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ABSTRACT 
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Keywords: Carbon electrodes, Aqueous-based supercapacitors, flexible print-
able electronics, EDLC 

Supercapacitors are energy storage devices, in which storage of energy is based on the 

formation of electric double layer at the interface of electrode and electrolyte. In gen-

eral, a porous structure of electrode is needed to increase the surface area for formation 

of the electric double layer. 

The focus of this work was to design flexible supercapacitors, based on printing of dif-

ferent carbon-based inks. Three classes of materials were tested: activated carbon (AC), 

graphene, and carbon nanotubes (CNT). A precondition of the work was to use envi-

ronmentally friendly aqueous electrolyte. A problem arising from the use of aqueous 

based electrolytes is the corrosion of current collectors. Therefore, the aim was to elimi-

nate the corrosion of metallic current collector. This was done by changing the superca-

pacitor structure. The electrodes were fabricated on flexible polyethylene terephthalate 

(PET)-based substrates by blade coating. 

The supercapacitors were electrically characterized using the IEC 62391-1 international 

standard. From the galvanostatic charge-discharge measurement, capacitance values and 

equivalent series resistance (ESR) were measured. In addition, cyclic voltammetry (CV) 

was utilized to study the general behavior of supercapacitors. Moreover, the specific 

surface area (SSA) of electrodes was obtained from Brunauer, Emmett, and Teller 

(BET) method. 

The highest specific capacitance was obtained from activated carbon electrodes with 

values of 33 F/g. The SSA of AC was 1741 m
2
/g, which indicates that AC electrode 

material compromise a high concentration of pores. The specific capacitance obtained 

from CNTs was small, with the highest value of 5 F/g. Therefore, further development 

of CNT inks is necessary in order to make them a successful candidate as the electrode 

of printable supercapacitors. Moreover, ESR was primarily minimized by a suitable 

combination of electrode and current collector taking account of the corrosion risk 

caused by aqueous electrolyte.  
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1. INTRODUCTION 

The adverse impact of fossil fuels on the environment and human health has led to a 

growing demand for renewable energy sources and new technologies for electrical en-

ergy storage systems. Moreover, development of stationary and mobile systems has 

increased the need of storage systems with ability to deliver high power and energy 

densities [1][2]. Although batteries can provide high energy densities, their low power 

density and poor cycle life limits their use in applications requiring high power-and 

many change cycles [3]. Supercapacitors received a great deal of attention because of 

their unique combination of properties such as high power densities, long cycle life, and 

high energy efficiencies [1]. These devices are particularly suitable for applications 

which require energy pulses in short periods of time [3]. 

Printed electronics is an emerging field with a huge potential in large-scale production 

of flexible electronic devices with low cost [4]. The fast development of new genera-

tions of thin, flexible, and cheap electronics has increased the need for new methods of 

production such as roll-to-roll printing. The emerging field of “printed electronics” in-

cludes printable transistors, solar cell, organic diodes, as well as charge storage devices. 

Printable electronics can enable the low cost and fully-integrated manufacturing of elec-

tronic devices [5]. 

Currently available commercial supercapacitors are mainly based on the use of high 

surface area porous carbon materials or metal oxide systems [6]. Carbon-based materi-

als are mainly used because of their low cost, easy process ability, controllable porosity, 

and various natural forms [7]. However, development of supercapacitors is still ongo-

ing, and they require improvement especially in their energy density values. Therefore, 

for improvement of these devices a fundamental understanding materials, properties, 

and operating principles is necessary [3].  

The theoretical part of thesis introduces the main parameters, which determine the per-

formance of printed electrodes in a supercapacitor.  The experimental part reports the 

testing of the performance of different carbon-based inks as electrodes of supercapaci-

tors. Finally, three different supercapacitor architectures with various current collector 

designs were fabricated and characterized to study the effect on performance of both the 

electrode material and current collector design. 
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2. PRINCIPLE OF SUPERCAPACITORS 

A supercapacitor (SC, also known as electrochemical capacitor or electric double layer 

capacitor) is an electrochemical energy storage (EES) system, in which accumulation of 

charged particles leads to storage of energy [8][9]. In contrast to other dominant EES 

systems such as batteries and fuel cells, in supercapacitors the storage of energy takes 

place at the electrode/electrolyte interface.  In general, the performance of supercapaci-

tors has been evaluated by measuring various parameters such as energy density (energy 

stored per unit weight/volume), power density (W kg
-1

 or W L
-1

), and specific capaci-

tance (F g
-1

) [10]. In terms of electrical properties, supercapacitors take place between 

conventional capacitors and batteries. Batteries are typically low power devices, where-

as conventional capacitors may have a high power density values at very low energy 

density. Electrochemical capacitors have an improved performance, in terms of power 

density, in comparison to batteries. In addition, electrochemical capacitors are expected 

to have a much longer cycle life than batteries because no or negligibly small chemical 

charge transfer reactions are involved [9]. 

 

 Comparison of the specific energy/power density values for different ener-Figure 1.

gy storage systems [9]. 

In general, there are two main differences between batteries and supercapacitors; their 

charge storage mechanisms and dissimilarities in their materials/structures. In terms of 

energy density, batteries are designed to provide high values by storing charge in bulk 

electrodes. On the other hand, energy density values for supercapacitors are limited to 
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values of 5-10 Wh kg
-1

, compared to 100~250 Wh kg
-1

 for Li-ion batteries. However, 

batteries suffer from various limitations such as short cycle life, and slow 

charge/discharge rates. In contrast to batteries, high power density values can be 

achieved using supercapacitors (1-2 orders of magnitude higher than that of batteries). 

Therefore, storage and release of energy in supercapacitors can occur in the time frame 

seconds or less, in comparison to tens of minutes or more for batteries. Furthermore, the 

cycle life of supercapacitors is typically 2-3 orders of magnitude higher than the cycle 

life of batteries [10]. 

Supercapacitors consist of two conductive electrodes and two current collectors, which 

are separated from each other by a layer that does not allow electron conductivity but 

does allow ions to pass through it. Moreover, there is an electrolyte solution between 

electrodes, in which conduction of ions occurs [11] (see section 2.2). A schematic illus-

tration of this system can be seen in figure 2. The energy storage process of SC is based 

on the accumulation and separation of electrical charge. The charge accumulation oc-

curs in the electrochemical double layer at the electrode/electrolyte interface. In other 

words, applying a voltage potential across the system leads to movement of charged 

ions, and during the process negative ions in the electrolytes will be transferred to the 

positive electrode. It is also the case for positive ions, which will be transferred to the 

negative electrodes [7]. 

 

 Structure of supercapacitors [5]. Figure 2.

The capacitance values (C) for capacitors can be described according to equation 1: 

𝐶 =  
ԑ0ԑ𝑟𝐴

𝑑
,  Equation 1 

where A is the specific surface area (SSA) of the electrodes in contact with electrolyte, 

ε0 and εr values are the dielectric constants of the vacuum and electrolyte respectively, 

and d is the thickness of EDL [9][10]. 
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It must be considered that the capacitance value from the equation 1 represents the value 

for one electrode/electrolyte interface, and because a symmetric supercapacitor contains 

two electrode/electrolyte interfaces connected in series, the total capacitance of the sys-

tem is according to the equation 2 [3]: 

1

𝐶
=

1

𝐶1
+

1

𝐶2
 , Equation 2 

in which C1 and C2 are the capacitance values obtained from each electrode/electrolyte 

interface. The total capacitance of system affects the maximum stored energy in system 

based on the equation 3 [9]: 

𝐸 =
1

2
𝐶𝑈2, Equation 3 

where U is the maximum system voltage (V), and E is the maximum stored energy (J) 

of the supercapacitor. Similar to other electrical systems, there is a resistance in super-

capacitors which is called equivalent series resistance (ESR). In general, different com-

ponents of the supercapacitor affect the overall series resistance of the system such as 

the resistance of electrode material, current collector, and electrolyte. There are also 

other factors that contribute to the overall resistance such as the contact resistance be-

tween current collector and electrode, and ionic resistance of the electrolyte inside sepa-

rator layer and porous electrode [9][3]. Figure 3 illustrates the voltage drop inside the 

electrolyte during discharge process [12]. 

 

 Changes in voltage during discharge [12]. Figure 3.

The voltage drop inside the electrolyte arises from the ionic resistance of the electrolyte, 

and can be calculated by the equation 4 [12]: 
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𝑉 = 𝐼𝑅, Equation 4 

where I is the discharge current, R is the resistance of electrolyte, and V is the voltage 

drop during discharge process. The equivalent series resistance (ESR) value of a super-

capacitor alters the performance of the system by affecting the power based on equation 

5 [1]: 

𝑃 =
𝑅𝐿𝑈0

2

(𝑅𝑆 + 𝑅𝐿)2
, Equation 5 

in which P represents the maximum power (W), Rs is the ESR (Ω), RL is the load re-

sistance, and U0 is the initial voltage of the system. The maximum power density of a 

supercapacitor occurs when the ESR and load resistance of the system are the same. 

