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Thesis describes a project that starts from evaluation of simulation programs and ends to 

testing an individually adaptive glucose regulatory system (GRS) model. Thesis 

presents a modern adaptive approach to model GRS in order to describe each diabetic’s 

individual causalities. Thesis is divided into three parts; a literature study of diabetes 

and GRS models, analysis of simulation programs, and building dynamics GRS model 

and validating it with clinical data.  

Validation consists literature data for general GRS model and test data from a pilot 

diabetic who underwent two-week study period. Data collected included glucose values 

from two continuous glucose monitors (CGM), fingertip blood glucose measurements, 

meals and exercises. Adaptive parameter identification was applied to the model during 

6 days training period and then blood glucose was estimated for the next 24 hours.  

First part of results show that from four simulation programs analyzed, Simulink 

was the software best meeting Quattro Folia’s functional requirements and demanded 

qualities. Therefore, a general GRS model was built with it. Based on literature review, 

the best model and parts of models were combined for one general model which was 

validated to function as in previous studies. Second part of results show that with 

adequate data, blood glucose can be estimated with decent accuracy. Although the 

material only consist data from one diabetic subject, it gives an indication that blood 

glucose could be estimated for others also. However, the precision over population is 

indecisive. 

To conclude, individual diabetic’s GRS and its functions can be described with 

adaptive system dynamic model. The model have multiple possible usages from in silico 

testing to teaching causalities for diabetics or their parents, thus it is useful for research, 

validation and educational purposes. Its value creators are modularity and wide range of 

possible usages. 
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VÄISÄNEN, PETTERI: Sokeriaineenvaihdunnan mallintaminen: Adaptinen ja 
systeemidynaaminen lähestyminen 
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Valvoja: Pekka Heinonen 
Tarkastaja: Professori Jari Viik 
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parametrien identifiointi 
 
Diplomityö käsittelee nykyaikaista adaptiivista lähestymistä ihmisen 

sokeriaineenvaihdunnan mallintamiseen. Työ on jaettu kolmeen osaan; 

kirjallisuustutkimus diabeteksestä ja sokeriaineenvaihduntamalleista, 

simulointiohjelmien analysointi, ja dynaamisen mallin rakentaminen ja validointi. 

Validointi sisältää niin kirjallisuustietoa kuin myös kliinistä dataa yhdeltä tyypin 1 

diabeetikolta kahden viikon pilottijakson ajalta. Materiaali sisälsi kahden 

sensorimittarin verensokeriarvot, perinteisen verensokerimittarin arvot, ateriatiedot ja 

liikuntatiedot. Viikko jaettiin kahteen osaan, kuusi ensimmäistä päivää parametrien 

identifikointia varten ja seitsemäs päivä tulosten testaukseen. Toisin sanoen 

verensokeria pyrittiin estimoimaan 24 tunnin ajalta edeltävän kuuden päivän perusteella. 

 Ensimmäinen osa tuloksista osoittaa, että neljästä analysoidusta 

simulointiohjelmasta, Simulink oli parhaiten Quattro Folian käyttötarkoituksia ja 

vaatimuksia vastaava. Näin ollen mallinnus tehtiin edellä mainitulla ohjelmalla. 

Kirjallisuuskatsauksen perusteella valittu yleinen sokeriaineenvaihdunta malli ja mallien 

osia yhdistettiin kokonaisuudeksi, joka validointiin toimivan fysiologisesti oikein.  

 Tulokset osoittivat, että riittävällä määrällä yhtenäistä dataa pystytään verensokeria 

estimoimaan kohtuullisella tarkkuudella. Vaikka materiaalina oli vain yhdeltä 

diabeetikolta kerättyä dataa, voidaan olettaa, että koejärjestely on toistettavissa 

onnistuneesti myös muille diabeetikoille. Kuitenkaan estimoinnin tarkkuudesta ei voida 

antaa arvioita.  

 Diabeetikon sokeriaineenvaihduntaa voidaan kuvata dynaamisella mallilla, joka 

adaptoituu yksilön mukaan. Mallia voidaan käyttää esimerkiksi validointiin 

simulointitesteillä, tutkimuksiin  tai diabeetikkojen opetukseeen. Toisin sanoen mallin 

arvo muodostuu sen modulaarisuudesta ja useista eri käyttökohteista. 
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1.    INTRODUCTION 

In year 1980 WHO Expert Committee on Diabetes Mellitus, estimates that 30 million 

people have diabetes [1]. In year 2013, International Diabetes Federation (IDF) 

estimates that there are 382 million people living with diabetes and additional 316 

million people with impaired glucose tolerance. Thus, they are at high risk from the 

disease. In past 30 years the number of diabetics is more than tenfold and by all 

measures, the number has not reached its peak yet. [2, p.7] 

Although diabetes is a widespread and common disease, every individual needs 

unique care. For instance type 1 diabetic person has to decide every time he eats, 

whether to have insulin bolus, how many units the bolus should be, when to take it, will 

I exercise afterwards, etc. In addition, there is also need for basal insulin which 

basically means that in order to keep the blood sugar in balance person will take one or 

two additional injections daily. It has been estimated that a person with type 1 diabetes, 

makes 300 decisions per day that are related to their self-care [3]. Figure 1.1 shows a 

sketch of the balancing equation that diabetic or diabetic parent undergo around-the-

clock. Equation includes elements such as exercise, medication, eating, sleeping, stress, 

etc. Although doctors and nurses advices patients with the care plan, most of the daily 

decisions are more or less done based on the individual's understanding of the disease.  

 
Figure 1.1: The balancing equation that diabetic person is dealing with around-the-clock: 

Blood glucose is measured and insulin is administered. 
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 The aim is to develop an individual model to every patient's glucose regulatory 

system to be used as a tool for learning and understanding. Output for patient can be just 

some simple cause-effect charts or insulin bolus advisor, but doctors can access to all 

the available data to be able to evaluate how the care plan is succeeding and then make 

adjustments if necessary. The model should be suitable at least for both type 1 and type 

2 diabetes. 

 Nowadays technology has already shown a great variety of options to measure 

human body and its functions. Idea is to combine all measurement data and update the 

older glucose regulatory models to respond the modern technology status.  

 To summarize, the number of diabetics is increasing so the need for individual care 

is increasing. Hospitals and clinics are incapable to respond to this growing need and 

therefore modern models can have a significant influence for diabetic to be able 

understand how his or her body functions and for care team to be able to react to 

individual's needs quicker and more efficiently, thus to lead a healthy life with 

minimum amount of complications. 

 Chapter 2 of thesis gives a brief overview to diabetes, GRS models and system 

dynamics. Chapter 3 provides information about materials and methods used in this 

thesis. Chapter 4 presents results of simulation program selection, dynamic GRS model 

and individual GRS model. Chapter 5 analyses the results and conclude the thesis. The 

appendices include further information about parameters and subsystem models build 

with Simulink.  
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2.    THEORETICAL BACKGROUND 

2.1 Diabetes Mellitus  

Diabetes mellitus describes a metabolic disorder of multiple etiologies characterized by 

chronic hyperglycemia with disturbances of metabolism resulting from defects in 

insulin secretion, action, or both [4, p. 2]. Diabetes are generally considered to be 

divided into two main types; type 1 and type 2 diabetes mellitus. 

 

2.1.1 History of Diabetes 

The first known mention of diabetes is from 1552 BCE, when Egyptian physician Hesy-

Ra listed remedies to 'passing of too much urine'. The next and more completing 

description of diabetes was given by Greek physician Aretaes of Cappodocia. He 

referred diabetes as 'melting down of flesh and limbs into urine'. [5] In the 17th century 

Dr. Thomas Willis discovered that diabetes can be diagnosed by sampling urine. 

Sampling was done by tasting the urine and estimating the sweetness of it, but still it 

took almost 300 years to discover at least somewhat efficient treatment for diabetes and 

in the early 20th century, Dr. Frederick Allen prescribed low calories diets for diabetics. 

[6] 

 Insulin was discovered in the early 1920s by Dr. Frederick Banting. He started 

injecting insulin to diabetic dogs and moved on to cattle. Dr. Banting and Charles Best 

with assistance of Prof. John Macleod first tested insulin to themselves and after 

discovering that there is no significant side-effects, they injected 14-year-old diabetic 

boy called Leonard Thompson. He was weak and near death, but with insulin shots he 

managed to regain his strength and appetite. Although insulin will not cure the diabetes, 

it gives the person possibility to live otherwise normal life and, thus, insulin has become 

part of everyday life of each type 1 diabetic. In 1923 Dr. Banting and Prof. Macleod 

were awarded with the Nobel Prize in Physiology or Medicine. After this many studies 

regarding to diabetes has been published and helping devices such as insulin pump has 

been invented. [7] 

2.1.2 Glucose Metabolism 

When human ingest food that includes carbohydrates, glucose is absorbed to blood 

stream via digestion system. Absorption starts already in mouth, but happens mostly in 

guts. The glucose appears in blood circulation as a function of time depending also on 

various factors such as the type of carbohydrate ingested.  
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 Figure 2.1 describes body's causalities. Plasma glucose level controls pancreatic 

actions. Its alpha or beta cells in the islets of Langerhans releases glucagon or insulin, 

respectively, which then are connected via portal vein to liver. If glucose level is high, it 

activates beta cells which triggers insulin secretion that is multi-oscillatory process with 

rapid pulses and slower so called ultradian oscillations. The length of slow pulse is 

about 10 minutes and ultradian pulse varies from 50 to 120 minutes. Insulin controls the 

glucose uptake in muscles and adipose tissue (i.e. fat) and stimulates liver glucose 

storage. [8] 

 
Figure 2.1: Role of pancreas in glucose metabolism [2, p. 27] 

 

If plasma glucose is low, pancreatic response is to release alpha cells that triggers 

glucagon secretion. Glucagon elevates glucose level by binding to receptors on liver and 

therefore activating breakdown of glycogen to glucose. [9, p. 217-220] 

2.1.3 Medical Aspects of Diabetes Mellitus 

 Diabetes has two main types, 1 and 2. First, insulin-dependent type 1 diabetes 

mellitus, usually develops in childhood or in adolescent and is also known as juvenile 

diabetes. It is mainly caused by autoimmune destruction of beta cells of the pancreas. 

