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The thesis work was part of the Mobile 3DTV project which studied the capture,
coding and transmission of 3D video representation formats in mobile delivery sce-
narios. The main focus of study was to determine if it was practical to transmit

and view 3D videos on mobile devices. The chosen approach for virtual view syn-
thesis was Depth Image Based Rendering (DIBR).

The depth computed is often inaccurate, noisy, low in resolution or even in-
consistent over a video sequence. Therefore, the sensed depth map has to be
post-processed and refined through proper filtering. Bilateral filter was used for
the iterative refinement process, using the information from one of the associated

high quality texture (color) image (left or right view).

The primary objective of this thesis was to perform the filtering operation in
real-time. Therefore, we ported the algorithm to a GPU. As for the programming
platform we chose OpenCL from the Khronos Group. The reason was that the
platform is capable of programming on heterogeneous parallel computing environ-

ments, which means it is platform, vendor, or hardware independent.

It was observed that the filtering algorithm was suitable for GPU implemen-
tation. This was because, even though every pixel used the information from its
neighborhood window, processing for one pixel has no dependency on the results

from its surrounding pixels. Thus, once the data for the neighborhood was loaded
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into the local memory of the multiprocessor, simultaneous processing for several

pixels could be carried out by the device.

The results obtained from our experiments were quite encouraging. We exe-
cuted the MEX implementation on a Core2Duo CPU with 2 GB of RAM. On the
other hand we used NVIDIA GeForce 240 as the GPU device, which comes with
96 cores, graphics clock of 550 MHz, processor clock of 1340 MHz and 512 MB

memory.

The processing speed improved significantly and the quality of the depth maps
was at par with the same algorithm running on a CPU. In order to test the effect
of our filtering algorithm on degraded depth map, we introduced artifacts by com-
pressing it using H.264 encoder. The level of degradation was controlled by varying
the quantization parameter. The blocky depth map was filtered separately using
our implementation on GPU and then on CPU. The results showed improvement
in speed up to 30 times, while obtaining refined depth maps with similar quality

measure as the ones processed using the CPU implementation.
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1. INTRODUCTION

The Graphics Processing Units, better known as GPUs came into existence to
satisfy the ever increasing demand for computational power. They have proved
to be especially effective in the field of image processing, computer vision and
computer graphics, where the work load is parallel in nature and same operations
are performed on large set of data. One related field of study is stereoscopic
3D, which creates or enhances the perception of 3-dimensional space providing

binocular 3D cues.

In humans, the perception of 3-dimensional space is a result of capturing two
different views of the same scene by a pair of eyes. The views are then fused in

the brain to create simple clear image and to perceive the depth of the scene.

For digital representation, the three most important components for 3D viewing
are the left view image, the right view image and the scene depth map. The left
and right views are color images that are captured through two different cameras
separated by a small distance. Depth map is a gray-scale image which represents

the distance of color pixels from the corresponding scene.

The acquisition of depth maps for a scene can be done by active or passive
means. The passive approaches are for example depth-from-stereo [32] or depth-
from-multi-view [34]; basically the depth map obtained from multiple images of
the same scene. On the other hand, active methods rely on depth estimated using
range sensors and active illumination source [3]. Even though these technologies
are promising, there are common limitations associated with them. The depth
computed is often inaccurate, noisy, low in resolution or even inconsistent over a
video sequence. Therefore, the sensed depth map has to be post-processed and

refined through proper filtering.
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In spite of such drawbacks in depth sensing, synthesizing views using the depth
image has significant advantages when the transmission of 3D content is taken
into account. That is because, since depth map is a gray scale image representing
piece-wise smooth scene, it can be compressed more effectively compared to a color

image (left or right view) [20].
1.1 Problem Formulation

It is to be noted that sub-sampling and compression adds its own characteristic
artifacts (like blockiness) to the depth image. Thus, it can be seen that on the
whole, the depth image suffers from inaccuracies, noise and compression artifacts
[30]. In case, a view is rendered from such suboptimal depth map, it will be
crippled with severe distortions. Hence, the depth image needs to be rectified or

filtered before it can be used for further processing.

This brings us to the problem that this thesis will try to address. The pre-
processing of depth images has to be performed fast enough such that the 3D

viewing can be done in real-time.

1.2 Objective

The purpose of this work was to develop efficient techniques for enhancing the
quality of depth maps at real time using GPUs. In order to achieve this, the
first step was to identify the algorithm which not only smooths an image but also
preserves the edges. Edges in our case represent the depth discontinuities which

have great significance for view synthesis.

Secondly, the filtering algorithm should be such that it can be easily parallelized
or certain modifications can be made to the algorithm such that it can be imple-
mented on a GPU. In the case of image processing, parallel processing is achieved
when the computations done on an individual pixel is independent on the results

obtained for it’s neighboring pixels.

The bilateral filter was successfully used by Smirnov et al. in [14]. The same

filter was used as the starting point of this study. The next tasks were to figure
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out whether
e The algorithm can attain desired speed-ups when implemented on GPU.

e The ease of implementation on GPU platform using open specifications like
the OpenCL.

e Finally, the possible boost in computation efficiency that can be attained for

the OpenCL implementation over more traditional C code running on CPU.

1.3 Contribution

The contributions of this thesis are as follows:

e Attempts were made to put forward the recent techniques to utilize the
computing power for systems which might contain single or multiple CPUs
and GPUs. For this purpose, the device agnostic and open source platform

called OpenCL was chosen.
e [t provides the reader a basic tutorial to start working with OpenCL.

e [t also contains some of the tools which one might find useful while using
OpenCL

1.4 Structure of this thesis

The thesis is organized as follows: Chapter 2 gives a brief introduction to stere-
oscopy; it provides an insight on the depth cues that create the impression of the
three dimensional space and the techniques for recreating them on digital displays.
Chapter 3 describes some of the fundamental elements for GPU programming using
OpenCL. Chapter 4 explains the filtering algorithm and how it can be implemented
for the GPU platform. Chapter 5 provides the results obtained from the filtering

operations and finally, Chapter 6 summarizes the findings in conclusion.



2. A BRIEF INTRODUCTION TO
STEREOSCOPY

Humans are gifted with a pair of eyes, which simultaneously captures rays of light
in two views and sends the information to the brain. The brain after some complex
processing fuses them to create a three dimensional (3D) map of the visible space.
The sensation of sight in humans comprises of a single clear color image and a

perspective disparity map of the scene.

The photograph captured by a film or digital camera has one fundamental dif-
ference with the ones formed in the brain. The former is represented in two
dimensions (2D) i.e. height and width. It lacks the depth information, which in
the field of computer vision (CV) is regarded as the third dimension.

2.1 Depth cues

Since, 3D viewing requires at least two image sensors (eyes or cameras), it is
also regarded as stereoscopy. However, study made by Rolfe et al. in [3T] suggests,
along with stereo vision the brain might use other cues to determine the relative
distances and depth in a scene. These cues are gathered by only one eye and hence

known as monocular (or extrastereoscopic) cues.

2.1.1 Monocular depth cue

Monocular depth cues play a significant role in perception of depth. To an
extent, the significance depends on the distance between the observer and the

scene. Some of the important ones are listed below.

e Accommodation of the eye: Human eye can change its optical power in order

to focus on the object of interest. This is achieved by changing the form
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of the elastic lens. Even though this is mostly a reflex action but can be

controlled to some extent.

e Relative size: Objects which creates a bigger image on the retina is perceived

to be closer.

e Relative height: Objects placed higher in the scene generally tend to be

perceived as further away:.

e Querlapping of objects: If one object is occluded by another, it is obvious

that the occluding object is closer. This is also known as interposition.

e Linear perspective: The image of two parallel lines or edges, formed on the
retina, seem to converge in such a way that they will eventually meet at

infinity.

e Blur and De-saturation: When the eyes focus on an object it forms a sharp
and color rich image on the retina. The part of the scene that lies outside
the focus plane appears to be blur. Converting a part of a scene to gray-scale

also gives the effect of out-of-focus region. This is known as de-saturation.

e Haze, De-saturation, and a shift to bluishness: In the real world, the light
traveling from distant objects has to pass through dust or water vapor present

in the air giving rise to such effects.

o Other cues: Light, cast shadow and textured pattern are some of the cues

commonly used to replicate 3D scene.

2.1.2 Binocular depth cue

The most important aspect here is that the eyes are separated from each other
by a certain distance (about 64 mm in adults) called the inter-ocular distance.
This helps to observe two different perspectives of the same scene. From this, the
brain derives two important cues called vergence and retinal disparity shown in

Figure 2.1
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Horopter --------f=—==

Convergence

Panum’s Area
(Area of Fusion)

Figure 2.1: Convergence and retinal disparity. (Adapted from [28]) .

Vergence: When the eyes tries to focus on an object it rotates the eye-ball such
that the image is formed at the center of the retina. The angle of rotation is called
the vergence angle 3, as shown in Figure 2.1, For near objects the eyes rotate
towards each other and is known as convergence. The angle formed between the
two optical axis is called convergence angle a. They are related as f = «/2.

Vergence assists the HVS to estimate the distance of the object to the eye.

