TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

SANDEEP KUMAR SHRESTHA
FIPA-COMPLIANCE OF HTML5 AGENT FRAMEWORK

Master of Science thesis

Examiner: Prof. Kari Juhani Systa
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing on 9" September 2015.

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’'s Degree Programme in Information Technology

SANDEEP KUMAR SHRESTHA: FIPA-Compliance of HTMLS5 Agent
Framework

Master of Science Thesis, 58 pages

April 2015

Major: Software Engineering

Examiner: Prof. Kari Juhani Systa

Keywords: HTML5, mobile agent, framework, FIPA, interoperability, compli-
ance, MAS, FIPA-ACL, specifications, agent platform.

In agent-oriented architecture, systems are built on autonomous components called
agents. Agents exist and operate in an agent environment/platform. When an agent envi-
ronment contains two or more agents, it is called Multi-agent System (MAS). Like hu-
mans, agents have an ability to cooperate, coordinate, negotiate and interact with each
other to resolve problems on the behalf of their users. Moreover, agents in agent envi-
ronment can reach beyond its system environment and interact with agents in other
third-party agent environments for co-operative problem solving. Agent systems devel-
oped by different developers possess architecture specific features and implementation.
These differences among agent systems prevent interoperability between agents existing
in different agent environment. Therefore, mechanisms that allow agents and/or MASs
to interoperate are needed.

It is easier to rationalize the use of agent systems based on existing well known stand-
ards like FIPA than on self-made standards. The HTML5 Agent Framework developed
in TUT has its own architecture specific features and implementation. The main purpose
of this thesis is to analyze how HTML5 Agent Framework can be made FIPA compli-
ant. An agent system that conforms to FIPA specifications is a FIPA-compliant system.
A FIPA-compliant system can interoperate with other heterogeneous agent systems that
are FIPA-compliant as well. The conversion of MAS into a FIPA-compliant system is
one way of guaranteeing interoperability between different MASs. FIPA is a standard
body that provides specifications for developers of agent systems. It promotes agent-
based technologies and interoperability of its standards with other agent-based technol-
ogies that facilitate the end-to-end interworking of agent systems in modern commercial
and industrial settings. In this thesis, the current implementation of HTMLS5 Agent
Framework is mapped with FIPA standards. This thesis presents analysis to make
HTML5 Agent Framework a FIPA-compliant agent system. Moreover, possible solu-
tions to make HTMLS5 Agent Framework compliant to FIPA are suggested. A proof of
concept is also implemented. It can establish simple communication between HTML5
agent and FIPA-compliant JADE agent.

PREFACE

This Master of Science Thesis has been written for Department of Pervasive Computing
at Tampere University of Technology (TUT), Tampere, Finland.

First and foremost | would like to express my sincere gratitude to my supervisor Prof.
Kari Juhani Systd for providing me continuous support, guidance, and valuable
feedbacks throughout the entire duration of the thesis. 1 am very grateful to my friends
Prakash Subedi, Dipesh Paudel, Udhyan Timilsina, Bishwa Subedi, Abhishek Bhattarali,
Nirajan Pant, Jenny Maharjan, Shiva Bhattrai, Kishor Lamichhane and many more for
giving me memorable time staying abroad, and guiding me and giving me suggestions
throughout my studies and thesis work. Special thanks to Bikram Thapa for providing
me technical guidance.

Finally, I would like to express my greatest appreciation to my parents, and of course
Mitrata for love, support, inspiration and ecouragement throughout writing this thesis
and my life in general.

Sandeep Kumar Shrestha
Tampere, 20" September, 2015

CONTENTS
1. INTRODUCTIONoiiiiiiiiiieie ettt 1
2. BACKGROUND ..ottt 3
2.1 General agent definitioN ... 3
2.1.1 Mobile sOftware agent.........cccccveveiieieeienie e 3
2.2 WhY MODIIE QENTS?eoiiiie e e 5
2.3 Multi Agent SYSEEM (IMAS)c.oiiiiiiiieieiee e 7
2.4 Why Standardization............ccceiieieiienese e 7
2.5 TheSIS ODJECHIVE.......eiiiicec e 8
3. HTMLS5 AGENT FRAMEWORKcotiiiiiieiiie et 10
3.1 Overview of HTMLS5 agent frameworkccocovviiinininienennescceie 10
3.1.1 Agent-to-agent communication in HTMLS5 agent framework........ 13
3.1.2 Agent management in HTMLS5 agent frameworkK...............cc.co...... 14
3.2 Evaluation of HTMLS5 agent framework.............ccocvvvniiininienencnesces 16
4. INTRODUCTION TO FIPA ..ottt 18
4.1 AQENt COMMUNICALION ...ttt 24
4.2 AGENt MANAGEMENT.......iiiiiieiiiie ittt 33
5. MAPPING/COMPATIBILITY BETWEEN HTML5 AGENT FRAMEWORK
AND FIPA bbbttt 37
5.1 PropoSed SOIUTIONc.ceiiiiiiieiie it 38
6. PROOF OF CONCEPT/EXPERIMENTATION......ccceooiiiiiiiiieicie e 42
6.1 Implementation in JADE MASoooiii e 44
6.2 Implementation in HTMLS5 agent frameworkccccooveveienencninennen 54
7. EVALUATION ..ottt eneas 57

8.

CONCLUSIONS ... 58

LIST OF FIGURES

Figure 2.1 Basic mobile agent architecture [recreated from 42].........cccccooeviiiininnnnnns 4
Figure 2.2 Client-server computing paradigm [recreated from 42].cccocevivininnnnnns 5
Figure 2.3 Mobile agent computing paradigm [recreated from 42].........cccoovvvrniinnnnnns 6
Figure 3.1 HTMLS5 agent life cycle [recreated from 20].........ccccovoiriiiiieicncnniee 11
Figure 3.2 Basic architecture of framework [recreated from 14]........cccccooeviiinininnnn. 12
Figure 3.3 Agent-to-agent communication model [recreated from 14].ccce.ee. 13
Figure 3.4 Creation of communication component [recreated from 14].............cccenee. 14
Figure 3.5 Sending message to another agent [recreated from 14]. ... 14
Figure 4.1 Agent-based system components and its interfaces [recreated from 2]........ 18
Figure 4.2 FIPA specification categories [recreated from 3 and 5].cccccooviinirennnnn 19
Figure 4.3 FIPA agent communication specification [recreated from 5]...........cc.ce...... 21
Figure 4.4 FIPA agent management reference model [recreated from 43]................... 22
Figure 4.5 Syntax for FIPA-ACL message [recreated from 65].........cccccevvieiininnnnnn. 28
Figure 4.6 A message [recreated from 24]. ..o 29
Figure 4.7 A FIPA message to transport-message [recreated from 24]...........ccccocveee. 30
Figure 4.8 FIPA-ACL communication model [recreated from 43].ccccceoviirirnnnnn 31
Figure 4.9 Connection between FIPA-ACL communication model and OSI

reference model [recreated from 81].cccooiiiiiiininiiie e 32
Figure 4.10 FIPA specifies Agent Interaction Protocol Stack (AIPS) for Multi-

agent System (MAS) interaction [recreated from 65].ccoecvevvrernee. 33
Figure 4.11 Representation of agent management [recreated from 43]...........cccccovneee. 34
Figure 4.12 Agent message transport reference model [recreated from 36].................. 35
Figure 5.1 FIPA-compliant gateway approach to make an agent platform FIPA-

compliant [recreated from 3 and 75].ccooiiiiiiiniiic 40
Figure 6.1 Outline of communication between HTML5 Agent Framework and

JADE. .ot 43
Figure 6.2 Implementation detail for creating web application in JADE MAS

[recreated from 78].ccocoeeiiiiee e 45
Figure 6.3 Project structure of implementation in JADE in NetBeans IDE. 46
Figure 6.4 Steps in execution iN JADE.ccooiii i 53

Figure 6.5 Representation of message flow between HTML5 agent and JADE
10 =] | SRR 56

LIST OF ABBREVIATIONS

AAP
ADK
ACC
ACL
AMS
API
cCL
CORBA
DF
EPL
FIPA
GPL
HTML
HTTP
JADE
JSON
KIF
KQML
LEAP
LGPL
MASIF
MAS
MTP
MTS
OMG
ORB
RDF
REST
RMI
RPC
REV
SL
SOAP
TUT
URL
XML

April Agent Platform

Agent Development Kit

Agent Communication Channel

Agent Communication Channel

Agent Management System

Application Program Interface

Constraint Choice Language

Common Object Request Broker Architecture
Directory Facilitator

Eclipse Public License

Foundation for Intelligent Physical Agents
General Public License

HyperText Markup Language

HyperText Transfer Protocol

JAVA Agent Development Framework
JavaScript Object Notation

Knowledge Interchange Format
Knowledge Query and Manipulation Language
Lightweight Extensible Agent Platform
Lesser General Public License

Mobile Agent System Interoperability Facility
Multi Agent System

Message Transport Protocol

Message Transport Service

Object Management Group

Object Request Broker

Resource Description Framework
Representational State Transfer

Remote Method Invocation

Remote Procedure Call

Remote Evaluation

Semantic Language

Simple Object Access Protocol

Tampere University of Technology
Uniform Resource Locator

Extensible Markup Language

1. INTRODUCTION

The HTML5 Agent Framework [14][20][41] is developed in TUT. It is an agent-based
system that demonstrates the functionality and usage of mobile agents or mobile soft-
ware agents. The mobile agents in this framework are based on web technologies. The
main purpose of this thesis is to “map” current implementation of HTML5 Agent
Framework with agent-related standards. The term “map” here in this thesis, refers to an
attempt to analyze compliance and compatibility to make HTML5 Agent Framework a
FIPA-compliant system. For the standardization of mobile agents, organizations like
Foundation for Intelligent Physical Agents (FIPA), Object Management Group (OMG),
etc. have come forward to address standardization issues of agent-based systems. These
standard bodies provide specifications and guidelines for developers of agent frame-
works in creating agents for real world applications. The motivation behind FIPA is to
promote agent-based technologies and the interoperability of its standards with other
agent-based technologies that facilitate the end-to-end interworking of agent systems in
modern commercial and industrial settings.

An agent is a computational entity capable of doing things intelligently and autono-
mously on behalf of its user/users to accomplish a task. Like humans, agents can co-
operate and co-ordinate with each other to combine their abilities to resolve problems.
Agent-based systems exhibit collaborative and co-operative problem solving behavior.
But, each agent system could have been developed by different companies, at different
times using different underlying agent technologies. For such scenario, standardizing
agent-based technologies represents a key requirement for the commercialization of
agent technology [82]. Agent systems developed by different developers or vendors
differ widely in areas such as: agent management, agent capability advertisements,
strategy for finding agents, agent communication language (ACL), agent dialogue me-
diation, message transport mechanism, and agent content language [74]. Homogeneity
between agent-based systems cannot be achieved with respect to architecture specific
features of agent systems. The differences among agent systems prevent interoperability
and rapid growth of agent technology. Therefore, it is necessary that some aspects of
agent-based systems must be standardized to achieve or promote interoperability and
compatibility between heterogeneous agent systems.

The thesis is structured in the following manner: Chapter 2 contains general information
about mobile agents, Multi-agent System (MAS), agent system standardization, and
objective of thesis. Chapter 3 gives an overview of HTML5 Agent Framework. Chapter
4 provides introduction to FIPA. Chapter 5 includes mapping between HTML5 Agent

Framework and FIPA. Chapter 6 describes the proof of concept of this thesis. Chapter 7
draws conclusion from this thesis work.

2. BACKGROUND

2.1 General agent definition

An agent is a computational component that is capable of independent or autonomous
action on behalf of its users in some environment controlling its own internal state. An
agent has an ability to do certain tasks without immediate human intervention and su-
pervision [70]. It can perform its actions with certain level of proactivity and/or reac-
tiveness. Moreover, an agent can exhibit some level of the key attributes of learning, co-
operation and mobility [42]. Some of the agent attributes discussed in [70][72] is de-
scribed below:

e Reactivity, an ability of an agent to sense its dynamic environment and act
based on it.

e Autonomy, an ability of an agent to make decisions over its own actions with-
out direct intervention of humans or others and has control over its actions and
internal state.

e Proactiveness/Goal-orientedness, an ability of an agent to take initiative and
recognize opportunities in an attempt to achieve goals. It is not solely driven by
events, but taking the initiative when appropriate.

e Communication/Social-ability, an ability of an agent to interact with other
agents (and possibly humans) via some kind of Agent Communication Language
(ACL) to achieve goals.

e Cooperation, an ability of an agent to realize that some goals can only be
achieved with the cooperation with other agents.

e Learning/Adaptivity, an ability of an agent to learn from history and to adapt to
changes with improved performance over time.

e Continuity, an ability of an agent to act for undefined time.

¢ Mobility, an ability of an agent to move from one machine to another in a net-
work and continue its execution there.

2.1.1 Mobile software agent

The above mentioned attributes are some of the dimensions in which one can character-
ize agent. As mentioned in [72], there have been attempts to classify agent types based
on above mentioned attributes. Necessary agent attributes are determined by the nature
of the task that the agent should achieve. In many cases, it is not necessary to create an

agent that incorporates all the above mentioned attributes in section 2.1 [72]. Mobile
software agent or mobile agent is a self-directed application or piece of software that
can migrate from one host to another in a network to accomplish the task on behalf of
its user or another application [14]. Mobility is the core attribute in a mobile agent tech-
nology [72]. The mobile agent can choose when and where to migrate. Furthermore, at
any arbitrary point, it can suspend its execution, transport itself to another host and re-
sume its execution [42].

