
 

 

 

 

 

 

 

 

MUHAMMAD UZAIR 

IMPLEMENTATION OF SPACE–VECTOR-MODULATION IN A 

THREE-PHASE VSI-TYPE GRID-CONNECTED INVERTER 

Master of Science thesis 

 

 

 

 

 

 

 

 

  

Examiner: Prof.Teuvo Suntio
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical
Engineering on 6thFeb, 2015



1 

 

ABSTRACT 

TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Electrical Engineering  
MUHAMMAD UZAIR: Implementation of space-vector-modulation in three- 
phase VSI-type grid-connected inverter. 
Master of Science Thesis, 49 pages, 13 Appendix pages 
September 2015 
Major: Smart Grids 
Examiner: Professor Teuvo Suntio 
 
Keywords: SVPWM, THD, VSI, NPC, stationary vectors. 

The motivation behind this thesis is to generate AC signal of varying amplitude and 

frequency from a constant DC source. The device which is used to obtain this kind of 

action is known as inverter. At present, the inverter is classified into three ways i.e. 

square wave inverter, modified sine wave inverter or quasi sine wave inverter and pure 

sine wave inverter. The first two classification of inverter have seldom used and have 

very limited applications. Nowadays, the pure sine wave inverter is more demanding 

because of the requirement of high efficiency and reliability. On the contrary, it is more 

complex to implement. The main focus of this thesis is the implementation of space 

vector-pulse-width-modulation (SVPWM) which is one of the algorithm of different 

pulse-width-modulation techniques. It is applicable for three phase voltage-source-

inverter for controlling induction and synchronous machine. In this technique, the 

reference vector of varying amplitude and direction continually revolve around the 

hexagon with a fixed sampling frequency generating a gate pulses for the 12 power 

switches used in neutral-point-converter. The space-vector-pulse-width-modulation is 

advantageous over carrier based pulse-width-modulation. The properties which are used 

to analyze the performance of different pulse width modulation methods are total 

harmonic distortion (THD) and the amplitude of fundamental component. Better 

utilization of DC bus voltage makes the space-vector-pulse-width-modulation better 

than the carrier based pulse-width-modulation. 

This thesis explains the concept, theory and implementation of three level space-vector 

pulse-width modulation using MATLAB/Simulink environment. It also incorporates the 

waveform of 7-segment, 9 segment and 13-segment switching pattern to avoid the 

problem of harmonics. The concept of DC-neutral-point-potential control has also been 

developed. To support the theory, gating signal pattern has been drawn and some 

mathematical calculations have been performed. To get the clear picture of voltage 

measurement at each output stage, the derivation of line-to-line voltages and line-to-

neutral voltages are also taken into account along with the calculation of duty cycle of 

switches.        
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1. INTRODUCTION 

1.1 Background 

From the last two decades or so, the growth in the renewable energy sources has 

increased tremendously which leads to increase the demand of power electronics 

converter. Energy generated from renewable energy like wind, wave and photovoltaic 

are heavily dependent on power converters as they are not capable of producing such 

amount of power that the grid can stand with it. The power generated from these 

renewable sources cannot directly connect to the grid; it needs to meet some criteria by 

means of frequency, phase and amplitude. To meet the demand of grid need to 

incorporate some sort of device which is capable of providing such amount of power the 

grid will able to handle. Here, the role of power electronics converter comes into action. 

Power electronics converter provides an intermediate role between the source of 

renewable energy and grid. The PWM inverter is more demanding nowadays which is 

used to convert the DC power obtained from different renewable energy sources to AC 

power but the quality of power is distorted leads to total harmonic distortion which is 

undesirable. In order to mitigate this problem, the multilevel inverter comes into handy 

as the THD is tremendously reduced in it. 

 

The two factors have a prominent role in order to cope with problem of harmonics. 

Firstly, by means of power filters but it is cost demanding as it is made up of different 

kind of metals [1]. Secondly, the fundamental component of output waveform must be 

chopped off with several numbers of levels [1]. In case of three phase system, the 

alternate way to get away from the problem of harmonic is to switch only one phase per 

switching instant while the other two phases keep on their initial position. 

 

The role of multilevel converters appears when total harmonic distortion (THD) has 

become a significant problem which needs to mitigate in order to transfer maximum 

amount of power.PWM (Pulse width modulation) is a technique through which the 

ON/OFF duration of the power switch (IGBT, MOSFET) can be controlled in an 

efficient manner by properly adjusting the width of the pulse. It has a prominent role in 

the speed control of motor, switch mode converters etc.  

 

The inverter is divided into two categories i.e. VSI (voltage source inverter) and CSI 

(current source inverter). This thesis is concerned with the VSI so it is discussed in this 

section. As the name suggests, the VSI is fed from stiff DC voltage source and convert 

it into AC voltage with negligible amount of Thevenin impedance [2]. If the source is 
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not considered to be stiff, a large capacitor or a bank of capacitor is placed between the 

source and the inverter [2], [3]. This DC is obtained from battery bank by connecting 

several cells in series or parallel fashion or from different renewable sources. The nature 

of output voltage can be varied from constant voltage to a variable voltage depending 

upon the application ranging from Static VAR Generator (SVG) and compensator 

(SVC), uninterruptable power supply (UPS) and AC motor drives [2]. The output 

voltage produced by VSI is independent of the load. 

 

Several types of multilevel converter have been proposed according the topological 

structures which includes Diode clamped multilevel converter (DCMC), flying 

capacitor multilevel converter (FCMC) and cascaded H-bridges. The other names are 

also proposed for these topologies. DCMC is also regarded as Neutral point converter 

(NPC). In the same fashion FCMC is also regarded as capacitor clamped converter 

(CCC). DCMC is getting more popularity in industrial point of view therefore this 

thesis has main focused on DCMC. The name multilevel converter is regarded for those 

converters whose output carries more than 2 DC levels. Here, the phase voltages 

contain 3 different DC levels so it is regarded as 3-level inverter.  

 

The SVPWM (space vector pulse width modulation) is categorized in two ways i.e. two 

level and multilevel converter. Multilevel inverter has more advantages over two level 

inverter but difficult to implement due to large number of switching vectors. By 

comparative analysis between the 2-level and 3-level inverter, 3-level has more power 

switches i.e.12 and space vector diagram contain 27 switching vectors rather than 8 

causes a less harmonic distortion. In case of 2-level inverter, the worst case error 

between the applied voltage and desired voltage is quite high as compared to multi-level 

inverter. As a result of this action the harmonics profile of 3-level inverter is much 

better than 2-level inverter which leads to provide better waveform quality. Fig.1 

represents the worst error exist between these two kinds of inverter. In case of 2-level 

inverter, the desired voltage is 0.25 𝑉𝐷𝐶while the applied potentials are +0.5𝑉𝐷𝐶and       

-0.5𝑉𝐷𝐶 . The duration of +0.5𝑉𝐷𝐶 is greater than -0.5𝑉𝐷𝐶 . In case of 3-level inverter, the 

desired voltage is same while the applied potentials are +0.5𝑉𝐷𝐶and 0𝑉𝐷𝐶and having 

same duration of being remain in conduction mode.   

 

The challenging task is to calculate the duty cycle of each power switch [11]. The more 

the level of the inverter the more the number of vectors to switch leads to provide better 

quality of output in terms of harmonics and amplitude. 

 

 

 

 

 

 



3 

 

0.5Vdc

0Vdc

-0.5Vdc

0.25Vdc

Long duration

Short duration

0.5Vdc

0Vdc

0.25Vdc

-0.5Vdc

Worst case error

50% 
duration

50% 
duration

 

Fig.1 Worst error representation of 2-level and 3-level inverter 

1.2 Thesis Outline 

This thesis contains the 5 basic chapters. It begins with the introduction chapter which 

contains the objective of the thesis and the need of three-level SVPWM. It also presents 

the small introduction of VSI and the glimpse of comparison between two-level and 

three-level inverter. 

Chapter 2 has given the brief concept of different modulation strategies used in 

multilevel inverter through which the duty cycle of the power switches can be 

controlled in an efficient manner. The purpose of different modulation schemes is to 

reduce the higher order harmonics and getting higher amplitude of fundamental 

component. 

