
TEEMU PÄÄKKÖNEN
HUMAN INTERACTION SIMULATION SOFTWARE
FOR INFORMATION RETRIEVAL RESEARCH

Master of Science thesis

Examiner: Prof. Tommi Mikkonen

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 13th January 2016

i

ABSTRACT

TEEMU PÄÄKKÖNEN: Human Interaction Simulation Software
for Information Retrieval Research
Tampere University of Technology

Master of Science thesis, 75 pages

April 2016

Master's Degree Programme in Information Technology

Major: Software Engineering

Examiner: Prof. Tommi Mikkonen

Keywords: Information Retrieval, simulator, stochastic, Monte Carlo

The concept of Information Retrieval deals with the obtaining of information from

information sources, such as libraries, archives, databases, or the internet. It is a

widely studied subject. Interactive Information Retrieval is the process where users

interact with a search engine, using its interface to make queries in order to �nd

documents relevant to their information needs.

Interactive Information Retrieval experimentation with real human users is costly,

requiring time and money, and often runs into problems stemming from the use

of human subjects. In lieu of human users, the experiments can be conducted via

simulation. Simulations have been widely used in Information Retrieval research,

but none of the previous simulators have been useful for generic research for various

reasons.

In this thesis, due to the unavailability of generic purpose simulators, a project to

create an Interactive Information Retrieval simulator software was carried out. The

software was designed to support generic user modelling via a purpose-built language

that describes the user model. The language was designed to support nearly any

kind of user model that may be used in an Information Retrieval context.

The �nished software was evaluated by running experiments with an established user

model that has been previously used in Information Retrieval studies. The software

was found to be able to replicate the results of the human users without signi�cant

statistical di�erence. However, the exact behaviour of the human users could not be

replicated very accurately. Nonetheless, the software was found to serve its purpose

well, being a useful tool for Information Retrieval research.

ii

TIIVISTELMÄ

TEEMU PÄÄKKÖNEN: Käyttäjävuorovaikutuksen Simulointisovellus Tiedonhaun
Tutkimukseen
Tampereen teknillinen yliopisto

Diplomityö, 75 sivua

Huhtikuu 2016

Tietotekniikan koulutusohjelma

Pääaine: Ohjelmistotuotanto

Tarkastaja: Prof. Tommi Mikkonen

Avainsanat: tiedonhaku, simulaattori, stokastinen, Monte Carlo

Tiedonhaku (engl. Information Retrieval) käsittelee tiedon hankkimista erilaisista

tietolähteistä, kuten kirjastoista, arkistoista, tietokannoista tai internetistä. Tie-

donhaku on laajasti tutkittu aihe. Vuorovaikutteinen tiedonhaku (engl. Interactive

Information Retrieval) (IIR) on prosesssi, jossa käyttäjät ovat vuorovaikutuksessa

hakukoneen kanssa, käyttäen sen käyttöliittymää kyselyden tekemiseen löytääkseen

tiedon tarpeensa täyttäviä dokumentteja.

IIR-kokeiden järjestäminen vaatii normaalisti koehenkilöiden käyttöä, mikä on kallis-

ta ja vaatii aikaa sekä rahaa. Ihmisten sijaan, kokeet on kuitenkin mahdollista suorit-

taa simuloimalla. Simulaatiota on käytetty runsaasti tiedonhaun tutkimuksessa,

mutta useista syistä johtuen simulaatiosovellukset eivät ole olleet käyttökelpoisia

yleiseen tutkimukseen.

Tässä diplomityössä toteutettiin projekti IIR-simulaatiosovelluksen tuottamiseksi,

koska käyttökelpoisia simulaattoreita ei ollut saatavilla. Sovellus suunniteltiin niin,

että se tukee geneeristä käyttäjämallinnusta tarkoitukseen tehdyn käyttäjämallin

kuvauskielen avulla. Kieli suunniteltiin niin, että se tukee lähes mitä tahansa

tiedonhaun tutkimuksessa mahdollisesti käytettävää käyttäjämallia.

Valmiin sovelluksen käyttökelpoisuutta arvioitiin suorittamalla kokeita eräällä ylei-

sellä käyttäjämallilla, joka on laajasti käytetty tiedonhaun tutkimuksessa. Sovel-

luksen todettiin pystyvän toistamaan todellisten käyttäjien tuottamat tulokset il-

man merkittävää tilastollista poikkeavuutta. Ihmisten todellista vuorovaikutusta ei

kuitenkaan pystytty tarkasti toistamaan. Siitäkin huolimatta sovelluksen todettiin

soveltuvan hyvin käyttötarkoitukseensa: tiedonhaun tutkimukseen.

iii

ALKUSANAT

Evil begins when you begin to

treat people as things

Ti�any Aching

Terry Pratchett

Tämä diplomityö on vuosikausia hauduteltu, pitkään ja hartaasti kypsytetty, iloa,

raivoa ja turhautumista aiheuttanut iisakinkirkko. Kirjoitustyö ei olisi takuuvar-

masti milloinkaan valmistunut ellei TTY olisi pakottanut vanhoista tutkinto-ohjel-

mista pois siirtymistä lukuvuoden 2015�2016 loppuun menessä. Näin ollen suu-

rin kiitos kannustuksesta kuuluu TTY:n tutkintojen suunnittelijoille, jotka jaksavat

uupumatta solmia opintosuunnitelmat uusiin umpisolmuihin, vuodesta toiseen.

Työ itse käsittelee käyttäjäinteraktion simulointia, tarkoituksenaan auttaa tutkijoita

tuottamaan ihmisten käyttöön paremmin taipuvia järjestelmiä. Paradoksaalisesti,

tätä siis yritetään saavuttaa korvaamalla ihmiset ohjelmalla. Ovathan oikeat ihmiset

toki vain tutkimustyön esteenä. Pahuus alkaa koodista.

Haluaisin esittää pahoittelut läheisille, ystäville, työtovereille, sekä kaikille muille

jotka ovat tarkoituksellisesti, tahattomasti tai tyhmyyttään joutuneet osaksi tämän

diplomityön luontiprosessia. Olette kestäneet luomisen tuskaani paremmin kuin

itse pystyisin ikinä. Toivottavasti mielen- ja ruumiinterveytenne on sen kestänyt.

Omastani en enää mene vannomaan.

On esitetty väite että tiedon hakeminen epäonnistuu aina, paitsi vahingossa. Ehkä

tekemästäni työstä on apua väitteen kumoamiseen. Softan tekeminen kuitenkin

onnistuu joskus. Vahingossa.

Tampere, 17.3.2016

Teemu Pääkkönen

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Simulating information retrieval . 3

2.1 Information retrieval terminology . 3

2.2 How information retrieval systems work 5

2.2.1 Indexing . 5

2.2.2 Retrieval models . 6

2.2.3 Scoring . 7

2.3 Evaluating the performance of IR systems and users 8

2.3.1 Evaluation using relevance-based metrics 9

2.3.2 Assessing ranking quality . 10

2.3.3 Precision-based metrics . 10

2.3.4 Cumulated Gain . 11

2.3.5 Session metrics . 12

2.4 User modelling and simulation . 12

2.4.1 Criteria for a valid user model 13

2.4.2 Techniques for creating a user model 13

2.4.3 Simulation as a state machine . 14

2.4.4 Computing results using Monte Carlo methods 15

3. Simulator design . 16

3.1 System overview . 16

3.2 Formal de�nition of the IR automaton 17

3.3 Simulation cycle . 18

3.4 An example IR simulation . 19

3.5 Applying the formal model to software 23

3.6 Object model . 25

v

3.7 Input . 27

3.7.1 TREC topic �les . 28

3.7.2 Indri query �les . 29

3.7.3 TREC result �les . 30

3.7.4 TREC relevance �les . 30

3.7.5 Sessions . 31

3.8 Output . 32

3.9 Con�guration . 35

4. Simulator implementation . 38

4.1 Technology considerations . 38

4.2 Simulation description language . 40

4.2.1 Technology selection . 40

4.2.2 Development . 41

4.2.3 Features . 42

4.3 Using third-party libraries in Python 45

4.4 Writing programming interfaces in Python 46

4.5 Re-usable code . 48

4.6 Overall architecture . 49

4.7 Parsing input �les . 50

4.8 Parsing the con�guration �le . 51

4.9 Parsing the simulation description �le 51

4.10 Callback plug-ins . 51

4.11 Running a simulation . 53

4.12 Recording the simulation runs . 54

4.13 Calculating statistics . 55

4.14 Drawing �gures . 56

4.15 Distribution . 56

5. Evaluation . 59

vi

5.1 Testing the ability to predict behaviour 59

5.1.1 User model evaluation . 59

5.1.2 Case study . 60

5.2 On the software architecture . 64

5.3 Research done using the software . 65

5.4 On the simulation description language 66

5.5 Future work . 67

6. Conclusions . 70

Bibliography . 72

vii

LIST OF ABBREVIATIONS AND SYMBOLS

CG Cumulated Gain

CLI Command Line Interface

DCG Discounted Cumulated Gain

EPIC Executive Process-Interactive Control

GOMS Goals, Operators, Methods and Selection rules

IDF Inverse Document Frequency

IIR Interactive Information Retrieval

IR Information Retrieval

MAP Mean Average Precision

nDCG Normalised Discounted Cumulated Gain

NIST National Institute of Standards and Technology

OS Operating System

SCXML State Chart XML

SERP Search Engine Results Page

TF Term Frequency

TREC Text Retrieval Conference

W3C World Wide Web Consortium

WWW World Wide Web

∆X transition set of IR simulator automaton

δ automaton transition function

Σ set of automaton input symbols

A accumulator

C set of conditions in IR simulator automaton

c condition in IR simulator automaton

E set of events in IR simulator automaton

F set of �nal automaton states

f function

P set of transition targets in IR simulator automaton

Q set of automaton states

q automaton state

q0 initial state of automaton

R subset of U

viii

r result document in IR simulator automaton

T sequence of transitions in IR simulator automaton

t transition in IR simulator automaton

U set of result document sets in IR simulator automaton

u result document set in IR simulator automaton

V probability function in IR simulator automaton

X random variable, input of IR simulator automaton

x random value for X

1

1. INTRODUCTION

Information Retrieval (IR) is a concept of information science that, according to

Baeza-Yates and Ribeiro-Neto (2011), encompasses the �representation, storage, or-

ganisation of, and access to information items�. With the notion of information items

they refer to things such as documents, web pages, catalogues, records. Manning et

al. (2009) add that IR often focuses on �nding unstructured documents from within

large collections. The concept revolves around the idea of obtaining information

pertaining to an information need.

Baeza-Yates and Ribeiro-Neto (2011) note that IR is actually an area of computer

science since it deals with computer systems. Information retrieval, however, has its

roots in searching library card catalogues, and therefore does not concern itself on

whether the document collections are digital or physical.

The notion of Interactive Information Retrieval (IIR) refers to the process of search

engine usage where users interact with the system by actions such as issuing queries,

scanning the result list, reading the result documents and assessing them. In addi-

tion to the search interface, the concept also deals with other surrounding aspects,

such as the social context and the setting. For example, using a typical web search

engine to �nd information can be considered an instance of an IIR process. (Ingw-

ersen and Järvelin 2005)

IIR research can be executed through multiple types of experiments. Di�erent types

include the observation of human subjects performing real or simulated search tasks,

and laboratory research where no human subjects are used. For observational exper-

iments, the researcher needs to set up an environment where searchers can interact

with a search engine in a controlled and supervised environment. They are given

a task to complete, and their actions are recorded. Due to the need of human

subjects, experiments can often be expensive and time consuming. The issues of

learning e�ects, fatigue, and the scarcity of available subjects also present hurdles

for IIR research. (Azzopardi et al. 2011)

1. Introduction 2

In order to skirt the obstacles stemming from human aspects, a simulator software

that models a human searcher's behaviour can be utilised (Azzopardi et al. 2011).

While many experiments have used software-based simulators before, the software

has either not been available for others to use, or has not been generic enough for

general experimentation. Therefore, a project for creating a new generic IR simu-

lator software had to be undertaken, with the aim of allowing researchers to carry

out experiments that revolve around human interaction with search engines. It was

postulated that a good enough simulation would produce results indistinguishable

from actual human subjects, eliminating the need for actual humans entirely, and

in the process also accelerating the speed of new research.

The objective of this thesis is to produce a simulator software for the research of

Interactive Information Retrieval. The purpose of the software is to simulate the

interaction between a user and an Information Retrieval system. The goal is to

create a simulator software that can run simulations with arbitrary user models,

producing results and behaviour that accurately replicate the actions of a human

user.

The scope of this thesis is limited to building software that deals with simulating

user interaction with interactive IR systems that �nd digital documents using key-

words input by the user (a query) and return a ranked list of results. For example,

simulating the interaction with web search engines, such as Google, falls within the

scope, while simulating structured searching, such as making SQL queries, does not.

Chapter 2 outlines some basic background information on the subjects of IR, simu-

lation and user modelling. Chapter 3 explains how the software was designed, while

Chapter 4 documents the details of implementing it. Finally, the software and the

process of creating it are evaluated in Chapter 5, and in Chapter 6 the thesis is

wrapped up and conclusions made.

3

2. SIMULATING INFORMATION RETRIEVAL

Simulating human behaviour is a widely studied subject. In order to successfully

simulate a user of a system, the behaviour under analysis has to be reduced into a

user model that describes how the user interacts with the system. The user model

must also describe, or include as a separate entity, a model of the system being used.

This user model is then ingrained into the simulator software that then operates on

it, producing data that can then be compared to real users. (Azzopardi et al. 2011)

From the very beginning, it was decided that the software should allow arbitrary

user models, making it easy to experiment with any aspect of user behaviour. The

main question was whether it would be possible to create such a software that, when

given a good enough model, would predict real-life behaviour so accurately that it

could be used for IIR research.

This chapter discusses how users of Information Retrieval systems can be simulated.

Section 2.1 gives an overview of general IR terminology, Section 2.2 explains IR

systems' inner workings from a theoretical viewpoint, Section 2.3 then shows how

the performance of IR system users can be evaluated, and Section 2.4 discloses how

user models can be created and how to simulate human behaviour.

2.1 Information retrieval terminology

Terminology related to IR is used throughout this thesis. Some of the IR terminol-

ogy is explained here for later reference. De�nitions are given in accordance with

Manning et al. (2009), Croft et al. (2010) and Ingwersen and Järvelin (2005). Figure

2.1 also illustrates the relationships between the terms.

An information need signi�es a perceived lack in the knowledge of the searcher.

Information need is often the driving force behind search. In research context, the

information need is often formalised into a topic.

2.1. Information retrieval terminology 4

An information item is a basic unit of information that may be retrieved by an IR

system. An information item may, for example, be a document, a web page, a video,

or a sound recording. IR systems manage the storage and retrieval of information

items. In this thesis, information items are typically referred to as documents.

Relevance refers to the usefulness of an information item for a given information

need. Relevance may be simply given in a binary fashion (relevant or non-relevant),

or it can be multivalued and multidimensional, having di�erent levels of relevance

for di�erent aspects of the search context. Croft et al. (2010) note that calculations

that involve relevance actually deal with the probability of relevance, since the actual

relevance of a document is a very subjective matter.

A query is a request for information that communicates the information need of the

searcher. It is presented to an IR system in expectation of a reply consisting of

information items relevant towards the information need. The IR system responds

to the query in accordance to its indexing and retrieval algorithms (see Section 2.2).

Result documents are the information items that an IR system returns in response

to a query. Depending on the type and complexity of the system, the results may be

ranked, giving the result list an order, or they may be unranked, making no di�erence

between di�erent result documents. Results are often separated into pages. In the

IIR context, these are often called search engine result pages, or SERPs. For any

single result, a SERP often contains only a brief summary, a snippet, that in the

web search engine context also contains a link to the actual result document.

Figure 2.1 An entity-relationship diagram of IR terminology

2.2. How information retrieval systems work 5

2.2 How information retrieval systems work

While this thesis does not deal with details on how exactly IR systems �nd docu-

ments, just on how they respond to user input, a brief explanation on the internal

workings of such systems helps understand the context. The algorithms and data

structures of an IR system decide how di�erent types of queries can bring forth

better results than others.

2.2.1 Indexing

An IR system has a collection of documents that it allows users to search. Searching

through the entire collection every time a user enters a query would be extremely

ine�cient. To avoid that, the document collection is indexed, so that when a query

is made, instead of searching through the entire document collection, only the index,

or indices when there are multiple, are scanned, speeding up searching enormously.

(Manning et al. 2009)

A typical index is a word-oriented inverted index that contains a vocabulary of

terms and the mapping of term occurrences in documents. This mapping is the

reason why it is called an inverted index: the text can be reconstructed using the

index. (Baeza-Yates and Ribeiro-Neto 2011)

To build a vocabulary of all the words that occur in a document, document contents

are scanned, in order to turn the contents into a list of tokens. Loosely de�ned, a

token is a piece of text, such as a word or a phrase. All occurrences of all encountered

tokens are recorded while scanning the document. The end result is an index of

locations of tokens within the document. (Manning et al. 2009)

A simple type of vocabulary contains a term-document matrix that simply lists

how many times a term occurred in a document. This kind of index can be used in

TF-IDF (term frequency�inverse document frequency) based ranking of documents.

