

TERO LATVALA

DEPLOYMENT OF A SERVICE-ORIENTED AUTOMATION PLAT-

FORM FOR INTEGRATING SMART CITY APPLICATIONS

Master of Science thesis

Examiners: Prof. José L. Martinez
Lastra, Dr. Jani Jokinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences
on 4th November 2015

i

ABSTRACT

TERO LATVALA: Deployment of a Service-Oriented Automation Platform for
Integrating Smart City Applications
Tampere University of Technology
Master of Science Thesis, 58 pages
February 2016
Master’s Degree Programme in Automation Technology
Major: Factory Automation
Examiners: Professor José L. Martinez Lastra, Senior Research Fellow Jani
Jokinen

Keywords: Arrowhead, Smart City, Service-Oriented Architecture

SOA (Service-Oriented Architecture) is an architectural style for creating software sys-

tems. It encapsulates the functional behaviour behind services which are loosely cou-

pled to each other. SOA brings flexibility, agility and dynamicity to software systems

because it enables the collaboration of systems developed with different technologies.

Moreover, SOA reduces the cost of the development since already existing services can

be reused in new systems.

Arrowhead Project aims to develop a technical framework, which enables the collabora-

tive automation by networked embedded devices. The framework aims to solve the en-

ergy and competitiveness challenges with increased efficiency, which is gained by

means of collaborative automation. Collaborative automation is enabled with SOA. The

project is targeting to five different areas including Production, Smart Buildings and

Infrastructures, Electro-Mobility, Energy Production and End-User Services, and finally

Virtual Market of Energy.

During the project, project partners are testing Arrowhead Framework by developing

pilot applications for the project domains to demonstrate the use of the framework at

various use-cases. This thesis presents pilot applications developed at FAST-lab at

Tampere University of Technology during Pilot Generation 2. The first application is a

managing and monitoring system for street lights and the second one for engine block

heaters. They demonstrate how Arrowhead Framework could be used to develop Smart

City applications.

Since Arrowhead Framework is based on SOA, it should be possible to reuse the exist-

ing services in new applications. Therefore, a third pilot application was developed by

integrating the components from the first two pilot applications. The resulting applica-

tion controls the dimming of street lights based on the luminance and the heating time

of engine block heaters based on the temperature. The application shows that Arrow-

head Framework gives suitable tools to develop systems where the requested functional-

ity by reusing the existing services in collaborative manner.

ii

TIIVISTELMÄ

TERO LATVALA: Palvelukeskeiseen arkkitehtuuriin perustuvan automaatio-
alustan hyödyntäminen älykaupungin sovelluksissa ja niiden integroinnissa.
Tampereen teknillinen yliopisto
Diplomityö, 58 sivua
Helmikuu 2016
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Factory Automation
Tarkastajat: professori José L. Martinez Lastra, Yliopistotutkija Jani Jokinen

Avainsanat: Arrowhead, älykaupunki, Palvelukeskeinen arkkitehtuuri

Palvelukeskeinen arkkitehtuuri on ohjelmistojen suunnittelutapa. Tässä arkkitehtuuri-

mallissa toiminnallisuus kapseloidaan palveluihin, jotka ovat löyhästi kytketty toisiinsa.

Palvelukeskeinen arkkitehtuuri tuo ohjelmistoihin joustavuutta, ketteryyttä ja dynamiik-

kaa, koska eri tekniikoilla toteutetut järjestelmät pystyvät toimimaan yhdessä. Lisäksi

järjestelmien toteutus nopeutuu, koska jo olemassa olevia palveluita voidaan käyttää

uudelleen uusissa järjestelmissä.

Arrowhead-projektin tarkoitus on kehittää tekninen viitekehys, joka mahdollistaa toi-

siinsa kytkettyjen sulautettujen automaatiolaitteiden yhteistoiminnan. Viitekehys pyrkii

lisäämään yhteistoiminnan avulla tehokkuutta ja vastaamaan siten energiatehok-

kuushaasteisiin sekä kasvavaan kilpailuun. Yhteistoiminta perustuu palvelukeskeiseen

arkkitehtuuriin. Projekti on suunnattu viidelle eri osa-alueelle, jotka ovat tuotanto, älyk-

käät rakennukset ja infrastruktuurit, sähkökulkuneuvot, energiantuotanto ja loppukäyttä-

jien palvelut sekä energian virtuaalimarkkinat.

Projektin partnerit testaavat Arrowhead-viitekehystä projektin aikana kehittämällä pilot-

tisovelluksia projektin eri osa-alueille. Ne demonstroivat viitekehyksen käyttöä eri käyt-

tötapauksissa. Tässä opinnäytetyössä esitellään pilottisovellukset, jotka on kehitetty

toisen pilottivaiheen aikana FAST-labissa Tampereen teknillisellä yliopistolla. Ensim-

mäinen sovellus on hallinta- ja monitorointijärjestelmä katuvaloille, ja toinen sovellus

on vastaava järjestelmä autojen lämmitystolpille. Sovellukset demonstroivat Arrow-

head-viitekehyksen soveltuvuutta älykaupungin sovelluksiin.

Koska Arrowhead-viitekehys perustuu palvelukeskeiseen arkkitehtuuriin, olemassa ole-

via palveluita pitäisi voida hyödyntää uusissa sovelluksissa. Tämän vuoksi kehitettiin

kolmas pilottisovellus, johon on integroitu kahden ensimmäisen sovelluksen kom-

ponentteja. Luotu järjestelmä ohjaa katuvaloja kirkkauden perusteella sekä muuttaa

lämmitystolppien lämmitysaikaa lämpötilan mukaan. Tämä kehitetty sovellus osoittaa,

että Arrowhead-viitekehys tarjoaa tarvittavat työkalut kehittää järjestelmiä, joissa halut-

tu toiminnallisuus saavutetaan sovellusten uudelleenkäytöllä ja yhteistoiminnalla.

iii

PREFACE

This master’s thesis was written at FAST-lab (Factory Automation Systems and Tech-

nologies laboratory) at Tampere University of Technology. I would like to acknowledge

Professor José L. Martinez Lastra about interesting position at Arrowhead project at

FAST-lab. Moreover, I would like to send a special thanks to Senior Research Fellow

Jani Jokinen who introduced the position to me and instructed me during the writing

process. Finally, I want to thank my family and friends for never-ending support.

Tampere, 23th February 2016

Tero Latvala

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 Problem Definition ... 2

1.2 Work Description ... 2

1.3 Methodology .. 2

1.4 Thesis outline ... 3

2. THEORETICAL BACKGROUND .. 4

2.1 Service-Oriented Architecture.. 4

2.2 Smart City .. 6

2.3 Technologies of Smart City applications ... 8

2.4 Arrowhead Project.. 10

2.4.1 Core Functionality of Arrowhead Network 11

2.4.2 Security of Arrowhead Network .. 15

2.4.3 Arrowhead document model .. 16

3. METHODOLOGY .. 21

3.1 Using the Arrowhead Framework .. 21

3.1.1 Core Services ... 22

3.1.2 Arrowhead Management Tool ... 22

3.1.3 Service development .. 25

3.1.4 Document model .. 25

3.2 Web applications .. 26

3.2.1 Bootstrap framework.. 26

3.2.2 jQuery... 26

3.2.3 Morris JS .. 27

3.2.4 Cross-Origin Resource Sharing ... 27

4. IMPLEMENTATION ... 28

4.1 Light Management Tool pilot application .. 28

4.1.1 Hardware setup .. 29

4.1.2 Software architecture ... 31

4.1.3 User interface ... 36

4.2 Engine Block Heater Controller pilot application .. 37

4.2.1 Hardware setup .. 37

4.2.2 Software architecture ... 38

4.2.3 User interface ... 42

4.3 Integration of pilot applications ... 44

4.3.1 Software architecture ... 46

4.3.2 Sensor Simulator .. 48

4.4 Discussion .. 49

5. CONCLUSION ... 52

5.1 Future work .. 53

REFERENCES .. 54

v

LIST OF FIGURES

Figure 1. Service-Oriented Architecture in Web Services [27]. 5

Figure 2. Identified Core Systems [15]. .. 12

Figure 3. Core Systems at Pilot Generation 2 [16]. ... 14

Figure 4. Arrowhead Network... 15

Figure 5. The document model of Arrowhead Framework [16]. 17

Figure 6. Service level documents [16]... 19

Figure 7. Arrowhead Management Tool components [14]. 22

Figure 8. ServiceRegistry tab of Management Tool. ... 23

Figure 9. Orchestration tab of Management Tool. ... 23

Figure 10. Authorisation tab of Management Tool. .. 24

Figure 11. Hardware setup of Light Management Tool. .. 30

Figure 12. Software architecture of Light Management Tool................................... 31

Figure 13. User Interface of Light Management Tool. ... 36

Figure 14. Engine block heater. .. 38

Figure 15. Software architecture of Engine Block Heater Controller. 39

Figure 16. User Interface of Engine Block Heater Controller. 43

Figure 17. Produal Lux 34 light level and temperature transmitter [33]. 45

Figure 18. Software architecture of integrating implementation.............................. 46

Figure 19. User interface of Sensor Simulator. .. 49

vi

LIST OF SYMBOLS AND ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BPM Business Process Management

CN Common Name

CoAP Constrained Application Protocol

CORS Cross-Origin Resource Sharing

CP Communication Profile

DOM Document Object Model

ESB Enterprise Service Bus

EXI Efficient XML Interchange

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

IDD Interface Design Description

IoT Internet of Things

JSON JavaScript Object Notation

LED Light-Emitting Diode

MVaaS Materialized View as a Service

REST Representational State Transfer

Scallop4SC SCALable LOgging Platform for Smart City

SD Service Description

SOA Service-Oriented Architecture

SoSD System-of-Systems Description

SoSDD System-of-Systems Design Description

SP Semantic Profile

SSH Secure Shell

SysD System Description

SysDD System Design Description

SysML Systems Modeling Language

UML Unified Modeling Language

URI Unified Resource Identifier

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

.

1

1. INTRODUCTION

Service-Oriented Architecture is popular approach to build software systems where the

focus is on the use of services encapsulating the application behaviour. At SOA-based

systems, business processes are built by combining a set of services together. Existing

services can be reused in new business processes. Moreover, services can be developed

with different technologies at SOA-based systems. SOA improves thus the efficiency

and changeability of software architecture, but also speeds up the development of soft-

ware systems [31]. It brings also dynamicity, agility and flexibility to software systems

with loosely coupled services [13]. During the past years, SOA is proposed to many

kinds of systems including public emergency logistics system [51], test framework for

mobile applications [29] and Bank online application system [26].

Colombo et al present the vision about collaborative automation which is enabled by

SOA [20]. The study states that collaborative automation would improve the reconfigu-

rability of manufacturing systems and thus reduce the time downtime and increase effi-

ciency [20]. Similar vision is adopted at Arrowhead Project. Arrowhead project aims to

develop technical framework, which enables collaborative automation by networked

embedded devices by means of SOA. Collaborative automation is seen as a solution for

increasing competitiveness and energy challenges [10]. Since the network is based on

SOA, interoperability should remove the technical limitations meaning that it should be

possible to connect devices developed with any technology to the network. Moreover,

SOA enables the reuse of components thus enhancing the efficiency of engineering pro-

cesses when new applications are developed. It is envisioned that the framework will

achieve 75% reduction to the effort of design process [10]. Arrowhead Project is target-

ing the framework to five different areas including Production, Smart Buildings and

Infrastructures, Electro-Mobility, Energy Production and End-User Services, and finally

Virtual Market of Energy.

During the project, project partners are testing Arrowhead Framework by creating pilot

applications to project domains which demonstrate the use of Arrowhead Framework in

various use-cases. Applications are developed in three consecutive phases of develop-

ment called Pilot Generations. Two pilot applications were developed at FAST-lab at

Tampere University of Technology during Pilot Generation 2. They demonstrate how

Arrowhead Framework could be used to build Smart City applications. The applications

are managing and monitoring systems: the first targeted to street lights and the second

one targeted to engine block heaters respectively. Next, a third pilot application was

developed by integrating components from the first two applications. In this application,

2

street lights and engine block heaters are controlled with a separate controller system.

New functionality is achieved by reusing the components in collaborate manner.

1.1 Problem Definition

Smart City has gained lots of interest recently. It aims to improve the use of public re-

sources and to increase the quality of services offered to the citizens. It also aims to re-

duce energy consumption and the operational costs of the public administrations. ICT

(Information and Communication Technology) is seen as a key enabler for Smart City

since smartness is increased by means of Smart City applications.

Several researches have proposed various technological solutions for Smart City. Nev-

ertheless, there is not any inclusive technical solution available yet. Since Arrowhead is

targeting also to Smart Buildings and Infrastructures domain, Arrowhead Framework

should be suitable for building Smart City applications. Therefore, the framework

should be tested in this concept. Furthermore, since Arrowhead Network is based on

SOA, it should be possible to reuse the services. This feature should be tested by inte-

grating Smart City applications to build new functionality.

1.2 Work Description

This thesis presents Arrowhead Project and the most important technical aspects of Ar-

rowhead Framework. Furthermore, a theoretical background is given about Service-

Oriented Architecture in order to gain better understanding about the framework. Fur-

thermore, the thesis gives a review about the recent research topics related to Smart

City.