According to [42], “a mobile agent is a software entity which exists in a software envi-
ronment. It inherits some of the characteristics of an agent (as discussed above in sec-
tion 2.1). A mobile agent must contain all of the following models: an agent model, a
life-cycle model, a computational model, a security model, communication model and a
navigation model.” Reference models for mobile agent as defined in mobile agent defi-
nition are described in [42]. The models for HTML5 mobile agent which is developed
in TUT [41] are discussed in section 3.1 of this thesis with reference to [14]. A mobile
agent exists and executes in an environment. This environment can be called mobile
agent environment or agent platform. Referring [42], a mobile agent environment or
agent platform is a distributed software environment distributed over a network of het-
erogeneous computers. The mobile agent environment is built on top of a mobile agent

host system.

ny
i

Figure 2.1 Basic mobile agent architecture [recreated from 42].

The above figure 2.1 represents basic mobile agent architecture. As shown in the figure,
the mobile agent environments are built on top of host systems. The small circles repre-
sent mobile agents which can travel from one mobile agent environment to another
across a distributed network. Communication between mobile agents is represented by
bi-directional arrows. Moreover, communication can also take place between a mobile
agent and a host system service as shown in the figure 2.1.

2.2 Why mobile agents?

Before the emergence of mobile agents, the communication between the client and
server was achieved by approaches such as message passing, Remote Procedure Call
(RPC) and Remote Evaluation (REV). In client-server model, the data is queried from
server over the network. The server provides a set of services and the client makes re-
quest for those services through a communication channel. When a client needs a par-
ticular service, it sends request message to the server as shown in figure 2.2. One of the
limitations of client-server paradigm is that the client is limited to the operations or ser-
vices provided at the server. If a client needs a service that a particular server does not
provide, it must find out other servers that satisfy its request by sending out more mes-
sages to other servers. This behaviour may increase the inefficient use of network
bandwidth. This may also increase the network traffic and may cause delays due to the
involvement of more servers [72].

Request (e.g. message)
| £ \
Client | [J
4 \ (
Reply

PC Sener

Network

Figure 2.2 Client-server computing paradigm [recreated from 42].

Agent migration U
| Client (code + data + state Client

\ Network
PC ‘J Sener

Figure 2.3 Mobile agent computing paradigm [recreated from 42].

In contrast, in a mobile agent computing paradigm, a mobile agent is not bound only to
the system on which it begins execution. It is free to travel from one host to another host
in a network to accomplish the task on behalf of its client/user. Though, it is created in
one execution environment, it can carry its state, code and data with it to another execu-
tion environment in the network, where it can resume its execution [71]. So, the overall
data processing mechanism is different compared to client-server model as shown in
figure 2.3. Mobile agent is transmitted to the source of data, i.e., to the server. It pro-
cesses data at the data source, rather than fetching it remotely. It performs necessary
computation on behalf of its client/user in new execution environment and returns to the
original location with acquired result for the client/user [14]. The main objective behind
agent-based computation is to move the computation to the data source than the data to
the computation allowing high performance operation [71]. Some of the benefits of us-
ing mobile agents are further discussed in [71].

Code mobility is an important aspect of mobile agent technology. Code mobility, as
described in [21] is: “the capability to reconfigure dynamically, at run time, the binding
between the software components of the application and their physical location within a
computer network”. Mobile code has the ability to transfer the state of an execution unit
or mobile agent from one execution environment to another. There are two main types
of migration: strong and weak. Strong migration means that the mobile agent can carry
itself, its data and its execution state to a different environment. The execution of an
executing unit is suspended, when transmitted to remote or destination site, and its exe-
cution is resumed there. While, weak migration means that the mobile agent can carry
only itself and its data. The execution state is not transferred across the network. It only
allows a mobile agent in an environment to be bound dynamically to code coming from
a different environment. That means, the code can be moved and executed automatically
in destination site [21][72].

2.3 Multi Agent System (MAS)

A multi agent system (MAS) is a distributed computing model. It consists of agents and
their environment. A MAS is composed of a number of agents that interact with one-
another to solve problems within an environment. Agents in MAS should interact for
giving solutions and for solving some specific tasks. Agents act on behalf of users with
different goals and motivations. So, they must have ability to cooperate, coordinate,
collaborate and negotiate with each other to successfully interact in order to solve prob-
lems. Cooperation represents a general form of interaction between agents. Coordina-
tion is about organizing actions of different agents in achieving their goals. Collabora-
tion is all about the allocation of tasks and resources between agents, and whenever con-
flict occurs, negotiation techniques are used to satisfy all parties. Agent communication
facilitates the cooperation, coordination, collaboration and negotiation with each other,
much as people do [73][76]. Agent communication standard and its objectives are fur-
ther discussed in section 4.1. Moreover, agents in one MAS can interact or interoperate
with agents in other third party MAS for cooperative problem solving. In section 2.1,
figure 2.1 represents a basic mobile agent architecture where a combination of host sys-
tem and mobile agent environment represents a MAS. Several heterogeneous MASSs can
be combined together across a distributed network for distributed problem solving. In-
teroperability issues between these MASs are addressed by standard body like FIPA
(Foundation for Intelligent Physical Agents) which is described in section 4.

2.4 Why standardization

MASs developed by different developers have their own architectures and technical
solutions in areas like: agent management, agent capability advertisements, strategy for
finding agents, agent communication language (ACL), agent dialogue mediation, and
agent content language [74]. Differences in architecture and technical solution lead to
heterogeneity in agent-based technology. Heterogeneity in agent-based technology iso-
lates one agent-based system or MAS from another. This means that, there will be no
interoperability between these heterogeneous systems for cooperative problem solving.
There should be some mechanism to establish interoperability and compatibility be-
tween these heterogeneous systems developed by different vendors. Furthermore, with-
out standardization process, there will be open competition between these systems and
the best one always wins [4]. Standardization process allows multiple service providers
to do things in the same general way and can help maximize compatibility and interop-
erability [83]. On the other hand, with standardization, the developers of agent system
must be strongly tied up to a specific implementation of a certain specification of the
agent system standards [85].

Existence of open and non-standardized MASs operating across a distributed network
leads to a difficulty in locating and collaborating with agents in communities of differ-
ent MASs. No agent that is designed for one of the two systems can interact with any of
the agents designed for the other systems due to differences in MAS agent communica-
tion languages, architectures, and the protocols of agent communication modes [74].
Therefore, there must be some standardization mechanism to enable interoperability of
MAS for cooperative problem solving. The problem before existence of standard bodies
like FIPA [1] and MASIF [40] was that, agent frameworks developed by different de-
velopers of agent system were not interoperable with each other. These agent frame-
works were confined to their own functionality. Agents appear in a wide range of real
world applications. However, all the agent systems developed independently leads to
the following problems [15]:

e Lack of an agreed definition, agents built by different teams has different ca-
pabilities.

e Duplication of effort, little or no reuse of agent architectures, designs, or com-
ponents.

¢ Inability to satisfy industrial strength requirements, agents must integrate
with existing legacy software and computer infrastructure.

e Incompatibility, agents must be able to interact and cooperate with each other.

Due to these issues, standardization is pursued. With the emergence of standardization
body like FIPA, these problem statements are addressed. FIPA provides guidelines and
specifications to guide developers in creating agent frameworks that are compatible and
interoperable with each other. FIPA has been promoting technologies and interoperabil-
ity specifications that facilitate the end-to-end interworking of agent systems in modern
commercial and industrial settings. Further description about FIPA is presented in sec-
tion 4 of this thesis.

2.5 Thesis objective

The main objective of this thesis is to map HTML5 Agent Framework developed in
TUT [41] with FIPA standards. So, the major challenge of this thesis will be to analyse
compliance and compatibility between HTML5 Agent Framework and FIPA compliant
systems. FIPA specific standards and specification will be analysed and compared with
HTML5 Agent Framework in later part of this thesis. Recently, many researchers have
contributed their effort in transforming agent thechnology into practice to promote agent
technology [16]. Evolution in concept of agent technology and interoperability has in-
troduced the concept of Agentcities. As described in [17][18], Agentcities is a world-
wide initiative to create a global, open, dynamic, intelligent, heterogeneous network of

agent platforms and services to achieve user and business goals. The ultimate goal of
Agentcities is open deployment environment for advanced agent based services such
that agents running on different platforms that are owned by different organisations can
interact. Agentcities is based on the principles of [17][18]:

e Consensual standards, communication and interaction in the network will be
based on standards available, such as, FIPA and W3C.

e Open source, commercial technologies are not discouraged, but Agentcities
promotes open source implementation to ensure free and open access to the net-
work.

e Open access, any organization or individual can set up their own Agentcities in
the network to host their own agent services, provide access to them and access
those deployed by others.

e Shared resources, any organization or individual are encouraged to add their
own services to extend the utility and diversity of the services available to the
agent community.

10

3. HTML5 AGENT FRAMEWORK

Research paper [20] and thesis work [14] are used as main references in this section.
[20] describes the latest version of HTML5 Agent Framework. In HTML5 Agent
Framework, an agent is implemented as an HTMLS5 application that can run in two
modes: with a user interface inside a browser and in a headless mode, that is, without a
user interface, in an environment called Agent Server. Agent Server represents agent
environment in server-side and browser represents agent environment in client-side. The
state of an agent is saved and transferred during the migration between browser and
server. The agent can continue its execution even if it is in server and the running agent
can be retrieved back later to the server [14][20].

3.1 Overview of HTML5 agent framework

The implementation of the HTLM5 Agent Framework consists of two parts: HTML5
Agent Framework and Agent Server. Agent works with user interface inside browser or
in headless mode in an Agent Server. The HTML5 Agent Framework uses mobile agent
paradigm for transferring agent and its state from browser to server, server to browser
and server to another. Moreover, code-on-demand paradigm [21] is used for getting the
static files of the mobile agent when agent travels in network [14]. HTML5 agent in
[14][20] consists of two parts [19]:

1. User interface is defined in HTML, CSS and image files.
2. JavaScript files describing the executable content.

HTMLS5 agents and core functionalities of the system are implemented in JavaScript
and executed inside the client’s web browser. In HTML5 agent framework, the core
components of Agent Server are: HTTP server and a virtual machine executing JavaS-
cript. These components are implemented using node.js [46] technology. The Agent
Server has two main functions [20]:

1. Implement execution environment that is compatible enough with the browser.
2. Simple management functionality for agents.

Referring [42], a mobile agent must have agent model, life cycle model, computational
model, navigation model, communication model, and security model. Current imple-
mentation of HTML5 agent framework [14] has complete implementation of agent
model, life cycle model and computational model. Navigation model, communication
model, and security model are only on their initial stage.

11

1. Agent model
Agent model in [14] includes the management of the inner state of the agent.

2. Life cycle model
During a life cycle, the agent may visit several browsers and Agent Servers.
Figure 3.1 describes the life cycle of an HTMLS5 agent.

1. Start &
initialize
the agent

Browser1

Figure 3.1 HTMLS5 agent life cycle [recreated from 20].

The instance of an agent is created when it is downloaded from Origin Server.
The task of Origin Server is to host applications and it is similar to an ordinary
web server. After the download and initialization, the executing agent can move
to an Agent Server in order to continue its execution and back to a browser
again. Both Origin Server and Agent Server are HTTP servers that can be ac-
cessed with HTTP requests. The dashed box “Mgnt. Server” and the dashed ar-
rows represent optional management functionality [20].

3. Computational model
Computational model [14] represents how mobile agent runs. HTML5 mobile
agent runs in both browser and server. The agent framework is based on event
handlers and executable contents are implemented in JavaScript.

4. Navigation model
Navigation model [14] of the HTML5 Agent Framework consists of the configu-
ration file that is downloaded with the agent. It includes only connections to the

12

one Agent Server and the Origin Server of the agent. It also includes the seriali-
zation and transfer management of the agent.

Communication model
Communication model [14] includes communication with the user, Agent Serv-
er, and another agent application. Communication with user is done through user
interface in web browser. HTML5 agent creates separate communication com-
ponent which is used as a message passing pipe through Agent Server to another
agent for agent-to-agent communication. Three cases for agent-to-agent com-
munication are mentioned in [14]:

e Both agent applications are in separate browsers.

e Both agent applications are in agent server.

e One agent is in browser and another is in server.

Security model
Security model in [14] rely on standard security mechanisms of HTMLS5 appli-
cations in browser.

Figure 3.2 shows basic architecture of the HTMLS5 agent framework and its relationship
to application specific implementations. Agent part of the architecture consists of a ge-
neric agent and an application agent. In server, agent can be accessed through generic
interface provided by generic agent. In browser, agent can be accessed through applica-

tion specific user interface [14].

Application
Application Application
Agent User Interface
Framework
. Server-side
GAe neel:[c Execution
9 Environment

S

Figure 3.2 Basic architecture of framework [recreated from 14].

Generic agent is the base class for each agent application. It provides the generic parts o

13

of the agent to all agent applications. Generic agent is never instantiated but used only
for providing the generic parts of the agent to all agent applications. Generic agent is
also responsible for preserving the agent state. Application agent is the concrete imple-
mentation of the application that can travel between browser and server [14].

3.1.1 Agent-to-agent communication in HTML5 agent frame-
work

The current implementation of agent-to-agent communication is generic. The imple-
mentation of communication component in agent framework is not connected to the
application. It can be used with any application and the application does not need to
know how the information is passed through the network. However, application has to
define application specific namespace to enable application specific communication
[14]. Any application that knows application specific namespace can join to namespace
and capture all messages. For agent-to-agent communication, node.js [46] module sock-
et.io [47] is used to enable real time communication between agents. Agent server is
needed between two agents for agent-to-agent communication. It is not possible to send
direct messages from one browser to another browser in the current Web without a
server. Information between agents is sent in JSON (JavaScript Object Notation) strings
over the network. Agent-to-agent communication in HTMLS5 agent framework is shown
in figure 3.3.