Document ranking and TF-IDF are given a more detailed take in Subsection 2.2.3.

(Baeza-Yates and Ribeiro-Neto 2011)

The second part of the process of creating an inverted index involves building the

map of occurrences, also known as the postings list. The list records which terms

appeared in which documents. (Baeza-Yates and Ribeiro-Neto 2011)

2.2. How information retrieval systems work 6

In order to successfully index a document, some linguistic preprocessing is required.

Since it is easier to compare equivalent strings when searching, each word is processed

into some normalised form. The normalised form is then used for search term

comparisons. This requires that the queries entered by the user are processed using

the same method before actually beginning the search. (Kettunen 2007)

2.2.2 Retrieval models

There are plenty of ways to search for documents. Di�erent kinds of methods o�ered

by IR systems are called retrieval models. While this thesis concerns itself only with

retrieval models used by modern IR systems, a brief description of their di�erences

and evolution is o�ered here.

The Boolean retrieval model allows a query to use Boolean expressions for combining

search terms with basic Boolean operators (AND, OR and NOT). For fast Boolean

comparisons, the index may contain a binary incidence matrix where occurrences

of words in documents are mapped. When a Boolean query is made, only the

documents for which the expression is true are considered. (Manning et al. 2009)

The simple Boolean retrieval model is concise, but it lacks in user friendliness, and

it is limited feature-wise. Extended Boolean retrieval models implement further

operators, such as the proximity operator that allows specifying terms that must

occur close to each other. Further extended features include for example allowing

for spelling mistakes, and the use of synonyms and phrases in queries. (Manning

et al. 2009)

The vector space model considers documents and queries a part of t-dimensional vec-

tor space, where t is the number of terms in the index. In the model, each document

is represented by a vectorDi = (di1, di2, ..., dit), where dij is the weight of the term tj.

In the simplest possible form, term weights simply represent the number of occur-

rences in the document. More advanced weights are discussed in Subsection 2.2.3.

Having each document represented as a vector allows the document collection to be

represented as a matrix of weights. Each query can also be represented as a vector

of weights in a similar way, allowing cross-referencing a query with the document

collection matrix, thus calculating which documents match the query well. (Croft

et al. 2010)

2.2. How information retrieval systems work 7

The probabilistic model approaches information retrieval from a probabilistic stand-

point. For each query there exists a set of documents that contains exactly the

relevant documents. However, the properties of this set are unknown. The prob-

abilistic model initially takes a guess at what these properties might be, and then

starts improving the model by interacting with the user, gathering clues on what

the user might consider relevant. Ultimately, the model involves calculating the

probability of relevance, given a query, as well as the probability of non-relevance.

E�ectively, the model is a Bayes classi�er that classi�es documents as either rele-

vant or non-relevant, based on those probabilities. (Baeza-Yates and Ribeiro-Neto

2011)

When document collections are large enough, the user cannot be expected to view

all search results. Therefore, the documents must be ranked and ordered before pre-

senting them. In ranked retrieval, documents are typically ordered by the likelihood

of relevance to the user. This involves calculating a score for each document for a

given query, as well as possibly some other aspects of the user, such as location and

search history, and then sorting the results by that score. The score is supposed to

indicate how well the document matches the query. (Manning et al. 2009)

2.2.3 Scoring

As mentioned previously, in order to rank documents, they must be given a score.

Score calculations are extremely relevant in the context of this thesis, even though

they are not directly studied. Queries give widely di�erent results for each di�erent

scoring system. Therefore, the results of any IR simulation are only valid for the

scoring system of the target IR system. That is why simulation can be a very

e�cient way to evaluate di�erent IR systems: one can run the same simulation for

multiple di�erent result sets.

To give an explanation of how documents are ranked, one of the best known ranking

algorithms, the Okapi BM25 function (Robertson et al. 1994) serves as a good

example. It uses a TF-IDF based approach, where a function based on the sum of

an inverse document frequency and term frequency weighted query words is used as

the score for ranking.

Term frequency and inverse document frequency are cornerstone weighing measures

of scoring. Term frequency is the number of times a term occurs in a document.

2.3. Evaluating the performance of IR systems and users 8

Inverse document frequency is the inverse of the number of documents a term occurs

in. The former is used for giving weight to how much a document uses a certain

word, while the latter is needed for diminishing the weight of common words that

may occur in a query. (Baeza-Yates and Ribeiro-Neto 2011)

With these de�nitions in place, the BM25 function takes the form BM25(D,Q) =∑n
i=1 IDF(qi) × TF(qi,D)×(k1+1)

TF(qi,D)+k1×(1−b+b× |D|
|Davg |

)
, where D denotes the document, Q the

query, n the number of words in the query, qi the words of the query (the query

is considered to be a �bag of words�), IDF(qi) the inverse document frequency for

the query word qi, TF(qi, D) the term frequency of the query word qi in document

D, |D| the document length and |Davg| the average document length in the entire

collection. Parameters k1 and b are free, and need to be optimised for the document

collection. (Robertson and Zaragoza 2009, p. 360)

The BM25 algorithm is just one example of a ranking algorithm, and there are

multiple di�erent ones that perform di�erently in varying situations. Other algo-

rithms include for example the web-oriented PageRank, used by Google, and the

machine-learning based RankNet, used by Microsoft. (Richardson et al. 2006)

2.3 Evaluating the performance of IR systems and users

There are numerous di�erent information retrieval systems in existence. To quantify

their performance, multiple evaluation measures have been devised over time. The

aim of an evaluation measure is to assess how well a system meets the information

need of a user. Most measures are based on the relevance of the documents, given

the topic that represents the information need. A typical measure is also based on

rank, therefore being only suitable for assessing ranked retrieval.

The performance of a retrieval system also depends on the behaviour of the user.

Di�erent users make di�erent queries, which results in a system giving better results

for some users, and worse for some. Some of the performance measures can also be

used to assess the e�ectiveness of user behaviour. Since the theme of this thesis

revolves around simulation and user modelling, such performance measures are the

ones given greater attention here.

2.3. Evaluating the performance of IR systems and users 9

2.3.1 Evaluation using relevance-based metrics

The notion of relevance pertains to the assessment of a document being relevant to a

topic that represents the information need of a user. Relevance-based evaluation by

laboratory testing has its roots in the Cran�eld experiments, conducted in the 1960s

at the Cran�eld University. The aim of the research was to �nd out which indexing

method produced the best results. In what has become the prototype of IR system

e�ectiveness evaluation, the experiments used a test collection of documents accom-

panied by their topical relevance judgements, as assessed by graduate students, and

veri�ed by domain experts. The experiments were conducted using the same set

of questions, each representing an information need, or a topic, for each indexing

method. The paradigm of having test collections accompanied by relevance judge-

ments made by experts eventually became a part of the de-facto standard process

for evaluating IR systems. (Voorhees 2002; Harman 2011).

Since performance comparison requires a quanti�able metric that describes the user's

experience, the experiments measured e�ectiveness using recall and precision, simple

metrics that measure the e�ectiveness of search with regard to relevance. For an IR

system that returns a set of result documents when a query is entered, precision is

the fraction of returned results that is relevant to the information need, and recall is

the fraction of relevant documents returned by the IR system in the entire document

collection. Figure 2.2 illustrates the metrics in an example situation where precision

is 3/6 and recall is 3/5. Since the Cran�eld experiments, precision and recall have

become the most widely used metrics in IR evaluation. (Baeza-Yates and Ribeiro-

Neto 2011)

As established by the Cran�eld experiments, in that style of IR systems evaluation,

the relevance of a document is always �rst assessed by an expert. Then, the IR

system is evaluated using measures based on relevance. For meaningful evaluation

data, a test set-up requires a document collection that has been pre-assessed for rel-

evance. To aid researchers in procuring such data, the participants of TREC (Text

REtrieval Conference) have been producing high-quality and well-available docu-

ment collections and relevance data since 1992. The data formats and evaluation

metrics used by TREC have since become a de-facto standard for IR research data

collections and software. (Harman 2011)

2.3. Evaluating the performance of IR systems and users 10

Figure 2.2 Illustration of a query result within a document collection. The green docu-

ments marked with a check mark and the red documents marked with an X mark represent

relevant and non-relevant documents, respectively. Here, precision is 3/6, and recall is 3/5.

2.3.2 Assessing ranking quality

Relevance-based metrics can be used to assess the e�ectiveness of an IR system,

whether it is a ranked retrieval system or uses some other retrieval model such as

Boolean retrieval. However, modern IR systems, such as web search engines, index

huge document collections. As such, they can never assume the user is interested in

reading all the available documents. Therefore precision and recall, the traditional

metrics, are rendered ine�ective for meaningful evaluation of e�ectiveness.

Rank-based evaluation metrics take into account the fact that the documents that

are ranked better also should have more weight when evaluating IR systems. Vir-

tually all currently used evaluation metrics are therefore based on rank, in addition

to relevance.

2.3.3 Precision-based metrics

The precision at n (P@n) metric gives the precision at any rank n, considering all

the documents up to rank n as the set of retrieved documents. For example, if the

�rst ten results contain seven relevant documents, P@10 gives a value of 7/10. A

typical value for n is 10 (that is, P@10), corresponding to the precision value of

the �rst page of a typical ten-results-per-page system. The greatest shortcoming of

2.3. Evaluating the performance of IR systems and users 11

the metric is that it does not take into account the positions of relevant documents

(Croft et al. 2010). (Baeza-Yates and Ribeiro-Neto 2011)

To take the order of documents into consideration, one can use the average precision

metric. In theory, this is the average value of precision p(r) over the interval from

recall r = 0 to r = 1, giving the equation
∫ 1

0
p(r)dr. However, since recall is typically

unknown for large document collections, the integral is replaced with a sum over

every rank:
∑n

k=1 P (k)∆r(k), where k is the document rank, n is the number of

documents to calculate the metric for (�number of retrieved documents�), P (k) is

the precision at rank k, and ∆r(k) is the change in recall from rank k− 1 to k, that

being 1/n when the document at rank k is relevant, or zero if not. (Baeza-Yates

and Ribeiro-Neto 2011)

Since the average precision metric is only applicable to a single query, the MAP

(mean average precision) metric is used for summarising the average precision across

a collection of queries. The equation is simply given as 1
|Q|

∑|Q|
i=1 Pavg(qi), where

Pavg(qi) is the average precision for the query qi ∈ Q, and Q = {q1, q2, ..., qn} is the
set of queries. MAP is widely used as a metric for evaluating IR systems. (Baeza-

Yates and Ribeiro-Neto 2011)

2.3.4 Cumulated Gain

The concept of gain is typically taken to mean improvement over random behaviour.

With the cumulated gain, or CG, metric, however, gain is used to denote the use-

fulness of a document as a numeric value. All documents in a result set are given

a gain value. Relevant documents are typically given a higher gain value than non-

relevant documents. The metric can then be used to calculate a cumulated value

for any rank p with the equation
∑p

i=1 r(i), where r(i) denotes the relevance-based

gain value of the result at rank i. (Baeza-Yates and Ribeiro-Neto 2011)

Since CG does not take into account the order of results, a derived metric called

discounted cumulated gain, or DCG, can be used to rectify the problem. With DCG,

the gain value is reduced logarithmically proportional to the position of the result.

The equation is typically given as r(1) +
∑p

i=2
r(i)

log2(i)
, with the symbols having the

same meanings as with the CG equation. A DCG vector is a vector of DCG values

for a given list of results. (Croft et al. 2010)

2.4. User modelling and simulation 12

A further derivative of the CG metric is the normalized discounted cumulated gain,

or nDCG. The metric has been developed for the case where di�erent kinds of IR

systems need to be compared, but CG or DCG values are not directly comparable.

To calculate the nDCG value, the ideal DCG, that is, the maximum possible DCG

value for a result set, must �rst be calculated by sorting the documents in the

collection by relevance and then calculating the DCG for that result set. The nDCG

value is then calculated with the equation DCGp

IDCGp
, where DCGp denotes the DCG

at rank p, and IDCGp denotes the ideal DCG at rank p. (Järvelin and Kekäläinen

2002; Baeza-Yates and Ribeiro-Neto 2011)

2.3.5 Session metrics

A session consists of multiple subsequent queries where the user attempts to seek

information pertaining to a single topic. The queries are assumed to produce ranked

result lists. Typical evaluation metrics, such as MAP, are intended for single-query

contexts, and are often unsuitable for assessing the e�ectiveness of a multi-query

session. CG-based metrics have been shown to �t the purpose of session evaluation.

A session-based metric called sDCG has also been developed based on the DCG

metric. The metric simply produces a vector of DCG vectors. (Järvelin et al. 2008)

2.4 User modelling and simulation

According to Johnson and Taatgen (2005), user modelling consists of gathering in-

formation about users' behaviour and making generalizations and predictions based

on the gathered data. The information itself is called a user model. A user model

can be used to �create an autonomous agent to �ll a role within a system�. In the

case of simulation, the aim is to create exactly that � an autonomous agent that acts

on its own. The user model is an integral part of the simulator software, providing

the simulator with instructions on how to act.

A valid user model produces valid simulation results, performing in a similar fashion

to actual users in any situation within the scope of the model (Law 2008). Therefore,

a good simulator software must enable creating valid user models. In this chapter,

means to achieve this are explored.

2.4. User modelling and simulation 13

2.4.1 Criteria for a valid user model

A user model's validity cannot be directly assessed by just analysing the model.

Acknowledging that, Johnson and Taatgen suggest using the following criteria as

qualitative factors for determining the validity of a model:

• as few free parameters as possible,

• the ability to predict behaviour, instead of just describing it, and

• the ability to learn its own task-speci�c knowledge.

A user modelling simulator software should steer the creation of user models towards

meeting these criteria in order to produce valid results. The criteria can therefore

be used as guidelines for software requirements speci�cation and software design.

The number of free parameters is well-controlled in a simulation environment, since

the user model de�nition must be formalised. The ability to predict behaviour

depends on how well the user model and the simulator represent real life user be-

haviour. Predictions can be made by simulating the stochastic nature of decision

making. Learning task-speci�c knowledge implies that the model should only de-

scribe the task, and not the knowledge needed to complete it. This can be achieved

by incorporating support for a learning user model into the software.

2.4.2 Techniques for creating a user model

The simulator software must facilitate creating accurate and various kinds of user

models easily. Therefore, utilising widely-used and known techniques as the foun-

dation for designing user model creation facilities is essential. Several techniques for

creating a human-computer interaction user model have been developed.

A pioneer in the �eld is the GOMS (Goals, Operators, Methods and Selection rules)

technique. As the name implies, GOMS divides interaction into four concepts. Goals

are the desired end results. Operators are actions that are performed to reach the

goal. Methods are sequences of operators. Selection rules decide which method is

used to reach a goal when several are available. In GOMS, each operator can be

2.4. User modelling and simulation 14

associated with a duration. The total duration of completing a task is given by

summing the durations of constituent elementary actions. (John and Kieras 1996)

Another approach to cognitive modelling is EPIC (Executive Process-Interactive

Control), aimed for human-computer interaction design purposes. EPIC is a full-

�edged cognitive modelling architecture that takes into account perceptual, cognitive

and motor activity (Kieras et al. 1995). The architecture can be used to simulate

human behaviour down to the most basic level � for example moving the eye or

registering a sound just heard.

EPIC's user model is de�ned by production rules. A rule contains a set of conditions

that are tested against the current internal state (contrast with GOMS' selection

rules), and a set of actions that occur when the conditions are satis�ed (contrast with

GOMS' operators). The system allows for actions to occur in parallel. For example,

moving an eye to another element while evaluating the previously seen element is

allowed. According to Johnson and Taatgen, parallelism is a very important aspect

of user modelling, as it enables creating more accurate models. (Kieras et al. 1995;

Kieras 2005)

These techniques can be reduced to the following elements: 1. goals, 2. action mod-

ules, 3. actions, 4. rules for determining subsequent actions, and 5. costs of actions

(e.g. durations). Incorporating these elements into user model creation facilities

should result in a system that allows creating accurate, valid and testable user mod-

els. In the case of IR simulation, besides the costs of actions, also gains must be

considered.

2.4.3 Simulation as a state machine

Information retrieval, as performed by a single user, is a sequential process. There-

fore, IR simulation can be described as a discrete-time stochastic process. The

simulation forms a sequence of points in time. Each point represents the user com-

pleting some action, and each action a�ects the properties of the next point with

some probability.

A Markov chain is a stochastic process that undergoes transitions from one state

to another, in the same fashion as state machines. When the simulation considers

each discrete point in time as a state, it can be described as a Markov chain. (Geyer

2011)

2.4. User modelling and simulation 15

A state machine can also model parallel user actions by allowing several concurrent

active states. This enables parallelism in user models, which can be useful when

modelling user actions on motor or cognitive level, where the user may be performing

two actions at the same time.

2.4.4 Computing results using Monte Carlo methods

When randomness is introduced into simulation, producing a large number of data

samples becomes necessary in order to achieve statistically meaningful results. Thus,

a method for computing results using a large set of random data is needed. Monte Carlo

methods are intended for that very purpose (Ripley 1987).