Therefore, the equation 5 will be replaced by equation 6 [9][12]:  

𝑃𝑚𝑎𝑥 =
𝑈0

2

4𝑅𝑠
. Equation 6 

The stored energy in supercapacitors decreases with time in the open circuit state due to 

self-discharge in the component. The self-discharge is an important factor in the study 

of  the duration for which the component is able to maintain the stored energy when it is 

not connected to an electrical circuit [13]. In general, three mechanisms contribute to 

the self-discharge of a component: Overvoltage of cell, Faradic impurity reactions, and 

Ohmic leakage current. In the first mechanism, the overvoltage of a cell beyond the 

voltage window of an electrolyte, results in the decomposition of the electrolyte and 

formation of gases. In the second mechanism, the presence of impurities results in a 

redox reaction, which alters the ion concentration on the electrode surface [1][13].  The 

last mechanism is the leakage current between two electrodes of the component, and is a 

result of electron conducting impurities [14]. To keep the component at constant volt-

age, charging current is needed to prevent voltage decrease. This current is called leak-

age current and it can be defined after different lengths of constant voltage periods, e.g. 

1 hour or 24 hours [15][16]. 

2.1 The energy storage mechanisms of supercapacitors 

The energy storage mechanism is dependent on the type of materials that have been 

used for electrode plates of a supercapacitor. Basically, there are two types of mecha-

nisms: (i) electrical double layer (EDL), which is the capacitance obtained from electro-

static charge accumulation at the electrode/electrolyte interface, and (ii) pseudocapaci-

tance which is the capacitance obtained from reversible redox processes at characteristic 

potentials. The total capacitance value is the sum of capacitance values from two mech-
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anisms, although typically one of the mechanisms dominates the total capacitance 

[7][17]. 

2.1.1 Electrical double layer 

The principle of double-layer capacitance is the storage of charge and formation of 

Helmholtz double layers at the electrode/electrolyte interface. The separation of charges 

at EDL results to a strong interactions between the ions/molecules in the solution and 

the surface of electrode. Figure 4 illustrates the EDL structure, in which inner layer 

closest to the electrode (also called Helmholtz, and compact layer) consists of the sol-

vent molecules. This layer itself is divided to inner Helmholtz plane (IHP) and outer 

Helmholtz plane (OHP) [8]. The IHP contains the specifically adsorbed ions, which 

electrical center located at the distance of x1. The OHP located at a distance x2, and it 

represents the starting point of diffuse layer [9]. 

 

 Illustration of electrical double layer at the electrode/electrolyte interface Figure 4.

[6]. 

There are many factors that affect the behavior of EDL such as type of electrolyte, the 

accessible surface area for ions of electrolyte, and distribution of electrical field across 

the electrode [9]. In general, this type of energy storage mechanism is the dominant 

mechanism for carbon-based electrode material such as activated carbon (AC), carbon 

nanotubes (CNT), and graphene [10]. 
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2.1.2 Pseudocapacitance 

Pseudocapacitance is Faradaic in origin, and is based on fast and reversible redox reac-

tions at the interface of electrode and electrolyte.  The energy storage mechanism is 

similar to that of batteries, which is the transfer of charge. Pseudocapacitance results 

from the electrosorption of hydrogen or metal atoms, and strongly relies on the chemi-

cal affinity of the ions in the electrolyte to the surface of electrode [11]. Pseudocapaci-

tance is the main energy storage mechanism for transition metal oxides such as MnO, 

RuO, NiO [17], and conducting polymers such as polyaniline, and polypyrrole [18].  

2.2 Structure of supercapacitors 

The common structure of a supercapacitor is a symmetric system of two electrodes im-

mersed in an electrolyte, which are electrically isolated from each other by an insulating 

layer [3]. In order to obtain high performance in supercapacitors, each component of the 

system must have specific properties. 

2.2.1 Electrode and current collector 

In general, the electrode must be made of an electrically conductive material, which has 

a high surface area as well as high chemical and mechanical stability [19]. Moreover, 

the capacitance values of electrochemical double layer depend on the geometry of elec-

trodes. In theory, a higher surface area of the electrode leads to higher capacitance val-

ues [20], due to the existence of more accessible area for charge carriers. However, in 

many practical cases higher surface area does not lead to higher capacitance values, 

because capacitance also depends on the pore size distribution. For example, the pores 

must be larger than ions in order to allow the ions to penetrate inside the pores [21]. 

Different classes of active electrode materials have been used in supercapacitors, such 

as activated carbon, carbon nanotubes, metal oxides, and conductive polymers [19]. 

Another important part in the structure of supercapacitors is the current collector. The 

function of this layer is to establish an electrical connection between an external source 

and the electrode of the supercapacitor. Therefore, the current collector must be made of 

conductive materials in order to minimize the ESR of the system. Moreover, there must 

be a low resistance contact between current collector and electrode layer [17]. In gen-

eral, conductive metallic materials can be used as the current collector, and the most 

commonly used metal for this purpose is aluminum. A potential disadvantage of the 

metallic current collector is that the penetration of electrolyte toward current collector 

can lead to corrosion of this layer which affects the life-time of the component. Corro-

sion of current collectors occurs in supercapacitors with aqueous electrolyte, but not in 

components with organic electrolytes. 
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2.2.2 Electrolyte 

In a supercapacitor system, the electrolyte acts as an ionic conductive medium between 

electrodes. The electrolyte material must be carefully chosen in order to maximize the 

operating voltage, which leads to higher power and density values of the system [10]. In 

general, a suitable electrolyte must be ionically conductive, with wide voltage window, 

and high chemical and thermal stability. Moreover, electrolyte solutions with lower vis-

cosity are preferred because of the higher mobility of ions in the electrolyte. There are 

different types of electrolyte such as organic, aqueous, and ionic liquids. The main ad-

vantage of organic electrolytes is their wide voltage range, e.g., 2.7- 2.8 V which makes 

them suitable for industrial applications [3]. However, these electrolytes are not envi-

ronmentally friendly, and they deliver low power densities due to their high resistivity 

values [22]. While aqueous electrolytes only sustain voltage of 1.2 V, they are environ-

mentally friendly, low cost, and show low resistance values [23]. Another advantage of 

aqueous electrolytes over other electrolytes is their small ion size. Smaller ion size leads 

to higher effective surface area, as ions can access smaller pores in the electrode materi-

al [24]. 

2.2.3 Separator 

The separator is a porous dielectric which is placed between anode and cathode to pre-

vent short circuit in the system. At the same time, it enables diffusion of ions and elec-

trolyte molecules. The separator must be chemically and mechanically stable, with high 

wettability, and high permeability. High permeability values of the separator lead to 

ease of ion movement through this layer [17][25]. Moreover, this layer must be able to 

withstand the voltage window of the used electrolyte, without losing the main character-

istics. 
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3. ELECTRODE MATERIALS 

Successful designs of electrode materials for supercapacitor applications lie into having 

following properties: 

1. High specific surface areas: 

In general, in a porous structure smaller porosities give a rise to specific surface 

area of the material. Theoretically, the area for formation of electrical double 

layer (EDL) is higher in materials with higher specific surface area [12]. Alt-

hough, there is not a linear relationship between specific surface area and ca-

pacitance values of carbon materials [26]. 

2. Proper accessibility of electrolyte to intra-pore surface area: 

Ideally, the size of pores must be big enough, in order to bring sufficient volume 

for accommodation of electrolyte [12]. In other words, engineering a matrix 

structure with an optimum pore size that fits with the ion size of electrolyte is a 

key factor for obtaining high capacitance values [3]. 

3. Proper size distribution of pores in the matrix structure: 

Proper size distribution of pores ensures that there is a proper intra-and inter-

particle conductivity in porous materials [12]. 

Although use of porous materials brings many advantages for supercapacitor applica-

tions, it has a number of drawbacks such as non-uniform charge distribution, and high 

contact resistance inside the porous structure. In general, when the porous structure 

filled with electrolyte is subjected to an external electrical stimulus, such as current or 

potential, the available electrode area in the matrix is not charged simultaneously at a 

uniform rate inside the matrix. The non-uniform distribution is a result of ohmic re-

sistance associated with electrolyte filling pores [12]. 

Preparation methods of carbon materials play an important role in the functionality of 

the electrode of a supercapacitor. Different preparation methods result in different sur-

face condition and properties of carbon materials. Preparation methods are involved 

with different steps such as high temperature pre-treatment, exposure to different at-

mospheric situations, and surface modification of material [12]. The effect of each prep-

aration step on the properties of the electrode material of supercapacitors is as follow: 

1. High temperature pre-treatment 

Heat treatment of carbon powder results in a higher degree of crystallization, 

which lead to decreased inter-particle contact resistance. Moreover, heat-

treatments are expected to open the pore structure, which is beneficial for for-
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mation of double layer. Another function of heat treatment of the carbon powder 

is to remove oxygen functional groups, which exist on the surface of carbon 

[22]. The function of oxygen functional groups will be explained in following 

pages. 