Agent 1 Agent 2
Communication Communication
component component
4 s
A — S

Figure 3.3 Agent-to-agent communication model [recreated from 14].

14

Agent 1 Agent Server
2. Connect to server———»
1.initl0 _
«— 3. Return connection———
Communication i
" Gomponert ——4. event(joinNS, namespace)—» Server

——35. Connect to namespace——»
<«—6. Return connection to namespace—

Figure 3.4 Creation of communication component [recreated from 14].

Figure 3.4 represents initialization of connection to specific namespace in Agent Server.
Whereas, figure 3.5 shows representation of how message is sent from one agent to an-
other agent connected to same namespace.

Agent 1 Agent2
1. sendMessage (data) 4. transferMessage (data)
y Communication "| Communication
Component Component
3 event(dataMessage, data)
2. event(dataMessage, data)
, Agent |
Server

Figure 3.5 Sending message to another agent [recreated from 14].

3.1.2 Agent management in HTML5 agent framework

Referring [14], agent management in HTML5 Agent Framework is implemented in
Agent Server. It keeps information about agents that are currently running on that Agent
Server. Moreover, agent specific information is shown to the user in list view which
contains URL(s) of JavaScript file and agent ID. The implementation of agent manage-
ment in [14] needs to be re-factored to make it more scalable and to add new features
such that management of agents in server is easier. In future, more information about

15

agents are needed, such as, description of the agent, configuration of agent, creation,
registration, communication, migration, and retirement of agents.

Implementation of Management Server for agent management is discussed in [20]. This
server represents an optional management functionality in the agent framework that
allows external entities to control agents. The Management Server in [20] implements a
REST (Representational State Transfer) interface for both the mobile agents and a con-
trol application. The control application can be an application run by a human or an au-
tonomously running application. The management API for agents in Management Serv-
er consists two kinds of REST calls: “ImHere” message is sent when agent arrives in a
new location, and “Status” message is sent to the Management Server on regular basis
after each work [20].

As described in [20], an agent after starting in a new location sends “ImHere” message
to the Management Server. For example:

Management/ImHere (PUT)

(Payload example)

From browser: {“1d”:7392041”,”client”:”xhost”}
From server:

{“id”:7392041"”,"server” :”http://ubuntu:8891"}

After each execution, the agent sends “Status” message to the Management Server on
regular interval.

Management/Status (PUT)
Payload example: {“id”:7392041"”,"”status”:”Clock is 63"}

The list of agents can be queried when control application makes a GET request to
/Agents it gets a list of agent IDs as a response.

GET http://host/Agents
For example, the response can be:
[846820, 920231, 934582]

Detailed information about a specific agent can be retrieved with:
GET http://host/Agents/846820

The response includes information about the location and status of the agent.

16

To support additional features, functionalities like suspension of agent, termination of
agent, creation of agent, resource management, etc., can be added to current agent man-
agement implementation. The current implementation of agent management is confined
to status and location of agents. Future agent management implementation in agent
based system requires more dynamic functionalities in addition to status and location
specific functionality.

3.2 Evaluation of HTML5 agent framework

The HTML5 Agent Framework [14][20] is based on the mobile agent and code on de-
mand paradigms. However, the implementation in agent framework is in initial stage.
Simple communication and navigation model exist in current implementation [20] of
HTMLS5 agent framework. In the current implementation, it is assumed that agent will
be moved from server to browser and it will be uploaded from browser to server. In
future, it may require that information from different agent servers may be needed, such
that, it is possible to communicate with agents in other agent servers. So, there should
be a mechanism of sending messages to other agent servers which could then pass it to
relevant agents. In the current implementation, any agent that knows application specif-
ic namespace can initialize connection to specific namespace in agent server. Message
can be sent to another agent connected to the same namespace. Moreover, the current
implementation does not fully support flexible code mobility. The code of the agent is
transferred as URLSs instead of binding the code to the agent state transferred [14]. In
future, agent technology requires flexible code mobility [21] where mobile agents are
capable of reconfiguring dynamically at run time. Mobile agents must be capable to
bind software components of the application and their physical location within a com-
puter network dynamically. So, there are places for improvement in current implemen-
tation of agent framework to make it interoperable in heterogeneous agent environment.
HTMLS5 agent framework has its own benefits and weaknesses. Some of the benefits of
HTMLS5 agent framework can be listed as below [14]:

1. Framework does not need installation of separate software or environment be-
side the web browser.

2. HTMLS5 agents run natively in web browser hence plug-ins are not needed.

3. Used Web technologies are well known and standardized.

4. HTMLS5 applications already have strong application ecosystem.

And the weaknesses are [14]:

1. Lack of proper security model.
The current implementation is lacking proper security model. Whoever can send
a HTMLS5 agent to the Agent Server and similarly retrieve HTML5 agent from
Agent Server. So, the future implementation needs to define security issues to

17

protect the framework from intruders. On this, further research is ongoing in
TUT [84].

Lack of standardization in agent-to-agent communication.

The current implementation of agent-to-agent communication is very generic
and does not follow any available standards. However, it is near to Message-
Oriented Middleware (MOM) approach [14]. Use of existing standard like FIPA
specifications for agent-to-agent communication can be benefit, because it is
easier to rationalize the use of system based on existing well known standards
than on self-made standards [14].

Inflexible navigation model.

In HTML5 agent framework [14], agent migration is user defined. Agent does
not make decision to move from server to browser or browser to server autono-
mously. Mobile agents as autonomous computational entity must be able to de-
fine when and where they will migrate. But, the configuration of mobile agent in
[14] demands all the hosts that agents need to know in configuration file to be
defined explicitly. This prevents flexible mobility of agents in network to search
necessary information in order to accomplish the task on behalf of user. Howev-
er, the management functionality described in [20] fixes part of this limitation
reported in [14].

18

4. INTRODUCTION TO FIPA

The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer Society
standards organization for agents and multi-agent systems [1]. It was officially accepted
by the IEEE as its eleventh standards committee on 8™ June, 2005. The motivation be-
hind FIPA is to promote agent-based technologies and the interoperability of its stand-
ards with other technologies that facilitate the end-to-end interworking of agent systems
in modern commercial and industrial settings.

Originally, FIPA was a Swiss based non-profit association registered in Geneva, Swit-
zerland in 1996 [1][2]. It facilitates international collaboration of the member organiza-
tions. The members are companies and universities actively participating in the field of
agent technology. The main purpose of FIPA was to produce specifications for hetero-
geneous agent based systems [1]. Developers of agent systems can use the basic agent
technologies specifications produced by FIPA to build complex systems with a high
degree of interoperability between heterogeneous agent systems in modern commercial
and industrial settings. FIPA specifies the interfaces of the different components in
agent based systems environment with which an agent can interact. These interfaces can
be humans, other agents, non-agent software, and the physical world [2] as shown in the
figure 4.1.

-~
'V

Humans

Z
7
/}

,\L Information
Hardware

~ = N Processing

A
Information D oy
J Fusion

Agent
Interaction

-

Other Agents

Software P,

Agent-Based System Environment)

Figure 4.1 Agent-based system components and its interfaces [recreated from 2].

19

FIPA specifications do not specify what should be the internal architecture of agents,
nor do they attempt to describe how agent system developers should implement agent-
based systems. They just provide interfaces through which heterogeneous agents can
communicate with each other in agent-based systems [3]. FIPA’s principle objective is
to define standards for agent-based system environment composed of heterogeneous
agents built by different developers. It focuses on interoperability and compatibility
between different agent systems built by different developers. According to [2], FIPA
produces two kinds of specifications:

e Normative specifications talk about FIPA reference model for agents, agent
communication language and agent/software integration (it specifies how agents
may interact with non-agent based software). They define an agent’s external
behavior and ensure interoperability with other FIPA specified agent systems.

e Informative specifications comprise of guidelines on how FIPA technology can
be applied in different application domains.

FIPA specifications can be divided into five categories [3]: Applications, Abstract Ar-
chitecture, Agent Communication, Agent Management, and Agent Message Transport
as shown in figure 4.2. Abstract architecture, agent communication, agent management,
and agent message transport specifications are defined as normative specifications.
Whereas, application specification is defined as informative specification in FIPA [2].

Applications
| Abstract Architecture
[
Agent Communication Agent Management Agent Message
Transport

Figure 4.2 FIPA specification categories [recreated from 3 and 5].

20

1. Applications Specification
FIPA application specification specifies how normative specifications should be
applied in different application domains. [2] and [3] have given examples of four
agent-based applications that contain case scenarios of agent-based system:

Personal Travel Assistance

Personal Assistant

Audio/Video Entertainment & Broadcasting

Network Management & Provisioning

2. Abstract Architecture Specification

The FIPA abstract architecture specification [24] provides a framework which
defines services necessary to enable interoperability between different agents or
agent systems. If two or more agent systems use different technologies to
achieve some functionality, it is necessary to identify common characteristics
between these various approaches. By identifying relationships or common
characteristics of the fundamental elements of the architecture, it is easier to
build interoperable agent system. FIPA abstract architecture specification identi-
fies architectural abstractions that can be formally related to any valid imple-
mentations [4].

3. Agent Management Specification

The FIPA agent management specification [30] provides the framework, within
which FIPA agents can exist, operate and be managed [2][3][4]. It defines func-
tionality for the creation, registration, location, communication, and retirement
of agents. It defines agent platform reference model containing such capabilities
as white and yellow pages, message routing, and life cycle management [2]. The
FIPA agent management consists of following components which will be de-
scribed further later in this chapter:

e Agent Management System (AMS)

e Message Transport Service (MTS)

e Directory Facilitator (DF)

4. Agent Message Transport Specification
The FIPA agent message transport specification deals with the delivery and rep-
resentation of messages on top of different network transport protocols, includ-
ing wire line and wireless environments [3]. It contains specification for
transport of message between agents. A message at the message transport level
consists of a message envelope and a message body. The message envelope con-
sists of specific transport requirements and information that will be used by the
Message Transport Service (MTS) to handle and route messages on each Agent
Platform (AP). Whereas, the message body contains actual information or mes-

5.

21

sage payload that is expressed in FIPA ACL (Agent Communication Language)
[3].

Agent Communication Specification

The FIPA agent communication specification deals with Agent Communication
Language (ACL) messages, message exchange interaction protocols, speech act
[49] theory-based communication acts, and content language representations [5].

Agent Communication
Interaction Communicative Content
Protocols Acts Languages

Figure 4.3 FIPA agent communication specification [recreated from 5].

The agents communicate with each other by means of well-defined communica-
tion language called FIPA-ACL. The FIPA-ACL is based on speech act theory;
messages are actions or communicative acts (also called the “performative”) in-
dicating what the sender intends to achieve by sending the message. For in-
stance, if the performative is REQUEST, the sender wants the receiver to per-
form an action, if it is INFORM the sender wants the receiver to be aware of a
fact. The objectives behind standardizing the FIPA-compliant ACL messages

are [6]:

e To ensure interoperability between different agents existing in an agent
platform or multiple agent platforms by providing standard set of ACL
message structure.

e To provide a well-defined process for maintaining this set.

Referring [2], the specification also provides the normative description of a set of
high level interaction protocols, including requesting an action, query, contract-
net and several kinds of auction specifications. Agent communication specifica-
tions and its standards are further discussed in section 4.1.

ACL Message e Agent Management
Structure @ @ Specification
Speciﬁcatiori\\ 2
Communicative ACL
Act ‘ ¢ "‘V
Y Marg%eerr];ent Directory
Interaction Agent System Facglltzator
Protocol ‘ 5 (AMS) (DF)
Specification : acdl L A
SL Content 9t ACL
Language @ - CL ‘ HTTP
Specification 0P
» Message Transport System SMTP
AgentMessage)
Transport & efc.
Specification
P FIPA Agent Platform

Figure 4.4 FIPA agent management reference model [recreated from 43].

22

Agent life cycle management, message transport, message structure, inter-agent interac-
tion protocols, ontologies, and security are defined within the scope of FIPA [43]. The
figure 4.4 represents the basic structure of agent system compliant to FIPA. All the log-
ical components of FIPA agent management reference model are described in section
4.2. Here is a list of major publicly available implementations of agent platforms that

comply with FIPA Specifications [7]:

1. Agent Development Kit (ADK)

The Agent Development Kit [7][37] is a mobile agent-based development plat-
form that allows developers of agent system to build reliable and scalable indus-
trial strength applications. The ADK uses a reliable, lightweight runtime envi-
ronment based on Java that features dynamic tasking, JXTA (Juxtapose) based
P2P architecture with XML (Extensible Markup Language) message-based
communication that supports FIPA and SOAP (Simple Object Access Protocol),
JNDI (Java Naming and Directory Interface) directory services. These ADK fea-
tures allow Java system developers to easily build, deploy and manage secure,
large-scale distributed solutions that support interoperability regardless of loca-
tion, agent platform environment or protocol, allowing an adaptive, dynamic re-
sponse to changes. The ADK runs on any environment supporting Java 2 Stand-
ard Edition version 1.3.1. It requires commercial license to access ADK. How-
ever, free research license is available for selected projects.