Retinal disparity: The object lying on the horopter forms an image on the center
of the retina for both eyes. However, the images formed for objects lying outside
the horopter has certain amount of disparity compared to each other (as shown in
Figure . This is called retinal disparity or binocular parallax. Along with the
angle of vergence, this gives an important cue for the brain to construct 3D image

of the object and the environment surrounding it.

2.1.3 Depth cues for 3D Displays

Most commercial 3D displays available today are planostereoscopic devices.
Such devices provide the viewer with a pair of images; one for each eye, on the

same plane of the screen. These two images are exact similar given that each point
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in one view has a corresponding point in the other view which is slightly displaced.
This displacement or disparity provides cue for the brain to create an illusion of
3D. There are in fact three kinds of parallaxes (as shown in Figure [2.2)).

(b)

Figure 2.2: Disparity or Parallax for 3D viewing. (a) Positive disparity (b) Zero disparity
(¢) Negative disparity. (Adapted from [28]) .

Positive disparity: In this case, the point in the the right view lies on the right
of it’s corresponding point in the left view (see Figure 2.2](a)). Hence, the viewing
rays seem to converge on the plane behind the screen. This gives an impression
that the object lies in the screen space (for screen space see Figure . To display
an object located at infinity the displacement has to be equal to the inter-ocular
distance; which means, it is the maximum possible disparity that can be produced

on the screen.

Zero disparity: In this case, the left and right view points are located at the same

point. Thus the viewing rays seem to converge on the screen (see Figure [2.2(b)).

Negative disparity: Finally, for negative disparity, the point in the right view lies
on the left of it’s corresponding point in the left-view (see Figure[2.2)(c)). Thus the
viewing rays seem to converge at a point in front of the screen giving the impression
that the object lies in the theater space (for theater space see Figure .



2. A Brief Introduction to Stereoscopy

2.2 Issues related to Binocular Disparity

It is to be noted that, over use of the disparity to create the 3D effect might lead to
uncomfortable viewing experience. The comfort zone for 3D viewing lies near the
screen (see Figure i.e. when the disparity is small. Larger disparity places the
3D object further away from the screen, however they are difficult for the brain
to simulate. The retinal rivalry areas should be avoided and only visited when
absolutely necessary. Otherwise, improper 3D production will stress the viewer

and lead to bad viewing experience.

Theatre space Screen space

vergence
Screen

Painful 3D

Painful retinal ¢
. Retinal
rivalry areas

Comfortable 3D

rivalry areas

Figure 2.3: Stereoscopic comfort zone (Adapted from [29]) .

The amount of 3D experience varies also with the distance from the viewing
plane, as shown in Figure 2.4, Same amount of disparity will simulate different
depth depending on the position of the viewer with respect to the screen. It is
important this into account, since the 3D content generated are viewed on multiple
screen types; like the movie theater, television and even hand-held devices like

phones and tablets.

2.3 Stereoscopic 3D

This thesis deals with stereoscopic (left and right view) images which also has

the third dimension i.e. depth. Such images are captured with two cameras which
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z

Figure 2.4: depth Vs viewing distance (Adapted from [29]) .

are calibrated, rectified and separated by a certain distance called base-line. In

simple words, the setup tries to mimic the human eye.

Disparity refers to how the coordinates of a particular feature vary from one
view to another. Each point on the disparity plane may be considered as a two
dimensional vector; which maps the corresponding points in the left view, to the
right view of a stereo pair. This is more commonly known as stereo matching or
stereo correspondence and is discussed by D. Scharstein and R. Szeliski in [32]. An
example of disparity image (from Middlebury dataset) is found in Figure . The
image shows left and right views in the top row and its corresponding disparities
in the bottom row. The disparity values are encoded in gray scale between 0 to

255. The value of zero represents unknown disparity.

Depth information can be obtained in different ways. High resolution depth
information can be computed from a pair of intensity images using stereo corre-
spondence or stereo matching algorithms. This is known as passive methods for
generating depth. Another popular setup is by using special illumination and sen-
sors pair, like the time-of-flight cameras. These are called active methods and is
explained in details by Lange and Seitz in [3]. However, the sensor based methods
needs some post-processing owing to their low resolution, inaccurate estimation
for larger distances and also due to the fact that the image sensor and the depth

sensor are placed at slightly shifted location [25].
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PR Lty

Figure 2.5: Top left and top right are the two views of stereo pair. Lower left shows the
corresponding disparities [38] .

There are two basic steps involved in stereo matching: first use a matching func-
tion like sum of absolute difference or cross-correlation to identify similar patches
in the image pair try to estimate the best match using techniques like graph cut
[34], plane sweeping [306], belief propagation [35] or a mix of several different ap-
proaches.

Using triangulation, a depth map is computed which indicates the relative dis-
tance of any point in the scene from the camera plane. Considering the disparity
as d, base offset i.e. separation between the two cameras as b and focal length to
be f, the depth D can be calculated as

p-tt (2.1)

The techniques discussed above needs two distinct devices to work as a pair
i.e. two cameras or a transmitter and a receiver. This setup is challenging in a
way that the devices have to be perfectly synced and calibrated. However, there

are some other ways to gather depth information with just one camera. Some of
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those methods are: depth from defocus explained by Subbarao et at. in [4], the
concept of coded aperture using a conventional camera [5], and a combination of

these techniques [6].
2.4 Depth Image Based Rendering

Depth Image Based Rendering or DIRB is the technique of creating multiple views
for 3D rendering from a single 2D image and it’s corresponding depth information
[8]. There are few advantages of DIBR over two camera setup to capture, transmit
and render 3D scenes to viewers. Some of them are mentioned by Solh et al. in

7.

e Since both views are generated from the same image, photometric asymme-

tries between the views becomes irrelevant.

e A narrow transmission bandwidth is needed; considering the 8 bit gray scale

depth map contains much less data than a colored image.

e The user has control over the amount of 3D to be rendered depending on

views preference.

However, DIBR does not always provide the best and desired 3D rendering
outcome. It has its own challenges. Solh et al. explains in 7] that final outcome

is very sensitive to

e The quality of the depth map

The compression artifacts

The warping techniques used

Data loss and errors that might occur during transmission

The algorithms used in the 3D displays

The three major steps involved in DIBR are:

e Pre-processing



2. A Brief Introduction to Stereoscopy 12

e Image warping

e Filtering of disoccluded holes

Pre-processing of depth map: Depth map represents the 3D geometry related
to the retinal disparities. (see Figure and therefore it is one of the critical
element in 3D warping. The base plane is called the Zero-Parallax Z. and is

calculated as

Zfar - Znear)

7,1
2

(2.2)

where Z;,, is the farthest clipping plane and Z,,, is the nearest clipping plane
of the depth map. The zero-parallax is chosen somewhere at the midpoint so that
similar depth levels can be achieved both in front and back of that plane. It is
important that all measured depth values are normalized within the clipping range,

otherwise it will generate wrong disparity values during image warping.

Next, the depth map needs to be filtered. This is because any errors during
depth estimation or the presence of noise will lead to contrast fluctuations in the
reconstructed synthetic views. Some of the simple techniques are the use of Gaus-
sian mask or plain averaging filter. However, it smooths the discontinuities and
hence is not suitable for depth images. Some advanced edge preserving techniques
are discussed by Yang et al. in [I6] and Smirnov et al. in [I4]. They utilize bilat-
eral filtering proposed by Tomasi et al. in [I] is used, which preserves the edges
and object boundaries. For the case of depth map refinement, the bilateral filter

is modified to a cross-modality version [16], [14].

3D Image warping: Using the depth map, each point in the image is re-
projected into the 3D space; and then they are projected back to the image sensor
plane of the virtual camera [8]. This process is known as 3D image warping in the

world of Computer Vision.

Disocclusion and Hole filling: Image warping reveals new regions in the syn-

thesized novel views which were previously invisible in the original image. These
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newly formed areas are devoid of any texture or depth information. This phe-
nomenon is known as disocclusion and it creates holes or "void" regions in the
synthesized images. If these regions are not treated, they will produce annoying
visible artifacts for the viewer.

Some advanced hole filling techniques are described bu Solh et al. in [II] and
by Po et al. in [I0]. However, a more efficient way might be to treat the depth
maps at the pre-processing step so that the effect of disocclusion can be reduced.
This is described by Fehn in [8] and Zhang et al. in [9].

2.5 Coding of depth map

Depth map has subtle difference to video data which has to be taken into con-
sideration while encoding it. In case of video, there are lots of high frequency
components which need to be preserved. Otherwise, loss of high frequencies will

lead to blurriness and hence low visual perception.

On the other hand, depth data mostly contains homogeneous regions with only
few sharp variations at object boundaries. Thus, it can be encoded very efficiently
with high compression ratio. In most cased 8 bits of data is sufficient for coding
depth maps, which means there can be only (28) 256 depth levels. It is usually
an inverted range image; 0 refers to the farthest point whereas 255 refers to the
nearest. Since the range map is inverted the nearby objects have higher depth

resolution.

