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ABSTRACT 
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Final disposal of spent nuclear fuel is planned to start at 2020s in Olkiluoto, Finland. 

The reference disposal concept in Finland is KBS-3V in which copper-iron canisters 

containing the spent fuel are placed into vertical deposition holes and surrounded by a 

buffer which refers to bentonite clay, a material which starts to swell when it is exposed 

to water. Bentonite will also be used to backfill deposition tunnels where the deposition 

holes will be drilled. The final disposal requires long-term safety plans due to a long 

time span of spent nuclear fuel decay. Groundwater flow, rock movements and changes 

in environmental conditions might jeopardize the long-term safety. This thesis covered 

a mock-up experiment where test equipment was built in cooperation with VTT and 

Posiva. Purpose of the thesis was to study interaction between the buffer and the back-

fill. 

The 1/6 scale test equipment consisted of a tube and a tunnel which simulated the depo-

sition hole and the deposition tunnel of the KBS-3V concept. The tube and the tunnel 

were filled with bentonite blocks and pellets, and water with a salinity of 1 % was sup-

plied into the tube at a rate of 0.1 l/min. In the tunnel there were eight open outlets for 

the water to flow out. Water distribution, bentonite swelling, formation of water chan-

nels, bentonite erosion, and water outflow rate were investigated during the 62 day test. 

After the test, samples from the bentonite blocks and pellets were taken for water con-

tent and density analyses, and a possible vertical displacement of the buffer was exam-

ined. 

Water started to flow out from the tunnel after two days. The water flowed out from the 

same outlet during the first 59 days after which the water supply was stopped for about 

an hour due to adding of a tracer. After this, the water distributed towards dry areas in 

the tunnel and started to flow out from the other end of the tunnel. During the first days 

of the test, higher erosion rates occurred occasionally after which the erosion rate settled 

to an almost constant level. A vertical displacement of about 40 mm of the center of the 

uppermost buffer block was found after the test. The tunnel pellet layer above the buffer 

was compressed from 130 mm to approximately 100 mm.  

The main findings in this study included: (1) water used same flow paths with the con-

tinuous inflow from the same location, (2) the one hour pause in the water inflow sealed 

some of the water channels and after the restart of the water inflow the water flowed 

towards dry areas in the tunnel, (3) the vertical displacement of approximately 40 mm 

of the top surface of the uppermost buffer block occurred and it was probably mainly a 

result from swelling of the uppermost buffer block, (4) almost fully saturated tunnel 

pellets with high densities were found from above the buffer after the test. 
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Diplomityö, 86 sivua, 16 liitesivua 
Tammikuu 2016 
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Käytetyn ydinpolttoaineen loppusijoitus Olkiluodossa on suunniteltu aloitettavan 2020-

luvulla. Loppusijoituksen konsepti Suomessa on KBS-3V, jossa käytetty polttoaine 

asennetaan kuparista ja raudasta valmistettuihin kanistereihin, jotka sijoitetaan pys-

tysuuntaisiin loppusijoitusreikiin. Kanisterit ympäröidään veden vaikutuksesta paisuval-

la puskurimateriaalilla, joka on bentoniittisavea. Bentoniittia käytetään myös täyttämään 

loppusijoitustunnelit, joiden lattioihin loppusijoitusreiät porataan. Loppusijoitus vaatii 

pitkän aikavälin turvallisuussuunnittelua johtuen ydinpolttoaineen radioaktiivisesta ha-

joamisesta. Pitkäaikaisturvallisuutta vaarantavia tekijöitä voivat olla pohjaveden virtaus, 

kallion liikahdukset sekä ympäristöolosuhteiden muutokset. Tässä opinnäytteessä käsi-

teltiin mallikoetta, jota varten oli rakennettu koelaitteisto VTT:n ja Posivan toimesta. 

Tarkoituksena oli tutkia puskurimateriaalin ja tunnelitäyttömateriaalin vuorovaikutusta. 

Mittakaavaltaan 1/6 oleva testilaitteisto koostui loppusijoitusreikää simuloivasta putkes-

ta ja loppusijoitustunnelia simuloivasta tunnelista, jotka täytettiin bentoniittiblokeilla ja 

-pelleteillä. Suolapitoisuudeltaan 1 % olevaa vettä syötettiin putkeen virtausnopeudella 

0,1 l/min. Tunnelissa oli kahdeksan ulostuloreikää vedelle. Testin kesto oli 62 päivää, 

jonka aikana tutkittiin veden leviämistä laitteistossa, bentoniitin paisumista, vesikanavi-

en muodostumista, bentoniittimateriaalien eroosiota sekä veden ulosvirtauksen määrää. 

Testin jälkeen otettiin bentoniittilohkoista ja -pelleteistä näytteitä vesipitoisuuden ja 

tiheyden määrityksiä varten sekä tutkittiin mahdollista puskurimateriaalin ylösnousua. 

Vesi virtasi ulos tunnelista ensimmäisen kerran kahden päivän jälkeen. Vesi virtasi sa-

masta ulostuloreiästä ensimmäisen 59 päivän ajan, jonka jälkeen veden virtaus testilait-

teeseen katkaistiin noin tunnin ajaksi väriaineen lisäyksen takia. Tämän jälkeen veden 

virtaussuunta tunnelissa muuttui kohti aluetta, joka oli pysynyt kuivana tähän asti. Myös 

veden ulostuloreitti vaihtui tunnelin toiseen päätyyn. Runsasta eroosiota havaittiin ajoit-

tain ensimmäisten testipäivien aikana, jonka jälkeen eroosio asettui lähes vakiotasolle. 

Ylimmän puskurilohkon yläosan havaittiin nousseen noin 40 mm testin aikana. Pusku-

rin yläpuolella oleva pellettikerros oli paksuudeltaan ennen testiä 130 mm ja testin jäl-

keen kerroksen paksuudeksi mitattiin noin 100 mm. 

Tämän tutkimuksen päätuloksia olivat: (1) samasta kohdasta tulevalla vedensyötöllä 

vesi käytti samoja virtausreittejä, (2) yhden tunnin kestänyt vedensyötön tauko sulki 

veden virtausreittejä ja vedensyötön alettua uudelleen vesi virtasi tunnelissa kohti siihen 

asti kuivana pysyneitä alueita, (3) ylimmän puskurilohkon noin 40 mm nousu johtui 

todennäköisesti pääasiassa ylimmän puskurilohkon paisumisesta, (4) puskurin yläpuo-

lella olleesta tunnelin pellettikerroksesta otetut näytteet olivat lähes täysin saturoituneita 

ja suuren tiheyden omaavia. 
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LIST OF ABBREVIATIONS AND TERMS 

Backfill  Bentonite blocks and pellets used to fill the deposition tunnels. 

Buffer Bentonite blocks and pellets surrounding the canister in the deposi-

tion holes. 

Canister  Spent nuclear fuel will be placed into canisters that consist of iron 

inserts and copper shells.  

Cebogel QSE Type of bentonite pellets potentially used for backfilling the deposi-

tion tunnels, originated from Milos, Greece. 

Closure Structures for closing the underground openings in the final dispos-

al facility. 

EBS  Engineered Barrier System which includes: closure, backfill, buffer 

and canister as components of the KBS-3V concept.  

EMDD Effective Montmorillonite Dry Density. 

Ibeco RWC BF Type of bentonite blocks potentially used for backfilling the deposi-

tion tunnels, originated from Milos, Greece. 

KBS-3V The reference concept for the final disposal in Finland. 

LO1, LO2  Loviisa power plant reactors 1 and 2. 

MX-80 Reference type of bentonite blocks and pellets used for filling the 

deposition holes, originated from Wyoming, USA.  

OL1, OL2, OL3 Olkiluoto power plant reactors 1, 2 and 3. 

ONKALO Underground Rock Characterization Facility. 

Plug Concrete barrier installed to the ends of the deposition tunnels after 

backfilling.  

Posiva The company responsible for the nuclear waste management in Fin-

land. 

TDS  Total Dissolved Solids. 

Tube  In this experiment, a plastic tube simulated the deposition hole rock 

wall and it was filled with buffer blocks and pellets. 

Tunnel  In this experiment, a steel frame tunnel simulated the deposition 

tunnel rock wall and it was filled with backfill blocks and pellets. 

TURVA-2012 Posiva’s design basis for the KBS-3V concept in safety point of 

view. 

VAHA  Posiva’s requirement management system with five levels. 
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1. INTRODUCTION 

Nuclear waste disposal technology has been researched in Finland since 1970s. Accord-

ing to plans, the disposal will start in Finland in the near future. Olkiluoto has been cho-

sen as the disposal site where spent nuclear fuel will be disposed of at a depth of over 

400 m in bedrock. In Finland, the nuclear waste disposal technology is based on a KBS-

3V concept where vertical boreholes are drilled in floors of deposition tunnels. In the 

concept, spent nuclear fuel is inserted inside copper-iron canisters which are placed into 

boreholes. Bentonite blocks and pellets are used for filling the boreholes as buffer mate-

rial and the deposition tunnels as backfill material. The bentonite will start to swell and 

seal the holes and the tunnels after it is exposed to water. 

This thesis is a part of a project at the Technical Research Centre of Finland (VTT) 

where test equipment was built at about 1/6 scale in the laboratory, simulating the depo-

sition hole and the tunnel of the KBS-3V concept. The hole and the tunnel will both be 

filled with bentonite blocks and pellets. Water simulating Olkiluoto’s groundwater 

flows through the system. Stresses of the hole and the tunnel are monitored and the 

pressure inside the tunnel as well. During the test, samples are taken from the outflow-

ing water to define erosion of the bentonite material. During dismantling, bentonite 

samples are taken for water content and density analyses. Also, possible water flow 

paths and vertical displacement of the buffer will be investigated. 

The thesis studied interaction between the buffer and the backfill. So far, very few ex-

perimental studies including both the buffer and the backfill have been done in Finland. 

Knowledge of the buffer and backfill interaction is based on small-scale buffer or back-

fill studies, bentonite material studies and modelling studies. It is assumed that swelling 

of the buffer due to water causes heaving of the high density buffer to the lower density 

backfill. Due to the swelling, the density of the buffer decreases which can lead to an 

increase of permeability and decrease of mechanical strength of the buffer. Conse-

quences might include canister movements, corrosion, failure and also migration of ra-

dionuclides through the buffer, thus jeopardizing the long-term safety. (Keto et al. 2009) 

With this study of the early age performance of the bentonite there is a possibility to 

understand better the buffer and backfill interaction and to compare the results to previ-

ous studies and their hypotheses. The results are used to support the buffer and backfill 

design, material specifications and monitoring program of the engineered barrier system 

(EBS). The results of the thesis also give useful data for the first full-scale construction 

demonstration of buffer and backfill together in Finland that is planned to start at Olki-

luoto’s disposal site in 2017. 
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2. BACKGROUND 

2.1 Nuclear waste disposal at Olkiluoto site 

In 2001, a decision-in-principle was made in the Finnish Government regarding dispos-

al of spent nuclear fuel produced by the Olkiluoto and Loviisa nuclear power plants. 

Power plants already in operation were included in the decision-in-principle. These 

power plants are Olkiluoto 1 (OL1), Olkiluoto 2 (OL2), Loviisa 1 (LO1) and Loviisa 2 

(LO2). It was decided that the spent nuclear fuel shall be disposed of at Olkiluoto which 

is located in Eurajoki, on the coast in the south-western part of Finland. According to 

another decision-in-principle made in 2002, spent nuclear fuel from the Olkiluoto 3 

(OL3), the new power plant currently under construction, will also be disposed of at 

Olkiluoto. Possible new power plants might change the current plans. (Posiva 2015) 

Preparations for the final disposal began already in the late 1970s, at the same time as 

the commissioning of the nuclear power plants started. The final disposal has been re-

searched ever since. In 2012, the construction license application for the spent nuclear 

fuel repository was submitted. The license application concerned a complex of two in-

terconnected nuclear facilities, an above-ground encapsulation plant and an under-

ground final repository. In November 2015, the construction license was granted by the 

Finnish Government. The operating license is planned to be applied in 2020. The final 

disposal is scheduled to start in the 2020s and according to the current plans, it will con-

tinue almost a hundred years. (Posiva 2015) The overall schedule for the nuclear waste 

management implementation of the Loviisa and Olkiluoto reactors until 2020 is shown 

in Figure 1. 

 
Figure 1. Overall schedule for the nuclear waste management in Finland (Posiva 

2012b). 
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2.1.1 Nuclear waste 

Nuclear waste is produced in nuclear power plants as a result of electricity production. 

Because of its radioactivity, nuclear waste needs special treatment. Nuclear waste pro-

duced in the nuclear power plants can be divided into low-, intermediate- and high-level 

waste. The low-level and the intermediate-level waste are generated during the opera-

tion and maintenance of the nuclear power plant and they are also known as the reactor 

waste. Decommissioning waste is generated during closing down of the plant and it de-

rives from some nuclear power plant structures that become radioactive during the oper-

ation. The nuclear power companies in Finland, TVO at Olkiluoto and Fortum at Lov-

iisa, take care of their own reactor waste and decommissioning waste which are dis-

posed of in a reactor waste repository. (Posiva 2015) 

Nuclear power plants use uranium as their fuel in electricity production. After the opera-

tion, spent nuclear fuel is high-level waste which has to be disposed of so it does not 

harm the biosphere. The reference time period for safety analyses is about 250,000 

years so it includes at least one ice age cycle. After this the activity of the fuel is at the 

same level as that of a large uranium deposit. Spent nuclear fuel is stored in interim 

storage facilities before the final disposal. As the reactor waste repositories, also the 

interim storage facilities are located in the nuclear power plants. (Posiva 2015) The dis-

posal sites of the radioactive waste are presented in Figure 2. 

 
Figure 2. Disposal sites (Posiva 2015). 

Before the spent nuclear fuel is transferred to the interim storage it is cooled down for a 

few years in water basins inside a reactor building. In the interim storage the fuel is 

stored under water for dozens of years until the radiation intensity and decay heat de-

crease sufficiently for transport, encapsulation and disposal. The fuel used in OL1, OL2, 

LO1 and LO2 requires a cooling down period of about 40 years before the final disposal 

whereas the fuel used in OL3 requires a cooling down period of about 60 years. From 
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the interim storage the fuel will be transported to the final disposal facility in special-

purpose casks as special transport. (Posiva 2012a; Posiva 2015) 

2.1.2 ONKALO 

ONKALO is a research facility and the future spent nuclear fuel repository in Olkiluoto 

where excavations started in 2004. Design of ONKALO is presented in Design of the 

Disposal Facility 2012 by Saanio et al. (2013). The repository facilities are located at an 

approximate depth of 400-450 m while the spiral-shaped access tunnel reaches the depth 

of 455 m. ONKALO contains also shafts including a personnel shaft, an inlet air shaft 

and an exhaust air shaft. The ONKALO design is developed to accommodate at maxi-

mum 9,000 tons of uranium of high-level nuclear waste. (Saanio et al. 2013) A concep-

tual image showing ONKALO and its location at the central part of the Olkiluoto Island 

is presented in Figure 3.  

 
Figure 3. ONKALO is located in the Olkiluoto bedrock (Posiva 2010). 

The facility complex at Olkiluoto comprises of two nuclear waste facilities which are 

the encapsulation plant and the disposal facility. In the above-ground encapsulation 

plant spent nuclear fuel from Loviisa and Olkiluoto is received and packed into final 

disposal canisters. In the disposal facility the encapsulated fuel is disposed of. (Saanio et 

al. 2013) 

According to the current design of the disposal facility, the disposal facility will be built 

in a so-called parallel tunnels principle where deposition tunnels are connected by two 

parallel tunnels (Figure 4). Safety and flexibility during the operational phase are some 

of the main advantages of this principle. In the design work the aim is to maintain max-

imum flexibility to allow changes in the design solutions as technologies develop. 

(Saanio et al. 2013) The objective of the final disposal is the permanent disposal of the 

waste. However, it is technically possible to return the disposed of final disposal canis-

ters from the repository at any phase. (Posiva 2010) 
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Figure 4. The parallel tunnels principle (Posiva 2010). 