The main objective of this thesis is to give a detailed description about the pilot applica-

tions developed at FAST-lab at Tampere University of Technology. The goal is to pre-

sent how Arrowhead Framework can be used to develop Smart City applications.

1.3 Methodology

This thesis has two main parts. The first part of the thesis gives an overview of theoreti-

cal background by means of literature review. Following topics are included:

 Service-Oriented Architecture.

 Smart City concept.

 Technologies at Smart City.

 Arrowhead Project and its goals.

 Arrowhead Framework.

3

The next part of the thesis gives detailed description about pilot applications including

the following topics:

 Technologies used in development.

 Description of hardware.

 Description of software architecture.

 Analysis.

1.4 Thesis outline

This thesis includes five chapters. First chapter contains introduction, problem defini-

tion, work description and methodologies. Second chapter describes SOA and Smart

City concept. It also introduces Arrowhead Project and Arrowhead Framework. Third

chapter describes the methodologies used to develop the pilot applications. First, it de-

scribes how Arrowhead Framework was used in development and what technologies

were used to develop the services. The second subsection includes a set of technologies

needed to develop the user interfaces for the pilot applications. Fourth chapter presents

the actual pilot applications. First, two managing and monitoring pilot applications

called Light Management Tool and Engine Block Heater Controller are described.

Hardware, software architecture and user interface are described in separate subsections.

Next, a third pilot application, which integrates components from the first two applica-

tions, is described. Finally, the chapter includes a discussion section. Fifth chapter con-

tains the conclusions and recommendations for future work.

4

2. THEORETICAL BACKGROUND

This chapter gives a theoretical background by means of literature review. It starts with

an overview about Service-Oriented Architecture, which is an architectural style to cre-

ate software systems. Next, a literature review is given about Smart City concept and

the latest research topics related to the concept. Furthermore, the technologies of Smart

City applications are also described. Finally, this chapter introduces Arrowhead Project

and the most important technical aspects of Arrowhead Framework.

2.1 Service-Oriented Architecture

Service-Oriented Architecture is an architectural style to create software systems where

the main components are loosely coupled, interoperable and distributed [12]. The idea

behind SOA is to encapsulate application behaviour to an entity called Service. Services

can be combined dynamically together to build business processes. Service is stored by

an entity called Service Provider. Furthermore, Services are offered to another entity

called Service Consumer. Service Consumer is typically a piece of software or an ap-

plication, which somehow benefits from the service. The interaction between a consum-

er and a service is based on the interface of the service, which describes the rules for

communication and the context of the messages used in communication. Request-

response pattern is typically used at the interaction meaning that the consumer requests

meaningful data from the service, which then responds with a message containing the

requested content. Nevertheless, communication is not limited only to request-response

pattern. [13]

Bean presents at [13] that some supporting technologies are needed to construct SOA-

based implementations. First, SOA needs a network or a platform where service con-

sumers can connect to the services. The technology is known as ESB (Enterprise Ser-

vice Bus). ESB provides a network, delivery of messages and communication protocols.

The consumer and the service are identified at the network with an identifier called

Endpoint. Communication between the consumer and the service is based on sending

the messages to these endpoints. Consumer needs to know the endpoint of the service in

order to start the communication. It can be difficult to maintain the list of available ser-

vices at large SOA-based systems. Therefore, a technology called Service Registry is

needed. Bean describes Service Registry as a catalogue of services hosted at the net-

work [13]. Thus, it helps with finding the needed service from the network. Bean men-

tions also BPM (Business Process Management) technology, which composes a set of

5

services into new business services. The action of composing services into business

services is called Orchestration. [13]

The typical application of SOA is Web Services. The architecture of Web Services in-

cludes Service provider, Service requester and Service registry. Service provider pro-

vides the interface of the Web Service and publishes the Web Service to Service regis-

try. Service requester, which means Service Consumer, can then find the Web Service

from the Service Registry and start the interaction with it. [27] The setup is presented in

Figure 1.

Figure 1. Service-Oriented Architecture in Web Services [27].

There is a set of principles which must be covered in SOA-based software systems. The

principles are Loose Coupling, Interoperability, Reusability, Discoverability and Com-

position. [12] However, the list of principles has some variation in literature. For exam-

ple, at [13] the list includes Governance, but Composition is not presented. Loose Cou-

pling means that consumers are intentionally separated from services. There should not

be any physical connection between a consumer and a service in order to avoid physical

dependencies. Moreover, the communication should be based on messaging instead of

direct communication. Interoperability means that consumers and services can be im-

plemented with different technologies thus making SOA technology-independent.

Moreover, Interoperability enables the collaboration and the message exchange of ser-

vices even though they are developed with different technologies. Reusability aims to

minimize costs by reusing the functionality already developed with existing services.

Discoverability means the services must be discoverable in order to use them later. This

is usually realised with Service Registry. Governance provides the rules for measuring

the compliance of the principles and for correcting the possible noncompliance. Gov-

ernance is sometimes considered a practice rather than a principle. [13] Finally, Compo-

6

sition enables the creation of new business processes with cooperation of services with-

out changing their original content [12].

SOA has several benefits. It gives dynamicity, agility and flexibility to software sys-

tems. Moreover, SOA makes it possible to reuse earlier investments in technology thus

reducing the costs. New business processes can be built by reusing the components

which were designed for earlier implementations. SOA makes also the development

process rapid. [13]

Some challenges are also identified at SOA. For example, Baskin et al argue that in-

teroperability of SOA-based systems may bring lots of costs to the system maintenance,

since maintenance personnel need to know multiple technologies and handle large doc-

uments [48]. Information security is also seen as a challenge. According to [38], the

security of SOA is difficult to achieve, because it is required that every element, interac-

tion and system is secure. Therefore, a single unsecure building block may compromise

the whole SOA-based system.

2.2 Smart City

Smart City is quite new concept and thus it does not have a common definition yet. ICT

technology is emphasized strongly at many definitions of Smart City. For example, An-

thopoulos and Fitsilis define Smart City as an infrastructure and environment of ser-

vices based on ICT that enhance city’s intelligence, the quality of life and other attrib-

utes such as entrepreneurship, education and transportation [9]. According to [43],

Smart City is a next-generation city planning that aims to achieve sustainable society

with ICT technologies. Monzon emphasizes at [30] the ICT-based solutions as a key

element of Smart City, but he also states that simply deploying technologies to the city

is misunderstanding the concept. At ASCIMER project, he defines Smart City as an

integrated system where human and social capitals interact by using technology based

solution. [30] Giffinger et al have slightly different approach since they define Smart

City as a city well performing in a forward-looking way in six characteristics, which are

Smart Economy, Smart People, Smart Governance, Smart Mobility, Smart Environment

and Smart Living. The characteristics include ICT as well, but also things like social

and human capital, political aspects, natural resources, transportation systems and quali-

ty of life. They used the definition of Smart City to compare the smartness of European

medium-sized cities. [23]

Chourabi et al did a large research as presented at [19], where they studied Smart City

literature to identify the trends around the concept and to understand it better. They de-

fined a framework with eight important factors, each influencing each other, including

technology, policy, organization, natural environment, governance, people communi-

ties, economy and built infrastructure. The framework can be used to determine the suc-

cess factors of Smart City projects and to help in envisioning the first steps towards

7

Smart City. Chourabi et al stated that the technology can heavily influence other seven

factors. [19] Again, ICT is strongly emphasized as an important building block at Smart

City concept.

Smart City aims to improve the use of public resources, increase the quality of services

offered to the citizens and reduce the operational costs of the public administrations

[50]. According to [30], the main objective of Smart City projects is to solve urban

problems in an efficient way to improve sustainability of the city and the quality of life

of its inhabitants. According to [43], Smart City aims to sustainable society with ICT

technologies by collecting data from various sensors and using it for value-added ser-

vices. The services lead to an environmental-friendly city by saving energy, but they

provide also safety, amenities and utilities to the city.

Most of the goals are reached with Smart City applications. Scientific papers envision

many possible applications for Smart City concept. Su et al present applications at [41]

such as a wireless network covering the whole city, which offers various services to

people but also improves urban management systems. Moreover, they mention Smart

Home applications providing an intelligent control of lights and other house equipment

as well as alarm notifications. Furthermore, they state that Smart City would enable

smart traffic management systems with better traffic control, smart public services and

smart medical treatment. It would help to establish an urban model of green city and

finally it would support tourism by offering services to tourists and by collecting tour-

ism data. [41] Zanella et al give an overview at [50] to some of the Smart City applica-

tions envisioned at various scientific papers. Applications include a structural analysis

system to provide information about the condition of historical buildings, optimized

waste management system, monitoring system for air quality and noise at urban areas as

well as for traffic congestion. Furthermore, Zanella et al mention also energy monitor-

ing systems that measure the overall energy consumption of the city. Another energy-

related application is Smart Lighting, which optimizes the street lights based on various

parameters such as the presence of the people. Finally, Zanella et al mention Smart

Parking, which helps to find free parking slots faster thus reducing the emissions and

traffic congestions. [50]

Even though technology is seen as a key enabler when taking the first steps towards

Smart City concept, other actions are needed as well. Van den Bergh and Viaene studied

how to become a Smart City by analysing the city of Ghent in Belgium [46]. They iden-

tified six key challenges, focusing on city administration perspective, to overcome when

realizing Smart City. The key challenges are related to city ecosystem, leadership, coor-

dination mechanisms, business-IT alignment, organisational culture and experimental

environment. Smart City needs clear IT strategy and adaption of new technologies, but

also political willingness, long-term commitment and credibility towards parties. Final-

ly, Van den Bergh and Viaene underline that cities should avoid getting stuck to exper-

imental environment which tends to be the problem of the Smart City projects. [46]

8

2.3 Technologies of Smart City applications

As described before, ICT is seen as a key enabler in Smart City concept. Lots of re-

search is done about technologies suitable for Smart City. In addition, several frame-

works are developed to support the development of Smart City applications. This sec-

tion gives a literature review about recent technology-related research topics within

Smart City concept.

ICT-based Smart City systems can be built in many different ways. Anthopoulos and

Fitsilis discovered several commonly used architectural styles by studying current

Smart City solutions. According to the study, multi-tier is the most preferred architec-

tural style at existing Smart City projects but SOA appeared to be famous architecture

as well. Moreover, multi-tier is preferred in applications using IoT (Internet of Things)

paradigm. Finally, event driven architecture was also used at some European research

projects. [9]

IoT is a communication paradigm which interconnects everyday objects to a global

network to exchange data between them. IoT is seen as a promising solution to meet the

requirements of ICT systems within Smart City concept. [50] Zanella et al propose an

architecture for IoT-based solution called Urban IoT. It uses EXI (Efficient XML Inter-

change) as a data format and CoAP (Constrained Application Protocol) as the applica-

tion layer protocol. The network layer relies on 6LoWPAN technology. Service archi-

tecture uses Web Services and REST (Representational State Transfer) architectural

style. The architecture of Urban IoT includes also servers for data, gateways and IoT

nodes which are the actual devices of network collecting the data. [50]

Multiple projects are running at European Union, which aim to build IoT-based frame-

works for Smart City concept, including SmartSantander [39] and RERUM [34].

SmartSantander project aims to build a platform which can be used to perform IoT ex-

periments with Smart City services. Services are provided with thousands of sensors

installed mainly in the city of Santander in Spain. The platform is based on multi-tier

architecture including IoT device tier, gateway tier and server tier. [44] RERUM project

focuses on building IoT-based framework which enhances reliability, security and pri-

vacy of Smart City applications. Smart City applications can have several security

threats including the loss of measurement reliability, interference and denial of service,

eavesdropping and data falsification. Technologies like secure self-configuration, repu-

tation management framework and cryptographic mechanisms are going to be devel-

oped at RERUM project to overcome the security issues. [45]

Security of Smart City is also addressed at [47]. The research presents an approach

called HiSPO for analysing threads and improving data security. It calculates thread

factors for Smart City system describing its robustness against cyber-attacks. HiSPO

approach starts by identifying threats from several areas including network, host, appli-

9

cation, security policy, operational security and attack patterns. Data from public and

commercial threat analysis systems is also used. Next, a threat model is created based

on identified threads, and risk levels are defined. Finally, thread factors are calculated

based on the data gathered from previous steps. Factors are presented in a threat report

including vulnerability assessment, which gives a comprehensive state of the security of

the system. However, the research states also that information security is not only a

matter of technology but it needs good policies and effective business operations as

well. [47]

Even though a lot of effort is put to IoT-based frameworks, there are also application-

specific platforms for Smart City concept. For example, Takahashi et al have developed

a platform called Scallop4SC (SCALable LOgging Platform for Smart City) for storing

and processing data from households [43]. Scallop4SC manages two types of data in-

cluding house log and house configuration. House log is the data collected from the

devices and sensors of the house whereas house configuration is metadata including the

list of the houses at Smart City and household compositions. Data is accessed through

Web Services based API (Application Programming Interface). [43] Later Yamamoto et

al introduced a materialized view for Scallop4SC which caches the application-specific

data thus reducing the queries to raw data of the houses. However, a lot of experience

was required from the developer in order to create Materialized views. [49] Therefore,

Yamamoto et al encapsulated application-specific materialized views by means of cloud

computing. They introduced an abstract cloud service called MVaaS (Materialized

View as a Service). Instead of using application-specific materialized views, MVaaS

creates application-specific views dynamically. Furthermore, the developer does not

need to have the knowledge about the used technologies. [49]

Smart City services are based on huge amount of data which is mainly collected with

sensors. Data can also be collected with participatory sensing meaning that people are

collecting the data with for example their mobile devices [42]. Szabo et al. developed a

framework based participatory sensing, which uses publish-subscribe service of XMPP

(Extensible Messaging and Presence Protocol). The framework contains three different

roles including Producer, Consumer and Service Provider. Producers are the infor-

mation sources publishing raw data to data nodes. Service Provider is an entity, which

turns the raw data into something more meaningful and publishes it to the data nodes.