However, it is absolutely necessary to preserve those variations which mostly
occur at the foreground-background object boundaries. Failure to encode the
variations correctly will lead to reconstruction error and thus visual artifacts in
the synthesized view. Some examples of coding schemes for DIBR kind of setups
are proposed by Maitre et al. in [I9] using shape adaptive wavelet based codec

and Kim et al. in [2I] using rate distortion optimization for depth encoding.
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3. OPENCL: THE OPEN SOURCE
SPECIFICATION FOR GPU PROGRAMMING

OpenCL stands for Open Computing Language initially proposed by Apple in 2008
and are currently maintained by Khronos Group. The other big companies that
are involved in developing the OpenCL specification include NVIDIA, AMD and

Intel among others.

OpenCL is a specification, which means, programmers have to write their own
implementations which are compliant to the specification. Thus OpenCL is a
programming interface which offers a framework to build applications on top of
it. This framework allows the user to take advantage of all the system resources
(CPU, GPU, DSP chip).

OpenCL is designed to support general purpose parallel computation. It can
be used for variety of tasks which involves heavy computation and calculation like
in computer graphics, digital signal processing, scientific calculations, analysis of

financial data, and many more.

This chapter focuses on those specific details which are in the scope of this thesis.
Hence, there might be several features which are left out or not explained in detail.
For detailed information, please refer to OpenCL specifications from the Khronos
Group [37].

3.1 The OpenCL Architecture

Most devices available today comprises of a heterogeneous collection of CPUs,
GPUs and several other processing elements that work in coordination. OpenCL

provides the framework which provides language for parallel programming, APIs,
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libraries and run-time system needed for software development on such heteroge-

neous platforms.

This framework can be described using four models which will be explained

briefly in the sections below.
e Platform Model
e Memory Model
e Execution Model

e Programming Model

3.1.1 Platform Model

The platform model consists of a host connected to one or more OpenCL devices.
These OpenCL devices in turn contain compute units (CUs), which are a collec-
tion of processing units (PEs). The PEs are responsible for all the computations
happening in the device. The model is shown in Figure[3.1. The developer submits
the commands to be executed on the device through the host. The host is respon-
sible for setting up the OpenCL devices. The device splits up the instructions and
data on its processing units; then they are executed as Single Instruction Multiple
Data (SIMD) or Single Program Multiple Data (SPMD).

3.1.2 Execution model

Programming in OpenCL has two basic parts: the host code that executes on
the CPU (the host), and the kernel codes that execute on one or more OpenCL
devices. The way in which the kernel executes on the work units (or CUs) of the

device defines the execution model in OpenCL.

The basic element of work unit is called a work item (or PEs) which are
grouped to form work groups. All the work groups are put together to form the
NDRange i.e. n-Dimensional Range. The total number of the executable units
on the GPU is called the global size which is the size of the NDRange. On the
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Figure 3.1: Platform Model: One host, together with one or more OpenCL devices, each
with one or more compute units. Each CU has one or more processing elements. (Adapted
from [37, p. 23]).

other hand, the size of a work group is called the local size. It is to be noted that

on a GPU, the global size needs to divide evenly into local size.

One of the powerful features of OpenCL, is the ability to index the global
(NDRange) and local work spaces in one, two and three dimensions, using the
inbuilt functionality provided by the specification. This concept is well explained

in [37, p. 24-25] and is also mentioned below.

Consider the 2-dimensional index space as shown in Figure[3.4 The NDRange
is in 2-dimension, which means that the index space for the work items are repre-
sented as (G, Gy), the size of each work group is (S;,S,) and the global ID offset
(Fy, Fy). Since the global size G, and G,; the total number of work items is G, *G),.

The local indices for the work items are represented in S, by S, index space;
therefore the number of work items in a single work group is S, *S,. Given (S, Sy)

and (G, G)) the number of work groups can be computed.
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A 2-dimensional index space is needed to uniquely identify a work group. Either
the global ID (g,, g,) can be used or a combination of the work group ID (w,, w,),
work group size (5, S,) and the local ID (s, s,) inside the work group as shown

by the equation below.

(92> 9y) = (We X Sy + 55 + Fo, wy X Sy + s, + F) (3.1)

The total count for the work groups is given as:
(Wa, Wy) = (Ga/Say Gy/Sy) (3.2)

The work group ID for a work item is derived from global ID and the work

group size as:

(we, wy) = (92 — 82 — F)/Se), (gy — 8y — F4)/Sy) (3.3)

3.1.3 Memory Model

The memory model can be classified into four address spaces as shown in Fig-
ure [3.3 More details on the allocation and usage of the memory available in the
device can be found from the Table [31

e _ global: It refers to the global memory which allows read and write

access to all work items in the work group.

e _ constant: It refers to the constant memory which is a part of the
Compute Device Memory. However it remains constant during the execution
of the kernel. The initialization and the allocation of the memory objects for

the constant memory is done by the host.

e __local: It refers to the local memory of the work group which can be
shared by all the work items belonging to that work group. They are much

faster compared to the global memory and their availability is quite limited.

e _ private: It refers to the private memory of the work item. Private
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Figure 3.2: The execution model: Shows work items, work groups, global IDs, local IDs
and and how they are indexed over 2-Dimension. (Adapted from [37, p. 25]).

memory of one work item is unavailable to other work items. They act

mostly like the resistors and hence are extremely fast.

Memory Objects

In order to reference the global memory, OpenCL provide handles called Memory
Objects which are of type c1_mem. They can be categorized as follows:

Buffer Objects: These form one-dimensional contiguous collection of elements
which can have scalar (e.g. int, float), vector or even user-defined data types.

Importantly, they can be accessed directly by a kernel using pointers.

Image Objects: OpenCL has special buffers to hold texture and images. Each
element of this buffer is a 4-component vector of type float or signed/unsigned
integer. They cannot be directly accessed using pointers, hence built-in functions

have to be used in order to handle them.
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Figure 3.3: Conceptual OpenCL device architecture with processing elements (PE), com-
pute units and devices. (Adapted from [37, p. 28]).

3.1.4 Programming Model

The Programming model for OpenCL can be Data Parallel or Task Parallel. In
fact, it can also be a combination of the two. The programmer needs to implement

a synchronization method for proper execution.

Data Parallel scheme implies that an individual or a set of instructions are
applied to a chunk of data within a set of data structure. In OpenCL terms,
the work items are first defined, and then the data is mapped onto those work
items. The work items can be programmed with same instructions which are to

be performed on data mapped onto it.

Task Parallel scheme implies that the instructions are arranged as multiple
concurrent tasks which will then run on a single or multiple command-queues. In
OpenCL, this can be obtained as using data types like vectors or enqueue multiple

tasks in the form of kernels.
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Read /Write
access

tion

Read-only ac-
cess

tion

Read/Write
access

Global Constant Local Private
Host Dynamic allo- | Dynamic allo- | Dynamic allo- | No allocation
cation cation cation
Read/Write Read/Write No access No access
access access
Kernel | No allocation | Static alloca- | Static alloca- | Static alloca-

tion

Read/Write
access

Table 3.1: Memory Region - Allocation and Memory Access Capabilities [37, p. 28]

Synchronization can be achieved in three ways.

20

e Work group barriers can be used to synchronize between work items in a

single work group. The execution can continue only when all the work items

of the work group has executed until the barrier.

¢ Command-queue barrier can be used to to synchronize the commands en-

queued to the command-queue(s) within a single context. It ensures that all

expected operations pertaining to the previously queued tasks are executed

before it starts executing the next command.

e Waiting for an event from an Application Program Interface (API). The

events identifies the task and the memory object that it updates.

3.2 The OpenCL Framework

The most important characteristic of OpenCL is it’s capability to combine a host

and one or more compatible devices into a single heterogeneous parallel comput-

ing system. The OpenCL framework takes care of this aspect with three of its

components:

e OpenCL Platform Layer

e OpenCL Runtime

e OpenCL Compiler
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All application has to first implement this framework in order to setup the
computing device. The subsequent paragraphs will explain the steps needed to
setup the OpenCL framework. An overview of the OpenCL APIs are provided
below. Chapter 4 explains the OpenCL Specifications in details [37].

The first step is to know the list of available platforms. This is done by using
the function clGetPlatformIDs. It returns the number of available platforms

and a list of them.

cl_int clGetPlatformIDs (cl_uint num_entries,
cl_platform_id *platforms,

cl_uint *num_platforms)

To get specific information about the OpenCL platform specified by the c1_platform_id
obtained from clGetPlatformIDs, the function clGetPlatformInfo is used.

cl_int clGetPlatformInfo (cl_platform_id platform,
cl_platform_info param_name,
size_t param_value_size,
void *param_value,

size_t *param_value_stize_ret)

Similarly, to get the list of devices available for a particular platform OpenCL
has the APl clGetDevicelDs and for specific information about a device there
is the API clGetDevicelnfo.

cl_int clGetDevicelDs (cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id *dewtces,

cl_uint *num_devices)
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cl_int clGetDevicelnfo (cl_device_id device,
cl_device_info param_name,
size_t param_value_size,
void *param_value,

size_t *param_value_stize_ret)

The context is one of the critical element in an OpenCL host code, which is later
used by the runtime to keep track of command-queues, memory, compiling and
executing kernels on specified devices. It can be created for one or more devices.
The programmer can specify the c1_context_properties, list of devices and also

a callback function pfn_ notify that can be registered by an application.

cl_context clCreateContext (const cl_context_properties *properties,
cl_uint num_devices,
const cl_device_id *dewices,
void (CL_CALLBACK *pfn_notify) (const char
*errinfo,const void *private_info,
size_t cb,void *user_data),
void *user_data,

cl_int *errcode_ret)

3.3 The OpenCL Runtime

Runtime refers to the section of a program which creates command-queues, mem-

ory objects, program objects and sets up the kernel code for execution.