2.1.3 Bedrock properties 

Site-characterization investigations in Olkiluoto have been carried out since 1980s. First 

the investigations focused on aboveground conditions but they have proceeded to un-

derground research since the start of the ONKALO construction. The research gives 

further information of the bedrock and groundwater conditions on the final disposal site 

and helps to ensure the suitability of the Olkiluoto bedrock for the final disposal. Re-

search also gives information of the impact of the construction on the bedrock condi-

tions as well as helps to identify the most cost-effective sites for the construction. The 

bedrock is studied with methods from geology, hydrology and geochemistry. Photos 

related to core sample drilling are presented in Figure 5. Based on the research, models 

of the final disposal site have been made and they include geological, geochemical, hy-

dro-geological and rock-mechanical models. The models can be used to assess the per-

formance of the final disposal and the effects it has on the rock environment in terms of 

long-term safety. (Posiva 2015)  

 

 

 
Figure 5. a) Drilling equipment and b) drill core samples to reveal the structures and 

rock types of the bedrock (Posiva 2015). 

a) b) 
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A description of the Olkiluoto site is presented in Olkiluoto Site Description 2011 by 

Posiva (2012c) where bedrock geology, rock mechanics, hydrogeology and hydrogeo-

chemistry of Olkiluoto are described. In Site Engineering Report by Posiva (2013), an 

overall framework of bedrock conditions, especially from geotechnical design and rock 

construction point of view is presented. 

The bedrock at Olkiluoto is mainly composed of various high-grade metamorphic and 

migmatitic rocks of supracrustal origin. Based on the mineral composition, texture and 

migmatitic structure, the rocks of Olkiluoto can be divided into four major classes: 1) 

gneisses, 2) migmatitic gneisses, 3) TGG gneisses and 4) pegmatitic granites. (Kärki & 

Paulamäki 2006) Due to deformation phases, the rocks in Olkiluoto are completely ori-

ented. The strength properties of the Olkiluoto bedrock vary largely due to the hetero-

geneous bedrock. Thermal properties, as well as strength properties, depend on the foli-

ation of the rock. Thermal properties play a role when determining dimensions of the 

repository related to the heat generating spent nuclear fuel. The temperature at a depth 

of 400 m is about +10.5°C while the average temperature gradient is 1.4°C/100 m. 

(Posiva 2012c, cited in Saanio et al. 2013) 

Salinity in Olkiluoto varies significantly. Fresh water, having TDS (total dissolved sol-

ids) >1 g/l, is found in the uppermost tens of meters. Brackish groundwater, with TDS 

of 1-10 g/l, is found at depths between 30 m and 400 m. At depths over 400 m, saline 

groundwater with TDS over 10 g/l dominates. (Posiva 2012c) The salinity at the dispos-

al depth is approximately 10-20 g/l. Design salinity value of 35 g/l set for the bedrock is 

similar to the salinity of the ocean water while the maximum allowed salinity is 70 g/l. 

However, construction or glacial periods might cause disturbances resulting in upconing 

of deep saline water which increases the salinity at the repository level. (Hellä et al. 

2009; Posiva 2010) 

During the operation of the repository the aim is to maintain the bedrock properties as 

close to original as possible. Impact of the excavation is kept low and water-bearing 

structures as well as sealing methods, for example grouting, are used for limiting water 

leaks. (Saanio et al. 2013) 

Due to the long time span of the safety analyses, future environmental conditions need 

to be estimated. The estimations are based on the assumption that the development of 

the conditions will follow the same principles as they have in the past under the similar 

conditions. The most important parameter affecting the climatic scenario development 

concerning the repository is the temperature change. Other relevant parameters or con-

ditions include precipitation, glaciation, permafrost, glacial erosion, postglacial earth-

quakes, sea level changes and shoreline displacement, vegetation, and salinity of sea-

water. (Pastina & Hellä 2006) 
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2.1.4 KBS-3V concept 

In the decision-in-principles made in the early 2000s, the final disposal of spent nuclear 

fuel was decided to be carried out with a KBS-3 concept. The concept was developed by 

SKB (Swedish Nuclear Fuel and Waste Management Co), the company responsible for 

the nuclear waste management in Sweden. The KBS-3 concept contains two different 

disposal concepts, KBS-3V and KBS-3H. The main difference between these concepts 

is the direction of the spent nuclear fuel placement (vertical or horizontal). The horizon-

tal concept, KBS-3H, is presented in Nuclear Waste Management at Olkiluoto and Lov-

iisa Power Plants by Posiva (2010). Posiva, the nuclear waste management company in 

Finland, currently plans to use the KBS-3V concept. (Posiva 2015) The KBS-3V design 

is based on a multi-barrier principle where copper-iron canisters containing spent nucle-

ar fuel are emplaced vertically in individual deposition holes bored in floors of deposi-

tion tunnels at a depth of 400-450 m in the Olkiluoto bedrock. The canisters are sur-

rounded by a swelling clay buffer material that separates the canisters from the bedrock. 

The deposition tunnels will be backfilled with materials with low permeability. (Posiva 

2012b) A schematic view of the KBS-3V concept is presented in Figure 6 and an image 

representing some of the release barriers is shown in Figure 7.  

 
Figure 6. KBS-3V concept (Posiva 2012b). 
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Figure 7. Some of the release barriers of the KBS-3V concept: 1) final disposal canis-

ter, 2) bentonite buffer, 3) tunnel backfill, 4) bedrock (Posiva 2015). 

Posiva's TURVA-2012 safety case documentation presents the design basis for the 

KBS-3V concept from a long-term safety point of view. TURVA-2012 is based on 

Posiva's requirements management system (VAHA) which is an information system 

designed by Posiva to manage the requirements related to the geological disposal of 

spent nuclear fuel. The VAHA database is organized into five levels: Stakeholder re-

quirements, System requirements, Subsystem requirements, Design requirements, and 

Design specifications. (Posiva 2012b) TURVA-2012 safety case portfolio and VAHA 

are presented in Design Basis 2012 by Posiva (2012b). 

In TURVA-2012, spent nuclear fuel, engineered barrier system (EBS) and host rock as 

a natural barrier form the repository system. Release of radionuclides to the living envi-

ronment is prevented by this multi-barrier system of engineered barriers and host rock. 

With surface environment the repository system forms the disposal system which is 

presented in Figure 8. (Posiva 2012b) 

 
Figure 8. Components of the disposal system (Posiva 2012b). 
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All release barriers have their roles in establishing the required long-term safety of the 

repository system. Safety functions for the barriers have been assigned based on their 

role in the repository. The safety functions are presented in Table 1. In the following 

text some of the barriers are shortly described. 

Table 1. Safety functions of the release barriers (Posiva 2012b). 

 

Canister. The canister (Figure 9) is the first and also the most important isolator for the 

radionuclides in the KBS-3V concept. Canister is a container with a water- and gas-tight 

shell and a mechanical load-bearing insert in which the spent nuclear fuel is placed for 

the final disposal. The canister insert is made of cast iron which provides mechanical 

strength, radiation shielding and maintaining of the fuel assemblies in the required con-

figuration. The canister shell is made of copper which has good thermal and mechanical 

properties and resistance to corrosion. Thickness of the current reference copper shell is 

49 mm. The canisters are designed to have a lifetime of hundreds of thousands of years 

except in cases of manufacturing defects and operating errors that may reduce the life-

time. (Posiva 2012a; Raiko et al 2012) The canister is described in detail in Canister 

Design 2012 by Raiko (2012), in Canister Production Line 2012 by Raiko et al. (2012) 

and in Description of the Disposal System 2012 by Posiva (2012b). 
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Figure 9. A full-scale canister (Posiva 2015). 

Buffer. The canister is surrounded by bentonite rings, blocks and pellets. This highly 

compacted bentonite is referred to as buffer (Posiva 2012b). Buffer design and function 

are presented in more detail in chapter 2.2.1. 

Backfill. The deposition tunnels leading to the deposition holes are backfilled. Thus, 

backfill equates materials that are used for filling the deposition tunnels. The current 

concept is to fill the majority of the tunnel with pre-compacted bentonite backfill blocks 

and the remaining volume with bentonite pellets. (Posiva 2012b) Backfill design and 

function are presented in more detail in chapter 2.2.2. 

Closure. The closure of the disposal facility includes backfill and plugs in all manmade 

underground openings except deposition holes and deposition tunnels. Examples of 

these are the access tunnel, central tunnels, shafts, and technical rooms. After backfill-

ing of the deposition tunnels, plugs will be installed to close the tunnels. Some sections 

of the plugs are part of the central tunnels so the end plugs can also be considered as 

closure structures. (Sievänen et al. 2012) The function of the plug is to keep the backfill 

in place and thus to contribute on the performance of the backfill. Depending on their 

location and function, the closure structures vary in their shape, dimensions and depth. 

(Posiva 2012b) Closure structures are described in detail in Design, Production and 

Initial State of the Underground Disposal Facility Closure by Sievänen et al. (2012), in 

Description of the Disposal System 2012 by Posiva (2012a), and in Underground Dis-

posal Facility Closure Design 2012 by Dixon et al. (2013). 

The disposed canisters produce residual heat due to radioactive decay of spent nuclear 

fuel inside the canisters. The temperature can be controlled by the space between the 

adjacent canisters and adjacent tunnels, and also by the precooling time of the spent 

nuclear fuel. Based on analytical and numerical heat transfer analyses performed by 

Ikonen & Raiko (2012), the maximum temperature of the canister is reached after about 

15 years and after about 35 years the temperature begins to decrease. The maximum 

allowed temperature in the interface of the canister and buffer is +100°C. Thermal anal-

yses performed by Ikonen & Raiko (2012) were used in dimensioning the distances be-

tween the canisters (canister spacing). Because of uncertainties, including variation in 

local rock conductivity and predicted decay power, there were safety margins for the 



11 

calculations. In addition, due to uncertainties in humidity circumstances of the environ-

ment, the dimensioning of the canister spacing was performed separately for dry and 

saturated case. In the dry condition the safety margin was 5°C so the maximum calcu-

lated temperature of the canister was 95°C. In the saturated condition which is more 

probable, the safety margin was 10°C and the maximum temperature of the canister was 

90°C. With different tunnel (25-40 m) and fuel type the canister spacing in the KBS-3V 

repository was calculated to be between 7.2 m and 10.5 m. (Ikonen & Raiko 2012) 

In Expected Evolution of a Spent Nuclear Fuel Repository at Olkiluoto by Pastina & 

Hellä (2006), expected evolution of the KBS-3V repository at Olkiluoto is described in 

three phases: operational phase, post-closure temperature phase, and a phase from the 

onset of the next glaciation until the end of the glaciation. The operational phase is the 

phase from the beginning of the operations until closure. Main processes in the opera-

tional phase are the thermal processes originated from the spent nuclear fuel decay heat, 

water uptake, swelling of the buffer and backfill bentonite, stress distribution, and rock 

movements due to excavation and operation (Figure 10). (Pastina & Hellä 2006) 

 
Figure 10. Main processes in the deposition hole during the operational phase of the 

repository. Geologic features in the image are not in scale. (Pastina & Hellä 2006)  
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2.2 Buffer and backfill in KBS-3V concept 

2.2.1 Buffer design and function 

Buffer is the component surrounding the canister and filling the void spaces between the 

canister and the rock. The buffer is described in detail in Buffer Design 2012 by Ju-

vankoski (2013) and in Buffer Production Line by Juvankoski et al. (2012). The purpose 

of the buffer is to protect the canister from detrimental processes (thermal, hydraulic, 

mechanical and chemical), maintain favorable conditions for the canister and slow down 

the possible transport of radionuclides. The buffer also supports the deposition hole 

walls and keeps the canister in the correct position. (Juvankoski 2013) Safety functions 

of the buffer according to Design Basis 2012 (Posiva 2012a) are the following (listed 

also in Table 1): 

 Contribute to mechanical, geochemical and hydrogeological conditions that are 

predictable and favorable to the canister. 

 Protect canisters from external processes that could compromise the safety func-

tion of complete containment of the spent nuclear fuel and associated radionu-

clides. 

 Limit and retard radionuclide releases in the event of canister failure. 

Properties of the buffer enabling its capacity to maintain these safety functions include 

swelling pressure (density and porosity), hydraulic conductivity, stiffness and content of 

substances that may be harmful for the other release barriers. Design loads of the buffer 

include mechanical loads (own weight and pressure, and weight of the canister), thermal 

loads (varying temperature in time or position), chemical loads (environment around the 

buffer, including bacteria-induced chemical loads) and radiation load. Buffer compo-

nents are also affected on handling loads during manufacturing and installation phases. 

(Juvankoski 2013) 

The main components of the buffer are buffer blocks under and above the canister, 

buffer rings around the canister and pellets between the buffer blocks and the deposition 

hole wall. Between the canister and the buffer blocks there is a 10 mm air filled gap, 

and between the buffer blocks and the rock there is a 50 mm pellet-filled gap which is 

needed to get a contact with the rock. (Juvankoski 2013; Juvankoski et al. 2012) The 10 

mm gap between the canister and the buffer is the most important thermal resistance for 

the canister. The thermal conduction in this gap is a result from thermal radiation and 

conduction in the air. This gap is assumed to stay open and dry the first decades after 

the canisters have been disposed. (Ikonen & Raiko 2012) The design of the buffer de-

pends on the fuel type as is shown in Figure 11. The reference buffer design for the OL 

3 fuel type is presented in Figure 12. 
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Figure 11. Geometry of the installed buffer and the nominal dimensions of the buffer for 

the different power plant unit fuel types (Juvankoski 2013). 
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Figure 12. The reference design of the buffer for the canister of OL3 (Juvankoski 2013). 

The reference material for both the buffer blocks (disks and rings) and the pellets is 

MX-80, high grade bentonite from Wyoming (USA) with montmorillonite content be-

tween 75 % and 90 %. The content of the montmorillonite, the swelling mineral, is the 

basis in the buffer’s ability to provide required performance in the disposal system. As a 

design requirement, the saturated density of the buffer shall be between 1950 kg/m
3
 and 

2050 kg/m
3
. (Juvankoski 2013) In addition to the performance targets and design re-

quirements presented in Design Basis 2012 (Posiva 2012a), design specifications for the 

buffer have been presented in VAHA Level 5 (Table 2). 
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Table 2. Buffer design specifications (Juvankoski 2013). 

 
 

The reference method for buffer block manufacturing is isostatic compression which is 

described by Ritola & Pyy (2011). In this method bentonite is compressed homogene-

ously from all directions by hydrostatic pressure. For the buffer pellets the reference 

method is roller compaction (Marjavaara et al. 2013). In the roller compaction method 

conditioned bentonite is compacted to small briquettes or pillows with a roller com-

pactor. (Juvankoski 2013) 

Density and homogeneity of the blocks and pellets depend on the grain size distribution, 

water content and compression pressure. It is important that the water content stays con-

stant during the handling, storage and transport because changes in the water content 

may result in cracks. High reliability with the water content and grain size distribution 

needs to be kept in the production. (Juvankoski 2013) 

2.2.2 Backfill design and function 

Backfill along with plugs is a part of the closing structures of the deposition tunnels. 

Backfill is the material or materials used to fill the deposition tunnels. The plugs will be 

placed at the mouth of the deposition tunnels. (Autio et al. 2013) A detailed backfill 

design is presented in Backfill Design 2012 by Autio et al. (2013). Backfill production 

(excavation, processing, transport, manufacturing and installation) is presented in Back-
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fill Production Line 2012 by Keto et al. (2013) in which also the current deposition tun-

nel end plug design is presented. Some of the main functions of the backfilling are lim-

iting the hydraulic conductivity of the tunnels and preventing the loss of buffer density 

due to expansion of the buffer into the deposition tunnel. After the backfilling is com-

pleted, the deposition tunnels will be plugged to avoid significant water inflows and to 

keep the buffer and backfill in place. (Posiva 2012b) Safety functions of the deposition 

tunnel backfill according to Design Basis 2012 (Posiva 2012a) are the following (listed 

also in Table 1): 

 Contribute to favorable and predictable mechanical, geochemical, and 

hydrogeological conditions for the buffer and canisters 

 Limit and retard radionuclide releases in the possible event of canister failure 

 Contribute to the mechanical stability of the rock adjacent to the deposition 

tunnels 

Maximum length of the deposition tunnels is 350 meters. The limitation of the tunnel 

length is related to excavation technology and occupational safety (Saanio et al. 2013). 