Beta cells are the only cells that make the hormone insulin that allows glucose to enter 

the cell, where it is converted into energy. Therefore treatment basically always includes 

lifelong insulin injections in different combinations. There is no cure for diabetes, at 
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least yet, discovered and the key component of the treatment is diabetic himself. His 

daily routine is to act as his own pancreas and, thus, prevent or at least, delay diabetes 

related complications such as hypoglycemia, hyperglycemia, heart disease, kidney 

failure, retinopathy, nerve damage, etc. [9, p. 390-430]. 

 The first symptoms of type 1 diabetes mellitus includes increased frequency of 

urinary, unexplained weight loss, thirst and hunger, all of which are due to too high 

blood glucose level. Pain in feet, numbness in extremities and blurred vision are usual 

symptoms also. Severe symptoms are loss of consciousness or severe nausea or even 

coma. The first assumption is made with mentioned symptoms and it is confirmed 

usually with plasma glucose measurements. If person’s fasting plasma glucose is over 7 

mmol/L, he or she most likely have diabetes. Confirmation is done with oral glucose 

tolerance test (OGTT) that is the most common method to confirm diagnosis of 

diabetes. In OGTT person ingests 75 grams of glucose and blood sugar is measured two 

hours after. If glucose is above 11.1 mmol/L, the original assumption is confirmed and 

person has diabetes. Diagnosis can be also done by measuring person’s glycosylated 

hemoglobin (HbA1c). If HbA1c level is above 6.5 %, person is diagnosed to have 

diabetes. [4, p. 1; 10, p. 37]  

 The most common type of diabetes is type 2. It has been estimated that 80-90% of 

diabetics are type 2 diabetics. It usually occurs in adults due to still unknown reason. 

Though, there are several important risk factors such as obesity, poor diet, physical 

inactivity, family history of diabetes, aging, ethnicity, etc.  [2, p. 23] 

 In type 2 diabetes, a person have insulin secretion, but his cells do not use insulin 

properly. This is called insulin resistance increases. At first, the pancreas secretes more 

insulin in order to get the glucose into the cells. But, eventually the sugar builds up in 

blood stream. Type 2 can develop without any of previously mentioned symptoms of 

type 1 diabetes, but the diagnosis is still done with OGTT or HbA1c measurement. 

Initial treatment for type 2 is fixing person's diet and exercise, but in some cases insulin 

boluses are also need. In addition, person can have prediabetes symptoms: impaired 

glucose tolerance (IGT) or impaired fasting glucose (IFG). These people are at high risk 

of developing type 2 diabetes, but can prevent it with decreasing saturated fat in food, 

losing weight 5-10%, daily exercise, etc. [9, p. 455-457] 

 For type 1 diabetic, treatments first aim is to get enough insulin to cover the basic 

metabolism so that the cells can use glucose as an energy source.  This is done with 

basal insulin that is usually administered once or twice a day depending on insulin. 

Figure 2.2 shows the active time of different insulin types. Detemir and glargine are 

called long-acting insulin and typically used as basal insulin, but also Neutral Protamine 

Hagedorn (NPH) can be used for same purposes. 
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Figure 2.2: Comparison of insulin analog active times [11] 

 

Next aim is to have enough, but not too much, insulin to cover rising plasma glucose 

level after eating. Nowadays the most common insulin for carbohydrate coverage is 

rapid-acting insulin such as Aspart, Lispro, etc.  Meal time bolus is taken usually 10-20 

minutes before eating [12, p. 278-279]. The size of bolus is decided based on the 

individual’s carbohydrate coverage ratio (CHO ratio). It can be calculated as in 

Equations 2-1, which is also known as 'The Rule of 500'.  

𝐶𝐻𝑂 𝑟𝑎𝑡𝑖𝑜 =
500

𝑇𝐷𝐼
              (2-1) 

where TDI is total daily insulin in international units (IU) and 500 is an average 

ingested carbohydrates daily. The meal bolus is then calculated as follows: 

𝑀𝑒𝑎𝑙 𝐵𝑜𝑙𝑢𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑔𝑟𝑎𝑚𝑠 𝑜𝑓 𝐶𝐻𝑂 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑙

𝐶𝐻𝑂 𝑟𝑎𝑡𝑖𝑜
      (2-2) 

In addition to meal bolus, there is a correction bolus. When high plasma glucose is 

measured, sufficient amount of insulin is administered to scale back the high plasma 

glucose level. The size of bolus depends on persons insulin sensitivity factor (ISF). It 

can be calculated with 'The Rule of 1800' as follows: 

𝐼𝑆𝐹 =
1800

𝑇𝐷𝐼
              (2-3) 

The correction bolus is then 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝑜𝑙𝑢𝑠 =
𝑃𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑃𝐺𝑡𝑎𝑟𝑔𝑒𝑡

𝐼𝑆𝐹
        (2-4) 

where PGmeasured the measured plasma glucose level and PGtarget is the target plasma 

glucose level. Note that both plasma glucose units are now in mg/dl. SI units are 

mmol/L and the factor from mmol/L to mg/dl is 1/0.055. [13] 
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 Above described are 'rules of thumb' and not intended to be strictly accurate in 

every situation. Most likely doses need to be modified to meet the individual targets. 

Also, these are only for rapid-acting insulin and more suitable for type 1 diabetics than 

type 2. For instance, dawn phenomenon is something that might have to be taken into 

account when calculating insulin doses. Some persons experience increased plasma 

glucose in mornings, because liver releases glucose for unknown reasons. One 

suggested reason is increased level of growth hormone. Anyhow this means that 

diabetic who experience dawn phenomenon, have to take insulin bolus in morning 

whether he will eat breakfast or not. In addition, the meal related bolus might need to be 

injected earlier than usually. [12, p. 293-294] 

Another example is the blood glucose level’s effect on insulin sensitivity. If blood 

glucose rises above 12-15 mmol/L, person’s insulin sensitivity lowers, thus the person 

needs more insulin in order to lower the glucose level back to target range. [9, p. 92] 

2.1.4 Social and Economic Impact of Diabetes 

In past decades diabetes has grown in numbers and the problem is not only in 

industrialized countries anymore. The economic growth of developing countries have 

led to increasing numbers of diabetics worldwide and Figure 2.3 shows the global scale 

of diabetes. IDF has been estimated that people living with diabetes will increase 55 

percent by the end of year 2035 which sums up to 592 million diabetic. [2, p. 12] 

 In Finland, diabetes mellitus is considered as a national disease. The numbers of 

both type 1 and type 2 diabetes has been growing significantly. From 1997 to 2007 the 

number of type 1 diabetics has grown 18 percent and the number of type 2 diabetics has 

grown alarming 77 percent. Small portion of the grown numbers can be explained by 

increased awareness of disease, thus more persons have been examined to find out if 

they have diabetes. Yet, undiagnosed diabetes is a common problem in Finland and 

worldwide. [14] 
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Figure 2.3: People living with diabetes worldwide [2, p. 11] 

 

 Diabetes imposes a severe burden on national health systems, countries and 

individuals and their families. IDF estimates that in 2013, 10.8 percent of total health 

expenditure worldwide is used to diabetes and all of that is used to treat diabetes not 

prevent it. The amount of money per diabetic has a huge variety depending where 

person lives. For instance Norway spent to diabetes healthcare 8 104 € (USD 10 368) 

per diabetic whereas Somalia and Eritrea spent under 23 € (USD 30). [2, p. 48] 

 

 
Figure 2.4: Social and economic burden of diabetes in Finland 1998-2007 [15] and 

estimated continum for 2008-2024. 



9 

 

 Figure 2.4 shows the distribution of diabetes expenses in Finland from 1998 to 

2024. The largest portions are healthcare and premature retirement expenses that 

includes loss in man-years and paid pensions. Healthcare cost are mostly diabetes 

related secondary diseases due to poor diabetes management. Estimations of expenses 

between 2008 and 2024 is done by linear extrapolation since all four areas had very 

high linear correlations during the retrospective study done by Jarvala et al. Correlations 

were 0.9947, 0.9588, 0.9978 and 0.9850 with expenses of healthcare, premature 

retirement, premature deaths and sick leaves, respectively. In the fit for the cost of 

premature deaths values before 2004 were extracted since the cause of deaths have been 

documented only from 1994 and thus, the increase in the start of study was biased. [15] 

2.2 Literature Review of Glucose Regulatory System Models 

Nowadays diabetes care has progressed towards self-care. Since we all are individuals, 

one of the most influence aspect of the care is understanding how your body functions. 

Even though human is very complex system with many unknown variables, different 

dynamic cause-effect models have been introduced. It has been suggested that modern 

glucose regulatory system (GRS) models can lead to understanding of pathogenesis and 

prediction of diabetes mellitus [16]. 

2.2.1 Minimal Models 

Minimal models show the macro-level responses of the system. Those do not include 

every known substrate or hormone, thus they are insensitive to many micro-level 

relationships [17]. To understand the glucose system, dynamic data are needed. 

Therefore quantitative tracer theories has been studied to identify effect of insulin on 

glucose. Resulting in linear and nonlinear time-variant compartmental models that are 

shown to be accurate and allowing the use of exponential models to understand the 

amount of compartments needed to describe the system. Figure 2.5 shows an example 

of three compartment insulin model from which the compartment 3 controls the basal 

glucose. [18, p. 1057-1059] 
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Figure 2.5: Three compartment basal model by P. Insel et al. First three compartments in 

red are representing the basal insulin model and 6, 7 and 9 in blue the basal glucose 
model. The insulin mass in compartment 3 controls the glucose loss from compartment 

9. Figure is reconstructed from [18, p. 1061]. 

 

Later is shown that compartments 1 and 2 can be combined for a single compartment 

and only a two-compartment model is resolvable after 2-3 minutes of tracer injection 

[19]. 