3.3.1 Command Queues

The operations on objects such as memory, program and kernel objects can be
set up in an orderly manner using command queue. Multiple command-queues
can be established by the application for different operations as long as they are

independent.
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cl_command_queue clCreateCommandQueue (
cl_context context,
cl_device_id devzice,
cl_command_queue_properties properties,

cl_int *errcode_ret)

3.3.2 Buffer Objects

A buffer is 1-Dimensional data storage which can be a scalar data type (e.g. int,
float), a vector or a user defined structure. Given below are some built-in APIs for
creating, reading and writing buffer objects. For an extended list of APIs please
refer to Chapter 5 of [37].

API for creating a buffer object: clCreateBuffer

cl_mem clCreateBuffer (cl_context contezxt,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *err_ret)
where,
contezt: Valid OpenCL context created for the buffer object using the API clCre-
ateContext.
flags: Specifies how and which memory will be used and allocated. The values
for the flags might be:
CL_MEM_READ_WRITE,
CL_MEM_WRITE_ONLY,
CL_MEM_READ_ONLY,
CL_MEM_USE_HOST_PTR,
CL_MEM_ALLOC_HOST_PTR,
CL_MEM_COPY_HOST_PTR,
CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_READ_ONLY,
CL_MEM_HOST_NO_ACCESS
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size: Size in bytes for the buffer memory that needs to be allocated.
host_ptr: Pointer to the buffer data that is to be allocated.
err_ret: Error code that will be returned.

API to read from a buffer object to host memory: clEnqueueReadBuffer

cl_int clEnqueueReadBuffer (cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
size_t offset,
size_t size,
void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *xevent_wart_list,

cl_event xewent)
API to write to a buffer object from host memory: clEnqueueWriteBuffer

cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_uwrite,
size_t offset,
size_t size,
void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)
where,
command_queue: The host command queue where the read or write command will
be queued.
buffer: Valid buffer object.
blocking_write: Specifies whether the reading or writing operation is blocking
or non-blocking.

offset: Offset in bytes in the buffer object while reading or writing.
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ptr: Points to the buffer in the host memory from where data will be read or
written to.

num_events_in_watt_list and event_watt_list: List of events that needs to
be completed before the read or write command can be executed.

event: These are return values which identifies a particular read or write opera-

tion. Mostly they are used to query if a particular operation is complete.

3.3.3 Image Objects

Similar to the APIs for handling buffer objects, there are also APIs for working
with images and textures. The image objects can have one, two or three dimen-
sional frame buffers. Some of the methods for using these objects are listed below.
For more details refer to Chapter 5 of [37].

cl_mem clCreatelmage (cl_context context,
cl_mem_flags flags,
const cl_image_format *image_format,
const cl_image_desc *image_desc,
void *host_ptr,

cl_int *errcode_ret)

Notice that the image channel order and image data type can be specified using
the pointer image_ format. One simple and commonly used format is shown is
Figure where the order is CL_RGBA and the data type is CL_UNORM_INT8 and
CL_UNORM_INT16.

The image descriptor 2mage_desc specifies the image type, width, height, depth,
number of images in the image array, scan-line(row) pitch, slice pitch and a valid
reference to a memory object.

There are also APIs defined for reading and writing images:

cl_int clEnqueueReadlmage (cl_command_queue command_queue,

cl_mem 2mage,
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Figure 3.4: Image buffer channel. (Recreated from [37]).

cl_bool blocking_read,

const size_t *origin,

const size_t *region,

size_t row_pitch,

size_t slice_pitch,

void *ptr,

cl_uint num_events_in_wait_list,
const cl_event xewvent_wait_list,

cl_event *event)

cl_int clEnqueueWritelmage (cl_command_queue command_queue,
cl_mem %mage,
cl_bool blocking_uwrite,
const size_t *origin,
const size_t *region,
size_t row_pitch,
size_t slice_pitch,
void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,

cl_event *event)
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3.3.4 Program Objects

The OpenCL kernel code is in-fact an array of characters or a string, identified
by the qualifier __kernel. The program can consist of a set of kernels, other aux-
iliary functions and constant data which the kernel functions can use. The code
is compiled with a Just-in-Time (JIT) compiler of OpenCL runtime to generate
a program object. The program object encapsulates the context, binary program

source, the latest built executable and the number of kernel objects.

The following API is used to create a program object from the source code

specified in the string and then associate it with a context.

cl_program clCreateProgramWithSource (cl_context context,
cl_uint count,
const char **xstrings,
const size_t *lengths,

cl_int *errcode_ret)

To create a program object from the binary code specified by the binaries array

and then associate it with a context, the following API used.

cl_program clCreateProgramWithBinary (cl_context contezxt,
cl_uint num_devices,
const cl_device_id *dewice_list,
const size_t *lengths,
const unsigned char **binaries,
cl_int *binary_status,

cl_int *errcode_ret)
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3.3.5 Kernel Objects

Creating Kernels The OpenCL gives an option to create kernel objects indi-
vidually for one kernel at a time using the API clCreateKernel, or for all the
kernels for the program object at the same time using clCreateKernelsInPro-

gram.

cl_kernel clCreateKernel (cl_program program,
const char *kernel_name,

cl_int *errcode_ret)

Setting Kernel Arguments In order to execute a kernel code, the arguments
need to set first. This can be done using the API clSetKernelArg

cl_int clSetKernelArg (cl_kernel kernel,
cl_uint arg_indez,
size_t arg_size,

const void *arg_value)

Executing Kernels Before the kernels are built it has to be enqueued for execu-
tion on a device using the command_ queue and kernel object. At this time the pro-
grammer can specify the global _work _offset, global work _size, local _work _size
and also a list of events that need to completed before this particular command

could be executed. It returns event object that identifies the kernel instance.

cl_int clEnqueueNDRangeKernel (c1_command_queue command_queue,
cl_kernel kernel,
cl_uint kernel,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wart_list,

const cl_event *event_wait_list,
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cl_event *ewvent)

Finally the clBuildProgram program builds (i.e. compiles and links) a pro-
gram executable for all the devices from the source or the binary associated
with the program which was created using clCreateProgram or clCreatePro-

gramWithBinary.

cl_int clBuildProgram (cl_program program,
cl_uint num_devices,
const cl_device_id *dewvice_l1ist,
const char *optioms,
void (CL_CALLBACK *pfn_notify)
(cl_program program, void *user_data),

void *user_data)

3.3.6 Conclusion

These are a few of the essential APIs provided by the OpenCL platform consid-
ered for this thesis. There are several other ways to control how the events are
managed or synchronized for optimal utilization of the available processing units.
Furthermore, there are even ways to partition the memory resources and allocate
them for most efficient usage. These investigations were not performed for this
project. This work barely utilizes the full potential of OpenCL and there is lot of

scope for future studies on this subject.
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4. ALGORITHM AND IMPLEMENTATION

This chapter explains in detail the filtering technique used to restore a compressed
or low quality depth map; such that it can be used for 3D view synthesis. Further,
it provides techniques to run the algorithm on a device with multiple processors
like the CPU and GPU.

In order to create 3D content one needs to capture two slightly shifted views
with a camera pair. Later when the left view is projected to the left eye and right

view to the right eye, the brain will create the 3D experience out of it.

In the Mobile 3DTV project scenario where the 3D video data needs to be
transmitted to a mobile device, it is necessary to use a format where the amount
of data is kept minimal and transmission bit rate remains relatively constant.
Hence only one view (color image) accompanied by a depth image is sent. The
depth image is mostly of low resolution and compressed 8-bit gray scale image. It

contains only a fraction of data compared to the color image.

The additional views are reconstructed using 3D rendering techniques at the
receiver end before viewing. For stereoscopic displays which need 3D glasses, one
additional view is enough. Whereas, for autostereoscopic displays, the number of
views generated targets multiple users [30]. Since the depth map is of low quality,
it has to be carefully restored in order to have a high quality rendering. The
subsequent sections contain detailed explanation of the restoration technique used

for this thesis work.
4.1 Filtering of depth map

Depth maps inherently undergo several degradations caused by up-scaling, quanti-

zation, coding errors or just false estimations. Its is critical that these artifacts are
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smoothened out so that they have minimal impact on the 3D view rendering. The
quality of rendering has major impact on the 3D viewing experience and several

studies have been conducted on stereo image quality [18] [22] [23] [24].

Smoothing is easy to achieve with low-pass Gaussian filter as explained by Paris
et al. in [15]. Using simple variations of this techniques, Zhang et al. [9] showed
improvements in depth quality from perspective of view synthesis. In the simplest
form, the idea is to develop a weighting kernel which is applied over the whole
image. As a result each pixel in the output image will be a weighted average of

it’s neighbors.