The theoretical volume of the deposition tunnels is roughly 874,000 m
3
 (Keto et al. 

2013). Cross-sectional dimensions of the deposition tunnels for the different power 

plant unit fuel types are presented in Figure 13. 

 
Figure 13. Deposition tunnel dimensions (Saanio et al. 2013). 

The backfill consists of three main components: backfill blocks, foundation layer and 

pellets. The foundation layer is installed to provide a stable and level surface for the 

blocks. Spaces between the blocks and the rock will be filled with pellets. The pellets 
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act as water storage during the installation phase of the backfill. Water retention capaci-

ty of the pellets prevents formation of water channels and erosion of the backfill blocks.  

The pellets also enable water to distribute more uniformly in the backfill. Long-term 

performance targets are not fulfilled until the backfill is saturated. The performance 

targets will be fulfilled along with the saturation when the backfill blocks compress the 

pellets to a higher density. (Autio et al. 2013) Schematic cross-sectional views of the 

deposition tunnel are shown in Figure 14.  

 
 

 
Figure 14. Schematic images of the tunnel. In the upper image, the inner black dotted 

line shows the theoretical excavation profile and the outer line shows the maximum pos-

sible cross-section of the tunnel assuming tolerances of 400 mm for the floor and 300 

mm for the wall and the roof. In the lower image, location of the deposition tunnel plug 

is shown. (Edited from Autio et al. 2013) 

The current reference material for backfill blocks is Friedland clay, originated from 

Germany, with the montmorillonite content of 30-38 %. The blocks are pressed using 

uniaxial compaction method which is described by Koskinen (2012). The compaction 

pressure in this method is determined prior to pressing and it is affected by grain size 

distribution and water content of the material. (Keto et al. 2013) 
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Material for the foundation layer and for the pellets consists of bentonite with the 

montmorillonite content of 75-90 %. An example for the foundation layer material is 

Minelco granules which will be compacted in situ. Water content of the material needs 

to be defined, for example by Proctor compaction tests, to achieve high density and thus 

provide a stable base for the blocks. For the pellets, an example of suitable material is 

Cebogel QSE pellets. Minelco granules and Cebogel QSE pellets are both originated 

from Milos, Greece. A possible manufacturing method for the pellets is extruding the 

raw material as cylindrical, rod-shaped pellets. (Autio et al. 2013; Keto et al. 2013) 

The current reference design for the tunnel plug includes a concrete dome, a watertight 

seal and a filter layer. This multi-component structure provides sufficient hydraulic iso-

lation capacity and structural strength. The main functions of the tunnel plug include: 

keeping the tunnel backfill in place and isolating the deposition tunnel hydraulically 

from the central tunnel. The operational lifetime requirement of the plug will end after 

the central tunnel has been backfilled. (Keto et al. 2013) 

Design specifications for the deposition tunnel components are based on performance 

targets and design requirements presented in Design Basis 2012 (Posiva 2012a). The 

design specifications are presented in Table 3. The limits for the montmorillonite con-

tent and dry density of the backfill materials are set so that the system is able to homog-

enize, self-heal and provide a hydraulic conductivity of <1*10
-10

 m/s. (Keto et al 2013) 

This value is the average hydraulic conductivity at the repository level of the Olkiluoto 

bedrock (Posiva 2012c). 

The worst-case scenario for the installation of backfill might be an inflow of water from 

a single flow path collecting water from several inflowing fractures located near each 

other. Probe holes are used for detecting leakages and if the leakages in a probe hole are 

over 0.2 l/min, pre-grouting will be done before the tunnel excavation. The maximum 

local fracture related inflow to a deposition tunnel is 0.25 l/min and if this limit is still 

exceeded after the grouting, post-grouting might be done. (Autio et al. 2013) The ex-

pected groundwater inflow conditions to open repository tunnels and deposition holes 

are presented by Autio et al. (2013) and by Keto et al. (2013). 

The main uncertainty in long-term backfill performance is homogenization of the sys-

tem. With sufficient block installation techniques and appropriate backfill component 

properties, the estimated initial state can be achieved. (Autio et al. 2013) 
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Table 3. Design specifications for the backfill and deposition tunnel end plug (Keto et 

al. 2013). 
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2.2.3 Buffer and backfill interaction 

The design boundary between the buffer and the backfill is presented in Figure 15. The 

buffer thickness above the canister is 2500 mm and there is a 400 mm gap between the 

uppermost block and the theoretical excavation line of the tunnel. The thickness of this 

gap varies depending on the level of the actual tunnel floor. The gap will be filled with a 

buffer type of block material. To facilitate the emplacement of the OL1, OL2 and OL3 

canisters, notched chamfers are made to the upper part of the deposition holes. These 

chamfers are also filled with the buffer type of block material. (Juvankoski et al. 2012) 

 
 

 
Figure 15. The design boundary between the buffer and the backfill for the LO1-2 (up-

per image) and OL1-3 (lower image) spent nuclear fuel canisters (Juvankoski et al. 

2012; Keto et al. 2013). 
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Swelling pressure of the buffer is higher than swelling pressure of the backfill, so it is 

expected that the buffer intrudes into the deposition tunnel. The magnitude of this verti-

cal displacement depends on various factors including the initial swelling pressure of 

the buffer, friction angle between the buffer and the rock, saturation state of the buffer 

and the backfill, and composition of the backfill. Swelling of the buffer into the backfill 

will end when a mechanical balance is reached between the buffer and the backfill. (Ke-

to et al. 2009) 

Consequently, one of the main requirements for the backfill is to limit swelling of the 

buffer into the backfill which decreases the density of the buffer. Decrease in the buffer 

density has various consequences including increase of the buffer permeability, increase 

of the microbiological activity and decrease of the mechanical strength. Increased per-

meability and microbiological activity may lead to canister corrosion and failure which 

further lead to migration of radionuclides through the buffer. Decrease of the mechani-

cal strength might lead to canister movements deteriorating the performance of the EBS. 

(Keto et al. 2009) 

A possible worst-case scenario concerning the upwards swelling of the buffer is when 

the buffer is fully saturated and the backfill is still unsaturated (Keto et al. 2009). There-

fore it is important that the backfill has rigidity to prevent the upwards swelling also in 

the unsaturated state.  

To decrease the upwards swelling the inflowing water should be distributed evenly and 

the swelling process should be controlled. In the current design the deposition tunnels 

are declined towards the central tunnel by 2 %. However, earlier saturation and possibly 

more even distribution of water in the backfill might occur if the inclination would be 

towards the rear portions of the tunnels which will be backfilled first. (Hansen et al. 

2010) 

Some modelling studies about the buffer and backfill interaction have been accom-

plished during recent years. Although modelling requires many assumptions and simpli-

fications, modelling can give new insight about the interaction. Based on some model-

ling studies (Börgesson & Hernelind 2009; Korkiala-Tanttu 2009; Toprak et al. 2013; 

Leoni 2013) it has been concluded that the vertical displacement of the buffer due to 

swelling will be in a range between 20 mm and 150 mm. This variance is a result, for 

instance, from different assumptions regarding the saturation state of the buffer and 

backfill. The supposed worst-case scenario with respect to upwards swelling of the 

buffer, where the buffer is completely saturated and the backfill is completely dry, has 

been used in many modelling studies to find the highest possible vertical displacement 

and also the highest reduction in the buffer density. 

As a result of the modelling, Korkiala-Tanttu (2009) found that the buffer density does 

not exceed the criterion of 1950 kg/m
3
 if the loosening of the buffer occurs evenly. Le-
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oni (2013) had a similar conclusion with a criterion of 1990 kg/m
3
 for the saturated den-

sity of the buffer above the canister. Börgesson & Hernelind (2009) found that the fric-

tion angle between the buffer and its surroundings has a strong influence on the up-

wards swelling. Other critical parameters for the upwards swelling were stiffness and 

swelling of the backfill. In a study by Toprak et al. (2013), thermal behavior of the can-

ister was modelled. They found that the maximum temperature in the interface of the 

canister and the buffer was 80°C and it was reached after 30 years. After 1000 years the 

model reached conditions at which both the canister and the buffer had the same tem-

perature which was about 42°C. Toprak et al. (2013) also found that the buffer space 

between the canister and the rock wall was fully saturated in less than 10 years if the 

rock permeability equaled 10
-18

 m
2
 and with the rock permeability of 10

-20
 m

2
 the full 

saturation was reached after 50 years. Vertical displacements of the buffer and backfill 

materials during 1000 years are shown in Figure 16. These FEM calculations were 

made by Toprak et al. (2013). 

 
Figure 16. Modelled vertical displacement (m) of the buffer and backfill system (Toprak 

et al. 2013). 

In a study by Åberg (2009) where full-scale buffer with reduced height was used to test 

effects of water inflow on the buffer, heaving of the bentonite rings were measured. In a 

test with MX-80 bentonite rings and with water inflow of 0.01 l/min, vertical displace-

ment of over 50 mm was measured in the uppermost ring after about 17 days (Figure 

17). More heaving occurred in the uppermost ring compared to the lowermost ring. Ab-
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sence of overburden pressure for the uppermost ring needs to be taken into account 

when considering the results. 

 
Figure 17. Vertical displacements of three different positions of the uppermost ring in 

the buffer test by Åberg (2009). 

Vertical displacement of a full-scale buffer in a time scale of almost ten years has been 

studied by Åkesson (2012) and Johannesson & Hagman (2013). Artificial wetting and 

heating with temperatures over 100 °C were used by Åkesson (2012) and as a result, 47 

mm of vertical displacement of the uppermost block was found (Figure 18). Vertical 

displacement of 176 mm of the uppermost block with no artificial wetting at a test depth 

of 450 m was found by Johannesson & Hagman (2013) (Figure 19).    

 
Figure 18. Contours of bentonite blocks at installation (blue lines) and at dismantling 

(red lines) of a full-scale deposition hole studied by Åkesson (2012). Absolute changes 

in height (red numbers) and relative changes in thickness (blue numbers) are shown for 

each block. The lower heater was surrounded by compacted MX-80 bentonite rings and 

the upper heater was surrounded by a composite barrier with a sand shield between the 

heater and the bentonite. The upper part of the gap between the bentonite and the rock 

wall was filled with pellets (MX-80) to seal the sand filling below. 
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Figure 19. Relative displacements of the upper surfaces of each block in the study by 

Johannesson & Hagman (2013) in which full-scale canisters were used. 

2.3 Bentonite 

2.3.1 Material properties 

Bentonite clay, a material with special properties, is used for many purposes in geotech-

nics. Bentonite is a soil material with a high content of swelling mineral. Usually this 

swelling mineral is montmorillonite which belongs to a smectite mineral group. The 

montmorillonite and other smectite minerals have an articulated layer structure. High-

quality bentonite normally contains over 80 % of montmorillonite. The remaining part 

of the bentonite may vary substantially in mineralogy and depends basically on the geo-

chemical conditions during the formation of the bentonite. Accessory minerals in ben-

tonites might include other clay minerals, quartz, feldspars, gypsum, prite, various ox-

ides/hydroxide, and also amorphous and organic compounds. (Karnland et al. 2006; 

Karnland 2010) A schematic image of bentonite microstructure is presented in Figure 

20. 
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Figure 20. Microstructure of bentonite under compaction (Wersin 2003, cited in Pasti-

na & Hellä 2006). 

Bentonite has the ability to absorb water accompanied by a large increase of volume 

(Ahonen et al. 2008). The wetting process, also called saturation, occurs when compact-

ed and unsaturated bentonite is in contact with water. Bentonite swells together with 

wetting due to penetration of water into the interlamellar space of montmorillonite. 

Faster wetting results in faster swelling of the bentonite. Wetting occurs when water 

invades pore spaces either as liquid or as vapor and water can also be transported bound 

to montmorillonite within the solid phase. The relative importance of these transport 

mechanisms might depend on conditions such as porosity and composition of the ben-

tonite and electrolyte content of the water involved. Suction and the surrounding water 

pressure are the most important driving forces for the bentonite wetting process. (Sane 

et al. 2013) Dry and wetted MX-80 bentonite pellets are shown in Figure 21. 
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Figure 21. Dry and wet MX-80 pellets in a test performed to study effects of water in-

flow on the buffer (Åberg 2009). 

Swelling pressure of the bentonite is affected by density, degree of saturation, water 

salinity, type of adsorbed cation in montmorillonite, montmorillonite content and degree 

of cementation. The swelling pressure increases with increasing density and decreasing 

salt concentration. The effect of the salt concentration is relatively small at high densi-

ties. At very low densities the effect on the swelling pressure can be deleterious. (Pasti-

na & Hellä 2006) The effect of the increasing density and decreasing salt concentration 

on the swelling pressure is shown in Figure 22. A comparison of swelling pressures 

between different bentonite types, sodium (MX-80) and calcium (Milos), is also shown 

in Figure 22. At saturated densities over 1800 kg/m
3
, swelling pressures of calcium and 

sodium bentonite are similar. Thus, at high densities the swelling pressure is relatively 

independent of the adsorbed ion if montmorillonite contents are equal. At lower densi-

ties the swelling pressure is lower in calcium bentonite. (SKB 2004) 
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Figure 22. Swelling pressures of MX-80 bentonite (upper) and Milos bentonite (lower) 

at different densities and molar concentrations of NaCl (for MX-80) and CaCl2 (for 

Milos) (SKB 2004). 

2.3.2 Bentonite in nuclear waste disposal 

Bentonite is a crucial part of the engineered barrier system, securing the long-term safe-

ty of the final disposal. Bentonite is used as a buffer material surrounding the canister, 

and also as a material for backfilling the deposition tunnels. Bentonite has several prop-

erties supporting its usage as the buffer and backfill material: high swelling pressure, 

low hydraulic conductivity, retardation capacity and plastic behavior. (Ahonen et al. 

2008) The swelling of the bentonite is essential to protect the canister from minor rock 

displacements and in case of a release, slow down the transport of radionuclides. Devel-

opment of swelling pressure along with water saturation is important also for dissipating 

the heat from the canister. Artificial wetting could be an option to shorten the time to 

reach the desired swelling pressure. (Pastina & Hellä 2006) Based on the results from a 

small-scale buffer material study by Holt et al. (2011), artificial wetting could potential-

ly induce rapid and homogeneous swelling of the buffer bentonite. 
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The swelling of the bentonite is important also for sealing water channels and thus pre-

venting circulation of the water and erosion of the bentonite. The erosion of the benton-

ite by flowing groundwater is a process called mechanical erosion. During the opera-

tional phase of the repository, high groundwater pressure gradients in the open excava-

tions might cause erosion. Consequences of the erosion might include: reduced density 

of the bentonite, reduced swelling pressure, accessibility of the canister surfaces to sul-

fides which increases the copper corrosion rate, and transport of radionuclides in case of 

an accidental release. (Pastina & Hellä 2006) To avoid erosion, maximum allowable 

inflow of 0.1 l/min to the deposition hole has been set as rock suitability criteria (Posiva 

2010). 

There are different factors affecting the bentonite erosion. A summary of small-scale 

erosion studies is presented in Current Status of Mechanical Erosion Studies of Benton-

ite Buffer by Sane et al. (2013). Based on the small-scale erosion studies, effective 

montmorillonite dry density (EMDD) correlates well with erosion rates. Higher EMDD 

increases erosion. Optimal water ratio is needed to achieve optimal compaction density 

and proper erosion resistance. Too high and too low water ratio increases the erosion 

which is attributed to slaking (very fast mass detachment occurring when dry bentonite 

interacts with solution) and also to generally decreased cohesion forces keeping the ma-

terial intact. The erosion is affected also by montmorillonite content and salinity. Higher 

erosion rates have been found with lower montmorillonite content and higher salinity. 