Chapter 3 presents the theory, concept and background of three-level SVPWM. The 

concept of voltage source inverter (VSI) along with background of NPC inverter has 

been developed. The derivation of pole voltages will be done based on the selection of 

particular sector and region. Vector switching times is also calculated along with duty 

ratio of power switches. The role of redundant vectors to control the DC midpoint 

potential control is also discussed. 

In chapter 4 the simulation model for the SVPWM is designed on the basis of theory 

discussed in the previous chapters. The output of region and sector selection, line to line 

voltage and each phase voltage before and after incorporating the filter will be 

explained. The harmonic analysis at each output stage is also incorporated.   

The main conclusion drawn from the simulation and future work proposal will be 

discussed in chapter 5. 
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2. MODULATION STRATEGIES 

2.1 Modulation Techniques for Multilevel inverter 

The purpose of modulation is to control the duration of power switches to achieve the 

switching pattern by means of desired amplitude and frequency. The two common 

modulation techniques available to get the gating signal sequence are carrier based 

modulation and space vector modulation. This thesis is more focused on the later one 

while the principle of carrier based modulation is defined a bit for comparison among 

the two.  

2.1.1 Carrier based modulation  

In carrier based PWM, gating pulses are obtained by comparison between a high 

frequency triangular carrier signal with a low frequency modulated signal. It is further 

divided into two schemes i.e. two-level shifted carriers and phase shifting of level 

shifted carriers for three level inverters. There is a general rule of thumb for this 

particular modulation scheme, if the converter is designed for „n‟ number of voltage 

levels than „n-1‟ number of triangular carriers [3] required to get the gating signal by 

comparing the modulating signal with these carriers. 

2.1.1.1 Two-level shifted carriers 

In three level inverter there is two pair of complimentary switches so it need two high 

frequency carriers operating at the same frequency and amplitude but they are level 

shifted by means of amplitude. Fig.2, shows the three modulating signal compared with 

two triangular carriers. One carrier is running between 0V and 1V while the other 

carrier is running between 0V and -1V, both carriers have same amplitude and 

frequency.    

Switching logic 

For simplicity, the upper carrier is regarded as carrier 1 while the bottom carrier is 

regarded as carrier 2. R-phase is plotted in black, Y-phase in red while B-phase in blue. 

Considering the R-phase only, 

When R-phase> carrier 1 and R-phase> carrier 2 yields 0.5VDC pole voltage. 

When R-phase< carrier 1 and R-phase< carrier 2 yields -0.5VDC pole voltage. 
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When R-phase> carrier 1 and R-phase< carrier 2 yields 0VDC pole voltage. 

 

Same is applied for Y and B phase. 

 

Figure 2 Level shifted carriers 

2.1.1.2 Phase shifting of level shifted carriers 

In this modulation scheme two high frequency carriers of same amplitude and 

frequency but displaced by some angle „Ɵ‟. Fig.3. shows two carriers, the top carrier is 

remained on its position while the bottom carrier drawn with brown line is displaced by 

certain amount of angle. This leads to provide same fundamental component but it 

creates more THD. The switching scheme will remain same as voltage shifted carriers.      

 

Figure 3 Phase shifted carriers 
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Figure 4 Out of phase shifted carriers 

Fig.5 shows the switching sequence of two out of phase shifted carriers 

diagrammatically. Here, mR, mY and mB are the three modulating signal. 1, 0 and -1 

are the three conditions of power switches of NPC.  

1= Top two switches are ON in each phase causes 0.5VDC at the pole. 

0= Middle two switches are ON in each phase causes 0VDC at pole. 

-1= Bottom two switches are ON in each phase causes -0.5VDC at pole. 

    1

0

-1

mR

mY

mB

R
Y
B

+ ++ 0

- 0 00

- - - 0
 

Figure 5 Switching sequence of out of phase carrier 
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2.1.2 Space Vector Modulation 

Space vector modulation (SVM) is a modulation technique used to create PWM pulses. 

It is more extensive and computational technique among the industrial drive application 

[4]. It is more demanding due to easier digital implementation on DSP controller [9] 

and provides better conversion of DC into AC. It comprises of different switching 

vectors with different magnitude and angle. Each switching state defines the different 

output state which is obtained by combination of different stationary vector. SVM is 

based on the conversion of three phase quantities to 2-dimensional plane. A plane has 

always two-coordinate system. The name stationary reveals from the fact that it is 

remained in stationary position in space. The bunch of these vectors combine together 

to form space vector diagram. It indicates the position of each vector in space with 

respect to its magnitude and angle and the reference vector rotates with constant 

switching frequency within the hexagon. At each switching instant some mathematical 

calculations were performed to get the PWM pulses. When the reference vector rotate 

within the hexagon the inverter will operate in under modulation region or linear 

provide a smooth waveform at the output terminal. In this region the inverter transfer 

characteristics are naturally linear [2].  The over modulation region or non-linear region 

occur when the reference vector outside the premises of hexagon.      

The space vector diagram for a three level inverter is shown below, 

 

Figure 6 Space vector diagram for three-level inverter 
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Features of SVM 

 Less harmonic distortion causes a minimal switching loss. 

 Easy to implement on DSP controllers and microprocessor [8]. 

 Proper DC bus utilization [9]. 

 Required complex mathematical calculation. 

2.2 Conclusion 

In order to connect the output produce by the converter to the electric grid, it must be 

synchronized with the grid properties such as frequency, phase and amplitude. These 

properties must closely resemble to the sinusoidal wave. To get this kind of wave 

obtained from separate DC source, the inverter must be incorporated between the DC 

source and electric grid. The switches must be ON/OFF in a predefined manner which 

can be done by different modulation strategies. Here in this chapter different 

modulation strategies have been discussed. By comparative analysis between these two 

modulation strategies, SVPWM carries approximately 15% better utilization of voltages 

[22]. The overview of sine pulse width modulation (SPWM) has given just only for 

reference while the concept behind the SVPWM is further discussed in detail in the next 

two chapters.  
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3. ANALYSIS OF THREE LEVEL INVERTER 

3.1 Introduction 

The term ”space” comes from the fact that it is composed of two dimensional plane i.e. 

real plane ‟α‟ and imaginary plane ‟β‟. In order to avoid more complex calculation of 

three phase system, the three phase quantities are transformed to two phase quantities 

using Clark‟s transformation. 

3.2 Concept of Space Vector 

The concept of space vector emerged from the theory of three phase electrical machines 

i.e. induction machines and synchronous machines. All of these machines comes up 

with a three set of stator windings with each winding is separated from each other by an 

angle of 120
o
. When these windings are connected to three phase AC source produces a 

magnetic flux. This associated flux causes a production of magnetomotive force (mmf) 

when ampere-turns setup by magnetic flux which rotate in the air gap with certain 

angular frequency ‟ω‟. When this flux is linked with rotor bars causes a rotor to rotate 

with synchronous speed ‟NS‟. This revolving mmf is an example of space vector.  

Mathematically the pulsating magnetic field produced by a single phase winding, 

,1 Cos( )R R aeF Ki               (1) 

where, 

F= mmf produced in the air-gap 

iR = rotor current 

1 = fundamental component of revolving mmf 

θae= angle between the produced magnetic  field with respect to its axis. 

Since this current is sinusoidal in nature as it is taking from AC source. So,   

Cos( )R mi I t               (2) 

By substituting eq. (2) in eq. (1) we get, 
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,1 Cos( )Cos( )R m aeF KI t    

By applying product rule of cosine function gives, 

   ,1 Cos Cos
2

m
R ae ae

KI
F t t                  (3) 

From the above equation it can easily be deduced that the pulsating magnetic field is 

resolved into components i.e. one rotates clockwise while the other rotates in 

anticlockwise direction.  