 Bergman et al. introduced even simpler model in 1979. This model have been used 

in clinics to examine body factors such as insulin sensitivity and pancreatic 

responsiveness; factors that are crucial to understand the etiology of IGT. The problem 

in making independent measurements of above mentioned factors is the glucose-insulin 

dynamics and causality of the IGT. As mentioned before the minimum models leaves 

out feedback loops and therefore it is difficult to hold other aspects of the system 

constants to isolate the effect of these factors. [20; 21] 
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Figure 2.6: Bergman's minimal model 6 that is used to estimate the insulin sensitivity 
from intravenous glucose tolerance test. Figure was reconstructed from [20, p. 671]. 

 

 Bergman's study presents seven different glucose-insulin models. Figure 2.6 shows 

the minimal model which Bergman proved to be the most suitable for estimating the 

plasma glucose concentration by using plasma insulin as the known input. Parameters 

are explained in Table 2.1. Model assumes that the remote insulin controls both net 

hepatic glucose balance and peripheral glucose disposal.  

 

Table 2.1: Symbols and descriptions of variables for Bergman's minimal model shown in 
Figure 2.6 and presented in Equation 2-5-7. 

Symbol Description Units 

G(t) Plasma glucose concentration mg/dl 

X(t) Auxiliary function representing insulin-excitable tissue 

glucose uptake activity: (k4 + k6) * I'(t) 

1/min 

I(t) Insulin concentration μU/ml 

G0 Basal glucose concentration mg/dl 

I0 Basal insulin concentration μU/ml 

p1 Fractional transfer rate:  

-(k1 + k5) 

1/min 

p2 Fractional transfer rate: -k3 1/min 

p3 Fractional transfer rate and conversion factor:  

(k4 + k6) * k2 

1/min2

mU/ml
 

SI Insulin sensitivity index 1/min

μU/ml
 

k1, k2, k3, k4, 

k5, k6 

Constant rate parameters 1/min 
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The equations of glucose disappearance model are as follows: 

𝑑𝐺

𝑑𝑡
= [𝑝1 − 𝑋] ∗ 𝐺(𝑡) − 𝑝1 ∗ 𝐺0          (2-5) 

𝑑𝑋

𝑑𝑡
= 𝑝2𝑋 + 𝑝3𝐼(𝑡)            (2-6) 

where the variables are given in Table 2.1. 

 For individual patient the coefficients of the minimal model are estimates from the 

intravenous glucose tolerance test (IVGTT) data by allowing the model predict the 

observed decrease in plasma glucose when the measured plasma insulin is supplied. 

Insulin sensitivity SI then is calculated as follows: 

 𝑆𝐼 =
𝑝3

𝑝2
               (2-7) 

The unit is 1/minute/µIU/ml. Thus, the increase of fractional renal clearance rate of 

glucose per unit change in the plasma insulin concentration. Although, this approach 

gives a good estimation of the insulin sensitivity, it is too simple to be an adequate 

representation of the glucose-insulin system. First, there is no experimental basis that 

insulin secretion and glucose has a linear relationship. Second, the model does not 

consider explicitly the complex interactive control of liver glucose production. It has 

been shown that the model can give negative values for insulin sensitivity in type 2 

diabetics [22]. 

 In addition, the model can be used also to estimate insulin secretion responsiveness 

to glucose both first phase Φ1 and second phase Φ2 by predicting the time course of 

plasma insulin, when above described method is supplied. The first phase insulin 

release is presented as an insulin bolus entering the plasma compartment at the time of 

glucose injection. The equation is 

𝛷𝐼 =
𝐼0

𝑛∗𝛥𝐺
              (2-8) 

where I0 is the first peak of plasma insulin concentration, n is the time constant for 

insulin disappearance and ΔG is the maximum change in the glucose concentration.  

 The factor Φ2 is defined as second phase pancreatic response and is proportional to 

the degree γ by which glucose exceeds a threshold level h. Thus, insulin secretion can 

be described by  

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛾[𝐺(𝑡) − ℎ] + 𝑛 ∗ 𝐼           (2-9) 

The model assumes that the rate of rise of second phase is proportional to plasma 

glucose, thus the second phase responsiveness Φ2 is the proportionality factor between 

glucose and the rate of rise. This is also known as minimal model of insulin kinetics. 

[21] 
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 Bergman and Cobelli have published papers; completing, testing and validating the 

results of the minimal model [17; 21; 23-26] and in 2009, Cobelli estimated that the 

minimal model can be found in over one thousand studies [17]. The most important 

defect in minimal model appears to be the single-compartment representation of the 

glucose system. According to the American Diabetes Association (ADA) Consensus 

Development Conference on insulin resistance, minimal model method applied to a 

frequently sampled IVGTT is one of only two methods that assess peripheral insulin 

resistance. [27] 

 

2.2.2 Maximal Models 

Maximal models are describing the whole glucose regulatory in human body are not 

generally useful for the quantification of specific metabolic relationships. Their 

usefulness lies on the system simulation. Most of the models are based on the multi-

compartment approach and are challenging to validate against clinical data. 

 One of the first dynamic glucose regulatory models was Foster's glucose 

homeostasis model (Figure 2.7). The purpose of the study was to design and experiment 

new glucose regulatory system in man. It has three subsystems that are plasma glucose, 

muscle glycogen and liver glycogen of which non-linear relationships were collected 

from clinical researches found in literature. [28] 

 The mass balance equation for the model is as follows: 

 

{
 
 
 
 
 

 
 
 
 
 
𝑑𝐺𝐺

𝑑𝑡
= 𝐺𝐿𝑌𝑂 + 𝐼𝑁𝐽 + 𝐷𝐼𝐺 + 𝐿𝑈𝐿𝐴𝐶 + 𝐺𝐿𝑈𝑁𝐸𝑂

−𝐺𝐿𝑌𝑆 −𝑀𝑈 − 𝐴𝑇𝑈 − 𝑁𝑆𝑈 − 𝑅𝐵𝐶𝑈 − 𝑈
𝑑𝐺𝐿𝑈𝐿𝐼𝑉

𝑑𝑡
= 𝐺𝐿𝑌𝑆 − 𝐺𝐿𝑌𝑂 − 𝐺𝐿𝑈𝐵

𝑑𝑃𝐺𝑆

𝑑𝑡
= 𝑀𝑈 − 𝑃𝐸𝐺 −𝑀𝑅𝐿𝐴𝐶

𝑑𝐼

𝑑𝑡
= 𝐼𝑆𝐸𝐶 − 𝐼𝐷𝐸𝐺

𝑑𝐹𝐹𝐴

𝑑𝑡
= 𝐹𝐹𝐴𝑃 − 𝐹𝐹𝐴𝑈

𝑑𝐺

𝑑𝑡
= 𝐺𝑆𝐸𝐶 − 𝐺𝐷𝐸𝐺

     (2-10) 

where the variables can be found in Table 2.2. 
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Table 2.2: Symbols and descriptions of variables for Foster's glucose regulatory system 
model that is shown in Figure 2.7 and presented in Equation 2-10. 

Abbreviation Explanation Unit 

ATU Adipose Tissue Use mg/min 

DIG Uptake of Glucose from Digestion Rate mg/min 

FFA Plasma Free Fatty Acid mg 

FFAP Free Fatty Acid Production Rate mg/min 

FFAU Free Fatty Acid Utilization Rate mg/min 

G Plasma Glucagon µg 

GDEG Glucagon Degradation Rate µg/min 

GG Plasma Glucose mg 

GLULIV Liver Glucose mg 

GLUNEO Gluconeogenesis mg/min 

GLYB Glucose-6-Phospate Catabolism Rate mg/min 

GLYO Hepatic Glucose Release mg/min 

GLYS Hepatic Glucose Phosphorylation mg/min 

GSEC Glucagon Secretion Rate µg/min 

I Plasma Insulin mIU 

IDEG Insulin Degradation Rate mIU/min 

INJ Intravenous Glucose Infusion Rate mg/min 

ISEC Insulin Secretion Rate mIU/min 

LULAC Liver Uptake of Glucose mg/min 

MRLAC Muscle Release of Lactate mg/min 

MU Muscle Glucose Uptake Rate mg/min 

NSU Nervous System Uptake mg/min 

PEG Muscle Utilization of Glucose for Energy mg/min 

PGS Peripheral Glucose mg 

RBC'SU Red Blood Cell Utilization Rate mg/min 

U Urine Spillage of Glucose mg/min 
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Figure 2.7: Foster's glucose homeostasis model [28, p. 41]. Variables can be found in 

Table 2.2. 

 

 Without going too deeply into the model, it can be said that the unique feature of 

model is that all the rates are based on the best estimates available from the literature of 

that era, thus there is no curve-fitting methods used. In addition many of the rates are 

nonlinear. Model can be used to simulate a human in IVGTT. Also, it performed well in 

comparison to prediabetes behavior, thus it allows to study different causalities of 

diabetes. Yet, the model has its down sides. It does not simulate correctly any other 

response to dynamic stimuli besides IVGTT and its usefulness is therefore limited. 

 Where Cobelli, Bergman, Foster, etc. [19, 20, 28] concentrated more to 

compartments and rates between them, Sturis, Li, etc. [29, 31] kept their focus in 

development of mathematical model that considered the time delays and oscillations in 

human body. Purpose of these models was to explain the reasons to ultradian oscillation 

of insulin response, of which are still debated.  

