

MAXIM TUOVINEN

REDUCING DOWNTIME DURING SOFTWARE DEPLOYMENT

Master of Science thesis

Examiners: Professor Kari Systä and
Professor Markku Renfors
Examiners and topic approved in the
Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing meeting 8.4.2015

i

ABSTRACT

MAXIM TUOVINEN: Reducing Downtime during Software Deployment
Tampere University of technology
Master of Science Thesis, 49 pages.
September 2015
Master’s Degree Programme in Information Technology
Major: Communication Systems and Networks
Examiners: Prof. Kari Systä and Prof. Markku Renfors
Keywords: software downtime, automation, configuration management, virtual-
ization, Puppet.

Software downtime refers to the time when software is unavailable or its operation is

prevented for some reason. New software installations, migrations and upgrades cause

downtime in the system which leads to loss in revenue and reduced general level of ser-

vice for the company. Difficult part is finding the right set of tools and practices that

minimize this downtime at different stages of software’s deployment. Choosing the right

tools that are compatible with company’s infrastructure is also challenging and typically

happens through trial and error.

The focus of this thesis is to study different means to reduce downtime during software

deployment. Study focuses on reviewing tools and practices that can be used to deliver

and deploy software to a production environment without service interruption. Research

was carried out as literature review by examining the documents and materials from dif-

ferent sources.

First part of the thesis presents the main factors behind downtime and different automa-

tion practices. Tools studied in this thesis are configuration management tool Puppet, hy-

pervisor based virtualization and Docker tool. Second part presents a developed software

deployment framework which models software delivery process from development to

production. Presented framework is composed of practices and tools that are presented in

this thesis.

ii

TIIVISTELMÄ

MAXIM TUOVINEN: Reducing Downtime during Software Deployment
Tampereen teknillinen yliopisto
Diplomityö, 49 sivua,
Syyskuu 2015
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Communication Systems and Networks
Tarkastaja: Prof. Kari Systä ja Prof. Markku Renfors
Avainsanat: ohjelmiston hukka-aika, automatisointi, konfigurointi, virtualisointi,
Puppet.

Tuotantoympäristössä olevalla ohjelmistojen hukka-ajalla tarkoitetaan aikaa, jolloin ky-

seistä ohjelmistoa ei voida käyttää tai sen toiminta on estynyt tietystä syystä. Uuden oh-

jelmiston asennus, siirtäminen ja päivittäminen johtavat hukka-aikaan, mikä aiheuttaa

yritykselle taloudellista häviötä ja heikentää yleistä palvelutasoa. Haastavinta on löytää

oikeat työkalut ja toimintamenetelmät, jotka minimoivat hukka-ajan eri ohjelmiston käyt-

töönottovaiheissa. Ohjelmiston nopea käyttöönotto riippuu yrityksen prosesseista ja käy-

tetyistä työkaluista. Jälkimmäisen optimointi ja yhteensovittaminen osana muita työka-

luja eivät aina ole selkäitä ja tapahtuu tyypillisesti yrityksen ja erehdyksen kautta.

Tässä diplomityössä tutkitaan keinoja, joilla hukka-aikaa voidaan pienentää uuden ohjel-

miston asennusvaiheessa. Tutkimuksen tavoitteena on tutkia työkaluja ja toimintatapoja,

joilla ohjelmisto voidaan toimittaa ja ottaa käyttöön tuotantoympäristössä ilman tarpeet-

tomia palvelukatkoja. Työ perustuu kirjallisuusselvitykseen tutkimalla eri lähteiden do-

kumentteja ja aineistoja.

Työssä käsitellään keskeisimmät syyt ohjelmiston hukka-ajalle ja esitetään eri automaa-

tion toimintatapoja. Työkaluista tutkittiin konfigurointityökalua Puppet, virtualisointia ja

virtualisointityökalua Docker. Tutkimukseen pohjautuen esitetään toimintamalli, joka on

suunniteltu ohjelmiston toimitusketjuksi kehitysympäristöstä asiakkaan toimintaympäris-

töön. Kehitetty malli koostuu toimintatavoista ja työkaluista, joita tässä työssä esitetään.

iii

PREFACE

This thesis is a result of the work started in Nokia Networks at Tampere Finland. I would

like to sincerely thank my supervisor at Nokia Networks Timo Vehmaro for granting me

this opportunity to work in such well-known and respected organization.