Now extend this concept to a three phase winding. The three phase current can be 

written as, 

 CosR mi I t     Cos 120Y mi I t      Cos 120B mi I t  

 ,1 CosR R aeI Ki 
 

Similarly, 

 ,1 Cos 120Y Y aeI Ki         ,1 Cos 120B B aeI Ki    

which than produce a m.m.f as given below, 

,1 Cos( )R R aeF Ki                                 (4) 

,1 Cos( 120 )o

Y Y aeF Ki               (5) 

,1 Cos( 240 )o

B B aeF Ki               (6) 

By substituting the three phase current in above equation gives, 

,1 max Cos( )Cos( )R aeF F t               (7)    

,1 max Cos( 120 )Cos( 120 )o o

Y aeF F t               (8) 

,1 max Cos( 240 )Cos( 240 )o o

B aeF F t               (9) 

where, 

max * mF K I  

By using trigonometric identities the equation (7) to (9) gives, 
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   max
,1 Cos Cos

2
R ae ae

F
F t t                (10)                                                                       

   max
,1 Cos Cos 240

2

o

Y ae ae

F
F t t       

 
 

Also can be written as, 

   max
,1 Cos Cos 120

2

o

Y ae ae

F
F t t       

 
       (11)                                                            

   max
,1 Cos Cos 480

2

o

B ae ae

F
F t t       

 
 

Also can be written as, 

   max
,1 Cos Cos 240

2

o

B ae ae

F
F t t       

 
       (12) 

The average value can be computed as, 

   ,1ag R Y B R Y B
F F F F F F F

     
       

From the above equation the vector which revolves in anti-clockwise direction gets 

cancelled gives, 

 max
,1 3 Cos

2
ag ae

F
F t              (13) 

This is the vector which revolves in the air gap between stator and rotor with angular 

speed (ω). 

3.3 Multilevel Voltage Source Inverter 

3.3.1  Neutral-Point-Clamped Inverter 

There is a variety of multilevel converters available like cascaded H-Bridge inverter, 

flying capacitor inverter. Each converter has its own advantage depending upon the 

application but neutral-point-clamped inverter has gained more popularity and attention 

as far as this thesis is concerned. If the output voltage level and power level of PWM 

increased, the devices need to be connected in series gives a formation of NPC inverter 

[10]. It is also named as “Diode Clamped multilevel inverter” because the diodes are 

used to clamped the potential at DC mid-point „o‟ to the switching elements. A simple 

configuration of three levels NPC inverter is shown in Fig.7. In general, for n-level 
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converter requires (n-1) capacitors, 2(n-1) power switches per phase and 2(n-2) 

clamping diodes [19]. For a three level converter 4 power switches are required for a 

single phase. For a three phase system it comprises of 12 power switches i.e., IGBT‟s. 

The stiff DC link can be created by connecting the two capacitors in series. The mid-

point of the two capacitors acts as a DC neutral point „O‟ which is different from the 

load neutral point (N) connected in star connected load fashion. The diodes are known 

as clamped diodes which are used to clamp the power switches to DC neutral. Because 

of this kind of action the power switches is capable of carrying either +
𝑉𝑑𝑐

2
 , −

𝑉𝑑𝑐

2
 or 0. 

 

Figure 7 3-Level NPC inverter 

The higher number of voltage levels can be achieved by the addition of these switching 

devices. The higher the number of levels the more smooth the waveform is which 

eliminates the harmonics causing a higher output at the load.    

In order to get 0.5Vdc at the pole A the upper two switches (SA1 and SA2) need to be 

conduct. On the contrary -0.5Vdc can be achieved by conducting bottom two switches 

(SA3 and SA4). The middle two switches (SA2 and SA3) connect the pole A to the neutral 

point “o” producing 0Vdc. SA1 and SA3 are connected in complimentary fashion i.e. SA1 

and SA3  cannot conduct at the same the time. Similarly for SA2 and SA4. 

Table 1 3-Level NPC inverter output voltage levels and their switching states for 

phase A 

Voltage Levels (VAo) Status of ON switches 

+0.5VDC SA1 and SA2 

0VDC SA2 and SA3 

-0.5VDC SA3 and SA4 
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3.4 SWITCHING STATES 

In a three level inverter load neutral is different from DC mid-point „o‟. The phase 

voltage is measured from the pole of each leg to the DC mid-point „o‟ while the line 

voltage is measured as the difference between two poles. The switching states represent 

the operating point of the power switch. For a three level inverter the switching state of 

each switch is represented as either „+‟, „0‟, „-„.    

 

Figure 8 Neutral point and DC point representation 

[+] State 

During the operation of this state the upper two switches of each leg of the inverter 

are ON which makes the two clamping diodes are reverse biased for a certain 

duration of time causes positive DC bus voltage appears across the output of each 

pole while the two bottom switches are at OFF position.In this state the output is 
𝑉𝑑𝑐

2
. 

S1

S2

S3

S4

  C1

  C2

 

Figure 9 Switching state at [+] 
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[0] State 

During the operation of this state the middle switches of each leg of the inverter is 

turned ON causes the clamping diodes forward biased makes a direct connection 

between the output to the DC midpoint „o‟. In this state the direction of current is 

dependent on the load. In this state the output is 0 Vdc. 

DC

S1

S2

S3

S4

C1

C2

 

Figure 10 Switching state at [0] 

[-] State 

During the operation of this state the bottom two switches of each leg of the inverter are 

ON which makes the two clamping diodes are reverse biased for a certain duration of 

time causes negative DC bus voltage appears across the output of each pole while the 

two top switches are at OFF position.In this state the output is -
𝑉𝑑𝑐

2
. 

DC

C1

C2

S1

S2

S3

S4

 

Figure 11 Switching state at [-] 



15 

Table 2 Status of power switches during switching states [16] 

State S1 S2 S3 S4 Pole Voltage 

[+] ON ON OFF OFF 𝑉𝐷𝐶

2
 

[0] OFF ON ON OFF 0𝑉𝐷𝐶  

[-] OFF OFF ON ON 
−

𝑉𝐷𝐶

2
 

 

3.5 SPACE VECTOR PWM ALGORITHM 

This section describes the fundamental concept of space vector modulation which 

involves the mathematical calculation of 𝑉𝛼  and 𝑉𝛽  at different switching state, dwell 

time calculation of stationary vectors, criteria for the selection of region and sector and 

sequence of 7-segments,  9-segments and 13-segments switching vector scheme. 

3.5.1 SPACE VECTOR TRANSFORMATION 

The mmf produced in a three phase winding can also be produced by a two phase 

fictitious winding as well but these two winding should be separated in space by 90
o
 

apart.  

 

Figure 12 Pictorial view of Clark’s transformation [5] 

Resolve the three phase quantities „R‟,‟Y‟ and „B‟ into equivalent two phase 

components as follows, 

Cos120 Cos 240

Cos30 Cos150

o o

R Y B

o o

Y B

Ni Ni Ni Ni

Ni Ni Ni





  

 
 

There is no component of R-phase in the direction of „β‟ axis. 
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By cancelling the common terms in above two equations gives, 

Cos120 Cos 240o o

R Y Bi i i i      →  
2 2

Y B
R

i i
i i     

 
1

2
R Y Bi i i i                          (14) 

By applying Kirchhoff current law, 

0R Y Bi i i    

 
1

2
R Ri i i     →  

3

2
Ri i                 (15) 

   Cos 30 Cos 150o o

Y Bi i i    →     
3

2
Y Bi i i              (16) 

The eq. (15) and eq. (16) can also written in matrix form, 

 
𝑖𝛼
𝑖𝛽

 =  

3

2
0 0

0
 3

2

− 3

2

  
𝑖𝑅
𝑖𝑌
𝑖𝐵

  

For a 3-φ balanced star connected load, 

 
𝑉𝛼
𝑉𝛽

 =  

3

2
0 0

0
 3

2

− 3

2

  
𝑉𝑅

𝑉𝑌

𝑉𝐵

  

The magnitude of the reference vector can be calculated by, 

𝑉𝑟𝑒𝑓 = 𝑉𝛼
2 + 𝑉𝛽

2 

The direction of the reference vector can be computed as, 

Ɵ= 𝑡𝑎𝑛−1  
𝑉𝛽

𝑉𝛼
  

3.5.2 Calculation of position of vectors with respect to its 

magnitude and direction on space vector plane 

Since VRO(avg), VYO(avg), VBO(avg) are available in sinusoidal quantities so they can easily  

represent in phasor form. The 3-phase voltages and their corresponding line-line 

voltages are given in Fig.13. 
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Vro

Vbo

Vyo

Vry

Vyb

Vbr

30

120

 

Figure 13 Phasor-representation of phase and line-line voltages 

For instance consider the switching state [+--] which means the two top switches of R-

leg are turned ON and the bottom two switches of Y-leg & B-leg are turned ON.  