23

. April Agent Platform (AAP)

The April Agent Platform [7][38] is a lightweight and powerful solution for de-
veloping agent-based systems that comply with FIPA agent platform specifica-
tion. The AAP requires the April programming language and the InterAgent
Communication System (IMC) to be installed, and runs either on Linux, UNIX
or Windows. It provides many features to develop and deploy agents and agent
platforms. The AAP can be accessed using GPL (General Public License). The
GPL [8] is free software license which allows end users the freedoms to use,
study, share, and modify the software.

. Comtec Agent Platform

The Comtec Agent Platform [7] is an open source, free implementation of FIPA
agent communication, agent management, agent message transport and some of
the applications. It runs on JDK 1.2 or higher, and can be accessed using GPL.

FIPA-OS

The FIPA-OS [7][39] is the first Open Source implementation of the FIPA
standard. Developers around the world have contributed their part to numerous
bug fixes and upgrades. The FIPA-OS is one of the most popular agent systems
implementation that complies with FIPA specifications. It is implemented using
Java, and requires Java virtual machine to implement FIPA-OS. It requires
Eclipse Public License (EPL) to access FIPA-OS. The EPL [9] is Open Source
software license used by Eclipse Foundation for its software.

. Grasshopper

Grasshopper [7] is a Java-based mobile intelligent agent platform. It is a univer-
sal agent platform based on OMG-MASIF (Mobile Agent System Interoperabil-
ity Facility) [40] and FIPA specifications. MASIF is also a standard for mobile
agent systems which has been adopted as an OMG (Object Management Group)
technology [40].

. JACK Intelligent Agents
JACK Intelligent Agents [10] is a framework in Java for multi-agent system de-
velopment. It was built by Agent Oriented Pty. Ltd. (AOS), based in Melbourne,
Australia. The AOS’s aim is to provide a platform for commercial, industrial
and research applications.

. JADE (JAVA Agent Development Framework)

JADE [7][12] is a FIPA compliant software framework to develop interoperable
intelligent multi-agent systems. It is an Open Source platform for P2P agent
based applications. It is implemented in version 1.2 of Java. It can be accessed

24

using Open Source license Lesser General Public License (LGPL). The LGPL
[11] is a free software license published by the Free Software Foundation (FSF).

8. JAS API (Java Agent Services)
The Java Agent Services [7] is an implementation of the FIPA Abstract Archi-
tecture within the Java Community Process (JCP) [13] initiative and is intended
to form the basis for creating commercial grade applications based on FIPA
specifications.

9. LEAP (Lightweight Extensible Agent Platform)
The LEAP [7] is a development and run-time environment for intelligent agents.
It aims to become the first integrated agent development environment capable of
generating agent applications in the ZEUS environment and executing them on
run-time environments derived from JADE. The advanced features of ZEUS and
the lightweight and extensible properties of JADE add benefits to LEAP agent
platform.

10. ZEUS
ZEUS [7] is an Open Source agent system implemented in Java. It is developed
by BT Labs and can be considered a toolkit for developing interoperable multi-
agent applications. ZEUS uses the latest Swing GUI components, and runs on
any platform that has a JDK2 virtual machine installed. It has been successfully
tested on Windows 95/98/NT4 and Solaris platforms.

Referring [22], the following FIPA-compliant networks are publically available:

1. Agentcities [17][18], an initiative to create a next generation Internet based up-
on a worldwide global network of services that use the metaphor of a real or a
virtual city to cluster services [22].

2. FIPA-NET, an early attempt to create multiple inter-linked FIPA agent plat-
forms, whose activities are now continued in Agentcities [22].

4.1 Agent communication

Agents communicate in order to achieve their goals or goals of an agent platform in
which they reside. Agents communicate to coordinate their behaviour and actions. It
helps in creating systems that are more coherent. Agent platform provides necessary
computational infrastructure for interactions between agents to take place. The compu-
tational infrastructure will include protocols for agents to communicate and interact
[25]. An agent based system is composed of multiple autonomous agents. Agents must
have some communicative abilities to cooperate and coordinate with other agents. The

25

aim of an agent system is to achieve goals that are difficult to achieve by the function-
ality of an individual agent. So, in an agent system, knowledge sharing and exchange of
information between different agents are important [26]. Referring [26], for agents to
communicate with other agents, they must be able to:

e Deliver and receive messages, at the physical level, communication between
agents must take place over agreed physical and network layers to be able to de-
liver and receive strings or object that represent messages.

e Parse the messages, at the syntactic level, agents must be able to resolve mes-
sages to correctly decode to its parts, such as: content of the message, language,
and sender.

e Understand the messages, at the semantic level, the parsed symbols must be
understood in the same way, that is, the ontology describing the symbols must
be explicitly expressed or shared and must be accessible to be able to decode the
information contained in the message. According to Thomas Gruber, the term
ontology refers to “explicit specification of conceptualization”, which means
that, an ontology is a description of the concepts and the relationships that can
exist for an agent or a society of agents [27]. An ontology must be agreed and
understood among the agent community (or at least among its part) in order to
enable each agent to understand content of messages from other agents [28]. An
agent is able to communicate only about facts that can be expressed in some on-
tology [28]. The ontology must be expressed explicitly in open multi-agent sys-
tems, where agents developed by different agent system developer may need to
enter into communication to enable integration. So, for such environment, it is
necessary to have standard mechanism to access and refer to explicitly defined
ontologies. Translation between ontologies is needed when multiple ontologies
are used in a system for agents to be able to communicate [28].

The physical level and the syntactic level mentioned above are well standardized in the
FIPA specifications, like “Agent Management Specification” [30] and “Agent Commu-
nication Language Specification” [29]. For the semantic level, other FIPA standards
exists named FIPA Semantic Language Content Language Specification [31] that de-
scribes content language and FIPA Ontology Service Specification [32] that describes
usage of ontologies [26].

For communication between agents FIPA has specified Agent Communication Lan-
guage [29] specification. According to [29], a FIPA ACL message contains several
message parameters. Depending on situation, required parameters may vary for effec-
tive agent communication. The only mandatory parameter in all ACL messages is the
performative parameter (communicative act). However, most ACL messages will also
contain sender, receiver and content parameters. The full set of FIPA ACL message

26

parameters is shown in Table 4.1. A number of communicative acts (performatives)
[33] are also specified by FIPA, which is shown in Table 4.2.

Table 4.1. FIPA ACL message parameters [adopted from 29 and 43].

Parameter Description
; Defines what action the message
performative performs.
—— Defines the identity of the initiator
of the message.
: Defines the identity of the recipient
Hegelver of the message.
Defines the recipient of message
reply-to reply.
o Defines the content of the
message.
| Defines the language in which the
anguage .
content parameter is expressed.
T Defines the specific encoding of
g content language expression.
ontology Defines the context of content.
retons] Defines the interaction protocol
P that the sending agent employs
Defines the conversation identifier
— to identify the ongoing sequence of
conversation-id communicative acts that together
form a conversation.
rsplvih Defines an expression that will be
Ry used by the responding agent.
Defines an expression that
in-reply-to references an action to which this
is a reply.
Defines a time and/or date by
reply-by which the sending agent would like
to receive a reply.

Table 4.2. FIPA communicative act [adopted from 33 and 43].

27

Accept-proposal
the action of accepting a
previously submitted proposal.

Propagate

the receiver treats the embedded
message as sent directly to it by
the sender, and must identify the
agents denoted by the given
descriptor and send the received
propagate message to them.

Agree
agree to perform some action,
possibly in future.

Propose

submit a proposal to perform a
certain action, given certain
preconditions.

Cancel
cancel some previouslsy
requested action.

Proxy

the receiver must select target
agents denoted by a given
description and to send an
embedded message to them.

Call for Proposal
make a call for proposal to
perform a given action.

Query-if
ask another agent whether a given
proposition is true.

Confirm

inform a receiver that a given
proposition is true, where the
receiver is known to be uncertain
about the proposition.

Query-ref

ask another agent for the object
referred to by a referential
expression.

Disconfirm
inform a receiver that a given
proposition is false.

Refuse
refuse to perform a given action.

Failure
inform another agent that an
action was attempted but failed.

Reject-proposal
reject a proposal to perform some
action during a negotiation.

Inform
inform a receiver that a given
proposition is true.

Request
a sender requests a receiver to
perform some action.

Inform-if

a macro action for the agent of the
action to inform the recipient
whether or not a proposition is
true.

Request-when

a sender requests a receiver to
perform some action when some
given proposition becomes true.

Inform-ref

a macro action for sender to
inform the receiver the object
which corresponds to a
descriptor, for example, a name.

Request-whenever

a sender requests a receiver to
perform some action as soon as
some proposition is true and
thereafter each time the
proposition becomes true again.

Not-understood

informs a receiver that sender did
not understand the message that
the receiver sent to it.

Subscribe

a persistent intention to notify the
sender of a value of a reference,
and to notify again whenever the
object identified by the reference
changes.

28

Communicative act (also called performative) is based on speech act [49] theory. It rep-
resents the intention of the sender of the message. For example, when an agent sends an
INFORM message it wishes the receiver(s) to become aware about a fact (e.g. (IN-
FORM “today it’s snowing”)). Similarly, when an agent sends a REQUEST message it
wishes the receiver(s) to perform an action. FIPA has defined 22 communicative acts
and each one has a well-defined semantics [12]. A FIPA ACL message example recre-
ated from [65] is shown below:

—request
(: sender (agent-identifier
: name customer@homenet.com)
: receiver (agent-identifier
: name hotelier@foo.com)
—= :conversation id
: protocol FIPA-Request

CA or performative

Other message prameters

: language FIPA-SL
: ontology Hotel
String type encoding __: content
for CA message ""((action
(book-room

: room-size suite
- arrival 29-May-2015

: departure 23-June-2015)....
or))llll

<speech-act> request </speech-act>
<sender>
| <name>customer@homenet.com<name></sender>

XML encoding for CA ‘
message exchage

Figure 4.5 Syntax for FIPA-ACL message [recreated from 65].

There are two fundamental aspects of message communication between agents [24]:

1. Message Structure
The FIPA ACL message structure consists of type of communicative act, identi-
ty of sender and receiver as well as the ontology and interaction protocols of the
message. The structure of a message is a key-value-tuple (KVTs) which is writ-
ten in an agent communication language. The content of the message is ex-
pressed in a content-language, such as KIF (Knowledge Interchange Format)
[34], SL (Semantic Language) [31], CCL (Constraint Choice Language) [50], or
RDF (Resource Description Framework) [51]. The content-language defines the

29

grammar and associated semantics for expressing the content of a message. On-
tology defines the vocabulary and meaning of the terms and concepts used in
content expression. The sender and the receiver agents are identified by agent-
names. Interaction protocols [35] specify communication patterns of agents.
Some of the FIPA defined interaction protocols are as follow: FIPA-Request
[52], FIPA-Query [53], FIPA-Request-When [54], FIPA-Contract-Net [55], FI-
PA-Iterated-Contract-Net [56], FIPA-Auction-English [57], FIPA-Auction-
Dutch [58], FIPA-Brokering [59], FIPA-Recruiting [60], FIPA-Subscribe [61],
and FIPA-Propose [62].

Message expressed in an
agent-communication-language

Sender: Agent-name
Receiver(s): Agent-name(s)

Message content

Expressed in a content-language
May reference one or more ontology

Figure 4.6 A message [recreated from 24].

2. Message Transport
When a message is sent it is encoded into a payload. Payload encodes a message
into another representation making it suitable for transport over the message
transport. Moreover, an appropriate envelope is created which includes the send-
er and receiver transport-descriptions. The envelope may also contain additional
attributes such as the encoding representation and data related security. The
combination of the payload and envelope is referred as a transport message [24].

30

Transport Information «.-.._ | Transport-message

Encoded Messagev.. | Envelope
M - " Sender: transport-description
655age Faramelers Y. ['Receiver(s). transport-description(s)
Message Content y Additional attribute: XYZ
P Addressing & more ‘?gyload
e attribute N
. FIPA-Message
‘ Message FIPA-Message ‘
- FIPA-Message encoding &
Sender: Agent-name
Sender. Agent-name Receiver(s): Agent-name(s)
Sender: Agent-name Receiver(s): Agent-name(s)
Receiver(s): Agent-name(s) | ‘
Meésage content
Message content
Message content
/

Figure 4.7 A FIPA message to transport-message [recreated from 24].

As shown in figure 4.7, a message is contained inside a transport-message when
messages are sent [24]. ACL (Agent Communication Language) provides a mean
for agents to share information and knowledge. ACL is needed for agents to in-
teract with each other in a shared language, hiding their internal details and to
build communities of agents that can tackle the problems collectively that no in-
dividual agent can. KQML (Knowledge Query and Manipulation Language) and
FIPA ACL are fully specified existing ACLs [45]. The FIPA ACL is a standard
message language that sets out the encoding, semantics and pragmatics of the
messages [44]. The syntax of the FIPA ACL is similar to KQML communication
language. However, there are fundamental differences between KQML and FIPA
ACL despite their syntactic similarity [44]. They differ primarily in the details of
their semantic frameworks. Difference between KQML and FIPA ACL is dis-
cussed in [45]. Several other means and approaches have been implemented over
the years to achieve communication between agent based systems; from Remote
Procedure Call (RPC) or Remote Method Invocation (RMI), to CORBA (Com-
mon Object Request Broker Architecture) [63] and Object Request Brokers
(ORB’s) [64]. Overall, the goal has been the same, to exchange information and
knowledge between agents. According to [45], however, ACLs like KQML or
FIPA ACL stands a level above than other mentioned approaches, because:

31

e They handle propositions, rules and actions instead of simple objects.
e The ACL message describes a desired state in a declarative language, ra-

ther than a procedure or method.