On the other hand, edges at the depth transitions are of great importance and
need to be preserved. Thus the image has to be smoothened leaving the edges un-
affected. This is where bilateral filtering described in [I] by Tomasi and Manduchi

becomes relevant.

Bilateral filtering (shown in Figure applies weighting similar to weighted
Gaussian averaging. It is only that the influence of individual pixels on one another
not only depend on it’s proximity, but also similarity in their intensity values. At
the edge, the intensity of pixels on one side of the edge varies significantly from the
other. Thus, while smoothing, the pixels on different sides of the edge are treated

differently. This prevents the blurring of edges.

4.1.1 Initial Inspiration for using Bilateral Filter on Depth

Images

The depth maps obtained from the range sensors or in this case down-sampled
for transmission are limited in resolution. This means that one initial depth pixel
covers the area of several color pixels in the view plus depth 3D representation.
Aligning of the depth map and its corresponding color image has to be performed

in order to obtain the two modalities with the same size.

Now, the assumption is made that discontinuities in the depth image correlates
directly with the edges in the texture image. Also the low frequency homogeneous

regions in the color image are at about same distance from the sensor [17].
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Considering the above assumption, a higher resolution depth image can be syn-
thesized from a lower resolution depth image by taking assistance from the corre-
sponding color image. In one method discussed by Yang et al. in [16] they consider
the information in the depth map as not exact depth values but as probabilistic
distribution from depth. Then the depth map was quantized into several layers
to create a 3D volume of depth probability. This in computer vision literature is
known as cost volume. The cost volume is then filtered iteratively using bilateral
filter to find out the best match.

As discussed by Yang et al. in [I6], using one or two registered color images
as reference, the algorithm can iteratively refine the depth map, in terms of both
its spatial resolution and depth precision. This whole process is illustrated in
Figure[4.1. The low resolution depth image is first up-sampled to the size of the
intensity image. This serves as the initial hypothesis from which the cost volumes
are built. Using the information from the intensity image bilateral filter is applied
to the cost volume. The best cost volume is selected as the refined depth hypothesis

and and is used for the next iteration.

Iterative Refinement Module

Depth Map Cost Volume | Current Depth Processed
64 x 64 Ca i Map D1 Depth Map
i Ccw
Le%{ Evlvght Bilatering Co Best cost, Sub-
ilteri ixel Refinement
640 x 640 Filtering F pix i

Figure 4.1: Framework for spatial-depth super resolution for range images.

The iterative refinement process shown in Figure has three major steps.
First, a cost volume Cj is generated by up-scaling the current depth map D).
Second, a bilateral Filtering is performed for each slice using the left /right view
and the up-scaled depth image i.e. the initial cost volume, to generate a new cost
volume C(%W. Finally the depth hypothesis with minimal cost is selected. A sup-
pixel estimation is applied to obtain the final depth map D(;;1) which serves as

the depth image for next iteration.
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4.1.2 Bilateral Filter

Bilateral Filter forms one of the integral part in the iterative refinement process.
It has been previously used with great success for stereo algorithms by Yang et al.
in [25] and Yoon et al. in [26]. The next section will elaborately discuss on the

mathematical representation of this filtering scheme.

The purpose of our filtering approach is to smooth the image while preserving
the edges [I]. It utilizes both the intensity and range information from all color
channels and also the spatial distance of the neighboring pixels to specify suitable
weights for the filter. The filter favors pixels with similar intensities and also the
ones with close proximity as explained by Smirnov in [I3|. Thus pixels on the other
side of an edge will always have lower weight and will have negligible contribution
to the filtering process. Figure [{.9 tries to illustrate the filtering approach and

compares it to the Gaussian averaging.

N Gaussian Filter ‘

’ Bilateral Filter Output Signal

\ Spatial filter "~ Range filter | -

s *

Figure 4.2: Bilateral Filter representation.

Mathematically the above idea can be formulated as:
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where o, and o; controls the weights in spatial and intensity domains. The
second term inside the summation resembles Gaussian averaging. Thus when the
0; increases, the Gaussian curve widens or in other words becomes more flat. Thus

the bilateral filter starts to approximate the Gaussian convolution more closely [15].

The normalization factor F' ensures pixel weight sum to be unity and I'(k)
represents a square window. For our implementation, I is the color image i.e. left
or right view image in this case, I(m) is the value of pixel within the window for
the current iteration m and k indicates center of the window. If the difference in
pixel intensity (|/(m) — I(k)|) of the color image turns out to be large, indicating
a boundary pixel, the whole exponential term will be infinitely small. Thus, the
pixels on the other side of the edge has no contribution to the filtered depth map.
Similarly during the window operation, for pixels which are spatially further away
from the center (determined by the tern |[m —k||), the exponential term will again

become small and will have lesser contribution to the overall filtering process.

4.2 Depth map filtering approach

As discussed earlier, this thesis aims to restore compressed and low resolution
depth maps. The major issue here are compression artifacts and smoothened
depth boundaries due to up-scaling. Bilateral filter described above, is a very good
candidate for such problems. The current application estimates the filter weights
using the color (left/right view) image and applies it to restore the compressed

range image. This approach was described by Smirnov et al. in [14].

An important consideration for using the bilateral filter was that the depth of
any surface is piece-wise smooth and it has direct correlation with scene color

inside a region.
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As described in Figure[]. 1] first step is to calculate all the cost volumes from sev-

eral depth hypothesizes. Subsequently, the one with the minimum cost is selected

as shown in Fq. (4.3).

Clay(z, 2) = min(d % K, (z — Zuy(2))?) (4.3)
where C is the cost volume at the i-th iteration, K is the search window size
based on the constant ¢, z is the potential depth candidate and Z is the current

depth estimate at coordinate x.

Once the cost volumes are obtained, the bilateral filter represented by Ejq.
was applied on individual cost volumes. This filtered or smoothened cost volume
is used to find the potential depth candidate z in Ejq. . The resulting filtered
depth map can be seen in Figure [{.3

—_—

Zii(@) = argmin(C(i)(x, 2)) (4.4)

Figure 4.3: Bullinger video sequence. On the left is the filtered depth map and the original
one is on the right

The MEX implementation of this algorithm showed satisfactory results for both
quantitative and qualitative experiments. It was quite relevant for the mobile 3D
TV kind of setup. Now, the aim was to make the filtering work in real-time. In
order to do that the algorithm was ported on to a GPGPU (General Purpose
Graphics Processing Unit).
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4.3 Implementation in OpenCL

The bilateral filtering algorithm is specially suitable for parallel computation.
The reason being, every pixel can be processed independently. The operations
involved for a particular pixel do not depend on the results of the surrounding or
neighboring pixels. Thus, once the data for the neighborhood is loaded into the
local memory of the multiprocessor, simultaneous processing for several pixels can
be carried out by the device. The only limiting factor is the number of threads

that can be generated or the number of processing units available.

The algorithm first calculates the filter weights for each pixel using Fq. [{.1]
The weights are derived from the difference in the intensity values and its spatial
distance from the pixel under consideration. For each pixel only a window of

certain radius is considered. If the radius is ', the size of the window is given as
(2r +1)%

For OpenCL implementation of this algorithm, every pixel is assigned a thread.
This was done using available OpenCL APIs. Each of these threads was responsible
for executing Ejq. However, the threads needed to access the data from the
neighboring pixels within the window. The image data has to be arranged in such
way that it can be accessed very fast. This is done by placing the data in the

memory cache and not the global memory.

To address the above issue in OpenCL, the image buffers were used in place of
normal buffers. This helps when the multiple threads need to access the same data
simultaneously. Each thread loops over the entire window to calculate Fq.((4.1))
for single pixel. In a GPU, this windowing operation is performed for several pixels

simultaneously. That is where most of the speed-ups come from.

In order to make the implementation more efficient, some modifications were
proposed by Smirnov et al. in [14]. It was observed that there was no need to form
cost volume in order to obtain the depth estimate for every pixel and all iterations.
Instead, the cost function could be formed only for required neighborhood before

filtering it. Furthermore, not all depth hypotheses were applicable for a given
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pixel. Thus, computation cost can be reduced by taking into consideration only
depth within certain range. Now, in case of compressed depth maps with blocky
artifacts the depth range appears to be sparse due to the quantization effect. Such

depth maps were scaled to further reduce the number of hypothesizes [13].

The implementation was made in two parts. The host, i.e. the piece of code
running on the CPU was written in C+-, whereas the device code used to program
the GPU device was written in OpenCL. The objective of the host code was to set
up the device, allocate the memory buffers, transfer data to the device and put the
kernel code on the queue for execution on the device. The device or kernel code
actually performed all the operations related to the filtering of the depth map at
the pixel level.

The OpenCL itself is capable of dividing the workload for its multiprocessors
i.e. the programmer might not bother about how to arrange the data in the device
memory. However, there might be some effect on the performance of the device if

the data is not arranged properly in the local memory of the work group.

Additionally, it is also to be noted that the data transfer between the CPU and
the GPU is considerably slower. So, the design has to be such that the transfers
are kept as minimal as possible. The local memory of the Compute Units are
considerably faster. All data is first arranged in those local cache before the
processing begins; such that the processors does not need to wait for the data

during execution.