For 3-φ star connected balance load, 

3

RY BR
RN

V V
V


  

where, 

RY RO YOV V V   

2 2

DC DC
RY

V V
V

 
   

 
 →  RY DCV V  

BR BO ROV V V   

2 2

DC DC
BR

V V
V

  
   

 
   → BR DCV V      

3

DC DC
RN

V V
V


     → 

2

3

DC
RN

V
V   

3

2
RNV V   which gives us, 
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DCV V              (17) 

 
3

2
YN BNV V V    

3

YB RY
YN

V V
V


  

1

3
YN DCV V


  and 

1

3
BN DCV V


  

0V               (18) 

The magnitude of stationary vector become,  

𝑉𝑟𝑒𝑓 = 𝑉𝐷𝐶
2 + 0           →      𝑉𝑟𝑒𝑓 = 𝑉𝐷𝐶  

The direction of stationary vector becomes, 

Ɵ= 𝑡𝑎𝑛−1  
0

𝑉𝐷𝐶
   → Ɵ = 0

o
 

which constitutes a vectorV5 in space vector plane. The corresponding 27 vectors are 

formed in the same way. 

 6 vectors out of 27 vectors having same magnitude of 𝑉𝐷𝐶  with 60
o
 degrees 

apart. These vectors are V5 [+--], V9 [++-], V11 [-+-], V17 [-++], V21 [--+] andV25 

[+-+].  

 

 12 vectors out of 27 vectors are having a same magnitude of 
𝑉𝐷𝐶

2
 and each two 

vectors are placed at 60
o
 degrees apart. These vectors include V3 [+00] and V4 

[0--], V7 [++0] and V8 [00-], V12 [010] and V13 [-0-], V14 [0++] and V15 [-00], 

V19 [00+] and V20 [- -0], V23 [+0+] and V24 [0-0]. 

 

 

 6 vectors out of 27 vectors having same magnitude of 
 3

2
 VDC with 60

o
 degrees 

apart but first vector lies at 30
o
. These vectors are V6 [+0-], V10 [0+-], V16 [-+0], 

V18 [-0+], V22 [0-+] andV26 [+-0]. 

 

 The remaining 3 vectors are known as zero vectors having amplitude of 0 VDC 

and an angle 0
0
.  
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3.5.3 Classification of Stationary Vectors 

The three level SVPWM composed of 27 stationary vectors (V1-V27). They are further 

classified into four groups on the basis of their magnitude. The zero vectors corresponds 

to those vectors whose magnitude is 0VDC. These small vectors having an amplitude of 

1

2
VDC. For medium vectors the amplitude is 

 3

2
VDC. The last group of stationary vectors 

is known as large vectors whose amplitude is VDC. These group combine together to 

form space vectors as shown in fig.14. Table 3 represents the classification of vectors 

with its amplitude.  

 

Figure 14 Space vector of three level NPC 

Table 3 Switching schemes of stationary vectors 

Vector Switching State Vector 

Classification 

Magnitude 

𝑉1 000 Zero Vector 0 𝑉𝐷𝐶  

𝑉2 --- Zero Vector 0 𝑉𝐷𝐶  
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𝑉3 +00 Small Vector 1

2
 𝑉𝐷𝐶  

𝑉4 0- Small Vector 1

2
 𝑉𝐷𝐶  

𝑉5 +-- Large Vector 𝑉𝐷𝐶  

𝑉6 +0- Medium Vector  3

2
 𝑉𝐷𝐶  

𝑉7 ++0 Small Vector 1

2
 𝑉𝐷𝐶  

𝑉8 00- Small Vector 1

2
 𝑉𝐷𝐶  

𝑉9 ++- Large Vector 𝑉𝐷𝐶  

𝑉10 0+- Medium Vector  3

2
 𝑉𝐷𝐶  

𝑉11 -+- Large Vector 𝑉𝐷𝐶  

𝑉12 0+0 Small Vector 1

2
 𝑉𝐷𝐶  

𝑉13 -0- Small Vector 1

2
 𝑉𝐷𝐶  

𝑉14 0++ Small Vector 1

2
 𝑉𝐷𝐶  

𝑉15 -00 Small Vector 1

2
 𝑉𝐷𝐶  

𝑉16 -+0 Medium Vector  3

2
 𝑉𝐷𝐶  

𝑉17 -++ Large Vector 𝑉𝐷𝐶  

𝑉18 -0+ Medium Vector  3

2
 𝑉𝐷𝐶  

𝑉19 00+ Small Vector 1

2
 𝑉𝐷𝐶  

𝑉20 --0 Small Vector 1

2
 𝑉𝐷𝐶  
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𝑉21 --+ Large Vector 𝑉𝐷𝐶  

𝑉22 0-+ Medium Vector  3

2
 𝑉𝐷𝐶  

𝑉23 +0+ Small Vector 1

2
 𝑉𝐷𝐶  

𝑉24 0-0 Small Vector 1

2
 𝑉𝐷𝐶  

𝑉25 +-+ Large Vector 𝑉𝐷𝐶  

𝑉26 +-0 Medium Vector  3

2
 𝑉𝐷𝐶  

𝑉27 +++ Zero Vector 0 𝑉𝐷𝐶  

 

Furthermore, these groups of vector fall in two groups of state i.e. active state and null 

state.  

The null state corresponds to the condition when there is no power flow take place from 

DC side to AC side. In this state (IDC=0A). It is also known as zero state and 

corresponding vectors are known as zero vectors. The zero vector group lie in this state. 

Whereas, active state is a state at which there is a transfer of power takes place between 

DC side and AC side and corresponding vectors are known as active vectors. Large 

vectors, medium vectors and small vectors are a part of this state.     

3.5.4 Sectors selection 

The space vector of three level inverter is divided into 6 sectors. Each sector comprise 

of 60
o
 which makes the reference vector (𝑉𝑟𝑒𝑓 ) to rotate around 360

o
. Each sector is 

further divided into 4 regions. So, the space vector plane is split into 6*4=24 regions. 

The sector is classified on the basis of angle.  

 0
o
 ≤ Ɵ < 60

o
 reference vector (𝑉𝑟𝑒𝑓 ) lies in Sector 1. 

 60
o
 ≤ Ɵ < 120

o
 reference vector (𝑉𝑟𝑒𝑓 ) lies in Sector 2. 

 120
o
 ≤ Ɵ < 180

o
 reference vector (𝑉𝑟𝑒𝑓 ) lies in Sector 3. 

 180
o
 ≤ Ɵ < 240

o
 reference vector (𝑉𝑟𝑒𝑓 ) lies in Sector 4. 

 240
o
 ≤ Ɵ < 300

o
 reference vector (𝑉𝑟𝑒𝑓 ) lies in Sector 5. 

 300
o
 ≤ Ɵ < 360

o
 reference vector (𝑉𝑟𝑒𝑓 ) lies in Sector 6.  
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1 2
3

4

 X2

X1

θ

Reference 
vector

 

Figure 15 Sector I and all its four region 

3.5.5 Methodology for region selection 

The region selection is done by splitting the reference vector (Vref) into its coordinates 

i.e. α and β.   

 

Figure 16 View of sector I, region I 

Calculation of X2 

Sin
3

b

a

   
   

   
 → 

Sin
3

b
a 

 
 
 

 

From fig.16, Sinnb X   and 2a X  
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2

Sin

Sin
3

nX
X




 
 
 

      → 2

2
Sin

3
nX X   

Calculation of X1: 

1d X c   

or 1CosnX X c    

or 1 CosnX X c              (19) 

Cos
3

c

a

 
 

 
  → 1

2
c a

 
  

 
 

From the above fig. a= X2 

2 1
Sin

23
nc X 

 
  

 
 → Sin

3

nX
c


                (20) 

After putting eq. (20) in eq. (19) 

1

Sin
Cos

3

n
n

X
X X


   → 1

Sin
(Cos )

3
nX X


   

 If X1<0.5VDC, X2<0.5VDC and (X1+X2) <0.5VDC the reference vector lies in 

region I. 