The effect of the salinity on the erosion is stronger in early phases. The effect of the 

salinity is also non-linear. (Sane et al. 2013) 

In a study by Pintado et al. (2013), early saturation behavior of a small-scale buffer sys-

tem (Figure 23) was investigated. Water inflow rate of 0.1 l/min was used. Sampling of 

outflowing water for erosion rate was performed at regular intervals. With salinities 

ranging from tap water (0.0315 g/l) to 35 g/l, the accumulated erosion after 2000 hours 

was approximately three times larger with the salinity of 35 g/l compared to the tap wa-

ter. Concentrations of the eroded bentonite during the tests are presented in Figure 24. 
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Figure 23. Test cylinder comprised of a PVC cylinder fitted with plastic pistons at the 

bottom and top. The diameter of the test cell was 269 mm and the height was 800 mm. 

Flow inlet and outlet ports (inner diameter 6 mm) were found at the bottom and top of 

the test cylinder, respectively. (Pintado et al. 2013) 

 
 

 Figure 24. Eroded bentonite concentrations (g/l) in tests with the small-scale buffer 

system. The samples were taken from outflowing water at regular intervals. Salinity of 

inflowing water in the test 1 was 0.0315 g/l (upper graph) and in the test 2 it was 35 g/l 

(lower graph). (Pintado et al. 2013)  
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Excessively high groundwater flows and inadequate compaction may result in for-

mation of water channels which is called piping erosion (Pastina & Hellä 2006). The 

occurrence of the piping might depend on variables including groundwater salinity, 

flow rate and pressure head (Sane et al. 2013).  

The ability of the bentonite to swell is crucial for the piping erosion. Swelling material 

like bentonite has a tendency to push itself into the channel. The channel will close if 

the swelling is strong and the water flow is low enough. It is expected that erosion oc-

curs in a piping channel with a constant water flow when the bentonite swells towards 

the channel. In the EBS, containing both bentonite blocks and pellets, the initial creation 

of the piping channels occurs at the pellet filling due to the large air volume between the 

pellets and absence of swelling pressure to oppose piping. Under the worst-case condi-

tions with large point-like inflows to the deposition holes, the filling of the void spaces 

is estimated to require some tens of years. After a deposition tunnel is sealed and the 

void spaces are filled with groundwater, it is expected that the piping erosion process 

ends due to equal overall pressure between the water in the EBS and the surrounding 

groundwater. (Sane et al. 2013) A possible worst-case condition for the piping erosion 

in the buffer is presented in Figure 25. 

 
Figure 25. A schematic presentation of a worst-case piping erosion for the buffer where 

the groundwater flow transports bentonite from the deposition hole into the deposition 

tunnel (Edited from Sane et al. 2013). 

In the small-scale buffer system test by Pintado et al. (2013), with the inflow rate of 0.1 

l/min, water flow channels were continuously observed at the sample/test cylinder inter-

face (Figure 26). In addition, no significant resistance to water inlet pressure was ob-

served which indicated that flow pathways in the buffer system remained open. In the 

full-scale buffer test with the reduced height by Åberg (2009) it was concluded that ben-

tonite pellets do not have the ability to seal water pathways if there is a continuous in-

flow of water (Figure 27). 
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Figure 26. Water flow channels visible at the sample/test cylinder interface of the 

small-scale buffer system study by Pintado et al (2013). 

 
Figure 27. Water channels in the test with the full-scale buffer with the reduced height 

(Åberg 2009). 
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3. EXPERIMENT 

This 1/6 scale experiment was carried out to get a  new insight of the bentonite behavior 

in the initial phase of the final disposal, after the bentonite blocks and pellets have been 

installed and natural or artificial wetting of the bentonite begins. In the experiment, 

buffer and backfill components were both included to investigate their interaction. This 

experiment gave data about the scale effect and with the use of the small-scale test sys-

tem the test was less time-consuming and less expensive. However, small-scale test 

probably do not simulate full-scale situations perfectly. Despite the smaller scale the 

pellet layer thicknesses nearly corresponded to the full-scale buffer and backfill, making 

the erosion behavior and possible formation of water channels possibly similar com-

pared to larger scale systems. The main interests in the experiment were water distribu-

tion, flow channels, swelling of the bentonite, erosion of the bentonite, and the interface 

and the interaction between the buffer and the backfill. The buffer system used in this 

test was similar to the buffer system used in the test series performed by Pintado et al. 

(2013).  

The 1/6 scale test system simulated a vertical deposition hole and a horizontal deposi-

tion tunnel that were filled with bentonite blocks and pellets. No canister or heating sys-

tem was included in this experiment. Saline water flowed through the test system and 

samples were taken from the outflowing water for erosion and outflow rate analyses. 

Swelling of the bentonite was monitored and follow up of wetting of the bentonite was 

performed through the partly transparent test system. After the test was stopped, sam-

ples were taken for water content and density analyses. Visual observations of the wet-

ting and water channels were done during the dismantling. Also, a vertical displacement 

of the buffer was investigated.  

The test was initiated on May 5, 2015, and it was stopped on July 6, 2015, when the 

sampling and dismantling work started. Duration of the test was 62 days corresponding 

to approximately 1448 hours. 

3.1 Test equipment 

3.1.1 Tunnel and tube 

For this project, new laboratory test equipment was manufactured in 2014 at about 1/6 

scale dimensions of the deposition area planned in Olkiluoto. The test equipment was 

composed of two main parts, the tunnel and the deposition hole simulating tube. Dimen-

sions of the tunnel and the tube were based on the deposition hole designed for the nu-
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clear waste produced by OL1 and OL2. The tunnel, about 3400 mm in length, 760 mm 

in height and 650 mm in width, was manufactured from stainless steel. Steel was used 

due to internal swelling pressure of the tunnel. FEM calculations were used in the de-

sign. The tunnel was also equipped with polycarbonate windows, covering about 40 % 

of the tunnel walls. The tube was manufactured from transparent PVC. The inner di-

ameter of the tube was 269 mm, outer diameter 280 mm and height 950 mm. The tube 

was connected into the bottom of the Middle unit. The tunnel was lying on a steel frame 

whose adjustability was utilized to set the tunnel to horizontal position. There were 

three overflow basins (1500 mm x 1500 mm x 400 mm) under the test system for possi-

ble leaking of the system. The basins were made from stainless steel and they were con-

nected to the drainage system by a hose. The tunnel, the tube, the tunnel support frame 

and the overflow basins are shown in Figure 28. More precise dimensions of the test 

equipment are presented in Appendix 1. 

 

 

 
Figure 28. Schematic view of the test equipment with overflow basins (left), and a photo 

of the test equipment (right).  

3.1.2 Water flow system 

Water solution simulating Olkiluoto’s groundwater flowed through the test equipment. 

The water was stored in two 2500 liter tanks from where the water was delivered to a 

pump unit which had its own water reservoir of about 200 liters. The pump unit operat-

ed as a screw pump and it was controlled by an AC drive. The pump unit had internal 

measurements of water flow and counter pressure which were constantly monitored and 

used as controlling parameters of the pump. The maximum allowed counter pressure of 

the pump was 500 kPa. The pump was set to supply water into the test equipment at a 

constant rate of 0.1 l/min which is the maximum rate of inflow to the deposition hole 

according to the rock suitability criteria, presented by Posiva (2012a). The rate of the 

water inflow was constantly monitored. Water inlet located in the tube, 150 mm above 

the bottom of the tube. A scheme of the water flow system is presented in Figure 29 and 

photos of the water inflow system are shown in Figure 30. 

South unit 

Middle unit 

North unit 
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Figure 29. A schematic view of the water flow system where blue lines indicate the wa-

ter flow, red dashed lines indicate an automatic switch off system of the pump, and 

black lines indicate a controlling system of the pump unit and an automatic sampler. 

 

 

  

 

 

 
Figure 30. Different parts of the water inflow system: a) two water tanks, b) the pump 

unit, c) the water inlet connected to the tube. 

a) 

b) c) 



35 

The tunnel was equipped with eight open outlets for the outflowing water and solid ma-

terial. Four of these outlets were in the North unit and four in the South unit. Locations 

of the outlets are shown in Appendix 2 in which also labelling of the tunnel windows is 

presented. All eight outlet pipes were channeled towards a collecting pipe which was 

located in the North end of the tunnel. The collecting pipe was channeled past an auto-

matic sampler which took a seven minute sample from the outflowing water in four or 

five hour intervals. Outside the sampling time the outflowing water went through a 

three chamber sedimentation basin where eroded bentonite was separated from the wa-

ter. Before disposal to the sewer the water was diluted with tap water in a dilution unit. 

Photos of the parts of the outflow system are presented in Figure 31. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 31. The outflow system: a) two outlets in the North unit (ITCN5 and ITCN6), b) 

the collecting pipe, c) a branch in the outflow pipe where the water was directed either 

to the automatic sampler or to the sedimentation basin, d) the automatic sampler with a 

collar for 16 beakers, e), f) the sedimentation basin, g) the dilution unit, h) the sewer.  

3.1.3 Instrumentation 

Swelling of the bentonite was monitored with different instruments. Strain gauges 

(Kyowa, KFG-5-120-C1-11L1M2R), total pressure sensors (Tokyo Sokki Kenkyujo’s 

KDE-PA Soil Pressure Gauges) and dial gauges were installed for the swelling pressure 

monitoring. These instruments were mainly used for safety aspects by setting maximum 

limits for the stresses. To the outer surface of the tunnel, 22 strain gauges and two dial 

gauges were attached. Four total pressure sensors were installed into the tunnel: above 

the tube against the bottom of a tunnel backfill block (1), above the tube on the top pel-

let layer of the tunnel (2), in the center of the North end (3), and in the center of the 

South end (4). Total pressure sensors 1 and 2 were positioned horizontally and sensors 3 

and 4 vertically. On the outer surface of the tube there were eight strain gauges attached 

to measure radial stress in the tube. There was also a force transducer (Utilcell load cell 

M750) under the tube to measure axial stress in the tube. Locations of the strain gauges 

a) b) c) d) 

e) f) g) h) 
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and the dial gauges are presented in Appendix 2. Photos of some of the gauges and sen-

sors are shown in Figure 32. 

 

 

 
   

 

 

 
Figure 32. Some parts of the test system instrumentation: a) strain gauges on the outer 

surface of the tube (SBN1 and SBN2), b) strain gauges (STAM1 and STAM2) and a dial 

gauge in the Middle unit of the tunnel in the A-side, c) strain gauges in the South end of 

the tunnel (STSE1, STSE2 and STSE12), d) pressure sensor on the top pellet layer of the 

Middle unit. 

Collection of the measured data by the gauges and sensors was managed by a data log-

ger (DataTaker DT85G-3, see Figure 33a). The data was automatically stored by a NAS 

server (Linkstation 220 4T Networked Access Server). The data was collected in five 

second intervals and it was observable from the data logger’s web server (Figure 33c).  

Alarm events were connected to 14 channels of the data logger (Pump counter pressure, 

STAM1, STAN1, STAS1, STBM1, STBN1, STBS1, STCM1, STCN1, STCS1, STNE1, 

STNE2, STSE1, and STSE2). The pump counter pressure was set to log an alarm in a 

pressure of 190 kPa. Exceeding a maximum limit pressure of 200 kPa was set to induce 

a shutdown of the pump. Strain gauges connected to the alarm system (listed above) had 

a maximum limit stress of 250 kPa and exceeding this limit was set to shut down the 

pump. In an alarm situation a SMS message was programmed to be sent to a person 

involved in the test. The limit stress of 250 kPa was set for safety reasons and it was 

based on a yield point of the tunnel material and results of a pressure test which is de-

scribed later in the text. Placement of the strain gauges to the middle parts of the tunnel 

units was based on the FEM calculations done before test. 

a) 

c) d) 

b) 
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Also, possible leakage of the test system was monitored with an alarm system. Two 

open conductors were used for detecting the leakage, and with a NetBiter EC220 com-

munication gateway, SMS message was sent. Conductors for the leakage detection were 

located in the overflow basins and under the automatic sampler (see Figure 29). 

The automatic sampler was operated by a motor drive which was controlled by a cus-

tom LabVIEW 2014 program used by a PC. A relay module controlled magnetic valves 

(Figure 33d) which directed the outflowing water either to the automatic sampler or to 

the sedimentation basin. Ultrasonic sensor measured the water level in a beaker when 

sampling was under way. 

Two types of video cameras were used in the test. Two recording cameras (Brinno 

TLC200 Pro, see Figure 33e) were installed to take images in one minute intervals. This 

enabled to make a time lapse video of bentonite wetting and development of water 

channels. Also, a surveillance IP-camera (Milesight MS-3366, see Figure 33f) was in-

stalled to give an overall view of the test equipment, video image being accessible from 

the web browser. 

 

 

 

 

 
 

 

 

 

 

 

Figure 33.  Parts of the test system instrumentation: a), b) parts of the data logger sys-

tem, c) a view from the data logger’s web server in the laboratory’s PC, d) magnetic 

valves controlling the water flow either to the automatic sampler or to the sedimenta-

tion basin, e) a time lapse camera, f) the IP camera pointed by a red arrow. 

Before the start of the test, functioning of the test equipment, the gauges and the sensors 

were checked in a water pressure test. Also, the calibration of the instrumentation was 

done by the pressure test. In the pressure test, tap water was supplied into the test 

equipment. Pressure inside the tunnel was increased to a maximum value of 220 kPa 

while possible leaks from the equipment were detected and the strains were followed. 

Maximum relative strain of the tunnel was specified (0.15 %) to prevent permanent de-

formations of the steel tunnel. In a case of leaking, bolts of the tunnel lids were tight-

ened. 

f) e) d) 

c) b) a) 
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3.2 Materials 

Bentonite blocks and pellets were used to fill the tube and the tunnel (Figure 34a-d). 

The blocks and the pellets arrived to a VTT’s Research Hall one month before the start 

of the test and they were stored in climate rooms with a relative humidity of 65 % and a 

temperature of 20 °C. Most of the blocks had small defects in their edges (Figure 34e-f). 

 

 

 

 

 
     

 

 

 

 

 
Figure 34. Bentonite materials used in the test: a) buffer blocks (MX-80), b) pillow 

shaped buffer pellets (MX-80), c) tunnel backfill blocks (Ibeco RWC BF), d) extruded 

tunnel pellets (Cebogel), e) defect in the edge of a tunnel backfill block, f) defect on the 

top of a tube buffer block due to machining. 

3.2.1 Tube 

MX-80 bentonite was used as the buffer block and pellet material. Four cylindrical 

blocks, manufactured by isostatic compression of 100 MPa, were installed into the tube 

(Figure 35). A 50 mm gap between the blocks and the inner surface of the tube was 

filled with pillow shaped pellets, manufactured by roller compaction. Each block was 

weighed and the dimensions were measured before the installation.  

b) 

e) c) a) 

d) f) 
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Figure 35.  The buffer blocks were installed into the tube by straps and they were cen-

tered with the help of custom-made wooden sticks. The blocks and the pellets were in-

stalled in turns so the pellets stabilized the blocks that were already in the tube. The 

level of the top of the uppermost block was 30 mm below the tunnel floor level. 

Bulk density, dry density and water content of the tube materials are presented in Table 

4. For the blocks, these properties were analyzed from an extra block not used in this 

experiment. Weights and dimensions of the buffer blocks are presented in Appendix 3. 

Table 4. Properties of the buffer materials. 

Material Bulk density (kg/m
3
) Dry density (kg/m

3
) Water content (%) 

Blocks (MX-80) 2051 1768 16,0 

Pellets (MX-80) 1078 925 16,6 

3.2.2 Tunnel 

The tunnel was filled with six Ibeco RWC BF backfill blocks and Cebogel QSE pellets 

(Figure 36). The blocks were manufactured by uniaxial compression and the pellets by 

extruding. The blocks were weighed and their dimensions were measured before they 

were installed. Approximately 37 % of the tunnel volume was filled with the blocks and 

63 % with the pellets. 
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 Figure 36. The floor of the tunnel was filled with a 95 mm thick pellet layer and six 

backfill blocks were installed into the tunnel with a vacuum lifting device. After the 

blocks were installed, the rest of the tunnel was filled with the pellets.   