In a Monte Carlo simulation, random numbers are generated and used as the input

of the simulation. A great variety of Monte Carlo methods exist, many of them

designed to work on Markov Chains. For example, the Metropolis algorithm works

by proposing transitions, trying to move towards a value that best �ts in a given

distribution, and then either rejecting or accepting them based on the characteristics

of the distribution. As the algorithm showcases, some knowledge about the distri-

bution of variables is typically required for successful use of Monte Carlo methods.

(Kalos and Whitlock 2008)

The combination of Markov Chains and Monte Carlo methods is often called simply

Markov Chain Monte Carlo, or MCMC. According to Geyer (2011), most simulations

can be considered MCMC if the entire state of the simulation is perceived as the

state of the Markov Chain. To make an estimation of a value of a variable, a simple

simulation can run multiple Monte Carlo iterations, sampling the variable, and then

calculate the empiric mean of the samples.

16

3. SIMULATOR DESIGN

With the theoretical background established in Chapter 2, the simulator design can

be bound to the IR domain. In this chapter, the theoretical framework is con-

sidered from software design viewpoint, and software requirements are established.

Section 3.1 gives an overview of the context of the software system. Section 3.2

formally describes the simulator as an automaton, while Section 3.3 showcases how

the automaton advances through states, and Section 3.4 gives an example of a sim-

ulation using the formal model. Section 3.5 then explains how the formal model is

applied to software, and Section 3.6 establishes an object model for the concepts

present in the model. Section 3.7 describes the input �le formats and conventions,

while Section 3.8 details what the software outputs. Finally, Section 3.9 de�nes how

end users can con�gure the software.

3.1 System overview

The Cran�eld model of using test collections and relevance judgements, as described

in Subsection 2.3.1, was applied to the simulator software. Furthermore, the software

was designed to accommodate the TREC data formats (see Section 3.7). Adopting

these two cornerstones of IR research allows the software to be built to be useful in

a great variety of research cases.

For measuring the e�ectiveness of simulations, Cumulated Gain was chosen as the

main metric. However, the software was designed to be able to calculate any

relevance-based measure for the results. Since the CG metric o�ers support for

session-based evaluation, and also o�ers multiple derivative metrics, its use was

deemed to be su�cient for most cases.

For the results calculated by the simulator software, it was decided that a simple

approach to utilising Monte Carlo methods would su�ce. Therefore, the simple

accumulation of samples and the usage of their mean values was adopted as the

3.2. Formal de�nition of the IR automaton 17

method of result approximation. More advanced methods were set aside, determined

to be used later if needed for performance optimisation or precision improvement

purposes.

Due to being designed for research purposes, the targeted users of the software are

IR researchers. Figure 3.1 illustrates how a researcher would interact with the

simulator software. First, a researcher needs to gather data from external sources

in order to produce the user model and Cran�eld-type input data for the software

to use. The researcher extracts user model parameters from data gathered in user

experiments, and uses the parameters while creating the user model for the software.

The researcher also gathers Cran�eld-type relevance data from external sources,

typically test document collections, in order to feed the data, along with queries

and their results, into the software. In response to the input, the software produces

e�ectiveness metrics and other data, further explained in Section 3.8.

Figure 3.1 Illustration of the simulator software context. Rectangles represent systems

external to the simulator software.

3.2 Formal de�nition of the IR automaton

Since the simulator can be described as a state machine, it can be formally de�ned

as an extension of one. A formal de�nition helps the design and development of the

software by establishing a robust framework for building the software foundations

on.

For formal de�nition purposes, the simulator is considered a �nite automaton with

domain-speci�c modi�cations. A �nite automaton is formally de�ned as a tuple

〈Q,Σ, δ, q0, F 〉, where Q is a �nite set of states, Σ a �nite set of input symbols, δ a

transition function Q × Σ → Q, q0 ∈ Q the initial state, and F ⊆ Q a set of �nal

states (Rabin and Scott 1959).

3.3. Simulation cycle 18

In order to utilise this de�nition in the context of information retrieval simulation,

the de�nition requires an extension that incorporates a collection of documents

and a user model into the automaton. In the extended IR simulator automa-

ton (Pääkkönen et al. 2015), the �nite automaton tuple is replaced by the tuple

〈Q,X,∆X , q0, F, U〉, where X ∈ [0, 1] is a continuous random variable used as the

input of the system, U = {u1, u2, . . . , un} a set of result document sets, and transi-

tion set ∆X replaces the transition function δ.

When the simulation is run, it forms a temporal sequence of transitions T =

(t1, t2, . . . , tn). Each transition is a tuple 〈u, r, q〉, where u = {r1, r2, . . . , rn}, u ∈ U
is the result sequence of the last query made by the simulated user, r ∈ u the result

document at hand, and q ∈ Q the source state.

The set of states Q contains action tuples 〈fcost, fgain, E〉, where fcost : R→ R, R =⋃
U is a cost determining partial function, fgain : R→ R, R =

⋃
U a gain determin-

ing partial function, and E a set of events to be triggered. The functions determine

how much gain and cost a state can accumulate, based on a document in any of the

result sets. When running the simulation, to make changes to the current transition

tuple, each set of events E can

• change the result document sequence u ∈ U , and/or

• change the current result document r ∈ u.

Transition set ∆X contains tuples 〈qs, P 〉, where qs ∈ Q is the source state, and

P = {〈qt, c, V 〉} a set of transition targets, where qt ∈ Q is the target state of the

transition, c ∈ C a condition that must hold in order for the transition to occur, and

V : C → [0, 1] a probability function that determines the probability of transitioning

from qs to qt, given a condition c ∈ C. Set C = {c1, c2, . . . , cn} is a set of run-time

conditions, such as �current document is highly relevant�, or �current cumulated cost

exceeds 1000�, or any combination of such conditions.

3.3 Simulation cycle

The following simulation cycle de�nition is how Pääkkönen et al. (2015) de�ne a sin-

gle simulation step in their formal simulator model. The simulation cycle de�nition

is used as the basis of the simulator software.

3.4. An example IR simulation 19

The simulation changes state in a similar way to a �nite automaton, being an ex-

tension of one. Using the random variable X as input, the algorithm is de�ned as

follows:

Let qi be the current state, xi a random value for X, and Ti the sequence of tran-

sitions at this point. Let Again and Acost be accumulators for gain and cost, respec-

tively.

1. Trigger the set of events E associated with the current state qi.

2. Let ui be the current result set, and ri the current result document, as set by

events E.

3. Increment Again by fgain(ri). Increment Acost by fcost(ri).

4. Stop if qi is a �nal state (qi ∈ F).

5. Establish accumulator Aprob = xi.

6. Iterate over transition set ∆X where qs = qi. For each transition, iterate over

transition target set P .

(a) Let 〈qp, cp, Vp〉 denote the current transition target p ∈ P .

(b) If V (cp) + Aprob ≥ 1, choose qp as target and end iteration.

(c) Otherwise, increment Aprob by V (cp).

7. Insert transition element 〈ui, ri, qi〉 into T .

8. Perform transition. Target state qp becomes current state.

Gains fgain and costs fcost can also be calculated after the simulation has �nished

by examining the sequence T and running each function as required.

3.4 An example IR simulation

Consider an IR simulator automaton 〈Q,X,∆X , q0, F, U〉, as illustrated in Figure

3.2, where

• Q = {qscan, qread, qskip, qstop},

3.4. An example IR simulation 20

• ∆X = {δscan, δskip, δread}

• q0 = qscan,

• F = {qstop}, and

• U = {u1}, u1 = (r1, r2).

Figure 3.2 The example IR simulator automaton

Tuples 〈fcost, fgain, E〉 in Q are

• qscan = 〈fcost = 1, fgain = 0, {�Go to next result�}〉,

• qread = 〈f ′cost(r) =
⋃
U → [1, 10], f ′gain(r) =

⋃
U → [0, 10], ∅〉,

• qskip = 〈fcost = 0, fgain = 0, ∅〉, and

• qstop = 〈fcost = 0, fgain = 0, ∅〉.

Gain function f ′gain and cost function f ′cost are de�ned as

f ′cost(r) =

1, when r is short

5, when r is long

10, when r is very long

(3.1)

f ′gain(r) =

0, when r is not relevant

5, when r is moderately relevant

10, when r is highly relevant

(3.2)

3.4. An example IR simulation 21

Tuples 〈qs ∈ Q,P 〉 in transition set ∆X are

• δscan = 〈qscan, {pscan→read, pscan→skip, pscan→stop}〉,

• δskip = 〈qskip, {pskip→scan, pskip→stop}〉, and

• δread = 〈qread, {pread→scan, pread→stop}〉,

and transition target tuples 〈qt ∈ Q, c ∈ C, V 〉 are

• pscan→read = 〈qread, cscan→read, Vscan→read〉,

• pscan→skip = 〈qskip, cscan→skip, Vscan→skip〉,

• pscan→stop = 〈qstop, cnotavailable, Vonlyiftrue〉,

• pskip→scan = 〈qscan, cavailable, Vonlyiftrue〉,

• pskip→stop = 〈qstop, cnotavailable, Vonlyiftrue〉,

• pread→scan = 〈qscan, cavailable, Vonlyiftrue〉, and

• pread→stop = 〈qstop, cnotavailable, Vonlyiftrue〉

Conditions in C are

• cavailable = �Further results documents are available�,

• cnotavailable = ¬cavailable,

• cscan→read = �Current result document is moderately or highly relevant�, and

• cscan→skip = �Current result document is not relevant�

Probability functions V are de�ned as

Vonlyiftrue(c) =

1, when c is true

0, when c is false
(3.3)

3.4. An example IR simulation 22

Vscan→read(c) =

0.85, when c is true

0.25, when c is false
(3.4)

Vscan→skip(c) = 1− Vscan→read(¬c) (3.5)

Assume that all documents are highly relevant and long. The simulation starts from

qscan according to the simulation cycle: Let xi = 0.1.

1. Trigger the �Go to next result� event. At the start this is the �rst result r1.

2. Acost is incremented by 1.

3. This is not a �nal state → continue.

4. Aprob = 0.1.

5. Iteration of ∆X �nds δscan

(a) Iteration of P �nds pscan→read.

i. Vscan→read(cscan→read) + Aprob = 0.85 + 0.1 = 0.95. 0.95 < 1 →
continue iteration.

ii. Aprob = 0.1 + 0.85 = 0.95

(b) Iteration of P �nds pscan→skip.

i. Vscan→skip(cscan→skip) +Aprob = 0.15 + 0.95 = 1.10. 1.10 ≥ 1 → stop

iteration. Choose qskip as target.

At this point, the run-time transition sequence T has one element, containing the

tuple 〈u1, r1, qscan〉 of the �rst transition. The current state is now qskip. Advancing

the simulation another cycle using xi = 0.4 yields the following result:

1. Trigger nothing, since E = ∅.

2. Accumulators are una�ected.

3. This is not a �nal state → continue.

4. Aprob = 0.4.

5. Iteration of ∆X �nds δskip

3.5. Applying the formal model to software 23

(a) Iteration of P �nds pskip→scan.

i. Vonlyiftrue(cavailable)+Aprob = 1+0.4 = 1.4. 1.4 ≥ 1 → stop iteration.

Choose qscan as target.

Now T = (〈u1, r1, qscan〉, 〈u1, r1, qskip〉). The current state is again qscan, from where

the simulation can advance to qread by �rolling� xi > 1 − 0.85. Let us assume

that happens. Now T = (〈u1, r1, qscan〉, 〈u1, r1, qskip〉, 〈u1, r2, qscan〉) and Acost = 2.

The simulation has advanced to result document r2, which is the �nal document,

therefore cnotavailable is now true. Now, advancing the simulation using xi = 0.05

yields the following result:

1. Trigger nothing, since E = ∅.

2. Acost is incremented by f ′cost(r2) = 5. Again is incremented by f ′gain(r2) = 10.

3. This is not a �nal state → continue.

4. Aprob = 0.05.

5. Iteration of ∆X �nds δread

(a) Iteration of P �nds pread→scan.

i. Vonlyiftrue(cavailable) + Aprob = 0 + 0.05 = 0.05. 0.05 < 1 → continue

iteration.

(b) Iteration of P �nds pread→stop.

i. Vonlyiftrue(cnotavailable) + Aprob = 1 + 0.05 = 1.05. 1.05 ≥ 1 → stop

iteration. Choose qstop as target.

Now T = (〈u1, r1, qscan〉, 〈u1, r1, qskip〉, 〈u1, r2, qscan〉, 〈u1, r2, qread〉), Acost = 7 and

Again = 10. The simulation has now advanced to qstop which is a �nal state. The

last simulation cycle simply tells the simulation to stop since there are no events to

trigger or costs or gains to accumulate. The simulation has now ended.

3.5 Applying the formal model to software

Since the formal model describes the simulation as an automaton, applying it to

software is straightforward. However, the model only describes the mechanics of

3.5. Applying the formal model to software 24

the system in a somewhat abstract level. Therefore, some software design work was

required in order to detail the speci�cs of how all the formally speci�ed features

should be implemented.

The formal model speci�es a way to de�ne probabilistic state machines that operate

based on rules bound to the domain of information retrieval. The software needs

to be able to run any such state machines. The �rst step towards that goal was

to de�ne how to run arbitrary probabilistic state machines. It was decided that an

object model for such state machine would be de�ned �rst, the details of which are

explained fully in Section 3.6. As explained in Subsection 2.4.4, in order to reduce

ripple in a stochastic simulation, Monte Carlo methods need to be applied. Such a

simulation needs to be run multiple times, in the process producing multiple data

sets of the calculated metrics. The data sets then need to be averaged in order to

produce the �nal data set of values. The object model was designed to accommodate

this requirement.

As explained in Section 3.2, the formal model speci�es that a simulation should

contain a set of states (Q), a set of transitions (∆X), an initial state (q0), a set of

�nal states (F), and a set of result document sets (U). In other words, the simulator

operates using a user model de�ned by Q, ∆X , q0 and F , on a collection of queries

and their result documents de�ned by U . Since it was required that user models and

result document sets should be independently changeable, it was decided that the

user model would be de�ned in a simulation description �le that describes how the

simulator should advance, and that the queries and their results would be de�ned in

a con�guration �le that describes what data the simulator should operate on. The

language used for de�ning user models is visited in Section 4.2, and the con�guration

�le format is explained in Section 3.9.

Applying the algorithm de�ned in Section 3.3 was deemed straightforward, due to

it being naturally similar to a procedure or a function. Loosely, the algorithm was

designed to be implemented by transforming each step into a function, and then

calling them in the correct order. However, the run-time conditions in ∆X being

complex, and the probability functions V using them as their input set necessitated

de�ning the conditions and probabilities in a more structured way to be useful in a

software context. This structure was projected into the object model, as well as the

simulation description language.

3.6. Object model 25

3.6 Object model

Designing a program that runs as a state machine is normally quite straightforward.

However, in this case, the users can de�ne their own states and transitions, and the

software must be able to run any given arbitrary �nite state automaton. Therefore,

an abstract model describing an arbitrary state machine had to be devised. Further-

more, the transitions occur according to given probabilities, which means a random

choice must be made at each state, instead of advancing deterministically. Com-

plicating the design even more, each probability may be in�uenced by the current

global state of the simulation. To tackle these obstacles, a suitable object model of

the simulator was designed. Figure 3.3 illustrates the model graphically.

Modelling how a single Monte Carlo iteration holds the IR domain speci�c data,

a base Simulation Run class encompasses a single iteration over the state ma-

chine from the initial state to one of the �nal states. A Simulation Run object

contains Simulation State objects. Each Simulation State object records a

discrete point within an iteration where a state transition has occurred.

A Simulation Run holds a reference to an ordered collection of Query objects. The

Query objects contain the search queries that the simulated user is supposedly mak-

ing. Each Query object contains a reference to an ordered collection of Document

objects. This represents the result set received as a response to the Query. The

Simulation Run also holds a reference to a single Document object. This Document

represents the result document that the simulated user is currently handling. Refer-

ences to the current Query and Document are recorded to each Simulation State

object.

Each Query object holds a reference to a Topic object that represents the informa-

tion need of the simulated user making the Query. A Topic object holds a reference

to a collection of Relevance objects. Each Relevance object contains a reference to

a Document-Topic pair, and records the Relevance of the Document in the context

of the Topic.

As illustrated in Figure 3.4, the meta model of the state machine part of the

simulator consists of a State class and a Transition class. They represent the

corresponding parts of the state machine. A Transition object links two State

objects together, describing which State is the source and which State is the target.

3.6. Object model 26

Figure 3.3 The object model of IR data in a simulation iteration

To allow for probabilistic transitions, each Transition object also refers to a Probability

object. A Probability object contains the instructions and data on how to calcu-

late the probability of the transition occurring. The simplest possible Probability

object is of a Direct Probability type that only contains a direct probability value

between 0 and 1. A Conditional Probability type references Condition objects

that have the ability to perform checks on the current State and the sequence of

Transitions that have occurred. The Conditional Probability will decide the

�nal probability value based on the Boolean value of each referenced Condition.

Since Conditions need to assess the simulator's history and current status, they

need a way to access the necessary object interfaces. This is achieved by de�ning a

callback function in the public interface of the Condition. The callback function,

analogically to the Visitor design pattern (Gamma et al. 1994, p. 331), takes the

entire Simulation Run object as an argument, so it can access all the data it needs.