 In 1991 Sturis et al. [29] developed a parsimonious mathematical model including 

the major mechanisms involved in glucose regulatory system. The occurrence of insulin 

and glucose oscillations was found to be dependent on two features: 1.) The time delay 
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of 30-45 minutes for the effect of insulin on glucose production and 2.) A prolonged 

effect of insulin dependent glucose utilization. These two characteristics were included 

in the model, they were able to mimic all the experimental findings such as self-

sustained oscillations during constant glucose infusion, postprandial oscillations and 

increased amplitude of oscillations after increased stimulation of insulin secretion in 

constant frequency. [29] Later Sturis et al. [30] validated some of their simulated 

findings with experiments. For instance, it was shown that oscillatory insulin infusion is 

more efficient in reducing plasma glucose levels than continuous administration. [30] 

 Li's model has two time delays: insulin response to arise of blood glucose level and 

endogenous glucose production in liver. Delays were around 6 minutes and 36 minutes, 

respectively. The results show that both of mentioned delays are necessary for the 

insulin secretion ultradian oscillation sustainment. In addition, results indicates that 

endogenous glucose production and related time delay are insignificant in modeling 

IVGTT. The model can be used to time the insulin injection to the intake of glucose 

which is one of the key factors in successful insulin therapy. [31; 32] 

One can find many good models for one's needs and the list of models could be still 

continued. The most recognized and sophisticated model was developed by Dalla Man 

et al. [33] in 2007. Model simulates glucose-insulin response during meal time and in 

24-hour glucose-insulin profile and it was constructed from different modules as 

described in Figure 2.8. [33] 

 
Figure 2.8: Dalla Man et al. glucose regulatory model describing the relations between 

different subsystems. Glucose related parts are in blue and insulin related in red. Figure 
was reconstructed from [33, p. 1742]. 

 

 First subsystem, gastrointestinal track, describes functions of oral glucose 

absorption. Input to module is an amount of ingested glucose and output is a glucose 

rate of appearance in plasma. This nonlinear model was tested to perform with good 
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precision when comparing the results to actual clinical data. Stomach is modeled with 

two compartments that represent solid and liquid phases, respectively. A single 

compartment approach is used for gut and a constant rate of intestinal absorption. The 

relations of model parameters are in Equation 2-11 and the explanations of parameters 

in Table 2.3. [33; 34] 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑄𝑠𝑡𝑜(𝑡)

𝑑𝑡
= 𝑄𝑠𝑡𝑜1(𝑡) + 𝑄𝑠𝑡𝑜2(𝑡)

𝑑𝑄𝑠𝑡𝑜1(𝑡)

𝑑𝑡
= −𝑘𝑔𝑟𝑖 ∗ 𝑄𝑠𝑡𝑜1(𝑡) + 𝐷 ∗ 𝑑(𝑡)

𝑑𝑄𝑠𝑡𝑜2(𝑡)

𝑑𝑡
= −𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ∗ 𝑄𝑠𝑡𝑜2(𝑡) + 𝑘𝑔𝑟𝑖 ∗ 𝑄𝑠𝑡𝑜1(𝑡)

𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) =  𝑘𝑚𝑎𝑥 +
𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

2
∗ {

𝑡𝑎𝑛ℎ[𝛼 ∗ (𝑄𝑠𝑡𝑜 − 𝑏 ∗ 𝐷)]

−𝑡𝑎𝑛ℎ[𝛽 ∗ (𝑄𝑠𝑡𝑜 − 𝑑 ∗ 𝐷)] + 2
}

𝑑𝑄𝑔𝑢𝑡(𝑡)

𝑑𝑡
= −𝑘𝑎𝑏𝑠 ∗ 𝑄𝑔𝑢𝑡(𝑡) + 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ∗ 𝑄𝑠𝑡𝑜2(𝑡)

𝑅𝑎(𝑡) =  
𝑓∗𝑘𝑎𝑏𝑠∗𝑄𝑔𝑢𝑡(𝑡)

𝐵𝑊

     (2-11) 

 The next module describes a glucose system that includes two compartments that 

describes glucose kinetics. Module's inputs are rate of absorption and endogenous 

glucose production. Transfer outputs are utilization and when glucose level is above 

individual threshold limit, renal excretion. Plasma glucose concentration also controls 

liver glucose production and pancreas beta-cell functions i.e. insulin secretion. Glucose 

system is divided to two compartments, plasma and tissue glucose. Endogenous glucose 

production and rate of appearance increases the plasma glucose whereas renal excretion 

and insulin-independent utilization (glucose uptake by brain and erythrocytes) decreases 

it. The tissue glucose compartment is related to glucose uptake by muscles and adipose 

tissue that is controlled with insulin concentration. Between above mentioned two 

compartments is transfer in both ways depending on individual parameters.   

 The balance equations are as follows: 

{
 
 

 
 
𝑑𝐺𝑝(𝑡)

𝑑𝑡
= 𝐸𝐺𝑃(𝑡) + 𝑅𝑎(𝑡) − 𝑈𝑖𝑖(𝑡) − 𝐸(𝑡) − 𝑘1 ∗ 𝐺𝑝(𝑡) + 𝑘2 ∗ 𝐺𝑡(𝑡)

𝑑𝐺𝑡(𝑡)

𝑑𝑡
= −𝑈𝑖𝑑(𝑡) + 𝑘1 ∗ 𝐺𝑝(𝑡) − 𝑘2 ∗ 𝐺𝑡(𝑡)

𝐺(𝑡) =
𝐺𝑝

𝑉𝐺

  (2-12) 

where parameters are explained in Table 2.3. 

 Glucose utilization can be divided in two part: insulin-dependent and -independent 

utilization. Insulin-independent means the part of glucose body needs to keep vital 

functions going. This basically is constant uptake by brain and erythrocytes. Insulin-

dependent glucose is described with Michelis-Menten nonlinear relation as presented by 

Yki-Jarvinen et al. [35]. Dalla Man et al. obtained similar results which led to following 

equation: 
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{
 
 

 
 𝑈𝑖𝑑(𝑡) =

𝑉𝑀(𝑋(𝑡))∗𝐺𝑡(𝑡)

𝐾𝑀(𝑋(𝑡))+𝐺𝑡(𝑡)

𝑉𝑀(𝑋(𝑡)) =  𝑉𝑚0 + 𝑉𝑚𝑥 ∗ 𝑋(𝑡)

𝐾𝑀(𝑋(𝑡)) =  𝐾𝑚0 + 𝐾𝑚𝑥 ∗ 𝑋(𝑡)
𝑑𝑋(𝑡)

𝑑𝑡
= −𝑝2𝑈 ∗ 𝑋(𝑡) + 𝑝2𝑈 ∗ (𝐼(𝑡) − 𝐼𝑏)

       (2-13) 

where parameters are explained in Table 2.3. Although, when fitting on clinical data 

Kmx collapsed to zero, thus Km was not dependent from X any more. 

 When plasma glucose level exceeds an individual threshold, excretion occurs in 

kidneys. Process is linearly related with plasma glucose and are modeled as follows: 

𝐸(𝑡) = {
𝑘𝑒1 ∗ (𝐺𝑝(𝑡) − 𝑘𝑒2)          𝑖𝑓 𝐺𝑝(𝑡) > 𝑘𝑒2
0                                             𝑖𝑓 𝐺𝑝(𝑡) ≤ 𝑘𝑒2

       (2-14) 

where parameters are explained in Table 2.3. 

 Endogenous glucose production happens in liver compartment that is controlled by 

plasma glucose, plasma insulin and portal vein insulin. Plasma glucose signal and portal 

vein insulin are direct signals, whereas plasma insulin is delayed. Relations are 

described as follows: 

{
 

 
𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 ∗ 𝐺𝑝(𝑡) − 𝑘𝑝3 ∗ 𝐼𝑑 − 𝑘𝑝4 ∗ 𝐼𝑝𝑜(𝑡)

𝑑𝐼1(𝑡)

𝑑𝑡
= −𝑘𝑖 ∗ (𝐼1(𝑡) − 𝐼(𝑡))

𝑑𝐼𝑑(𝑡)

𝑑𝑡
= −𝑘𝑖 ∗ (𝐼𝑑(𝑡) − 𝐼1(𝑡))

    (2-15) 

where parameters are explained in Table 2.3. [33] 

 Insulin is released from the islets of Langerhans in two phases. The first phase is 

controlled by plasma glucose levels. Both high plasma glucose concentration and fast 

increase of plasma glucose trigger the first phase release. Second release is glucose-

independent slow release of newly formed vesicles. This two phase insulin secretion is 

modeled as follows: 

{
 
 

 
 

𝑆(𝑡) = 𝛾 ∗ 𝐼𝑝𝑜(𝑡)
𝑑𝐼𝑝𝑜(𝑡)

𝑑𝑡
= −𝛾 ∗ 𝐼𝑝𝑜(𝑡) + 𝑆𝑝𝑜(𝑡)

𝑆𝑝𝑜(𝑡) = {
𝑌(𝑡) + 𝐾 ∗

𝑑𝐺(𝑡)

𝑑𝑡
+ 𝑆𝑏        𝑖𝑓 

𝑑𝐺(𝑡)

𝑑𝑡
> 0

𝑌(𝑡) + 𝑆𝑏                             𝑖𝑓 
𝑑𝐺(𝑡)

𝑑𝑡
≤ 0

      (2-16) 

and 

𝑑𝑌(𝑡)

𝑑𝑡
= {

−𝛼𝑠 ∗ [𝑌(𝑡) − 𝛽𝑠 ∗ (𝐺(𝑡) − ℎ)]       𝑖𝑓 𝛽 ∗ (𝐺(𝑡) − ℎ) ≥ −𝑆𝑏
−𝛼𝑠 ∗ [𝑌(𝑡) − 𝑆𝑏]                                𝑖𝑓 𝛽 ∗ (𝐺(𝑡) − ℎ) < −𝑆𝑏

  (2-17) 

where parameters are explained in Table 2.3. [36; 37] 
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 Secreted insulin flows from pancreas through portal vein, from which liver 

separates most of the insulin. In humans, 80 percent of insulin is extracted during the 

first liver passage and in addition, the mass of secreted insulin pulse controls the hepatic 

clearance of insulin [38]. Insulin subsystem is modeled similar two compartment model 

than glucose. First compartment is to describe liver related actions and second 

compartment to describe plasma actions. These equations are as follows: 

{
 
 

 
 
𝑑𝐼𝑝(𝑡)

𝑑𝑡
= −(𝑚1 +𝑚3(𝑡)) ∗ 𝐼𝑙(𝑡) + 𝑚2 ∗ 𝐼𝑝(𝑡) + 𝑆(𝑡)

𝑑𝐼𝑝(𝑡)

𝑑𝑡
= −(𝑚2 +𝑚4) ∗ 𝐼𝑝(𝑡) + 𝑚1 ∗ 𝐼𝑙(𝑡)

𝐼(𝑡) =
𝐼𝑝

𝑉𝐼

     (2-18) 

where parameter m3 is  

{
𝑚3(𝑡) =

𝐻𝐸(𝑡)∗𝑚1

1−𝐻𝐸(𝑡)

𝐻𝐸(𝑡) = −𝑚5 ∗ 𝑆(𝑡) + 𝑚6

           (2-19) 

and other parameters are explained in Table 2.3. [33] 
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Table 2.3: Explained parameters of Dalla Man et al. healthy state simulator. Time-varying 
parameters are bolded. 