Bulk density, dry density and water content of the materials are presented in Table 5. 

For the backfill blocks, these properties were the averages of the six blocks used. 

Weights and dimensions of the tunnel backfill blocks are presented in Appendix 3. 

Table 5. Properties of the tunnel materials. 

Material Bulk density (kg/m
3
) Dry density (kg/m

3
) Water content (%) 

Blocks (Ibeco RWC BF) 2041 1760 16,0 

Pellets (Cebogel) 1119 936 19,5 

3.2.3 Water solution 

For the experiment, water solution was prepared into two water tanks before the test. 

The solution consisted of tap water, sodium chloride and calcium chloride. The salinity 

of the water solution was 10 g/kg and Na/Ca relation was 2. Properties of the solution 

are presented in Table 6. 

Table 6. Properties of the artificial groundwater solution. 

 Tap water (%) NaCl (%) CaCl2 (%) Salinity (%) Na/Ca 

Water solution 99,0 0,65 0,35 1,00 2,00 
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3.3 Test implementation 

There were different routines during the test. Every working day, different checks were 

done: function of the test system, pressure values, inflow rate of the pump and water 

consumption. Also, samples from the outflowing were taken and photos were taken 

from the tube and the tunnel to investigate the wetting of the system as well as devel-

opment of possible water channels. All observations were documented. 

Samples from the outflowing water were analyzed every working day. The samples 

were collected with the automatic sampler generally at four hour intervals. In the week-

ends the sampling interval was five hours but in the first two days, the sampling interval 

was occasionally one or two hours. The sampling time was seven minutes throughout 

the test. The beakers containing water samples were weighed and placed into an oven 

(120 °C) for evaporation. The automatic sampler was then refilled with weighed and 

labelled empty beakers, and the automatic sampler was restarted. First sample after fill-

ing and restarting of the sampler was collected immediately, thus making the sampling 

interval to be less than four hours. The samples were held in the oven for four days after 

which they were weighed to define the dry material content and the outflow rate of the 

water. The beakers were washed in a dish washer before reusing them. In the automatic 

sampler there were three additional beakers filled with the water solution. These sam-

ples were weighed every working day to determine the evaporation of the water inside 

the automatic sampler. The average evaporation of the three additional water samples 

was used for determining the volume of the samples collected from the outflowing wa-

ter, right after the collection.   

Of the two water tanks used in the test, only one was in use at a time. The water inlet 

was switched between the tanks before the water ran out from the tank that was in use. 

New water solution was then prepared into the emptied tank. One pump was installed 

into the bottom of both tanks to mix the water solution after filling the tank with a new 

water solution. Salinity of the water in the tank in use was determined for reference in 

ten days intervals on average. The determination was done by drying a sample in the 

oven.   

In the 59
th

 day, three days before the end of the test, a tracer was added into the water 

tank that was in use. This was done to color the inflowing water and thus enable to 

make observations of the water flow paths inside the test system. The tracer was Erio-

glaucine disodium salt and it was used 0.005 g/l. 

After ending the test, the tunnel and the tube were dismantled from the bentonite. Dur-

ing the dismantling, a large amount of block and pellet samples were taken. The sam-

ples were analyzed for density and water content. 
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3.4 Sampling and dismantling 

3.4.1 Progression of the sampling and dismantling work 

The sampling and dismantling work started after the pump unit was switched off and 

the water inlet valve connected to the tube was closed. Also the outlet pipes were dis-

connected from the tunnel. The automatic sampler was disconnected and removed from 

the test area. 

The work was done in two phases: first the tunnel, then the tube right after. Work in the 

tunnel was done in three phases: North, Middle and South units, respectively. To pre-

vent drying of the bentonite inside the tunnel, a plywood board was placed on the top of 

the tunnel when the work paused. 

In each tunnel unit, the work advanced from the top to the bottom. After removing the 

lid of a unit (Figure 37), top layer (B-side) pellet samples were taken. Some of the pel-

lets were attached to the lid as shown in Figure 37. After the top layer of the pellets was 

removed, block samples were taken and then those blocks were dismantled and pellet 

samples from the sides (A-, C-, N- and E-sides) were taken. Lastly, pellet samples from 

the bottom of the tunnel (D-side) were taken. Locations of the tunnel pellet and backfill 

block samples are presented in Appendix 4 and 5. From the bottom layer of the tunnel, 

nine additional samples were taken above the buffer. These samples contained the ap-

proximately 100 mm thick tunnel bottom pellet layer and also a part from the uppermost 

buffer block or pellet. Locations of these samples are presented in Appendix 6. All of 

the pellet and the backfill block samples were packed in vacuum bags and labelled right 

after the sampling. 

 

 

 
Figure 37. Lifting the North unit lid with a hoist after unscrewing (a) and placing the 

lid on a pallet (b). 

After finishing the tunnel sampling, the interface between the backfill in the tunnel and 

the buffer in the tube was investigated closely. After that, the tube was disconnected 

from the tunnel (Figure 38) and taken to a specific room for sampling.  

a) b) 
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Figure 38. Disconnecting the tube. 

3.4.2 Working techniques and tools 

In the tunnel most of the backfill block samples were taken by drilling. Some samples 

were taken by using a chipping hammer and a chain saw. Progress of the drilling work 

is presented in Figure 39. The drilling from the top of the backfill block was done in 

two phases, due to the limited length of the drill. First, about 300 mm long drilled sam-

ple (diameter of 75 mm) was taken and then the bottom part was drilled with an exten-

sion. 

 

 

 
   

 

 

 
Figure 39. Backfill block drilling. 
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From every tunnel pellet sample location, two samples were taken: one close to a win-

dow and one close to a block. Samples close to the blocks (Figure 40) were taken with 

an iron pipe (75 mm diameter) that was pushed into the pellet layer manually, possibly 

using an iron bar if more force was required.  

 

 

 

  

 

 

Figure 40. Pellet samples close to the blocks were taken by using an iron pipe (a), and 

custom-built instruments (b) were used to take the samples (c) out from the pipe.  

 

 

 

 

 

 

 

 

 

c) 

b) a) 
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Pellet samples close to the windows were taken with a plastic pipe (35 mm diameter) 

that was pushed into the pellet layer manually (Figure 41). This was usually done three 

times in every sample location to get a big enough sample size.  

 

 

 
   

 

 

 

Figure 41. A plastic pipe (a) was used to take samples close to the windows (b), and 

custom-built instruments (c) were used to take the samples (d) out from the pipe.  

 

 

 

 

 

 

 

 

 

 

c) d) 

b) a) 
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Together with the sampling, the backfill blocks and pellets were dismantled and re-

moved from the tunnel (Figure 42). A chipping hammer was the most used tool during 

the dismantling, especially with the backfill blocks. A plastic spatula was used close to 

the windows to prevent scratching them. Scoops and a vacuum cleaner were used to 

remove the material from the tunnel. In most parts of the tunnel, the block and the pellet 

materials were attached to each other due to wetting. Block material near its interface 

with the pellets was removed carefully. Usually a saw blade was used, and a thin layer 

of the backfill block material was left on the surface of the pellet layer to prevent dis-

turbing the pellet material before sampling of the pellet layer. During the dismantling 

observations were made about wetting, block cracks and water flow paths.  

 

 

 
   

 

 

 
Figure 42. Different tools were used during the dismantling: a) a chipping hammer, b) 

a saw blade, c) a trowel. In d) is shown the top of the bottom pellet layer in the Middle 

unit and a pressure sensor in the center of the unit. 

 

 

 

 

 

c) 

b) a) 

d) 
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Some cracks were found from the backfill blocks during the dismantling work which 

may have been partly due to the drilling work (Figure 43). Most of the cracks were 

found from the backfill blocks 3 and 4 (block labelling is presented in Appendix 5). 

There were cracks especially in the area above the buffer, in the bottom parts of the 

backfill blocks 3 and 4. In the North unit, in the backfill blocks 5 and 6, cracks were 

found from the drilled samples. Also, during the dismantling the backfill block 6 was 

found to have a long vertical crack in a direction from A-side to C-side. In the South 

unit, in the backfill blocks 1 and 2, no significant cracks were found. 

 

 

 
   

 
Figure 43. Backfill block cracks were found during the dismantling work: a) the back-

fill block 4 and its interface with the backfill block 3, b) drilled sample from the backfill 

block 6 next to the North end, c) drilled sample from the backfill block 3 which was 

above the buffer. The bottom side of the sample is on the left.   

 

 

 

 

 

 

a) b) 

c) 
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For the buffer sampling, the tube was placed on a pallet. The same drilling machine was 

used than in the backfill block sampling. However, a different drill bit was first used to 

remove the plastic cover of the tube to not damage the diamond drill bit that was used 

for the bentonite drilling. Inner diameter of the drill for the buffer was 50 mm. Progres-

sion of the work is presented in Figure 44 and the sample locations are presented in Ap-

pendix 7. Because of the wet pellet layer in the buffer, some problems occurred in the 

beginning of the sampling with the function of the drilling machine. Because of that a 

custom-built plastic pipe was taken in use to remove the pellet part of the sample before 

drilling the block part.  

 

 

 
   

 

 

 
Figure 44. Buffer sampling phases: a) removing the plastic cover, b), c) sample drill-

ing, d) a drilled sample.  

3.5 Sample analyses 

From the samples, water content, dry density, bulk density and saturation degree were 

analyzed. Some treatments were done for the samples before analyzing them. Cutting of 

the samples was done with a knife or a normal saw depending on the hardness of the 

sample. During the analyses, all the samples were labelled unambiguously. 

The tunnel pellet samples were divided into three equally sized pieces. Two of the piec-

es were used for the water content analysis, using an average of the results. The third 

piece was used for the density analysis. Nine samples taken from above the buffer, con-

tained 10-20 mm buffer block material and 20-40 mm tunnel pellet material. These 

samples were cut from the interface of the two materials. The tunnel backfill block 

b) a) 

d) c) 
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samples taken by drilling were sawed from their both ends to five 20 mm thick slices. 

The drilled samples taken from the buffer were sawed into 20-30 mm slices, in which 

one sawing was in the interface of the buffer and the backfill block material. 

3.5.1 Water content 

Water content was analyzed according to the standard EN 1097-5:2008. Tests for me-

chanical and physical properties of aggregates – Part 5: Determination of the water 

content by drying in a ventilated oven. Samples were weighed before and after they 

were placed into an oven (105°C) for 48 hours (72 hours in weekends). Small metal 

plates were used under the samples (Figure 45). After taking the dried samples out from 

the oven, the samples were held in the room temperature for 3-5 minutes before weigh-

ing them.   

 

 

 
Figure 45. For water content analyses, samples was weighed (a) and dried in the oven 

(b). 

Water mass (𝑚𝑤𝑎𝑡𝑒𝑟) of a sample was the difference between the weight of the wet and 

the dried (𝑚𝑑𝑟𝑦) sample. The water content (𝑤) was calculated in the following way:  

 𝑤 =
𝑚𝑤𝑎𝑡𝑒𝑟

𝑚𝑑𝑟𝑦
 (1) 

3.5.2 Density and saturation degree 

For the density analyses, water immersion method was used. The analyses were per-

formed following the principles of the standard SFS-EN 12697-6: Bituminous mixtures. 

Test methods for hot mix asphalt. Part 6: Determination of bulk density of bituminous 

specimens. Compared to the standard, the samples were put in vacuum bags. In the wa-

ter immersion method, which is based on the Archimedes principle, the samples were 

weighed in the air (𝑚𝑎) and in the water (𝑚𝑤) (Figure 46).  

a) b) 
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Figure 46. For density analyses, samples were weighed in the air (a) and in the water 

(b).  

In the water immersion method, samples were put in vacuum bags whose weight 

(𝑚𝑏𝑎𝑔) and density (𝜌𝑏𝑎𝑔=1.05 g/cm
3
) were measured. Water density value (𝜌𝑤𝑎𝑡𝑒𝑟) in 

the prevailing water temperature was used. Bulk density (𝜌𝑏𝑢𝑙𝑘) of a sample was calcu-

lated by dividing the mass (𝑚𝑠) of the sample by the volume (𝑉𝑠) of the sample: 

 𝜌𝑏𝑢𝑙𝑘 =
𝑚𝑠

𝑉𝑠
, 𝑤ℎ𝑒𝑟𝑒 𝑉𝑠 =

𝑚𝑎 − 𝑚𝑤

𝜌𝑤𝑎𝑡𝑒𝑟
−

𝑚𝑏𝑎𝑔

𝜌𝑏𝑎𝑔
 (2) 

Dry density (𝜌𝑑𝑟𝑦) was calculated in the following way: 

 𝜌𝑑𝑟𝑦 =
𝜌𝑏𝑢𝑙𝑘

(1 + 𝑤)
 (3) 

For the calculation of saturation degree (𝑆𝑟) and porosity (∅), grain density (𝜌𝑠𝑜𝑙𝑖𝑑𝑠) of 

the bentonite material was assumed to be 2780 kg/m
3
 (Karnland 2010). Equations for 

the calculations were the following: 

 𝑆𝑟 =
𝑤

𝜌𝑤𝑎𝑡𝑒𝑟⁄

1
𝜌𝑑𝑟𝑦

⁄ − 1
𝜌𝑠𝑜𝑙𝑖𝑑𝑠

⁄
 (4) 

 

 ∅ = 1 −
𝜌𝑑𝑟𝑦

𝜌𝑠𝑜𝑙𝑖𝑑𝑠
 (5) 

 

a) b) 
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4. RESULTS 

A malfunction of the pump occurred during the test. Despite adjusting the pump settings 

during the test, the inflow rate decreased below the desired 0.1 l/min. The effect of the 

pump malfunction can be seen from the water outflow rate which is presented in chapter 

4.3. The decreased water flow rate needs to be taken into account when considering the 

results. Also, a pause in the water supply while adding the tracer, on the 59
th

 day, had a 

remarkable effect on the progression of the last few days of the experiment. 

4.1 Wetting 

Dry buffer pellets in the tube before the start of the water supply on May 5, 2015, at 

11:05 are shown in Figure 47a. With a steady water flow rate of 0.1 l/min the water was 

seen in the tunnel bottom in less than two hours. Water channels were formed immedi-

ately in the beginning of the test (Figure 47b). Water paths were visible above the inlet 

during the whole test. Some paths disappeared after the first days. A photo taken after 

one month is shown in Figure 47c where a water path can be seen with a dark color 

which probably originated from a broken rubber component of the pump.  

 

 

 

 

 
Figure 47. Photos of the tube at different times: a) May 5, 2015, at 11:08 b) May 5, at 

13:29 c) June 8. 

b) 

a) 

c) 
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Observations of the wetting of the tunnel during the test were done through the tunnel 

windows from where the outer parts of the pellet layers could be seen. The wetting of 

the tunnel pellets began soon after the water supply started. After about one hour and 

forty minutes, about 1/4 of the windows TDN3/4 and TDS3/4 (Figure 48a) were wet. 

Ten minutes later about 3/4 of these windows were wet (Figure 48b). Also, pellets seen 

through the windows TDS1/2 and TDN1/2 had started to get wet. The bottom (D-side) 

of the Middle unit was almost completely wet in a few hours. The bottom of the North 

unit started to get wet before the South unit. 

 

 

 
Figure 48. Wetting of the window TDS3/4: a) May 5, at 13:45 b) May 5, at 13:50. The 

window located in the bottom of the Middle unit, south from the tube. 

After about six hours, wet pellets were seen in the C-side of the Middle unit (Figure 

49a). After 24 hours, the bottom of the North unit was almost completely wet and wet-

ting in the A- and the C-side had proceeded (Figure 49b). Also, half of the North end 

from the bottom was wet. 

 

 

 Figure 49. Window TCS11 in May 5, at 17:30 (a) and A-side of the Middle unit in May 

6, at 12:18 (b). 