2. Exposure to different environments 

Depending on the preparation method of carbon, the process may involve expo-

sure of material to different atmospheric conditions. These conditions can be a 

part of the production process (e.g. oxidation-reduction of graphene oxide), or 

can be used for the modification of carbon (e.g. removal of oxygen functional 

groups) [12]. 

3. Surface modification 

In general, surface modification of electrode material affects the surface func-

tionalities, concentration of impurities, pore structure, and wettability of the 

sample by electrolyte [12]. Although the purpose is the improvement of perfor-

mance, it has been reported that the surface modification may lead  to negative 

effects such as increased junction resistance between particles [27]. 

Different types of oxygen functional groups are present on the surface of carbon, and 

might be introduced to the surface of carbon electrode during the operation of superca-

pacitors, especially in the case of system over-voltage. Figure 5 represents some of 

these functional groups. The presence of oxygen functional groups is a result of the 

bond between oxygen and unpaired electrons, which exist in the imperfect crystals of 

carbon. 

 

 Oxygen functional groups on the plane of carbon [22]. Figure 5.

The oxygen functional groups affect the performance of the electrode material of super-

capacitors by causing electrochemical reactivity, changing wettability properties of the 

electrode, and changing the self-discharge characteristics of a supercapacitor. In gen-
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eral, the wettability of electrode by electrolyte is higher when there is increased oxygen 

content. In other words, these functional groups decrease the contact angle between the 

electrolyte and electrode, especially in the case of aqueous electrolyte [22]. Another 

effect of oxygen bonds is increased inhomogeneity in the crystallographic orientation of 

carbon, which leads to increased time-dependency of charge distribution on carbon sur-

face. In other words, in an electrode with oxygen functional groups the spread of charge 

to different points of the surface does not occur simultaneously. Moreover, the presence 

of these functional groups in the electrode material leads to increased self-discharge of 

the EDLC [28]. In other words, the oxygen functional groups cause Faradaic reactions. 

These Faradaic reactions consume charges, which are accumulated across the electrode 

material. Therefore, these functional groups must be avoided in EDLC [20]. 

In supercapacitors made from porous materials, it is common to report capacitance val-

ues as a function of electrode mass. This value is known as specific capacitance and has 

the unit of F/g [9]. As explained in chapter 2, with the assumption of the component 

being symmetrical the total capacitance of a supercapacitor is 50% of the capacitance of 

each electrode. When defined as specific capacitance values, the specific capacitance 

value of a whole component is 25 % of the specific capacitance of single electrode since 

the capacitance is decreased by 50 % due to series connection of the two double layers 

and simultaneously the mass of active material is doubled. 

3.1 Graphene 

Graphene is a two dimensional (2D) monolayer of carbon atoms, and is the basic build-

ing block of graphitic materials such as carbon nanotubes (CNT) and graphite [29]. In a 

two dimensional crystalline structures of graphene, carbon atoms are packed into a hex-

agonal crystalline structure and each carbon is connected to its three nearby neighbors 

by strong σ bonds. The nearest neighbor interatomic distance in this structure is 1.42 Å 

[29][30]. Figure 6 illustrates the structure of graphene. 

The planar σ bonds between carbon atoms occur based on the occupation of sp
2 

orbitals 

by three valence electrons [31], while the π bonds are the perpendicularly oriented 

bonds to the plane of graphene. These π bonds are responsible for the electronic charac-

teristics of graphene [30]. 
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 The hexagonal crystalline structure of graphene [24]. Figure 6.

Theoretically, a monolayer plane of graphene has a high electrical mobility of 200,000 

cm
2
/(V•s) [24]. Altering the number of layers affects the electronic properties. In gen-

eral, single layer graphene (SLG) and double layer graphene (DLG) act as zero-gap 

semiconductors, while in few layer graphene (FLG 3 to ˂10) the overlap of valence and 

conduction bands change the electronic properties [30]. When the number of layers is 

more than 10, the electronic structure evolves to the three dimensional (3D) limit of 

graphite.  

A single layer of graphene has a specific surface area of  2675 m
2
/g, and can have spe-

cific capacitance up to ~550 F/g [24]. The effective surface area of graphene depends 

strongly on the number of layers [32]. In single layer graphene, both sides of the plane 

are available for charge storage, and surface area has the highest theoretical value 

[33][1]. Increasing the number of planes causes a decrease in effective surface area of 

graphene [32]. For supercapacitor applications, graphene has an important advantage in 

comparison to other carbon based materials: the effective surface area of graphene ma-

terials does not depend on the distribution of pores at solid state [32]. Therefore, prepa-

ration of graphene based supercapacitors should be in principle less complicated than 

activated carbon and CNT based supercapacitors [21]. 

The electrochemical characteristics of graphene can be altered by edge structure. Figure 

7 illustrates two possible types of edge structure in the graphene plane, namely armchair 

and zigzag. In general, the reactivity of zigzag edge structure is higher than that of arm-

chair structure. Moreover, defects are considered as reactive sites in the graphene lat-

tice. The reactive sites in the graphene structure have a higher tendency to adsorb sol-

vent molecules, which result in the distortion of the graphene lattice and consequently 

change of charge transport characteristics [34].  The quality of crystal also affects the 

electrical conductivity of graphene. For example, lattice imperfections and defects in the 

crystal affect the charge transport characteristics, and act as scattering sites in the free 

path of electrons [29].  
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Moreover, the electrochemical behavior of the basal plane is different from that of edg-

es.  W. Yuan et.al [35] have reported that graphene edges exhibit larger specific capaci-

tance, and faster electron transfer rate than those of the basal plane. In case of multilayer 

graphene, the presence of surface functional groups and defects in graphene sheet not 

only leads to pseudocapacitance, but also results in the wrinkling of the sheet [36][37]. 

Folding of graphene sheet reduces the area of contact between parallel sheets, and also 

prevents sheets from being stacked on the top of each other [37]. C. Liu [33] has shown 

that the shape of graphene sheet affects the performance of graphene-based supercapaci-

tor. By comparison of the shape of graphene sheet, it has been stated that by changing 

the shape of graphene to curved planes, the capacitance increases. In other words, 

curved sheets exhibit less agglomeration and stacking of sheets, and consequently high-

er effective surface area of the electrode material. 

 

 Illustration of graphene crystal in the presence of defect and different Figure 7.

edge structure [34]. 

The preparation method of graphene affects the final properties of the electrode materi-

al. Many different approaches have been used for preparing graphene including epitaxi-

al growth, graphitization, exfoliation, and chemical vapor deposition (CVD) [38]. One 

of the most effective methods in mass production of graphene is the oxidation and re-

duction of graphite, although graphene made by this method exhibits an irreversible 

agglomeration and precipitation of graphene particles, and also degradation of electrical 

conductivity [24][39]. 

3.2 Activated Carbon 

Activated carbon is a porous structure of carbon, comprising small hexagonal rings of 

graphene sheets. In these materials, there is a limited order between graphene sheets. 

The stacking, orientation, and the size of graphene sheet are directly related to the prep-

aration method of activated carbon [40]. In activated carbon the distribution of pore size 
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is large and consists of macropores (>50 nm), mesopores (2–50 nm), and micropores 

(<2 nm). The dominant surface area of AC is on the scale of micropores [2]. Figure 8 

presents the structure of these pores. 

As stated earlier, pore size and pore size distribution affect the performance of superca-

pacitors. In case of activated carbon, presence of macropores does not contribute to the 

adsorption of electrolyte molecules, and the main effective surface area for EDLC arises 

from the presence of mesopores. However, their presence is necessary during activation 

process as they act as a path for oxidizing agents, which lead to formation of mesopores 

and micropores [1]. In EDLC, the most of contribution to the formation of double layer 

is from mesopores. Micropores are incapable of supporting double layer, as they are 

non-accessible for electrolyte ions (especially in case of organic electrolytes) [2]. 

 

 An schematic of macropore, mesopore, and micropores of AC [1]. Figure 8.

Depending on the structure of activated carbon, the specific surface area ranges from 

500 to 2000 m
2
/g. Although the specific surface area values of activated carbon are 

high, the inaccessibility of micropores for electrolyte results in small specific capaci-

tance of 160 F/g in aqueous electrolyte and 100 F/g in organic electrolytes [24].   

One of the main problems with activated carbon is the difficulty in controlling the pore 

size and pore size distribution, which limits the performance of AC in EDLC superca-

pacitors [41]. Moreover, the porous structure of AC hinders the high electrical conduc-

tivity in these materials [2]. 