When using an ACL, agents transport messages over the network using some
lower-level protocols (SMPT, TCP/IP, 11OP, HTTP, etc.) [45].

Some of the basic notions about agents and their communications can be summarized as
below [24]:
Each agent has an agent-name. This agent-name is unique and unchangeable.

Each agent has one or more transport-descriptions, which are used by other

String
XML
Bit-eff.

String

agents to send a transport-message.

Each transport-description correlates to a particular form of message transport,
such as I1IOP, SMTP, or HTTP. A transport is a mechanism for transferring mes-

sages.

A transport-message is a message that is sent from one agent to another in a

format that is appropriate to the transport being used.

Envelope
Encoding
Scheme

ACL
Encoding
Scheme

CL
Encoding N
Scheme ‘ '
isExpressedin Content
-1 “““““““““““““““““] Language
. I
1
\\conta/'ns
% 0:.

Interaction TS P_el_o_n_g‘_sz—(_) ____________ Ontology
Protocol 1+ 1

request, inform, query,
contract-net, etc.

Figure 4.8 FIPA-ACL communication model [recreated from 43].

lloP
HTTP, etc.

32

The figure 4.8 represents FIPA-ACL communication model. The connection between
FIPA-ACL communication model and the application layer of the classical OSI stack is
shown the figure 4.9. The FIPA-ACL model starts on top of the OSI reference model
and can be separated into several FIPA-ACL computation layers within the application
layer of OSI stack [70][81].

Application J Interaction Protocols
, Communicative
Presentation Acts
: Content Expression
Session Semantics
Transport Content Expression
Syntax
Network Message Encoding
Data Message Transport
—
Physical
oSl
Reference FIE’%’&?L
Model
Distributed Agent-Based
Computing Computing

Figure 4.9 Connection between FIPA-ACL communication model and OSI reference
model [recreated from 81].

Specifying message exchange as a protocol defines a set of rules that message must
obey to be correctly formed [65]. Here, at the message transport layer in FIPA-ACL
communication model, agents use some lower-level protocols, such as, SMPT, TCP/IP,
IIOP, HTTP, etc. to interchange messages through a physical network. The next layer,
message encoding layer validates message structure and encoding. The message encod-
ing protocol enables message exchange to use multiple encodings such as the String
encoding [66], XML encoding [67], and Bit-Efficient encoding [68]. In content expres-
sion syntax layer, agents recognize the entities of the content of messages and determine
whether the content structure is correct based on common content language representa-
tion. Another layer, content expression semantics layer defines the use of ontologies to
describe the meaning of the content of the message. The communicative acts layer de-

33

fines the intention of the sender of the message. And, the interaction protocols specify
communication patterns of agents [81].

4) . R
JADE MAS FIPA-OS MAS
g g ii AMS
A
j\ i
DF
AIPS AIPS
_ 7,
Gateways J
Transcoding
. \
Interaction Protocols
Communicative
Acts
Content Expression
Semantics FIPA-ACL
Content Expression Agent Interaction Protocol Stack (AIPS)
Syntax
Message Encoding
Message Transport
g p)

4.2 Agent management

Figure 4.10 FIPA specifies Agent Interaction Protocol Stack (AIPS) for Multi-agent
System (MAS) interaction [recreated from 65].

In addition to agent communication, agent management is another fundamental aspect
of agent systems introduced by FIPA. According to FIPA Agent Management Specifi-
cation [30], agent management provides the normative framework within which FIPA

34

agents exist and operate. It establishes the logical reference model for the creation, reg-
istration, location, communication, migration and retirement of agents [30]. The logical
components contained in the agent management reference model are depicted in figure
4.4,

Y S

has_a | Agent | has_a

{ Platform

Directory | [Agent
" Management
Facilitator \
\ hosts . System

0..n

4

cogta Ins ha s a ‘ ha s.a co(r;tal ns
————

A 4

— ~

v

Agent Service | Agent
Description Wshg @ | Description

\ 4

Message |
Transport
. Senvice
Figure 4.11 Representation of agent management [recreated from 43].

In an agent platform [23], an agent is a fundamental actor. Agent platform provides the
physical infrastructure in which agents are deployed. It is an environment where agents
act autonomously. Agent platform as a physical infrastructure consists of several com-
ponents like: machine(s), operating systems(s), any additional support software, FIPA
agent management components, and agents themselves [23]. The implementation details
and internal design of an agent platform is left to the developers of an agent system and
is not a subject of FIFA standardization. FIPA only mandates the structure and encoding
of messages used to exchange information between agents and other third party FIPA
compliant technologies [70].

As mentioned in [3] and [23], the FIPA agent management component consists of:

1. Agent Management System (AMS)
The AMS [3][23][30] controls access and use of the agent platform. It is respon-
sible for maintaining a directory of resident agents and for handling their life cy-
cle. It provides white page services like maintaining directory of agent location,
naming and control access services. Each agent must be registered with an AMS
to obtain an Agent Identifier (AID) [23]. The AMS maintains the directory of all
agents residing within the agent platform. An AMS is a mandatory component
of the agent platform. The AMS defines the core directory actions such as regis-

35

ter, deregister, modify, search, and get-description [30]. In addition to the man-
agement functions exchanged between the AMS and agents on the agent plat-
form, the AMS can instruct agent platform to perform following operations:
suspend agent, terminate agent, create agent, resume agent execution, invoke
agent, execute agent, and resource management [30].

Message Transport Service (MTS)

The Message Transport Service is a service provided by the agent platform to
which the agent is attached [2]. The MTS [23] supports transportation of FIPA
Agent Communication Language messages between agents in any given agent
platform or between agents residing in different agent platforms. The FIPA
Agent Message Transport Specification [36] deals with the delivery and repre-
sentation of messages across different network transport protocols [3]. On any
given agent platform, the MTS is provided by an ACC (Agent Communication
Channel) [36]. The ACC uses information provided by the Agent Management
System to route messages between agents within the platform and to agents re-
siding on other platforms. The agent message transport reference model is
shown in figure 4.12.

Agent Platform

e Agent

N

{ Agent Communication Channel (ACC) J

o

ACL message sent over

Message Transport Service (MTS)E Message Transport Protocol (MTP)

N2

<" Agent Communication Channel (ACC) J

’ ® Agent
Agent Platform

Figure 4.12 Agent message transport reference model [recreated from 36].

36

Here, the Message Transport Protocol (MTP) carries out the physical transfer of
messages between two Agent Communication Channels (ACCs). The ACL
(Agent Communication Language) represents the content of the messages carried
by both the MTS and MTP.

3. Directory Facilitator (DF)
The Directory Facilitator [23] provides yellow page services to other agents. It is
an optional component of the AP. Agents registers their application specific ser-
vices with the DF. Moreover, agents can query the DF to find out what services
are offered by other agents, including the location of agents and their offered
services in ad hoc networks [23].

37

5. MAPPING/COMPATIBILITY BETWEEN HTML5
AGENT FRAMEWORK AND FIPA

This chapter analyses compliance and compatibility to make HTML5 Agent Framework
a FIPA-compliant system. Some of the aspects of HTML5 Agent Framework such as
agent communication and agent management are in the initial stage of implementation
and have their own architecture specific functions. Large scale realization of agent ap-
plications in modern commercial and industrial settings need compatibility and interop-
erability across network of agent systems. Compatibility and interoperability between
heterogeneous agent systems can only be achieved by adopting one of the agent systems
standards. Complying multiple agent systems with one of the agent system standards
allows doing of the things in the same way. So, use of existing standard like FIPA spec-
ifications for agent system development can be a benefit, because it is easier to obtain
interoperability and compatibility between heterogeneous agent systems based on exist-
ing well-known standards than on self-made standard. Therefore, in this chapter, com-
parisons are made between FIPA specified system and HTML5 Agent Framework. Fur-
thermore, approaches to make HTML5 Agent Framework a FIPA-compliant system are
discussed in later part of this chapter.

An agent system that conforms to FIPA specifications is termed as a FIPA-compliant
system. A FIPA-compliant system has an ability to interoperate with other heterogene-
ous agent systems that are FIPA-compliant as well. Interoperability is fundamentally
guaranteed between agent systems that are built in accordance with FIPA specifications.
The conversion of an agent system/MAS into a FIPA-compliant system is one way to
support interoperability between different agent systems that are FIPA-compliant [75].
Different multi-agent systems are not interoperable due to differences in their architec-
tural elements, such as differences in syntax and semantics of agent communication
language, and incompatible message transport mechanisms [85]. As pointed out in [3],
[22] and [75], for an agent system to be considered a FIPA compliant, it must at least
implement the FIPA “Agent Management” and “Agent Communication Language”
specifications. Different implementations and design approaches are adopted when en-
gineering agent systems. Similarly, the current implementation of HTML5 Agent
framework [20] has its architecture specific agent management and agent communica-
tion model. General descriptions about agent communication and agent management
model in HTMLS5 Agent Framework are already pointed out in section 3.1.1 and section
3.1.2 respectively. Some of the findings of comparison between these two systems can
be summarized as below:

38

1. Simple agent management functionality for agents is implemented in Agent
Server [14]. The latest version of HTML5 Agent Framework [20] introduces a
centralized entity called Management Server that provides additional manage-
ment functionality. However, future implementation requires more information
about agent application, such as description of agents, the configuration of the
agent, etc. as mentioned in FIPA “Agent Management Specification”. The agent
management functionalities specified in FIPA “Agent Management Specifica-
tion” can be incorporated in current implementation to provide better agent
management functionalities.

2. A yellow page service or Directory Facilitator (DF) can also be implemented for
advertising and looking up agent capabilities. However, this is not a mandatory
component in FIPA-compliant agent framework

3. In current implementation [20], communication model is very generic and need
to be refactored to implement standard FIPA-ACL (Agent Communication Lan-
guage) for agent communication. So, the communication infrastructure should
support standardized FIPA-ACL to rationalize the use of the current framework
in a network of other FIPA-compliant technologies.

4. The ability for an interaction/interoperation with agents in third-party FIPA-
compliant multi-agent systems, such as JADE [12], Radigost [69], etc. must be
introduced. Three cases of agent-to-agent communication are mentioned in
HTML5 Agent Framework. In order to make HTML5 Agent Framework in-
teroperable with third-party FIPA-compliant multi-agent systems, inter-platform
communication component should be implemented using some lower-level pro-
tocols (SMPT, TCP/IP, IIOP, HTTP, etc.) as mentioned in FIPA communication
model.

So, an agent system when mapped with FIPA requires that it manages the agent’s life
cycle, provides a communication infrastructure, and may include an agent directory
interface [69]. Moreover, at a more advanced level, an agent system should incorporate
various security features and there should be infrastructure for flexible agent mobili-
ty/migration (navigation model).

5.1 Proposed solution

In this section, references [3] and [75] are used as input for the design of the proposed
solution to make HTML5 Agent Framework a FIPA-compliant one. An approach of
converting an MAS into a FIPA-compliant system requires that developers of agent
system must build their system based on FIPA specifications. For this, developers of

39

agent system should impose changes on the current system architecture to conform to
the new standards. As described in [3] and [75], there could be two possible approaches
to conform a MAS into a FIPA-compliant one:

1. Modify the whole system architecture based on the guidelines provided by FIPA
specifications, i.e. for an agent platform to be considered FIPA-compliant, it
must at least implement the FIPA “Agent Management” and “Agent Communi-
cation Language” specifications. That is, the approach is to convert the whole
system to adhere to FIPA specifications [3][22][75].

2. Modify just a part of the system’s architecture. With this, the actual architecture
of the system remains the same but FIPA-compliant gateway is incorporated to
the system that works as interoperability sub-system to communicate with other
third-party FIPA-compliant multi-agent systems [3].

The first approach is a usual approach of converting a MAS into a FIPA-compliant sys-
tem. For this, developers of agent system should rebuild the whole system to adhere to
FIPA specifications. This requires extensive code rewriting, re-design and testing, and
may or could not be considered radical approach. Based on this approach, an attempt to
make HMTL5 Agent Framework a FIPA-compliant system requires modifications
based on the guidelines provided by FIPA specifications. This requires changes in cur-
rent implementation of agent management and agent communication model in HTML5
Agent Framework.

As already mentioned, the alternative approach of converting a MAS into a FIPA-
compliant will be to implement FIPA-compliant gateway component in existing agent
system (non FIPA-compliant). Referring [4], “a gateway is an element of an agent sys-
tem that is capable of mediating some form of interoperability with another agent sys-
tem”. The concept behind gateway is also discussed in FIPA Abstract Architecture
Specification [24]. According to [24], “where direct end-to-end interoperability is im-
possible, impractical or undesirable, it is important that consideration be given to the
specification of gateways that can provide full or limited interoperability”. Services of-
fered by a gateway can include following [4] [24]:

e A gateway may provide message transfer between two agents that use different
transports or message encoding representation.

e A gateway may support agent service advertisement and discovery by translat-
ing between different directory services.

So, gateway as a component of a non FIPA-compliant system provides a medium for it
to interact with agents hosted in third-party FIPA-compliant MASs. For instance, an
agent located in JADE [12], Radigost [69], etc. can directly interact with HTML5 Agent
Framework agents by sending a message through the gateway component, and vice-

40

versa. However, there needs to be a way for a message to travel across the system
boundaries and reach the external MAS in a recognizable format, and vice-versa [69].
Most importantly, to integrate gateway component within the existing non-FIPA com-
pliant agent system to support interoperability with agents hosted in separate agent envi-
ronment will be the major challenge.