Each State object also references Gain and Cost objects that determine how much

gain is added or subtracted at that State, and how much cost is incurred. Like

Conditions, Gains and Costs have to de�ne a callback function that has access

to the Simulation Run object. That way they can calculate their values based

on how the Simulation Run has advanced. Costs and gains are recorded in the

Simulation Run object, as well as in the Simulation State objects, in order to

record their history.

3.7. Input 27

As with Gains and Costs, each State object can reference any number of Trigger

objects. Triggers cause changes to the current Simulation State within the cur-

rent Simulation Run. They also work by de�ning a callback that has access to the

Simulation Run object. Changing the current Document and Query is done using

Triggers.

Figure 3.4 The meta model of the IR state machine

3.7 Input

As explained, the simulator, as per the formal model, was not designed to generate

queries, or make any queries using a search engine on-the-�y. Instead, all the queries

and their results are pre-determined, and the simulator concentrates on the analysis

of how the user model behaves. Therefore, the software needs to read the queries

and their results as its input.

As established in Subsection 2.3.1, �le formats used in the TREC work groups

have become a widely used de facto standard in IR research and evaluation. Since

the software was built for research purposes, adopting the appropriate TREC �le

formats was deemed the best choice, the alternative being implementing new �le

formats just for the software. It was also decided that the �le reading part of the

software should be implemented in such a way that adding new �le formats would

be easy, in case new formats arise.

To provide all data the simulator needs to run, the input �les must contain at

least the following items: 1. information needs spelled out as topics, 2. queries to

run against the topics, 3. result document lists for the queries, and 4. relevance

assessments for each result document given the topics. Mostly, the software only

needs to deal with the identi�ers of each data item. However, all available data can

3.7. Input 28

be used in the user model, and having more data may result in a more accurate

simulation. The information on the topics is only required in order for the simulator

to be able to look up the relevance of a result document. The relevance is used to

calculate the main metric � cumulated gain � for the result.

3.7.1 TREC topic �les

A TREC topic �le contains a description of a single piece of information need in

a format that resembles SGML (Standard Generalized Markup Language). The

contents of the topic �les have evolved year after year since the beginning of the

conference, but the �les still always contain at least a topic number that acts as a

unique identi�er for the topic, and a short description of the information need. As

illustrated in Program Listing 3.1, further information may include a domain such

as �economics�, a title, a narrative description that communicates the information

need and what is considered relevant more fully, and a list of concepts related to the

topic. (Voorhees and Harman 2000)

Program Listing 3.1 A truncated topic �le from TREC-1 (Voorhees and Harman 2000)

1 <num > Number: 051

2

3 <dom > Domain: International economics

4

5 <title > Topic: Airbus subsidies

6

7 <desc > Description:

8 Document will discuss government assistance to Airbus Industrie , or mention a

trade dispute between Airbus and a U.S. aircraft producer over the issue of

subsidies.

9

10 <narr > Narrative:

11 A relevant document will cite or discuss assistance to Airbus Industrie by the

French , German , British or Spanish government(s)...

12

13 <con > Concept(s):

14 1. Airbus Industrie

15 2. European aircraft consortium , Messerschmitt -Boelkow -Blohm GmbH , British

Aerospace PLC , Aerospatiale , Construcciones Aeronauticas S.A.

16 3. ...

With regard to topics, it was decided that the software should use topic numbers

as unique identi�ers, and that it should support reading TREC topic �les when

the user model requires information on the topic. However, such needs are very

limited: the data is likely to be only required if the model generates its own queries

using the topic description as a basis.

3.7. Input 29

3.7.2 Indri query �les

Since TREC does not directly deal with any particular search engine, there is no

o�cial TREC query �le format. However, the Indri search engine, developed as

a part of the Lemur project in the University of Massachusetts and �rst released

in 2002, has been previously used in TREC evaluations and IR research in gen-

eral (Strohman et al. 2005). Due to their association with IR research, the query

�le format de�ned by the Lemur project for Indri was deemed to be the best choice

for the default format for the simulator software.

An Indri query �le is an XML document that contains instructions for the search

engine on how to perform a query. As illustrated in Program Listing 3.2, a query �le

contains one or more query de�nitions, each of which may contain a query number

or identi�er, the query text, and a query language type indicator. The default query

language is �indri�, the other choice being an XPath-based language called �nexi�

that was not deemed to be relevant to support in the simulator software.

Program Listing 3.2 An Indri query �le

1 <parameters >

2 <query >

3 <type >indri </type >

4 <number >34</number >

5 <text >

6 #combine(metric system)

7 </text>

8 </query>

9 </parameters >

The Indri query language itself is somewhat complex, o�ering features for searching

both structured and unstructured documents, using constraints that deal with for

example proximity or syntax. Since, once again, the simulator software requires only

the query identi�er to be present, the query text itself was decided to be ignored,

but still stored in case the user model needs to analyse it.

The drawback of choosing the Indri query �le format is that there is no well-de�ned

way to bind the queries to topics in any way. Often, researchers use a TREC topic

identi�er as the Indri query identi�er, making the distinction between a topic and

a query quite fuzzy. Due to this practice, it was decided that for use in the simula-

tor software, the query identi�er should always match a topic identi�er, making it

impossible for one query �le to contain multiple queries for the same topic. How-

ever, that constraint made it possible to use �le names as �real� identi�ers for the

3.7. Input 30

queries, which was, after some consideration, adopted as the standard practice with

the simulator software.

3.7.3 TREC result �les

The TREC result �le format is designed to be used for evaluation against TREC

relevance data, using the TRECEVAL software. As illustrated in Program List-

ing 3.3, the �le consists of space-separated �elds that make up a record, one per

line, each of which represents a single result in the result list. Each record contains

the following �elds: query identi�er, iteration identi�er, document identi�er, rank,

similarity value, and run identi�er. (Eckard and Chappelier 2007)

Program Listing 3.3 Snippet from a TREC result �le

1 445 Q0 LA080390 -0117 1 -7.04963 Exp

2 445 Q0 FT921 -7364 2 -7.48736 Exp

3 445 Q0 LA080790 -0085 3 -7.50261 Exp

4 445 Q0 FT924 -8156 4 -7.5216 Exp

5 445 Q0 LA011589 -0007 5 -7.54176 Exp

6 445 Q0 LA012490 -0018 6 -7.54193 Exp

7 445 Q0 LA022589 -0148 7 -7.57658 Exp

8 445 Q0 LA012290 -0045 8 -7.65214 Exp

9 445 Q0 FT922 -13513 9 -7.71308 Exp

10 445 Q0 LA052590 -0060 10 -7.72208 Exp

The simulator software can safely ignore most of the �elds in the result data: only

the query identi�er, document identi�er and rank are needed for constructing result

lists for the queries. Researchers often use the topic identi�er in place of the query

identi�er, in a similar fashion as with the Indri query �les. Therefore, it was decided

that the practice would be mandated, and as with the query �les, only the �le name

would be used as the query identi�er. In theory, this meant that query �les would

not be needed since the additional information they contain was not required unless

the user model needed it. However, since the user modelling part of the software

was designed to include the concept of cost, storing the query was deemed necessary,

due to the properties of the query having a direct impact on the cost of making the

query.

3.7.4 TREC relevance �les

As with the TREC result �les, the TREC relevance �les are used for evaluation

using the TRECEVAL software. As illustrated in Program Listing 3.4, the �le

3.7. Input 31

also consists of one-line records with space-separated �elds. Each record represents

a �correct answer� to a given query, recording the relevance of a single document,

and contains the following �elds: query identi�er, document identi�er, and relevance

degree number. The relevance degree number can be binary � the document is either

relevant or not � or it can be graded, as in Program Listing 3.4, where numbers from

1 to 3 are used. Often, non-relevant documents are omitted entirely. In such cases,

any result document not present in the relevance �le must be considered as non-

relevant. (Eckard and Chappelier 2007)

Program Listing 3.4 Snippet from a TREC relevance �le

1 442 LA112290 -0058 2

2 442 LA113089 -0076 3

3 442 LA120990 -0074 3

4 442 LA121089 -0170 1

5 442 LA122890 -0062 3

6 445 FT921 -11838 1

7 445 FT921 -11847 1

8 445 FT921 -11857 1

9 445 FT921 -4820 1

10 445 FT921 -7364 2

As is the typical case with TREC �les, the confusion with the separation of topics

and queries continues in the relevance �les. In a typical case, the query identi�er

actually denotes the topic, matching with its identi�er. Since this is the typical

practice, it was also mandated for the simulator software, in the process making it

actually easier to match a document relevance with a topic.

3.7.5 Sessions

With the topic, query, result and relevance �les having been assessed, the basis of

the input data for the simulator software was in place. However, one further problem

to solve was how to build sessions using those �les. The TREC �le formats are not

designed for session-based evaluation, instead working entirely on a per-query basis.

Therefore, a way to construct sessions from those �les was needed.

Since a session consists of queries, the natural solution was to build the sessions by

simply having multiple query �les, and denoting the order of the queries in some way.

Two approaches were considered: 1. have an explicitly de�ned ordered list of query

and result �les, or 2. use �le names to denote the order. After some consideration,

it was decided that since the researcher is likely to name the �les so that they are

3.8. Output 32

naturally ordered in any case, the second option would be the best choice, inducing

the least amount of work for the researcher.

Having �le names denote the order of queries posed two problems: 1. the result

�les must somehow be bound to the queries using �le names, and 2. the directory

structure must be such that the query and result �les cannot be confused with any

other �les. The obvious solution to the �rst problem was to formulate a naming

scheme for the �les. Unfortunately, such approach is somewhat error-prone, and

detecting any errors in �le names can be very di�cult unless the naming scheme is

very strict. Nevertheless, this trade-o� was considered to be a manageable one, and

the following naming scheme was implemented: 1. the query �les would have a name

that follows the pattern 〈sessionID〉_q〈queryOrderNum〉, for example sessionX_q1,
and 2. the result �le corresponding to a query would have the same �le name as the

query, but with an r appended at the end, for example sessionX_q1r. The second

problem with the directory structure was solved by simply mandating that the query

and result �les must reside in a directory with no other �les present.

3.8 Output

Since the simulator was designed to be used for research, it was considered imperative

that the software, when required, would output as much data as possible since

every bit of it may be important, especially when making statistical analyses that

are very important in high-quality research. Therefore, it was decided that the

software would support both software and human-readable output formats, as well

as con�gurable levels of output.

To select a good output format for data analysis, the methods used for making

the analysis were �rst assessed. It was discovered that in the targeted user group,

analysis is often done in either spreadsheet software or by using the SciPy software

(Chauve et al. 2016) with the Python programming language. An output format

usable for both cases was therefore desired.

For SciPy, the obvious choice would have been to simply output everything as Python

objects. However, that was not a good option for spreadsheet software. After some

consideration, it was decided that the output would be given in the comma-separated

values (CSV) format, which is supported by both spreadsheet software and Python,

and is even simple enough to be human-readable. The choice of CSV limits what

3.8. Output 33

kind of data can be represented, but that was not deemed to be a problem since only

simple spreadsheet-like data structures were perceived to be required to be present

in the output.

To keep the software relatively simple, it was decided that the simulator would

mostly output the raw numbers generated during the simulation runs. Further pro-

cessing would then be carried out in other software. However, since it was also

desirable to have results that would be quick to compare with existing data, it

was speci�ed that the simulator should calculate and output the averages over all

Monte Carlo iterations. A truncated version of typical output is shown in Pro-

gram Listing 3.5. Since cumulated gain was speci�ed to be the main metric, it is

used in all output.

Program Listing 3.5 Example of program output for a run with 100 iterations

1 cost ,amt runs ,avg gain ,max gain ,min gain

2 0 ,100 ,0.0 ,0.0 ,0.0

3 10 ,100 ,0.0 ,0.0 ,0.0

4 20 ,100 ,0.0 ,0.0 ,0.0

5 30 ,100 ,0.0 ,0.0 ,0.0

6 40 ,100 ,0.0 ,0.0 ,0.0

7 50 ,100 ,0.0 ,0.0 ,0.0

8 60 ,100 ,0.4 ,5.0 ,0.0

9 70 ,100 ,0.4 ,5.0 ,0.0

10 80 ,100 ,1.5 ,10.0 ,0.0

11 90 ,100 ,1.5 ,10.0 ,0.0

12 100 ,100 ,3.15 ,10.0 ,0.0

Traditionally, IR metrics are recorded per document rank. However, since for each

rank there can be multiple simulated actions, it was deemed necessary to also record

the metrics at �nely-grained cost points. The notion of cost typically refers to time,

but it is up to the researcher to de�ne what the incurred cost actually means. For

that reason, in the output, the granularity of cost points was decided to be user-

de�nable in the con�guration �le (Section 3.9).

In order to make coarse comparisons of the results faster, it was decided that graph-

ical plots of the data would also be produced. The plots were speci�ed to show the

average cumulated gain over cost and rank, along with the standard deviation and

top and bottom percentiles for making observations that are not directly visible in

the average plot. An example of such a graphical plot over cost is shown in Figure

3.5.

The full output of the simulator was speci�ed to record each Simulation State,

explained in Section 3.6, as they occur. A Simulation State contains information

3.8. Output 34

Figure 3.5 Example of single-session output plot

on what action was previously made, what query had last been made, the current

document rank, current cumulated gain and cost, the last document seen, as well

as information on the iteration number and so forth. An example of such data is

shown in listing 3.6. This kind of data is typically not used in research, instead

being more useful for user model debugging purposes in cases where errors are not

readily detectable by software.

Program Listing 3.6 Example of full program output

1 sessId ,iter ,prevAction ,queryIdx ,totRank ,currQueryRank ,cumulGain ,cumulCost ,docId

2 1,0,,-1,0,0,0,0,

3 1,0,start ,0,0,0,0,9.17,

4 1,0,issue_query ,0,0,0,0,9.17,

5 1,0,scan_snippet ,0,1,1,0,15.47, NYT19980914 .0168

6 1,0,view_document ,0,1,1,0,35.07, NYT19980914 .0168

7 1,0,mark_as_relevant ,0,1,1,0.0,35.07, NYT19980914 .0168

8 1,0,scan_snippet ,0,2,2,0.0,41.37, NYT20000718 .0206

9 1,0,view_document ,0,2,2,0.0,60.97, NYT20000718 .0206

To ease the comparison between di�erent user models, a further output mode was

devised. In cross-session output mode, the software calculates mean cumulated gains

over the average gains of multiple sessions. This way, the researcher can at a glance

note the di�erences between multiple user models by comparing two graphical plots

or raw data sets. The output format is nearly the same as in the normal case,

as shown in Program Listing 3.5 and Figure 3.5, the di�erence being that the

cross-session format outputs the average data sets for every session, along with the

average-over-all-sessions data set, as illustrated in Figure 3.6.

3.9. Con�guration 35

Figure 3.6 Example of cross-session output plot

3.9 Con�guration

In order to make it possible to instruct the simulator what input it should operate

on, a means had to be developed for declaring the locations of input �les along

with their formats, and also other parameters such as how much gain a certain

relevance level should command and how to handle missing relevance assessments.

Furthermore, as with input, a way to convey what kind of output is desired was also

required.

An often used approach to con�guring how a piece of software works is through

the use of command line parameters. This approach was also considered for the

simulator software. However, as the software was designed to be used for research

purposes, it was deemed to be desirable to be able to store di�erent con�gurations

easily, and re-visit them if needed. Therefore, a command-line-only approach was

scrapped in favour of using a con�guration �le to con�gure the software.

Since there were no plans to introduce a graphical user interface for creating con�g-

uration �les, the �le format had to be chosen so that it was both human-readable

and machine-parsable. To satisfy those requirements, and for wide software support,

as further discussed in Subsection 4.2.1, an XML-based �le format was decided on.

The con�guration �le is divided into three sections: input, output, and options.

As shown in Program Listing 3.7, the input section de�nes where the input �les

are located. There can be multiple relevance �les, as well as multiple query and

result �les. Sessions are de�ned by indicating a directory where the query and

result �les can be found. The section also instructs the software to the location

of the simulation description �le, as well as the locations of optional callback �les.

Callbacks are further explained in Section 4.10.

3.9. Con�guration 36

Program Listing 3.7 Snippet from the input section of a con�guration �le

1 <files >

2 <input -directory >iiix -sim2 -gains -0-5-10</input -directory >

3 <relevance -file format="trec">search10 -6-347_qrels </relevance -file >

4 <relevance -file format="trec">search10 -6-435_qrels </relevance -file >

5 <simulation >simulation -condition6 -group4.xml </simulation >

6 <condition -callbacks >customConditionCallbacks.py </condition -callbacks >

7 <cost -callbacks >customCostCallbacks.py </cost -callbacks >

8 </files >

9

10 <sessions >

11 <sessions -directory >sessions -condition6 -group4 </sessions -directory >

12 </sessions >

The output section de�nes the output format, a choice between CSV and Python.

It also con�gures where to place the output �les. Furthermore, as shown in Pro-

gram Listing 3.8, it is also possible to de�ne further metrics derived from gain to be

calculated in the output. If a derived gain is de�ned, a Python function for making

the calculation must be present, and the input section must contain a derived-

gains-callbacks element that de�nes the �le where to �nd the referenced calculation

function.