Activated carbon can be obtained from natural sources such as coconut shells, coke, 

wood, or from synthetic polymers. The activation of carbon is an important step in the 

production of activated carbon, as it has a direct effect on the porous structure of AC. 

The activation process involves heat treatment of a carbon-rich precursor in the pres-

ence of an inert atmosphere. The process continues with a physical or chemical activa-
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tion for development of surface area [1]. The physical activation uses a gaseous agent, 

whereas in the chemical approach the activating agent is a solid [42]. The physical acti-

vation is based on controlled gasification of carbon precursor with CO2 or steam accord-

ing to equations 7 and 8 [1]:  

𝐶 + 𝐶𝑂2 → 2𝐶𝑂,  Equation 7 

𝐶 + 𝐻2𝑂 → 𝐶𝑂 + 𝐻2. Equation 8 

Another approach for activation of AC is chemical activation. The chemical activation 

is based on formation of redox reaction of chemical species with carbon, followed by 

intercalation and expansion of the structure. Several chemicals can be used in this ap-

proach such as KOH, ZnCl2, and H3PO4 [1]. An advantage of chemical activation over 

physical activation is the low process temperature. However, in activated carbon pre-

pared by chemical activation there is a higher content of oxygen functional groups, 

which results in pseudocapacitance in the component [42]. During the activation pro-

cess, changes in treatment temperature and activation time affect properties such as sur-

face area, pore size, and yield of carbon [43]. 

In flexible electronics applications, preparation of electrode material is based on the 

mixture of AC powders with an organic binder. In general, the binder has two main 

functions, namely cohesion of AC particles and promotion of adhesion of electrode to 

current collector. The mixture of AC and binder is in the form of paste or ink to be 

printed onto the current collector. The choice of a suitable binder is important, as it al-

ters properties of the electrode material. For example, binders are insulating polymers 

and electrodes with high content of binder suffer from an increase in the ESR of super-

capacitor. Moreover, intergranular space in the electrode might be blocked by the bind-

er. Therefore, the content of binder must be controlled precisely [1]. 

Electrochemical characteristics of AC are affected by the purity of electrode material. 

For example, presence of heavy metals results in self-discharge and short circuit of the 

component. Therefore, the native AC powder must be purified. Moreover, the presence 

of elements such as iron, potassium and chloride leads to unstable behavior of the elec-

trode material over a long period of time [1]. In a similar way to graphene materials, the 

presence of functional groups in activated carbon has an impact on the performance of 

supercapacitors. These functional groups cause an increase in the resistance of elec-

trode. Moreover, they increase the total capacitance of the component by introduction of 

pseudocapacitance, resulting from redox reaction of surface groups [1]. Nakamura et. al 

[44] showed that in a AC electrode with high content of oxygen, production of gas leads 

to deterioration of component reliability during charging. They also claimed that the 

presence of acid groups in activated carbon is harmful, especially in the case of aqueous 

media. In general, acid groups result to an increase in leakage current, and significantly 

reduce the lifetime of the supercapacitor. 
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V. Ruiz et. al [45] reported that heat treatment of AC is beneficial in EDLC applica-

tions. In other words, the heat treated samples has shown better long term stability, less 

capacitance loss after 10000 cycles, but less capacitance values compared to un-treated 

samples. It has been explained that heat treatment removes oxygen functional groups, 

which is responsible for higher stability and lower capacitance. Moreover, heat-treated 

samples do not show pseudocapacitance. In another study [42], it has been shown that 

the removal of oxygen functional groups with microwave treatment is more efficient 

compared to heat treatment in electric furnace. 

3.3 Carbon Nanotube 

Carbon nanotube (CNT) is a cylindrical structure, which is made of the wrapped up 

hexagonal lattice of graphene sheet. Based on the number of cylinders, CNTs can be 

categorized into different structures namely single wall nanotube (SWNT), double wall 

nanotube (DWNT), and multiwall nanotube (MWNT). In SWNT the diameter of tubes 

is in the order of 1-2 nm, while in a MWNT, cylinders are concentric with interlayer 

spacing of 0.34 nm and diameters in the order of tens of nanometers. Figure 9 illustrates 

the structure of SWNT and MWNT [46]. 

 

 Illustration of MWNT (left) and SWNT (right) [47]. Figure 9.

Depending on the structure of nanotubes, they can act as metallic or semiconducting 

materials. In general, MWNTs are all metallic and SWNTs are either metallic or semi-

conducting.  Moreover, the electrical properties of CNTs depend on structure parame-

ters such as chirality [46]. Chirality can be defined as the “twist” in the structure of 

CNT, and is based on the angle at which a graphene sheet is rolled up. As shown in fig-

ure 10, different twisting angles result to different structures of CNT such as chiral, zig-

zag, and armchair. Generally, chirality can be presented by a vector (n,m). This vector 

contains information about twisting angle of CNT structure, as well as diameter of 
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tubes. Moreover, this vector can be used to determine electrical properties of CNTs. It 

has been stated that the electrical properties of CNT are similar to metallic materials 

when |n-m|=3q, in which q is an integer value  [48].  

 

 Different structures of CNT based on the rolling angles of gra-Figure 10.

phene sheet [49]. 

The electrical conductivity of metallic SWNT is in the order of 10
4
 S/cm [46], and the 

specific surface area of an individual SWNT is 1315 m
2
g

-1
 [50]. The size distribution of 

pores in CNT is in the range of mesoporous rather than micropores [21][51]. The double 

layer capacitance of SWNT-based supercapacitors has a wide range between 20 to 300 

F/g [52]. In case of MWNT-based supercapacitors, capacitance values up to 135 F/g 

were reported in aqueous based supercapacitors [21]. 

Similar to other carbon based electrode materials, specific surface area affects the ca-

pacitance of CNT based supercapacitors. In other words, capacitance depends on the 

diameter of tubes, arrangement of nanotubes, and accessibility of ions to the internal 

surface of tubes [21]. Moreover, number of layers in CNT affect the surface area and 

consequently capacitance of the component [46]. A. Peigney et al [50] calculated the 

theoretical values of specific surface area of bundled CNTs. As can be seen in figure 11, 

the specific surface area is directly related to the number of nanotubes and decreases 

with increasing number of nanotubes. 
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 Changes in specific surface area as a function of nanotube wall Figure 11.

numbers [50]. 

Although the surface area of CNT electrodes is lower than AC electrodes, easy accessi-

bility of electrolyte ions to mesopores of CNT lead to lower ESR values of CNT elec-

trodes compared to AC electrodes [24]. However, the values of resistance at the elec-

trode/current collector interface of CNT-based supercapacitors is usually high [32].  

In general, values of capacitance for SWNTs are higher than for MWNTs, which can be 

explained by the high surface area for SWNTs. However, Frackowiak et al [53] showed 

that MWNTs could generate higher capacitance values than that of SWNTs after certain 

modifications. The higher capacitance of MWNTs resulted from increased accessibility 

of central canals, as well as introduction of pseudocapacitance. 

In carbon nanotubes the aspect ratio is usually more than 1000, which leads to entangled 

structure of nanotubes to form a porous skeleton. As the result, open spaces between 

nanotubes can be easily accessed by electrolyte ions [46]. However, depending on the 

size of ions in electrolyte, a randomly entangled structure of CNT might be detrimental 

[2]. Wen Lu et al [54], have investigated the effect of CNT alignment on the perfor-

mance of supercapacitors with ionic liquid electrolyte. It has been shown that aligned 

structure of CNT leads to increased capacitance values. 
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In printable electronics, processing of CNT usually involves several challenges. For 

example, the concentration of CNT in water or organic solvents is usually limited to low 

values [55]. Moreover, CNTs tend to aggregate due the van der Waals interaction, 

which result to reduction of surface area of the electrode material [55][56]. Therefore, it 

is challenging to produce dispersions with high concentrations of CNT even after modi-

fications of CNT [55].  

In order to improve dispersion properties of CNTs, different approaches can be used. 

One approach is the addition of surfactants with hydrophilic head and a hydrophobic 

tail. Surfactants can be adsorbed to each CNT from their hydrophobic tail. In this way, 

the adsorbed hydrophobic tail acts as a physical barrier between CNTs to negate van der 

Waals forces. Another approach is the addition of long chain polymers that wrap around 

nanotubes, to act as both chemical and physical means to overcome van der Waals forc-

es [57]. However, it must be considered that formation of physical barriers around 

CNTs leads to decreased conductivity, as those barriers inhibit the contact between 

CNTs. 

Generally, a dried printed layer of carbon nanotubes consists of a random network of 

nanotubes. Therefore, very often it is possible that some of the nanotubes are isolated 

form other nanotubes in the network. Those isolated nanotubes do not contribute to the 

conductivity of the printed film. On the other hand, connected nanotubes lead to crea-

tion of electron pathway and consequently increase conductivity of the printed film, as 

shown in figure 12. Therefore, it is expected that in a printed thin film with long CNTs 

conductivity is higher than in a film constituted from short CNTs [57]. 