Subsystem Variable Unit Explanation 

Gastrointestinal 
Track 

D mg Ingested glucose 
Ra mg/kg/min Glucose rate of appearance in plasma 

Qsto mg Total glucose mass in stomach 
Qsto1 mg Glucose mass in liquid phase 
Qsto2 mg Glucose mass in liquid phase 
Qgut mg Glucose mass in intestines 
BW kg Body weight 
kmax 1/min Maximum emptying rate 

kmin 1/min Minimum emptying rate 
kabs 1/min Intestinal absorption rate 
kgri 1/min Grinding rate 
f unitless Fraction of intestinal absorption which 

actually happens 

α 1/mg Rate to minimum 
b unitless Percentage of dose for which k_empt 

decreases 

β 1/mg Rate to maximum 
d unitless Percentage of dose for which k_empt 

increases 

kempt 1/min Gastric emptying rate 

Glucose System 

Gp mg/kg Glucose mass in plasma and rapidly 
equilibrating tissues 

Gt mg/kg Glucose mass in slowly equilibrating 
tissues 

Vg dl/kg Volume of glucose 
k1 1/min Rate parameter 
k2 1/min Rate parameter 
Uii mg/kg/min Insulin-independent utilization 
Fcns mg/kg/min Glucose uptake by brain and 

erythrocytes 

Muscle and Adipose 
Tissue 

Uid mg/kg/min Insulin-dependent utilization 
X pmol/L Remote insulin in interstitial fluid 

Vm mg/kg/min Transport rate 
Vmx mg/kg/min / 

pmol/L 
Maximum transport rate 

Km mg/kg Michaelis constant for glucose disposal 

Kmx mg/kg / pmol/L Maximum for Michaelis constant, thus 
peripheral insulin sensitivity 

p2u 1/min Rate of insulin action on the peripheral 
glucose utilization 

Ib pmol/L Plasma insulin in basal state 

Kidney 
E mg/kg/min Renal excretion 

ke1 1/min Glumerular filtration rate 
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Subsystem Variable Unit Explanation 
ke2 mg/kg Renal threshold of glucose 

Liver 

EGP mg/kg/min Endogenous glucose production 
Id pmol/L Delayed insulin signal 
I1 pmol/L First insulin signal 
Ipo mg/kg Amount of insulin in portal vein 
kp1 mg/kg/min Extrapolated EGP at zero glucose 
kp2 1/min Liver glucose effectiveness 
kp3 mg/kg/min / 

pmol/L 
Parameter governing amplitude of 
insulin action, thus hepatic insulin 
sensitivity 

kp4 mg/kg/min / 
pmol/kg 

Parameter governing amplitude of 
portal insulin action 

ki 1/min Rate parameter 

Beta-cell 

S pmol/kg/min Insulin secretion 
γ 1/min Transfer rate between portal vein and 

liver 

Y pmol/kg/min Secretion because of high plasma 
glucose 

K pmol/kg / mg/dl Pancreatic responsivity to glucose rate 
of change 

Sb pmol/kg/min Secretion in basal state 
α_s pmol/kg/min / 

mg/dl 
Delay between plasma glucose and 
insulin secretion 

β_s 1/min Pancreatic responsivity to glucose 

h mg/dl Threshold level of glucose above beta 
cells initiate to produce new insulin 

Insulin System 

Ip pmol/kg Insulin mass in plasma 
Il pmol/kg Insulin mass in liver 

m1 1/min Rate parameter 
m2 1/min Rate parameter 
m3 1/min Rate parameter 
m4 1/min Rate parameter 
m5 min / kg/pmol Rate parameter 

m6 unitless Rate parameter 
HE unitless Hepatic extraction of insulin 

 

 Although the above described dynamic model is made to describe the healthy 

person's glucose-insulin regulatory system, it is also used to describe the IGT, IFG and 

type 2 diabetic metabolism. Dalla Man et al. [33] not only identified the parameters for 

both groups, healthy and type 2 diabetic person, but also minimized structural 

uncertainties of each subsystem. They had a vast data of flux concentrations of 204 

subjects during triple tracer meal tolerance test. Data consist ingested carbohydrates, 

Endogenous Glucose Production (EGP), glucose utilization, insulin secretion, plasma 

glucose concentration and insulin concentration. These were input and output signals 
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for four unit process models; liver, beta cell, muscle and adipose tissue, and 

gastrointestinal track. For instance, liver glucose production was numerically identified 

using EGP as output and plasma glucose and insulin as known inputs. [33] 

 The same meal simulation model was later used as basis for UVA/PADOVA type 1 

diabetes simulator that is included in the first FDA approved in silico population. It 

consists 300 subjects: 100 adults, 100 adolescent and 100 children, and it can be used 

for instance, to test the insulin pumps' control algorithms. Model is also a substitute for 

preclinical trials for certain insulin treatments, including artificial pancreas. [39] 

 Differences compared to previous model are insulin delivery and glucagon 

subsystems. Glucagon can be considered as an opposite to insulin. When plasma 

glucose level is below hypoglycemic limit, glucagon elevates the glucose level. Insulin 

delivery subsystem model depends on the person’s insulin in use. Also, different models 

can be used to describe the delivery. More detailed description of subcutaneous insulin 

kinetics in Section 2.2.3.  

 Even though, above described GRS models explains a wide range of causalities in 

human glucose metabolism, fully explicit model is yet to discover. For instance, acute 

psychotic stress have been shown to have effect on glucose regulatory system and more 

detailed to beta cell function and insulin sensitivity which both links to insulin 

secretion, usage and storage. A clinical global impression (CGI) was used to evaluate 

the level of psychological stress. The relation between CGI score and insulin sensitivity 

is inversely correlated (r = -0.38, P < 0.02) [40]. Thus, model can have many input 

signals. Usual signals are meal; time and carbohydrate amount and insulin; time, dose 

and type. These signals produce the good basis, but as described in Section 1, the 

glucose-insulin balancing equation has many other variables that should be taken into 

consideration. 

2.2.3 Insulin Delivery Models 

Since almost all type 1 diabetics and some of type 2 diabetics are treated with insulin 

injections, maximal GRS models for those includes a subsystem for exogenous insulin 

delivery. Insulin therapy for type 1 diabetics aims to mimic the pattern of endogenous 

insulin secretion present in healthy persons. Yet, human insulin is not commonly used 

in insulin boluses. This is because of absorption of human insulin from subcutaneous 

depot is impeded by the formation of hexameric macromolecules and it has been shown 

that insulin analogues such as insulin lispro has better ability to mimic the physiological 

pattern of insulin secretion. [41] 

Eleven different insulin delivery models were evaluated by M. Wilinska et al. [42]. 

They assessed multiple uncertainties and used experimental data to validate the 

physiological feasibility of parameter estimates. Data were collected from subjects with 

type 1 diabetes whom were treated with continuous subcutaneous insulin infusion with 

insulin lispro (i.e. rapid acting insulin). Their result suggested that the best 

representation was multi-compartment model with two insulin delivery channels, fast 
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and slow. In addition, they had a model which assumed that partition of the injected 

monomeric insulin associates to form dimmers, and thus a state of equilibrium is 

reached between those two. [42] 

 Similar monomeric insulin transport model was also presented by Dalla Man et al. 

[43]. Approach approximates nonmonomeric and monomeric insulin fractions in a 

subcutaneous space as follows: 

 

 

{
 

 
𝑑𝐼𝑠𝑐1(𝑡)

𝑑𝑡
= −(𝑘𝑑 + 𝑘𝑎1) ∗ 𝐼𝑠𝑐1(𝑡) + 𝐼𝑅𝑅(𝑡)

𝑑𝐼𝑠𝑐2(𝑡)

𝑑𝑡
= 𝑘𝑑 ∗ 𝐼𝑠𝑐1(𝑡) − 𝑘𝑎2 ∗ 𝐼𝑠𝑐2(𝑡)

𝑅𝑖(𝑡) = 𝑘𝑎1 ∗ 𝐼𝑠𝑐1(𝑡) + 𝑘𝑎2 ∗ 𝐼𝑠𝑐2(𝑡)

       (2-20) 

 

where Isc1 and Isc2 are the amounts of the nonmonomeric and monomeric insulin, 

respectively. Ri is the rate of appearance of insulin in plasma, kd rate constant of insulin 

dissociation, IRR exogenous insulin infusion rate (i.e. injected insulins as a sum of 

Dirac delta functions), ka1 and ka2 rate constants of nonmonomeric and monomeric 

insulin absorption, respectively. [43] 

2.3 System Dynamics 

System is commonly considered an assemblage of components and dynamics refers to a 

situation which changes with time, so system dynamics basically means time-varying 

behavior of connected components or elements. In this case, dynamics are not just 

mechanical behavior, but also fluid, electrical, thermal, etc. systems. In system 

dynamics, the idea is to deal with entire process with all the causalities included. [44] 

 Human body can be considered to be a system: There are identifiable blocks such 

as organs that affects each other. Although, it is too complicated still to make a model 

describing the whole body, models of different subsystems can be constructed and 

validated against clinical data. For instance, heart's functions can be modeled with 

system dynamics to explain its flow functions or electric functions or combination of 

both. Therefore, it is quite evident method for engineers to describe GRS with system 

dynamics as described in Section 2.2 and in fact, all presented models are dynamic 

systems. 
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3.    MATERIALS AND METHODS  

3.1 Simulation Program 

Since there are wide range of programs to build a dynamic system, a questionnaire was 

made to find the most valuable qualities in simulation software before selecting the 

actual program. In order to get comprehensive results, the questionnaires participants 

were from software, engineering, research and management divisions of Quattro Folia 

Oy. Participants were asked to give a value from 1 to 10 to requirements shown in Table 

3.1., and add other possible requirements if needed. Values were used to calculate 

relative weights in decision matrix. 