Finally, consumers can get access to the data by subscribing the nodes. The data is col-

lected by means of participatory sensing with mobile devices thus making people Pro-

ducers at this framework. [42]

10

2.4 Arrowhead Project

Arrowhead Project aims to develop a technical framework to enable a cooperative au-

tomation by networked devices. It is funded by ARTEMIS Industry Association. The

project is a response to ARTEMIS-JU Call 2012 and it is running from March 2013

until February 2017. The project is really broad including almost 80 project partners.

[11]

The main goal of Arrowhead Project is to enable a collaborative automation by net-

worked embedded devices. The devices form a network called Arrowhead Network,

which is based on SOA [10]. Services are offered by devices and systems at the net-

work. Collaborative automation is achieved by combining the services. One of the key

features of Service-Oriented approach is loose coupling, which enables the interaction

of systems without any physical connections. Moreover, SOA should make it possible

that anyone can design systems or devices with any technology and connect them to the

Arrowhead Network. Furthermore, the project aims to enable the integration of Legacy

Systems to the network with proper adapter technology. [10] At Arrowhead, Legacy

System is a system that does not provide any services to Arrowhead Network [22].

Since collaborative automation is enabled with services of the systems, an adapter com-

ponent is needed to offer the services.

Interoperability principle of SOA states that it should be possible to implement services

and service consumers with any technology. However, it makes the documentation of

services more difficult which can risk the reusability of services [16]. According to [16],

unified approach leads to higher level of interoperability and helps to utilize the ad-

vantages of SOA. Therefore, there is a need for a technical framework to give common

guidelines for the developers so that anyone can develop systems for Arrowhead Net-

work.

The framework developed during the project is called Arrowhead Framework. It pro-

vides design patterns and guidelines for designing SOA-based Arrowhead compliant

systems. In addition, a software framework consisting of a set of Core Services is

available at the framework. Core Services are needed for supporting the interaction be-

tween the services at the network. They are offered by Core Systems thus providing the

basic functionality, Core Functionality, to every device at the network. Furthermore,

Arrowhead Framework provides documentation templates in order to give common

approach to document the systems. Finally, the framework includes a set of principles to

address technical property requirements, conformity requirements and a set of tools for

conformity test and verification. Since Arrowhead Framework is rather complex, it in-

cludes also an Arrowhead Cookbook, which gives instructions how to use the frame-

work. [10] [16]

11

Arrowhead Project targets Arrowhead Framework to five domains including Produc-

tion, Smart Buildings and Infrastructures, Electro-Mobility, Energy Production and

End-User Services, and finally Virtual Market of Energy. Project partners are testing the

framework at the domains by developing pilot applications, which demonstrate the use

of Arrowhead Framework in various use-cases. The applications are developed in three

consecutive phases of development called Pilot Generations. Every domain is covered

with various pilot applications. Production domain includes several applications aiming

to the improvements of efficiency at machine operation and maintenance as well as en-

ergy savings. Moreover, machine monitoring is one of the key targets. Smart Buildings

and Infrastructures domain aims to reduce energy consumption with solutions to urban

environment. These applications are related to Smart City concept. Electro Mobility

domain focuses on offering services for the recharge stations of electric vehicles. Ener-

gy Production and End-User Services domain is targeting to optimise the district heat-

ing systems. Finally, Virtual Market of Energy domain aims to create virtual energy

markets for power plants. Markets are based on energy consumption data that is gath-

ered with devices called Flex Offer. [10] In general, most of the applications are aiming

to the reduction of energy consumption and improvements in efficiency.

The following subsections describe the technical aspects of Arrowhead Framework

more in detail. Core Functionality is covered in section 2.4.1. Next, the security of Ar-

rowhead Network is described in section 2.4.2. Finally, the document model of the

framework is presented in section 2.4.3.

2.4.1 Core Functionality of Arrowhead Network

Arrowhead Framework includes three functional areas called Core Functionality. Core

Functionality provides basic functionality to fulfil the SOA principles and information

security at Arrowhead Network. It consists of three groups called Information Infra-

structure, System Management and Information Assurance. Information Infrastructure

fulfils discoverability and loose coupling principles of SOA. It thus helps to find ser-

vices at Arrowhead Network and to provide the connection to them. It also provides

information about the services. System Management manages late binging and the

composition of the System-of-Systems which means a set of systems communicating to

each other by using the Arrowhead Framework [22]. Finally, Information Assurance

provides secure information exchange. [16] All three functional groups should be host-

ed at every Arrowhead Network [14].

Core Functionality is implemented with a set of software components called Core Sys-

tems. Currently, several Core Systems are identified for Arrowhead Framework. They

are presented in Figure 2.

12

Figure 2. Identified Core Systems [15].

Information Infrastructure is implemented with Service Registry, User System Reposi-

tory and Meta Service Registry. Service Registry manages and stores all services at the

Arrowhead Network. A device can therefore find the requested service by using Service

Registry. User System Registry is proposed to hold unique system identities. Finally,

Meta Service Registry is proposed to be a store for metadata. However, in the current

state of Arrowhead Framework, Meta Service Registry is only conceptual. Information

Assurance is implemented with Authorisation System. It is a store for access rules to

resources within the Arrowhead Network. Authorisation System ensures that only au-

thorised systems can access the services. Finally, System Management is implemented

with Orchestration System, Configuration System and Event Handler. Orchestration

System manages the connection rules of the services and the composition of System-of-

Systems. Configuration System is proposed to store configuration packages for the sys-

tems. The content of the configuration is system-dependent. Finally, Event Handler

stores Event Log and notifies about the events. [15]

13

Since Arrowhead Framework is based on SOA, communication with Core Systems is

based on services called Core Services. Currently, Arrowhead Framework contains sev-

eral identified Core Services, which are presented in Table 1.

Table 1. Identified Core Services [15].

Information Infrastructure Information Assurance System Management

Service Discovery

Service Metadata

Meta-Info Store

Meta-Info Management

User and Role

Organisation and Role

Software Distribution

Application Installation, Set-

up, Startup

Authorisation Control

Authorisation Management

Authentication

Certificate distribution

Security logging

Security Intrusion

Monitoring

Deployment Access

Deployment Access Manage-

ment

Orchestration Management

Orchestration Store

Orchestration Capability

Orchestration Status

Even though Arrowhead Framework has several Core Systems and Core Services iden-

tified, only some of them are available for applications of Pilot Generation 2 because

most of the Core Services are still at conceptual phase. A prototype is provided from

Service Registry, Authorisation System and Orchestration System. Available Core Ser-

vices are Authorisation Control provided by Authorisation Core System, Service Dis-

covery provided by Service Registry and finally Orchestration Store provided by Or-

chestration System. Authorisation Control provides functions for checking if the service

consumer is authorised to use the service. Authorisation is based on X.509 certificates.

Service Discovery provides functions for publishing the services to Service Registry. In

addition, identification data can be requested about the services available at Service

Registry. Finally, Orchestration Store provides functions for reading the current orches-

tration configuration.

Pilot applications developed at Pilot Generation 2 are obligated to use the three Core

System prototypes described above. Moreover, pilot applications should have both ser-

vice provider offering services and service consumer. Service provider should use Au-

thorisation System to authorise the service consumer before the service can be accessed.

Moreover, service provider should be able to publish its services to Service Registry

where service consumer can then discover them. Finally, Orchestration System should

be used to manage orchestration rules. The resulting architecture is presented in Figure

3.

14

Figure 3. Core Systems at Pilot Generation 2 [16].

This presented architecture is the basis of Arrowhead Network. The network includes

Core Systems and a set of application systems offering services to each other. During

Pilot Generation 2, earlier described prototypes of Service Registry, Authorisation Sys-

tem and Orchestration System are hosted at a temporary server to provide the same Core

Functionality to every pilot application. Application system can start using the Core

Systems when connection to the server is established. Services published to Service

Registry can be discovered by any application system within the network. Moreover,

application systems can enable collaborative automation by combining services with

Orchestration System. Finally, Authorisation rules can be configured individually to

every service at the network with Authorisation System. Time spent in development

should reduce because the developer can focus on developing only the application sys-

tems. There is no need to work with the SOA principles or information security because

they are already covered with Core Systems. This proposed architecture of Arrowhead

Network is presented in Figure 4.

15

Figure 4. Arrowhead Network.

2.4.2 Security of Arrowhead Network

At Arrowhead Network, information security is handled with Information Assurance

Core Functionality. Core Services like Authorisation, Authentication, Certificate Distri-

bution, Security Logging and Security Intrusion are identified for Information Assur-

ance. [16] Currently, information security is still under development and these above-

mentioned services are not available yet. Certificates are already used, but they are dis-

tributed manually. TLS (Transfer Layer Protocol) is used to provide a secured connec-

tion to services.

TLS protocol provides communications security between two applications at the net-

work. Secured connection is established at procedure called handshaking which is done

before any data is transmitted. First, the client application connects the server applica-

tion and requests a secure connection. Server proves its identity by sending a digital

certificate to the client. The certificate contains several fields including the name of the

server, public encryption key, which is another half of public-private key pair, and Cer-

tificate Authority. Certificate Authority is in general a trusted entity issuing the certifi-

cates. After the client has received the certificate, it can authenticate the server from the

Certificate Authority that originally issued the certificate. In other words, Certificate

Authority guarantees that the client can trust the server. Next, the client creates a unique

session key, also known as a Master Secret, and encrypts it with the public encryption

key of the certificate. Session key is then sent to the server. The message can be de-

crypted only with the private key matching to the public key. Thus, only the server that

16

originally sent the certificate is able to decrypt the message, since it is the only entity

having the private key. As a result, both client and server know the same session key,

which they can use to encrypt and decrypt the data during the communication. Finally,

the server sends “Finished” message encrypted with just created session key and sends

it to the client. This step ends the handshaking. [36] This kind of security mechanism

based on key-pairs is known in general as Public Key Infrastructure. There is a standard

for the infrastructure called X.509 [37].

Hierarchical structures are common in Public Key Infrastructure. Certificate Authorities

can certify another Certificate Authorities which then issue more certificates lower at

the structure. The result is a chain of certificates one issuing another. When the owner

of a certificate needs to be verified, certificate chain is followed back up during the cer-

tification verification until the certificate issued by root Certificate Authority, a trust

anchor, is reached. This kind of structure is called Chain of Trust. Owner of any certifi-

cate at the chain can be trusted if the certificate chain can be followed back to the trust

anchor. [35]

Arrowhead Network has internal certificate structure and root Certificate Authority

which issues certificates to the project partners. Partners need to have their own certifi-

cates for their service providers. Moreover, the certificates must be chained with the

root certificates. As a result, it can be guaranteed that the systems of the pilot applica-

tions are the part of the Arrowhead Network. When a service is requested from a service

providing system, TLS protocol is used to encrypt the communication between a ser-

vices provider and a service consumer. First, service provider sends its own certificate

to the service consumer. Next, service consumer verifies that the certificate is chained to

Arrowhead root certificates. This guarantees that the service producer can be trusted and

service consumer can create a session key for the communication.

2.4.3 Arrowhead document model

As mentioned earlier, interoperability makes the documenting of SOA-based systems

more difficult thus complicating the reuse of the services. Arrowhead Framework intro-

duces a document model for giving a holistic way to document the developed applica-

tions. The goal of the document model is to give a common approach for documenting

SOA-based systems at Arrowhead Network [16]. The model consists of both abstract

description documents and detailed design description documents divided to three lev-

els. Following document types are included at the framework: SoSD (System-of-

Systems Description), SoSDD (System-of-Systems Design Description), SysD (System

Description), SysDD (System Design Description), SD (Service Description), IDD (In-

terface Design Description), CP (Communication Profile) and SP (Semantic Profile).

There is a template for every document type at the framework. In addition, the project

partners are provided with Arrowhead Cookbook which gives additional help for creat-

ing the documents. [14][16] Since the overall documentation is distributed to multiple

17

documents, referencing is needed between the documents in order to form a clear pic-

ture about overall System-of-Systems. The Arrowhead document model is presented in

Figure 5.

Figure 5. The document model of Arrowhead Framework [16].

At the top of the diagram, there is System-of-Systems level. At Arrowhead Framework,

System-of-Systems is defined as a set of internal systems communicating to each other

by using the Arrowhead Framework. System-of-Systems level is used to describe the

actual pilot applications of Arrowhead Project. Therefore, every pilot application can be

considered as a System-of-Systems. [22]

System-of-Systems level consists of SoSD and SoSDD documents. SoSD document

describes the main functionalities and the architecture of System-of-Systems at abstract

level. The template starts with a use-case section describing the overall behaviour of

System-of-Systems. It is also proposed that behavioural diagrams such as UML (Uni-

fied Modeling Language) Activity Diagram should be used to give more information

about the use-cases. SoSD does not present any technologies of the implementation.