Program Listing 3.8 Derived gain de�nition in a con�guration �le

1 <gain -types >

2 <type id="dcg" function="calc_dcg">

3 <argument name="base" value="2" />

4 </type>

5 </gain -types>

The options section is used for de�ning further con�guration. For example, the

random seed used for initialising the random number generator can be de�ned here,

so that the simulation can be repeated with the exact same results every time. As

shown in Program Listing 3.9, the options section also contains instructions on how

each relevance level a�ects the cumulated gain.

Program Listing 3.9 Gains with their respective relevance levels in a con�guration �le

1 <gains >

2 <gain relevance -level="0" gain="0" />

3 <gain relevance -level="1" gain="5" />

4 <gain relevance -level="2" gain="10" />

5 </gains>

3.9. Con�guration 37

Since it was deemed desirable to be able to run the same simulation using multiple

con�gurations, it was made a requirement that the software should take the con�g-

uration �le name as a parameter. This made it possible to vary for example the gain

levels or the sessions by producing multiple di�erent con�guration �les and running

the simulation once with each �le.

38

4. SIMULATOR IMPLEMENTATION

Since the simulator is formally de�ned as an automaton, the main question was

how to implement a system that allows the user to create and run arbitrary state

machines. Furthermore, the software was required to support state transitions based

on probabilities, in the fashion of Markov Chains.

Another implementation problem was how to bind the state machine to the IR

domain. Arising from the formal de�nition, a requirement was that the simulator

should be aware of search queries, result lists, result documents and their relevances,

as well as multiple other aspects of information retrieval � for instance: how to

calculate the gains and costs incurred by the user.

Since the software was written for research purposes, and mainly for academic profes-

sionals, some requirements were imposed on the run environment and maintainabil-

ity of the software. This had an e�ect on the choice of implementation technologies.

This chapter discusses the speci�cs of implementing the software. First, Section 4.1

explicates the considered and selected technology choices. In Section 4.2 the devel-

opment of a language for writing IR user models is explained in detail. Sections 4.3�

4.5 detail general software development related aspects of the selected technologies.

Section 4.6 explains the architecture of the software in general terms. Sections 4.7�

4.9 describes how the input �les are parsed, while Section 4.10 details the callback

plug-in architecture. Sections 4.11�4.12 analyse how the simulator proceeds to run

the actual simulations, and Sections 4.13�4.14 explain how the output is generated.

Finally, Section 4.15 speci�es how the software is distributed.

4.1 Technology considerations

While the implementation was free of the burden of pre-existing software needing

support, the choice of technology was not unrestricted. The software was required

4.1. Technology considerations 39

to be suitable for use in academic settings, by academic professionals. This boiled

down to multiple requirements.

The software had to be implemented in such a way that it could be run on any com-

puter available to researchers, be it their personal computer or a computing cluster

where only a head-less terminal connection was available. This also meant that im-

plementation technologies had to be chosen so that operating system support was

wide enough: at least Windows XP and later, OS X 10.7 and later, and mainstream

Linux distributions from 2012 onwards had to be supported.

The programming language for the software also had other requirements stemming

from the academic environment and the project scope. It was acknowledged that

support for the software would not continue inde�nitely by the original author.

Therefore, the researchers have to be able to make future changes and �xes to

the software themselves. This requirement called for a language that was easy to

approach and widely used in the academic setting.

A further point for consideration was the performance and scalability of the chosen

programming language. The simulator was determined to need to run hundreds or

thousands of iterations for each simulation for stable results. Therefore, memory

consumption could be a very real issue, and a very large run could take hours or

even days of time to �nish if the performance of the software was bad enough. In the

end, performance was considered to be more an issue of the software architecture,

and not the chosen technology, per se. Therefore, performance was not taken into

consideration in the selection process.

These requirements in mind, the following languages were considered: Python, R,

Java and C++. The requirement of easy approachability led to C++ being rejected

outright due to the number of quirks and pitfalls inherent in the language being per-

ceived larger than the alternatives. Selecting C++ would also have meant a more

di�cult approach to cross-OS support. Java, on the other hand, while more ap-

proachable, was not as well known in the targeted research group, and was therefore

rejected as well. R, a relatively unknown language outside of research environments,

was also considered because of its merits in statistical computing. It was eventually

rejected because it was deemed somewhat more obscure than Python, the eventual

choice for the programming language.

4.2. Simulation description language 40

Python, the �nal choice as the programming language, is a dynamically-typed, in-

terpreted language. The language is designed to be very readable, and it is therefore

well-suited to projects where the maintainer may change multiple times in the course

of the software's lifespan, and is not necessarily a professional software developer.

It is o�cially supported on multiple major operating systems, and a wide variety

of third party libraries and frameworks is available for it. Further helping the case

of easy maintainability, Python was ranked as the fourth most used programming

language in the RedMonk Programming Language Rankings of June 2015 (O'Grady

2015). (Python Software Foundation 2016b)

4.2 Simulation description language

To allow the users of the simulator to write user models, an XML-based language was

devised. Basically, the language allows users to con�gure the simulator automaton

by de�ning the states and transitions. The language also o�ers ways to bind the

automaton to the IR domain by de�ning gains, costs and triggers that change the

query or the current document.

The language applies the theoretical guidelines laid down in Section 2.4 to the IR

simulator software. The criteria for a valid user model control what features are

present in the language, and the GOMS and EPIC techniques work as guidelines for

how to structure those features.

4.2.1 Technology selection

The target audience of the software is academic professionals, who possess advanced

skills in computer use, but not necessarily any programming experience. Therefore,

the simulator software package required a simple-to-grasp but powerful mechanism

for de�ning and �ne-tuning the behaviour of the simulated user. It was concluded

that the mechanism should be based on a user-written �le that was easy to read,

and also easily parsable by software. Due to the complexity of the software, and the

possibly lesser skills of users, the �le was also required to be validatable for syntax

and semantic errors. For easier maintainability, a pre-existing language was decided

to be the best option.

Since the choice of programming language was already made, options were reduced

to languages that were parsable by the Python Standard Library, or an external

4.2. Simulation description language 41

Python library. The standard library contains a �con�guration �le parser� that

parses �les that are formatted in the fashion of Windows INI �les (Beazley and

Jones 2013, p. 552). While the INI format is quite expressive, it is also schema-less,

which means the con�guration �les would be hard to validate. Another �le format

with direct support, the Javascript Object Notation format (Beazley and Jones 2013,

p. 179), while having a more strict formal de�nition than the INI format, su�ers from

the same validatability problem. Such approaches were abandoned.

The standard library also supports the XML (Extensible Markup Language) format

(Beazley and Jones 2013, p. 183). XML is a structured language for arbitrary data.

It o�ers facilities for de�ning the structure and contents of documents using a schema

language, such as the XML Schema, or RELAX NG. An XML document can be

validated against a schema de�nition. However, the Python Standard Library does

not support reading such schemas or validating documents using them. Fortunately,

an external Python library called PyXB (Python XML Schema Bindings) (Bigot

2014) o�ers this functionality. After some consideration, the XML format and the

PyXB library were chosen for the project.

4.2.2 Development

The language was developed by writing an XML Schema for the format. The base

aim was to produce a format that matches the object model of the simulator. This

was approached by creating mappings between object classes and XML element def-

initions, such as the mapping from State class to Action element schema presented

in Program Listing 4.1.

Program Listing 4.1 de�nes an Action element that corresponds to a State object.

It may contain Trigger elements that correspond to Trigger object references. The

Trigger elements may contain additional arguments given to the Trigger object's

callback function. The Action element may also contain references to Gain and

Cost elements that correspond to their namesake object references.

Referencing other elements, such as the Gain and Cost elements in Program List-

ing 4.1, is done by de�ning a key for the element being referenced, and then de�ning

a key reference that tells XML parsers that an XML element is a reference to a

de�ned key. Program Listing 4.2 presents a de�nition that de�nes the id attribute

of Gain elements as a key. Program Listing 4.3 presents a key reference de�nition

4.2. Simulation description language 42

Program Listing 4.1 XML Schema for Action element

1 <element name="action" minOccurs="1" maxOccurs="unbounded" form="qualified" >

2 <complexType >

3 <sequence >

4 <element name="trigger" minOccurs="0" maxOccurs="unbounded" form="qualified"

>

5 <complexType >

6 <sequence >

7 <element name="argument" minOccurs="0" maxOccurs="unbounded" form="

qualified">

8 <complexType >

9 <attribute name="name" type="string" use="required" />

10 <attribute name="value" type="string" use="required" />

11 </complexType >

12 </element >

13 </sequence >

14 <attribute name="type" type="string" use="required" />

15 </complexType >

16 </element >

17 </sequence >

18 <attribute name="id" type="string" use="required" />

19 <attribute name="cost" type="string" use="optional" />

20 <attribute name="gain" type="string" use="optional" />

21 <attribute name="final" type="boolean" use="optional" default="false" />

22 </complexType >

23 </element >

that de�nes the gain attribute of Action elements as being a reference to the keys

de�ned in Program Listing 4.2. De�ning the references this way allows XML parsers

to validate them.

Program Listing 4.2 XML Schema for Gain element keys

1 <key name="gain -id">

2 <selector xpath="qsdl:gains/qsdl:gain" />

3 <field xpath="@id" />

4 </key>

Program Listing 4.3 XML Schema for Gain element references

1 <keyref name="gain -reference" refer="qsdl:gain -id">

2 <selector xpath="qsdl:actions/qsdl:action" />

3 <field xpath="@gain" />

4 </keyref >

4.2.3 Features

The simulation description language was designed such that a single description �le

contains a single user model. The model can be parametrized so that the parameter

values are bound at run time using the con�guration �le, thus allowing the same

user model to be used with multiple parameter sets, enabling easy experimentation.

4.2. Simulation description language 43

A simulator description de�nes the �nite state machine that makes up the user

model, as explained in Section 3.2. The state machine part itself consists of states

and transitions. In the simulator, States correspond to Actions that can incur

gains and costs, and trigger changes in the global simulation state. An example of

a set of Action de�nitions is found in Program Listing 4.4. A de�nition consists

of an Action element whose optional attributes de�ne the Costs and Gains, and

optional child elements that de�ne what global triggers to �re.

Program Listing 4.4 A partial set of action de�nitions

1 <actions initial="start">

2 <action id="start" cost="formulate_query">

3 <trigger type="jumpToQuery">

4 <argument name="qidx" value="0" />

5 </trigger >

6 </action >

7 <action id="view_document" cost="view_document">

8 <trigger type="flagAsSeen" />

9 </action >

10 <action id="mark_as_relevant" gain="mark_as_relevant" />

11 <action id="stop_session" final="true" />

12 </actions >

The Transition de�nitions describe what transitions from state to state are possible

and when. Program Listing 4.5 shows a such a set of Transition de�nitions. A

Transition must always contain a Probability reference, since all transitions in

the simulator are probabilistic. In the program listing, some of the Probabilities

are marked with always and remaining , the former of which is a built-in probability

reference with a value of one, and the latter a reference with a value that is calculated

as the �remaining� probability after the other transition targets' probabilities have

been summed up.

Probability de�nitions step outside from the world of state machines into the do-

main of stochastic simulation. Each Probability de�nition contains either a direct

probability value between zero and one, or a set of Conditions and their corre-

sponding probability values. A partial set of Probability de�nitions is showcased

in Program Listing 4.6. A probability value can also be marked with an aster-

isk, which means that the probability is calculated the same way as the transition

probabilities marked as �remaining�.

4.2. Simulation description language 44

Program Listing 4.5 A partial set of transition de�nitions

1 <transitions >

2 <from source="start">

3 <to target="scan_snippet" probability="always" />

4 </from>

5 <from source="scan_snippet">

6 <to target="view_document" probability="view_document" />

7 <to target="stop_session" probability="stop_session" />

8 <to target="scan_snippet" probability="keep_scanning" />

9 </from>

10 <from source="view_document">

11 <to target="mark_as_relevant" probability="mark_as_relevant" />

12 <to target="scan_snippet" probability="remaining" />

13 </from>

14 <from source="mark_as_relevant">

15 <to target="stop_session" probability="stop_session" />

16 <to target="scan_snippet" probability="remaining" />

17 </from>

18 </transitions >

Program Listing 4.6 A partial set of probability de�nitions

1 <probabilities >

2 <probability id="keep_scanning">

3 <if condition="cost_exceeded" value="0" />

4 <else -if condition="no_more_results_for_query" value="0" />

5 <else value="*" />

6 </probability >

7 <probability id="stop_session">

8 <if condition="cost_exceeded" value="1" />

9 <else -if condition="should_change_query_but_none_available" value="1" />

10 <else value="0" />

11 </probability >

12 <probability id="view_document">

13 <if condition="cost_exceeded" value="0" />

14 <else -if condition="document_is_not_relevant" value="0.284" />

15 <else -if condition="document_relevance_equal_to_1" value="0.491363" />

16 <else -if condition="document_relevance_equal_to_2" value="0.527680" />

17 <else value="*" />

18 </probability >

19 <probability id="mark_as_relevant">

20 <if condition="document_is_not_relevant" value="0.528443" />

21 <else -if condition="document_relevance_equal_to_1" value="0.628906" />

22 <else -if condition="document_relevance_equal_to_2" value="0.792411" />

23 <else value="*" />

24 </probability >

25 </probabilities >

Condition de�nitions describe what callback functions to call to resolve a condi-

tional probability. The callback system is described more fully in Section 4.10. Pro-

gram Listing 4.7 contains an example of a partial set of Condition de�nitions. Each

Condition de�nition refers to a callback function name and may contain arguments

for the function.

4.3. Using third-party libraries in Python 45

Program Listing 4.7 A partial set of condition de�nitions

1 <probability -conditions >

2 <probability -condition id="document_is_not_relevant">

3 <callback name="current_document_relevance_between">

4 <argument name="min_inclusive" value="0" />

5 <argument name="max_exclusive" value="1" />

6 </callback >

7 </probability -condition >

8 <probability -condition id="cost_exceeded">

9 <callback name="default_cost_exceeded">

10 <argument name="cost_limit" value="1200" />

11 </callback >

12 </probability -condition >

13 <probability -condition id="no_more_results_for_query">

14 <callback name="default_current_document_is_ranked_last" />

15 </probability -condition >

16 </probability -conditions >

The �nal part of a simulation description are the de�nitions of Costs and Gains.

Program Listing 4.8 contains an example of how to de�ne the Gains and Costs

referenced in Action de�nitions. As with Condition de�nitions, Gains and Costs

can be calculated at run time using callbacks, or they can be given constant values

directly.

Program Listing 4.8 A partial set of cost and gain de�nitions

1 <costs >

2 <cost id="formulate_query">

3 <value >7.97 </value >

4 </cost>

5 <cost id="view_document">

6 <value >17.71 </ value >

7 </cost>

8 </costs>

9

10 <gains >

11 <gain id="mark_as_relevant">

12 <callback name="get_current_document_gain" />

13 </gain>

14 </gains>

4.3 Using third-party libraries in Python

As established earlier, Python is a very widely used programming language, and

there is a large selection of software libraries and frameworks that can aid in devel-

oping software. Furthermore, the Python Software Foundation maintains a third-

party software repository called PyPI (Python Package Index) that contains many

of the major software packages available for Python. The repository hosts down-

loads for all the software packages, and also records documentation, categorisation

4.4. Writing programming interfaces in Python 46

and further meta-data for each one of them. This approach helps developers to more

easily �nd the third-party software they need, and to keep it up-to-date when new

versions are released. (Python Software Foundation 2016a)

Since installing and updating software packages manually can be tedious, often con-

sisting of steps such as downloading the packages, extracting them, compiling the

sources and handling dependencies, the Python Packaging Authority maintains a

software package installation tool called pip. With pip, developers can, with simple

CLI commands, install packages from PyPI and other sources, list outdated pack-

ages, upgrade them and remove them, among other things. It is also possible to

create requirement and constraint �les that list all the software packages a project

requires. All this makes it far easier to transfer a software project from one sys-

tem to another, since the target system only needs to have pip installed, and all

requirements can be installed with a simple command. (Danjou 2014)

4.4 Writing programming interfaces in Python

In Python there are no strictly de�ned object interfaces. Instead, the language uses

duck typing, where any object that de�nes certain methods with certain names and

parameters that de�ne some behaviour, is considered to implement the interface for

that behaviour without explicitly declaring so. The name duck typing stems from

the duck test, a form of reasoning that states: �If it looks like a duck and quacks like

a duck, it is a duck.�

With duck typing, it generally makes little sense to try to de�ne strict interfaces,

since the language is not built to support them. Instead, it makes more sense to

de�ne behaviours with constructs such as mix-ins, concerns and composition. The

subject is visited more thoroughly in Section 4.5.

The simulator software contains some parts where similarly behaving components

can be observed. To give an example, one instance of similarly behaving components

are the result readers that provide support for di�erent kinds of result �les. Result

�les contain ordered lists of documents that have been produced by a search engine

as a response to a query or multiple queries. The result �le may or may not contain

the query text itself. The task of a result reader is to scan the result �le and produce

ordered containers of Document objects, that represent the result lists.