 

Table 3.1: Demanded quality and functionality requirements in questionnaire. 

Functional 
requirements Explanation Unit 

Input/Output 
interfaces 

How compatible the software is with 
others 

Number of supported 
formats 

Wide options for 
features 

How many different functions/apps/add-
ons the software offers and how 
complex they are 

Number and 
complexity of 
features 

Easy to learn for 
developer 

How fast you learn to use the software 
and how good manuals and instructions 
you get 

Tester’s opinion 

Good future proofs 
Is the development of the software still 
going 

Amount of new 
versions from 
preceding 5 years 

Low price 
Total cost of ownership Price/User and 

additional costs 

Simple to use and 
maintain 

How good the user interface of software 
is and how easy is to maintain 

Tester’s opinion 

Performance to 
support multiple users 

How much software needs from central 
processing unit (CPU), memory, disk 
space etc. 

Simulation time, 
CPU usage, size of 
the file, etc. 

Modularity 
How easy is to add and remove parts 
from the model 

Possibility to build 
modules 

Testing possibilities 
How easily the model can be tested and 
validated 

Possibility to run in 
script, test features, 
etc. 

Other 
Additional requirement that have not 
been mentioned 

 

 

In order to satisfy the internal customer needs, quality function deployment was 

used to analyze results. Simplified version of house of quality matrix was build. 

Requirements of software were analyzed depending on the measurable unit of the 

requirement. All values were originally between zero to five or normalized to that 
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range. The values were used in decision matrix to calculate the relative weighted results. 

Table 3.2 shows the described decision matrix. 

 

Table 3.2: Decision matrix for simulation program evaluation 

Demanded quality and 
Functional 

requirements 
Relative 
Weight Weight 

Simulation software 

1 2 3 4 
List of internal 

customer needs 
% Values 1-10 Normalized values 0-5 

  Weighted Result Sum Sum Sum Sum 

  Relative Weighted Result % % % % 
 

 The evaluated simulation programs were MathWorks – Simulink 2014a, Ventana 

Systems – Vensim PLE 6.3, Simantics System Dynamics 1.8 and Powersim software – 

Powersim Studio 9 Demo. Although, the programs are popular amongst system 

dynamics, their functionalities, user-interfaces, designed use, modelling methodology, 

etc. vary. Thus, the software meeting Quattro Folia’s internal customer needs and 

quality management requirements could be found. 

 In order to get realistic understanding about the simulation programs, minimal GRS 

model was built with each software before starting to construct the whole body model. 

Two requirements were purely based on tester's opinion; is the software easy to learn 

and simple to use? In addition, the complexity of features and testing possibilities were 

also partly evaluated by tester. 

3.2 Dynamic GRS Model 

3.2.1 General GRS Model 

Based on literature review, the most suitable dynamic GRS model for Quattro Folia's 

indented use was selected. The model was built with the simulation program that got the 

best overall weighted result. Model was constructed for healthy, type 1 and type 2 

diabetic person. All model’s subsystems were validated against clinical data found in 

literature. More about validation process in Section 3.2.2. The validated subsystems 

then were combined in to whole body system. Additional functionalities were also 

introduced based on physiological needs. For instance, in beta-cell function module a 

gain block for remaining insulin production was added in order to get comprehensive 

results.  

 Since diabetics are treated with wide range of therapies, the constructed model 

included also choices at least to the most common therapies. Therefore, alternative 

modules for insulin pump and multiple daily injection (MDI) therapy were built in to 

model. This also meant the implementation of an insulin delivery subsystem. 
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3.2.2 Materials for GRS Model Validation 

Validation of general healthy person model was done against clinical data found in 

literature. Each subsystems output was compared to results from Dalla Man et al. [33], 

where a mixed meal containing 1 ± 0.02 g/kg (x ± SD) of glucose was given to 204 

normal subjects with body weight of 78 ± 1 kg. They measured and estimated various 

fluxes to obtain model-independent results. [33] 

 In particular, each average flux profile; plasma glucose, insulin, EGP, glucose rate 

of appearance, glucose utilization and insulin secretion profiles were compared with the 

simulated results that undergo the same experimental scenario. Thus, 78g of CHO was 

ingested at t = 0 and simulated fluxes were recorded for the next 7 hours. Root mean 

square error (RMSE) and Pearson correlation coefficient (R) were calculated. 

 For insulin delivery subsystem, the validation was done against clinical data from 

Wilinska et al. [42]. They measured plasma insulin concentration from 7 type 1 diabetic 

subjects every 30 minutes after 40g CHO ingestion and injection of individually 

calculated insulin bolus. The continuous insulin infusion rate was 0.86 ± 0.27 IU/h and 

the bolus prior to the meal was 5.95 ± 2.37 IU. Measured insulin concentration was 

compared to simulated results by calculating RMSE and correlation from 12-hour 

period. [42] 

3.2.3 Pilot Data and Individual GRS Model 

A type 1 diabetic did two 7-day pilots. During this period subject had two continuous 

glucose monitors (CGM); Dexcom G4 and Medtronic MiniMed Paradigm Veo. Later is 

a system which includes insulin pump, sensor and MiniLink transmitter that sends the 

information from sensor to insulin pump. However, CGM was not used to control the 

insulin pump and thus, the system was not closed-loop insulin delivery system. CGM 

could only cut off insulin delivery for 2 hours if glucose value was under a preset value. 

Subject reported also blood glucose measurements from fingertip that were used for 

CGM calibrations, meals (carbohydrates ingested) and exercises (duration and level) to 

Quattro Folia's cloud-based personal health record archive.  

 Both weeks were analyzed as an individual events. Figure 3.1 shows the collected 

data; blood glucose values in gray, meals in yellow, insulin in green and exercise in 

orange. In terms of system dynamics and machine learning, the first six days were 

training data and the last day was test data. 
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Figure 3.1: Data collected from a week pilot period. Dashed line represents the division to 
training and test data. Glucose values include continuous glucose monitoring (CGM) and 

self-monitoring of blood glucose (SMBG) values. 

 

 The population based GRS model's parameters were found in literature. They are 

only averages from previous studies and therefore some of them were individually 

updated. For instance, the insulin-to-carbohydrate ratio was calculated with the Rule of 

500 presented in Chapter 2 Equation 2-1.  

Complexity of model affected parameter identification. Since our pilot data were 

collected from routine everyday life, it did not include values such as plasma insulin 

concentration, EGP, etc. Therefore, unit process model and forcing function strategy for 

parameter identification could not be used. Other options such as linearization of the 

problem was discussed with Professor Matti Vilkko from Department of Automation 

Science and Engineering at Tampere University of Technology, but the conclusion was 

that the complexity of model made it impossible without further studies with system 

dynamics. To give an idea of the complexity, a model of an automatic transmission 

controller for vehicle consists of 1 differential equation, 9 algebraic equations and 6 

parameters [45], where the selected combination of models consists of 16 differential 

equations, 14 algebraic equations and 47 parameters. 

 First, the basal level was approximated to correspond with the subject’s basal level. 

An independent algorithm estimated the base level of the subject’s blood glucose and 

then set the parameter kp1 in EGP subsystem to correspond the subject’s basal level. 
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Figure 3.2: Decision chart of adaptive parameter identification algorithm for steady state  

 

The parameter identification to find the steady state was made with fine tuning with 

simple algorithm and repeated simulations as described in Figure 3.2. All the input 

parameters were constant during the following method. First, the reference standard 

deviation (SD) was calculated. Next, the basal levels of the following parameters; Il, Ip, 

Icon, Gp, Gt, EGP, Isc1 and Isc2 were adjusted, and then the previous SD was compared to 

the latest results. If SD was reduced, values were adjusted again and another simulation 

was made. This was repeated until the SD was same or greater as previous and then the 

previous parameters were saved. If the first calculated SD was increased, the starting 

values were adjusted to another direction and the best fitting value was identified with 

same procedure. 
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Figure 3.3: Decision chart of adaptive parameter identification algorithm for any 

parameter or parameters. 

 

Similar adaptive parameter identification algorithm as the algorithm for steady 

state was used to adjust any parameter or parameters. Figure 3.3 shows the algorithm’s 

decision chart. First, the reference RMSE and correlation were calculated. Next, the 

parameter was adjusted, and then the previous RMSE and sometimes correlation were 

compared to the latest results. If RMSE was reduced, values were adjusted again and 

another simulation was made. This was repeated until the RMSE was greater and then 

the previous parameters were saved. If the first calculated RMSE was increased, the 

starting values were adjusted to another direction and the best fitting value was 

identified with same procedure. In addition, if the improvement in RMSE was not 

significant, the correlation was also evaluated. Based on the change in correlation, 

parameters were adjusted again or previous parameters were saved.  

Insulin related actions were adjusted with four measurable parameters; amplitude, 

onset time, peak time and duration. The last three are parameters which averages insulin 

manufacturers report but can vary between users. Amplitude was used to adjust hepatic 

and peripheral insulin sensitivity, kp3 and Vmx, respectively. Onset time was sought with 

independent algorithm which calculated difference between time of administered insulin 

and time when glucose change rate went to negative. This was done in sections where 

bolus was taken to correct too high blood glucose and there was no upcoming meals. 