[5][16] Instead, SoSDD document is used to give a detailed technological description

about the main functionalities and the architecture of System-of-Systems. It includes

both software and hardware implementation. The technology description can contain for

example network configuration, domain structure and start-up behaviour. Thus, SoSDD

is considered as a deployment description of System-of-Systems. [6][16]

18

SoSDD document refers to SoSD document in order to connect the technological im-

plementation to abstract description of System-of-Systems. Since System-of-Systems is

the composition of several systems, references to System level documents are needed as

well. Both SoSD and SoSDD documents have references to SysD documents of Sys-

tems which compose the System-of-Systems. In addition, SoSDD refers also to SysDD

document of these systems. [6][16]

Next level at the document model is System level. At Arrowhead Framework, system is

defined as something which provides or consumes services. System is an individual

entity, which can be almost anything, for example a component or a device. System can

include hardware but it can also be only a software component. [22]

System level consists of SysD and SysDD documents. SysD gives general description

about the system at abstract level. The usage of the system is described with UML use-

case diagrams. In addition, UML sequence diagram should be used to give more infor-

mation about the interaction with the system. The main purpose of SysD document is to

introduce all produced or consumed services of the system by referring to the IDD doc-

uments of these services. Similar to SoSD, technical details are not described at the

SysD document. This is why SysD is also called a Black Box design. [7][16]

Whereas SysD document is an abstract description, SysDD document presents the actu-

al technological implementation of the system which is why it is called a White Box

design. SysDD is the only optional document of the document model. By making the

SysDD document optional, partners are able to keep proprietary details of the system as

a secret. SysD document describes the architecture of the system, interface implementa-

tion, access control mechanisms and also used programming languages. [8][16] SysDD

contains a reference to SysD in order to connect the White Box and Black Box designs

each other.

The bottom level of the document model is Service level. At Arrowhead Framework,

service is something that changes information between producing and consuming sys-

tem. Service can be realised by arbitrary number of producers and consumers. [22]

Service level consists of four documents: SD, IDD, SP and CP [16]. The documents are

divided into technology independent and technology dependent documents. Service

level documents are presented in Figure 6.

19

Figure 6. Service level documents [16].

SD document gives an abstract description about a service and its requirements. It

should give engineers enough information about the service so that they can create a

realization of the service producer or the service consumer by using the chosen technol-

ogies. [16]

SD document starts with the overview of the service. It is proposed that an abstract ar-

chitecture description is given at this section with UML diagrams. Next, the interfaces

of the service are presented at abstract level. The section does not have any specific

form, but it is proposed that sequence diagrams are used with the text to give better un-

derstanding about the functionality. SD presents also the information model of the ser-

vice at abstract level. UML Class Diagram and SysML (Systems Modeling Language)

Parametric Diagram are proposed to give more information about the model. Finally,

SD lists the non-functional requirements of the service. For example, response time and

reliability can be typical non-functional requirements. [4][16]

IDD document describes how the service is realized with chosen technologies. The doc-

ument starts with references to all SD documents it implements. This way the actual

implementation is linked to the abstract service description. In addition, IDD includes

references to CP and SP documents as well. Since the same service can be implemented

with different technologies, there can be many IDD documents about the same service.

[2][16]

Whereas SD document contains the abstract description about the interfaces, IDD doc-

ument describes how they are actually implemented. Every interface and function

should be described in separate subsections in detail. It is proposed to use UML Se-

quence Diagrams or Activity Diagrams to give better understanding how functions are

20

used. In addition, a table form is available for describing the functions, their inputs, out-

puts and methods. Finally, IDD describes the information model of the service. [2][14]

CP document describes the technologies and standards used to build a communication

profile for a service. CP document starts with an overview section giving an introduc-

tion to the technologies and specifications of the profile. Communication profile con-

sists of transfer protocol, security mechanism and data format. The overview section

presents also the unique name of the profile which is the combination of the used tech-

nologies. Therefore, the name of the profile can be for example CoAP-TLS-XML (Ex-

tensible Markup Language). The next section of the document describes how to imple-

ment different message exchange patterns by using the chosen transfer protocol. Typical

message exchange patterns are Request-Response, One-to-Many and Publish-Subscribe

patterns. Every supported pattern is described in own subsection. This is followed by

the security section. It describes how the chosen security mechanism handles security

issues. The fourth section of the CP document presents the endpoint of the service. The

endpoint is presented in a table format although the content of the table might vary due

the differences in protocols. Finally, the chosen data format is described at the next sec-

tion. It is proposed that an example of the data format should be given. Specifications

and standards used to build the profile are listed to the end of the document. [1][16]

The final document at Service level is SP document. It presents the encoding of data.

The document starts with description of technologies and specifications that are used to

build the Semantic Profile. Technologies of choice can be for example XML and JSON

(JavaScript Object Notation). The next section presents the encoding of data format. It

is proposed to provide examples about the data format. Finally, SP document contains

references to standards and demarcations used to build the Semantic Profile. [3][16]

21

3. METHODOLOGY

This chapter describes the technologies used in development of pilot applications. The

applications consist of several software components connected to Arrowhead Network

as well as separate web applications providing graphical user interfaces. In addition,

pilot applications include hardware devices. Nevertheless, this chapter does not cover

hardware design because the hardware is designed by project partners.

First part of this chapter describes the role of Arrowhead Framework at the develop-

ment. First, it is described how Core Services are used at the pilot applications. Next,

Arrowhead Management Tool is presented. It is a monitoring and managing application

for Core Systems. After this, the development of the services is described. Services are

based on REST architectural style. Finally, an overview of using Arrowhead document

model is given.

The next part of this chapter introduces the technologies used in web applications. The

applications were developed with Bootstrap framework version 3.3.4 and jQuery ver-

sion 1.11.1. Graphs were created with Morris JS library version 0.5.0. Finally, a tech-

nology called CORS (Cross-Origin Resource Sharing) is presented. It was needed to

enable the AJAX (Asynchronous JavaScript and XML) requests to the services from the

web applications because they were running locally on the computer outside of Arrow-

head Network.

3.1 Using the Arrowhead Framework

This section describes how Arrowhead Framework was used as a part of pilot applica-

tions. The development was done according to the guidelines presented in Arrowhead

Cookbook version 1.5, which is available for project partners. Cookbook introduces a

set of minimum requirements how applications should function with the Core Systems.

Furthermore, it gives instructions for using the document model. [14]

Section 3.1.1 describes the method for using Core Services as a part of the pilot applica-

tions. Section 3.1.2 introduces an Arrowhead Management Tool which is web applica-

tion providing a graphical user interface for Core Systems. Section 3.1.3 discusses ser-

vice development. Finally, section 3.1.4 discusses how Arrowhead document model

was used.

22

3.1.1 Core Services

As mentioned earlier, Arrowhead Framework gives a set of minimum requirements how

a system should function with Core Services at Arrowhead Network. According to [14],

the system should at least use the Service Discovery provided by Service Registry, it

should be able to authorise service consumers with Authorisation System and handle

certificates. Finally, it should be able to support the Orchestration functionality by using

the Service Orchestration. To cover these requirements, Core Services must be included

in the pilot applications.

A plugin was distributed for the project partners. It provides an API for the Core System

prototypes. The prototypes are hosted at a temporary server where all project partners

have an access. With the plugin, partners can use the Core Services at the pilot applica-

tions through API. With this plugin, services can be published to Service Registry and

they can be searched by consuming systems, authorisation can be checked from Author-

isation System and finally orchestration rules can be requested from Orchestration Sys-

tem.

3.1.2 Arrowhead Management Tool

Arrowhead Management Tool is a web application giving a graphical user interface for

the Core Systems. Management tool is needed mostly to manage authorisation and or-

chestration rules, but also to monitor the Core Systems. It consists of three functional

components called Authorisation MMI, Service Repository MMI and Orchestration

MMI. The Component model of Arrowhead Management Tool is presented in Figure 7.

Figure 7. Arrowhead Management Tool components [14].

23

Figure 8. ServiceRegistry tab of Management Tool.

Figure 8 presents the first section of Management Tool. It provides an access to Service

Registry. It shows the list of all service instances published to the Service Registry.

GET-button updates the list. By using this section, a developer can verify that the ser-

vices instances of the pilot application are published correctly to the Service Registry by

searching for them from the list.

The Orchestration section of Management Tool is used to manage the orchestration

rules. The orchestration section is presented in Figure 9.

Figure 9. Orchestration tab of Management Tool.

24

Managing the orchestrations rules with Orchestration tab is straightforward. First, the

name of the system is either selected from the dropdown list or typed manually to the

field under the list. Similarly, the configuration is chosen from the list or a new configu-

ration is defined by typing its name to the field under the dropdown list. Next, a user

can define orchestration rules by choosing the services to consume by adding a tag to

the box at the end of the service description. The configuration is then saved with Store-

button. If the application has multiple configurations, one of them can be activated by

tagging the Active-box. When the application with corresponding system name is start-

ed, it fetches the configuration from Orchestration System.

Authorisation tab provides a graphical interface for Authorisation System. It is used to

define the authorisation rules for the services. Authorisation tab is presented in Figure

10.

Figure 10. Authorisation tab of Management Tool.

Since Arrowhead uses X.509 certificates, authorisation rules are based on allowing sys-

tems with certain certificates to consume the services. CN (Common Name) field of the

certificate is used as an authorisation rule. A system with authorised CN at its certificate

is authorised to use the service. Authorisation rules can be defined for individual ser-

vices or for every service with chosen type by using an asterisk. For example, it can be

seen from the figure that all consumers having a certificate with

rh100.test.bnearit.arrowhead.eu as a CN field are authorised to consume all services

with type _light-ws-https_.tcp.

25

The next section of Management Tool is used to inspect log files. Log includes infor-

mation about the events at Core Service. The final section of Management Tool is Cer-

tificate Management. The user can read the content of different certificates from this

tab. In addition, it is possible to save new certificates and to import existing certificates.

Neither of the tabs was used during the development of pilot applications.

3.1.3 Service development

Pilot applications described in this thesis use REST architectural style in services thus

making them RESTful Web Services. In this architectural style, data and functionality

are considered as resources and they are identified with URI (Uniform Resource Identi-

fier). Resources can be accessed with HTTP (Hypertext Transfer Protocol) methods

including GET, POST, PUT and DELETE. [32] Therefore, the message exchange with

services is done by requesting different URIs with HTTP methods.

Services comply with request-response pattern. Interfaces were designed to support

HTTP GET for requesting data and HTTP POST for modifying data or commanding

devices. PUT and DELETE methods were not used. Service providers return the re-

quested data in HTTP response entity bodies in JSON format. HTTP status codes were

used to give more information to the consumer. In general, status code 200 (Ok) was

used with successful request whereas code 500 (Internal Server Error) was used as a

general code in most error situations. Additionally, code 403 (Forbidden) was used

when service consumer was not authorised to use the service. Finally, 400 (Bad Re-

quest) was used to prevent the service consumer from sending unsupported input data.

3.1.4 Document model

Arrowhead Document Model was used to document the pilot applications. SD and IDD

documents were created to describe every service of the pilot applications. SP docu-

ments were also created to describe the semantic profiles of the services. SysD docu-

ments were created to describe Engine Block Heater Controller, Light Controller, Light

Managing System and Controller System. These systems are presented later in this the-

sis at Chapter 4. One SoSD document was created to describe Urban Management Sys-

tem which is later presented at subsection 4.3. SysDD document was not created since it

is not a mandatory document. SoSDD and CP documents were left out because they

included several sections which were not possible to fill yet. Documents are not pre-

sented in this thesis due their long length.

Some challenges were faced with the documents. First, it turned out that it is really

time-consuming to create them. Moreover, changes to one document caused sometimes

changes to other documents as well. Finally, even though Arrowhead Framework in-

cludes a template for every document type, it was still quite difficult to understand how

the documents should be filled.

26

3.2 Web applications

This section describes the technologies used to develop the web applications. Web ap-

plications provide a graphical user interface for the pilot applications. Technologies

used in the web applications are Bootstrap framework version 3.3.4, jQuery version

1.11.1 and Morris JS version 0.5.0. In addition, CORS technology was also needed

since the web applications were running at different domain than Arrowhead Network.

Chosen technologies are presented in following subsections.

3.2.1 Bootstrap framework

Bootstrap is HTML, CSS and JavaScript framework for developing responsive web

applications. It was originally developed by a designer of Twitter. Bootstrap framework

has been designed especially for mobile devices. Being responsive means that the com-

ponents at web application can scale automatically based on the size of the display.

Bootstrap is also open source giving the users a possibility to customize it freely. [17]

Bootstrap offers a set of visualisation components for web applications. Adding the

components to the application is simple. In most cases the developer can just copy the

ready-made source code from Bootstrap web page and add it to the HTML document.

Moreover, some of the components have built-in functionality what reduces the amount

of JavaScript code needed. Bootstrap is documented well and the user is supported with

numerous examples. This makes the learning curve rather small. Bootstrap version 3.3.4

was used at the web applications.