4.4. Writing programming interfaces in Python 47

Since multiple formats had to be supported from the start, and since it is unknown

how many di�erent formats need to be supported in the future, a generic interface

for the result readers was designed. On the �le reading side of things, each reader

class must implement a can_parse method that takes a �le name as argument and

returns a boolean value that tells if the �le is parsable by the class. Each reader class

must also implement a constructor that takes a �le name as argument. The rest

of the methods are for the simulation to use at run-time: get_results_by_id that

returns a list of Documents for a given Query ID, get_document_id that returns

a Document ID given a Query ID a rank number, and get_results_length that

returns the number of documents in the result list for a given Query ID.

Since Python does not enforce that a class implements an interface, one needs to

be careful when creating new classes that should implement an interface. Typically,

a separate interface de�nition would, in addition to enforcing the implementation

of methods, serve as documentation for future implementers of the interface. To

achieve the documentation aspect, generic interfaces were de�ned as a separate

class that contains a class variable that holds a list object with the names of the

methods that should be implemented. The constructor of the class de�nes all the

listed methods at run-time, and has them simply raise an error. This provides both

security and documentation for the interface. An example of such a construct for

the result reader interface is given in Program Listing 4.9.

Program Listing 4.9 Result reader interface class

1 class Interface:

2 @classmethod

3 def _add_error_raising_method(cls , method_name):

4 def r(*args):

5 raise MethodNotImplementedError(method_name)

6 r.__name__ = method_name

7 i f not hasattr(cls , method_name):

8 setattr (cls , method_name , r)

9

10 def __init__(self):

11 for method_name in self.__class__.public_methods:

12 self.__class__._add_error_raising_method(method_name)

13

14 class ResultReader(Interface):

15 public_methods = ['get_results_by_id ', 'get_document_id ', 'get_results_length '

, 'can_parse ']

Similar approach to interfaces was taken with query readers and relevance readers,

the former being used for reading information on queries from di�erent kinds of

query �les, and the latter being used for reading topic-based relevance assessments

4.5. Re-usable code 48

from di�erent kinds of relevance �les. The approach was also applied to callback

plug-ins, which are discussed in Section 4.10.

4.5 Re-usable code

Typical means of code re-use in object-oriented languages include inheritance, com-

position and the use of design patterns such as mix-ins (Gamma et al. 1994, p. 2).

Code re-use can also be achieved by adhering to design principles such as separation

of concerns and don't repeat yourself (Martin et al. 2009).

For a new piece of code to be able to use some existing code, there must exist an

interface that allows the pieces to communicate. In Python, there are no separately

de�ned interfaces. The bit of code needing to use a re-usable piece of code must

trust that the interface is implemented. When required, the interface using code

may, instead of checking for the existence of the interface, catch any errors that

stem from the interface not being implemented. This is called the EAFP principle,

or: �It is Easier to Ask for Forgiveness than Permission.� This principle was followed

throughout the process of writing the software, where applicable. (Beazley and Jones

2013; Vaingast 2014)

As mentioned in Section 4.4, a form of interface de�nition was used in this project,

but mainly for documentation purposes. The interface-documenting classes are, in

a way, a type of a mix-in class. Mix-in classes are a way to de�ne and implement

a behaviour separately from other classes, and to introduce that behaviour to any

class where it is needed (Gamma et al. 1994, p. 16). Python does not support mix-

ins per se, but it does support multiple inheritance, which can be used for including

(�mixing in�) mix-in classes. As with typical multiple inheritance, care must be

taken not to introduce ambiguity problems caused for example by class members

having the same names, or the diamond problem by having multiple mix-ins inherit

a common ancestor, all of them overriding the same method, and then having a class

include more than one such mix-in.

Mix-ins were used in this project for re-using some common behaviour in �le reader

classes, callback plug-ins and output classes. To give an example, the �le reader

classes use a mix-in called OperatesOnFile that contains helpers for the general op-

erations needed when reading IR related �les. As showcased in Program Listing 4.10,

the mix-in class contains two methods, get_bare_file_name and each_record, the

4.6. Overall architecture 49

former of which returns the �le name of the �le being operated on without any pre-

ceding path, and the latter of which acts as a generator method that produces

records from the �le. The each_record method expects including classes to imple-

ment a get_record_iterator method, as is evident from the use of the Interface

class in the program listing. The method is expected to return an iterator that pro-

duces singular records from a �le, given a �le handle. In a typical case, the iterator

simply produces all the lines of the �le.

Program Listing 4.10 OperatesOnFile mix-in class

1 class OperatesOnFile(Interface):

2

3 public_methods = ['_get_record_iterator ']

4

5 def __get_bare_file_name(self):

6 head , tail = ntpath.split(self.file_name)

7 return tail or ntpath.basename(head)

8

9 def __each_record(self):

10 with open(self.file_name) as file_handle:

11 record_iterator = self._get_record_iterator(file_handle)

12 for record in record_iterator:

13 yield record

Further code re-use in the project comprises the use of design patterns (Gamma

et al. 1994), and inheritance for some of the classes.

4.6 Overall architecture

The overall architecture of the software is best described through the three stages

of the program �ow. First, there is the input parsing stage, where the simulation

description, con�guration, and IR data �les are read and turned into object represen-

tations. Second, the simulation stage executes several iterations of the simulation,

and gathers data on each one. In the third and �nal stage, the gathered data is

aggregated into statistics and graphical representations, and output to �les.

The architecture of the input stage is largely explained in Section 4.7, with further

insight in Section 4.8 and Section 4.9. The second stage is visited in Section 4.11,

and the output stage is analysed in Sections 4.13 and 4.14. Figure 4.1 illustrates

how the di�erent components work together.

4.7. Parsing input �les 50

Figure 4.1 Components of the simulator software. Yellow items represent input or out-

put �les, blue items represent internal data structures, and grey items represent software

components.

4.7 Parsing input �les

As explained in Chapter 3, most of the input �les do not follow any established �le

format, instead using their own proprietary, albeit simple, formats. As established

in Section 4.5, �le readers use the OperatesOnFile mix-in, which expects readers

to implement a method that produces records from a �le. Depending on the input

�le, the records can either be Topics, Queries, Documents or Relevances, as per the

object model. Such a method had to be implemented for all the input �le types.

The TREC result and relevance �les are simple in their format: each line contains

one record, and each value in a record is separated by white space. Reading such

�les with Python is quite straightforward. The built-in open function returns a

�le handle that can be iterated in a loop, producing one line from the �le for each

iteration. Using a regular expression to denote the structure of a line, creating a

group for each value, and then matching the expression with the line produces a

tuple of the values. The tuple can then be used to build the expected record type,

either a Document or a Relevance. This pattern was used to implement the iterator

methods that the OperatesOnFile mix-in expects.

The Indri query �les are the exception among the input �les in that they follow a

�le format that is well-de�ned. The �le is in XML format, and is therefore easy to

parse with Python, using the built-in xml module. Using the ElementTree class, an

XML document can be parsed into a tree-like Python object. The object supports

multiple ways to search for elements within the XML tree, and they were used to

parse the query identi�er and query text from the �le. Due to the restriction that

there should be only one query per query �le, the �le reader was made to throw an

error if encountering multiple queries. For the same reason, the iterator method can

only produce one Query record.

4.8. Parsing the con�guration �le 51

Parsing of TREC topic �les was also considered, but due to their contents being

largely irrelevant for the purposes of interaction simulation, it was decided that

they would be ignored. Had they been found more useful, parsing would have been

implemented using an SGML parser, for instance the built-in sgmllib that is only

available in Python 2, or the external Beautiful Soup library that is compatible with

Python 3.

4.8 Parsing the con�guration �le

As the con�guration �le was implemented in XML format, it was simple to read

into objects using Python. The naïve approach would have been to use the built-in

XML module. However, since an XML Schema was developed for the �le format,

it was deemed necessary to use PyXB to read the con�guration �le in order to

validate it before using it. For parsing the �le, a wrapper class was implemented,

acting as a protective layer against changes in the con�guration �le format causing

changes elsewhere in the code. Instead, future �le format changes will only cause

changes in the wrapper class. The PyXB API works almost identically to the built-

in ElementTree class, making its use straightforward if already familiar with the

native XML module.

4.9 Parsing the simulation description �le

As with the con�guration �le, parsing of the simulation description �le was done

using the PyXB library. A wrapper class was also implemented, for the same pur-

poses as explained for the con�guration �le. Due to the complexities present in

de�ning a user model, the XML Schema based validation only works for limited

purposes. Therefore, some of the validations had to be implemented in the wrapper

class. These validations are limited to checking whether the callbacks used actually

exist, and whether the transitions attempted by the simulator are actually valid.

4.10 Callback plug-ins

The architecture of the software allows end users to write user models by using a

purpose-built language, as described in Section 4.2. While designing the language, it

became apparent that users required a means to de�ne how gains, costs and boolean

4.10. Callback plug-ins 52

condition values were calculated. Furthermore, it was required that one could write

new triggers that alter the simulation state, to be �red when entering a state.

At �rst, an attempt was made to have the user model language support such con-

structs. However, it soon became apparent that any such approach would only

result in de�ning yet another programming language, which was both unnecessary

and infeasible. Therefore, it was decided that the users would be allowed to write

their calculation methods as callback functions in Python, and their code would be

plugged-in to the software at run-time.

Python supports loading code dynamically using the standard library imp module

that gives access to the mechanisms that are used to implement the built-in import

statement. First, one must call the imp.find_module function with the �le name

to search for and a list of directories to search in. The function returns a tuple

that can then be passed to the imp.load_module function that loads the �le as a

module, and returns a module object that can then be used for calling any code in

the loaded �le.

For the simulator software, a simple callback loader was implemented, as showcased

in Program Listing 4.11. The loader implements a get_callback_module function

that takes a �le path as an argument. The function separates directory names from

the path and passes the bare �le name and the separated directory name, along

with the current directory to the imp.find_module function. It then attempts to

load the module using imp.load_module. The function returns the module if it was

successfully loaded � otherwise it returns a None object, since it was designed not

to crash even if the module is not found or cannot be loaded.

The user de�nes where to load the callbacks from in the con�guration �le, as de�ned

in Section 3.9. The user is then free to use the callback functions in the user model. If

the user attempts to use a callback function that could not be loaded, the simulator

will stop executing and issue an error message.

Each callback �le can contain multiple callback functions. It was decided that the

�le format would be such that the users can freely write the code however they wish.

However, an entry point into the callbacks was required so that the software would

know what to run when encountering such a �le. Therefore, it was mandated that

a callback �le should implement a method called get_callback_map that returns a

4.11. Running a simulation 53

Program Listing 4.11 Dynamic code loader

1 import imp

2 import os

3 import ntpath

4

5 def path_leaf(path):

6 head , tail = ntpath.split(path)

7 return tail or ntpath.basename(head)

8

9 def get_callback_module(name):

10 script_dir = os.path.dirname(os.path.realpath(__file__))

11 callback_module_dir = script_dir + '/' + ntpath.dirname(name)

12 callback_module_name = path_leaf(name)

13

14 fp = pathname = description = None

15 try:

16 fp, pathname , description = imp.find_module(callback_module_name , [

callback_module_dir , os.getcwdu (), script_dir])

17 return imp.load_module(name , fp, pathname , description)

18 except:

19 return None

20 f ina l ly :

21 i f fp:

22 fp.close ()

dictionary of callback functions mapped by their names. An example of the structure

is presented in Program Listing 4.12.

Program Listing 4.12 A callback �le

1 def contiguous_non_relevant_snippets_seen_reached(simulation , negation , amount

):

2 seen_docs = simulation.get_current_query_seen_documents ()

3 relevance_levels = [simulation.get_document_relevance_level(docid) for docid

in seen_docs]

4 count = 0

5 while len(relevance_levels) > 0:

6 i f str (relevance_levels.pop()) == '0':

7 count += 1

8 else :

9 break

10 return int(count) >= int(amount)

11

12 def get_callback_map ():

13 return { 'contiguous_non_relevant_snippets_seen_reached ':

contiguous_non_relevant_snippets_seen_reached }

4.11 Running a simulation

Stochastic simulation requires that the simulation is iterated multiple times in order

to produce stable results. The process of running a single iteration is described by the

algorithm in Section 3.3. This algorithm was implemented within the Simulation

4.12. Recording the simulation runs 54

class since objects of the class contain the high level knowledge of the entire simu-

lation. The implementation follows the de�ned algorithm exactly.

Multiple iterations were implemented by creating Simulation objects in a loop that

runs as many times as the user has speci�ed in the con�guration �le. The Simulation

objects are then let run the simulation cycle until they reach a �nal state, stopping

the cycle. Each Simulation object is then stored in a list for further analysis that

includes calculating statistics and plotting graphics for them.

4.12 Recording the simulation runs

In order for the simulator to be prepared for all research cases, all user actions and

decisions leading to them are recorded. Such recording can be very widely spread

across the program code. Utilisation of the Observer pattern (Gamma et al. 1994)

allows the decision-making points to notify external recorders about an event that

has occurred without taking part in the recording themselves.

The observer pattern is a design pattern that enables observable subjects to notify

their observers about events occurring in the subject's context. An interface, im-

plemented by the observers, de�nes the method that the observed subjects use to

notify them of events. Another interface, implemented by the subjects, de�nes the

methods with which the observer can register or unregister themselves for receiving

noti�cations. The added layer of indirection serves to discouple observers from the

implementation of the observable subjects, allowing the observers to observe di�er-

ent kinds of events and the subjects to be observed by any number of various kinds

of observers.

In order to enable the observers receive more speci�c information about the events,

an event object may also be sent to them along with the noti�cation. Event objects

implement an interface that de�nes methods for getting the event identi�er and

any properties associated with the event. The observable subject interface may also

allow observers to register for only certain events by providing event identi�ers along

with the registration request.

In the simulator software's case, there are di�erent kinds of observable events. First,

the transitions, as they occur, must be recorded along with the full simulation state

at that point: the transitions available, the transition chosen, the random probability

4.13. Calculating statistics 55

value used, the simulator events triggered and the current result document. This

serves to record the sequence of transitions taken. Second, each iteration over the

transition set ∆X (see Section 3.2) must be recorded in order to record the factors

that led to choosing each transition: the actions considered, and the probabilities of

considered actions. The observable subject is the simulation object.

The elementary events that need to be observed are concrete transitions (as opposed

to declared transitions) and action considerations. The observers form an hierarchy

where an abstract recorder handles basic tasks of recording information into a log

object, and two di�erent types of concrete recorders handle the di�erent event types.

The log object in this case is the list that contains the history of simulation states,

with all the observed events recorded with their respective states.

4.13 Calculating statistics

After all the simulation iterations have �nished, there exists a list of Simulation

objects, one per iteration. For each of these Simulation objects, a set of statistics

over cost or rank can be calculated. When these sets are averaged, the end result

is a stable set of averages. This method is the cornerstone of how Monte Carlo

simulations are done.

To calculate these statistics, a separate module was devised. The module was de-

cided to be kept separate from the simulation due to performance concerns and for

the separation of concerns. If needed, the module could be moved into a separate

application instead of being part of the simulator software itself, which makes it

more complex. However, for the time being, the statistics module was left in.

Calculating the statistics themselves is fairly straightforward, due to them being

mostly just a matter of calculating averages and standard deviations. The case of

calculating the average of multiple di�erent-length data sets, as is possible when

simulations can end arbitrarily, was solved by considering all the data sets as being

as long as the longest one of them, and then extending the shorter data sets by

appending their last value to the end of the set as many times as needed, until the

expected length was reached.

4.14. Drawing �gures 56

4.14 Drawing �gures

In order to make the calculated statistics easier to give a quick glance or make a

rough comparison, a graphical representation was required. This requirement was

decided to be satis�ed by plotting the data sets into image �les that can then be

looked at side by side using any available software that can display pictures.

As with the statistics module, the plotting module was implemented as an isolated

module in order to make it easier to separate it from the main software later, if need

be. For producing the image �les, the pyplot interface of the matplotlib library

(Hunter et al. 2016) was utilised. Plotting a �gure with the interface is straight-

forward: a Figure object acts as a container for Plot objects that hold the actual

data that should be drawn, and a �gure object can then be saved into a �le in many

standard picture formats.

For producing the plots, the plotting module works in conjunction with the statistics

module. Since most of the statistics have in usual cases already been calculated for

textual output, the statistics module employs memoization in order to avoid making

the expensive calculations again. The memoization process allows the statistics

module to store the calculated statistics within the module, simply returning the

calculated values when the calculation methods are called again.

4.15 Distribution

As established earlier, the intended user group consists of academic professionals

with a moderate-to-high level of pro�ciency using di�erent kinds of computer sys-

tems and software. Therefore, distributing the software to them in source format,

without packaged-in dependencies does not pose a problem, as long as the depen-

dencies are documented or a tool like pip is used to record what dependencies are

required. However, distributing the software as an easy-to-install ready-made pack-

age saves a lot of time, especially when required software packages are added or

changed.

The Python standard library o�ers a distribution tools package called Distutils (Bea-

zley and Jones 2013, p. 435). With Distutils, developers can create distribution

packages easily by de�ning what �les should be included in the distribution. How-

ever, de�ning and packaging dependencies with it is cumbersome, and often leads

4.15. Distribution 57

to cross-platform incompatibilities since a Python library may require di�erent ver-

sions to be installed on di�erent platforms. As long as a source-only distribution

package without packaged dependencies is usable for the target users, Distutils does

its job nicely.