Inside the GPU, the texture memory cache is faster than the constant cache.
An useful technique might be to pack all the image data (RGB image and gray
scale depth map) into one image structure and put it on to the texture cache using
the OpenCL APIs. While reading from the cache, one may use the inbuilt API
which reads single pixel data (R, G, B and depth) into a floating point vector in
a single clock cycle. Most operations on the data were done on vectors taking the

inline functions into use, making the implementation more efficient.
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4.3.1 Installing OpenCL

A Xeon Dual core CPU with 3 GHz clock frequency and 3 MB RAM was used.
As GPU, the NVIDIA GeForce 240 was used, which comes with 96 cores, graphics
clock of 550 MHz, processor clock of 1340 MHz and 512 MB memory. For more
details refer to Appendix [B.I] There are few things that needs to be done before
starting to develop application in OpenCL.

1. Install a development environment like Microsoft Visual Studio.
2. Install drivers for the GPU.

3. Download the OpenCL headers and libraries included in the OpenCL SDK
from the web page [41].

4. Configure the compiler so that it can locate the OpenCL headers and li-

braries.

5. Edit the registry value for GPU_MAX_HEAP_SIZE to 512. Usually it is set to
256, which means the OpenCL could only use 256 Mb of it’s 512 Mb memory
(for this particular GPU).

4.3.2 Programming in OpenCL

An OpenCL program consists of two parts: Host code and Kernel code. The
host code runs on the CPU where as the Kernel code runs on the GPU. An useful
starting guide for programming in OpenCL can be found at website for ATI Stream
[40].

Kernel Code

The Kernel code is in-fact an array of characters or a string. It can be in the
same file as the host code which is written in C+-+; or it can be in a separate file,
(e.g. *.cl), as was the case with this thesis work. As long as it starts with the
keyword " kernel" and the location of the file is known, the OpenCL API will

able to locate it.
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For this application, the OpenCL the API is defined as below. The complete
OpenCL code is found at Appendix Listing [A.1] All the arguments was defined in
the host code which is explained in the next section. This section briefly describes

how parallelization was achieved for the algorithm in OpenCL.
The API for the Kernel function

_kernel void hypothesis_filter_gpu (_global float™ edge,
_global float™ depth,
_global float* filtered,
_global float™ wt_table,
_global float™ dist_table,
const _global int height,
const _ global int width,
const _global int fltr radius,

const _ global float search limit)

The global identifier informs the compiler that those buffers and variables are
to be accessed from the device memory. They are put there by the host code using
OpenCL APIs. The buffer "edge" contains the RGB image and "depth" contains
the depth map. "wt_table" and "dist _table" are the look-up table for calculating
the filter weights.

The OpenCL distributes the process in such a way that each worker thread gets
one pixel to process. Since it was a 2-dimensional image, the indexing can be done

as,

X = get_global_id(0);
y = get_global_id(1);

int index = ((y)+(x)*(h));
float Dnow = depth [ index |;

Similar indexing was done for the RGB image and a window around the pixel
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(x,y) was extracted. The get_global_id(0) and get_global_id (1) functions
identifies the the horizontal "x" and vertical "y" indices for the current pixel in
the image. They can be combined "((y)+(x)*(h))" to obtain unique index for the
pixel. Then by just using "depth [index|" we can get the value at the "index"
location of the depth map.

It is to be noted that the several indices are generated simultaneously by the
OpenCL runtime. The "index" computed above helps the compute unit to identify

with pixel it is supposed to process.

A little optimization was done such that for a block which is very smooth,
which means the difference between the maximum and minimum depth value is
very small, the depth value is left unchanged and no further processing was needed.
This could be done in the same way as in a C program even though it is a part of

the kernel code.

for (int i=0; i<window; i++)

Dmax = (blkDepth|[i] > Dmax) 7 blkDepth|[i]| : Dmax;
Dmin = (blkDepth[i] < Dmin) ? blkDepth|[i]| : Dmin;

if (abs(Dmax — Dmin) < 0.01) //search_step)
{
Filtered [index| = Dnow;

continue;

where, "blkDepth" is the window region from the depth image for a single pixel.

The next step was to calculate the weights for bilateral filter using the range
information from all the color channels and the spatial distance of that neighbor-
ing pixel. For this the SAD (Sum of Absolute Difference) similarity measure was
utilized between the current and the neighboring pixel. The SAD value was then

multiplied to the distance measure between the same two pixels. This filter was
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then applied to the window extracted from the depth image.

Even though the steps involved in the filtering operation for CPU (MEX) ex-
plained in [14] and GPU (OpenCl) are identical, there is one major difference in
the way the same instructions were executed. In CPU, the instructions were being
executed sequentially; one pixel after another. Whereas in the OpenCL, the exact
same instructions were processed simultaneously for several pixels over multiple
cores. Using the "index" variable the OpenCL runtime kept track of pixels in the

device memory space.

Host Code

A sequence of steps had to be performed to prepare the device to run the code.
They are ordered as follows: initialize OpenCL, compile the kernel code, transfer

all the necessary data to the device memory, execute the kernel and finally read
the data back to the CPU side.

1. Initializing OpenCL: This will initialize the OpenCL platforms and devices.
Then set up the environment for executing the OpenCL application. For this
first identify the platforms using the API c1GetPlatformIDs and then get

the devices associated with each platform using the API c1GetDeviceIDs.

2. Creating contert: Now that the devices available are known, use the API
clCreateContext to create context for each device. The context for OpenCL
is created to keep track of all the OpenCL devices. This is then used by
OpenCL runtime for managing command queue, memory, kernels and also

for executing kernels on one or more OpenCL devices.

3. Create command queues: This is one of the most critical step for OpenCL
programming. It defines which commands are to be executed by which device
and in what order. That is performed using the API c1CreateCommandQueue

by passing the context and the device as parameters.

4. Compile kernel code: First a kernel has to be initialized and then compiled

using an API. Interestingly, it can be divided into several strings. For this
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purpose, all the characters of the kernel code are put into a character array
and then passed to a function called clCreateProgramWithSource which
creates an cl_program object. This object is then passed to the function
clBuildProgram for "just-in-time" (JIT) compilation. Finally, create a han-

dle to the compiled OpenCL function using the API clCreateKernel.

5. Creating kernel arguments: The arguments that have to be passed to the
kernel have to be first initialized and allocated for both the CPU and the
GPU memory. The implementation described here had three buffers for
the color data, depth data and filtered depth output data; two smaller ma-
trices for filtering; and constant scalar parameters like width, height, filter
radius and search limit. Allocation on the CPU side was done with stan-
dard C library function malloc and on the GPU side with the OpenCL API
clCreateBuffer. On the GPU side these buffers are then initialized using
clSetKernelArg.

6. Writing data to device memory: Once the buffers are created on both sides,
the API clEnqueueWriteBuffer copies each buffer to the device memory.
This is the memory that is accessed by the GPU.

7. Executing the kernel code: The execution of the kernel code is distributed
over several cores of the GPU. In order to do that the OpenCL runtime has
to create worker threads which are executed by each Processing Unit. The
number and dimension of worker threads can be specified by the programmer.
This is done using the API c1EnqueueNDRangeKernel. For this application,
the work group was 2-dimensional i.e. the height and width of the color

image.

8. Retrieving data back to CPU: Once all the computation is done the resulting
depth map is copied back to the CPU buffer with the help of the function
clEnqueueReadBuffer. This can now be saved to a desired file format or be

used by any other algorithm running on the CPU.
4.3.3 OpenCL Tools

Since the OpenCL compilation is done using the JIT compilation, compilation

time errors are difficult to detect. Hence a tool called Cloo was used to help with
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OpenCL compile time errors. To analyze the efficiency of the program over the

GPU, a separate tool called gDEBugger was used which is described below.

Editor and Compiler

Editors like Microsoft Visual Studio will be able to compile the OpenCL kernel
code, although it cannot point out the compilation errors. It indicates failure as
a return value to the OpenCL API but does not point out the exact error. That
makes it hard to identify and fix the problem in the kernel code.