I would also like to thank Professor Kari Systä at the Tampere University of Technology

for his valuable comments and guidance during the writing process. Finally, I want to

take the opportunity to thank my family, friends and amazing colleagues for their constant

support and encouragement on this journey. Thanks for making this time a rich and won-

derful experience!

Tampere, September 2015

Maxim Tuovinen

iv

CONTENTS

1. INTRODUCTION .. 1

2. SOFTWARE DOWNTIME .. 3

2.1 Motivation .. 3

2.2 Types of software downtime .. 5

2.2.1 Unplanned software downtime .. 5

2.2.2 Planned downtime .. 6

2.3 Problem with manual deployments .. 7

2.4 Software dependencies ... 8

3. DEPLOYMENT PIPELINE FOR SOFTWARE DELIVERY 10

3.1 Overview .. 10

3.2 Implementing pipeline.. 11

3.3 Monitoring .. 14

3.4 Making deployments more reliable .. 16

4. CONFIGURATION MANAGEMENT WITH PUPPET 18

4.1 Overview .. 19

4.2 Puppet manifests .. 20

4.3 Feedback... 23

4.4 Summary .. 24

5. VIRTUALIZATION AND LINUX CONTAINERS ... 25

5.1 Overview .. 25

5.2 Virtualization vs Containers ... 26

5.3 Redundancy .. 29

5.4 Reducing unplanned and planned downtime ... 30

5.5 Docker Containers .. 32

5.6 Docker Images.. 34

6. DEPLOYING SOFTWARE WITH ZERO DOWNTIME 36

6.1 Zero- Downtime deployments .. 36

6.1.1 Blue Green deployments .. 36

6.1.2 Canary release .. 37

6.2 Requirements for deployment setup ... 39

6.3 Proposed deployment framework... 39

6.3.1 Provisioning environments .. 41

6.3.2 Running tests .. 43

6.4 Discussion .. 44

7. CONCLUSIONS ... 48

REFERENCES .. 50

1

1. INTRODUCTION

Deploying software systems with zero downtime is important for large companies to en-

sure that end users have access to the system all the time. Ideally, the service should to

be running throughout the year without any interruptions. However scheduled mainte-

nances and unexpected events cause the system to fail or to be out of order. Completely

removing software downtime can be achieved through proper planning, testing, and tools.

In order to achieve zero downtime or to minimize it, the system must have a proper con-

figuration and automation backing it up. Using a right mix of development tools and prac-

tices is key when reducing downtime during installation.

This thesis was started as a research project at Nokia Networks R&D department. The

general purpose of the project was to investigate means to reduce software downtime,

since any kind of downtime in the organization caused major financial losses. Application

area of this research are large software systems that provide critical services for the users

where downtime of the service is minimized. An example of such service are telecom-

munication service providers. Based on this the research topics are listed below.

 Investigate available technologies and tools that can be used to reduce soft-

ware downtime.

 What deployment methods businesses use to deploy their applications?

The software deployment process was inspected from an installation point of view, where

a new software is installed to customer’s site. Installation means in this context both clean

installations, where a completely new software is installed to the customer, or upgrade,

in which the current software is upgraded to a newer version. Research work was done

around practices and tools that can be used during the deployment process. Study included

continuous deployment practices and configuration management tool Puppet. Research

also included virtualization techniques and an overview of Docker virtualization tool is

given. The main research problem for this thesis is defined as:

1. How can we deploy large software to a customer system as fast as possible

and how to do it in real time so that users perceive second to none down-

time in the system?