 

 

 Formation of electron pathway from the connection of CNTs Figure 12.

[57]. 
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4. CHARACTERIZATION OF ELECTRICAL PROP-

ERTIES 

The electrical performance of supercapacitors can be determined from measurement 

methods such as cyclic voltammetry, and galvanostatic measurements [58]. The main 

objective of these measurements is to determine properties such as capacitance, leakage 

current, equivalent series resistance (ESR), and cycle life of the supercapacitors. There 

are different standards for the measurement of supercapacitors. In this study, all the 

electrical measurements except cyclic voltammetry are based on the IEC 62391-1 

standard [15]. The detailed information about specification of standard in each method 

will be presented in the following part. 

4.1 Cyclic Voltammetry 

Cyclic voltammetry is a common method in measurements of electrochemical cells, and 

it is based on the cycling of potential in a cell, and measurement of the resulting current 

[59]. Cyclic voltammetry yields information about capacitance, cycle life, and general 

performance of a tested supercapacitor [12]. A typical CV curve of an ideal superca-

pacitor can be seen in figure 13. 

 

 Cyclic voltammetry diagram of an ideal supercapacitor Figure 13.

The rectangular shape is characteristic of charge storage for a pure double layer capaci-

tance mechanism, and it is based on equation 9 [60]:                           
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𝐼 = 𝐶 ×
𝑑𝑣

𝑑𝑡
 , Equation 9 

where C is the double layer capacitance, I is current, and  dv/dt is the potential scan rate 

[60]. Practical supercapacitors do not exhibit the rectangular behavior in CV curves, as 

there is an ESR and leakage current in all practical supercapacitors. The changes in the 

diagram for each case can be seen in figure 14 [23]. 

 

 Comparison of CV diagram of ideal supercapacitor and prac-Figure 14.

tical supercapacitors 

In this figure, the sharp peak at the end of CV curve for carbon materials represents the 

leakage current of component. Moreover, in supercapacitors with pseudocapacitive 

properties redox reactions appear as a peak in the voltage windows of the measurement.  

In CV measurements, the capacitance value of EDLC depends on the potential scan 

rate. It arises from the fact that in higher rates, charged particles cannot penetrate into 

the accessible pores which results to a decrease in capacitance values [61]. 

4.2 Galvanostatic charge-discharge 

Another method for evaluation of capacitance is galvanostatic measurement. In this 

method the supercapacitor is charged and kept at a constant voltage, and measurement 

continues with discharge at a constant current. The schematic of this process has been 

illustrated in figure 15: 
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 Illustration of galvanostatic measurement process [15] Figure 15.

In this measurement capacitance can be calculated based on equation 10: 

𝐶 =
𝐼×(𝑡2 −𝑡1)

𝑈1−𝑈2
, Equation 10 

in which C is capacitance, I is the constant current during discharge, UR is the maximum 

voltage, U1 is the 80% of the maximum voltage, and U2 is the 40% of the maximum 

voltage during discharge process. Moreover, this method yields information about ESR 

and leakage current values. As it can be seen in figure 7, at the beginning of the dis-

charge process there is a sudden drop in voltage, which presents the IR drop of the 

component. The ESR can be calculated from the equation 11: 

𝐸𝑆𝑅 =
𝛥𝑈3

𝐼
, Equation 11 

where I represents the current during discharge process, and ΔU3 is the IR drop.  

For the measurement of leakage current, similar charge-discharge measurement can be 

applied. The only difference is that the duration of charging with constant voltage is 20 

hours for this measurement. The leakage current is the value of the current at the end of 

the constant voltage step [15]. 

4.3 Sheet resistance measurement 

In printable electronics, the resistance of a conductive film is often specified as sheet 

resistance (RS). The unit of sheet resistance is Ω/sq, and this value is always defined for 

a certain layer thickness. A common method for measurement of sheet resistance is the 

four-point measurement. In this method, a probe with four connections must be placed 

on the electrode surface. Two outermost connections apply a current to the electrode, 

and two innermost connections measure the resulting voltage  [62]. Figure 16 shows a 

schematic diagram of a probe for the four-point measurement. 
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 Illustration of probe configuration for Four-point measurement Figure 16.

The sheet resistance values of the sample can be calculated based on equation 12 [62]: 

𝑅𝑆 =
𝜋

𝑙𝑛2
𝐺

𝑉

𝐼
, Equation 12 

in which V is the voltage, I is the current, and 
𝜋

𝑙𝑛2
𝐺 is related to the geometric correc-

tion factor of the measurement. The geometric correction factor of different shapes can 

be found in literature [63]. 
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5. MATERIALS AND METHODS 

This part of the thesis consists of the description of procedures for fabrication and elec-

trical characterization of supercapacitors, assembled with different materials and with 

different component designs.  

5.1 Materials 

 All the electrode materials were in the form of ink, and were printed on polyethylene 

terephthalate (PET) substrate. The assumption in this work was to prepare supercapaci-

tors with suitable flexibility.  In some experiments, PET substrates with a layer of cop-

per on the surface have been used. The copper-coated substrates were chosen in order to 

test the functionality of copper as the current collector of supercapacitors. The detailed 

information about substrates can be seen in table 1.  

Table 1.  Specification of utilized substrates               

In addition to copper current collectors, two other materials were tested for this func-

tion, namely graphite and silver. These current collectors were deposited as inks onto, 

PET substrates by doctor blading and inkjet coating, respectively. Detailed information 

about the current collectors and coating methods can be seen in table 2.  

In some components, combination of different current collectors was used. The detailed 

explanation about the combination of current collectors will be presented in chapter 

5.2.1.  

  

Substrate Company Code 
Thickness of 

substrate 

Coating 

Method 

Thickness of 

Coating 

PET 
Dupont Teijin 

Films 
Melinex 506 125 μm N/A N/A 

PET coated 

with Copper 

Dupont Teijin 

Films 
Melinex 506 125 μm 

Sputter Coat-

ing 
100 nm 
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Table 2. Specification of current collectors 

Two different separators were utilized for the assembling of supercapacitors. Infor-

mation about separators is presented in table 3. The criteria for the selection of separator 

were wettability by electrolyte, suitable porosity, and good mechanical strength. Con-

sidering the mechanical properties of the wet separator, Dreamweaver shows better 

properties in comparison to NKK separators. Therefore, Dreamweaver separator was 

chosen as the main separator of supercapacitors. 

Table 3. Specification of separators 

Preparation of electrode was done by utilizing three categories of inks made of activated 

carbon, graphene, and CNT. Except activated carbon, the rest of electrode materials 

were provided in the form of ink. In the case of CNT inks, ten different inks were tested 

as the electrode material. The detailed Information about CNT and graphene inks can be 

seen in table 4.  

Table 4. Specification of electrode materials 

Current Col-

lector 
Company Code 

Viscosity 

(mPa.s) 

Coating 

Method 

Drying Tem-

perature and 

Time 

Sheet Re-

sistance 

values 

(Ω/sq) 

Graphite Ink Henkel 
Electrodag 

PF-407 C 
42500 

Doctor 

Blade 

90°C 30 

Minutes 
11 

Silver nano-

particle Ink 
Harima NPS-J 7-11 Inkjet 130°C 1 Hour 0.2 

Company Product’s Code Thickness 

NKK TF4050 50 μm 

Dreamweaver Silver AR40 40 μm 

Ink Code 
Provider 

Company 
Material 

Percentage 

of active ma-

terial 

Drying tem-

perature and 

time 

Sheet Re-

sistance 

value (Ω/sq) 

NT20/V2010 Morphona CNT 2% 
100°C 10 

Minutes 
37 

NT20/S8010 Morphona CNT 2% 
100°C 10 

Minutes 
30 
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All the Morphona CNT inks were made of multi-wall nanotubes (MWNTs). No further 

information was provided by the producers, as the information about the constitution of 

inks was confidential. 

For the preparation of activated carbon ink, a mixture of acetic acid, chitosan, water, 

and activated carbon powder was used. The detailed quantities of components can be 

seen in the table 5. Preparation of the ink started with dilution of acetic acid with 60 g 

distilled water. Next, chitosan was added to the solution, and followed by agitation with 

a magnetic stirrer for 20 hours. The last step was the addition of activated carbon pow-

der to the solution, and followed by stirring with ultrasonic rod for 10 minutes. The car-

bon powder was provided by Kuraray Ltd. In all the steps of ink preparation, it is im-

portant to make sure that there is a minimized agglomeration of particles. 

For all the supercapacitors of this work, a 1M sodium chloride (NaCl) solution was used 

as the electrolyte material. The idea was to use an environmentally friendly electrolyte. 

The quantity of electrolyte for each component was between 0.3 to 0.4 gr. 