3.2.2 jQuery

jQuery is a JavaScript library, which makes the writing of JavaScript programs easier. It

is mainly used to manipulate the DOM (Document Object Model) tree of the HTML

document and to perform AJAX requests. [28] Especially the support for AJAX re-

quests makes jQuery an essential part of developed web applications because the re-

sources of RESTful Web Service can be accessed with it. Another asset of jQuery is the

way it handles JSON format. JSON data does not need to be parsed but the fields can be

accessed instantly just by using the identifier names.

jQuery is not trouble-free. The biggest problem is that manipulating the DOM tree is

time consuming. Especially large applications might cause a burden to the developer

due the size of the DOM tree. Nevertheless, jQuery is quite fast to learn and applica-

tions developed at this project were rather simple what supports the decision that jQuery

was chosen. Version 1.11.1 was used at the web applications.

27

3.2.3 Morris JS

Morris is a JavaScript library for drawing charts. It supports multiple chart types includ-

ing line charts, bar charts, area charts and donut charts. In addition, charts can be con-

figured to scale their size automatically. The library includes a user-friendly API mak-

ing it easy to use. [40]

Since the web applications are a monitoring and management application, graphical data

presentation is a descriptive way to present the data. Automatic scaling is a useful fea-

ture for presenting the data, which is why Morris JS library was chosen. Version 0.5.0

was used at the web applications.

3.2.4 Cross-Origin Resource Sharing

Web applications have a policy called Same-Origin which prevents the applications

from using the resources from another domain. Moreover, it also limits HTTP requests

to other domains. [21] Since web applications were running locally at the computer

whereas the rest of the components were at Arrowhead Network, the domains were dif-

ferent. Therefore, it was not possible to perform AJAX requests to the services from the

web applications without bypassing Same-Origin policy.

CORS is a mechanism that allows the access to resources at other domains. It is based

on HTTP headers. CORS is enabled from the server side by adding a header Access-

Control-Allow-Origin to the HTTP response. The value of the header defines the origin

domains accepted by the server. The value can be either the name of a specific domain

or it can be an asterisk, which makes the resource available for every domain. CORS

includes a set of additional headers as well but it is not mandatory to use them. [21]

After CORS was enabled, web applications were able to use the services within Arrow-

head Network. CORS was enabled by adding Access-Control-Allow-Origin header to

the HTTP responses, which were sent by service providers.

28

4. IMPLEMENTATION

This chapter describes the pilot applications developed for the Arrowhead Project at

FAST-lab Tampere University of Technology. They were targeted to Smart Buildings

and Infrastructure domain. Two pilot applications were deployed. Deployment included

the installation of hardware devices to the university and software development. Fur-

thermore, third application was developed by reusing the components from the first two

applications.

Pilot applications demonstrate how Arrowhead Framework can be used to develop

Smart City applications. The first application is Light Management Tool used for moni-

toring and managing street lights. It was developed in cooperation with C2 SmartLight

Oy. Lights are controlled with a device called SmartLumo designed especially for con-

trolling the LED (Light-Emitting Diode) luminaires. The second application is called

Engine Block Heater Controller, which is a monitoring and managing tool for engine

block heaters. This application was developed with THT Control Oy. Finally, a third

pilot application called Urban Management System was created by integrating the com-

ponents from the first two applications. At this application, street lights and engine

block heaters are controlled with separate Controller System. Therefore, the functionali-

ty is achieved by using multiple systems in collaborative manner.

Pilot applications are presented in following subsections by describing the hardware

setup, software architecture and the user interfaces. Light Management Tool is de-

scribed at Section 4.1 and Engine Block Heater Controller at Section 4.2. Next, Urban

Management System is presented at Section 4.3. Finally, a discussion is given at Sec-

tion 4.4.

4.1 Light Management Tool pilot application

Light Management Tool is a management and monitoring tool designed for mainte-

nance personnel. It demonstrates how street lights could be controlled by using Arrow-

head Framework. The application is developed in cooperation with C2 SmartLight Oy.

The application consists of a smart light controller called SmartLumo developed by C2

SmartLight Oy. It is used to control the LED luminaires. SmartLumo is not Arrowhead

compliant and thus it cannot offer services to other devices at Arrowhead Network.

Therefore, an adapter component called Light Controller was used to offers services to

the network. Since the application is a demonstration rather than commercial applica-

tion, the setup includes only one SmartLumo and a luminaire. Therefore, Light Control-

29

ler was designed to provide also a simulated version of SmartLumo to simulate bigger

amount of luminaires. Next, a composing software component called Light Manage-

ment was developed. It consumes a set of Light Controllers and thus provides an API

for accessing multiple SmartLumos. Since Light Management is a software component,

it was possible to connect it to Arrowhead Network without adapters. Finally, a web

application was developed to provide a graphical user interface for the application.

The implementation is presented at following subsections. Subsection 4.1.1 describes

the hardware setup, Subsection 4.1.2 presents the software architecture and finally Sub-

section 4.1.3 presents the user interface.

4.1.1 Hardware setup

This section describes the hardware used at the implementation. Since the pilot applica-

tion is a project demo rather than a commercial application, hardware needed to be suit-

able for demo purposes. Therefore, a small LED luminaire was chosen instead of actual

street lights. Following hardware was used:

 C2 SmartLumo

 Motion sensor

 Hidealite 1202 Multi

 Hidealite Jolly Pro

C2 SmartLumo is an intelligent light controller unit used for controlling LED lumi-

naires. It is designed specifically for the needs of industry, street lights, parking lots and

parks. It has multiple controlling options including schedule-based control and sensor-

based control with assistance of motion detectors. SmartLumo can be operated as a

stand-alone controller or as a part of distributed control solution with multiple

SmartLumos. Communication between the controllers is done wirelessly with ZigBee

thus reduces the wiring in implementations. SmartLumo offers 0–10V control voltage

for controlling the luminaires. The output is based on the configurations of the device:

Output values can change based on time periods of the day or the sensor input. [18]

In this implementation, one C2 SmartLumo was used in two different modes, which are

manual mode and scheduled mode. In manual mode, the output signal of the controller

can be manually set to a certain level. In scheduled mode, the output signal is set based

on a dimming profile and motion detection. The profile was defined so that in normal

state the output is rather low, approximately 1V, but when motion is detected,

SmartLumo sets the output to a certain level based on the time of the day. After approx-

imately 10s the output level decreases to 50% and finally after 20s the output reverts

back to 1V. To enable this behaviour, a motion sensor was required. This setup includes

a motion sensor connected to secondary C2 SmartLumo. When motion is detected, this

controller sends control commands to the primary SmartLumo, which then sets the out-

put to the requested level.

30

Figure 11. Hardware setup of Light Management Tool.

Figure 11 presents the setup used at Light Management Tool. Secondary SmartLumo is

left out from the figure. The setup includes SmartLumo, 1202 Multi LED luminaire and

Jolly Pro driver. Jolly Pro is a driver for LED luminaires with a built-in dimmer func-

tion. It can operate luminaires with both constant voltage and constant current. The de-

vice provides various ways for regulating the dimming including 1–10V voltage signal,

a potentiometer and a push button. [25] In this setup, Jolly Pro was used to regulate

Hidealite 1202 Multi, which is a 3.5W LED luminaire with a constant current of 350mA

[24]. Jolly Pro was connected to the output of SmartLumo. Dimming was thus con-

trolled with 1–10V voltage received from SmartLumo.

31

4.1.2 Software architecture

This section describes the software architecture of Light Management Tool. The soft-

ware architecture consists of three systems including Light Controller, Light Manage-

ment and User Interface. The setup includes also Arrowhead Core Systems, which are

running at temporary server at Arrowhead Network. Software architecture is presented

in Figure 12.

Figure 12. Software architecture of Light Management Tool.

Light Controller is an adapter component, which connects SmartLumo to Arrowhead

Network. Adapter component is needed because SmartLumo is not Arrowhead compli-

ant by itself. Instead, SmartLumo is operated in Arrowhead Network through the REST-

ful interface provided by Light Controller. The communication between Light Control-

ler and SmartLumo is enabled with SSH (Secure Shell).

Light Controller publishes its endpoint to Service Registry. Therefore, it can be discov-

ered and consumed by other devices at the network. Light Controller uses also Authori-

sation System to verify that the consumer is authorised to use its services. Authorisation

rules can be set for the Light Controller by using the Authorisation System via Arrow-

head Management Tool. Light Controller does not use Orchestration System since it

does not need to consume anything. RESTful interface of Light Controller is presented

in Table 2.

32

Table 2. Interface of Light Controller.

Function URL Method parameters Output

Get status. /status GET - {

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}

Set output. /output POST query parameter:

level = [0..100]

{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}

Set operating

mode.

/settings POST query parameter:

mode =

{ Simulated | Manual }

{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}

The interface of Light Controller offers functions for reading the current status of C2

SmartLumo with HTTP GET request. In addition, Light Controller offers a function for

changing the operating mode between simulated and manual mode. Finally, the output

can be set to certain percentage level if SmartLumo is in manual mode. Changes are

made with HTTP POST request and new data is passed to the Light Controller with

query parameters.

Errors are managed with HTTP status codes. If request is done with an incorrect value,

Light Controller responds with an HTTP response containing a status code 400 (Bad

Request). If Light Controller encounters problems with SSH connection, it responds

with status code 500 (Internal Server Error). Finally, if the consumer is not authorised to

use the services, Light Controller responds with status code 403 (Forbidden).

As can be seen from the table, same form is used in every JSON message that is re-

ceived from the Light Controller. The message includes the name of the device, output

value, the time of request and the current operating mode. An example message is pre-

sented below.

{

"name": "lumo10",

"value": 26,

"timestamp": "2015-08-11 13:25:53",

"mode": "Scheduled"

}

33

The example JSON message states that the output of lumo10 is 26% of the maximum

output. In addition, SmartLumo is at scheduled mode. Timestamp shows the time of

request.

The next component in the software architecture is Light Management. It is a compos-

ing software component providing a RESTful interface for operating a set of Light Con-

trollers. Light Controllers must be consumed in order to use their interfaces. Light Man-

agement uses Service Registry to discover the Light Controllers. Furthermore, Orches-

tration System is used because Light Management might consume numerous Light Con-

trollers at the same time and there is a need for multiple setups. Light Management can

easily change the set of consumed Light Controllers by fetching new orchestration rules

from Orchestration System. In commercial application, orchestration rules could be

used to change for example the street section. Finally, Authorisation System is used to

verify that the consumer is authorised to use the services of Light Management. The

interface of Light Management is presented in Table 3.

Table 3. Interface of Light Management.

Function URL Method Parameters Output

Get the name of

every consumed

Light Controller.

/devices GET - {

“devices” : [String]

}

Get status of

every consumed

Light Controller.

/status GET - {

"allReadings" :

[{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}]

}

Get status of

one specific

Light Controller.

/status/<device> GET Path parameter:

<device>

{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}

Set the output to

every consumed

Light Controller,

which are in

manual mode.

/output POST query parameter:

level = [0..100]

{

“modified” :

[{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}] }

34

Set the output to

one specific

Light Controller.

/output/<device> POST Path parameter:

<device>

query parameter:

level = [0..100]

{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}

Set the mode to

every consumed

Light Controller.

/settings POST query parameter:

mode = { Simulated

| Manual }

{

“modified” :

[{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}]

}

Set the mode of

one specific

Light Controller.

/settings/<devic

e>

POST Path parameter:

<device>

query parameter:

mode = { Simulated

| Manual }

{

“name” : String,

“output” : Integer,

“timestamp” : String,

“mode” : String

}

The interface offers basically the same functionality as the interface of Light Controller

but there are functions to operate multiple Light Controllers together as well. In order to

use the interface, at least one Light Controller must be consumed. The interface offers a

function to get the list of consumed Light Controllers in an array. An example response

message is given below.

{

“devices” : [“lumo10”, “lumo11”]

}

In this case, two devices, lumo10 and lumo11, are consumed. Light Management can

now be used to request their services. Light Management can operate both devices at the

same time, or requests can be targeted to one device at the time. The target device is

defined at URI. The data formats of Light Management are based on the data format of

Light Controller. If only one Light Controller is accessed, the JSON message received

from Light Controller is simply resent from Light Management. When multiple Light

Controllers are accessed at the same time, Light Management combines every received

JSON message to an array. The array is named with distinctive identifier. For example,

if status is request from multiple devices, the identifier is “allReadings”. If control

commands are sent to multiple devices, the identifier is “modified”. This way a user can

instantly see the type of response. An example JSON message is given at the next page.

The example presents a message received after the operating mode of both devices, lu-

mo10 and lumo11, is changed to Manual.

35

{

“modified”:

[{

"name": "lumo10",

"value": 26,

"timestamp": "2015-08-11 13:25:53",

"mode": "Manual"

} , {

"name": "lumo11",

"value": 26,

"timestamp": "2015-08-11 13:25:53",

"mode": "Manual"

}]

Similar to Light Controller, HTTP GET methods are used to request the data and HTTP

POST are used to do the modifications. New data is sent with query parameters. Errors

are managed with HTTP status codes. If Light Management tries to access a Light Con-

troller which is not consumed, the interface responds with status code 404 (Not Found).