After two days, the Middle unit and the North unit were almost completely wet. Also, 

half of the bottom and some of the A-side of the South unit were wet. After six days, the 

South unit was almost completely wet except from the top (B-side) where only a small 

part of the pellet layer was wet. Most of the B-side and also small parts of the A- and 

the C-side of the South unit remained dry until the pause in the water supply three days 

before the end of the test. After this, the A- and the C-side of the South unit got com-

a) b) 

b) a) 
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pletely wet and also the top of the South unit got wetter (Figure 50). Development of the 

water distribution in the tunnel is visualizes in Figure 51.  

 

 

 Figure 50. The A-side of the South unit before and after the pause in the water supply: 

a) July 3 b) July 6. 

b) a) 
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Figure 51. Development of the water distribution in the tunnel. Each color represents 

wetted tunnel pellets found at dates and times listed above. 
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Some water paths were seen through the tunnel windows during the test. A water path 

in the window TDN33 was seen throughout the test (Figure 52). Also, water paths were 

seen during the first days of the test in the windows TDN43, TCN24 and TCN34. Dur-

ing the last three days of test, new water paths had formed in the A-side of the South 

unit. 

 Figure 52. A water path in the window TDN33. 

Water outflow from the tunnel via the outlets started after one day when drops of water 

were found in the ITAN6 outlet which was located in the A-side of the North unit. After 

two days, water had started to flow out via the ITCN6 outlet which was located in the 

C-side of the North unit. Water flowed out only via the ITCN6 outlet until the pause in 

the water supply three days before ending the test after which water flowed out only via 

the ITAS6 outlet which was located in the A-side of the South unit. In the sixth day, a 

burst of eroded bentonite occurred which blocked the pipes of the collecting system 

(Figure 53). 

 

 

 
Figure 53. Burst of bentonite caused blockages in the outflow pipes. 

Some cross sections from the tunnel photographed during the dismantling are shown in 

Figure 54. Most of the pellet material in the tunnel could be described as wet. However, 

some dryer pellets still in original shape were found from the long sides (A- and C-side) 

close to the backfill blocks and also from the top layer. Backfill blocks were found to be 

dry for the most parts except their outer edges in A-, C-, N- and E-sides and especially 

in the bottom of the backfill blocks where the interface between the backfill blocks and 

the pellets was not detectable. Wetter backfill block parts were also found from above 

the buffer. 



56 

 

 

    

 
Figure 54. Cross sections from the tunnel during the dismantling: a) between the North 

and the Middle unit in the A-side, b) between the Middle and the South unit, c) between 

the North and the Middle unit. Photos a) and c) are towards south and c) is towards 

north.  

During the dismantling of the tunnel, tracer and some other possible water path loca-

tions were found from different parts of the tunnel. The wettest pellet masses were 

found from the gaps between the window elements (Figure 55), especially in the C-side 

of the North unit from where water had flown out during the test, before adding the 

tracer. Also, pellet mass in junctions of the tunnel elements were found to be wetter. 

Any visible water paths close to the ITCN6 outlet were not found during the disman-

tling which may also be due to the disturbance of the pellet mass during the disman-

tling. 

 

 

 Figure 55. A gap between window elements before the test (a) and wet pellet mass in a 

gap in the C-side of the North unit after the test (b). 

a) b) 

a) b) 

c) 
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Most of the tracer that was found during the dismantling was located in the buffer 

(Figure 56a) and in the south side of the tunnel. Some tracer was found also from the 

north side of the Middle unit (Figure 56b).   

 

 

 

  

Figure 56. Tracer visible in the buffer (a) and in the bottom of the tunnel, in the north 

side of the Middle unit (b). 

In the south side of the Middle unit, tracer was found from the pellet layer, especially 

close to the A-side and the bottom. In the South unit, tracer was found from many loca-

tions, also from the top of the tunnel which was obvious due to wetting of the top layer 

pellets during the last three days of the test. Photos of pellet mass containing tracer are 

shown in Figure 57. 

 

 

 Figure 57. A tunnel pellet sample close to a backfill block in the south side of the Mid-

dle unit (a) and a pellet sample hole in the bottom of the South unit (b).  

No dry buffer pellet mass was found from the buffer. Also, the outer edge of the buffer 

blocks had got wet. For the most part, the interface between the buffer blocks and the 

pellets was not detectable. Some tracer was found from the buffer pellet layer especially 

near the water inlet. 

b) a) 

b) a) 
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4.2 Swelling stresses 

Development of counter pressure of the pump is shown in Figure 58. After the first days 

the pressure remained at an almost constant level for the first 20 days after which the 

pressure began to increase almost linearly. The high peak at the end of the test occurred 

after the pump was restarted after the tracer was added.  

 
Figure 58. Counter pressure of the pump. 

Axial force in the tube measured by the force transducer is presented in Figure 59 and 

radial stresses of the tube measured by the strain gauges are presented in Figure 60. It 

can be seen that the axial force remained at an almost constant level between the days 

20 and 60. Radial stresses increased until the end of the test. The highest pressures were 

registered by the north side sensors (SBN1 and SBN2). 

 Figure 59. Axial pressure measured by the force transducer under the tube. 
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 Figure 60. Radial stresses of the tube measured by the strain gauges. 

Graphs showing the data measured by the total pressure sensors and by the dial gauges 

are presented in Figure 61 and in Figure 62. In the first day, a high peak in the pressure 

was registered by pressure sensor 1 which was located in the top of the Middle unit. 

Overall, slight increases in the pressures inside the tunnel were seen. The highest pres-

sures were registered by the sensors 2 and 3, the sensors in the North end and in the 

interface between the tube and the tunnel. The restart of the pump in the 59
th

 day in-

duced a steep increase in the pressure of the sensor 2. No remarkable differences were 

seen in the displacements between the A- and C-sides measured by the dial gauges. 

Displacements for both sides were around 1.5 mm. 

 Figure 61. Pressure inside the tunnel measured by the total pressure sensors. 
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 Figure 62. Horizontal displacements of the center points of the A- and C-sides of the 

tunnel. 

Stresses of the tunnel frame registered by the strain gauges are presented in Figures 63-

66. In general, the highest pressures were registered in the North unit (green curves) and 

the lowest pressures in the South unit (violet curves). Slight increases in the stresses 

were seen in most of the curves. Steep increases in the D-side pressures were seen after 

the pause in the water supply. Due to malfunction, strain gauges STAM2, STBM2 and 

STCM2 were left out from the graphs. Stresses measured by the strain gauges in the 

tunnel ends are presented in Figure 67 and Figure 68. Pressures were higher in the 

North end compared to the South end. 

 Figure 63. Stresses in the tunnel A-side measured by the strain gauges. 
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 Figure 64. Stresses in the top of the tunnel (B-side) measured by the strain gauges. 

 Figure 65. Stresses in the tunnel C-side measured by the strain gauges. 

 Figure 66. Stresses in the bottom of the tunnel (D-side) measured by the strain gauges. 
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 Figure 67. Stresses in the North and South ends of the tunnel measured by the strain 

gauges. 

 Figure 68. Stresses in the North and South end windows of the tunnel measured by the 

strain gauges. 

4.3 Flow rate and erosion 

The outflow rate of the water, the dry solid content of the outflowing water and the ref-

erence salinities are presented in Figure 69. The last three days were left out from the 

graph due to the negligible outflow rate. 

The outflow rate varied especially during the first 20 days after which it briefly settled 

close to 0.1 l/min. After about the 25
th

 day, the outflow rate began to decrease until the 

end of the test when it was already almost zero. The dry solid content, containing the 

salt and the eroded bentonite, varied during the first days of the test after which it settled 

to a level slightly over 1 %.   
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Figure 69. The water outflow rate (right y-axis) and the dry solid content (left y-axis) of 

the water samples showing erosion products, and the reference salinities (left y-axis) 

analyzed from the samples taken from the water tanks. 

4.4 Buffer samples 

Results of the buffer sample analyses are presented in Figure 70 and Figure 71 where 

graphs of the water content, saturation degree, bulk density and dry density are shown. 

Water contents were higher in the edges of the buffer whereas lower water contents 

were found close to the center of the buffer. Densities were higher in the center and 

lower densities were found from the edges of the buffer. Saturation degrees tended to 

have a slight trend where they were higher in the N- and A-sides and decreased towards 

the S- and C-sides. The highest saturation degrees were found from the north side of the 

buffer. Visualization of the buffer sample results accomplished by VisIt 2.9.2 software 

is presented in Figure 72. Pseudocolor plots were used for the visualization. 
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  Figure 70. Water content (left column) and saturation degree (right column) from four 

height levels of the buffer. The inner diameter of the tube was 269 mm and the samples 

were drilled through the buffer from two directions in each height level. Blue lines rep-

resent a direction from north (N) to south (S) and red lines a direction from A-side (A) 

to C-side (C). The squares represent the samples analyzed.     

 

  

 

  

  

  Figure 71. Bulk density (left column) and dry density (right column) of the buffer sam-

ples.  

. 
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 Water content Bulk density Dry density Saturation degree 

 

    

 

    
Figure 72. Visualization of water content (%), bulk density (kg/m

3
), dry density (kg/m

3
) 

and saturation degree (%) of the buffer samples. 

4.5 Tunnel pellets 

Visualizations of the tunnel pellet results were accomplished by VisIt 2.9.2 software, 

using Pseudocolor plots to visualize the values. Numeric values of the results are pre-

sented in Appendix 8. 

Water contents of the tunnel pellets in different parts of the tunnel are presented in Fig-

ure 73. Overall, water contents were remarkably higher in the samples close to windows 

(w-samples) compared to the samples close to backfill blocks (b-samples). The wettest 

area in the tunnel was right above the buffer, in the north side. When comparing the 

long sides (A- and C-side) it was found that the A-side was wetter in the South unit and 

the C-side was wetter in the North unit. In the top pellet layer of the tunnel (B-side) the 

water content increased from south to north. Water content was higher in the north side 

of the tunnel also in the bottom (D-side). In the North end, the water contents were 

higher close to the bottom. 

 

N 

C 

A 

S 
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Figure 73. Water content (%) of the tunnel pellets (S=south, N=north). 

Bulk densities of the tunnel pellets in different parts of the tunnel are presented in Fig-

ure 74. Compared to the b-samples, the w-samples mainly had higher bulk densities in 

the A-side of the North unit and in the south side of the C-side. In the north side of the 

C-side, bulk densities were higher in the b-samples. In the bottom, the b-samples had 

higher bulk densities. In the top and in the C-side, bulk densities were higher in the 

north side compared to the south side. In the bottom of the Middle unit, bulk densities 

were higher in the south side. The lowest bulk densities were found mainly from the 

south side of the top and from the north side of the Middle unit in the bottom.  

 

 

 

 

 
 

Figure 74. Bulk density (kg/m
3
) of the tunnel pellets. 
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Dry densities of the tunnel pellets are visualized in Figure 75. The w-samples had lower 

dry densities than the b-samples, especially in the bottom of the tunnel. The lowest dry 

densities were found from the Middle unit of the bottom, especially in the north side of 

it. Low dry densities were also found from the south side of the A-side and from the 

north side of the C-side and the bottom.  

 

 

 

 

 
 

Figure 75. Dry density (kg/m
3
) of the tunnel pellets. 

Visualization of the tunnel pellet saturation degrees is presented in Figure 76. Saturation 

degrees were remarkably higher in the w-samples compared to the b-samples. Overall, 

high saturation degrees were found from the North unit of the A-side, from the Middle 

unit of the bottom, and from the Middle and the North unit of the C-side. Low satura-

tion degrees were found from the top where saturation increased from south to north. In 

the North end, saturation degrees were higher closer to the C-side compared to the A-

side. 

 

 

 

 

 
 

Figure 76. Saturation degree (%) of the tunnel pellets. 
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Relation between water content and density of the tunnel pellet samples is shown in 

Figure 77. Also lines representing full saturation are shown. With the water content 

lower than approximately 50 %, the bulk density increased with the increasing water 

content. With the higher water content, the bulk density decreased with the increasing 

water content. With the dry density, this limit value of the water content was approxi-

mately 45 %. Two samples had saturation degrees over 100 % which were probably 

results from inaccuracies in the analyses. 

  

 Figure 77. A relation between water content and density of the tunnel pellet samples. 

Black lines represent the full saturation. The lines were calculated assuming the satura-

tion degree to be 100 % and for different density values (50 kg/m
3
 intervals), values for 

the water content were iterated.  
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4.6 Tunnel backfill blocks 

Locations of the drilled tunnel backfill block samples are presented in Figure 78. Re-

sults of the tunnel backfill block sample analyses are shown in Figure 79 and Figure 80. 

The highest water contents were found from the top and from the bottom of the sam-

ples, decreasing towards the middle part. Saturation degrees varied between 60 % and 

80 % with no detectable trends. A possible trend can be seen with the densities which 

were lower in the ends, increasing towards the middle. 

 

Figure 78. Drilled backfill block sample locations presented from above the backfill 

blocks (B-side view), marked with red. 
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Figure 79. Water content and saturation degree of the drilled tunnel backfill block 

samples. The squares represent the slices sawed from the samples, five from both ends. 

The samples were taken from the blocks 3, 4, and 6. The block 6 was the northernmost 

block in the tunnel (The block 1 being the southernmost). 
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Figure 80. Bulk density and dry density of the tunnel backfill block samples. 

4.7 Buffer and backfill interface 

A sample taken from the interface of the tunnel pellets and the uppermost buffer block 

is shown in Figure 81a. The sample was taken from the center of the buffer. In the sam-

ple the tunnel pellet part was approximately 100 mm thick. The installed pellet layer 

part before the test was 130 mm so the pellet layer had compressed approximately 30 

mm. It was also measured that the center of the buffer block was approximately 10 mm 

above the bottom of the tunnel (Figure 81b). Before the test the upper level of the up-

permost buffer block was 30 mm below the bottom of the tunnel so approximately 40 

mm of vertical displacement of the top surface of the uppermost buffer block had oc-

curred during the test. 
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Figure 81. In a), the sample above the center of the buffer is shown. About 20 mm thick 

buffer block part and about 100 mm thick tunnel pellet part can be seen in the sample. 

The plastic pipe was split because the sample was stuck inside. In b), the interface be-

tween the buffer material (darker color) and the tunnel pellet material is shown.   

Locations of the nine samples taken from the interface of the buffer and the tunnel pel-

lets are presented in Figure 82. The samples were sliced from the interface and both 

parts, the buffer and the tunnel pellet, were analyzed. Results are shown in Figure 83 

and Figure 84. Water contents were higher in the edges and the lowest water contents 

were found from the center of the buffer. A similar trend was found with the saturation 

degrees. 

 
Figure 82. Locations of the nine samples taken from above the buffer, containing the 

bottom pellet layer of the tunnel and a part of the uppermost buffer block. 

 

a) b) 
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Figure 83. Water content and saturation degree of the interface samples which were 

divided into a tunnel pellet part and a buffer part after which both parts were analyzed. 

Bulk densities of the tunnel pellet parts were lower in the edges and in the center. In the 

buffer parts, a possible trend is seen where the bulk density is lower in the center of the 

buffer and increases towards the edges. However, in the direction from A to C, the sam-

ple approximately 90 mm from the edge had a remarkably higher bulk density. This 

sample had also a remarkably higher dry density. Other dry densities of the buffer parts 

had a similar trend to what was found with the bulk densities. The dry densities of the 

tunnel pellet parts were lower in the edges compared to the center. 
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Figure 84. Bulk density and dry density of the interface samples. 

When comparing the results of the buffer parts of the interface samples to the results of 

the drilled buffer samples from the center line of the uppermost buffer block (presented 

in Figure 70 and Figure 71), water contents in the A-C direction were slightly higher in 

the interface samples. Bulk density and dry density were slightly lower in the interface 

samples in both directions. 

 

 

 

 

 

 

 

 

 

 



75 

If the tunnel pellet parts of the interface samples are compared to the tunnel pellet sam-

ples taken from the bottom of the Middle unit of the tunnel (Figure 85), it can be seen 

that in the interface samples the water contents were lower and both bulk and dry densi-

ties were higher compared to the tunnel pellet samples. It should be noticed that the 

tunnel pellet parts in the interface samples were not divided into two samples: on sam-

ple close to a tunnel backfill block and one sample close to a window (buffer block in 

this case).  