The research was carried out as a literature survey on Puppet and Docker tools and con-

tinuous delivery practices by evaluating their feasibility for software deployment. Puppet

2

tool was selected because it provides a high level of abstraction in configuration manage-

ment and it scales well with large IT infrastructure. High abstraction means that Puppet

can manage large portions of the IT infrastructure including servers, network devices,

applications and more. Docker tool is a disruptive technology in virtualization market and

it was selected because it provides an alternative virtualization method with its own ad-

vantages for faster software deployment. At the end of this thesis a software deployment

framework is presented which utilizes automation patterns, virtualization and Puppet tool.

The actual implementation of the framework is not part of this thesis but it is evaluated

based on the requirements for the framework and literature documents.

The structure of this thesis is divided into seven chapters and is organized as follows.

Chapter 2 is the introduction of software downtime, different sources of downtime and

explains why it should be avoided in companies. Chapter 3 starts addressing the research

problem of this thesis by introducing automation practices. It explains why automation is

required for deployment and goes through automation patterns. An overview of deploy-

ment pipeline is presented which acts as software deployment pattern for the remainder

of this thesis. At the end of the chapter, a summary is given with patterns for automated

infrastructure. Chapter 4 covers configuration management tool Puppet. Chapter 5 de-

scribes hypervisor virtualization and introduction to Linux containers. In this chapter an

overview of Docker is given. Chapter 6 introduces different deployment methods com-

panies can use to deploy software. It also introduces proposed software deployment

framework that is based on the tools and practices described in this thesis. Evaluation of

the framework is given. Finally, Chapter 7 sums up this thesis with conclusions and future

work.

3

2. SOFTWARE DOWNTIME

Big enterprise software systems are very complex. They require planning, work, testing,

and a general ongoing effort by knowledgeable people at every phase of implementation.

Software must be tolerant to failures and inappropriate inputs as well as hardware must

be able to automatically recover from failures. [1] If not carefully planned, unexpected

system failures will cause the loss of revenue and degrade user experience especially in

industries that rely on 24-hour service. Success of reducing software downtime depends

on the right set of technologies in the organization and collaboration between responsible

personnel.

Achieving complete zero downtime is possible but is a costly operation. Typically the

business needs to evaluate what is the maximum available downtime that the business

can tolerate without having too huge loss in business and services to its customers. Most

businesses don’t usually put emphasis on this as they mostly haven’t experienced any

catastrophic failure and put a value on it. Hence businesses usually don’t allow any down-

time in their production environment. During unplanned downtime, if company doesn’t

have any repairing policy the result on the business will be severe. The business needs to

estimate the acceptable level of downtime that it can endure and build own solution on

top of that assumption. Downtime can be reduced by using of proper hardware, offsite

replication and virtualization. In this chapter importance of software downtime is dis-

cussed as well as different sources of downtime.

2.1 Motivation

In this thesis downtime is defined from end users point of view, where if the end user

cannot access the system or get the job done on time, then the system is considered being

down. Typical sources of downtime come from software or hardware failures. Factors

that may be causing this are such as the failure of the server itself, disks, the network,

operating system (OS), or key applications. Downtime doesn’t necessarily require the

failure of a node or hardware but degradation of performance can also be included. This

can include slow server or network connection or data inaccessibility. [1]

Impact of software downtime on the business depends on multiple factors. Factors that

affect are such as lost money transactions, idle time of production, required repairs to get

the system back online and idle time of employees. Depending on the size of production

environment the lost revenue can wary from thousands of dollar to a million. For example

if the business uses only one server in production, then if this server happens to go down

then the whole production goes down and everything is in standby. This affect is less

severe on businesses that have multiple servers in production and have redundant servers

4

on standby. Now if one server happens to go down then its impact is less harmful as

another servers will keep the production running.

The cost of downtime can be divided into two categories, direct and indirect costs. Directs

costs means all that lost revenue that would be have been received if the production was

operating normally. This cost depends upon the nature of the company’s business, the

size of the company, and the criticality of IT systems to primary revenue generating pro-

cesses [29]. The amount of loss revenue in different industries is approximated in Table

2.1.