Incorrect parameters are not handled at Light Management because that error handling

is already implemented to the Light Controller, which sends HTTP response with status

code 400 (Bad Request). The response is then received by Light Management, which

forwards the same error message to the user. In case of possible internal errors at Light

Management, HTTP status code 500 (Internal Server Error) is used. Finally, Light Man-

agement responds with HTTP status code 403 (Forbidden), if the consumer is not au-

thorised to use its services.

Final Component of the software architecture is User Interface. User Interface offers a

RESTful interface with the same functionality as Light Management but it adds CORS

headers to the HTTP responses. Since the web application is running at different do-

main, CORS is needed enable the AJAX requests to the services at Arrowhead Net-

work.

Since User Interface is only needed to enable the AJAX requests from the web applica-

tion, there is no need to publish it to Service Registry. Although. User Interface uses the

Service Registry to find the endpoint of Light Management, which it needs to consume.

When data is requested from the User Interface, it forwards the request to Light Man-

agement. When Light Management replies with HTTP response, User Interface adds

CORS headers to the response and resends the response to web application.

36

4.1.3 User interface

This section describes the user interface of Light Management Tool. It is a web applica-

tion providing a graphical user interface for managing and monitoring Light Control-

lers. The application requests data with AJAX requests from user interface software

component as presented in 4.1.2. The user interface is based on polling meaning that

new data is requested after constant intervals. In this implementation, the user interface

was used on a PC with Mozilla Firefox version 38.3.0. The user interface is presented in

Figure 13.

Figure 13. User Interface of Light Management Tool.

The user interface can be divided into two sections. At the top, there is a status field

informing the user about the status of the connection. “Connection OK” means that the

polling sequence is running normally. In case of error, the text changes into “Connec-

tion Down” and the polling stops. The top section has also a set of buttons. The buttons

are described in a list below.

 Connect: Establish connection.

 Open All: Expands every Light Controller panel.

 Close All: Collapses every Light Controller panel.

 Scheduled Mode: Sets every Light Controller to scheduled mode.

 Manual Mode: Sets every Light Controller to manual mode.

 Set: Sets a new dimming value for every device, which is in manual mode.

The first push button is used to establish a connection. The next two buttons are used to

manipulate the view. They expand and collapse the fields containing the information of

individual Light Controllers. This feature helps to inspect quickly the status of every

Light Controller. The next two buttons changes the operating mode of every consumed

37

Light Controller. This feature is useful if large numbers of devices are consumed. Final-

ly, an input field is used for setting the dimming level for every Light Controller.

The second section displays consumed Light Controllers in separate panels. The panel

consists of the header and the body. The header has a text field showing the name of the

device whereas the body has device-specific controllers and displays. The body has a

text field showing the current output level of Light Controller. Finally, there is a

timestamp describing the time when the value was changed.

There are two buttons under the text field for changing the operating mode of the de-

vice. The button representing the current mode is highlighted. When the mode is set to

manual, a new input field appears to the body. This field is used to manually set the

output level of the device. When the device is set back to scheduled mode, the input

field disappears.

Every consumed Light Controller has its own panel. The user interface is dynamical

meaning that if the number of consumed Light Controllers changes during the runtime,

the user interface adds and deletes panels automatically during the next polling interval.

This can happen if for example orchestration rules are changed.

4.2 Engine Block Heater Controller pilot application

The second pilot application is called Engine Block Heater Controller. It demonstrates

how Arrowhead Framework could be used to manage and monitor engine block heaters.

The heater is developed by THT Control Oy who is also the main partner at this imple-

mentation. Since the application is a demonstration, the setup includes only one engine

block heater. The heater is not originally Arrowhead compliant, so it is connected to

Arrowhead Network with an adapter component. Finally, the implementation includes a

web application providing a graphical user interface for the application.

Engine Block Heater Controller is described at following subsections. Hardware setup

is described at Section 4.2.1, the software architecture is introduced at Section 4.2.2 and

finally Section 4.2.3 describes the user interface.

4.2.1 Hardware setup

The hardware setup of the implementation consists of one engine block heater only. It

was installed in parking area at Tampere University of Technology for this pilot appli-

cation. Engine block heater is a car heating post developed by THT Control Oy. There

are a few variations of the heater available providing a different number of power sock-

ets. The heater includes also an LED luminaire to help the user to find the power sock-

ets at dark. In addition, the LED has also a blinking function, which helps the user to

identify the heater from a parking area. Engine Block Heater is presented in Figure 14.

38

Figure 14. Engine block heater.

The heater offers a set of intelligent features including a heating time, which changes

based on the temperature. This feature makes sure that a car is not heated longer than

necessary and energy is not wasted to unnecessary heating. Additionally, the heater pro-

vides many kinds of statistics that can be requested from the heater such as the number

of the heat events and the total energy consumption of the day. Communication with the

heater is based on HTTP requests to THT server.

A set of engine block heaters forms a zone. One of the heaters at zone, known as a

Gateway, manages all data transmission between the zone and the THT server. Other

heaters at the zone are only slaves and thus they cannot connect directly to the THT

server. Instead, heaters within the zone can communicate with the gateway wirelessly

which then sends the data to the THT server.

4.2.2 Software architecture

This section describes the software architecture of Engine Block Heater Controller pilot

application. The architecture consists of two main components called Engine Block

Heater Controller and User Interface. Furthermore, Arrowhead Core Systems are in-

cluded to the architecture same way as in Light Management Tool. They are running at

a temporary server and can be accessed through API. The architecture is presented in

Figure 15.

39

Figure 15. Software architecture of Engine Block Heater Controller.

Since the engine block heater is not Arrowhead compliant, it cannot be connected di-

rectly to Arrowhead Network. Therefore, an adapter component is needed. Engine

Block Heater Controller is designed for this purpose. It provides a RESTful interface for

the engine block heater. The heater is accessed from Engine Block Heater Controller

with HTTP requests, which are sent to THT server. This way the heater can be operated

from Arrowhead Network.

Engine Block Heater Controller uses Authorisation System and Service Registry Core

Systems. Authorisation System is used to verify that the consumer is authorised to use

the services of Engine Block Heater Controller. Furthermore, Service Registry is used

to publish the endpoint of Engine Block Heater Controller thus making it discoverable

for other systems at Arrowhead Network. Orchestration System is not needed at this

implementation because the setup includes only one heater. Thus, there is no need for

orchestration.

As described in previous subsection, a set of heaters forms a zone. Moreover, the zone

has one heater called Gateway, which manages all data transmission between the zone

and the THT Server. Even though the implementation includes only one heater, Engine

Block Heater Controller was designed so that the whole zone can be accessed through

the same interface. The RESTful interface of Engine Block Heater Controller is pre-

sented in Table 4.

40

Table 4. Interface of Engine Block Heater Controller.

Function URL Method Parameters Output

Request

data from

zone.

/zone GET query parameter:

attr = { Temperature | Light |

Current |

OutputOn |

TodayHeatEvent |

TodayOnMinutes |

TodayEnergy |

YesterdayHeatEvents | Yester-

dayOnMinutes | YesterdayEnergy

}

{

“attr” : String,

“value” : String,

}

Send data

to zone.

/zone POST query parameters:

attr = { Temperature | Light }

value = [-50…50] or [0 | 1]

{

“attr” : String,

“value” : String,

}

Request

data from

pole.

/zone/<pole

>

GET Path parameter:

<pole>

query parameter:

attr = { Current |

OutputOn | TodayHeatEvent |

TodayOnMinutes |

TodayEnergy | Yester-

dayHeatEvents | Yester-

dayOnMinutes | YesterdayEnergy

}

{

“attr” : String,

“value” : String,

}

Send data

to pole.

/zone/<pole

>

POST Path parameter:

<pole>

query parameters:

attr = Blink

value = [0 | 1]

-

Request

data from

socket.

/zone/<pole

>/<socket>

GET Path parameter:

<pole>

<socket>

query parameter:

attr = { Current | ManualMinutes |

ManualOn | MinutesUntilReady |

TodayEnergy |

TodayHeatEvent |

TodayOnMinutes |

YesterdayHeatEvents | Yester-

dayOnMinutes | YesterdayEnergy

|

OutputOn |

HeatMinutes }

With Current:

{

“current” : String,

“timestamp” :

String,

}

With others:

{

“attr” : String,

“value” : String,

}

41

Send data

to socket.

/zone/<pole

>/<socket>

POST Path parameter:

<pole>

<socket>

query parameters:

attr = OutputOn

value = [0 | 1]

{

“attr” : String,

“value” : String,

}

Since the zone can consist of several heaters with a different number of power sockets,

the interface needs to be hierarchical enough to provide an access to every possible

combination. The solution is to use path parameters. The interface is designed so that

the user can define the target heater and target socket to URI. This way every possible

socket can be accessed. Furthermore, the user can also request combined data from eve-

ry heater at the zone or every socket at the heater. The interface is thus offering services

at three levels including socket, heater and zone. The heater is called pole at the table.

Different attributes of the engine block heater are accessed by defining the target attrib-

ute with a query parameter. This way the interface is kept relatively simple even though

there are many attributes available. The interface is designed so that data is requested

with HTTP GET request and modifications are done with HTTP POST request. Query

parameters define the requested attribute and the data to be sent.

Socket level offers the most of the functionality by providing many different attributes

to be requested. Data is requested with HTTP GET. Additionally, every socket can be

manually set on and off with HTTP POST request. The value is defined with the query

parameter. Heater level has a function to blink the LED of the heater. Blinking is started

with HTTP POST request. Some of the attributes at socket level can also be requested

from the heater level. When the attribute is requested from the entire heater, the re-

sponse will be the sum of the values combined from every socket at the heater. For ex-

ample, the total energy consumption of the heater can be requested with a single HTTP

GET request. The same logic is implemented to zone level as well. When the energy

consumption is requested from the zone level, the sum of every pole’s energy consump-

tions at the zone is returned. This way the energy consumption of the whole zone can be

requested with a single HTTP GET request. There is also a function for sending data to

the zone level. New temperature can be sent to the zone with HTTP POST request. The

temperature is sent with the query parameter and the value can be -50–50. Moreover,

the same function can be used for setting the LED of every heater on or off. Again, the

query parameter is used to send the value, which is in this case 0 or 1.

Engine Block Heater Controller uses JSON messages to send the data back to the user.

Every function responds with a JSON containing the requested attribute and its value.

An example JSON is given at the next page.

42

{

“attr” : “OutputOn”,

“value” : “1”,

}

The only difference in JSON messages is the response being received when current is

requested from the socket. The response includes a timestamp, which is needed at web

application in order to plot the current. An example is given below.

{

“current” : 0.5,

“timestamp” : "2015-08-11 13:25:53",

}

Engine Block Heater Controller uses HTTP status codes to manage errors. If HTTP

POST request includes an unsupported value, Engine Block Heater Controller responds

with HTTP response containing a status code 400 (Bad Request). If the connection can-

not be established to THT server, the status code 500 (Internal Server Error) is used.

Finally, if the consumer is not authorised to use the services, Engine Block Heater Con-

troller will response with HTTP response containing a status code 403 (Forbidden).

The second component of the software architecture is User Interface. It is very similar

to the User Interface of Light Management Tool. It offers the same interface as Engine

Block Heater Controller but it adds CORS headers to the HTTP responses received

from Engine Block Heater Controller in order to enable AJAX requests. Since the user

interface is a web application running at different domain than Engine Block Heater

Controller, AJAX requests cannot be performed without enabling CORS. User Interface

is not published to Service Registry, but it uses Service Registry to discover the end-

point of Engine Block Heater Controller which it needs to consume.

4.2.3 User interface

This section presents the user interface of Engine Block Heater Controller pilot applica-

tion. It is a web application providing a graphical user interface. It is used to operate and

monitor a single socket of engine block heater which was installed in parking area at

Tampere University of Technology. The application was used on a PC with Mozilla

Firefox version 38.3.0. Similar to Light Management Tool, this user interface is based

on polling. Engine Block Heater Controller needs to be consumed in order to use the

user interface. The User Interface is presented in Figure 16.

43

Figure 16. User Interface of Engine Block Heater Controller.

User Interface has three different main sections. The top section is a management sec-

tion. Similar to Light Management Tool, it contains a simple status field informing the

user about the state of the connection. Moreover, there is a text field giving additional

information about the behaviour of the user interface.

The management section contains also operating buttons. It is notable that since the user

interface is based on polling, the effect of the button cannot be seen before the next poll-

ing interval. That is why the information box is available to inform the user that the

push button worked. Following buttons are included:

 Connect: Establish connection

 Light On/Off: Sets the LED light of the heater on or off.

 Output On/Off: Sets the output of the power socket of the heater on or off.

 Blink: Starts to blink the LED of the heater. Blinking stops automatically.

The left-hand section of user interface is called statistics. It presents status information

about the monitored power socket. The information is updated after every polling inter-

val. The content of the section is described in following list:

44

 Minutes until ready: When heating is started, this section describes the remain-

ing heating minutes.

 Energy consumption: Total energy consumption of the day in Watts.

 Temperature: Current temperature in Celsius.

 Light: The status of the light (On/Off)

 Output: The status of the power socket (On/Off).

 Heat events (today): The number of heating events during the day.

 Heat minutes: The duration of the heating.