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
Figure 85. Water content (a, b), saturation degree (c, d), bulk density (e, f) and dry 

density (g, h) of the tunnel pellet samples taken from the bottom of the Middle unit. 

Sample locations and labels can be found from Appendix 4. Images a, c, e, and g repre-

sent the samples taken close to the windows and images b, d, f, and h represent the 

samples taken close to the backfill blocks. 

 

 

 

 

 

a) 

h) g) 

e) f) 

b) 

d) c) 
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High densities and saturation of the tunnel parts of the interface samples compared to 

the tunnel pellet samples is presented in Figure 86. In the graphs the results of the tunnel 

parts of the interface samples have been added to the graphs presented in Figure 77. 

  

 Figure 86. Relation between water content and density of the tunnel pellet samples. In 

addition to Figure 77, red squares represent the tunnel pellet parts of the interface 

samples. 
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5. DISCUSSION 

Wetting and water channels 

Most of the wetting of the tunnel pellets occurred during the first days of the test. After 

the 6
th

 day, no dramatic change in the wetting pattern was observed until there was a 

pause in the water supply during which a tracer was added into inflowing water in the 

59
th

 day. After this, dry pellets in the South unit started to get wet. After two days of the 

start of the test, water started to flow out from an outlet in the North end of the tunnel. 

Water flowed out from the same outlet until the 59
th

 day after which the location of the 

water outflow changed to the South end. These observations signify that water flowed 

in the tunnel using same channels and these channels were not closed with the continu-

ous inflow of water. Similar conclusions were made in the study using an identical tube 

by Pintado et al. (2013) and in the study of full-scale buffer with reduced height by 

Åberg (2009).    

The change in the water distribution pattern after the 59
th

 day when there was a one 

hour pause in the water supply, indicates that at least some of the water channels were 

sealed due to the bentonite swelling and new channels were formed after the water sup-

ply started again. The water channel that was visible in the buffer pellet layer in the tube 

was not sealed during this pause. Thus, the changes occurred mainly in the tunnel. Dur-

ing the first days, some channels were visible through the tunnel windows but most of 

these channels were sealed shortly after they were observed. Also, in the buffer there 

were several branches in the channel but most of those were sealed after the first days. It 

is possible that in the initial phase, after the wetting of the pellets started, multiple chan-

nels existed but after some time all but one were sealed due to the bentonite swelling. It 

has to be taken into account that the water channels might have located in the gaps and 

junctions of the tunnel structure. Thus, the structure of the test equipment affected the 

flow paths to a great extent. 

Uneven wetting of the tunnel backfill materials was observed in this test. The direction 

of the water distribution to the north part of the tunnel might have been due to the loca-

tion of the water inlet and also due to the water channel which were located in the north 

side of the tube. The change in the water distribution in the tunnel after the possible 

sealing of the water channels in the 59
th

 day might have been due to drier and less com-

pacted pellets in the south part of the tunnel. 
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Sample analyses 

The analyzed water contents supported the observations made during the test and the 

dismantling. Higher water contents were found from the north part of the tunnel. It is 

likely that a greater difference between the north and south parts would have existed 

without the change in the water distribution pattern after the 59
th

 day. Tunnel pellet 

samples taken close to the tunnel walls had higher water contents than the samples tak-

en close to the tunnel backfill blocks. This supports the observations that water flowed 

in the surface and in the gaps of the tunnel frame. 

The bulk densities were dependent on the water content and the saturation degree. With 

the tunnel pellet samples it was found that with the water content lower than about 50 % 

the bulk density increased with the increasing water content. With the water content 

higher than 50 % the bulk density decreased with the increasing water content. In this 

limit, saturation degree was close to 100 %. It is probable that when the water content 

increased towards this limit of 50 %, void spaces in the pellet material were filled with 

water and consequently the bulk density increased. 

When analyzing the results of the buffer samples, a possible trend could be seen where 

the water contents in the two uppermost buffer blocks were slightly higher compared to 

the two lowermost buffer blocks. In addition, the densities in the two uppermost buffer 

blocks were slightly lower. Thus, the two uppermost buffer blocks and pellets had pos-

sibly swelled more. This was probable also due to higher overburden pressure in the 

lowermost buffer blocks.  

Monitored swelling pressure 

Swelling of the bentonite was monitored by total pressure sensors inside the tunnel and 

by strain gauges attached to the outer surface of the tunnel and the tube. Also, two dial 

gauges were installed outside of the tunnel to measure horizontal displacement of the 

tunnel side walls. It has to be taken into account that the stresses measured, especially 

by the strain gauges and dial gauges, were dependent on the material and structure of 

the test equipment. These sensors were used mainly for monitoring the stresses of the 

test equipment. 

As it was expected, based on the water distribution pattern, higher stresses were regis-

tered in the north part of the tunnel. Stresses in the long sides (A- and C-side) were sim-

ilar. Some rapid changes occurred in the stresses, especially in the tunnel, during the 

first days of the test. These changes might have resulted from movements of the tunnel 

backfill blocks due to the bentonite swelling. Remarkable increases in the stresses were 

registered in the 59
th

 day. This was probably due to sealing of the water channels during 

the pause in the water supply after which new water channels were formed and dry are-

as got wet and started to swell. Also, wetting and consequent swelling of the dry parts in 

the tunnel might have partly induced the sharp increases in the stresses. 
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Overall, many of the sensors showed continuous increases of stress during the whole 

test, especially in the tube which might have been a result from a less stiff material of 

the tube compared to the tunnel frame. Increased counter pressure of the pump might 

have been partly a result from the pump malfunction and partly from an increasing re-

sistance of the water inflow. 

Erosion 

Continuous erosion of bentonite was found in the test. Variation in the erosion rate was 

seen during the first days of the test after which the erosion rate was mainly at a con-

stant level. The effect of the pump malfunction needed to be taken into account when 

considering the erosion results. There is a possibility that the varying rate of erosion 

during the first days and the burst of the bentonite in the 6
th

 day were partly a result 

from the varying rate of the water inflow. The decreasing water flow rate might have 

sealed water channels at least partly and with the increasing water flow rate more ero-

sion might have occurred when the channels were opened. A possible source for the 

eroded material in this test was also a bentonite dust included especially in the tunnel 

pellet bags. 

Dry solid contents below 1 % in the last days of the test had to be considered as not re-

alistic values. There might have been an error with the erosion analysis method with 

small water outflow rates. The error might have originated from the method used in 

estimating the evaporation of the water samples between the time of the sampling and 

the time of the sample weighing. In addition, with small sample sizes possible inaccura-

cies in measurements might have been emphasized. 

In this test eroded bentonite was collected in seven minute sampling in four or five hour 

intervals so total amount of the eroded bentonite was not measured. An estimation of 

the total amount of eroded bentonite could have been done based on the water samples 

and assuming similar erosion behavior outside the sampling times. However, it needs to 

be noticed that some of the eroded bentonite got blocked in the outflowing pipes so the 

amount of erosion in the water samples did not always correspond the amount of the 

bentonite coming out from the tunnel during the time of the sampling.  

Buffer and backfill interface 

The vertical displacement of the center of the uppermost buffer block was approximate-

ly 40 mm. It is possible that most of this displacement was a result from swelling of the 

uppermost block. In the studies by Åberg (2009), Åkesson (2012), and Johannesson & 

Hagman (2013), it was found that heaving of the uppermost blocks were greater than 

heaving of the lowermost blocks. In this 1/6 scale test there might have been a water 

flow on top of the uppermost buffer block which has caused the slightly higher water 

contents and more swelling of the uppermost block. Also, smaller overburden pressure 
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of the uppermost block compared to the lowermost blocks supports the conclusion that 

the uppermost block swelled the most. 

The materials and structure of the test equipment has to be taken into account when 

considering the upwards swelling. Swelling of the bentonite in the tube to horizontal 

direction might have also affected on the amount of the upwards swelling. In addition, 

in this test the water inlet was located in the tube so the test partly simulated the possi-

ble worst-case scenario where the buffer is saturated and the backfill is dry. With this 

kind of test scenario the vertical displacement was possibly greater than it would have 

been with different water inflow conditions. 

In the interface, in the upper part of the uppermost buffer block, water contents were 

higher and densities were lower than lower in the uppermost buffer block. This proba-

bly indicates that the swelling of the uppermost block occurred mostly in the upper part 

of the block. 

The tunnel pellet samples in the interface had higher densities and lower water contents 

than the samples taken from the bottom pellet layer of the tunnel. Higher densities were 

probably a result from the upwards swelling of the buffer and the compression of the 

bottom pellet layer above the buffer, from 130 mm to 100 mm. Lower water contents 

might indicate that water flowed along the tunnel floor to a great extent. Lower water 

contents of the interface samples might have also been due to the higher compression of 

the tunnel pellet layer above buffer which induced the higher densities. In Figure 86, it 

was seen that with full saturated tunnel pellet samples the water contents decreased 

when the densities increased. 

Recommendations for future studies 

New test scenarios with the 1/6 scale test equipment will possibly be carried out in the 

future. Modifications to the test equipment and test implementation will probably be 

made.  

With different water inflow location or with multiple inflow points, the water distribu-

tion pattern and consequently the swelling development would be different. Supplying 

water from a different side of the buffer, water could possibly direct to a different side 

of the tunnel. One option for the water inflow location could also be the tunnel. In this 

option an interesting viewpoint would be to find out does the buffer get wet and in 

which time. With slower wetting of the buffer compared to the tunnel, the upwards 

swelling of the buffer blocks would probably occur in a lesser extent due to lesser satu-

ration of the buffer blocks and greater swelling pressure originated from the tunnel 

backfill blocks and pellets. In addition, measuring the vertical displacements of individ-

ual buffer blocks should be considered in the future tests.  
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A tracer could also be used in the future tests for detecting the water flow paths. The 

tracer could be added into the water without switching off the pump so no changes in 

the water distribution would occur due to the tracer adding. Also, other possibilities to 

detect the water distribution in the system should be considered. One possible option for 

measuring the water distribution or flow could be non-destructive ERT (Electrical Re-

sistivity Tomography) which has been used for instance by Korkealaakso & Kaila 

(2013). 

More detailed erosion data could be collected in the future tests. The total amount of 

erosion could be collected as well as the amount of the inflowing water. Also, with the 

information of the outflowing water, the amount of water inside the test system could be 

calculated. With the total amount of the inflowing water and the total amount of eroded 

bentonite, a comparison could be made to an erosion model presented by Keto et al. 

(2009) where data from erosion tests performed by Sanden et al. (2008) and Sanden & 

Börgesson (2008) has been collected. 
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6. CONCLUSIONS 

In this 1/6 scale laboratory experiment the aim was to get a new insight of the bentonite 

behavior in the initial part of the final disposal of spent nuclear fuel. Swelling of the 

bentonite was monitored and bentonite erosion was analyzed during the test. Also, wet-

ting of the bentonite inside the test equipment was followed. After the 62 day test, sam-

ples were taken from the bentonite blocks and pellets. Due to the malfunction of the 

pump supplying water, the water inflow rate decreased gradually from the desired rate 

of 0.1 l/min to almost zero after which the test was stopped. The decreased inflow rate 

needed to be taken into account when the results were considered. Three days before the 

end of the test, a tracer was added into the inflowing water and the pump was switched 

off during the adding. The pause in the water supply and restart of the pump had re-

markable effects on the water distribution pattern and bentonite swelling behavior. 

Different conditions compared to the actual repository need to be taken into account, 

including for instance: the bedrock, different scale, canisters containing heat generating 

spent nuclear fuel, and water flow conditions. In addition, the duration of this test cov-

ered only the very early phases of the events in the repository.  

The main findings in this study were: 

 Wetting of the tunnel was inhomogeneous. Dry pellets were found after the test. 

 Several water channels existed in the early phases of the test after which some of 

the channels were sealed. 

 With a continuous water inflow from the same location, the main water channels 

were not sealed due to bentonite swelling. 

 The pause in the water inflow induced sealing of the main water channels in the 

tunnel and after the water inflow started again, water flowed towards the dry 

parts of the tunnel.    

 Continuous erosion occurred in the test. 

 With water contents below approximately 50 %, bulk density of the tunnel pel-

lets (Cebogel QSE) increased with the increasing water content. With higher wa-

ter contents, the bulk density decreased with the increasing water content. 

 A vertical displacement of approximately 40 mm of the center of the uppermost 

buffer block occurred, possibly mainly due to swelling of the uppermost buffer 

block. 

 The tunnel pellet layer above the buffer compressed from 130 mm to 100 mm. 

Almost fully saturated tunnel pellets with high density were found from above 

the buffer. 
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APPENDIX 1: TEST EQUIPMENT DIMENSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX 2: TUNNEL WINDOW LABELLING, STRAIN GAUG-

ES, AND OUTLETS 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

APPENDIX 3: BLOCK DIMENSIONS 

Table A3-1. Weights and dimensions of the buffer blocks.  

Buffer block 

number 

Weight         

[kg] 

Height     

[mm] 

Height     

average     

[mm] 

Diameter 

[mm] 

Diameter 

(average) 

[mm] 

Observations 

1 (lowermost) 9.38 200.8 200.8 170.2       

170.2       

170.2 

170.2 Roughness on 

the top of the 

block, diame-

ter 56.6 mm 

2 9.36 200.7       

200.2       

200.0       

200.0 

200.2 170.0       

170.0       

170.0 

170.0 Roughness on 

the top of the 

block, diame-

ter 34.4 mm 

3 9.38 201.4       

201.0       

200.3       

200.3       

200.3 

200.7 170.4        

170.3       

170.3 

170.3  

4 (uppermost) 9.36 201.1       

200.2       

200.3       

200.8       

200.3 

200.5 170.2       

170.2       

170.2 

170.2  

 

 

 

 

 

 

 

 

 

 



 

Table A3-2. Weights and dimensions of the tunnel backfill blocks.  

Backfill 

block     

number 

Weight     

[kg] 

Height     

[mm] 

Height     

(average) 

[mm] 

Width     

[mm] 

Length     

[mm] 

Length     

(average) 

[mm] 

1 (north) 188.46 332.0     

331.9     

331.9 

331.9 568.7 497.4     

498.2     

497.6   

497.7 

2 188.26 329.4     

329.4     

329.0 

329.3 568.1 497.3     

497.6     

497.1 

497.3 

3 188.00 330.8     

331.4     

331.0 

331.1 568.2 497.6     

497.5     

497.4 

497.5 

4 192.10 331.5     

331.5     

331.5 

331.5 567.4 497.0     

497.4     

497.0 

497.1 

5 186.46 333.5     

333.0     

334.0 

333.5 569.4 498.5     

499.2     

498.5 

498.7 

6 (south) 187.16 332.4     

332.5     

332.0 

332.3 569.5 498.6     

498.9      

498.5 

498.7 

 



 

APPENDIX 4: TUNNEL PELLET SAMPLE LOCATIONS 

 

Figure A4-1. Tunnel pellet sample locations marked with red bordered boxes. 



 

APPENDIX 5: TUNNEL BACKFILL BLOCK SAMPLE LOCATIONS  

 

Figure A5-1. Drilled sample locations shown from above the backfill blocks (B-side 

view), marked with red.  

 

 

 



 

APPENDIX 6: INTERFACE SAMPLE LOCATIONS 

 

Figure A6-1. Locations of the interface samples taken from above the buffer, containing 

the bottom pellet layer of the tunnel and a part from the uppermost buffer block or pel-

let.  

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX 7: BUFFER SAMPLE LOCATIONS 

 

Figure A7-1. Buffer samples were taken from four height levels, from the center of the 

buffer blocks. From each level, the samples were drilled through the buffer in two direc-

tions, N-S and A-C. Level 1 was right above the water inlet and N-S direction was in the 

line with the water inlet. 