Multiple enhanced distribution utilities also exist, such as Setuptools (Beazley and

Jones 2013, p. 435) by the Python Packaging Authority and the wheel building

utility of pip (Danjou 2014, p. 68). Wheel is a package format for distributing

Python software. It aims to supersede the older egg packaging format, and o�ers a

number of enhancements. A wheel package is easy to install with pip on any platform

where dependencies can be met, therefore making it a far better alternative to just

using Distutils.

In this project, the use of setuptools, eggs and wheels was considered. In the end,

however, it was determined that the user base is comfortable with installing depen-

dencies manually, or by using pip. Therefore, there was no perceived need to use

any more advanced packaging than the source distribution packaging style o�ered

by Distutils. The future of the software may still see the introduction of a more

advanced packaging tool, where the most likely tool for introduction is wheel, using

the pip wheel utility.

As established, the target user group was considered to be comfortable with in-

stalling dependencies manually or with the pip package installation tool. Therefore,

the Distutils sdist source distribution package format was chosen for distributing

the software to end users.

To build source distribution packages with Distutils, one must �rst write a setup.py

�le that describes which �les to include in the distribution. The typical way to

de�ne what source �les are included is by de�ning the modules that belong in the

distribution. A module is basically a block of Python code contained in a single .py

�le.

With a bigger software package, de�ning all �les one by one is impractical. Therefore,

it is also possible to de�ne the included �les in terms of packages. A package is a

module that contains other modules � that is, single �les or other packages. Packages

are contained in directories in the �le system, and to mark a directory as a package,

an __init__.py �le must be present. The �le may be left empty, or it may contain

code for initialising the package.

4.15. Distribution 58

Typically, the setup.py �le also contains meta-information on the package as well.

It may include items such as the name of the package, version number, a textual

description, information on the author and the URL of the software's website.

Since the simulator software consists of a moderately big number of modules, they

were originally divided into multiple sub-directories. Those directories turned very

naturally into packages just by including an __init__.py �le in each one of them.

The packages were then included in the distribution simply by passing the packages

argument when calling setup in the setup.py �le, as shown in Program Listing 4.13

that showcases the actual setup.py �le used. Furthermore, example con�guration

�les and standalone Python modules were included in the distribution, as well as a

helper script for running the software from the command line.

Program Listing 4.13 Distutils setup.py �le for distributing the software

1 from distutils.core import setup

2 setup(name='irsim',

3 version='0.1.23 ',

4 py_modules =['irsim ', 'callbackLoader ', 'stats', 'figures '],

5 packages =['qsdl', 'qsdl.parser ', 'qsdl.simulator ', 'qsdl.simulator.errors '

, 'example -config '],

6 package_data ={ 'example -config ': ['*.xml', '*.xsd'] },

7 scripts =['irsim '],

8 url='http ://www.github.com/fire -uta/ir-simulation/',

9 author='Teemu Paakkonen , University of Tampere ',

10 author_email='teemu.paakkonen@uta.fi'

11)

After de�ning the distribution using the setup.py �le, the package can be built by

invoking the �le from the command line with the sdist parameter. This builds a

single package �le that contains the speci�ed source �les, along with a PKG-INFO �le

that contains meta-data on the package. This package �le was successfully used to

distribute the simulator software to end users, along with short instructions on how

to install dependencies. The approach proved to be su�cient.

59

5. EVALUATION

This chapter discusses the impact of design choices on the workings of the �nished

software, how the software �ts its intended purpose, and also the impact of the

software on research.

Section 5.1 evaluates the software through a case study that compares simulated

behaviour to that of actual humans. Section 5.2 assesses the software architecture.

In Section 5.3 the research work done using the software is visited. Section 5.4

discusses how the developed user modelling language ful�lled its purpose. Finally,

Section 5.5 gives insight into the possible future of the software.

5.1 Testing the ability to predict behaviour

Since the main research question was whether simulating user behaviour accurately

is possible, evaluation of simulation results was needed. Such evaluation can be

looked into from two di�erent perspectives. When absolute replication of behaviour

is desirable, the behaviour of the user model needs to be evaluated against that of

the real users. On the other hand, when merely similar results are required, for

instance if the simulation is used to evaluate search engines, mostly the �nal results

achieved by the simulation are important. Both perspectives were deemed to be

worthy of examination. In order to undertake such evaluation, a case study was

conducted.

5.1.1 User model evaluation

The simulator software requires a valid user model in order to produce valid results.

In order to make sure a certain user model produces valid results, it must be tested

against real world data, using actual data generated by human actions as a reference

point (Johnson and Taatgen 2005).

5.1. Testing the ability to predict behaviour 60

The aim of evaluation is to con�rm that the results produced are consistent with the

observations they are based on � that is � the simulated user behaves like the actual

users observed. This requires that the simulation records all simulated user actions,

in order to facilitate reducing them into statistics, that can in turn be compared

against the statistics gathered from user observation.

As mentioned, user model evaluation requires proper support from the software. As

outlined in Section 4.12, the Observer pattern is utilised throughout the software in

order to store accurate data that can later be used for analysis. This design choice

proved to be useful for user model evaluation purposes as well.

5.1.2 Case study

In order to test user modelling, a case study was conducted. For the case study,

a model was created using a previous laboratory study (Maxwell and Azzopardi

2014) as a reference point. Behavioural probabilities established by analysing the

data gathered in the study were used for decision making in the model. The goal

of the case study was to create a model that mimics previously observed real user

behaviour. The results produced by the model were expected to then mirror the

empirical research results, thus validating the model.

In their research, Maxwell and Azzopardi (2014) studied how network and data

processing related delays a�ect user interactions with a search system. They found

that users will spend more time reading documents and SERPs per query when

di�erent kinds of delays are present. They also found that users will make fewer

queries when the relative cost of querying is higher, and that users will make more

queries when the relative cost of reading documents is higher.

While the original research results aren't that interesting from the point of view of

testing a user model, the data gathered from the user study is highly suitable for

creating a testable user model. The user study set-up included a logging facility for

capturing the following data:

• queries issued by the user;

• interactions with SERPs;

• documents viewed, and their relevance assessments.

5.1. Testing the ability to predict behaviour 61

Maxwell and Azzopardi point out that the gathered log data can be used to calculate

times spent performing any activity. The same data, while not used for such purpose

by Maxwell and Azzopardi, allows one to assess the probabilities of performing the

actions based on such factors as document relevance, time spent, or cumulated gain.

Using the original log data, costs and probabilities were calculated for each doc-

ument relevance level, in order to base a simple user model on them. Relevance

levels were given using three-point assessment, where level 0 means the document is

irrelevant, and levels 1 and 2 mean the document was relevant to a low or high de-

gree, respectively. The original data contained four di�erent types of query sessions:

1. ones with no arti�cial delays, denoted with BL, 2. ones with arti�cially introduced

querying delays, denoted with QD, 3. ones with arti�cial document loading delays,

denoted with DD, and 4. ones with both querying and document delays, denoted

with QDD.

Since the separate delay types allowed for testing of multiple di�erent types of user

models, a separate evaluation was performed for each type, using four-fold cross-

validation. Three di�erent types of strategies for moving on to the next query

(stopping strategies) were employed for each delay type, after Maxwell et al. (2015):

a �xed-type strategy where the query is changed after n SERP snippets have been

seen, denoted with SS-�x, a strategy where the query is changed after n non-relevant

SERP snippets have been seen during a single query, denoted with SS-tot, and a

strategy where the query is changed after n consecutive non-relevant SERP snippets

have been seen during a single query, denoted with SS-seq. Table 5.1 illustrates

the ranges of average times calculated using the log data, and Table 5.2 shows

the average probabilities calculated using the data. The data also included practice

sessions, which were expunged before any calculations were made.

Table 5.1 Costs used for the user model (seconds)

Property BL QD DD QDD

Document reading time 15.5�21.3 14.9�19.6 13.7�19.8 25.2�29.1
Query formulation time 8.0�8.6 7.8�8.4 8.2�9.9 9.5�10.8
Snippet scan time 4.9�6.3 5.7�6.6 6.2�7.2 8.6�9.4

In order to run simulations, the cost and probability data gathered by analysing the

logs were transformed into a simulation description �le. To keep things simple, the

simulation was modelled after the very simple example automaton presented in Fig-

ure 3.2. Each cost and probability presented in Tables 5.1 and 5.2 was turned into

5.1. Testing the ability to predict behaviour 62

Table 5.2 Probabilities used for the user model

Property Relevance BL QD DD QDD

Read probability 2 0.57 0.52 0.54 0.54
1 0.55 0.45 0.53 0.53
0 0.32 0.32 0.24 0.30

Consider-as-relevant probability 2 0.79 0.75 0.88 0.78
1 0.61 0.64 0.76 0.59
0 0.45 0.54 0.69 0.55

a cost or probability element, respectively, following the de�nitions in Section 4.2.

The stopping strategy parameter values were also calculated by analysing the logs,

and incorporated into the user model.

The automaton was set up to stop after 1200 seconds because that was the original

time limit set by Maxwell and Azzopardi in the user study. The test subjects

were, however, given the probability of stopping before reaching the time limit if

they felt they had found enough relevant documents, or became �fed up�. In other

words, perceived success was the deciding factor behind stopping early. This was

not modelled in the case study, making the reaching of the 1200 second time limit

the only way to stop, in addition to running out of queries or results.

The document collection, search topics and search engine result lists used in the

simulation also had to match the ones used in the empirical study. The documents

and topics were acquired from the original source, the NIST TREC data collection,

and the results were re-generated using the same search engine as the one used in

the user study.

Four-fold cross-validation was performed by splitting each user group into four equal-

sized sub-groups. Three of the sub-groups were used for calculating the cost and

probability values, forming the training data for the user model, and the one re-

maining sub-group was used for building the queries and result lists. The simulation

results were then compared to the sub-group whose queries were used in the simu-

lation. The four sub-groups were then rotated and the experiment repeated using

data re-calculated from that con�guration. Four rotations were made in order to

use all possible combinations.

The four-fold cross-validation was repeated for all user groups, as separated by their

delay types, forming a total of 16 training data sets. Each data set was simulated

5.1. Testing the ability to predict behaviour 63

with all of the stopping strategies, making the total number of simulation runs 48.

The results were calculated as the di�erence between average cumulated gains over

each group of four training data sets that belong to the same delay type, and their

corresponding groups of real user query sessions.

The results, showcased in Table 5.3, show that the error between the simulations

and real users decreased with the use of the more complex stopping strategies SS-tot

and SS-seq. In best cases the error remained below 10% and even in the worst cases,

below 25%. Furthermore, statistical analysis showed that there was no statistically

signi�cant di�erence between the simulated users and the real ones, making the

simulated users just as good for evaluation purposes as real users.

Table 5.3 Average error percentages between real and simulated users' cumulated gains

over entire sessions, for di�erent delay types and stopping strategies.

Delay type SS-�x SS-tot SS-seq

BL 16.2 % 10.9 % 12.0 %
QD 23.7 % 18.4 % 9.5 %
DD 13.3 % 10.2 % 16.7 %
QDD 24.6 % 18.5 % 16.1 %
All 14.4 % 9.3 % 8.4 %

The results were also compared by recording the number of documents interacted

with by the simulation, and comparing those to the numbers of documents interacted

with by the real users. Three di�erent interactions were recognised: scanning a

SERP snippet, viewing a document, and marking the document as relevant. For

real users, the marking interaction was explicit since the original experiment required

it, but for simulated users there was no actual marking interaction. Instead, there

was a state where the simulation would consider the document as relevant, and that

was considered to correlate with the marking interaction.

After analysing the document interactions, it was found that on average, the sim-

ulations interact with far fewer documents than the real users. The error between

real and simulated users was 18.5 � 41.9 % for the number of scanned snippets, 8.4

� 28.6 % for the number of viewed documents, and 6.3 � 23.6 % for the number of

documents marked as relevant. The QD condition displayed the least amount of er-

ror for all measured values. The otherwise well-performing SS-seq stopping strategy

incurred more error than the other tested strategies, showing that having low error

5.2. On the software architecture 64

when comparing session e�ectiveness does not necessarily correlate with low error

in the similarity of actions. The results are shown in Table 5.4.

Table 5.4 Average error percentages between real and simulated users' document in-

teractions: seen snippets, clicked documents and marked-relevant documents. Given per

di�erent delay types and stopping strategies.

Delay type Stopping strategy Seen Clicked Marked

BL SS-�x 33.2 % 21.7 % 18.9 %
SS-tot 31.4 % 18.8 % 14.7 %
SS-seq 41.9 % 28.6 % 22.1 %

QD SS-�x 18.9 % 9.4 % 7.9 %
SS-tot 18.5 % 8.4 % 6.3 %
SS-seq 30.2 % 19.4 % 16.3 %

DD SS-�x 25.8 % 12.6 % 11.7 %
SS-tot 24.0 % 9.8 % 8.5 %
SS-seq 34.8 % 21.8 % 20.2 %

QDD SS-�x 27.4 % 16.1 % 15.4 %
SS-tot 28.5 % 16.1 % 15.4 %
SS-seq 38.8 % 25.9 % 23.6 %

All SS-�x 26.2 % 14.9 % 13.4 %
SS-tot 25.5 % 13.5 % 11.7 %
SS-seq 35.4 % 22.5 % 19.6 %

The comparison between the �nal results showed that the simulated users are as

good as real users when comparing session e�ectiveness. Therefore, a simulated

user can be used for evaluating the impact of aspects such as the di�erences be-

tween search engine algorithms, di�erences in user interfaces, and so on. However,

since there were big di�erences between the simulated users and real ones when

considering the documents interacted with, simulated users don't appear to be good

for evaluating the e�ects of di�ering user behaviours. The di�erences can likely

be lessened by improving the user model, but without further testing it cannot be

con�dently asserted that the simulator would be useful for evaluating the e�ects of

changes in searcher behaviour.

5.2 On the software architecture

Since the simulator software simply runs state machines, the architecture is quite

simple. In theory, the architecture should be easy for others to understand and

work on, so that anyone can continue developing and maintaining the software. In

5.3. Research done using the software 65

practice, since, at the time of writing, there have been no other developers working

on the software, the assertion remains to be tested.

One of the biggest problems with the architecture is that the program code is written

to be compatible with Python 2 only. Migrating to Python 3 would require not

only changes to the core software itself, but also the libraries used. For example,

the PyXB library is incompatible with Python 3, and would have to be replaced.

Fortunately, the technologies used in the software have all reached such a state of

maturity that upgrading the libraries has become unnecessary, making staying with

Python 2 a lesser issue.

The software was been designed in such a way that almost any kind of experiment

should be possible to conduct without making changes to the software itself. This

has proven to be true. Multiple experiments have been conducted with the software,

and while some modi�cations to the software have been made in order to make it

easier to use, the experimental set-ups themselves have only required making changes

to the user model and simulator con�guration.

The worst issue with the current state of the software is that with multiple Monte Carlo

iterations run times can be very long. Long runs can also use a lot of memory. One

way to improve performance would be to use another Python interpreter, such as

PyPy that features a just-in-time compiler that should theoretically speed up just

about any python program. Since Python programs use only a single processor core

by default, most of the processing capacity of a typical modern multi-core computer

is left unused. Making the software run multiple Monte Carlo iterations concurrently

in separate threads could, in the best case, speed up running times by the number

of physical processor cores present in the system.

5.3 Research done using the software

At the time of writing, there has been one published research paper where the

simulator software has been used. The software was used to conduct an experiment

on what separates an expert searcher from a novice. Multiple user models were used

to test which behavioural factors contribute most to the e�ectiveness of searching.

(Pääkkönen et al. 2015)

Another unpublished research paper is under peer review at the time of writing.

There, the software was used to test how well a widely-used searcher user model

5.4. On the simulation description language 66

replicates the behaviour of real users. The �ndings were encouraging since the

user model produced results that were statistically indistinguishable from real users.

Some of the results were reported in Subsection 5.1.2.

Since the previous studies proved the usefulness of the software, further research

work is also planned. Previous research uncovered the need for improving the com-

monly used searcher user model, and the software should prove useful for attempting

to improve it.

5.4 On the simulation description language

As mentioned in Section 4.2, in the beginning of the project, a requirement for a

language for de�ning user models for the simulator was speci�ed. The resulting

XML-based language is both complex and di�cult to approach for newcomers. The

schema also allows for �impossible� simulations where the problems can only be

detected run-time, and in some cases, cannot be detected programmatically at all,

requiring strict and often laborious manual scrutiny of the user model.

The main caveat of XML itself is its verboseness. Writing long XML �les can be

tedious when done manually, due to the syntax requiring all elements and attributes

to have names. There is no array construct in XML, which makes simple lists of

values tremendously more verbose than necessary. An actual simulation description

can therefore be much longer than when written in some less verbose language. To

battle the verboseness, a wizard-like graphical tool was considered. However, it

was considered too much work for the time being, and was postponed for future

development of the software.

While not a caveat of XML per se, the choice of XML also introduces the shortcom-

ings of XML Schema. XML Schema su�ers from a verbosity problem, since it is an

XML-based language. Furthermore, it is designed to account for all kinds of com-

plex document types, which makes writing schemas somewhat tedious. Even simple

schemas can have very deeply nested element trees, which also hurts the document's

human-readability.