Ink Code 
Provider 

Company 
Material 

Percentage 

of active ma-

terial 

Drying tem-

perature and 

time 

Sheet Re-

sistance 

value (Ω/sq) 

NT40/S8020 Morphona CNT 4% 
100°C 10 

Minutes 
14 

BT50L20 Morphona CNT 5% 
100°C 10 

Minutes 
59 

BT50/S8010 Morphona CNT 5% 
100°C 10 

Minutes 
50 

Bristol Bristol CNT N/A 

Room tem-

perature 24 

Hours 

10.5 

NL30XU15 Morphona CNT N/A 
100°C 10 

Minutes 
78 

NC30H8020 Morphona CNT N/A 
100°C 10 

Minutes 
89 

NC30S8015 Morphona CNT N/A 
100°C 10 

Minutes 
34 

X103 Vor-ink™ Graphene N/A 
120°C 4 

minutes 
9 
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Table 5. Quantity of materials for preparation of activated carbon ink 

Sealing of supercapacitors was done by using two different approaches. In the first ap-

proach, an adhesive tape and in the second approach a sealing liquid was used. The de-

tailed information about sealing procedure will be explained in another section (see 

5.2.5). Table 6 presents the specification of sealing materials. 

Table 6. Specification of sealing materials 

For coating of CNT samples on PET substrate, there was a need for surface modifica-

tion of PET substrate, in order to increase the adhesion of CNT to the substrate. The 

modification was done by using Edolan dispersion. Edolan is an aqueous polyurethane 

dispersion, which was provided by Tanatex chemicals. 

  

Material Water Chitosan Activated Carbon Acetic Acid 

Quantity 90 g 1.7 g 30.9 g 0.7 g 

Sealing material Provider Company Drying time and temperature Thickness 

Adhesive Tape NKK N/A N/A 

Aquaseal X 2277 Paramelt 30 minutes at 80°C N/A 
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5.2 Procedure 

5.2.1 Component design 

The first step in the preparation of supercapacitors was designing the component. De-

pending on the type of current collector materials, three different architectures were 

designed. In the first architecture, the current collector and the electrode were prepared 

with graphene ink. The structure of each plate of supercapacitor for this architecture can 

be seen in figure 17. 

 

 The structure of a substrate coated with graphene (gray area). Figure 17.

In this architecture two plates of the supercapacitor were perpendicular to each other 

and the common area between two electrodes was 14*14 mm
2
. An example of the com-

ponent design can be seen in the figure 18. 

 

 The supercapacitor designed based on the first architecture. Figure 18.

In the second architecture, silver was coated on the substrate and a layer of graphene 

was coated on top of silver layer. Both layers in this structure act as the current collec-
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tor. The reason for combining two layers was to decrease the resistance of the current 

collector. The main function of the graphite layer was to protect silver from being cor-

roded. Figure 19 illustrates the structure of a coated substrate. 

 

 The structure of a substrate coated with Silver (gray area) and Figure 19.

Graphene on the top (black area). 

The electrode material used in this architecture was activated carbon. AC was applied 

onto the graphene layer, on the common area of silver and graphene current collectors 

with the dimensions of 14*14 mm
2
. Figure 20, illustrates the structure after addition of 

AC. 

 

 The substrate after coating with AC (dark black area) with di-Figure 20.

mensions of 14*14 mm. 

Two similar substrates were placed on the top of each other, in the way that the areas of 

AC electrodes overlap each other. An example of component made by this design is 

illustrated in figure 21. 
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 The supercapacitor designed based on the second architecture. Figure 21.

In the third architecture, a pre-coated copper substrate was used. After modification of 

the substrate, graphite ink was coated on the substrate and covered the entire surface. 

The modification of the copper substrate will be discussed in the next chapter. In this 

architecture copper, in combination with graphite, acts as the current collector. Figure 

22 presents a schematic of a modified copper substrate before addition of graphene 

coating. 

 

 The structure of a modified copper substrate. Figure 22.

In this architecture, the electrode material with dimensions of 14*14 mm
2
 must be coat-

ed onto the graphite surface and must be positioned in the center of the copper free area. 

A scheme of the substrate after coating of current collector and electrode can be seen in 

figure 23. 
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 The structure of a coated substrate with graphite (white) and Figure 23.

electrode (black) on the top. Dotted area shows the copper free area on the 

substrate. 

In assembly, two similar substrates were placed on the top of each other, so that the are-

as of electrode coatings overlap each other. An example of a component made by this 

design is illustrated in figure 24. 

 

 The supercapacitor designed based on the third architecture. Figure 24.

5.2.2 Etching 

As mentioned earlier, corrosion of the current collectors decreases the life time of su-

percapacitors. In order to prevent corrosion, for a group of samples the active area on 

the copper substrate was etched before coating of electrodes. A layer of graphite was 

then coated over the entire substrate. Although there is no direct contact between the 

electrolyte and copper layer, without removing the copper below the electrode area the 

electrolyte might diffuse toward the substrate. Consequently, the electrolyte will be in 

contact with the copper layer and it could lead to the corrosion of this layer. Therefore, 

the idea was to remove the area of contact between ions and copper layer. An example 

of these samples is illustrated in figure 25. 
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The process of etching started with covering the copper substrate with a marker. The 

whole area of the sample has been covered by the marker, except the area which was 

desired to be etched. The function of the marker was to protect the copper substrate 

form being etched. Four different permanent markers were tested for this purpose, and 

only one of those had the complete protective functionality which was Artline 100. The 

etchant was prepared from the mixture of 30 mL hydrochloric acid (HCl), 30 mL hy-

drogen peroxide (H2O2), and 700 mL tap water. After etching for 1 minute the sample 

was exposed to the water in order to remove the acidic solution from surface. The final 

step was to clean the marker from the surface of the substrate using pure ethanol.  

 

 Copper substrate after etching and cleaning. Figure 25.

5.2.3 Coating 

Based on the viscosity of the inks, blade coating was chosen as the deposition method. 

In this method, an applicator is moved across the substrate in order to distribute the ink. 

There are two main controllable parameters during coating: speed of the applicator and 

the desired wet thickness, set by the applicator. It must be considered that the coating 

thickness is also affected by the thickness of the covering mask of a substrate on which 

the applicator moves during the coating process. For all the prepared samples in this 

work, a covering mask with thickness of 65 μm was used. Moreover, the covering mask 

was connected to the substrate with a tape with thickness of 55 μm. The tape also ap-

plied on the covering mask, in a way that two sides of the applicator moves on the top 

of the tape. The target was an initial wet thickness of 120 μm, which is the combination 

of tape (55 μm) and mask (65 μm) thickness. 

5.2.4 Surface modification 

In some experiments, supercapacitors were made fabricated on the first architecture in 

order to test the behavior of the CNT ink alone to be used as the current collector and 

the electrode. The main challenge for these experiments was the poor adhesion of CNT 
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inks on the PET substrate. Therefore, surface modification of the PET surface was nec-

essary. The modification was done by spreading a layer of Edolan on the PET surface. 

Coating of the Edolan was done using a spray gun. The drying of samples was done at 

90°C for 30 minutes. An illustration of the modified surface can be seen in the figure 

26. The area of modified surface was similar to the area of the electrode, which was 

14*40 mm
2
. 

 

 PET substrate coated with Edolan (white area). Figure 26.

5.2.5 Assembling and sealing 

Assembling of supercapacitors was done in the ambient laboratory environment. The 

electrolyte was added to the active area of both electrodes, the separator was placed 

between two electrodes, and electrodes were placed on the top of each other so that the 

edges of active area of the two electrodes completely overlapped each other.  

Sealing of supercapacitors has been done by two different approaches: 

1. Applying of the adhesive tape on the substrate 

2. Applying of sealing solution on the surface and sealing with hot sealing 

In the first approach, NKK adhesive tape was used. The idea was to transfer the adhe-

sive layer from the tape to the surface of the substrate. The size and design of the adhe-

sive layer can be seen in figure 27. In order to have a more effective sealing, adhesive 

layer has been applied on both substrates. 
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 Position of adhesive layer (gray) on the substrate. Black area Figure 27.

represents printed current collector. 

Another approach for sealing was to use adhesive solution on the surface of substrates, 

followed by hot sealing of the component. For this purpose, X2277 sealing solution was 

used. After addition of the solution to the surface, it was dried at 80°C for 30 minutes. In 

this sealing method, in order to protect the component from short circuit, there is a need 

for another layer between two plates of supercapacitor. The intermediate layer was Pol-

yethylene (PE). This layer was designed in a way that it covers the whole area of con-

tact between two substrates, except the electrode. It must be considered that this method 

was designed for the graphite coated copper substrates, and the functionality of the ad-

hesive layer was not tested for PET substrate. The assembling was done in the following 

order: 

1. Applying the sealing solution on both electrodes, followed by drying 

2. Applying the PE layer on one electrode, and hot sealing with low temperature 

3. Addition of electrolyte to the electrodes  

4. Addition of separator layer 

5. Placement of two substrates on the top of each other, so that there is a complete 

overlap of electrodes 

6. Heat sealing of the system 

 

An important consideration in this sealing method is that the heat sealing must be done 

on the copper free area in order to keep the electrolyte in the copper-free area. Incom-

plete sealing results in the penetration of the electrolyte to the copper substrate, which 

causes the corrosion of the substrate. The proper sealing edges can be seen in figure 28.  
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 A component with proper borders of sealing. Figure 28.