The Khonos group provided a simple and easy to use editor called Cloo. One
can write the kernel code in the editor and then compile it. In case of compilation
errors, Cloo precisely points out the error. One such example is shown in the
screenshot in Figure [{.4

.
File Buld Options OpenCL

#define MAXRADIUS 20
#define MAXCost 3.f
|

#define DIAMETER(R) ((R)*2+1)

#define WINDOW(R) (DIAMETER(R)~DIAMETER(R))
#@efine MAXWND WINDOW (MAXRADIUS)

#define IMDEX(x,y,h} ((¥)+(x)*(h}}

void
readSlock_zeropadded (_glcbal uchar =sre,
__local float *block,

unsigned height,
unsigned colors)

unsigned window = ({radius)*2+1)*((zadiug)*2+1);
unsigned HW = widch*height;

for{unsigned i=0; i<window*colozrs; i++)
¢

block(i] = O;
¥

for (unsigned dx=(x)-radius, 1=0; dx<=(x)sradius; dx++)
«

for(unsigned dy=(y)-radius: dy<=(y)+radius: dy+s, i++)
t

1f(dx<0 || @x >= (width) || dy<0 || dy >= (heighe))
ntinue;
int index = ((dy)+(dx)*(height)); //indexd + dy;

PLATFORM: NVIDIA CUDA, DEVICE: GeForce GT 240
:29: error: expected ')’

$28: note: to match this ' ('
for (unsigned dx=(x)-radius, i=0; dx<=(x)sradius; dx++

£39: error: expected statement

:41: error: expected external declaration

-~ M

- 26102010

Figure 4.4: Cloo: The OpenCL compiler and editor
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Debugger Profiler and Memory Analyzer

Once the kernel code compiles, it becomes necessary to investigate how efficiently
the available resources are being utilized. For this purpose gDEBugger was used,
which served as the debugger, profiler and memory analyzer for OpenCL appli-
cations. It helps to sort out the OpenCL related bugs and also helps trace how
the processing work load was distributed within the OpenCL platform. Detailed
information regarding the tool can be found at the website [39]. The tool solves

three basic requirements:

Debug It helps to locate OpenCL errors in the source code. The option can be
set such that the execution breaks automatically when it encounters an OpenCL
error. Appropriate lines of the source code which might have caused the error can
be accessed via the Call Stack Viewer. Additionally there is the provision to check

memory leaks and even break the process when leaks are detected.

The kernel code can be viewed from Shaders and Kernels Source code editor
shown in the screenshot in Figure[4.5 Here the code can be edited and built. The

build logs appears in a pop-up window.

One important feature of this debugger is the capability to set breakpoints to
any OpenCL function. Finally, the Texture, Buffer and Image Viewer allow user
to visualize the image and buffer information. For image data, one can zoom in or

out and by just clicking on an individual pixel the data related to it can be seen.

Profile The results of the profiling for the Hypothesis filter can be seen in the
bottom half of Figure[{.6 It shows the performance statistics for the distribution
of workload between the CPU and GPU devices. On the top portion of figure,
it can be seen that the profile information was taken during the execution of the
function clEnqueueNDRangeKernel. The top right shows the list of functions,

number of calls and percentage of calls for each function.

For this application, it was observed that the CPU resources were relatively free
and the OpenCL kernel commands were utilizing 96 percent of GPU resources.

The queue idle time was very small, only 3.6 percent. This shows that the code
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131 gDedugger CL - Program buildlog.

—— Buid Started: CL Context 1 ——
Building...
GeForce GT 240 (GPU) - Buld suscess

Considering profle ‘compute_12' for gpus'sm_12" in ‘cullodulelL sadDataEx_{*

B Y= LT

Buid: Succeeded

Fie Edit View Buid
i D acontext s~ [Progress
X _ker:zl woid
Pragram L hypothesis_opencl( uchar *Edges,
Kemel1 - hypothesis_opencl uchar *Depth,
uchar #Filtered,
float sweights_table,
flcat dist_table,
int fler_radius,
ficat search limit)
hd
int windewSize = WINDOW(fltz_radius) :
int y = (int)gec_global id
ae x =
£loat wedghts [MAXWND] ,
KemelProperses” X BlkDepth [MAXHND] ;
01
el int index = INDEX(x,y,width):
General
Kemei Function Name _ hypotnesis_ Filtered(ingex] - DepTalindex];
Kernel Hondle 03383480
Py — 5 float Dnow = (float)Depchfindex]:
£1oat Dmax = Dnow,
Reference Count 1 Dman = Dnews
Workgroup Size 12
resdBlock _zeropadded(Depth, blkDepth, x, v, Iltr_radius, width, height, windowsSize);
for(int im0; iwindowSize; i+s)
4 {
Dmax = (blkDepth[i] > Dmax) ? blkDepth[i] : Dmax:
Dmin = (blkDepthfi] < Dmin) ? blkDepth[i] : Dmin:
]
int Giff = (int) (Dmax - Dmin):
/if (abs (Dmax - Dmin} < 0.01)//sea
1f(difr == 0)
I~ {
Filversaingex] = (uchar)Dnow:
//econeinue:
o W |

I

was well optimized for parallel processing. Since the analysis was done

Debug mode the execution was very slow.

Figure 4.5: gDEBugger: Shaders and Kernels Source code editor

in the
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File Edit View

Launch the Kernel on the GFU

retval = cl NDRangeXe:

if(recvVal 1=
~ 1

55)

cout << "E; : c1EnqueueNDRangek

1

/f Copy the out
retVal = clE:

memory back
fer (GRUC

size_t workSize[2] = (pConf->heighe, pConf->wideh):

/I twe dimensicnal Range

GEUCommandQueue ,
openCLEernel,

rnel” <<endl:

to CRU memory
A

chis->bur

£GPU. framaFilteredDepth,

File Edt
Y e

View Debug EBreakpoints Tools Help Buy Now!

resto ~[acomots -]l @B R® i @R[EIND
Calssmk x|

46

x

X Properties X
€L Context1 - 155 OpenCL function calls = B step: clEnqueueiriteBuffer ]
; [ Calls Stack
© clEnqueueReadBuffer(Queue 1, Buffer 3, TRUE, 0, 48 KB, 0x( main - hypethesis_main.cpp, line 31 'Step: clEnqueueNDRangeKemel
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& clEnqueuehDRangeKemel[Queue 1, P1 Kemel1, 2, mmj BaseThreadlnitThunk - kemel3z.dil B Step: clEnqueeWriteButfer @
i e—— - RefinitisizeExceptionChain - ntdildil B Step: clEnqueueNDRangeKemel | I — .
[l Performance Gragh X | | Performance Dashboard X Command Queues Realtme Statistics x

—us

Counter Name

@ 05 CPUs Average Uilization

@ GDB CL Frames/sec: CL Context 1 Queue 1

@ GDB CL Kemnel Commands Utilization: CL Context 1 Queue
@ GDB CL Quewe Busy: CL Context 1 Queue 1

@ GDB CL Queue Idle: CL Context 1 Queue 1

qua, | i

96.0% Kernel
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+

Stopped before executing: clEnqueueNDRangeKemel{Queue 1, P1 Kemel 1, 2, 000000000, {192, 256, (100000000, 0, 0500000000, (:00000000)

Figure 4.6: gDFEBugger: Debugger, Profiler and Memory Analyzer
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5. RESULTS AND ANALYSIS

The objective of this thesis work was to confirm that the algorithms like bilateral
filter can be effectively ported to a GPU, making it much more efficient for real-
time use cases. For the Mobile 3DTV project, this filter was being used to restore
depth maps which are then used for 3D view rendering on mobile devices. This
chapter discusses the findings related to the filter implementation. The results
points to the fact that bilateral filter is well suited for GPU devices. Furthermore,
OpenCL as a platform makes it convenient for programmers to port algorithms

written in C or MatLab to any such devices.

For the purpose of this thesis, all the 3D video sequences including depth maps
used were taken from the Mobile 3DTV project database [42]. The specific se-

quences are Bullinger, Caterpillar, Car and Book Arrival.

A PC with Xeon Dual core CPU, running at 3 GHz clock frequency and 3 MB
RAM was used. It also had a GPU (NVIDIA GeForce 240), which comes with
96 cores, graphics clock of 550 MHz, processor clock of 1340 MHz and 512 MB
memory. For more details please refer to Appendix

There are multiple things that were tried in the scope of this project. First,
to port the algorithm discussed by Smirnov et al. in [14] to a GPU device using
OpenCL. Second, measure the gains in the processing time using GPU over the
CPU implementation which was written in C and MatLab as MEX file. Thirdly, to
verify if compressing the depth map with different quantization parameters (QP)

have any effect on filtering speed.



5. RESULTS AND ANALYSIS 48

m Mex code
33.81

M openCLcode

Frames per sec

1 2 3
Bullinger (320 x 192) Caterpillar (480 x 270) Car (480 x 270)

Figure 5.1: Performance analysis between OpenCl and Mez code. Filter size used was 9.

5.1 Improvements in Processing Time

The processing time received a significant boost from the GPU implementation
as shown in Figure [5.1, It shows time measurements for three different video
sequences: Bullinger, Caterpillar and Car. During the experiment, all the processes
running on the PC were suspended, leaving only the operating system and few
other essential ones. After this, first the MEX implementation was run for all the
three sequences which generated the time log. Next, the OpenCL implementation
was run which also generated a similar log file. All the data was put in an MS

Excel worksheet to generate the graphs.

The timing was first noted for 100 frames and then the Frames per Second (fps)
value was calculated. The idea behind choosing fps as the metric was that the
ultimate intention was to find out if this filtering operation can be performed in
real-time (around 25 fps).

From the results it was deduced that the operation was around 20.74x, 20.81x
and 21.43x faster on GPU for Bullinger, Caterpillar and Car respectively. On

average about 21x improvement in processing speed was achieved.
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It is to be noted that the cache hit/miss rate is one of the key factor in determin-
ing how effectively the GPU is being utilized. It was observed that the hit/miss
rate decreased with the increase in the window size. For out largest window size,
only 0.2 percent of the data access happened from the device memory and rest of

it was accessed from the fast cache.

