulation that allowed the higher
layer software development, it was not considered necessary to introduce those to
the emulation. Functional verification of the graphs was deemed sufficient instead.

The major drawback of the system emulation environment is that in order to be able
to emulate the complex hardware, large amounts of computing power is required.
Even with the presence of dedicated servers and different accelerators to carry out
this job, the time it takes to perform even small tasks is long. On the other hand, if

5.3. Test environments 49

Firmware

SW SW

Software

Hybrid emulationSW RTL

RTLRTL

Figure 5.4 Hybrid system emulation using both software and RTL to emulate the behavior
of the hardware.

the accuracy would be lowered and the speed increased, emulation would loose its
point and the verification results would be indecisive.

Due to the time limitations, it made sense to run as small tasks as possible with the
hybrid emulation environment. Being able to execute only a single vertex provided
the means to do this, while being still able to verify that the output of the vertex is
what was expected. Both subjective assessment and bit-exactness comparison were
performed successfully. Performance and stability tests were out of the question in
this environment.

5.3.4 Host PC and FPGA

While the aim of the hybrid system level emulation is to provide a whole emulated
system that can be used in low level software development and verification, also
a more focused approach can be used. One device that can be used in hardware
emulation is an FPGA. FPGAs can be programmed to resemble the target silicon
and used in the development similarly as the real hardware.

FPGAs are faster than software based simulation. They are, however, slower than
the real hardware. Even if the speed of the FPGAs used in prototyping is not
suitable for real time applications, they can be used for development in a reasonable
way without hours of waiting for each iteration of software execution to complete.

5.3. Test environments 50

In this project, FPGAs with the relevant blocks of the hardware being present
were used for prototyping. The FPGAs were used in an environment where the
device was connected to a host PC running a standard Linux distribution.
Software was executed in the PC while the FPGA was used to provide the
hardware implementations required by the vertices making it a hybrid emulation
environment. Figure 5.5 describes the FPGA emulation setup.

src v
1

v
2

v
3 snk

Linux PC

HW HW

FPGA

...

Figure 5.5 Hybrid FPGA emulation. Graph framework and test related vertices are
running on a generic Linux PC. FPGA is used to emulate hardware that the graph vertices
are implemented for.

Since the framework used was cross-OS capable, it was possible to use the graph
implementations on the host PC’s generic Linux distribution. All the available tools
and utilities from the distribution were available, making it an efficient platform to
do development and verification on. Since the higher level software development was
still effectively ongoing on the software API emulation layer, only graph verification
was done with the FPGA setup.

The FPGA environment allowed us to run all the required use cases on a
near-realtime device. Many different tests could be enabled on the FPGA.
Functional tests with subjective image quality assessment and bit-exactness testing
could be performed, initial performance tests could be executed and the
performance of different parts of the graphs profiled, and even some stability
testing could be done. In fact, the FPGA setup was an environment where the
true powers of the graphs really started to show.

5.3.5 Actual device

While all the previous environments provide the means to develop and test parts of
the stack, eventually it all comes together in the actual device. This is where the

5.3. Test environments 51

whole software stack is put together, and everything is supposed to work together.
Even if the core functionality has been tested in the earlier environments, there are
always differences in comparison to the real device. The speed of the hardware is now
much faster, potentially revealing timing related issues, or there may be hardware
changes or bugs when compared to earlier revisions which are not known in advance
but manifest themselves now.

Enabling the features on the actual real device starts from the low level software,
gradually progressing step by step higher in the stack until the complete software
stack is enabled and functional. The testing done in the earlier development
environments has already proven the functionality of the different vertices and the
graphs consisting of these elements. This provides the developers a known baseline
that should be achievable.

The same tests can obviously be executed on the real device as well. Using the
tests working in the previous environments to begin with, any issues related to the
untested parts of the software stack can be ruled out. Also, since the graphs are
an integral part of the rest of the software stack, no functionality can be achieved
without those working.

The integration began from the low level software advancing step by step to the
graphs. The verification that was done in the previous environments had been
already used to solve the issues that were found during the development phase.
All the tests that were able to pass in the FPGA environment were automatically
enabled and passing on the real device. This in turn enabled the final adaptation of
the use cases.

After the software stack was properly running on the device, the tests were used to
drive the development of the current features and the integration of new ones. Any
tests that were already passing were included in regression testing for all the later
changes. Tests were implemented in a test-driven way to integrate new features.