A gateway, according to [3] and [75] is the FIPA-compliant part of the system which
has all of the mandatory, normative components of the FIPA architecture. Adoption of
the FIPA-compliant gateway by the SARA (Synthetic Aperture Radar Atlas) multi-
agent system is discussed in [3] and [75]. As described in [3] and [75], the FIPA gate-
way has all the normative components of the FIPA architecture as defined by FIPA
specifications. The gateway agent communicates with agents in external FIPA-
compliant MAS using the FIPA-ACL. It translates the incoming messages from external
FIPA-compliant MAS to a form understood by its internal agents. Likewise, it translates
the internal agents’ request into FIPA-ACL messages, in order to be understood by ex-
ternal FIPA-compliant MAS. The gateway agent contains a list of the agents in the sys-
tem along with their registered service in DF (Directory Facilitator). So, based on ser-
vice requested by the external FIPA-compliant MAS agents, the gateway agent knows
to which agent the message should be forwarded after translating the message into the
form understood by that appropriate agent. The gateway agent acts as an interface be-
tween existing agent system and external FIPA-compliant MAS.

External FIPA x X /\
compliant <
0 X
gateway; 9 g
agent
DF : \

FIPA compliant Non FIPA compliant MAS
gateway

A
\ 4

h 4

A
A 4

Figure 5.1 FIPA-compliant gateway approach to make an agent platform FIPA-
compliant [recreated from 3 and 75].

With this approach, interoperability can be achieved with the use of the FIPA-compliant
gateway without actually affecting the actual agent system. That means, it is not neces-

41

sary to conform the whole system based on FIPA guidelines [75]. Some of the ad-
vantages of adopting the FIPA-compliant gateway in existing MAS are also discussed
in [3] and [75], which includes following advantages:

1. System’s architecture remains the same as before, implementation is only
needed for the FIPA-compliant gateway and the interaction between gateway
agents with the other agents of the current agent system. Consequently, develop-
ers can avoid the complexity of amending the whole system. They can just work
only in a specific part of the system, i.e. the FIPA compliant gateway [3] [75].

2. Increased security, isolating the interoperable part of the system, i.e. gateway
from the rest of the system increases security. The internal property of the cur-
rent system remains hidden from external third-party MAS due to the FIPA-
compliant gateway. The interaction between the system agents and external
MAS is managed by the gateway agent; this protects the system’s agents (for in-
stance, HTML5 Agent Framework), hardware/software resources from being ac-
cessed by external components. So, the FIPA-compliant gateway can act as a
shield for the core system. Securing the FIPA-compliant gateway implies mini-
mum security for the rest of the system. The more secure the FIPA-compliant
gateway, the less security is needed for the rest of the system [3] [75].

As already pointed out, FIPA specifications exist to support interoperability across het-
erogeneous agent systems that are FIPA-compliant as well. As described in [75], the
conversion of an agent system which does not need to communicate with external agent
systems into a FIPA-compliant system would be useless, since the agents that belong to
the particular agent system are identical and can obviously interoperate between them-
selves [75]. In other words, if agents share common architecture, then they can com-
municate with each other without any problems. For instance, in HTML5 Agent
Framework as well, a simple agent-to-agent communication framework is implemented.
This framework allows agents residing within that framework to send and receive mes-
sages between themselves regardless of their location [20]. The existence of FIPA agent
management components: Agent Management System (AMS), Message Transport Ser-
vice (MTS), and Directory Facilitator (DF), which are mandatory, normative compo-
nents of the FIPA specified system impose extra complexity in an agent system consti-
tuted by identical agents capable of interoperating between themselves [75]. So, the
application field or user group of a non-FIPA compliant system should be realized be-
fore converting a non-FIPA system into a FIPA-compliant system, otherwise, it would
be more or less useless to incorporate interesting technical aspects and possibilities.

42

6. PROOF OF CONCEPT/EXPERIMENTATION

Based on purposed solutions in section 5.1, a decision was made to design and imple-
ment FIPA-compliant gateway component for HTML5 Agent Framework and establish
simple communication between FIPA-compliant JADE multi-agent system and HTML5
Agent Framework as a proof of concept for this thesis. Major challenges for this exper-
imentation were to determine:

e How does the communication work between these two heterogeneous agent sys-
tems? The messaging protocol needs to be developed that will allow exchanging
the information between these two systems.

e How message format conversion can be implemented in gateway component in
HTML5 Agent Framework. Since, JADE is Java based FIPA-compliant system,
there should be some mechanism to convert FIPA-ACL message from JADE to
message understood by HTML5 agent in HTML5 Agent Framework and vice-
versa.

The experimentation in this thesis demonstrates a simple message exchange be-
tween HTMLS5 Agent Framework and JADE multi-agent system. The functionalities
of HTML5 Agent Framework are implemented using Web protocols and technolo-
gies [20]. The Web support (HTTP) here in JADE is added through JadeGateway
[78] using Java Servlet [77]. Figure 6.1 represents the outline of communication
between HTML5 Agent Framework and JADE multi-agent system. Message ex-
change between a HTML5 agent and a JADE agent takes place via WebSocket [80].
The JADE Web application shown in figure 6.1 represents an approach of accessing
a JADE multi-agent system from a Servlet using the JadeGateway class. This Web
application displays a button and if we click on it a send message action is invoked
and a message will be sent to a JADE agent and this agent will send a reply. In this
experimentation, a message from a HTML5 agent running in a Web browser in
HTML5 Agent Framework is sent over HTTP via WebSocket that invokes send
message action in JADE Web application. In GatewayAgent, the incoming message
string from HTMLJ5 agent is treated as ACL message. A legal ACL message is cre-
ated in GatewayAgent which constitutes three parameters: communicative act (also
called performative), receiver, and content. The WebSocket in figure 6.1 serves as a
channel for message flow between HTML5 Agent Framework and JADE. It pro-
vides full-duplex communication, not only a HTML5 agent can send a message but
also can receive a message from JADE via WebSocket. The overall proof of concept
will be described briefly in later sections of this chapter.

43

Agent Server
(implemented using Node.js)
Client Device 4 B
JS Application
Agent State
Communication in Namespace
JSON String
(using socket.io)
8 v
WebSocket
IR
Browser
Servlet
sendmessage
/ action
& N\ JADE Web
i . o
(MessageChannel :. Application
\
N 3
GatewayAgent
PongAgent
JADE MAS
_/

Figure 6.1 Outline of communication between HTML5 Agent Framework and JADE.

44

6.1 Implementation in JADE MAS

All the architectural details and introduction about JADE multi-agent system can be
found in [12]. The approach implemented in this thesis to access JADE system is based
on reference [78]. Based on [78] by Viktor Kelemen, a simple web application is creat-
ed using Java Servlet [77]. JAVA Servlets are programs that run on a Web or applica-
tion server and act as a middle layer between requests coming from a Web browser or
other HTTP client on the HTTP server [77]. This simple web application demonstrates
how a JADE agent in JADE multi-agent system can be accessed from a Servlet using
the JadeGateway. Since, JADE has been implemented in Java, it is easy to integrate
JADE and Servlet to create a Web application. In JADE, the main package we use to
communicate with Servlet is jade.wrapper.gateway, which includes classes: JadeGate-
way and GatewayAgent. These classes enable a non-JADE application to issue com-
mands to a JADE based application.

e JadeGateway, this class provides a simple gateway that allows some non-JADE
code to communicate with JADE agents.

e GatewayAgent, this agent is the gateway able to execute all commands requests
received via JadeGateway. The agent acting as a gateway will be initiated by the
class JadeGateway from the servlet, by the method JadeGateway.init ().

Here, the GatewayAgent serves as a gateway component in JADE system. This class
can create a legal ACL (Agent Communication Language) message from incoming
message string from a Web client. This property of GatewayAgent was further analysed
to determine if it can be used as a gateway component between HTML5 Agent Frame-
work and JADE. Based on the property of GatewayAgent in JADE, communication be-
tween HTML5 agent and JADE agent was tested and it worked. The ability of Gate-
wayAgent to serve as a gateway component between HTML5 Agent Framework and
JADE changed the dimension of the initial decision to implement FIPA-compliant
gateway component for HTML5 Agent Framework. The proof of concept is different
from the initial decision to implement FIPA-compliant gateway component for HTML5
Agent Framework. Here, the GatewayAgent in JADE is capable of mediating some
form interoperability with HTML5 Agent Framework. However, it was considered as a
reasonable option for this Master’s thesis.

The implementation details are shown in figure 6.2. For this, the NetBeans IDE is used
and the JADE Web application is hosted using the tomcat server [79].

Browser

Serviet

sendmessage

/ action

GatewayAgent

PongAgent

JADE MAS

45

Figure 6.2 Implementation detail for creating web application in JADE MAS [recreated

from 78].

The communication implemented between HTML5 Agent Framework and JADE con-
stitutes following steps:

1.
2.

In the browser, HTML5 agent generates a POST message through WebSocket.
The Servlet handles it and the “sendmessage” action is invoked. The Servlet

runs in an application server (tomcat).

The “sendmessage” action creates a new MessageChannel object which will be
the message channel between the GatewayAgent and the Servlet. MessageChan-

nel is an object created by the Servlet and used as a communication channel.

The GatewayAgent gets this MessageChannel object created previously and ex-
tracts the recipient and content of the message. After that, the GatewayAgent
sends the received message from the Web client to the recipient agent (in this

case, PongAgent).

PongAgent receives the message and responses to the GatewayAgent.

46

6. The GatewayAgent packs the reply from recipient agent and sends it via Mes-
sageChannel to the Servlet.
7. The Servlet forwards it to the browser.

)
v 3 WebPages
v @ META-INF
context.xml
3 WEB-INF
[€] index.html
v ‘& Source Packages
* 2 agent
B MyAgentGateWay.java
E PongAgent.java
v B channel
MessageChanneljava
v B sendmessage
= Action.java
SendMessageAction.java
* 5 serviet
ServietGateWay.java
v @ Libraries
& jadejar
& commons-codec-1.3.jar
& json-simple-1.1.1.jar
B JDK 1.8 (Default)
EE Apache Tomcat 8.0.15.0
» @ Configuration Files

vy ¥ ¥ v

Figure 6.3 Project structure of implementation in JADE in NetBeans IDE.

Figure 6.3 represents overall project structure of implementation in NetBeans IDE. For
this implementation, JADE library (jade.jar) is imported to be able to use some utility
classes provided by JADE library. Details about project structure are described below:

HTML page (index.html)

This is a simple HTML page which contains a form where the “Send Message” button
appears. It contains a hidden field which indicates the type of the action sent to the
Servlet. The message from HTMLS agent invokes “sendmessage” action in this HTML

page.

47

Listing 6.1: Snippet of “index.html” file containing form where “Send Message” button
appears.

<body id="page">

<hl>Simple JadeGateWay Example</hl>

<HR>

<form id="operationBox" method="get" action="ServletGateWay">

<input type="hidden" name="action" value="sendmessage"/>
<input type="submit" value="Send Message"></input>

</form>
</body>

servlet package

The Servlet receives a post message from previously created HTML page and sends
back the proper response. This JAVA package contains “ServletGateWay.java” class.
“ServletGateWay.java” is responsible for processing the action to perform and deliver a
response that will come from JADE.

ServletGateWay.java

The agent acting as a gateway will be initiated by the class JadeGateway from the
Servlet by the method JadeGateway.init (). This method will receive as parameters the
agent acting as a gateway (the name of the class that implements the agent), and the port
number where we are running the JADE platform we want to communicate. In this ex-
perimentation, MyAgentGateWay class is derived as a GatewayAgent in the first param-
eter of JadeGateway.init () method.

// JadeGateway sets which class will be the GatewayAgent
JadeGateway.init ("agent.MyAgentGateWay",null) ;

The second parameter is null because the main container of the JADE multi-agent sys-
tem is running on the same host and on the default 1099 port. Here, the get request from
html page is treated as post message. The doPost function is shown in listing 6.2:

48

Listing 6.2: Snippet of doPost function.

// We get the value of the hidden field action

String actionName = request.getParameter ("action");

if (actionName == null) {
response.sendError (HttpServletResponse.SC NOT ACCEPTABLE) ;
return;

}

// We make the object that implements the action interface
// In this case "action" is the "sendmessage"

Action action = (Action) actions.get (actionName) ;

if (action == null) {
response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);
return;

}

// SendMessageAction is performed
action.perform(this, request, response);

sendmessage package

This JAVA package contains “Action.java” and “SendMessageAction.java” classes.
Servlet uses these classes.

Action.java
The “Action.java” acts as a generic interface for all possible actions. The Servlet defines
a perform method so that all actions would be invoked as action.perform (...) as shown
in listing 6.2.

Listing 6.3: Snippet of “Action.java” class.

public interface Action {

public void perform(HttpServlet servlet, HttpServletRe-
quest request, HttpServletResponse response)

throws IOException, ServletException;

49

SendMessageAction.java
The “SendMessageAction.java” class constitutes three important steps:
1. Creating a MessageChannel object.
2. Filling the MessageChannel object with the proper content (receiver, message).
3. Sending the MessageChannel object to the GatewayAgent with the JadeGate-
way.execute method with a parameter which is the MessageChannel object.

Listing 6.4: Snippet of “SendMessageAction.java” class.

//We create a message with a recipient and a content
//"message" that we receive from HTML5 agent framework

// Creates a MessageChannel object “channel”
MessageChannel channel = new MessageChannel () ;

String str = request.getParameter ("message");
channel.setReceiver ("PongAgent") ;

channel.setMessage (str) ;

try {

//We access JADE via JadeGateway and wait for the answer
//JadeGateway.execute sends this object “channel” to Gate-
wayAgent

JadeGateway.execute (channel) ;

} catch (Exception e) { e.printStackTrace(); }

agent package

This JAVA package contains “MyAgentGateWay.java” and “PongAgent.java” classes.