Table 2.1. Estimation of direct costs of downtime in different industries [29].

Industry Average Cost / hour

Brokerage services $6.48 million

Energy $2.8 million

Credit card $2.58 million

Telecomm $2 million

Manufacturing $1.6 million

Retail $1.1 million

Health Care $636 000

Media $90 000

Downtime causes indirect costs as well. These effects are [1]:

 Bad customer experience. If the site is down, or the customer cannot use the ser-

vice properly then he will have a bad experience with the service. Depending on

the past experience he might completely stop using company’s services and go

away. Negative experience will generate bad word-of-mouth among customers

which further damages the company’s reputation. This is especially problematic

if bad word-of-mouth ends up on the internet where it can spread widely and fast.

Losing existing customers and bringing in new ones requires much more time and

money than retaining old customers.

 Bad publicity. When large businesses experience system downtime, then chances

are that it will make it to the news. Bad press will injure company’s reputation

and can also affect the market of the business. Typically bad publicity will affect

the stock price as in results the stock price will drop. This can further effect on

stock holders as they may perceive corporate weakness and sell the company’s

stock.

 Decreased employee morale. Bad publicity, customer complaints and stock drops

effect on the morale of employees inside the company. This can result in some

employees leaving the company and others may not work as hard if they believe

that things are going bad. If people are leaving the enterprise, then it can further

5

hurt the company’s reputation by reducing its attractiveness as possible employer

to future workers.

2.2 Types of software downtime

2.2.1 Unplanned software downtime

Unplanned software downtime is in many cases the result of unexpected software behav-

ior, hardware failure, human made error, power failure and so on. These outages are char-

acterized by the fact that they happen in uncontrolled matter and are hard to predict. Dif-

ferent sources behind unplanned downtime are presented in Figure 2.1.

Figure 2.1. Different causes for software’s unplanned downtime. [1]

The percent values can vary based on different organizations but the major factors stay

the same. Three major factors behind unplanned downtime are system and hardware fail-

ures and human errors. Main sources of downtime [1], [2], [3] are:

 System Software. Software bugs are source of failures and can be difficult to de-

bug depending on the complexity of the system. Over a long period of time the

software will show degrading performance and increasing failure occurrence rate.

This is due to error conditions that occur over time and eventually lead the system

to failure. Sources that can cause outages can range from several layers of a com-

plex software system, ranging from the OS to the user application level. Restarting

the software from a clean state is one way to reduce this degradation.

 Hardware. Hardware failures are one the most common reasons behind failures.

If hardware outage occurs, it may take a long time for a new replacement or if

there isn’t any redundancy built in. Components with moving parts are the most

prone to hardware failure. Typically, this includes hard drive disks, fans and

System Software; 27%

Hardware; 23%
Human error; 18%

Network Failure; 17%

Natural Disaster; 8%

Unknown; 7%

6

power supplies that have moving parts with high speeds and complexity. To com-

bat these shortcomings the system should have extra fans, extra power supplies

and good hardware diagnostics tools to detect problems once they occur.

 Human error. Humans are prone on making manual errors during configuring or

installing the product especially if there are many steps during deployment. Also

errors occur as humans don’t completely understand the way the system operates.

Deploying a large system is in many cases manually intensive process where the

chance for missing a simple configuration or configuring in wrong manner is high.

In the optimum scenario there is no human interaction during deployment or to be

as small as possible and letting the software configure itself though the specified

rules.

2.2.2 Planned downtime

Planned downtime is often referred to as scheduled maintenance. Planned downtime hap-

pens in a controlled manner where necessary procedures are carried out to the system

either to repair it or adding new functions. This means updating or replacing current hard-

ware, components, updating software version or bringing in completely new system

online. Typical reasons for planned downtime are:

 Replacing hardware part

 Firmware upgrade

 Upgrade/exchange the storage

 Configuration of the connection pool

 Configuration of the cluster

 Upgrading the cluster software

 Upgrading the database software

 Deploying a new version of software

 Moving application to another data center

Scheduled maintenances are typically performed during the time when the usage of the

system is low so that the effect of downtime to the users is minimized [1]. Planned mainte-

nances occur regularly and are scheduled weeks or months in advance. During unexpected

outages, scheduled downtime is required to restore production environment to its normal

state. This further increases the total downtime of the system as once unplanned downtime

occurs then it has to be repaired during scheduled downtime. Reducing hardware mainte-

nances can be done by using hardware from certified vendors with properly tested hard-

ware.