With the real silicon, also the performance testing properly began. Estimations
based on incomplete development platform results were no longer required. On
silicon, it could be measured how the graphs were performing, and separate
vertices could be benchmarked to find any bottlenecks in the graph. Stability
testing could at this point also be performed properly. Longer time periods of
testing could be performed than for example in the FPGA environment, as the
silicon was significantly faster and more stable.

52

6. FUTURE POSSIBILITIES

Graph usage in the image processing system was a new concept for us that saw its
first use in this project. Because of the new concept, there was no earlier foundation
of verification available in this level. The usage of the test framework and the
implementation of all the tests were done during the project. With the test assets
that were built during the project and the knowledge obtained from graph usage
and verification, more advanced utilization of graphs and their verification could
be performed in future projects starting already in the early phases of the product
development.

One useful feature would be the automation of the frame content tests using objective
image quality assessment. A set of test images could be used and the output from the
graph would be automatically compared to a reference image using one or multiple
objective assessment algorithms. In addition to being very useful in developing the
vertex implementations, this would be especially useful in continuous integration,
where changes to either software or firmware are tested. For each change, these
tests could be automatically executed, and no human interfering would be required
to inspect the image quality as long as no threshold value is exceeded.

Another improvement would be to use a finer granularity in the graphs. In this
project, the granularity of the graphs was rather coarse. The coarse granularity
was used in order to achieve performance improvements by allowing
implementation’s internal communication and dataflow to be platform specific
without the need of exposing the intermediate data to software. However, it would
be possible to combine the use of a finer granularity graphs and the platform
specific performance optimizations by allowing the vertices to communicate and
transfer data in an implementation defined way. This would still retain the
modularity and the possibility of reorganizing the vertices. Also, single vertex
verification could still be performed by exposing the data in a generic way when
the testing requires it.

The algorithm development could also benefit from the graphs. In this project,
algorithms and the implementations based on those algorithms were both

6. Future possibilities 53

developed separately in different environments. Algorithms were verified using
different tools that were not part of the graph verification. With the groundwork
for graph verification now done, the algorithm development could start utilizing
the graphs. This would allow the algorithm development to benefit from the test
assets introduced with the graph verification. Since the implementation behind the
vertices is not restricted, algorithms using any development platform could be
developed and tested as a part of the rest of the graph. This could allow for
example objective image quality assessment to happen automatically with the
addition of subjective evaluation by the developer. Also, it would bring the
algorithms closer to the actual product, easing the integration and lowering the
risk in the future.

54

7. CONCLUSIONS

This thesis presented an approach to handle the ever-increasing issues with
modern image processing systems. Time to market demands placed on the
products along with the ever-increasing complexity of the systems put strain on
the development process. Graphs can be used to handle and hide the complexity
while at the same time being modular to allow efficient shift left development and
verification of separate processing elements. Graph verification provides the means
to verify the functionality, performance and stability of the graphs and their
vertices in isolation.

Graphs were used in a real life product development project with success. Graph
verification began in the very beginning of the project continuing all the way until the
finalized product. Tests were implemented when new features were integrated and
used for regression testing after that. Shift left was exercised by testing the graphs
in many different pre-silicon environments without the burden of the whole complex
software stack. Modularity of the graphs was used to test vertices in isolation.
Functional, performance and stability tests were implemented and used.

Graphs and their verification provided several advantages to the product
development in comparison to a traditional system that directly accesses the
underlying implementations. With graphs, the complex functionality could be
isolated into an individual entity. This allowed the verification of the graph as a
whole in isolation without the rest of the software stack in an early phase of the
product development. On the other hand, the modularity of the graphs allowed
access to individual vertices in contrast to a single black box. This permitted finer
granularity verification which was especially useful in the integration of new
features and graph troubleshooting. Modularity was also used to allow test specific
features to be integrated to the graphs. This allowed more advanced verification
tightly integrated with the graphs.

Functional tests were successfully used to identify issues with new features that
were to be integrated and to fix those in the early stages of the development.
Functional tests were also used for regression testing. This protected efficiently

7. Conclusions 55

against faulty changes being introduced to the implementations. Performance
bottlenecks in the graphs were located and improved with the help of the
performance tests. Performance tests were also used to monitor the overall graph
performance during the development process. Stability testing was performed and
unstable vertices were fixed whenever those were found.

In the future, finer granularity graphs could be used to allow more fine-grained
development and verification of the vertices. This would further increase the
possibilities of utilizing the graph modularity. Also, more advanced image quality
metrics could be integrated. Combined with a fine-grained graph, this would allow
more efficient and isolated development of the vertices.