The temperature affects the heat minutes so that lower temperature results longer heat-

ing time. Since this implementation does not include a temperature sensor, the tempera-

ture can be set with an input field which is located at the upper section of the user inter-

face.

The right-hand section of user interface includes a graph. The graph plots the current

flow of a power socket when the output is on. The Y-axis presents the current flow

while X-axis presents the timestamps. This way a graphical presentation can be given

about a current flow in a function of time. The graph is updated after every polling in-

terval.

4.3 Integration of pilot applications

Since Arrowhead Network is based on SOA, it should be possible to reuse existing

components in new applications. Moreover, one of the main goals of Arrowhead is to

enable collaborative automation which is achieved by combining services together to

create new functionalities. Therefore, a third pilot application was developed to test the

reusability of the components and to demonstrate collaborative automation. The result-

ing application is called Urban Management System.

The goal was to create System-of-Systems, which can manage multiple urban systems

with centralized control. The application was created by integrating both Light Man-

agement Tool and Engine Block Heater Controller into it. Next, a separate Controller

System was developed. It was designed to send new dimming values to SmartLumos

and to change the heating time of engine block heaters. The control is based on sensor

input received from Temperature-Luminance sensor. Controller System can access the

devices by using the APIs of Light Controller and Engine Block Heater Controller.

Controller System controls SmartLumos as the day gets brighter or darker. This way the

luminaires are actively adjusted to produce only the necessary amount of light. Fur-

thermore, Controller System sends also a new temperature to the engine block heater in

constant intervals. This way the heating time of the heater is always adjusted to the

temperature. In commercial application, this kind of setup could reduce the energy con-

sumption. Since Urban Management System is only a demonstration, it uses the same

45

hardware as described in previous sections. In commercial application, Controller Sys-

tem could control for example every street light and engine block heater of a city.

The sensor input is received from Lux 34 Temperature-Luminance sensor developed by

Produal. It provides a 0–10V voltage signal for temperature and another 0–10V voltage

signal for luminance. The sensor supports the temperature readings from the scale -50°C

to 50°C and luminance reading from the scale 0lux to 10000lux. The sensor is designed

for outdoor usage. [33] It is presented in Figure 17.

Figure 17. Produal Lux 34 light level and temperature transmitter [33].

Lux 34 is not Arrowhead compliant by itself, which means that a software adapter was

needed to connect the sensor to Arrowhead Network. During the development, it was

noticed that there should also be a simulated version of the sensor for demonstration

purposes. Thus, the adapter component was designed to support both real and simulated

version of the sensor. In order to use the simulated sensor, a new web application

providing a graphical user interface was developed for this implementation. Web appli-

cation was again running at different domain outside of Arrowhead Network what

forced to enable CORS at the adapter component. The web application was named as

Sensor Simulator.

The software architecture of Urban Management Tool is introduced at Section 4.3.1.

Sensor Simulator is presented at Section 4.3.2.

46

4.3.1 Software architecture

This section presents the software architecture of Urban Management Tool. The imple-

mentation includes the components from both Light Management Tool and Engine

Block Heater Controller. In addition, an adapter component for Temperature-

Luminance sensor was included, because Lux 34 sensor is not Arrowhead compliant by

itself. The adapter is called TLsensor. Controller System was also added to the architec-

ture. Software architecture is presented in Figure 18. Numbers are used to clarify the

connections between producers and consumers.

Figure 18. Software architecture of integrating implementation.

TLsensor is an adapter component offering a RESTful interface for Lux 34 sensor. It

uses Authorisation System and Service Registry Core Systems. Authorisation System is

used to verify that the consumer is authorised to use the services of TLsensor. Service

Registry is used to publish the endpoint of TLsensor so that other systems at the Arrow-

head Network can later discover it. TLsensor was designed to offer also a simulated

version of Lux 34 sensor, which can be operated with web application called Sensor

Simulator. Sensor Simulator is described later at Section 4.3.2. The RESTful interface

of TLsensor is presented in Table 5.

47

Table 5. Interface of TLsensor.

Function URL Method Parameters Output

Get sensor read-

ing.

/reading GET - {

“name” : String,

“temperature” :

Integer,

“luminance” :

Integer

}

Set temperature. /reading/temperature POST query parameter:

value = [-50..50]

{

“name” : String,

“temperature” :

Integer,

“luminance” :

Integer

}

Set luminance. /reading/luminance POST query parameter:

value = [0..10000]

{

“name” : String,

“temperature” :

Integer,

“luminance” :

Integer

}

Get device set-

tings.

/settings GET - {

“name” : String,

“type” : String

}

Set operating

mode.

/settings POST query parameter:

mode =

{ Simulated |

Real }

{

“name” : String,

“type” : String

}

The interface of TLsensor offers a function for requesting the reading of the sensor with

HTTP GET request. Since TLsensor offers both real and simulated version of Lux 34

sensor, the interface includes also a function for changing the operating mode. The

mode is changed with HTTP POST request by sending a new mode with the query pa-

rameter. There is also a function for reading the current operating mode. When the sen-

sor is operated in simulated mode, its readings can be set manually. Therefore, the inter-

face includes functions for setting the temperature and luminance with HTTP POST

requests. New value is sent with the query parameter. Limits for the temperature and the

luminance are based on the real sensor.

TLsensor uses JSON messages to send the data back to the requester. Both temperature

and luminance values are included in the same message. Name field is used to give a

unique name or ID to the sensor. An example message is given at the next page.

48

{

“name” : “TL10”,

“temperature” : 20,

“luminance” : 6000

}

In this case, the sensor is named TL10, the temperature is 20°C and the luminance is

6000lux. TLsensor uses also another data format describing the current operating mode.

An example is given below.

{

“name” : “TL10”,

“type” : “Manual”

}

HTTP status codes are used to manage error situations. Error handling is similar as in

previous implementations. If the user is using invalid parameters, HTTP response is

returned with a status code 400 (Bad Request). In case of any internal problems, the

status code will be 500 (Internal Server Error). Finally, if the consumer is not authorised

to use TLsensor, HTTP response will contain a status code 403 (Forbidden).

Controller System is another new component at the implementation. As can be seen

from Figure 18, Controller does not provide any services to Arrowhead Network. In-

stead, it only consumes services. Controller System uses Service Registry to find the

endpoints of TLsensor, Engine Block Heater Controller and Light Controller.

Controller polls the sensor reading from TLsensor and uses the sensor data to operate

SmartLumo through Light Controller and engine block heater through Engine Block

Heater Controller. When new temperature is detected, Controller System simply sends it

to the engine block heater through Engine Block Heater Controller. This causes the

heater to change the heating time. Similarly, when Controller System detects new lumi-

nance, it sends a new output level to SmartLumo through the Light Controller. Output

level is based on an algorithm, which scales the luminance linearly to the output level so

that 10000lux luminance results 0% output level whereas 0lux results 100% output lev-

el. Additionally, Controller sets the LED of the Engine Block Heater when the lumi-

nance drops under a certain value. This helps finding the heater from the dark parking

area.

4.3.2 Sensor Simulator

Urban Management Tool includes a graphical user interface called Sensor Simulator for

simulated version of Lux 34 sensor. Sensor Simulator a web application using AJAX

requests to access the services of TLsensor. Similar to user interfaces described at pre-

49

vious implementations, Sensor Simulator was running locally at the computer outside of

Arrowhead Network. For this reason, CORS was needed at TLsensor. Sensor Simulator

was used on a PC with Mozilla Firefox version 38.3.0. Sensor simulator is presented in

Figure 19.

Figure 19. User interface of Sensor Simulator.

The top section includes two push buttons for changing the operating mode of the sen-

sor. Active mode is highlighted when the connection to TLsensor is established. Under

the mode buttons there are input fields for the temperature and the luminance. To be

able to use the fields, TLsensor must be in simulated mode. Supported data ranges are

displayed at the input fields. Under the input fields, there are several push buttons with

predefined temperature and luminance levels. Temperature buttons set the temperature

value to -20°C and 20°C whereas luminance buttons set the luminance value to

1000lux, 3000lux, 6000lux and 10000lux. Buttons are developed to simplify the

demonstration sessions.

4.4 Discussion

Using the Arrowhead Framework during the development had a few challenges. In gen-

eral, the Framework required lots of studying before it was possible to use it. The API

used for accessing the Core Systems seemed quite large and had to be mastered before

developing pilot applications. However, for a skilled developer this should not be too

overwhelming. Arrowhead Cookbook provided important information about the frame-

work, which made the learning faster. Therefore, Cookbook is essential document espe-

cially for a new developer.

50

Some problems were faced with a documentation model. Even though the framework

includes templates for every document type, the documents are not unequivocal. This

can cause too much variety to documents and thus risk the reusability of services. Next,

maintaining and validating the documents needed much effort due the referencing sys-

tem. If document were changed, references had to be changed to multiple documents.

Moreover, it is still unclear how documents will be stored. Electrical documentation

system would support Arrowhead better. The documents would follow more unified

approach if the documenting were done with documentation software. Moreover, it

would be easier to maintain references with the software.

Core Systems were included to every pilot application although Orchestration System

was rarely used due the small size of the applications. Moreover, Orchestration System

had some errors since it seemed that it was not possible to change the orchestration rules

with Arrowhead Management Tool. Service Registry and Authorisation System worked

as expected. RESTful seemed an appropriate technology for developing the services,

since it was easy to document the interfaces and hierarchical structure was useful espe-

cially at Engine Block Heater Controller. The downside of RESTful was the lack of

publish-subscribe communication protocol. This forced to use polling which caused

continual requests to the services. This increased the data traffic and can cause perfor-

mance problems in real commercial applications. It would be more effective to notify

the consumer with events especially when the multiple consumers are accessing the

same service.

The user interfaces of the pilot applications are rather exceptional components since

they were running locally on the computer outside from Arrowhead Network. Normally,

a device should be connected to the Arrowhead Network to consume the services within

the network. Now this was bypassed with CORS technology making it possible to re-

quest the services from other domains. Furthermore, it was not possible to authorise

user interfaces with Authorisation System. This approach cannot be recommended for

real commercial applications due information security reasons. However, Arrowhead

does not give any guidelines for user interfaces yet.

The pilot applications were successful and they showed that Arrowhead have potential

in commercial Smart City applications as well. Light Management Tool could be used

to monitor street lights from the different areas of the city. Orchestration System would

make it easy to change the area to be monitored. Engine Block Heater Controller was

developed with only one engine block heater but a commercial implementation would

include dozens of heaters at multiple parking areas. The application could be used to

monitor every engine block heater at a certain region. Moreover, if Orchestration Sys-

tem was included in the implementation, an operator could swap between the different

areas of the city by using orchestration rules.

51

When Light Management Tool and Engine Block Heater Controller were integrated

together, the devices were controlled with a separate Controller System. Commercial

version of Urban Management Tool could include even more services with centralized

control. The application provided an example about System-of-Systems where request-

ed functionality was achieved with multiple systems using the services in collaborative

manner. Arrowhead approach made the integration relatively easy. However, every

software component was created by the same developer so there was no need to study

the documentation of the systems beforehand. Moreover, same technologies were used

in every component. It is unknown whether it would be more difficult to use the ser-

vices made by other project partners with possibly different technologies.

52

5. CONCLUSION

This master’s thesis presented the recent research topics of Smart City concept. Smart

City aims to improve the use of public resources, increase the quality of services offered

to the citizens and reduce both the energy consumption and operational costs of the pub-

lic administrations. ICT is considered as a key enabler of Smart City concept since most

of the goals are reached with Smart City applications. There are several research papers

proposing technologies and architectural structures to enable Smart City. There are also

projects running at European Union to build technical frameworks for Smart City con-

cept such as SmartSantander and RERUM.

This thesis introduced also Arrowhead Project, which aims to develop an Arrowhead

Framework that enables collaborative automation by networked embedded devices. The

project is running until February 2017. Networked devices form a network called Ar-

rowhead Network. The architecture of the network is based on SOA. Thus, the interac-

tion of devices within the network is based on services and application functionality can

be built by using the services in collaborative manner. Arrowhead Framework includes

a set of Core Systems providing the basic functionality such as information security to

every device at the network. Moreover, they cover the principles of SOA such as dis-

coverability and loose coupling. Currently, a prototype is available from three Core Sys-

tems including Authorisation System, Orchestration System and Service Registry. They

are hosted at Arrowhead Network and their services can be used in applications through

APIs.

Arrowhead Project is targeting several domains including Production, Smart Buildings

and Infrastructures, Electro-Mobility, Energy Production and End-User Services, and

finally Virtual Market of Energy. Project partners are testing Arrowhead Framework

during the project by developing pilot applications which demonstrate the use of Ar-

rowhead Framework in various use-cases. First, two pilot applications were developed

during the Pilot Generation 2 of the project at FAST-lab at Tampere University of

Technology. The applications are Light Management Tool used to manage and monitor

the street lights, and Engine Block Heater Controller used to manage and monitor en-

gine block heaters. Next, a third application called Urban Management System was de-

veloped to control urban systems with a centralized control system. It was created by

integrating the first two pilot applications together. Street lights and engine block heat-

ers were controlled with separate Controller System. The application changed the dim-

ming of street lights based on the luminance level and the heating time of engine block

heaters based on the temperature.