 If X1>0.5VDC the reference vector lies in region II. 

 If X1<0.5VDC, X2<0.5VDC and (X1+X2) >0.5VDC the reference vector lies in 

region III. 

 If X2>0.5VDC the reference vector lies in region IV. 

3.5.6 Dwell time calculation 

This section describes the concept of dwell time calculation of the three nearest vector 

in any region by applying the simple concept of volt-second balance which states that 

“the sum of the product of voltages of space vector and duration for which these 

voltages applied must equal to the product of reference voltage (Vref) and sampling 

time (Ts)”. It simply means for how much time the active vectors gets conduct. The 

sampling time for each switching state is „Ts‟ second and each region is split into „Ta‟, 

„Tb‟ and „Tc‟ second which is the time taken by stationary vectors to remain conduct 

for that duration.    
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Figure 17 Active vectors and their corresponding time in sector I, region I 

Apply volt-second balance in region I gives, 

2 1 3* * * *a b c ref sV T V T V T V T             (21) 

where, 

0

1 0 j

DCV V e                 0

2

1

3

j

DCV V e                                   3
3

1

3

j

DCV V e


  

The above equation becomes, 

0 0 3
1 1

* 0 * * *
3 3

j
j j j

DC a DC b DC c ref sV e T V e T V e T V e T


    

   
1 1

Cos0 Sin 0 Cos Sin Cos Sin
3 3 3 3

DC a DC c refV j T V j T V j
 

 
 

     
 

sT  

Resolve into real and imaginary components, 

1 1
0 Cos

3 6

ref

a b c s

DC

V
T T T T

V
                                                (22) 

3
0 0 Sin

6

ref

a b c s

DC

V
T T T T

V
                    (23) 
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a b c sT T T T                                                                   (24) 

From eq. (23), 

3 6
Sin

3 3

ref

c s

DC

V
T T

V


 
  

 
  → 2 Sinc a sT m T  

where, 

ma= modulation index =  

By substituting value of Tc in eq. (22) gives, 

3
3 Cos Sin

3

ref ref

a s s

DC DC

V V
T T T

V V
    

2 Sin
3

a sT T m



  

   
  

 

By substituting values of Ta and Tc in eq. (24) gives, 

1 2 Sin
3

b sT T m



  

    
  

 

Here are the derived values of dwell times of sector I and region I for Ɵ varies from 0 

to
𝜋

3
. 

The dwell time calculation for the remaining sectors and their corresponding region is 

done in the same way.  

Table 4 Dwell time for sector I 

Region Ta Tb Tc 

1 Ts 2𝑚 sin  
𝜋

3
−  Ɵ   Ts 1 − 2𝑚 sin  

𝜋

3
+ Ɵ   2msin ƟTs 

2 Ts 2 − 2𝑚 sin  
𝜋

3
+

Ɵ   

2msin ƟTs Ts 2𝑚 sin  
𝜋

3
−  Ɵ −

1  

3  1 −  2m sin Ɵ Ts Ts 2𝑚 sin  
𝜋

3
+  Ɵ −

 1  

Ts 1 − 2𝑚 sin  
𝜋

3
− Ɵ   
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4 2m sin Ɵ −  1 Ts Ts 2𝑚 sin  
𝜋

3
−  Ɵ   Ts 2 − 2𝑚 sin  

𝜋

3
+ Ɵ   

The dwell time calculation for sector II to sector VI is also achieved by shifting these 

sectors to sector I. Since each sector is last long for 
𝜋

3
 radian and resulted angle is 

achieved by subtracting the multiple of  
𝜋

3
 from calculated angular displacement „Ɵ‟ [6]. 

3.6 DC Neutral Point Potential Control 

The whole space vector diagram is split into 4 different groups of vectors, they are 

classified as Large vectors (+--, ++-, -+-, -++, --+, +-+), Zero vectors (+++, ---, 000), 

Small vectors (+00, 0--, 00-, ++0, -0-, 0+0, -00, 0++, --0, 00+, +0+, 0-0) and Medium 

vectors (+0-, 0+-, -+0, -0+, 0-+,   +-0). In large vectors the three phase leg are either 

connected to positive rail or negative rail so they have no impact on DC neutral point. 

Zero vectors short circuits the load to either positive rail, negative rail or midpoint of 

the capacitors [13]. The neutral point potential is also independent of this group of 

vector. In medium vector, one of the three phase is connected to neutral point and the 

remaining two phase legs are connected to +ve and –ve rail respectively. So in this case 

the neutral point potential deviates from zero. In small vector group, one or two phase is 

always connected to the DC midpoint while the remaining phase leg is connected to 

either +ve rail or –ve rail. The direction of neutral current depends on the nature of load 

current. Either the load current will inject into or extract from the neutral point. It also 

has an impact on the variation of DC potential. The small vector is further classified 

into positive small vector or negative small vector. The positive small vector is obtained 

when load current charges the upper capacitor and discharges the lower capacitor. The 

vice versa is responsible for the creation of negative small vector. These two vectors are 

drawn in fig.18. 

a)                                                    b)  

 

Figure 18 Small vector effects on DC neutral point a) negative small vector (0--)  

b) positive small vector (+00) 
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 From the basic circuit theory, 

1 2o C Ci i i                                    (25) 

where, 

1

1 1

C

C

du
i C

dt
    and 2

2 2

C

C

du
i C

dt
   

1 2

DC
C o

u
u u   and 

2 2

DC
C o

u
u u

 
   

 
 

The two capacitors should be match to each other gives, 

1 2C C C   

2 2
DC DC

o o

o

u u
d u d u

i c c
dt dt

   
    

      

2 2
DC DC

o o

o

u u
d u u

i c
dt

 
   

   →  
 2 o

o

d u
i c

dt


  

2

o odu i

dt C
                         (26) 

Form the above equation it is deduce that the neutral current (𝑖𝑜) is dependent on neutral 

point potential (𝑢𝑜 ). 

The small vector has a redundant vector while remaining vector doesn‟t. These two 

redundant vectors have same amplitude but the direction of current flow is opposite 

causing a cancelling effect at the neutral point makes the neutral point potential stable. 

These two redundant vectors are used to control the neutral point potential. The duty 

cycle of positive and negative small vectors are combined together to get the total duty 

cycle of small vector [21].    

𝑑𝑠= 𝑑𝑠,𝑝 + 𝑑𝑠,𝑛  

Where, 

𝑑𝑠= duty cycle of small vector 

𝑑𝑠,𝑝= duty cycle of positive small vector 
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𝑑𝑠,𝑛= duty cycle of negative small vector 

By proper adjusting the duty cycle of these two redundant vectors the neutral point will 

be stable. Table 5 shows the state of neutral current when medium and small vectors are 

applied. 

Table 5 Status of neutral current 

Small 

Vector 

Neutral 

current 

Small 

Vector 

Neutral 

current 

Medium 

Vector 

Neutral 

current 

+00 −𝑖𝑎  -00 −𝑖𝑎  +0- 𝑖𝑏  

0-- 𝑖𝑎  0++ 𝑖𝑎  0+- 𝑖𝑎  

00- −𝑖𝑐  --0 𝑖𝑐  -+0 𝑖𝑐  

++0 𝑖𝑐  00+ −𝑖𝑐  -0+ 𝑖𝑏  

-0- 𝑖𝑏  +0+ 𝑖𝑏  0-+ 𝑖𝑎  

0+0 −𝑖𝑏  0-0 −𝑖𝑏  +-0 𝑖𝑐  

 

Consider the region I of sector I for one complete cycle, 𝑉4 (0--) and 𝑉8(00-) must be 

switched during half cycle and for the next half cycle the 𝑉3(+00) and 𝑉7(++0). 

𝑉4injects𝑖𝑎  current and 𝑉3 extract −𝑖𝑎  current. Similarly 𝑉7 injects 𝑖𝑐  current and 𝑉8 

extract −𝑖𝑐  current. 