56

BIBLIOGRAPHY

[1] 3A Modes and State Transition, Android Open Source Project. [Online].
Available: https://source.android.com/devices/camera/camera3_3Amodes.
html

[2] H.264 video compression standard. New possibilities within video surveillance.,
AXIS Communications. [Online]. Available: http://www.axis.com/files/
whitepaper/wp_h264_31669_en_0803_lo.pdf

[3] S. Battiato, A. Bruna, G. Messina, and G. Puglisi, Image Processing for
Embedded Devices, ser. Applied digital imaging. Bentham Science Publishers,
2010.

[4] B. Bayer, “Color imaging array,” Patent, July 20, 1976, US Patent 3,971,065.
[Online]. Available: http://www.google.com/patents/US3971065

[5] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow modeling for
DSP systems,” Signal Processing, IEEE Transactions on, vol. 49, no. 10, pp.
2408–2421, Oct 2001.

[6] C. Biber, S. Ellin, E. Shenk, and J. Stempeck, “The polaroid ultrasonic ranging
system,” in Audio Engineering Society Convention 67, Oct 1980. [Online].
Available: http://www.aes.org/e-lib/browse.cfm?elib=3680

[7] J. Bondy and U. Murty, Graph Theory With Applications. Elsevier Science
Publishing Co., Inc., 1976, 0-444-19451-7.

[8] S. C. Carlson, “graph theory,” Encyclopæedia Britannica, 2016, Available: http:
//www.britannica.com/topic/graph-theory.

[9] D. M. Chandler and S. S. Hemami, “VSNR: A wavelet-based visual signal-to-
noise ratio for natural images,” IEEE Transactions on Image Processing, vol. 16,
no. 9, pp. 2284–2298, Sept 2007.

[10] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip heterogeneous
computing: Does the future include custom logic, FPGAs, and GPGPUs?”
in Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International
Symposium on, Dec 2010, pp. 225–236.

[11] E. Daka and G. Fraser, “A survey on unit testing practices and problems,”
in Software Reliability Engineering (ISSRE), 2014 IEEE 25th International
Symposium on, Nov 2014, pp. 201–211.

https://source.android.com/devices/camera/camera3_3Amodes.html
https://source.android.com/devices/camera/camera3_3Amodes.html
http://www.axis.com/files/whitepaper/wp_h264_31669_en_0803_lo.pdf
http://www.axis.com/files/whitepaper/wp_h264_31669_en_0803_lo.pdf
http://www.google.com/patents/US3971065
http://www.aes.org/e-lib/browse.cfm?elib=3680
http://www.britannica.com/topic/graph-theory
http://www.britannica.com/topic/graph-theory

BIBLIOGRAPHY 57

[12] “Image sensor architectures for digital cinematography,” DALSA Digital
Cinema, Available: http://www.teledynedalsa.com/public/corp/PDFs/
papers/Image_sensor_Architecture_Whitepaper_Digital_Cinema_
00218-00_03-70.pdf.

[13] R. Diestel, Graph Theory. New York: Springer-Verlag, 2000, 0-387-95014-1.

[14] E. Dumic, M. Mustra, S. Grgic, and G. Gvozden, “Image quality of 4:2:2
and 4:2:0 chroma subsampling formats,” in ELMAR, 2009. ELMAR ’09.
International Symposium, Sept 2009, pp. 19–24.

[15] Y. Fang, “Application-specific visual quality assessment: Current status
and future trends,” in Proceedings of the 7th International Conference
on Internet Multimedia Computing and Service, ser. ICIMCS ’15. New
York, NY, USA: ACM, 2015, pp. 87:1–87:4. [Online]. Available: http:
//doi.acm.org/10.1145/2808492.2808579

[16] “YUV pixel formats,” fourcc.org. [Online]. Available: http://fourcc.org/yuv.
php

[17] X3 Technology, Direct Image Sensors, Foveon. [Online]. Available: http:
//www.foveon.com/article.php?a=67

[18] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design: Modeling, Synthesis and Verification, 1st ed. Springer Publishing
Company, Incorporated, 2009, pp. 255-285.

[19] Google Test, Google. [Online]. Available: https://github.com/google/googletest

[20] K. Gottfried and S. Peter, “A method and apparatus of contrast-dependent
sharp focussing,” Sept. 19 1972, US Patent 3,691,922. [Online]. Available:
http://www.google.com/patents/US3691922

[21] gstreamer, “open source multimedia framework.” [Online]. Available: http:
//gstreamer.freedesktop.org/

[22] B. Gunturk et al., “Demosaicking: color filter array interpolation,” Signal
Processing Magazine, IEEE, vol. 22, no. 1, pp. 44–54, Jan 2005.