5.3 Characterization 

5.3.1 Electrical properties 

The measured electrical properties for supercapacitors were sheet resistance, capaci-

tance, leakage current, and ESR of component. Measurements were carried out using a 

Zennium electrochemical workstation from Zahner Elektrik GmbH. An illustration of 

this device can be seen in figure 29.  

 

 Illustration of Zennium electrochemical workstation. Figure 29.

For sheet resistance measurement, the device was set to a four-electrodes configuration, 

and it was connected to a four point probe. An illustration of the used configuration and 

probe can be seen in figure 30. 
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 Illustration of four-electrode configuration (left) and four-Figure 30.

connection probe (right). 

The probe was placed on the middle, and in parallel with the length of printed layer. The 

sweep voltage of -200 to 200 mV was used in this measurement. Based on the geometry 

of dried samples, geometry correction factor of G = 0.73723 was used. Moreover, to 

increase the accuracy, each measurement was repeated three times for each sample and 

average value was calculated. 

For cyclic voltammetry measurements, the device was set to a two-electrode configura-

tion. The measurement was conducted in the voltage range of 0 to 0.9 V, and at differ-

ent voltage sweep rates 100 mV/s, 50 mV/s, and 10 mV/s. At the next step, the compo-

nent was cycled for twenty times at voltage sweep rate of 50 mV/s. Finally, samples 

were cycled with 100 mV/s and 50 mV/s. 

Galvanostatic measurements were carried out based on IEC standard [15]. For galvanos-

tatic measurements, an estimation of capacitance was obtained from cyclic voltamme-

try. From the obtained values of capacitance, a primary discharge current of component 

was calculated, and used in galvanostatic measurement. The maximum voltage of 

measurement was set to 0.9 V, and was conducted based on the explained procedure of 

the standard [15]. In the next step, measurement was repeated with the calculated values 

of discharge current from the previous step. Finally, the measurement was repeated with 

discharge current ten times bigger than the current used in the first measurement. The 

capacitance values of the component were recorded for each measurement.  

The IR drop value of each component was obtained from the galvanostatic measurement 

with the highest current. The process for evaluation of leakage current was explained in 

section 4.2. 

The last measurement for each component was cyclic voltammetry at sweep rate of 50 

mV/s, and for 2000 cycles. The purpose of this measurement was to investigate the be-

havior of components during continuous cycling. 
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5.3.2 Surface and pore distribution 

The importance of the surface area and pore size of the electrode has been explained 

earlier in this report. There are different methods for the measurement of surface area, 

but the best known is the Brunauer, Emmett, and Teller (BET) method [12]. This meth-

od is based on Langmuir theory and can be applied to monolayer and multilayer molec-

ular adsorption. In the BET method, the surface area of solid material can be obtained 

by the physical adsorption of nitrogen gas molecules [43].  

In order to investigate the pore structure and surface area of AC and graphene elec-

trodes, BET analysis at 77 K was carried out. For this measurement, previously printed 

and dried samples were scratched from the surface of electrodes. In order to increase the 

accuracy of BET measurement, scratched powders were dried at 100°C for one hour.  
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6. RESULTS AND DISCUSSION 

6.1 Coating and preparation of electrodes 

As mentioned earlier, the coating of sample was done by blade coating on PET substrate 

and graphite. In case of CNT inks, adhesion to the substrate for both PET and graphite 

was poor. For PET substrate, the adhesion of ink tested after addition of a thin layer of 

Edolan. Surface modification of PET substrate with Edolan improved the adhesion of 

all Morphona CNT inks except NT20/S8010, BT50/S8020, BT50L20, and NC30S8015 

inks. However, the film qualities were not satisfactory, and in many samples poor local 

adhesion of inks was visible after drying, as it can be seen in figure 31. The source of 

poor local adhesion was the agglomeration of CNT inks. For Bristol CNT ink, the poor 

wetting of ink made the process of coating impossible. Therefore, electrodes were pre-

pared from step by step drying of individual drops on the substrate. 

 

 Poor adhesion of CNT ink to PET substrate. Figure 31.

In case of activated carbon and graphene inks, films were coated with a homogeneous 

thickness of 30 and 10 μm, respectively. The adhesion of inks to PET substrate and 

graphite layer was satisfactory. However, the main problem with graphene film was the 

drying procedure. Based on the datasheet, the drying of the ink must be done at 120°C 

for 2-4 minutes. However, inks dried based on the datasheet exhibited a flaky surface 

with visible cracks, as can be seen in figure 32. 
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 Illustration of cracked surface of graphene ink after drying. Figure 32.

Therefore, the drying condition was changed to 90°C for 30 minutes. Films dried at this 

condition had a suitable appearance with a homogenous thickness. 

6.2 Electrochemical characterization 

6.2.1 Sheet resistance 

The values of RS for CNT printed samples can be seen in figure 33. These values are for 

the samples made using the first architecture, in which current collector and electrode 

were made from the same ink. Compared to RS values of graphene ink printed based on 

the same setup (4.5-11 Ω/sq), CNTs had higher RS. Because of the low theoretical resis-

tivity of CNTs and similar thickness ranges for graphene and CNT films (10-20 μm), 

high RS values of CNTs were unexpected. One possible explanation is the low concen-

tration of CNT inks, which was in the order of 1% to 5% of ink solution. Therefore, the 

printed network of CNTs may consist of isolated tubes which causes increased resistivi-

ty of the film and consequently sheet resistance values. Moreover, as stated in section 

3.3 the length of CNTs play an important role in the conductivity of the printed samples. 

Short tubes lead to decreased connectivity of tubes in the network of the printed struc-

ture and consequently decreased conductivity.  
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 Sheet resistance values of CNT samples. Figure 33.

Based on the capacitance values of CNT inks, the sample with highest capacitance value 

was selected to be studied as the electrode material in other mask setups. A comparison 

of sheet resistance values of NT40/S8020 ink in different architectures of supercapaci-

tors can be seen in figure 34. 

 

 Comparison of sheet resistance value of NT40/S8020 ink in dif-Figure 34.

ferent architectures.  

In figure 34, the first architecture refers to supercapacitors with CNT as current collec-

tor and electrode, the second architecture refers to components with silver and graphite 

as current collector, and the third architecture refers to samples with copper and graphite 

as current collector. As it can be seen, the use of conductive metals as current collector 

decreased sheet resistance values of CNT-based supercapacitors. Furthermore, silver 
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current collectors exhibit a better reduction of sheet resistance than copper current col-

lectors. 

6.2.2 Cyclic voltammetry 

In order to investigate the behavior of supercapacitors, CV measurements of compo-

nents were conducted. Figure 35, represents CV diagrams of CNT-NT40/S8020 at dif-

ferent sweeping rates of 100 mV/s, 50 mV/s, and 10 mV/s. The diagram presented on 

top is related to the sample made based on the third architecture (copper current collec-

tors), and diagram on the bottom presents the sample made based on the first architec-

ture with CNT as the electrode and current collector. In both samples, the CV behavior 

is relatively close to rectangular behavior of ideal supercapacitors. However, for the 

samples with copper current collectors (top) the CV behavior is more similar to that of 

the ideal supercapacitors.  

 

 CV diagram at voltage sweep rates of 100mv/s, 50 mV/s, and Figure 35.

10 mV/s for samples with copper current collector (top) and sample with CNT 

as current collector and electrode (bottom). 

The rectangular behavior of copper based samples is an indication of decreased values 

of resistance in the component.  

Figure 36 shows the cyclic voltammetry diagrams of different samples at the voltage 

sweep rate of 10 mV/s. The rectangular behavior of supercapacitors for all the samples 

is visible. The top curve is a comparison of CV behavior of activated carbon in superca-

pacitors, which were designed based on the second architecture (with silver) and the 
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third architecture (with copper). The curve in the middle is the behavior of CNT ink in 

the same architectures, and the last curve presents the CV behavior of graphene de-

signed with the first architecture.  

 

 CV curves of AC (top), CNT (middle), and graphene (bottom).  Figure 36.