𝑖𝑁𝑃1 =  𝑑4𝑉4 + 𝑑8𝑉8     → 𝑖𝑁𝑃1 =  𝑑4 𝑖𝑎 + 𝑑8 −𝑖𝑐  

𝑖𝑁𝑃2 =  𝑑3𝑉3 + 𝑑7𝑉7    → 𝑖𝑁𝑃2 =  𝑑3 −𝑖𝑎 + 𝑑7 𝑖𝑐  

𝑖𝑜= 𝑖𝑁𝑃1 + 𝑖𝑁𝑃2 = 0 

where d3, d4, d7 and d8 are the duty cycles of the corresponding vector. 

While keep this into mind, the available switching schemes are discussed in next 

section.   

3.6.1 Implementation of different switching scheme 

This section describes the need of different switching schemes i.e. 7-segment switching 

scheme, 9-segment switching scheme and 13-segment switching scheme which 
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incorporates the switching of one phase at a time to mitigate the problem of harmonics. 

The waveform of these switching segments will be drawn in support of this statement.  

Table 6 Switching pattern of sector I 

 

From table 6, it is concluded that only one phase is switched during each transition. For 

e.g. in region II the transition from sequence 1 to sequence 2, R-φ is switched from 0 → 

+ while the Y-φ and B-φ remains on their previous value i.e. „-„.   

Region Switching Vectors 

13-segments switching pattern 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

I V2 V4 V8 V1 V3 V7 V27 V7 V3 V1 V8 V4 V2 

--- 0-- 00- 000 +00 ++0 +++ ++0 +00 000 00- 0-- --- 

 

7-segment switching pattern 

II 1 2 3 4 5 6 7 

V4 V5 V6 V3 V6 V5 V4 

0-- +-- +0- +00 +0- +-- 0-- 

9-segment switching pattern 

III 1 2 3 4 5 6 7 8 9 

V4 V8 V6 V3 V7 V3 V6 V8 V4 

0-- 00- +0- +00 ++0 +00 +0- 00- 0-- 

7-segments switching pattern 

IV 1 2 3 4 5 6 7 

V8 V6 V9 V7 V6 V9 V8 

00- +0- ++- ++0 ++- +0- 00- 
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Figure 19 13-segment switching pattern for sector I, region I 

 

 

Figure 20 7-segment switching pattern for sector I, region II 
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Figure 21 9-segment switching pattern for sector I, region III 

 

Figure 22 7-segments switching for sector I, region IV 

Switching schemes for the remaining sectors are given in Appendix-IX.  

3.7 Duty Cycle Calculation 

In this section the duty cycle of 3-phases will be calculated for all 4 region of sector I 

which means for how much time all these 3-phases will remain ON from the entire Ts 

second. From the above figures there are only three different DC levels available i.e. 
1

2
𝑉𝑑𝑐, 0Vdc, -

1

2
𝑉𝑑𝑐, the ratio of the sum of the product of these levels with their 

corresponding time duration to the total sampling time (Ts) gives the duty ratio. 
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13-segment switching scheme (Sector I and Region I): 

For the R-φ 

R= 
1

2
𝑉𝑑𝑐  

𝑇𝑎

4
+  

𝑇𝑐

4
+

𝑇𝑏

4
+

𝑇𝑐

4
+

𝑇𝑎

4
 −

1

2
𝑉𝑑𝑐  

𝑇𝑏

8
+  

𝑇𝑏

8
  

R= 
1

2
𝑉𝑑𝑐  

2𝑇𝑎+2𝑇𝑐+2𝑇𝑏+2𝑇𝑐+2𝑇𝑎−𝑇𝑏−𝑇𝑏

8
 → 

1

2
𝑉𝑑𝑐  

1

2
𝑇𝑎 +

1

2
𝑇𝑐  

DR= 
 

1

2
𝑇𝑎+

1

2
𝑇𝑐 

𝑇𝑠
 

For the Y-φ 

Y= 
1

2
𝑉𝑑𝑐  

𝑇𝑐

4
+

𝑇𝑏

4
+

𝑇𝑐

4
 −

1

2
𝑉𝑑𝑐  

𝑇𝑏

8
+ 

𝑇𝑎

4
+

𝑇𝑎

4
+

𝑇𝑏

8
  

Y=
1

2
𝑉𝑑𝑐  

2𝑇𝑐+2𝑇𝑏+2𝑇𝑐−𝑇𝑏−2𝑇𝑎−2𝑇𝑎−𝑇𝑏

8
  

DY= 
 −

1

2
𝑇𝑎+

1

2
𝑇𝑐 

𝑇𝑠
 

For the B-φ 

B= 
1

2
𝑉𝑑𝑐  

𝑇𝑏

4
 −

1

2
𝑉𝑑𝑐  

𝑇𝑏

8
+ 

𝑇𝑎

4
+

𝑇𝑐

4
+

𝑇𝑐

4
+

𝑇𝑎

4
+

𝑇𝑏

8
  

B=
1

2
𝑉𝑑𝑐  

2𝑇𝑏−𝑇𝑏−2𝑇𝑎−2𝑇𝑐−2𝑇𝑐−2𝑇𝑎−𝑇𝑏

8
  

DB= 
 −

1

2
𝑇𝑎−

1

2
𝑇𝑐 

𝑇𝑠
 

7-segment switching scheme (Sector I and region II): 

For R- φ 

R= 
1

2
𝑉𝑑𝑐  

𝑇𝑐

2
+  

𝑇𝑏

2
+

𝑇𝑎

2
+

𝑇𝑏

2
+

𝑇𝑐

2
  

R= 
1

2
𝑉𝑑𝑐  

𝑇𝑎+2𝑇𝑏+2𝑇𝑐

2
 → 

1

2
𝑉𝑑𝑐  

1

2
𝑇𝑎 + 𝑇𝑏 + 𝑇𝑐  

DR= 
 

1

2
𝑇𝑎+𝑇𝑏+𝑇𝑐 

𝑇𝑠
 

For Y- φ 
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Y= -
1

2
𝑉𝑑𝑐  

𝑇𝑎

4
+

𝑇𝑐

2
+

𝑇𝑐

2
+

𝑇𝑎

4
  

Y= -
1

2
𝑉𝑑𝑐  

𝑇𝑎+2𝑇𝑐+2𝑇𝑐+𝑇𝑎

4
 → 

1

2
𝑉𝑑𝑐  

𝑇𝑎

2
+ 𝑇𝑐  

DY= 
 

1

2
𝑇𝑎+𝑇𝑐 

𝑇𝑠
 

For the B-φ 

B= −
1

2
𝑉𝑑𝑐  

𝑇𝑎

4
+  

𝑇𝑐

2
+

𝑇𝑏

2
+

𝑇𝑏

2
+

𝑇𝑐

2
+

𝑇𝑎

4
  

B=-
1

2
𝑉𝑑𝑐  

𝑇𝑎+2𝑇𝑐+2𝑇𝑏+2𝑇𝑏+2𝑇𝑐+𝑇𝑎

4
 →-

1

2
𝑉𝑑𝑐  

2𝑇𝑎+4𝑇𝑏+4𝑇𝑐

4
  

DB= 
 

1

2
𝑇𝑎+𝑇𝑏+𝑇𝑐 

𝑇𝑠
 

9-segment switching scheme (Sector I and region III) 

For R- φ 

R= 
1

2
𝑉𝑑𝑐  

𝑇𝑏

2
+ 

𝑇𝑎

3
+

𝑇𝑐

3
+

𝑇𝑎

3
+

𝑇𝑏

2
  

R= 
1

2
𝑉𝑑𝑐  

3𝑇𝑏+2𝑇𝑎+2𝑇𝑐+2𝑇𝑎+3𝑇𝑏

6
 → 

1

2
𝑉𝑑𝑐  

2

3
𝑇𝑎 + 𝑇𝑏 +

1

3
𝑇𝑐  

DR= 
 

2

3
𝑇𝑎+𝑇𝑏+

1

3
𝑇𝑐 

𝑇𝑠
 

For the Y-φ 

Y= 
1

2
𝑉𝑑𝑐  

𝑇𝑐

3
 −

1

2
𝑉𝑑𝑐  

𝑇𝑎

6
+

𝑇𝑎

6
  

Y=
1

2
𝑉𝑑𝑐  

2𝑇𝑐−𝑇𝑎−𝑇𝑎

6
  

DY= 
 −

1

3
𝑇𝑎+

1

3
𝑇𝑐 

𝑇𝑠
 

For the B-φ 

B= −
1

2
𝑉𝑑𝑐  

𝑇𝑎

6
+  

𝑇𝑐

3
+

𝑇𝑏

2
+

𝑇𝑏

2
+

𝑇𝑐

3
+

𝑇𝑎

6
  

B= -
1

2
𝑉𝑑𝑐  

2𝑇𝑎+4𝑇𝑐+6𝑇𝑏

6
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DB= 
 

1

3
𝑇𝑎+𝑇𝑏+

2

3
𝑇𝑐 

𝑇𝑠
 

7-segment switching scheme (Sector I and region IV) 