When bolus and meal were timed at the same time, the peak time of insulin bolus was 

analyzed with an algorithm that identified the peak from CGM data and sought 



30 

 

matching peak from simulated blood glucose data. The time differences between these 

peaks were used to adjust the insulin peak time. Last, the insulin duration was adjusted 

to match the active time of insulin bolus, thus the time when glucose change rate was 

close to zero after the peak. Average insulin active times can be also found in Figure 

2.2. 

Since above represented algorithms are based on correlation and RMSE, the 

simulation output fit to CGM data was evaluated with R to RMSE ratio that was 

designed to be used in this study only. Higher the ratio was, better the fit was. This also 

proofs the concept of algorithms, if parameter identifications steps are improving the 

training accuracy. Ratio was only use to compare simulation steps. 
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4. RESULTS 

4.1 Comparison of Simulation Programs 

Figure 4.1 shows the minimal GRS model build with Simulink 2014b Academic 

license. The model had to be constructed from single blocks such as integrator, thus it 

was logical to build the model from equations, but at the same time understanding of 

causalities between compartments got more difficult to perceive. 

 
Figure 4.1: Simple glucose regulatory system model build with Simulink 

 

 Simulink’s manuals, instructions and helps are well documented and they were 

easy to understand. Because Simulink is widely used, instructional sites and video 

tutorials can also be found. Simulink could not be used without MATLAB and this 

offered multiple opportunities: Different input and output formats were supported; the 

simulation could be run in script, thus testing, multiple user support and modularity 

were improved. 

 MathWorks have released a new version of MATLAB and Simulink twice-a-year 

and there has been significant improvements included. For instance, in 2014b version 

has been implemented a simulation data inspector which enabled the recording of 

different signals between the simulations. Therefore, it was easy to compare the signals 

when developing the model functionalities and modules.  

 As mentioned above, Simulink is a MATLAB add-on, therefore the price of 

Simulink includes also MATLAB’s price. In addition, Simulink product family includes 

add-ons also for real-time simulation, testing, verification, validation, etc. These are 

individually sold extras that are not included the evaluated price. 
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 Second tested simulation software was Ventana Systems Vensim PLE 6.3. Program 

was easy to use and the minimal GRS model was fast to build. Figure 4.2 shows the 

model from which the causalities of GRS are simple to understand. The user interface 

was simple and required only a little time to understand.  

 
Figure 4.2: Simple glucose regulatory system model build with Vensim 

 

Import and export formats were limited, thus interfaces with other programs was 

poor compared to Simulink. Although, worth mentioning is that commercial license 

offered better data connectivity. Ventana Systems has only released four version from 

preceding 5 years and there has not been any major improvements. Model could not be 

run in script or loop which made it hard to test and especially, would have made it hard 

to implement the model for multiple users. Also, there was no possibility to build 

individual modules. Although, the tested software was a free version, it lacked 

significantly in needed requirements.  

 Next tested software was Simantics which is an open platform for modelling and 

simulations. Its performance should be excellent with data triple engine on the server 

side. At the same time it was developed to be scalable and reliable which were 

definitely an advantages for Quattro Folia’s planned use of the model. The build GRS 

model in Figure 4.3 resembles the model build with Vensim in Figure 4.2, thus the 

modelling view and structures are similar to Vensim. Yet, Simantics was not as easy to 

learn and simplicity of the program was the worst of all four. For instance, the end-user 

wiki was clumsy to use and it took a lot of time to start to build the actual model. If 
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compared to Simulink which was also hard to get into, the manuals and instructions of 

Simantics were not as explicit as in Simulink. 

 
Figure 4.3: Simple glucose regulatory system model build with Simantics 

 

 The amount of features was low in Simantics and testing features or possibility to 

run in a script were missing. Also the modularity and compatibility to other programs or 

formats were weak. The best thing in Simantics was the price. It was free. This also 

raises questions about the future developments and certainty of the new versions or 

updates. Nevertheless, if software is stable already and its functionalities are meeting 

the Quattro Folia’s needs, it could be used years even without updates. 

 The last tested simulation software was Powersim Studio 9 Demo which user 

interface was quite pleasant. It was easy to get into and the basic features were simple to 

find. The build model shown in Figure 4.4 looks similar to Vensim and Simantics. 

Unlike other programs, Powersim offered possibility to the build model as equations 

which was a great way for understanding system dynamics and validating that the built 

model was as it was in equations.  
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Figure 4.4: Simple glucose regulatory system model build with Powersim 

 

 But as Vensim and Simantics, Powersim lacked in amount of supported formats 

and its testing possibilities and multiple user support were weak, thus it did not have 

possibility to run in script nor it could be exported to other programs as an independent 

function or block. Also, Powersim was the most expensive program of these four and it 

has not have as many new releases or updates from preceding 5 years as has others. 

 

Table 4.1: Decision matrix for evaluating simulation programs. Weights are calculated 
according to the results of questionnaire. Bolded values are the best in each row. *Row 
values are normalized between 0-5. 

Demanded quality and 
Functional requirements 

Relative 
Weight Weight 

Simulation software 

Simulink Vensim Simantics Powersim 

Input/Output interfaces* 10.43 6.80 5.0 0.2 0.0 0.4 
Wide options for features 10.12 6.60 5.0 2.5 0.0 2.5 
Easy to learn for developer 9.82 6.40 1.0 5.0 4.0 4.0 
Good future proofs* 11.66 7.60 5.0 0.7 2.1 0.0 
Low price* 11.96 7.80 0.0 0.0 5.0 0.0 
Simple to use and maintain 10.12 6.60 2.0 3.0 1.0 3.0 
Performance to support 
simultaneous users* 10.43 6.80 5.0 0.5 0.0 0.0 

Modularity 12.88 8.40 2.0 3.0 3.0 3.0 

Testing possibilities 12.58 8.20 5.0 2.0 1.0 3.0 

 
Weight 216.4 120.4 120.9 114.3 

 
Relative Weight 37.83 21.05 21.13 19.99 
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Table 4.1 shows the results of decision matrix. Simulink was superior at 

input/output interfaces and multiple user support. It offered wide range of import and 

export options and possibility to run in script makes testing possibilities simpler. Also 

options for features, future proofs and testing possibilities were better than in other 

evaluated programs. Furthermore, Simulink had the highest relative weight. 

4.2 General Dynamic GRS Model 

The general GRS model was selected based on literature review. One model was 

superior in terms of validation. Dalla Man et al. [33] used wide range of flux data to 

parameter identification. As mentioned in Section 2.2.2, they had data from 204 

subjects and the unit process model consist four compartments; liver, gastrointestinal 

track, muscle and adipose tissue and beta cell. Model was also used basis for the first 

Food and Drug Administration (FDA) approved in silico population. Therefore, the first 

build model was same as shown in Figure 2.7 and described in Equations 2-11 to 2-19. 

 
Figure 4.5: Gastro-intestinal track subsystem modeled with Simulink and described in 
Equation 2-11. Gray block, k_empt, is another subsystem that describes the nonlinear 

function of gastric emptying. 

 

 For the sake of space, here is only shown one example how the subsystems are 

modeled with Simulink. Figure 4.5 shows how the dynamic Equation 2-11 is 

represented in Simulink. Input signal is the amount of ingested glucose D at time t. 

After various grinding and absorption processes in stomach and guts the subsystem 

output, glucose rate of appearance in plasma, is generated and added to plasma glucose 

compartment in glucose subsystem. Above described subsystem is the gastrointestinal 

track in Figure 4.8. 

 Validation was done against clinical data and Figure 4.6 shows the results from 

literature compared to the model’s subsystem outputs. The gray are represents mean ± 1 

standard deviation (STD) and as can be seen in the Figure, the inter-subject variability is 

high especially in plasma insulin concentration and in endogenous glucose production.  
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Error with the clinical averages and simulated data is shown in Table 4.2. RMSE is 

relatively small and correlations are very high in each of the six examined signals. Here, 

plasma glucose unit is now in mg/dl in order to compare the results and superimpose the 

figure. Later, the plasma glucose unit is changed to mmol/L that is the SI unit. 

 

Table 4.2: Root mean square error (RMSE) and correlation (R) between simulated and 
clinical average data from [33]. 

Signal (unit) RMSE R 
Plasma Glucose (mg/dl) 6.46 0.99 
Plasma Insulin (pmol/L) 54.18 0.97 
EGP (mg/kg/min) 0.90 0.95 
Rate of Appearance (mg/kg/min) 1.33 0.81 
Glucose Utilization (mg/kg/min) 0.32 0.86 
Insulin Secretion (pmol/kg/min) 0.97 0.97 

Figure 4.6: Simulation data (in red) superimposed on clinical data from 204 subjects 
(gray area represents mean ± 1 STD range). [33, p. 1741] 
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The same GRS model be used to describe those type 2 diabetics who do not use 

additional insulin. Average parameters are in Appendix I. For insulin treated diabetics, 

an insulin delivery subsystem had to be included. Here, a two-compartment 

subcutaneous insulin transport model described in Equation 2-20, was used, because the 

parameter identification was done with a largest amount of subjects, thus statistically it 

was the most relevant. In addition, insulin injection had three options: bolus, basal or 

continuous insulin infusion via insulin pump. Yet, the option with insulin pump only 

enabled open-loop and not closed-loop control algorithm. Thus, there was no feedback 

loop to control the insulin pump’s insulin delivery. In addition, the remaining insulin 

production can be adjusted, but with type 1 diabetics it is usually zero. 

 
Figure 4.7: Simulation data superimposed on clinical plasma insulin (Ip) concentration 
from 7 type 1 diabetic subjects. Black circles are mean values with ±1 STD. [42, p. 7] 

 

 Insulin delivery model was also validated against clinical data. Figure 4.7 shows 

the comparison with plasma insulin concentration after the meal and simulated insulin 

concentration (in red) with the same ingested CHO and injected bolus. In addition, 

simulation was also done with ±1 STD error in continuous insulin infusion and prandial 

bolus. These are plotted in dashed blue line. RMSE and correlation between simulated 

and clinical average data were 41.21 pmol/L and 0.97, respectively. 
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Figure 4.8: Dalla Man et al. glucose regulatory model with the insulin delivery model 

added. Glucose related parts are in blue and insulin related in red. 