 

 

 

 



 

APPENDIX 8: SAMPLE RESULTS 

Table A10-1. Tunnel pellet sample results (A in a label stands for a sample close to a 

window and B stands for a sample close to a backfill block). 

 

Label Water

 content

 (%)

Bulk

 density

 (kg/m3)

Dry 

density

 (kg/m3)

Saturation

 degree

 (%)

Porosity

TAN46_A 59,8 1610 1007 94,7 0,64

TAN46_B 54,0 1633 1061 92,9 0,62

TAN26_A 57,7 1645 1043 96,6 0,62

TAN26_B 48,9 1646 1106 89,9 0,60

TAN44_A 58,3 1633 1031 95,8 0,63

TAN44_B 42,7 1572 1102 78,1 0,60

TAN24_A 60,8 1632 1015 97,3 0,63

TAN24_B 44,6 1535 1062 76,7 0,62

TAN22_A 47,3 1641 1114 88,1 0,60

TAN22_B 28,4 1331 1037 47,0 0,63

TAN42_A 49,5 1638 1096 89,7 0,61

TAN42_B 36,2 1408 1034 59,7 0,63

TAS41_A 59,7 1556 974 89,8 0,65

TAS41_B 48,4 1594 1074 84,9 0,61

TAS21_A 58,1 1639 1036 96,2 0,63

TAS21_B 58,8 1689 1064 101,5 0,62

TAS43_A 77,7 1617 910 105,3 0,67

TAS43_B 60,0 1627 1017 96,4 0,63

TAS23_A 60,8 1615 1005 95,8 0,64

TAS23_B 45,0 1558 1075 79,0 0,61

TAS45_A 63,3 1580 968 94,2 0,65

TAS45_B 57,0 1653 1053 96,8 0,62

TAS25_A 63,7 1625 993 98,5 0,64

TAS25_B 58,6 1603 1011 93,2 0,64

TBN36_A 59,5 1595 1000 93,2 0,64

TBN36_B 49,5 1610 1077 87,1 0,61

TBN35_A 57,7 1587 1006 91,2 0,64

TBN35_B 47,0 1597 1087 84,0 0,61

TBN34_A 53,3 1590 1038 88,4 0,63

TBN34_B 43,2 1541 1077 76,0 0,61

TBN33_A 54,1 1555 1009 85,9 0,64

TBN33_B 41,5 1579 1116 77,5 0,60

TBN32_A 56,1 1611 1032 92,3 0,63

TBN32_B 42,2 1603 1127 80,2 0,59

TBS31_A 54,5 1585 1026 88,8 0,63

TBS31_B 38,9 1546 1113 72,4 0,60

TBS33_A 31,5 1405 1069 54,7 0,62

TBS33_B 25,0

TBS35_A 32,5 1396 1054 55,2 0,62

TBS35_B 32,6 1444 1089 58,5 0,61

TNE21_A 59,1 1637 1029 96,7 0,63

TNE21_B 49,8 1623 1083 88,7 0,61

TNE22_A 55,5 1653 1063 95,8 0,62

TNE22_B 52,7 1637 1072 92,1 0,61

TNE11_A_above 58,7 1612 1016 94,2 0,63

TNE11_B_above 50,0 1638 1092 90,1 0,61

TNE11_A_below 64,0 1552 946 92,0 0,66

TNE11_B_below 59,5 1636 1026 96,9 0,63

TNE12_A_above 63,2 1595 978 95,5 0,65

TNE12_B_above 60,9 1622 1008 96,6 0,64

TNE12_A_below 64,7 1592 967 96,0 0,65

TNE12_B_below 60,4 1651 1029 98,9 0,63



 

 

Label Water

 content

 (%)

Bulk

 density

 (kg/m3)

Dry

 density

 (kg/m3)

Saturation

 degree

 (%)

Porosity

TCN46_A 61,8 1589 983 94,1 0,65

TCN46_B 55,7 1645 1056 95,2 0,62

TCN26_A 61,7 1610 995 96,0 0,64

TCN26_B 56,0 1641 1052 94,9 0,62

TCN44_A 64,1 1587 968 95,3 0,65

TCN44_B 55,1 1630 1051 93,3 0,62

TCN24_A 63,1

TCN24_B 52,6 1657 1086 94,0 0,61

TCN42_A 58,4 1598 1009 92,6 0,64

TCN42_B 49,9 1655 1105 91,6 0,60

TCN22_A 60,8 1612 1002 95,5 0,64

TCN22_B 53,1 1607 1050 89,7 0,62

TCS41_A 52,5 1669 1094 94,9 0,61

TCS41_B 38,6 1499 1082 68,5 0,61

TCS21_A 65,1 1606 973 97,6 0,65

TCS21_B 57,1 1601 1019 92,0 0,63

TCS43_A 39,6 1543 1106 72,8 0,60

TCS43_B 30,7 1367 1046 51,5 0,62

TCS23_A 54,7 1642 1061 94,1 0,62

TCS23_B 49,7 1581 1057 84,8 0,62

TCS45_A 56,0 1633 1047 94,2 0,62

TCS45_B 43,7 1496 1041 72,9 0,63

TCS25_A 60,6 1605 999 94,7 0,64

TCS25_B 51,0 1617 1071 89,0 0,61

TDS15_A 61,4 1595 988 94,4 0,64

TDS15_B 55,0 1611 1039 91,5 0,63

TDS35_A 49,3 1633 1094 89,1 0,61

TDS35_B 35,0 1488 1103 64,1 0,60

TDS13_A 61,0 1628 1011 97,1 0,64

TDS13_B 55,8 1645 1056 95,2 0,62

TDS33_A 51,8 1652 1088 92,8 0,61

TDS33_B 41,8 1569 1107 77,0 0,60

TDS12_A 65,0 1575 955 94,7 0,66

TDS12_B 55,0 1624 1048 92,7 0,62

TDS22_A 63,1 1593 977 95,2 0,65

TDS22_B 49,2 1605 1076 86,5 0,61

TDS32_A 63,2 1592 975 95,2 0,65

TDS32_B 45,4 1685 1159 90,3 0,58

TDS42_A 69,2 1551 917 94,9 0,67

TDS42_B 58,7 1614 1017 94,3 0,63

TDN12_A 96,5 1427 726 95,0 0,74

TDN12_B 55,9 1641 1052 95,0 0,62

TDN22_A 126,7 1362 601 97,3 0,78

TDN22_B 64,7 1590 965 95,9 0,65

TDN32_A 108,2 1440 692 99,9 0,75

TDN32_B 62,8 1597 981 95,4 0,65

TDN42_A 73,4 1541 889 96,1 0,68

TDN42_B 61,8 1606 992 95,6 0,64

TDN14_A 73,4 1449 836 87,9 0,70

TDN14_B 59,3 1640 1030 97,2 0,63

TDN34_A 65,9 1595 961 97,1 0,65

TDN34_B 51,7 1598 1054 87,8 0,62

TDN16_A 59,9 1615 1010 95,3 0,64

TDN16_B 53,8 1636 1063 92,9 0,62

TDN36_A 64,3 1610 980 97,6 0,65

TDN36_B 51,0



 

Table A10-2. Tunnel backfill block sample results. 

 

Label Water

 content

 (%)

Bulk

 density 

(kg/m3)

Dry

 density 

(kg/m3)

Saturation 

degree

 (%)

Porosity

3_B1_1 17,1 1879 1604 65,0 0,42

_2 16,7 1882 1613 64,2 0,42

_3 17,7 1933 1642 71,1 0,41

_4 17,1 1906 1627 67,4 0,41

_5 16,4 1915 1645 66,2 0,41

_6

_7 18,5 1793 1514 61,5 0,46

_8 18,8 1715 1444 56,5 0,48

_9 19,7 1839 1536 67,7 0,45

_10 23,6 1771 1433 70,0 0,48

3_B2_1 16,2 1844 1587 60,1 0,43

_2 15,8 1961 1694 68,6 0,39

_3 15,8 1969 1701 69,3 0,39

_4 15,5 1975 1709 69,1 0,39

_5 15,3 1984 1720 69,4 0,38

_6 15,8 1958 1691 68,2 0,39

_7 15,9 1962 1693 69,0 0,39

_8 16,0 1953 1683 68,6 0,39

_9 16,3 1942 1669 68,4 0,40

_10 21,5 1396 1149 42,2 0,59

4_B1_1 20,8 1862 1542 72,0 0,45

_2 20,1 1918 1597 75,6 0,43

_3 19,2 1925 1615 74,2 0,42

_4 18,7 1882 1586 69,0 0,43

_5 18,2 1912 1617 70,7 0,42

_6 19,1 1898 1594 71,5 0,43

_7 19,7 1862 1556 69,8 0,44

_8 20,7 1836 1521 69,7 0,45

_9 21,2 1874 1546 73,9 0,44

_10 22,5 1549 1265 52,3 0,54

6_B1_1 21,6 1888 1552 76,2 0,44

_2 20,6 1872 1552 72,6 0,44

_3 19,9 1891 1577 72,7 0,43

_4 19,2 1891 1587 71,1 0,43

_5 19,0 1887 1586 70,5 0,43

_6 22,3 1964 1606 85,1 0,42

_7 19,4 1857 1555 68,7 0,44

_8 20,0 1855 1545 69,9 0,44

_9 20,3 1815 1509 67,1 0,46

_10 20,8 1826 1512 69,0 0,46

6_B2_1 21,3 1933 1594 79,6 0,43

_2 20,7 1922 1592 77,3 0,43

_3 20,2 1863 1549 71,0 0,44

_4 19,5 1871 1566 70,2 0,44

_5 19,2 1877 1574 69,9 0,43

_6 20,4 1868 1551 71,9 0,44

_7 19,9 1821 1519 66,7 0,45

_8 20,2 1651 1373 55,0 0,51

_9 21,7 1756 1443 65,3 0,48

_10 22,2 1811 1481 70,7 0,47



 

Table A10-3. Buffer sample results (Number 1 in the end of a label stands for a sample 

closest to the buffer edge).  

 

Label Water

 content

 (%)

Bulk

 density

 (kg/m3)

Dry

 density

 (kg/m3)

Saturation

 degree

 (%)

Porosity

N1_1 49,1 1648 1106 90,3 0,60

N1_2 36,0 1752 1289 86,6 0,54

N1_3 33,4 1803 1351 88,0 0,51

N1_4 30,9 1757 1343 80,3 0,52

N1_5 29,8 1811 1395 83,6 0,50

S1_1 43,1 1557 1088 77,2 0,61

S1_2 40,4 1665 1186 83,8 0,57

S1_3 32,0 1788 1355 84,7 0,51

S1_4 27,4 1829 1436 81,5 0,48

S1_5 28,4 1813 1412 81,7 0,49

A1_1 41,2 1683 1192 86,2 0,57

A1_2 37,9 1636 1187 78,6 0,57

A1_3 29,6 1707 1317 74,3 0,53

A1_4 32,3 1781 1346 84,5 0,52

A1_5 31,7 1761 1337 81,8 0,52

C1_1 40,1 1512 1079 70,8 0,61

C1_2 39,1 1676 1205 83,3 0,57

C1_3 35,0 1687 1249 79,6 0,55

C1_4 33,0 1758 1322 83,3 0,52

C1_5 31,9 1787 1355 84,5 0,51

N2_1 55,9 1637 1050 94,6 0,62

N2_2 49,6 1673 1118 93,0 0,60

N2_3 37,8 1754 1273 88,9 0,54

N2_4 34,2 1742 1298 83,5 0,53

N2_5 31,8 1724 1308 78,8 0,53

N2_6 30,8 1805 1379 84,6 0,50

S2_1 39,4 1582 1135 75,7 0,59

S2_2 37,8 1665 1208 80,9 0,57

S2_3 32,5 1782 1345 84,8 0,52

S2_4 30,4 1815 1392 84,9 0,50

S2_5 29,1 1747 1353 76,9 0,51

A2_1 40,3 1527 1088 72,3 0,61

A2_2 40,1 1718 1227 88,2 0,56

A2_3 34,4 1737 1293 83,3 0,53

A2_4 33,0 1803 1355 87,5 0,51

A2_5 31,2 1766 1346 81,7 0,52

C2_1 38,8 1555 1120 73,0 0,60

C2_2 33,4 1679 1259 76,9 0,55

C2_3 32,1 1771 1341 83,3 0,52

C2_4 31,1 1793 1367 84,0 0,51



 

 

 

 

 

 

 

 

 

Label Water

 content

 (%)

Bulk

 density

 (kg/m3)

Dry

 density

 (kg/m3)

Saturation

 degree

 (%)

Porosity

N3_1 54,9 1627 1050 92,9 0,62

N3_2 53,0 1643 1074 92,9 0,61

N3_3 43,8 1707 1187 90,9 0,57

N3_4 39,1 1734 1247 88,5 0,55

N3_5 37,9 1694 1229 83,6 0,56

S3_1 39,0 1641 1180 80,2 0,58

S3_2 33,7 1747 1307 83,2 0,53

S3_3 31,3 1814 1381 86,2 0,50

S3_4 29,1 1733 1343 75,7 0,52

S3_5 28,1 1814 1416 81,2 0,49

A3_1 43,9 1620 1126 83,3 0,60

A3_2 42,3 1707 1200 89,4 0,57

A3_3 35,8 1746 1286 85,8 0,54

A3_4 33,7 1757 1314 84,1 0,53

C3_1 43,1 1576 1101 78,8 0,60

C3_2 41,5 1666 1178 85,0 0,58

C3_3 36,8 1706 1248 83,4 0,55

C3_4 34,5 1701 1265 80,2 0,54

C3_5 33,2 1739 1305 81,9 0,53

N4_1 48,3 1639 1105 88,8 0,60

N4_2 43,8 1641 1141 85,0 0,59

N4_3 36,5 1761 1290 88,0 0,54

N4_4 34,2 1733 1291 82,6 0,54

N4_5 32,7 1745 1315 81,7 0,53

S4_1 38,5 1628 1176 78,6 0,58

S4_2 34,5 1718 1278 81,7 0,54

S4_3 33,0 1788 1345 86,1 0,52

S4_4 32,0 1744 1321 80,7 0,52

A4_1 47,9 1613 1091 86,1 0,61

A4_2 46,1 1618 1107 85,0 0,60

A4_3 40,2 1715 1224 88,0 0,56

A4_4 37,4 1714 1248 84,8 0,55

A4_5 36,2 1646 1209 77,6 0,57

C4_1 44,7 1549 1071 78,0 0,61

C4_2 43,4 1671 1165 87,2 0,58

C4_3 38,4 1703 1230 84,9 0,56

C4_4 35,7 1741 1283 85,3 0,54

C4_5 34,6 1768 1313 86,3 0,53



 

Table A10-4. Results of the interface samples taken from above the buffer. 

 

Label Water

 content

(%)

Bulk

density

(kg/m3)

Dry

density 

(kg/m3)

Saturation

degree

(%)

Porosity

TB_0_buffer 36,2 1517 1114 67,4 0,60

TB_0_tunnel 41,8 1627 1148 81,8 0,59

TBN_1_buffer 39,5 1558 1117 73,9 0,60

TBN_1_tunnel 47,0 1701 1157 93,3 0,58

TBN_2_buffer 45,5 1631 1121 85,7 0,60

TBN_2_tunnel 53,2 1611 1051 90,2 0,62

TBS_1_buffer 40,5 1685 1200 85,6 0,57

TBS_1_tunnel 48,1 1708 1153 95,1 0,59

TBS_2_buffer 44,3 1685 1168 89,4 0,58

TBS_2_tunnel 52,9 1675 1096 95,8 0,61

TBA_1_buffer 39,1 1706 1227 86,0 0,56

TBA_1_tunnel 45,8 1689 1158 91,1 0,58

TBA_2_buffer 42,0 1616 1138 81,1 0,59

TBA_2_tunnel 49,8 1682 1123 94,0 0,60

TBC_1_buffer 40,5 1542 1097 73,6 0,61

TBC_1_tunnel 47,7 1704 1154 94,3 0,58

TBC_2_buffer 43,6 1665 1160 87,0 0,58

TBC_2_tunnel 50,7 1659 1101 92,6 0,60