For R- φ 

R= 
1

2
𝑉𝑑𝑐  

𝑇𝑏

2
+ 

𝑇𝑎

2
+

𝑇𝑐

2
+

𝑇𝑎

2
+

𝑇𝑏

2
  

R= 
1

2
𝑉𝑑𝑐  

2𝑇𝑎+2𝑇𝑏+𝑇𝑐

2
 → 

1

2
𝑉𝑑𝑐  𝑇𝑎 + 𝑇𝑏 +

𝑇𝑐

2
  

DR= 
 𝑇𝑎+𝑇𝑏+

1

2
𝑇𝑐 

𝑇𝑠
 

For Y- φ 

Y= 
1

2
𝑉𝑑𝑐  

𝑇𝑎

2
+

𝑇𝑐

2
+

𝑇𝑎

2
  

Y= 
1

2
𝑉𝑑𝑐  

2𝑇𝑎+𝑇𝑐

2
 → 

1

2
𝑉𝑑𝑐  

𝑇𝑐

2
+ 𝑇𝑎  

DY= 
 

1

2
𝑇𝑐+𝑇𝑎 

𝑇𝑠
 

For the B-φ 

B= −
1

2
𝑉𝑑𝑐  

𝑇𝑐

4
+  

𝑇𝑏

2
+

𝑇𝑎

2
+

𝑇𝑎

2
+

𝑇𝑏

2
+

𝑇𝑐

4
  

B= -
1

2
𝑉𝑑𝑐  

4𝑇𝑎+4𝑇𝑏+2𝑇𝑐

4
  

DB= 
 𝑇𝑎+𝑇𝑏+

1

2
𝑇𝑐 

𝑇𝑠
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Figure 23 a) Gating signal pattern of sector I, region I [18] 

 

Figure 23 b) Gating signal pattern of sector I, region II [18] 
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Figure 23 c) Gating signal pattern of sector I, region III [18] 

 

 

Figure 23 d) Gating signal pattern of sector I, region IV [18] 

3.8 DC Link Current 

In order to write the equation of DC side current, the three pole voltages i.e. VRo, VYo 

and VBo must be written in terms of their switching functions. The switching function 

can be either, 

Sx= 1(ON) or 0(OFF), x= phase leg  
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DC Icap

IdcIin

iR iY iB

3-Level
NPC

 

Figure 24 DC link current and each phase leg current 

 0.5RO R DCV S V       0.5YO Y DCV S V            0.5BO B DCV S V    

For 3-φ star connected balanced load, 

3

RY BR
RN

V V
V


    

3

YB RY
YN

V V
V


   

3

BR YB
BN

V V
V


  

For RL load, 

R
RN R

di
V Ri L

dt
   → RN RR

V Ridi

dt L


  

After integrating on both sides gives the R-phase current, 

2

0

RN R
R

V Ri
i

L




    

Similarly for Y-φ, 

Y
YN Y

di
V Ri L

dt
   → YN YY

V Ridi

dt L


  

After integrating on both sides gives the Y-phase current, 

2

0

YN Y
Y

V Ri
i

L
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For B-φ, 

B
BN B

di
V Ri L

dt
   → BN BB

V Ridi

dt L


  

After integrating on both sides gives the B-phase current, 

2

0

BN B
B

V Ri
i

L




   

In general the DC link current is represented as, 

DC R R Y Y B Bi S i S i S i    

3.8.1 Average DC Link Current over a Sub-cycle: 

0 1 2 7

iR,1

iY,1

iB,1

0

 

Idc iR

-iB

+-- ++---- +++

 

Figure 25 DC link current over a sub-cycle 

 
0 0

1 1s sT T

DC R R Y Y B B

s s

i t S i S i S i t
T T

       

The left hand side of the above equation represents the average DC link current. 
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, ,1 ,1 ,1 ,1 ,1 ,1

0 0 0

1 1 1s s sT T T

DC avg R R Y Y B B

s s s

i i S i S i S
T T T

      

Where iR,1= Fundamental component of R-phase current 

 IY,1= Fundamental component of Y-phase current 

 IB,1= Fundamental component of B-phase current 

The terms except iR,1, iY,1, iB,1 on the right hand side of the above equation forms a duty 

ratio of each phase leg. 

, ,1 ,1 ,1DC avg R R Y Y B Bi D i D i D i    

The duty ratio of R-φ, Y-φ and B-φ can be written as, 

,ON R

R

s

T
D

T


     

,ON Y

Y

s

T
D

T


     

,ON B

B

s

T
D

T


  

The input DC current (Iin) is the average of DC link current (IDC) over a cycle. 

 
2

,

0

1

2
in DC avgI i t




     

3.9 Conclusion 

In this chapter the theory, concept and background of three-level SVPWM has been 

discussed in detail. In support of this statement power stage of NPC has been 

developed. To develop space vector diagram mathematical calculation has been done 

along with the different switching schemes to reduce total harmonic distortion. The 

derivation of pole voltages with supporting waveform has been done based on the 

selection of particular sector and region. Vector switching times is also calculated along 

with the duty ratio of power switches. 
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3.10 FLOW CHART OF THE ALGORITHM 

 

  
     

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

   

 

  

      

      

      

      

      

Figure 26 SVPWM algorithm representations in flow chart 

Start 

Calculate α and β at different 

switching state 
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direction of ref. vector 

Identify sector and region 

Identify three nearest vectors 

Dwell time calculation of these 

vectors 

Identify and apply switching 

pattern 

End 
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4. SIMULATIONS & RESULTS 

4.1 Introduction 

A simulation is a tool through which any physical process can be implemented to get 

the behavior of that system. From the results obtained from simulations are very much 

same as in physical environment. As far as this thesis is concerned, the simulation tool 

box used for the implementation of three-level SVPWM algorithm is 

MATLAB/Simulink. MATLAB environment provides the built-in library features. The 

Simulink model contains different blocks to implement this algorithm included some 

sub blocks and MATLAB Function blocks where the C-language code is generated. The 

power circuit for three level SVPWM is generated with 12-IGBT‟s and producing an 

inverter output with fundamental frequency of 50 Hz by incorporated 3-φ star 

connected balance load. 

The “Subsystem block” employs the Clark‟s transformation to convert three phase 

quantities to stationary reference frame which is based on eq. 2.15 and 2.16. The 

“Subsystem1 block” is the representation of sector selection which is fed from the 

results obtained from Clark‟s transformation. The “Matlab Function1 block” employs 

the criteria for region selection based on the values of X1, X2 and Xn discuss in section 

3.4.5. The “Matlab Function block” performs a very important task, the dwell time (Ta, 

Tb and Tc) calculation and vector switching states are performed simultaneously. This 

block cannot run until or unless the earlier three blocks produce its output. In other 

words, the outputs of these three blocks are cascaded to “Matlab Function block”. The 

gating signals are generated as an output from this block which further drives the power 

stage of NPC inverter. The scopes are connected in such a way that the line to neutral 

and line to line voltage waveform are drawn. 

4.2 Output from Clark’s transformation 

The magnitude and angle of reference vector is shown in fig.27 and 28. The sub-blocks 

of the main block is present in Appendix-I.  
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Figure 27 Magnitude of reference vector   

 

Figure 28 Angular position of reference vector 

4.3 Sector Selector  

The sector selection block is driven with an angle. Some mathematical function and 

logical functions have been incorporated to identify the sector. From the fig.29 the 

reference vector passes through each sector with a fix step.   
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Figure 29 Output of sector determination block 

The brief description of “Sector selection” block is given in Appendix-II 

4.4 Region Selector 

The entire space vector diagram is divided into 6-sectors, each sector has a same 

methodolgy for switching stationary vectors. After each 60
o
 degrees the new sector 

arrived and same strategy is applied over it which makes the system more complex. The 

alternate way is to bring back each sector to sector I or in other words each sector is 

multiple of 60
o
. The resulting angle is obtained by subtracting the calculated angle from 

multiple of 60 as given below, 

Alpha=angle–(sector-1)60                                                                 (27) 

The contents of region selection is given in Appendix-III.         