 

All validated subsystems were combined to the GRS model that is shown in Figure 

4.8 which is similar to Figure 2.8. Difference is an insulin delivery subsystem. Transfer 

and controlling signals are marked in solid and dashed lines, respectively. Red 

represents insulin related actions and blue glucose related. The exogenous insulin input 

with insulin pump is a sum of continuous insulin infusion and boluses. For MDI 

therapy, the exogenous insulin has two signals; one for basal and one for bolus 

injections. Both of the signals depends on the type of administered insulin, thus the 

onset, peak and acting time can be adjusted.  

4.3 Individual GRS Model and Parameter Identification 

Collected data from pilot weeks 1 and 2 to consist; 20 and 14 meals, 36 and 33 

bolus, and 34 and 28 SMBG measurements, respectively. RMSE and correlation of two 

glucose profiles; mean of CGMs and simulated blood glucose, are shown in Table 4.3 

and includes training and test results for both of the individual pilot weeks.  
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Table 4.3: Simulation error and correlation for two independent pilot weeks. Weeks are 
divided into training (1st-6th day) and test data (7th day). 

  Week 1 Week 2 

 
Train Test Train Test 

Simulation 
RMSE (mmol/L)  R 

RMSE 
(mmol/L) R 

RMSE 
(mmol/L) R 

RMSE 
(mmol/L) R 

Original 7.716 0.170 9.066 -0.173 9.360 0.019 10.559 0.418 
1 4.683 0.195 5.507 0.060 5.457 -0.010 5.216 0.560 
2 4.380 0.204 3.630 0.306 4.786 -0.028 3.727 0.466 
3 4.229 0.220 3.964 0.293 4.389 -0.044 2.825 0.446 
4 4.141 0.226 3.311 0.277 4.715 0.011 2.593 0.587 
5 3.992 0.245 3.542 0.185 4.612 0.003 2.604 0.571 
6 3.744 0.285 3.640 0.241 4.520 0.019 2.631 0.527 
7 3.646 0.285 2.809 0.292 4.322 0.011 2.761 0.587 

 

Figures 4.9 and 4.10 shows model input parameters and simulated blood glucose 

(simBG) in time. Input parameters were meals, bolus and basal insulins. Note that 

ingested carbohydrates are divided by 10 to fit the values in the same axis. Subplot A is 

the initial simulation without any parameter adjustment and C the best fit. Test data, 

right from dashed vertical line, shows the 24-hour blood glucose prediction. In addition, 

SMBG measurements are plotted also. 

 

 
Figure 4.9: Pilot week 1 recorded and simulated data. Plots from top to down: A is the 
initial simulation without any parameter adjustment; B is simulation 1, where the first 

parameter kp1 is adjusted and steady state sought by adjusting basal values of Il, Ip, Icon, 
Gp, Gt, EGP, Isc1 and Isc2; C is the last simulation number 7, thus the best parameter 

identification achieved. 
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Figure 4.10: Pilot week 2 recorded and simulated data. Plots from top to down: A is the 
initial simulation without any parameter adjustment; B is simulation 1, where the first 

parameter kp1 is adjusted and steady state sought by adjusting basal values of Il, Ip, Icon, 
Gp, Gt, EGP, Isc1 and Isc2; C is the last simulation number 7, thus the best parameter 

identification achieved.  

 

During the parameter identifications, 7 steps was used to obtain the best fit. In total 

of 22 parameters were adjusted. For both weeks those parameters were kp1, Il, Ip, Icon, 

Gp, Gt, EGP, Isc1, Isc2, BW, remaining insulin production, TDI, m2, kp2, kp3, Km, p2U, 

ke1 and ke2 and insulin onset time. For first week also parameter ka1 was adjusted. 

Some of the parameters were adjusted in multiple steps to obtain the best result. All the 

adjusted parameters were verified to be within physiological limits. For instance, there 

could not be negative values for insulin sensitivity as in Bergman’s model. Other 

parameters were kept untouched. For instance, changing of insulin related parameters; 

amplitude, peak time and duration, with the proposed algorithms did not improve test 

results. 

 
Figure 4.11: Correlation (R) divided by RMSE after parameter identification steps. Solid 

and dashed line represents training and test data, respectively. 
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  Figure 4.11 shows the improvement of R to RMSE ratio during the training and 

testing period. During the training period the ratio should be improved constantly in 

order to get better parameter identification. Testing period is only allowed to use as an 

independent period, thus it is not known during the training period but only predicted 

after the training period.  
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5.    DISCUSSION AND CONCLUSION 

Based on questionnaire, Quattro Folia Oy demanded simulation software that was easy 

to test and had good modularity. They also required low price and good future proofs. 

Minimal GRS model was built with four programs and Simulink had the highest relative 

weight according to decision matrix in Table 4.3, thus it was the best program for 

Quattro Folia’s criterions and therefore the maximal GRS model was built with it. One 

of the key factors was the testing possibilities that were the best in Simulink. In 

addition, the program enables comprehensive understanding of system dynamics, 

whereas other simulation programs are easier to learn and use, but lack in testing, future 

proofs and features. 

Maximal GRS model was then built and validated with Simulink. Table 4.2 shows 

the simulated general GRS model correspond with the clinical data; decent RMSEs and 

very high correlations. Only the glucose rate of appearance exceeded the 1 STD limit, 

but this was only after 6 hours after the meal. Similarly, insulin delivery model was 

shown to correspond with clinical data in Figure 4.7. RMSE was in acceptable range 

and correlations was very high. Only a small time difference can be seen at the start of 

simulation, since insulin delivery system here included insulin onset time which was 

based on rapid acting insulin average, thus delay was initially 15 minutes. Apart from 

first 20 minutes, plasma insulin concentration falls within the 1 STD limits. Also, 

insulin delivery system was made for MDI and insulin pump therapy. 

For first pilot week retrospective analyses, Table 4.3 shows the improvement of 

both RMSE and R during the parameter identification (i.e. training period). The same 

continuous improvement can be seen in Figure 4.11 where the R to RMSE ratio 

increases constantly and the best test results also was obtained with the best parameter 

identification results. For second week the lack of input data, particularly meal data, 

resulted in low correlation during the training. Although, test data in Figure 4.11 shows 

improved R to RMSE ratio, the result are not applicable. Figure 4.10 part C shows how 

the variance of simulated blood glucose has decreased which ultimately led almost 

constant simulated blood glucose. User reported only 14 meals in seven days and in 

three of those days had only a single meal. In order to get realistic parameter 

identification results, model needs to have input data which elevates and reduces the 

blood glucose, thus input data must include both meals and insulins, respectively. 

One solution could be to have a shorter pilot period. Model parameter identification 

could be done in one day or in 7 hours as Dalla Man et al. did [33] and then have a test 

period of the same length. This way even amount of ingested carbohydrates could be 

more accurate, since in this case it was based only on user’s estimation. The exact 

glycemic load of meal could be predefined and have even the blood glucose 
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measurements done with finger stick measurements, which brings us to the next error in 

the setup. 

Training period assumes that the reference CGM signal is without an error, thus the 

best possible simulated blood glucose can be as good as the CGM blood glucose 

estimation is. Since CGMs has their own independent algorithms to estimate blood 

glucose based on glucose measured from interstitial fluid, reference CGM signal here 

was chosen to be the mean of both devices.  

Yet, there has been recent report showing that CGM results could be improved in 

retrospective [46]. For future development, an implementation of this or similar method 

would be direct improvement to simulation results. Also, the better parameter 

identification itself would improve the results. This should be discussed further with 

system dynamics experts such as Professor Matti Vilkko.  

Since the model does not incorporate intrasubject variability of parameters such as 

insulin sensitivity, future physiological development ideas are to include the dawn 

phenomenon and high blood glucose effect on insulin sensitivity discussed in Section 

2.1.3. Latter especially in this case could have improved the results significantly, since 

the pilot user was relatively long periods over high blood glucose limit (i.e. over 12 

mmol/L). This can be observed from Figures 4.9 and 4.10. Also, the effects of stress 

that were discussed in the end of Section 2.2.2 would be relevant idea to take into 

account and furthermore, implement in the model. Unfortunately, an explicit model 

describing the effects of stress to GRS has not yet presented. Similar to stress, the 

effects of exercise should be included to model also. Recent publication have shown a 

promising results how to implement exercise subsystem to GRS model [47], and 

actually it is the next subsystem to be implemented in the model.  

 In conclusion, the simulation program best meeting Quattro Folia’s criterions was 

Simulink and maximal GRS model was built and validated with it. General GRS model 

was then adapted to correspond a pilot user’s physiological values. Parameter 

identification worked with extensive and intact input data, and blood glucose prediction 

for 24 hours showed low correlation and relatively small error for the test period. Yet, 

statistically more reliable results could be obtained with greater test subject amount.  

Model have possible usages from in silico testing to teaching causalities for diabetics, 

thus it is useful for research, validation and educational purposes.  
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APPENDIX 1: Parameters for GRS Model from 

Literature 

 
Part 1: Average parameters for GRS model [33] 
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Part 2: Insulin delivery subsystem average parameters[48] 
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APPENDIX 2: Full GRS Simulink Model  

 
Screen capture 1: Model view at the top layer 

 

 
Screen capture 2: Subsystem HUMAN at second layer of the model 

 
Screen capture 3: Subsystem GASTROINTESTINAL TRACK at third layer of the model 
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Screen capture 4: Subsystem k_empt at fourth layer of the model 

 

 
Screen capture 5: Subsystem LIVER at third layer of the model 
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Screen capture 6: Subsystem GLUCOSE at third layer of the model 

 

 
Screen capture 7: Subsystem BETA-CELL at third layer of the model 

 



53 

 

 
Screen capture 8: Subsystem INSULIN at third layer of the model 

 
Screen capture 9: Subsystem Hepatic extraction of Insulin at fourth layer of the model 
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Screen capture 10: Subsystem INSULIN DELIVERY at third layer of the model 