53

The pilot applications demonstrated how Arrowhead Framework could be used to de-

velop Smart City applications. The applications worked well in demonstrations and they

showed potential to commercial applications as well. Furthermore, Urban Management

System showed that it was relatively easy to reuse components from existing systems to

create an application where requested functionality is achieved with collaborative auto-

mation. On the other hand, the integration was easy, because every application was de-

veloped by the same developer and with the same technologies. Some challenges were

faced with document model due its complexity. The framework required also lots of

studying before it was possible to use it. Nevertheless, SOA-based Arrowhead approach

seems suitable technology for building Smart City applications.

5.1 Future work

The work on Arrowhead Project continues at Pilot Generation 3, which is the last phase

of the project. The project will run until February 2017. Arrowhead Framework seems a

promising concept but it still requires lots of work to become a commercial platform.

There are still unfinished things in Arrowhead Framework so it is expected that the

framework will evolve during the rest of the project. For example, most of the Core

Systems are still under development. New prototypes of Core Systems should be devel-

oped soon in order to test them in pilot applications. Work should be also focused on

security mechanisms since Arrowhead does not have a suitable certificate distribution

system yet. Finally, the document model needs more work. It should be considered

whether the document model can be supported with software-based solution. Current

document model is problematic because it allows too much variation to the documents

and maintaining the documents requires lots of work.

Pilot applications introduced in this thesis can be developed more. Work should be fo-

cused especially to the hardware. Currently, Light Management Tool includes only one

LED luminaire. The next step of the development should be to add more luminaires.

The lack of hardware is a bigger problem at Engine Block Heater Controller. All the

functions of the interface cannot be tested properly with only one engine block heater.

For example, it is impossible to get the combined data from the zone level because there

is only one heater at the zone. Therefore, the next step of the development should be to

add more engine block heaters. Furthermore, the user interface needs to be upgraded as

well since it is currently designed to monitor only one power socket. It should also be

considered whether the pilot applications could be tested in more commercial environ-

ment. For example, it would be interesting to control an outdoor light with Light Man-

agement Tool instead of a small LED luminaire. Furthermore, Orchestration System

should be included in both applications. Finally, Urban Management System could also

be developed more. New services could be developed to expand the functionality of the

application.

54

REFERENCES

[1] M. Albano, L. Ferreira, Communication Profile (CP) Template version 1.1, un-

published project material, 30th September 2015, 4 p.

[2] M. Albano, L. Ferreira, Interface Design Description (IDD) Template version 1.1,

unpublished project material, 30th September 2015, 5 p.

[3] M. Albano, C. Chrysoulas, L. Ferreira, O. Jansson, Semantic Profile (SP) Tem-

plate version 1.1, unpublished project material, 30th September 2015, 4 p.

[4] M. Albano, C. Chrysoulas, L. Ferreira, O. Jansson, Service Description (SD)

Template version 1.1, unpublished project material, 30th September 2015, 5 p.

[5] M. Albano, C. Chrysoulas, L. Ferreira, O. Jansson, System-of-Systems Descrip-

tion (SoSD) Template version 1.1, unpublished project material, 30th September

2015, 7 p.

[6] M. Albano, C. Chrysoulas, L. Ferreira, O. Jansson, I. Soria, System-of-Systems

Design Description (SoSDD) Template version 1.1, unpublished project material,

30th September 2015, 7 p.

[7] M. Albano, C. Chrysoulas, L. Ferreira, O. Jansson, System Description (SysD)

Template – Black Box Design version 1.1, unpublished project material, 30th

September 2015, 7 p.

[8] M. Albano, C. Chrysoulas, L. Ferreira, O. Jansson, I. Soria, System Design De-

scription (SysDD) Template – White Box Design version 1.1, unpublished project

material, 30th September 2015, 5 p.

[9] L. Anthopoulos, P. Fitsilis, Exploring Architectural and Organizational Features

in Smart Cities, In 16th International Conference on Advanced Communication

Technology (ICACT), IEEE, 2014. pp. 190–195.

[10] Arrowhead, web page. Available (accessed on 9th October 2015):

http://www.arrowhead.eu/

[11] Artemis projects: Arrowhead. Available (accessed on 9th October 2015):

https://artemis-ia.eu/project/49-arrowhead.html

[12] Y. Baghdadi, A Framework to Select an Approach for Web Services and SOA

Development, In International Conference on Innovations in Information Tech-

nology (IIT), IEEE, 2012, pp. 277–282.

55

[13] J. Bean, SOA and Web Services Interface Design – Principles, Techniques,

Standards, The MK/OMG Press. Boston, 2010, 372 p. Available (accessed on

13th January 2016):

http://www.sciencedirect.com/science/article/pii/B9780123748911000010

[14] F. Blomstedt, C. Chrysoulas, G. Singler, P. Varga, Arrowhead Framework Cook-

book version 1.5, unpublished project material, 2015, 32 p.

[15] F. Blomstedt, O.Carlsson, M. Johansson, P. Varga, Arrowhead generic SoSD –

Generation 2 version 1.5, unpublished project material, 4th April 2015, 36 p.

[16] F. Blomstedt, L. Ferreira, M. Klisics, C. Chrysoulas, I. Martinez de Soria, B.

Morin, A. Zabasta, J. Eliasson, M. Johansson, P. Varga, The Arrowhead Ap-

proach for SOA Application Development and Documentation, In Industrial Elec-

tronics Society (IECON), IEEE, 2014, pp. 2631–2637.

[17] Bootstrap framework, web page, Available (accessed on 3rd September 2015):

http://getbootstrap.com/

[18] C2 SmartLumo Datasheet, Available (accessed on 1st October 2015):

http://c2is.fi/c2-smartlumo/

[19] H. Chourabi, N. Taewoo, S. Walker, J.R. Gil-Garcia, S. Mellouli, K. Nahon, T.A.

Pardo, H.J. Scholl, Understanding Smart Cities: An Integrative Framework, In

45th Hawaii International Conference on System Science (HICSS), IEEE, 2012,

pp. 2289–2297.

[20] A.W. Colombo, F. Jammes, H. Smit, R. Harrison, J.L.M. Lastra, I.M. Delamer,

Service-Oriented Architectures for Collaborative Automation, In 31st Annual

Conference of Industrial Electronics Society (IECON), IEEE, 2005, pp. 2649–

2654.

[21] Cross-Origin Resource Sharing, W3C Recommendation, 16th January 2014,

Available (accessed on 29th October 2015): http://www.w3.org/TR/cors/

[22] L. Ferreira, Arrowhead-related Definitions version 2.3, unpublished project mate-

rial, 10th April 2015, 11 p.

[23] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler-Milanovic, E. Meijers,

Smart Cities: Ranking of European medium-sized cities, 2007, 28 p. Available

(accessed on 11th January 2016): http://www.smart-

cities.eu/download/smart_cities_final_report.pdf

[24] Hidealite 1202 Multi, Data sheet, 1 p. Available (accessed on 1st October 2015):

http://www.hidealite.fi/Archive/FilesArchive/354730_555.pdf

56

[25] Hidealite Jolly Pro, Data sheet, February 2014, 6 p. Available (accessed on 1st

October 2015):

http://www.hidealite.se/Archive/FilesArchive/IM00031_Jolly_Pro_201402_sv_en

_fi.pdf

[26] Z. Huanhuan, G. Zhen, Z. Xibo, Research on SOA-Based Integration Solution to

Bank Online Application System, In International Conference on Computer Sci-

ence and Network Technology (ICCSNT), IEEE, 2011, pp. 2235–2240.

[27] IBM, Web services: Key roles, web page, Available (accessed on 23rd October

2015): http://www-

01.ibm.com/support/knowledgecenter/SSB23S_1.1.0.7/com.ibm.ztpf-

ztpfdf.doc_put.07/gtps6/s6wsrol.html

[28] The jQuery Foundation, jQuery, web page, Available (accessed on 3rd September

2015): https://jquery.com/

[29] Z-F. Liu, B. Liu, X-P Gao, SOA Based Mobile Application Software Test

Framework, In 8th International Conference on Reliability, Maintainability and

Safety (ICRMS), IEEE, 2009 pp. 765–769.

[30] A. Monzon, Smart Cities Concept and Challenges: Bases for the Assessment of

Smart City Projects, In International Conference on Smart Cities and Green ICT

Systems (SMARTGREENS), IEEE, 2015 pp. 1–11.

[31] P. Offermann, M. Hoffmann, U. Bub, Benefits of SOA: Evaluation of an Imple-

mented Scenario against Alternative Architectures, In 13th Enterprise Distributed

Object Computing Conference Workshops (EDOCW), IEEE, 2009, pp. 352–359.

[32] Oracle, The Java EE 6 Tutorial, web page, Available (accessed on 2nd December

2015): https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

[33] Produal Lux 34 light level and temperature transmitter, data sheet, 1 p. Available

(accessed on 5th October 2015): http://www.admiclim.com/PDF/LUX34-100.pdf

[34] RERUM, web page, Available (accessed on 10th January 2016): https://ict-

rerum.eu/

[35] RFC 4158, Internet X.509 Public Key Infrastructure: Certification Path Building,

The Internet Engineering Task Force, September 2005, 81 p. Available (accessed

on 2nd December 2015): https://tools.ietf.org/html/rfc4158

[36] RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2, The Inter-

net Engineering Task Force, August 2008, 104 p. Available (accessed on 2nd De-

cember 2015): https://tools.ietf.org/html/rfc5246

57

[37] RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, The Internet Engineering Task Force, May 2008,

151 p. Available (accessed on 3rd December 2015):

https://tools.ietf.org/html/rfc5280

[38] S. Simanta, E. Morris, S. Balasubramaniam, J. Davenport, D.B. Smith, Infor-

mation Assurance Challenges and Strategies for Securing SOA Environments and

Web Services, In 3rd Annual Systems Conference, IEEE, 2009, pp. 173–178.

[39] SmartSantander, web page, Available (accessed on 11th January 2016):

http://www.smartsantander.eu/

[40] O. Smith. Morris.js, web page, Available (accessed on 3rd September 2015):

https://morrisjs.github.io/morris.js/index.html

[41] K. Su, J. Li, H. Fu, Smart City and the Applications, In International Conference

on Electronics, Communications and Control (ICECC), IEEE, 2011, pp. 1028–

1031.

[42] R. Szabo, K. Farkas, M. Ispany, A.A. Benczur, N. Batfai, P. Jeszenszky, S. Laki,

A. Vagner, L. Kollar, C. Sidlo, R. Besenczi, M. Smajda, G. Köver, T. Szincsak, T.

Kadek, M. Kosa, A. Adamko, I. Lendak, B. Wiandt, T. Tomas, A.Z. Nagy, G. Fe-

her, Framework for Smart City Applications Based on Participatory Sensing, In

4th International Conference on Cognitive Infocommunications (CogInfoCom),

IEEE, 2013 pp. 295–300.

[43] K. Takahashi, S. Yamamoto, A. Okushi, S. Matsumoto, M. Nakamura, Design

and Implementation of Service API for Large-Scale House Log in Smart City

Cloud, In 4th International Conference on Cloud Computing Technology and Sci-

ence (CloudCom), IEEE, 2012, pp. 815–820.

[44] E. Theodoridis, G. Mylonas, I. Chatzigiannakis, Developing an IoT Smart City

Framework, In 4th International Conference on Information, Intelligence, Systems

and Applications (IISA), IEEE, 2013, pp. 1–6.

[45] E.Z. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegard, C.-S. Nechifor, G.

Oikonomou, H.C. Pohls, A. Gavras, Enabling Reliable and Secure IoT-Based

Smart City Applications, In International Conference on Pervasive Computing

and Communications Workshops (PERCOM Workshops), IEEE, 2014, pp. 111–

116.

[46] J. Van den Bergh, S. Viaene, Key Challenges for the Smart City: Turning Ambi-

tion into Reality, In 48th Hawaii International Conference on System Sciences

(HICSS), IEEE, 2015, pp. 2385–2394.

58

[47] P. Wang, A. Ali, W. Kelly, Data Security and Threat Modeling for Smart City

Infrastructure, In International Conference on Cyber Security of Smart Cities, In-

dustrial Control System and Communications (SSIC), IEEE, 2015, pp. 1–6.

[48] L. White, N. Wilde, T. Reichherzer, E. El-Sheikh, G. Goehring, A. Baskin, B.

Hartmann, M. Manea, Understanding Interoperable Systems: Challenges for the

Maintenance of SOA Applications, In 45th Hawaii International Conference on

System Science (HICSS), IEEE, 2012, pp. 2199–2206.

[49] S. Yamamoto, S. Matsumoto, S. Saiki, M. Nakamura, Materialized View as a

Service for Large-Scale House Log in Smart City, In 5th International Conference

on Cloud Computing Technology and Science (CloudCom), IEEE, 2013, pp. 311–

316.

[50] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of Things for

Smart Cities, Internet of Things Journal Vol. 1, No. 1, IEEE, 2014, pp. 22–32.

[51] W. Ze-Lai, R. Guo-Zheng, F. Zhi-yong, W.Yao, Z. Chen, Public Emergency Ori-

ented SOA-Based Logistics System, In International Conference on Computer

Application and System Modeling (ICCASM), IEEE, 2010, pp. V1–588 – V1–

591.