Nevertheless, the language is versatile enough that it can be used to specify almost

any kind of user model, as long as it can be reduced to a non-concurrent state

machine. The real-world research cases highlighted in Section 5.3 stand as proof for

usefulness despite the problems.

5.5. Future work 67

In the end, however, a ready-made and thoroughly thought out solution by a re-

liable third party seems like a more robust and workable approach. For example,

W3C's SCXML (State Chart XML) (Hosn et al. 2015) o�ers many of the features

of our in-house language. In addition to allowing the de�nition of states and transi-

tions, it allows de�ning executable content to run when entering or leaving a state

(analogous to triggers), storing data alongside the state machine in the same fash-

ion how documents, queries, topics and relevances are stored now in the software,

and conditional transitions (analogous to conditions). Furthermore, SCXML also

features the possibility for multiple simultaneously active states, which would allow

for EPIC-style user model parallelism.

What SCXML does lack, however, is direct support for probabilistic transitions. It

is of course possible to write such conditional transitions that compare a probability

value to a random variable whose value is set in an executable content section,

e�ecting a probabilistic transition. In our case, an even better approach would be

to write an extension of the schema, adding support for the simpler way of de�ning

probabilities present in the simulation description language. Adopting SCXML in

either manner would almost certainly lead to having to rewrite the entire software.

Since SCXML is a W3C recommendation, the speci�cation also contains guidelines

on how to implement software that can handle SCXML documents. Using such

guidelines as a basis for automaton-based simulator software should in theory result

in a better implementation, even if the simulator wasn't built to support SCXML

in its entirety, but a subset thereof.

However, the software, as it is, would not bene�t from the guidelines without

the adoption of SCXML as well, since the simulation description language di�ers

markedly enough from it. Therefore, all approaches to adopting SCXML, or parts

of it, or even just the guidelines, would likely result in a complete rewrite of the

software. There being no compelling basis for such revamp, the idea must be put

aside for future projects.

5.5 Future work

Despite the fact that the software architecture has proved to be su�cient enough,

so that there have been no major changes to the software since it was �nished, there

5.5. Future work 68

is still much room for improvement. Maintaining the software in its current state is

hard, and writing user models has also emerged as being di�cult for end users.

As mentioned earlier, one of the problems with the software architecture is that

the code base only works with Python 2. Migrating to Python 3 should make it

easier to maintain the software in the future since most Python libraries currently

work with Python 3, and may stop supporting Python 2 in the future. In the

simulator software, the PyXB library used for XML handling only supports Python

2. Therefore, a replacement that supports Python 3 would be needed. Fortunately,

there is an XML library called LXML that has mostly all the same features as

PyXB, and supports Python 3. Therefore, in order to migrate to Python 3, the

architecture would have to be changed to use LXML for XML handling. In addition,

the code base would require some changes due to the changes mandated by Python

3 speci�cations.

Another problem with the current implementation is that the XML-based user mod-

elling �les and con�guration �les are somewhat complex to write by hand. Currently,

end users are often having trouble with the �les, and need constant support when

making changes to them. The remedy for this would be to create a graphical tool

that guides the user through creating the �les. That way, the end user doesn't have

to bother with understanding the internal data structure, and they can just concen-

trate on the user model itself. A likely platform for such a tool would be something

web based, in order to cater for most operating systems and devices.

While the software architecture works well for Cran�eld-type experiments, there is

one aspect that is not supported. Since typical users always learn or forget things

during a search session, the parameters of the user model are constantly changing.

This can of course be modelled by using custom callbacks to calculate probabilities,

costs and gains. However, the users also learn new information from the topic, and

apply their newly gained knowledge by making better queries. Since the software

can only use a �xed set for queries for each session, this aspect cannot be taken into

account. The simulator software used by Maxwell et al. (2015) is able to formulate

new queries based on topical information, while being otherwise quite di�erent.

Incorporating such features into this software would allow researchers to venture

into new kinds of research areas, where query formulation is an integral part of the

user model.

5.5. Future work 69

As discussed in Section 5.2, the worst issue with the software architecture is the

performance with complex models and large Monte Carlo runs. The obvious way to

improve performance would be to make the Monte Carlo iterations run in parallel

threads or processes. While Python 2 already supports threading and launching

processes, Python 3.2 has an improved feature for managing concurrency called

concurrent.futures. It o�ers a way to create futures that act as proxy objects for

values that are resolved later. This way, execution can continue without the value

being immediately present, and will only stop to wait for the value when it is needed.

With the use of futures, it would be quite easy to implement a solution that never

waits for a single iteration to �nish. The caveat of this approach would be that it

requires Python 3, and it is currently not supported by the software. Therefore,

in order to implement concurrent processing, there are two options: either make

do with the old threads support of Python 2, or migrate to Python 3 for a better

solution to concurrency.

70

6. CONCLUSIONS

In order to reduce the costs of experimentation in information retrieval research, a

software that simulates user interaction with a search interface was created. The

software was designed to emulate the Cran�eld model of IR experiments, using

Indri query �les and TRECEVAL result �les as input. An XML-based language for

creating user models for the software was devised, and the software was designed

to be able to utilise any user model described with the language. The language

was designed to be as �exible as possible, to allow almost any kind of experimental

set-up to be built. The software measures session e�ectiveness using cumulated gain

as the main metric. Due to the stochastic nature of the user models, the simulator

utilises Monte Carlo methods in order to produce meaningful results.

The software proved to be useful for research purposes, having been used for one

published and one as-of-yet unpublished research paper, at the time of writing. The

software architecture proved to be robust, since very little program code changes had

to be made for the experimental set-ups. The user modelling language was found

to be so �exible that multiple di�erent kinds of experiments could be made with it.

While comparing the simulated users behaviour to that of real users, it was found

that there was no signi�cant statistical di�erence when using a commonly-utilised IR

user model, thus validating the simulator's use for many kinds of experimentation.

At the time of writing, the simulator software has been used for one published

scienti�c paper (Pääkkönen et al. 2015). Another unpublished paper is pending

peer review, and is likely to be published in 2016. More research is also planned,

and further publications are forthcoming.

Shortcomings of the software include the dependency on Python 2, version 3 not

being supported. The user modelling language is also too complex for end users

to e�ectively write, as there is no assisting graphical tool to help. Furthermore,

the software is unoptimised, performing poorly when the number of Monte Carlo

iterations is high.

6. Conclusions 71

In the future, the simulator will be used for more research work, likely focusing on

creating more advanced user models. Work on the software itself will also continue,

the main focus being on performance optimisation and moving towards Python 3

support. A look into query formulation within the software will also be taken.

In conclusion, the software was successfully implemented, and it serves the purpose

it was designed for. Work on the software will continue to make it even better.

72

BIBLIOGRAPHY

Azzopardi, L., K. Järvelin, J. Kamps, and M. D. Smucker (2011). �Report on the

SIGIR 2010 Workshop on the Simulation of Interaction.� In: SIGIR Forum 44.2,

pp. 35�47.

Baeza-Yates, R. and B. Ribeiro-Neto (2011). Modern Information Retrieval: the

concepts and technology behind search, Second edition. Reading, Massachusetts,

USA: Addison-Wesley. 913 pp.

Beazley, D. and B. K. Jones (2013). Python Cookbook, 3rd Edition. Sebastopol,

California, USA: O'Reilly Media. 706 pp.

Bigot, P. A. (2014). PyXB: Python XML Schema Bindings. url: http://pyxb.

sourceforge.net/ (visited on 15/03/2016).

Chauve, A., A. Espaze, E. Gouillart, G. Varoquaux, and R. Gommers (2016). Scipy :

high-level scienti�c computing. url: http://www.scipy-lectures.org/intro/

scipy.html (visited on 15/03/2016).

Croft, W. B., D. Metzler, and T. Strohman (2010). Search Engines: Information

Retrieval in Practice. Reading, Massachusetts, USA: Addison-Wesley. 520 pp.

Danjou, J. (2014). The Hacker's Guide to Python. Lulu.com. 290 pp.

Eckard, E. and J.-C. Chappelier (2007). Free Software for research in Informa-

tion Retrieval and Textual Clustering. Tech. rep. Lausanne, Switzerland: École

polytechnique fédérale de Lausanne.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1994). Design Patterns: El-

ements of Reusable Object-Oriented Software. Reading, Massachusetts, USA:

Addison-Wesley. 416 pp.

Geyer, C. (2011). �Introduction to Markov Chain Monte Carlo.� In: Handbook of

Markov Chain Monte Carlo. Ed. by S. Brooks, A. Gelman, G. L. Jones, and X.-L.

Meng. Chapman and Hall/CRC. Chap. 1, pp. 3�48.

Harman, D. (2011). Information Retrieval Evaluation. San Rafael, California, USA:

Morgan & Claypool. 107 pp.

Hosn, R., J. Carter, D. Burnett, T. Lager, J. Barnett, T. Raman, S. McGlashan, R.

Auburn, J. Roxendal, K. Reifenrath, R. Akolkar, N. Rosenthal, M. Bodell, and M.

Helbing (2015). State Chart XML (SCXML): State Machine Notation for Control

Abstraction. Recommendation. W3C. url: http://www.w3.org/TR/2015/REC-

scxml-20150901/.

http://pyxb.sourceforge.net/
http://pyxb.sourceforge.net/
http://www.scipy-lectures.org/intro/scipy.html
http://www.scipy-lectures.org/intro/scipy.html
http://www.w3.org/TR/2015/REC-scxml-20150901/
http://www.w3.org/TR/2015/REC-scxml-20150901/

BIBLIOGRAPHY 73

Hunter, J., D. Dale, E. Firing, and M. Droettboom (2016). Matplotlib, Release 1.5.1.

url: http://matplotlib.org/contents.html (visited on 15/03/2016).

Ingwersen, P. and K. Järvelin (2005). The Turn: Integration of Information Seeking

and Retrieval in Context. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

John, B. E. and D. E. Kieras (1996). �The GOMS Family of User Interface Analysis

Techniques: Comparison and Contrast.� In: ACM Transactions on Computer-

Human Interaction 3.4, pp. 320�351.

Johnson, A. and N. Taatgen (2005). �User Modeling.� In: The Handbook of Human

Factors in Web Design. Ed. by R. Proctor. Mahwah, NJ, USA: Lawrence Erlbaum

Associates, pp. 424�439.

Järvelin, K. and J. Kekäläinen (2002). �Cumulated Gain-based Evaluation of IR

Techniques.� In: ACM Transactions on Information Systems 20.4, pp. 422�446.

Järvelin, K., S. Price, L. Delcambre, and M. L. Nielsen (2008). �Discounted Cumu-

lated Gain Based Evaluation of Multiple-query IR Sessions.� In: Proceedings of

the IR Research, 30th European Conference on Advances in Information Retrieval.

ECIR'08. Glasgow, UK: Springer-Verlag, pp. 4�15.

Kalos, M. H. and P. A. Whitlock (2008). Monte Carlo Methods: Second Revised and

Enlarged Edition. Wiley-VCH Verlag.

Kettunen, K. (2007). Reductive and generative approaches to management of mor-

phological variation of keywords in monolingual information retrieval. Tampere,

Finland: Tampere University Press.

Kieras, D. E. (2005). �Fidelity issues in cognitive architectures for HCI modelling: Be

careful what you wish for.� In: Proceedings of the 11th International Conference

on Human Computer Interaction (HCII 2005). Mahwah, NJ, USA: Lawrence

Erlbaum Associates, pp. 22�27.

Kieras, D. E., S. D. Wood, and D. E. Meyer (1995). �Predictive Engineering Models

Using the EPIC Architecture for a High-performance Task.� In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. CHI '95. Denver,

Colorado, USA: ACM Press/Addison-Wesley Publishing Co., pp. 11�18.

Law, A. M. (2008). �How to Build Valid and Credible Simulation Models.� In:

Proceedings of the 40th Conference on Winter Simulation. WSC '08. Miami,

Florida: Winter Simulation Conference, pp. 39�47.

Manning, C. D., P. Raghavan, and H. Schütze (2009). An introduction to information

retrieval. Cambridge University Press.

http://matplotlib.org/contents.html

BIBLIOGRAPHY 74

Martin, R. C., M. C. Feathers, T. R. Ottinger, J. J. Langr, B. L. Schuchert, J. W.

Grenning, and K. D. Wampler (2009). Clean Code: A Handbook of Agile Software

Craftsmanship. Boston, Massachusetts, USA: Pearson Education, Inc. 431 pp.

Maxwell, D. and L. Azzopardi (2014). �Stuck in Tra�c: How Temporal Delays A�ect

Search Behaviour.� In: Proceedings of the 5th Information Interaction in Context

Symposium. IIiX '14. Regensburg, Germany: ACM, pp. 155�164.

Maxwell, D., L. Azzopardi, K. Järvelin, and H. Keskustalo (2015). �An Initial

Investigation into Fixed and Adaptive Stopping Strategies.� In: Proceedings of

the 38th International ACM SIGIR Conference on Research and Development in

Information Retrieval. SIGIR '15. Santiago, Chile: ACM, pp. 903�906.

O'Grady, S. (2015). The RedMonk Programming Language Rankings: June 2015.

url: https://redmonk.com/sogrady/2015/07/01/language-rankings-6-15/

(visited on 11/01/2015).

Python Software Foundation (2016a). The Python Package Index (PyPI) (Python

2.7.11 Documentation). url: https : / / docs . python . org / 2 / distutils /

packageindex.html (visited on 08/03/2016).

Python Software Foundation (2016b). The Python Tutorial (Python 2.7.11 Doc-

umentation). url: https : / / docs . python . org / 2 / tutorial/ (visited on

08/03/2016).

Pääkkönen, T., K. Järvelin, J. Kekäläinen, H. Keskustalo, F. Baskaya, D. Maxwell,

and L. Azzopardi (2015). �Exploring Behavioral Dimensions in Session E�ec-

tiveness.� English. In: Experimental IR Meets Multilinguality, Multimodality, and

Interaction. Vol. 9283. Lecture Notes in Computer Science. Springer International

Publishing, pp. 178�189.

Rabin, M. O. and D. Scott (1959). �Finite Automata and Their Decision Problems.�

In: IBM Journal of Research and Development 3.2, pp. 114�125.

Richardson, M., A. Prakash, and E. Brill (2006). �Beyond PageRank: Machine

Learning for Static Ranking.� In: Proceedings of the 15th International Conference

on World Wide Web. WWW '06. Edinburgh, Scotland: ACM, pp. 707�715.

Ripley, B. (1987). Stochastic simulation. Wiley Series in Probability and Statistics.

J. Wiley.

Robertson, S. E., S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford

(1994). �Okapi at TREC-3.� In: Proceedings of the 3rd Text Retrieval Conference.

ACM, pp. 109�126.

https://redmonk.com/sogrady/2015/07/01/language-rankings-6-15/
https://docs.python.org/2/distutils/packageindex.html
https://docs.python.org/2/distutils/packageindex.html
https://docs.python.org/2/tutorial/

BIBLIOGRAPHY 75

Robertson, S. and H. Zaragoza (2009). �The Probabilistic Relevance Framework:

BM25 and Beyond.� In: Foundations and Trends in Information Retrieval 3.4,

pp. 333�389.

Strohman, T., D. Metzler, H. Turtle, and W. B. Croft (2005). �Indri: A language

model-based search engine for complex queries.� In: Proceedings of the Interna-

tional Conference on Intelligent Analysis. Vol. 2. 6. University of Massachusetts,

pp. 2�6.

Vaingast, S. (2014). �Python for Programmers.� In: Beginning Python Visualization.

Springer, pp. 55�108.

Voorhees, E. (2002). �The Philosophy of Information Retrieval Evaluation.� En-

glish. In: Evaluation of Cross-Language Information Retrieval Systems. Ed. by

C. Peters, M. Braschler, J. Gonzalo, and M. Kluck. Vol. 2406. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, pp. 355�370.

Voorhees, E. M. and D. Harman (2000). �Overview of the Sixth Text REtrieval

Conference (TREC-6).� In: Information Processing & Management 36.1, pp. 3�

35.

	Introduction
	Simulating information retrieval
	Information retrieval terminology
	How information retrieval systems work
	Indexing
	Retrieval models
	Scoring

	Evaluating the performance of IR systems and users
	Evaluation using relevance-based metrics
	Assessing ranking quality
	Precision-based metrics
	Cumulated Gain
	Session metrics

	User modelling and simulation
	Criteria for a valid user model
	Techniques for creating a user model
	Simulation as a state machine
	Computing results using Monte Carlo methods

	Simulator design
	System overview
	Formal definition of the IR automaton
	Simulation cycle
	An example IR simulation
	Applying the formal model to software
	Object model
	Input
	TREC topic files
	Indri query files
	TREC result files
	TREC relevance files
	Sessions

	Output
	Configuration

	Simulator implementation
	Technology considerations
	Simulation description language
	Technology selection
	Development
	Features

	Using third-party libraries in Python
	Writing programming interfaces in Python
	Re-usable code
	Overall architecture
	Parsing input files
	Parsing the configuration file
	Parsing the simulation description file
	Callback plug-ins
	Running a simulation
	Recording the simulation runs
	Calculating statistics
	Drawing figures
	Distribution

	Evaluation
	Testing the ability to predict behaviour
	User model evaluation
	Case study

	On the software architecture
	Research done using the software
	On the simulation description language
	Future work

	Conclusions
	Bibliography