 

Figure 30 Output of region selection block 
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The “dwell time calculations” block performs the calculation for the dwell time of each 

region of sector I (Tax, Tbx, Tcx) where x= region number. The input necessary to drive 

this block requires sector number, region number, modulation index, magnitude and 

angle of reference vector. The outputs are 12 dwell time signals. The sub-block is the 

implementation of equations given in table 4. Based on these values the stationary 

vectors are applied for that much of duration. The contents of this block are presented in 

Appendix-IV.   

4.5 Gating Signal Generator 

The output of this block also generates the gating signals to drive the power switches in 

NPC. The bottom two switches of each phase leg are connected in complementary 

fashion so for these switches gating signals are generated by inverted the status of upper 

two switches.  

 

Figure 31 Gating signal for R-phase leg (i) SA1 (ii) SA1' (iii) SA2 (iv) SA2' 

After the implementation of theory described in the above section gives the pole voltage 

which is measured from the middle of each phase leg to the DC neutral point „o‟. The 

NPC inverter is operated with 440V DC input which produces an output having a three 

level i.e. 220V, 0V and -220V.  

The SimPowerSystem is a modern design tool used to employ the NPC inverter. It uses 

Simulink in order to implement its features. Not only can draw electrical circuit and 

power network rapidly [7] but analyze the data in an efficient manner. 

4.6 Model Parameters 

These simulation runs with the following parameters, 

Vdc= 440V, m= 0.95, fs= 2 kHz, Rload= 10Ω, Lload= 15mH and f1= 50Hz. 
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IGBT is selected as a power switch for three-level NPC inverter having following 

features, 

Internal resistance = RON= 1mΩ  

Snubber Resistance=Rs=1e5Ω 

Snubber Capacitance =CS= Inf 

4.7 Line-to-Neutral Voltage with Harmonic Analysis 

 

Figure 32 3-phase line-to-neutral voltages 

These are the three phase pole voltages or line-to-neutral voltages before passing 

through the filter so it contain harmonics contents which must be removed before the 

load. In order to investigate about the harmonics, SimPowerSystems equipped with 

special feature known as power gui block which contain FFT analysis. The harmonic 

analysis for the remaining phases is given in Appendix- V and VI respectively.  

a)  

 

b)   
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Figure 33 Analysis of R-φ voltage a) FFT window of R-phase leg b) Harmonic profile 

of R-phase leg 

4.8 Line-to-Line Voltage with Harmonic Analysis 

The line to line voltage is obtained as the potential difference between two lines with 

DC neutral point „o‟ as the reference. But we are interested in load neutral point „n‟ 

rather than „o‟. So for convenience the phase voltages and line to line voltages are 

regarded as, 

Phase voltages: Vro, Vyo, Vbo. 

Line to Line voltages: Vry= Vro-Vyo, Vyb=Vyo-Vbo, Vbr= Vbo-Vro 

For 3-φ star connected balance load, the relationship between DC neutral point „o‟ and 

load neutral point „n‟ is given by, 

Vno= 
𝑉𝑟𝑜 +𝑉𝑦𝑜 +𝑉𝑏𝑜

3
 

Vrn= Vro-Vno 

Vrn= Vro- 
𝑉𝑟𝑜 +𝑉𝑦𝑜 +𝑉𝑏𝑜

3
  → Vrn=

2𝑉𝑟𝑜 −𝑉𝑦𝑜 −𝑉𝑏𝑜

3
 

Each pole voltage can have only 3 possible values either 0Vdc, +
𝑉𝑑𝑐

2
, −

𝑉𝑑𝑐

2
. On the basis 

these value 5 combinations are possible for line to line voltages either +Vdc, -Vdc, 0Vdc, 

+
𝑉𝑑𝑐

2
, −

𝑉𝑑𝑐

2
.     
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Figure 34 Line-to-Line voltages between R-phase and Y-phase 

a)  

 

b)  

 

Figure 35 Analysis of line- to-line voltage a) FFT window of line-to-line voltage 

 b) Harmonic profile of line-to-line voltage 

4.9 Implementation of Filter 

The output produce by an inverter contain some harmonic contents which need to be 

removed before applying it to the load. Only the fundamental component is allowed to 

pass to the load. These harmonic can be separated from its harmonic contents by 

designing a filter having a resonant frequency of 50Hz. 

𝑓𝑟  = 
1

2𝜋 𝐿𝐶
 → LC= 1.012949*10−5 

By deduce the above value gives, L=6.330mH and C=1600μF. 
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a)  

 

b)  

 

Figure 36 Analysis of R- φ current a) R-phase current waveform b) Harmonic profile 

of R-φ current 

From the above figure it is easily deduced that only the fundamental components appear 

while the harmonic contents are completely removed. 

The contents of Y-φ and B-φ are given in Appendix-VII and VIII. 
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5. CONCLUSION 

This thesis has given a broad review about the concept, theory and basic principle of 

multilevel inverter. After careful consideration between different modulation 

techniques, it is concluded that the space-vector-pulse-width modulation (SVPWM) is 

found to be most popular technique. The brief introduction of carrier based modulation 

technique is also discussed to get better understanding. While comparing the carrier 

based pulse width modulation and space-vector-pulse-width modulation, SVPWM 

carries better DC bus utilization causing a better production of fundamental component 

by means of amplitude. By implementing this technique the amount of total harmonic 

distortion (THD) is also get reduced. After careful consideration between the two-level 

and multilevel inverter, multilevel converter carries better utilization of fundamental 

component and better profile of THD. However, large number of components will 

utilize. The name multilevel arise from the fact that how many voltage level the output 

contains? As far as this thesis is concerned, the pole voltage contains three different 

voltage levels so it is regarded as three-level SVPWM voltage source inverter. The 

more the number of levels the better the output is. It closely resembles to sinusoidal 

output. The three-level inverter is also regarded as neutral point clamp inverter which is 

commonly used for the purpose of variable frequency drive (VFD) applications. This 

thesis is also supported with complex mathematical calculation and in order to get better 

understanding of the theory some waveforms have also been drawn.  

To prove this theory, some simulations are also been taken into account in 

MATLAB/SIMULINK. The overview of each block used in this environment is also 

presented. The results obtained by utilizing practical values of R-L load. The harmonic 

contents at each output stage are analyzed by utilizing the FFT analysis tool which is 

incorporated in SimPowerSys tool box. 

5.1 Future Work Proposal 

 Implementation of this algorithm in over-modulation region. 

 Designing of PI controller for dynamic voltage balancing between the 

capacitors. 

 Investigate 3-Level algorithm as an equivalent 2-Level parallel inverter for 

reducing mathematical calculation. 

 Further implementing THD reduction methods.   

 Implementation of Selective Harmonic Elimination (SHE) technique to reduce 

higher order harmonics. 
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Appendix I: Implementation of the conversion of three phase quantities to stationary 

reference frame 



 

 

 

Appendix II: Mathematical model of “Sector Selection” block 

  



 

 

Appendix III: Mathematical model of “Region selection” block 

 



 

 

Appendix IV: Mathematical model of “Dwell time calculation” block 
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Appendix V: Analysis of Y-φ a) FFT window of Y-phase b) Harmonic analysis of Y-

phase 
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Appendix VI: Analysis of B-φ a) FFT window of B-phase b) Harmonic analysis of B-

phase 
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Appendix VII: Analysis of Y-Phase current a) current waveform b) Harmonic 

analysis 
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Appendix VIII: Analysis of B-Phase current a) current waveform b) Harmonic 

analysis 
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Appendix IX: Switching schemes for sector II, III, IV, V and VI 
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Appendix IX: a) Simulink model of 3-level inverter b) power stage of the inverter 

 

 