MyAgentGateWay.java

“MyAgentGateWay.java” acts as a medium for entering to the JADE multi-agent sys-
tem. It extends the GatewayAgent class and serves as a gateway between the Servlet and
the JADE. It is also responsible for sending a message to PongAgent and sending back
its reply to the Servlet. “MyAgentGateWay.java” gets previously created Mes-
sageChannel object. The processCommand function is invoked when JadeGate-
way.execute (channel) method is invoked. The processCommand is called each time a
request to process a command is received. It sets the communication, receiving an ob-
ject parameter that contains the information needed to perform the necessary operations.
Here, an ACL message is created and sent to the recipient agent “PongAgent.java”.

50

Listing 6.5: Snippet of “processCommand” function in “MyAgentGateWay.java”.

MessageChannel channel = null;

// The processCommand will be invoked when JadeGateway.execute
// (object) is invoked in the servlet

@Override
protected void processCommand (java.lang.Object obj) {

if (obj instanceof MessageChannel) {
channel = (MessageChannel)obj;
// ACL message is created and sent
ACLMessage msg = new ACLMessage (ACLMessage.REQUEST) ;
msg.addReceiver (new AID(channel.getReceiver (),
ATID.ISLOCALNAME)) ;

msg.setContent (channel.getMessage()) ;
send (msqg) ;

In the background CyclicBehaviour waits for the response and releaseCommand is in-
voked when response is received from replying agent. The releaseCommand method
notifies that the command has been processed and remove the command from the
queue.

Listing 6.6: Snippet of “releaseCommand” method in “MyAgentGateWay.java”.

// In the background CyclicBehaviour waits for the response.
// releaseCommand will be invoked when response is received
// from replying agent (PongAgent)

addBehaviour (new CyclicBehaviour (this)

{
@Override
public void action() {

ACLMessage msg = receive();

if ((msg!=null) &&(channel!=null)) {
channel.setMessage (msg.getContent ()) ;

// The response is returned in the channel object
// to the Servlet

releaseCommand (channel) ;
} else block();

o1

PongAgent.java

“PongAgent.java” class creates an agent that runs inside JADE multi-agent system. This
is the agent with which JADE web interface tries to communicate. Here, the content of
reply message is defined.

Listing 6.7: Snippet of “PongAgent.java”.

// Waits for the message
addBehaviour (new CyclicBehaviour (this)

{
@Override
public void action () {

ACLMessage msg = receive();
String content= "";

if (msg!=null) {

// Fill the contents of the reply

content=

"
 - "+myAgent.getLocalName () + " received: " +
msg.getContent () +

"
 - "+myAgent.getLocalName() + " sent: " + "I

got the time";

ACLMessage reply = msg.createReply();
reply.setPerformative (ACLMessage.INFORM) ;
reply.setContent (content) ;

send (reply) ;

System.out.print (content) ;

lelse block ()

}
P

Back to the Servle

The message content from “PongAgent.java” is returned to the CyclicBehaviour in
“MyAgentGateWay.java”. Inside CyclicBehaviour, releaseCommand is invoked as
shown in listing 6.6 and the response is returned to the Servlet in MessageChannel ob-
ject: releaseCommand (channel). It creates a simple JSON output that contains proper
response. For this, “json-simple-1.1.1.jar” is imported in NetBeans IDE. “JSON.simple”
is a simple JAVA toolkit for JAVA. It is used to encode or decode JSON text.

Listing 6.8: Snippet of reply from JADE agent in “SendMessageAction.java”

52

try {
// We access JADE via JadeGateway and wait for the answer
// JadeGateway.execute sends this object channel to
// GatwayAgent
JadeGateway.execute (channel) ;
} catch (Exception e) { e.printStackTrace(); }

// Creates output

response.setContentType ("application/json") ;
PrintWriter out = response.getWriter();

// We print the reply received from JADE in JSON format
JSONObject obj = new JSONObject () ;

obj.put ("name", "Message has been sent");
obj.put ("reply", "Reply:"+channel.getMessage()):;

out.print (obj) ;
out.flush{();
out.close() ;

Figure 6.4 represents important steps that take place in execution in JADE.

53

Browser Servlet

index.html ServletGateWay
method = "get" /G\ init(}{
action = "ServietGateWay" JadeGateway.init("agent. MyAgentGateway",
name = "action" null);
value = "sendmessage" \G/ }

Send Message doGet{
doPost(request,response);

doPost{
/I sendmessage action performed
SendMessageAction
MessageChannel
perform(....{
JadeGateway.execute(channel);
! &
GatewayAgent

MyAgentGateWay _/

processCommand(channel){
/IACL message created

S

/I Response is returned to Serviet

releaseCommand(channel);

° ACL ACL e

PongAgent

Figure 6.4 Steps in execution in JADE.

Starting JADE

At first, main-container of JADE multi-agent system is launched. The following com-
mand starts the main-container and a GUI interface of JADE multi-agent system.

sksfsks- nspiron-4018:« NetBeansProjects JadeCatebays ava -classpath .. [home/sksNetBeansProjects JadeCatebayLib/ ade. jar jade.Boot -qui

54

After that, “PongAgent.java” class is compiled which contains code for an agent called
PongAgent.

sksfisks-Inspiron-N4818: - NetBeansProjects JadeGateNay$ javac -classpath 1ib/jade. jar - classes/ src/java/agent [Ponghgent. java

Then, the agent PongAgent is started in JADE container.

sksfisksTnspiron-4g10:NetBeansProjects JadeCateNay) java -classpath . [home/sks NetBeansProjects/JadGatelayib) jade, ar:classes| jade Boot

-Contatner Ponghgent:agent Ponghgent

After successfully executing these commands in terminal, a JADE GUI appears.

¢ B3 AgentPlatforms
¢ £1"192.168.0.104:1095/JADE"
+ @@ Main-Container

& ams@192.168.0.104:1099/JADE
& di@192.168.0.104:1099/)ADE

rma@192.168.0.104:1099/)ADE
¢ @1 Container-1
@ PongAgent@192.168.0.104:1099/)ADE

6.2 Implementation in HTML5 agent framework

The implementation in HTML5 Agent Framework constitutes usage of WebSocket [80].
As already pointed out, the WebSocket serves as a channel for message flow between
HTMLS5 Agent Framework and JADE. The code snippet of “websocket.js” is shown in
listing 6.9. An agent named “ClockExample” created by [14] is used as a test agent in
HTML5 Agent Framework. This agent increases a variable “index” in regular interval
and the value of that variable is displayed as time in “ClockExample.html” in a Web
browser. A “Send Message” button is created in “ClockExample.html”, and the send ()
function is invoked when “Send Message” button is clicked. This send () function cap-
tures a value of variable “index” of “ClockExample” HTML5 agent and sends it as a
message string to JADE via WebSocket. The code snippet of send () function is shown
in listing 6.10. The HTTP(S) call is made to JADE Web application via WebSocket.
This HTTP(S) call triggers the “sendmessage” action in JADE Web application. The
Servlet in JADE application handles this HTTP(S) call and JADE is accessed using
JadeGateway class. When a JADE agent (PongAgent) receives the message, it
acknowledges the sender with a reply message (for instance, “I got the time” with IN-
FORM performative). The reply message constitutes two ACL (Agent Communication
Language) message parameters: communicative act (also called performative), and con-
tent. This reply message is returned to Servlet and creates a JSON output in a browser in
JADE Web application. While the WebSocket is still open, this JSON output is parsed
and displayed in the Web browser in HTML5 Agent Framework as shown in listing

55

6.10. The representation of message flow between HTML5 agent and JADE agent is
shown in figure 6.5.

Listing 6.9: Code snippet of “websocket.js”.

socket.on ('request', function (request) {
var connection = request.accept(null, request.origin);

connection.on('message', function (message) {
console.log (message.utf8Data) ;

// Load the request module
var requests = require('request');

// Configure the request

var options = {
url:'http://localhost:8084/JadeGateWay/ServletGateWay',
method: 'POST',

form: {'action': 'sendmessage', 'message': mesage.utf8Data}

}

console.log (options) ;

requests (options, function (error, response, body) {

if (l'error && response.statusCode == 200) {
connection.sendUTF (body) ;
lelse(

console.log(error) ;

Listing 6.10: Code snippet of send () function in “send.js”.

//Once the websocket has been started, the code below is used
//to establish connection to the websocket

//This function sends the content of "label id='second'" in
//ClockExample.html in variable "sendMessage"

function send () {

var socket = new WebSocket ('ws://localhost:1337"'");

var sendMessage = document.getElementById('second') .innerHTML;
socket.onopen = function () {

socket.send (sendMessage) ;

}i

//Displays the received message from JADE in div ID "content" in
//ClockExample.html.
socket.onmessage = function (message) {
var mydata = JSON.parse (message.data);
document.getElementById ('content') .innerHTML = myda
ta.name+"
"+mydata.reply;
bi

HTML 5 Agentin
Browser

1. Sends a message
on click of a button.

JADE Web

WebSocket

9. Received JSON string

A 4

2. Sends the message over
HTTP that invokes

Interface

"sendmessage” actionin
JADE web interface.

8. Socket is on.

3. "MessageChannel" object
is created and filled with
proper content (receiver,

message), and sent to the
"GatewayAgent" with the
"JadeGateway".

_6. Response from

Ll

web browser.

is parsed & displayed in

“"PongAgent" is retumed in
"MessageChannel” object to
Senet via "GatewayAgent".

7. Reply from "PongAgent" is
converted to JSON format.

56

JADE MAS

4. "GatewayAgent" receives
"MessageChannel" object &
creates ACL message of
received content with
REQUEST performative.

5. "PongAgent" receives the
ACL message and replies
withits content with INFORM
performative.

Figure 6.5 Representation of message flow between HTML5 agent and JADE agent.

57

7. EVALUATION

The approach implemented in this thesis to establish communication between HTML5
Agent Framework and JADE utilizes a library of classes offered in JADE. The Web-
Socket program is written in HTML5 Agent Framework side which acts as a channel
for message flow between two different systems. The conception (Servlet — Gate-
wayAgent — JADE MAS) based on [78] is one of the possible ways to access JADE
from external agent system. There are also other alternative approaches to access JADE.
Because, the GatewayAgent class in JADE can treat a simple message string as a FIPA-
ACL message, this class is used to provide some form of interactivity between HTML5
Agent Framework and JADE. The proof of concept implemented in this thesis is limited
or incomplete. It does not make HTML5 Agent Framework a FIPA-compliant system
but has some compatibility with JADE system. The HTML5 Agent Framework relies on
the functionalities that are defined in another FIPA-compliant JADE system. It is more
practical to implement FIPA-compliant gateway in HTML5 Agent Framework to sup-
port interoperability and compatibility with any third-party FIPA-compliant systems.
Implementing gateway component in existing non-FIPA compliant system helps defin-
ing an interface in our own system that can be implemented for each supported third-
party FIPA-compliant systems.

58

8. CONCLUSIONS

This thesis presented an introduction to FIPA and its specifications. The purpose of this
thesis was to analyze compliance and compatibility of HTML5 Agent Framework to
make it FIPA-compliant system. For this, architecture and implementation specific
mapping was done between HTML5 Agent Framework and FIPA agent management
reference model.

The HTML5 Agent Framework developed in TUT has its own framework specific func-
tionalities. For instance, it has its own implementation for agent management and agent
communication model. When compared with FIPA reference model, it was realized that
the current implementation of HTML5 Agent Framework should undergo radical
changes to become FIPA-compliant. The agent management and agent communication
model in HTMLS5 Agent Framework are very simple and are in initial stage of their im-
plementation. The functionalities defined in FIPA “Agent Management Specification”
can be incorporated in current implementation of HTML5 Agent Framework to make it
FIPA-compliant. Moreover, the agent communication model in HTML5 Agent Frame-
work should be re-designed to implement standard FIPA-ACL specification for com-
munication. Incorporating all the components and specifications defined in FIPA refer-
ence model would require extensive code re-writing and re-design, which is considered
usual approach of conforming HMTL5 Agent Framework or any other non-FIPA com-
pliant system into a FIPA-compliant system. In addition, the alternative approach of
using FIPA-compliant gateway component for converting a non-FIPA compliant system
into a FIPA-compliant is discussed in this thesis. With this, the system’s architecture
remains the same as before and developers can avoid the complexity of amending the
whole system based on FIPA reference model. Implementation is only needed for the
FIPA-compliant gateway. The gateway should also adhere to those FIPA specifications.

FIPA exists to support interoperability and compatibility between heterogeneous FIPA-
compliant agent systems. Engineering agent systems based on agent standards like FI-
PA provides way to do things in the same way. The differences among agent systems
prevent interoperability and large scale realization of agent applications in modern
commercial and industrial settings.

59

REFERENCES

[1] FIPA, the Foundation for Intelligent Physical Agents, FIPA Official Site:
http://www.fipa.org/, last visited: 27.04.2015.

[2] FIPA 97 Specification, Version 2.0, Part 2, Agent Communication Language,
FIPA Official Site: http://www.fipa.org/specs/fipa00003/OCO00003A.html, last
visited: 27.04.2015.

[3] C. Georgousopoulos, O. F. Rana, “An approach to conforming a MAS into a FI-
PA-compliant system”, In Proceedings of First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, part 2, July 2002, Bologna, Italy,
pp. 1-3.

[4] L. Heimo, H. Heikki, “Software Agent Technology, FIPA Agent Framework”.
Available at:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A7343ACE8C17525872
C2ABD47E089334?d0i=10.1.1.200.5027 &rep=repl&type=pdf, last visited:
29.04.2015.