[23] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A
Quantitative Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011, appendix A.

[24] HSA Platform System Architecture Specification, HSA Foundation, 2015,
"Version 1.0". [Online]. Available: http://www.hsafoundation.com/standards/

http://www.teledynedalsa.com/public/corp/PDFs/papers/Image_sensor_Architecture_Whitepaper_Digital_Cinema_00218-00_03-70.pdf
http://www.teledynedalsa.com/public/corp/PDFs/papers/Image_sensor_Architecture_Whitepaper_Digital_Cinema_00218-00_03-70.pdf
http://www.teledynedalsa.com/public/corp/PDFs/papers/Image_sensor_Architecture_Whitepaper_Digital_Cinema_00218-00_03-70.pdf
http://doi.acm.org/10.1145/2808492.2808579
http://doi.acm.org/10.1145/2808492.2808579
http://fourcc.org/yuv.php
http://fourcc.org/yuv.php
http://www.foveon.com/article.php?a=67
http://www.foveon.com/article.php?a=67
https://github.com/google/googletest
http://www.google.com/patents/US3691922
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://www.hsafoundation.com/standards/

BIBLIOGRAPHY 58

[25] D. Hubel, Eye, Brain, and Vision. Scientific American Library, 1995. [Online].
Available: http://hubel.med.harvard.edu/book/bcontex.htm

[26] “Subjective video quality assessment methods for multimedia applications,”
International Telecommunication Union, Apr 2008, recommendation ITU-T
P.910.

[27] K. Jack, Video Demystified: A Handbook for the Digital Engineer, 5th Edition,
5th ed. Newton, MA, USA: Newnes, 2007.

[28] A. A. Jerraya, “Long term trends for embedded system design,” in Digital
System Design, 2004. DSD 2004. Euromicro Symposium on, Aug 2004, pp.
20–26.

[29] S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High dynamic range
video,” ACM Trans. Graph., vol. 22, no. 3, pp. 319–325, July 2003. [Online].
Available: http://doi.acm.org/10.1145/882262.882270

[30] The OpenCL Specification, The Khronos Group Inc., "Version 2.1". [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf

[31] OpenMAX, The Standard for Media Library Portability, The Khronos Group
Inc.

[32] OpenMAX Development Layer API Specification, The Khronos Group Inc.,
2007, version 1.0.2.

[33] OpenMAX Integration Layer Application Programming Interface Specification,
The Khronos Group Inc., 2008, version 1.1.2.0.

[34] OpenMAX Application Layer Application Programming Interface Specification,
The Khronos Group Inc., 2011, version 1.1.

[35] The OpenVX Specification, The Khronos Group Inc., 2014, version 1.0.1.

[36] J. Korneliussen and K. Hirakawa, “Camera processing with chromatic
aberration,” Image Processing, IEEE Transactions on, vol. 23, no. 10, pp. 4539–
4552, Oct 2014.

[37] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE,
vol. 75, no. 9, pp. 1235–1245, Sept 1987.

[38] J.-S. Lee et al., “An advanced video camera system with robust AF, AE, and
AWB control,” Consumer Electronics, IEEE Transactions on, vol. 47, no. 3,
pp. 694–699, Aug 2001.

http://hubel.med.harvard.edu/book/bcontex.htm
http://doi.acm.org/10.1145/882262.882270
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf

BIBLIOGRAPHY 59

[39] Motion JPEG 2000 File Format, Library of Congress, Digital
Preservation. [Online]. Available: http://www.digitalpreservation.gov/formats/
fdd/fdd000127.shtml

[40] W. Lin and C. C. Jay Kuo, “Perceptual visual quality metrics: A survey,”
J. Vis. Comun. Image Represent., vol. 22, no. 4, pp. 297–312, May 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.jvcir.2011.01.005

[41] Linux Media Infrastructure API, LinuxTV Developers. [Online]. Available:
https://linuxtv.org/downloads/v4l-dvb-apis/

[42] R. Lukac, Single-Sensor Imaging: Methods and Applications for Digital
Cameras, ser. Image Processing Series. CRC Press, 2008.

[43] Introduction to DirectShow Application Programming, Microsoft Corporation.
[Online]. Available: https://msdn.microsoft.com/en-us/library/ms786509(VS.
85).aspx

[44] L. Mijatovic, H. Dean, and M. Rozic, “Implementation of algorithm for
detection and correction of defective pixels in FPGA,” in MIPRO, 2012
Proceedings of the 35th International Convention, May 2012, pp. 1731–1735.