Once it was confirmed that the OpenCL implementation was much more efficient
in terms of processing time, the next step was to test processing times for videos
with different resolutions. The filtering operation was run for three sequences:
Bullinger (320 x 192), Caterpillar (480 x 270) and Car (480 x 270). The results
are shown in Figure[5.4 From the graph, it can be inferred, that for this particular
GPU, only data set having resolution of around (320 x 192) can achieve near real-

time performance with our implementation having a filter size of 9.
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I Filter size: 11
30.00 . M Filter size: 9
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o
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o
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5.00 4

0.00 -

1 2 3

Bullinger (320 x 192) Caterpillar (480 x 270) Car (480 x 270)

Figure 5.2: Processing time over different video sequences: 1. Bullinger (320 x 192) 2.
Caterpillar (480 x 270) 3. Car (480 x 270) for varying filter sizes (9, 11, 13 and 15)
5.2 Effect of Compression Artifacts on Processing Time

Next study was made to understand if the amount of degradation in image quality

has any effect on filtering time. Three sequences were chosen; Bullinger, Caterpillar
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and Car. Using H.264 encoder all depth maps were compressed with quantization
factors of 25, 30, 35 and 40. It was observed in the results shown in Figure [5.5
that the different levels of compression artifacts had no effect on the processing

time.

H.264 is a block based video encoding scheme which is inherently lossy and
hence degrades the image quality to certain extent. However, it tries to minimize
the effect by removing only the truly redundant image data. The Quantization
Parameter dictates how much of the spatial details can be compromised. When
the QP is small, almost all pixel information is retained and vice-versa. The effect
of this compression technique with QP = 35 is seen in Figure (b).

25.00

m Bullinger

w caterpillar

i Car

20.00

15.00

Frames per sec

10.00 -

5.00 -

0.00 -
QP 25 QP 30 QP 35 QP 40

QP during Encoding

Figure 5.3: Variation of execution speed for different data sets encoded using H264 encoder
with different values of Quantization Parameters (25, 30, 35 and 40). Filter size used
was 15.

5.3 Bilateral Filtering Results

Figure[5.]] shows the filtering results from the Car sequence. The top row has the
original frame 90 on the left. On the right there is the degraded frame after it was
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compressed with QP 35. The artifacts are seen quite prominently on the back of

the car. The edges are rough and also broken at places.

Figure (c), (d), (e), (f) shows the effect of bilateral filter on the compressed
depth map (Figure (b)) with filter size of 9, 11, 13 and 15 respectively. It
can be observed that the image becomes smoother with the increase in filter size.
Furthermore, the boundaries, which are one of the most essential features of a
depth map become distinct and sharp. Overall, the results from the OpenCL code

looked very promising.
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(e)

Figure 5.4: Car, Frame no. 90, Depth encoded with QP = 385. (a) Original depth (b)
Depth encoded with QP = 35 (c) Filtered with block size = 9 (d) Filtered with block size
= 11 (e) Filtered with block size = 13 (f) Filtered with block size = 15
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6. CONCLUSION

Mobile3DTV project dealt with the capture, coding and transmission of 3D video
to mobile devices. It also studied different 3D video representation formats for
their applicability in such mobile delivery scenario. In the scope of this thesis, the
DIBR model was chosen. Here, one view plus depth was to be transmitted to a
mobile device and the second view was to be rendered on the device at real-time.
This was a good technique since single channel depth data is relatively small and

uses far less bandwidth compared to RGB intensity data.

Depth maps can be degraded with several different artifacts which can negatively
affect the view synthesis. So, they need to undergo restoration before being used
for further processing. This thesis work used a modified version of bilateral filter
for the restoration process. The modification were made such that the weights for
the filter was calculated using the RGB image (left/right view) and then applied
to the depth image. The reason being, the textures and edges are better preserved

in the intensity image.

Since the filtering process had to run in real-time, it was decided to take GPU
into use. At the end of our study, it can be safely said that for these kind of
algorithms GPU is the way forward. Since the computations for one pixel is inde-
pendent of the results from it’s neighbors, each pixel can be assigned to a GPU core,
which means computation on several pixels can be done simultaneously. Thus, the
number of pixels that can be processed independently is directly proportional to
the number of GPU cores.

The study shows that under certain constrains, real-time performance is achiev-
able for our restoration algorithm. Experiments show Bullinger video sequence

with size (320 x 192) attained near real-time performance whereas the other two
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sequences Car and Caterpillar with size (480 x 270) fell slightly short. There is also
another very important factor to be considered here. Since the GPU is handling

most of the computation, CPU is meanwhile free to take up other tasks.

Another conclusion from this study was that OpenCL is quite an useful platform
for implementing and porting algorithms to GPU. The language in which the actual
kernel code is written is very similar to C. That makes it easy for most programmers
who are already familiar with C. Moreover, in the field of Computer Vision most
core algorithms are written in C, thus it is convenient to port those algorithms to
OpenCL.

The improvement in processing efficiency of the OpenCL version compared to
the implementation on CPU was optimistic. The OpenCL code was not the most
optimized and there are rooms for further improvements. For this implementation
most of the memory utilization was left to OpenCL; which might not be the best
coding practice. Thus, the implementation can be made more efficient if one can

develop better understanding of the OpenCL architecture.

With the sharp rise in the GPU enabled devices and parallel computing plat-
forms, it is a good idea to investigate if the particular task can be parallelized. For
algorithms similar to the one that is described in this thesis, GPU implementations
should be encouraged. Moreover, the introduction of free and device independent

standards like OpenCL will support the wide adoption of GPU in the coming years.
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A. CODE LISTING

Listing A.1: OpenCL Kernel code for Hypothesis filter

~_kernel void hypothesis filter gpu
(__global floatx edge,
__global floatx depth,
__global floatx filtered ,
__global floatx wt table,
__global floatx dist table,
const _ global int height ,
const  global int width,
const  global int fltr radius,

const  global float search limit)
x = get global id(0);
y = get global id(1);
float weights [MAXWND|, blkDepth [MAXWND];
int index = INDEX(x,y,height);

float Dnow = Depth|index |;
float Dmax = Dnow, Dmin = Dnow;

readBlockFloat zeropadded ((float x)Depth, blkDepth, x, y,
radius , width, height);

for (int i=0; i<window; i-++)
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{
Dmax = (blkDepth|[i] > Dmax) 7 blkDepth|[i] : Dmax;
Dmin = (blkDepth[i] < Dmin) ? blkDepth|[i]| : Dmin;
}
if (abs(Dmax — Dmin) < 0.01)) /xsearch_stepx/
{
Filtered [index| = Dnow;
continue;
}

Dmin = floor (Dmin—1);

Dmax = ceil (Dmax+1);

calculateWeights zeropadded ((UINT8x%)Edges, weights
wt_table, radius, x, y, width, height);

for (int i=0; i<window; i++)
{
weights|[i] *= dist_table[i];

}

normalizeWeights (weights , radius);

float Cost[255];

int hypoMax = (int)ceil ((Dmax—Dmin));
float Cbest = MAXCost*5;

float Dbest = Dnow;

int Hbest = —1;

for (int hypo = 0; hypo <= hypoMax; hypo++)

{

float d = (float )Dmin + hypo;

float value = 0;
for (int i=0; i<window; i++)
{

float diff = d—blkDepth]|i|;
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diff = diff;
diff = diff>search limit 7 search limit : diff;
value += diffxweights|[i];

}

Cost [hypo| = value;

if (value <= Cbest)

{
Chbest = value;
Dbest = d;
Hbest = hypo;
}

float Cdown = (Hbest > 0) ? Cost|Hbest—1] : MAXCost;
float Cup = (Hbest < hypoMax) ? Cost|[Hbest+1] : MAXCost;

Filtered [index| =
Dbest — (Cup—Cdown) /(2% (Cup+Cdown—2xCbest ) );

return 0;



B. GPU SPECIFICATIONS

\ GPU Engine Specs:

CUDA Cores 96
Graphics Clock (MHz) 550 MHz
Processor Clock (MHz) 1340 MHz

Memory Specs:

1700 MHz GDDRS, 1000MHz GDDR3,
Memory Clock (MHz) 900MHz DDR3
Standard Memory Config 512MBor 1 GB
Memory Interface Width 128-bit
Memory Bandwidth (GB/sec) 54.4 GB/sec
NVIDIA 3D V1S10n Ready
NVIDIA PureVideo® Technology** HD
NVIDIA PhysX™.-ready Ve
NVIDIA CUDA™ Technology o
Microsoft DirectX 10.1
OpenGL 32
Bus Support PCI-E 2.0
Certified for Windows 7 Ve
Maximum Digital Resolution 2560x1600
Maximum VGA Resolution 2048x1536
DVI

Standard Display Connectors VGA

HDMI
Multi Monitor v
HDCP v
HDMI v
Audio Input for HDMI Internal
Height 4.376 inches (111 mm)
Length 6.6 inches (168mm)
Width Single-slot
Maximum GPU Temperature (in C) 105C C
Maximum Graphics Card Power (W) 69 W
Minimum Recommended System Power (W) 300 W

Figure B.1: NVIDIA GeForce 240 Engine Specification
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