[5] FIPA agent communication specification, FIPA Official Site:
http://www.fipa.org/repository/aclspecs.html, last visited: 28.04.2015.

[6] FIPA ACL message structure specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00061/SC00061G.html, last visited: 28.04.2015.

[7] Publicly available agent platform implementations, FIPA Official Site:
http://fipa.org/resources/livesystems.html, last visited: 28.04.2015.

[8] General Public License (GNUL),
http://en.wikipedia.org/wiki/GNU_General_Public_License, last visited:
29.04.2015.

[9] Eclipse Public License (ECL),
http://en.wikipedia.org/wiki/Eclipse_Public_License, last visited: 29.04.2015.

[10] N. Howden, R. Ronnuist, A. Hodgson, A. Lucas, “JACK Intelligent Agents —
Summary of an Agent Infrastructure”, Agent Oriented Software Pty. Ltd, Austral-
ia, pp. 1-2.

[11] Lesser Genera Public License (LGPL),

http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License, last visited:
29.04.2015.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

60

JAVA Agent Development Framework (JADE), JADE Official Site:
http://jade.tilab.com/, last visited: 29.04.2015.

Java Community Process (JCP), JCP Official site:
https://www.jcp.org/en/home/index, last visited: 29.04.2015.

L. Jarvenpaa, “Development and Evaluation of HTML5 Agent Framework”, Mas-
ter of Science Thesis, Tampere University of Technology, Tampere, 2013.

E. A. Kendall, P.V. Murali Krishna, C.B. Suresh, C.V. Pathak, “An Application
Framework for Intelligent and Mobile Agents”, ACM Computing Surveys, Vol.
32, March 2000, pp. 2.

I.J. Timm, M. Berger, S. Poslad, S. Kiran, “International Workshop on Multi-
agent Interoperability”, Presented in 25" German Conference on Artificial Intelli-
gence, Sept. 2002, Aachen, Germany.

J.J. Tan, Q. Mary, “International Workshop on Multi-agent Interoperability: Open
Service Vision of Agentcities”, Invited talk in 25" German Conference on Artifi-
cial Intelligence, pp. 1-3, Sept. 2002, Aachen, Germany.

S. Willmott, J. Dale, B. Burg, P. Charlton, P. O’Brien, “Agentcities: A Worldwide
Open Agent Network”, Agentlink News 8, no. LIA-ARTICLE-2001-002, 2001.

S. Turunen, “Productization of an HTMLS5 Agent Framework”, Master of Science
Thesis, Tampere University of Technology, Tampere, 2015.

J.P. Voutilainen, A.L. Mattila. K. Systa, T. Mikkonen, “HTMLS5-based Mobile
Agents for Web-of-Things”, In WASA2013, Workshop on Applications of Soft-
ware Agents, 2013.

A. Carzaniga, G.P. Picco, G. Vigna, “Is Code Still Moving Around? Looking
Back at a Decade of Code Mobility”, In Proceedings of the 29" International Con-
ference on Software Engineering, May 2007, pp. Available at:
https://www.cs.ucsb.edu/~vigna/publications/2007_carzaniga_picco_vigna_ICSE.
pdf, last visited: 05.05.2015.

FIPA-Compliant Live Systems, FIPA Official Site:
http://fipa.org/resources/platforms.html, last visited: 06.05.2015.

FIPA-Compliant Agents, available at:
http://www.obitko.com/tutorials/ontologies-semantic-web/fipa-compliant-
agents.html, last visited: 06.05.2015.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

61

FIPA Abstract Architecture Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00001/SCO0001L.html, last visited: 28.04.2015.

G. Weiss, “Multi-agent Systems: A Modern Approach to Distributed Modern Ap-
proach to Artificial Intelligence”, Massachusetts Institute of Technology, pp. 79-
95, 1999. Print.

M. Obitko, “Introduction to Ontologies and Semantic Web: Communication be-
tween Agents”, available at: http://www.obitko.com/tutorials/ontologies-
semantic-web/communication-between-agents.html, 2007, last visited:
08.05.2015.

M. Obitko, “Introduction to Ontologies and Semantic Web: Specification of Con-
ceptualization”, available at: http://www.obitko.com/tutorials/ontologies-
semantic-web/specification-of-conceptualization.ntml, 2007, last visited:
08.05.2015.

M. Obitko, “Introduction to Ontologies and Semantic Web: Ontologies for
Agents”, available at: http://www.obitko.com/tutorials/ontologies-semantic-
web/ontologies-for-agents.html, 2007, last visited: 08.05.2015.

FIPA ACL Message Structure Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00061/SC00061G.html, last visited: 08.05.2015.

FIPA Agent Management Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00023/SC00023K.html, last visited: 08.05.2015.

FIPA SL Content Language Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00008/SC00008I.html, last visited: 08.05.2015.

FIPA Ontology Service Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00086/XC00086D.html, last visited: 08.05.2015.

FIPA Communicative Act Library Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00037/SC00037J.html, last visited: 08.05.2015.

FIPA KIF Content Language Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00010/XC00010B.html, last visited: 10.05.2015.

FIPA Interaction Protocol Library Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00025/DC00025F.html, last visited: 10.05.2015.

FIPA Agent Message Transport Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00024/0C00024D.html, last visited: 12.05.2015.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

62

X. Haiping, S. M. Shatz, “ADK: An Agent Development Kit Based on a Formal
Design Model for Multi-Agent Systems”, The University of Illinois, Department
of Computer Science, Chicago, available at:
http://www.cis.umassd.edu/~hxu/Papers/UIC/ADK2003.pdf, last visited:
20.05.2015.

Dr. C. Luigi, Dr. D. Jonathan, K. John, “The April Agent Platform: Features and
Summary”, available at:
http://www.angelfire.com/scifi2/technopapa/2002_02__ aap_v08.pdf, Feb. 2002,
last visited: 20.05.2015.

S. Poslad, P. Buckle, R. Hadingham, “The FIPA-OS Agent Platform: Open
Source for Open Source for Open Standards”, available at: http:/fipa-
os.sourceforge.net/docs/papers/FIPAOS.pdf, last visited: 20.05.2015.

M. Dejan, B. Markus, B. Ingo, C. John, C. Stefan, F. Barry, K. Kazuya, L. Danny,
O. Kouichi, O. Mitsuru, T. Cynthia, V. Sankar and W. Jim, "MASIF: The OMG
Mobile Agent System Interoperability Facility ”, Personal Technologies 2, no. 2
1998, pp. 117-129, available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.3585&rep=repl&ty
pe=pdf, last visited: 21.05.2015.

K. Systa, T. Mikkonen, L. Jarvenpaa, “HTMLS5 Agents — Mobile Agents for the
Web”, In the Proceedings of 9" International Conference on Web Information
Systems and Technologies (WEBIST), 2013, Aachen, Germany.

G. Shaw, H. Leon, N. Brenda, Dr.C. Padraig, S. Fergal, and Dr.E. Richards,
“Software Agents: A Review”, Technical Report of Trinity College Dublin, De-
partment of Computer Science, 27 May 1997, pp. 2-4, pp. 26-30.

D. Greenwood, “The Foundation for Intelligent Physical Agents”, Whitestein
Technologies AG, available at:
http://jade.tilab.com/papers/JADETutorialIEEE/JADETutorial _FIPA.pdf, last vis-
ited: 21.05.2015.

F. Bellifemine, A. Poggi, and G. Rimassa, “Developing Multi-agent Systems with
a FIPA Compliant Agent Framework”, Software: Practice and Experience 2001,
31:103-128.

Y. Labrou, T Finin, and Y. Peng, “The Current Landscape of Agent Communica-
tion Languages”, University of Maryland, Baltimore County, Intelligent Systems
and their Applications, IEEE, 1999, Vol. 14, Issue 2.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

63

Node.js, Official Web page for document and download of node.js technology:
https://nodejs.org/, last visited: 21.05.2015.

Socket.io, http://socket.io/, last visited: 21.05.2015.

F. Bellifemine, A. Poggi, and G. Rimassa, “JADE-A FIPA Compliant Agent Plat-
form”, In Proceedings of PAAM, 1999, Vol. 99, No. 97-108, 1999.

J.L. Austin, “How to Do Things with Words”, The William Fames Lectures deliv-
ered at Harvard University, 1995, available at:
http://www.ling.upenn.edu/~rnoyer/courses/103/Austin.pdf, last visited:
25.05.2015, Print.

FIPA- CCL Content Language Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00009/X C00009B.html, last visited: 25.05.2015.

FIPA RDF Content Language Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00011/XC00011B.html, last visited: 25.05.2015.

FIPA Request Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00026/SC00026H.html, last visited: 25.05.2015.

FIPA Query Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00027/SC00027H.html, last visited: 25.05.2015.

FIPA Request When Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00028/SC00028H.html, last visited: 25.05.2015.

FIPA Contract Net Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00029/SC00029H.html, last visited: 25.05.2015.

FIPA Iterated Contract Net Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00030/SCO0030H.html, last visited: 25.05.2015.

FIPA English Auction Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00031/XC00031F.html, last visited: 25.05.2015.

FIPA Dutch Auction Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00032/XC00032F.html, last visited: 25.05.2015.

FIPA Brokering Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00033/SC00033H.html, last visited: 25.05.2015.

FIPA Recruiting Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00034/SC00034H.html, last visited: 25.05.2015.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

64

FIPA Subscribe Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00035/SC00035H.html, last visited: 25.05.2015.

FIPA Propose Interaction Protocol Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00036/SC00036H.html, last visited: 25.05.2015.

CORBA (Common Object Request Broker Architecture), available at:
http://www.corba.org/, last visited: 27.05.2015.

ORB (Object Request Broker) Basics, available at:
http://www.omg.org/gettingstarted/orb_basics.htm, last visited: 27.05.2015.

S. Poslad, “Specifying Protocols for Multi-Agent Systems Interaction”, ACM
Trans. Autonom. Adapt. Syst (TAAS), November 2007, Vol. 2, Issue 4.

FIPA ACL Message Representation in String Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00070/SC000701.html, last visited: 29.05.2015.

FIPA ACL Message Representation in XML Specification, FIPA Official Site:
http://www.fipa.org/specs/fipa00071/SCO0071E.html, last visited: 29.05.2015.

FIPA ACL Message Representation in Bit-Efficient Encoding Specification, FIPA
Official Site: http://www.fipa.org/specs/fipa00069/SC00069G.html, last visited:
29.05.2015.

D. Mitrovic, M. Ivanovic, Z. Budimac, M. Vidakovic, “Radigost: Inteoperable
Web-based Multi-agent Platform”, The Journal of Systems and Software, April
2014, Vol. 90, pp. 167-178.

F.L. Bellifemine, G. Caire, and D. Greenwood. “Developing Multi-agent Systems
with JADE”. Hoboken, NJ: John Wiley & Sons, 2007. Print.

D. B. Lange, M. Oshima, “Seven Good Reasons for Mobile Agents”, In Commu-
nications of the ACM, Volume 42, Issue 3, March 1999, pp. 88-89.

A. Aneiba, S. J. Rees, “Mobile Agents Technology and Mobility”, In Proceedings
of the 5th Annual Postgraduate Symposium on the Convergence of Telecommuni-
cations, Networking, and Broadcasting, 2004.

M. Wooldridge, “An Introduction to Multi-agent Systems”, J. Wiley, 2002, pp. 1-
8, Print.

J.A. Giampapa, M. Paolucci, K. Sycara, “Agent Interoperation across Multi-agent
System Boundaries”, In Proceedings of the fourth international conference on Au-
tonomous Agents, 2000, pp. 1-8.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

65

C. Georgousopoulos, O.F. Rana, A. Karageorgos, “Supporting FIPA Interopera-
bility for Legacy Multi-Agent Systems”, In Agent-Oriented Software Engineering
IV, pp. 167-184, Springer Berlin Heidelberg, 2004.

Z. AAmir, “Developing a Communication Link between Agents and Cross Plat-
form IDE”, Master Thesis, Hogskolan Dalarna, Sweden, 2010.

Learn JAVA Servilets: Web Application Framework, available at:
http://www.tutorialspoint.com/servlets/index.htm, last visited: 01.07.2015.

V. Kelemen, “Accessing a JADE MAS from a Servlet using the JadeGateway
class”, 2006, available at: http://jade.tilab.com/doc/tutorials/JadeGateway.pdf, last
visited: 01.07.2015.

Apache Tomcat, available at: http://tomcat.apache.org/, last visited: 01.07.2015.

WebSocket, available at: https://www.websocket.org/index.html, last visited:
15.07.2015.

E. German, L. Sheremetov, “Specifying Interaction Space Components in a FIPA-
ACL Interaction Framework”, In Languages, Methodologies and Development
Tools for Multi-Agent Systems, pp. 191-208, Springer Berlin Heidelberg, 2008.

P. D. O’Brien, R. C. Nicol, “FIPA — Towards a Standard for Software Agents”,
BT Technology Journal, Vol 16, No 3, July 1998.

Why standardization is necessary, available at: http://www.zdnet.com/article/why-
standardization-is-necessary/, last visited: 29.09.2015.

S. Bhattarai, “Security Framework for HTML5 Agents”, Ongoing Master of Sci-
ence Thesis, Tampere University of Technology, Tampere, 2015.

H. Suguri, E. Kodama, M. Miyazaki, 1. Kaji, “Assuring Interoperability between
Heterogeneous Multi-agent Systems with a Gateway Agent”, In Proceedings of 7%
IEEE International Symposium on High Assurance Systems Engineering, 2002.