[45] P. Mohammadi, A. Ebrahimi-Moghadam, and S. Shirani, “Subjective and
objective quality assessment of image: A survey,” CoRR, vol. abs/1406.7799,
2014. [Online]. Available: http://arxiv.org/abs/1406.7799

[46] “Understanding MPEG-4: Technologies, advantages and markets,” The
MPEG Industry Forum. [Online]. Available: https://www1.ethz.ch/replay/
docs/whitepaper_mpegif.pdf

[47] J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras.
Boca Raton, FL, USA: CRC Press, Inc., 2005.

[48] R. Ramanath, W. Snyder, Y. Yoo, and M. Drew, “Color image processing
pipeline,” Signal Processing Magazine, IEEE, vol. 22, no. 1, pp. 34–43, Jan
2005.

[49] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE
Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, Feb 2006.

[50] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2014, pp. 4-1 - 4-16.

http://www.digitalpreservation.gov/formats/fdd/fdd000127.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000127.shtml
http://dx.doi.org/10.1016/j.jvcir.2011.01.005
https://linuxtv.org/downloads/v4l-dvb-apis/
https://msdn.microsoft.com/en-us/library/ms786509(VS.85).aspx
https://msdn.microsoft.com/en-us/library/ms786509(VS.85).aspx
http://arxiv.org/abs/1406.7799
https://www1.ethz.ch/replay/docs/whitepaper_mpegif.pdf
https://www1.ethz.ch/replay/docs/whitepaper_mpegif.pdf

BIBLIOGRAPHY 60

[51] N. Stauffer, “Range determination system,” Jan. 22 1980, US Patent 4,185,191.
[Online]. Available: http://www.google.com/patents/US4185191

[52] G. Sullivan and S. Estrop, Recommended 8-Bit YUV Formats
for Video Rendering, Microsoft Corporation, 2002, updated 2008.
[Online]. Available: https://msdn.microsoft.com/en-us/library/windows/
desktop/dd206750(v=vs.85).aspx

[53] J. Teich, “Hardware/software codesign: The past, the present, and predicting
the future,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp.
1411–1430, May 2012.

[54] G. Wallace, “The JPEG still picture compression standard,” Consumer
Electronics, IEEE Transactions on, vol. 38, no. 1, pp. xviii–xxxiv, Feb 1992.

[55] Z. Wang, “Applications of objective image quality assessment methods
[applications corner],” IEEE Signal Processing Magazine, vol. 28, no. 6, pp.
137–142, Nov 2011.

[56] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look
at signal fidelity measures,” IEEE Signal Processing Magazine, vol. 26, no. 1,
pp. 98–117, Jan 2009.

[57] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[58] Z. Wang, H. R. Sheikh, and A. C. Bovik, “Objective video quality assessment,”
in In the Handbook of Video Databases: Design and Applications. CRC Press,
2003, pp. 1041–1078.

[59] Y. Yoshida, S. Shinohara, H. Ikeda, K. Tada, H. Yoshida, K. Nishide, and
M. Sumi, “Control of lens position in auto-focus cameras using semiconductor
laser range finder,” in Circuits and Systems, 1991., Proceedings of the 34th
Midwest Symposium on, May 1991, pp. 395–398 vol.1.

[60] Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image
vignetting correction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, pp. 2243–2256, Dec 2009.

[61] D. Zorin and A. H. Barr, “Correction of geometric perceptual distortions
in pictures,” in Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’95. New York, NY,

http://www.google.com/patents/US4185191
https://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx

Bibliography 61

USA: ACM, 1995, pp. 257–264. [Online]. Available: http://doi.acm.org/10.
1145/218380.218449

http://doi.acm.org/10.1145/218380.218449
http://doi.acm.org/10.1145/218380.218449

	Introduction
	Image capture pipeline
	Image quality
	Image sensors
	3A
	Auto exposure
	Auto focus
	Auto white-balance

	Preprocessing
	Demosaicking
	Postprocessing
	Format conversion
	YUV
	Compression

	Graphs
	Basic graph theory
	Directed graphs
	Data flow
	Software frameworks
	OpenMAX
	OpenVX
	Gstreamer
	DirectShow
	V4L2

	Graph implementation
	Graphs in an image processing system

	Verification of image processing graphs
	Utilizing the modularity of graphs
	Graph verification
	Functionality
	Performance
	Stability

	Automating the test execution

	Usage in a product development project
	Test framework
	Test implementation
	Functionality
	Performance
	Stability

	Test environments
	Software stub
	Software API emulation
	Hybrid system emulation
	Host PC and FPGA
	Actual device

	Future possibilities
	Conclusions
	Bibliography