For all the tested inks, the CV is relatively rectangular, with no peaks related to redox 

reactions. Therefore, in all the tested inks the capacitance mechanism is based on for-

mation of double layers on electrodes. In all the samples, current increases at the high 

end of potential range, which is due to the leakage current at high voltage. 
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6.2.3 Capacitance values 

A comparison of specific capacitance values of assembled supercapacitors obtained 

from galvanostatic measurements is shown in table 7. As explained in chapter 3, the 

specific capacitance of individual electrodes is four times bigger than that of the super-

capacitor. The reported specific capacitance in this work is based on the masses of both 

electrodes.  

Table 7. Range of specific capacitance for assembled supercapacitors 

The highest capacitance values are obtained from the samples with activated carbon 

electrodes. The high capacitance for activated carbon is an indication of high accessible 

surface area of the sample. As the values of capacitance for all CNT inks (except 

NT40/S8020) were close to each other, not all individual values are reported here. The 

wide range of specific capacitance of samples with the same electrode may be the result 

of misalignment between two active layers of a component. In case of CNT inks, the 

highest capacitance values obtained from CNT ink of NT40/S8020 with the highest 

specific capacitance of 5.2 F/g. For other CNT inks the highest values of 2.5 F/g was 

obtained. Based on the reported values of capacitance for the MWNTs (section 3.3), the 

CNT-based supercapacitors in this work exhibit smaller values than those reported in 

the literature. However, the capacitance of CNT-based supercapacitors mainly depends 

on the preparation method of electrodes. Based on the information stated in section 3.3, 

a great variety of parameters might be responsible for the small capacitance values of 

tested inks, namely blockage of surface area by binder materials, low accessible surface 

of CNT (because of low concentration of ink, or small lengths of CNTs, or agglomera-

tion of CNTs), and random arrangement of CNTs in the structure of printed film. In 

order to correlate the small values of capacitance in CNT inks to the affecting factors, 

more detailed measurements are needed. For example, IR spectroscopy method is useful 

to study the blockage of surface by possible residual polymers and functional groups, 

and combination of transmission electron microscopy (TEM) and Raman spectroscopy 

methods are useful to study the structure and arrangement of CNTs.  

Electrode material Material’s code 
Ranges of specific capacitance 

(F/g) 

CNT NT40/S8020 1.2 - 5.2 

CNT 
Except 

NT40/S8020 
0.4 – 2.4 

Graphene N/A 1.8 – 7.1 

Activated Carbon N/A 17.7 – 33.3 
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6.2.4 ESR and leakage current 

The ESR and leakage currents of different components are shown in table 8. As ex-

pected, ESR values of same electrode material are altered depending on the design ar-

chitecture of component. In other words, use of highly conductive current collectors was 

beneficial in reducing the ESR values of supercapacitors. For example, CNT samples of 

BT50/8010 and NC30H8020 have ESR values of 850 and 500 Ω, respectively when 

they are used both as electrode and current collectors. However, when they were printed 

on graphite and copper current collectors, ESR decreased to 10 Ω for BT50/S8010 ink 

and 20 Ω for the NC30H8020 ink. 

Table 8. ESR and leakage current values of assembled supercapacitors 

The highest ESR values were related to CNT samples designed with the first architec-

ture, where CNT works as electrode and current collector. The ESR of supercapacitors 

with activated carbon electrodes was the lowest when deposited onto substrates using 

the third architecture (copper current collectors). In this work, the number of samples 

which were made based on silver current collector (second architecture) was limited. 

Therefore, the comparison between effectiveness of copper and silver current collectors 

in the reduction of ESR is not possible. Among different tested materials, CNTs exhibit 

the lowest leakage current, while the highest values were measured from graphene 

based supercapacitors. There was not any correlation between the design architecture of 

component and measured leakage current values. 

Electrode mate-

rial 
Material’s code ESR (Ω) Leakage current (μA) 

CNTs designed 

with the first archi-

tecture 

All 160 – 1140 0.1 – 5.9 

BT50/8010 850 3 

NC30H8020 500 0.1 

CNT designed 
with the third ar-

chitecture 

All 6 – 20 0.1 - 5 

BT50/8010 10 3 

NC30H8020 20 3.8 

Graphene de-
signed with the 
first architecture 

N/A 105 - 160 20 - 80 

Activated carbon 
designed with the 
second architec-

ture 

N/A 2.5 – 13.7 8.3 – 13.7 

Activated carbon 
designed with the 
third architecture 

N/A 3.2 – 12.7 1 - 8 
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6.3 BET analysis 

In order to study the surface area of graphene and activated carbon electrodes BET 

analysis measurement was used. Based on this measurement, the specific surface area 

values of activated carbon and graphene was 1741 m
2
/g and 5.5 m

2
/g, respectively. The 

data obtained from BET measurement of activated carbon explains the high capacitance. 

On the other hand, the SSA value obtained from BET measurements of the graphene 

sample is surprisingly low. One possible explanation for low SSA values of the used 

graphene is the composition of ink. Based on a patent from the supplier [64], the ink 

appears to be not composed of pure graphene, but based on a mixture of polymeric 

binder, graphene, and graphite. Although they did not report an exact value for the SSA 

of ink, it was mentioned that the smallest SSA of this mixture is 100 m
2
/g, depending on 

the composition of inks, which contradicts the results of this work. Figure 37 represents 

the pore size distribution of activated carbon ink from the BET measurement. As was 

expected, activated carbon has a porous structure with high concentration of mesopores. 

The average pore size distribution in activated carbon was in the range of 2 to 3 nm. 

 

 Pore size distribution of activated carbon in mesopore range. Figure 37.

As shown in figure 38, the main volume of pores in graphene had the same size distri-

bution of 2 to 3 nm, In addition to pores with average sizes of 10 to 50 nm. 
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 Pore size distribution of graphene in mesopores range.  Figure 38.

6.4 Sealing efficiency 

As mention in section 2.2.1, one disadvantage of aqueous supercapacitors is the corro-

sion of current collectors. Another criterion for comparison of success in different de-

signs of supercapacitors was the corrosion of current collectors in each system. As stat-

ed in section 5.2.1, in samples which were designed based on the second architecture a 

combination of graphite and silver was used as the current collector. In all the samples 

designed based on this architecture, corrosion spots appeared on the surface of silver 

current collectors after two weeks storage of components. Figure 39 presents the ap-

pearance of the supercapacitor after corrosion (39.1), and optical microscopy image of 

corrosion spot on silver current collector (39.2). Therefore, the coverage of silver layer 

with graphite was not sufficient for the protection of silver from corrosion. Moreover, 

not only corrosion spots appeared in the active area (39.1.b), but also outside this area 

(39.1.a). It suggests that the sealing method in this model was not completely successful 

in maintaining the electrolyte in the mentioned area. 
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 Corrosion spots on silver current collector (1) and optical micros-Figure 39.

copy image of corrosion spot (2).  

Samples which used copper current collector showed no sign of corrosion, even after 

long time storage of components. Therefore, the third architecture design was successful 

in protection of copper current collector from corrosion. 
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7. CONCLUSION 

In this work a variety of carbon-based inks were tested as the printed electrode of super-

capacitors. The focus of work was to characterize the electrical properties of carbon-

based electrodes. As the idea of work was to prepare environmentally friendly and flex-

ible components, all the components made based on the use of aqueous electrolyte. 

Therefore, the aim was to design components with suitable performance without the 

potential disadvantage of aqueous electrolyte in the corrosion of current collectors. 

In terms of printability, CNT inks did not exhibit a suitable adhesion. Further modifica-

tion of the substrate also did not improve the adhesion of inks to the substrate. Coupled 

with the presence of agglomerates in the solution of these inks, CNTs did not exhibit 

suitable printability. In addition, these inks did not exhibit good electrical performances 

as their sheet resistance was in the range of 9.3 to 103 Ω/sq for average electrode thick-

ness of 15 μm. In light of the average small specific capacitance of 2 F/g for these inks, 

it can be concluded that current inks are not suitable for use as supercapacitor elec-

trodes, and further development of CNT inks is necessary for their implementation in 

supercapacitor applications. 

On the other hand, electrodes which were prepared with AC inks exhibited high specific 

capacitance of 33 F/g. BET analysis of AC powder showed high specific surface area of 

1741 m
2
/g, which suggests that the printed AC ink has a high concentration of pores, 

and is suitable for preparation of printable supercapacitors. In case of graphene inks, the 

value of SSA was 5.5 m
2
/g which is smaller than predicted values from the provider 

[64]. However, the capacitance of the sample with the highest values of 7.1 F/g was not 

in agreement with the results of BET analysis.  

It has been shown that the electrical performance of supercapacitors can be increased 

significantly, by the use of modified copper-coated substrates. Aside from the type of 

tested carbon-based inks, the sheet resistance and ESR of the printed supercapacitors 

were decreased significantly in systems with the modified copper current collectors, and 

without deterioration of components quality. In this work, the best supercapacitors were 

achieved for AC-based supercapacitors which were printed on copper current collector 

with high specific capacitance values of 33 F/g and ESR smaller than 12.7 Ω. 
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