7

Planned maintenances can be a source of downtime since these procedures may fail de-

pending on their complexity. These failures will cause unexpected downtime in the ser-

vice. Success of planned maintenances is influenced by the following factors [42]:

 Automated process. Easy and repetitive tasks are automated for reduced human

involvement to lower the risk of human error. Manual procedures need to be

clearly documented to reduce human error when executing procedures.

 Many small steps. Small simple procedures are more likely to succeed than one

large step at the time. For example, a software upgrade that does not require a

database schema change and data migration is more likely to succeed than an up-

grade that has major database changes.

 Validated scripts. Scripts are thoroughly tested to uncover possible bottlenecks

and failure scenarios that may occur during the procedures. Quality scripts have

fault tolerance built inside them to enable rollback and safe stopping points in case

of unexpected errors.

Software upgrade is a common procedure that is carried out during scheduled mainte-

nance. Upgrades are needed to implement new features in the application, in order to meet

changing user requirements [43]. Typical upgrade process consists of bringing the node

offline, performing the upgrade and restarting the service. During upgrade the service

traffic is routed to another active node so that the service is not interrupted [42]. This type

of upgrade is called live upgrade in which the service is accessible during the mainte-

nance.

2.3 Problem with manual deployments

Nowadays modern applications of any size are complex to deploy as they have many files

associated and dependencies between them. Typically organizations deploy their appli-

cation manually and are performed by team or set of individuals. Each step during de-

ployment if done manually is prone to human error. Problems associated with manual

releasing are presented. [2]

 When deployments aren’t fully automated, each deployment is slightly different

with different errors. Debugging these errors is a time consuming task and bugs

can be hard to track down.

 A manual deployment process has to be properly documented. Maintaining the

documentation is a complex and time-consuming task involving collaboration be-

tween several people, so the documentation is generally incomplete or out-of-date

at any given time. Automated deployment scripts serve as documentation, and it

will always be up-to-date and complete, or the deployment will not work.

 Manual deployments depend on the deployment staff and their expertise.

8

 Performing manual deployments contains a lot of repetitive tasks that require cer-

tain degree of expertise. Asking experts to do boring and repetitive, and yet tech-

nically demanding tasks is increases the risk of human made error Automating

deployments frees staff to work on other higher-value activities.

 Deploying manually is a time-consuming and expensive process to do. Also mak-

ing sure that it works can only be done by performing it. An automated deploy-

ment process is cheap and easy to test.

 With a manual process, there is no guarantee that the documentation has been

followed. Only an automated process is fully auditable.

Automation is used to lower software cycle time. Cycle time means all the steps that the

software has to undergo from development to production environment. Since errors will

occur in production, it is vital to fix these and push the application back into live environ-

ment as fast as possible. Without automation, building, testing and deploying our software

will take more time and effort and increases overall costs.

2.4 Software dependencies

Software dependency means those components, packages, files and libraries that the soft-

ware depends on in order to function. These dependencies need to be declared and be

available during installation process so that no errors occur. Problems may occur if the

software relies on a specific version of dependent software, and that dependent software

is not available on user's machine [45]. Software might function properly in development

environment, but deployment in the target environment can fail due to different depend-

ency problems. Conflicting versioning, different operating systems and environments can

all break the installation and cause downtime in the system.

During deployment, the software package must be properly built with required compo-

nents and their dependencies available. UNIX systems such as Linux use a package man-

ager for deploying new software packages and for maintaining the installation. Package

managers define how a software package should be built and which packages it depends

on. For example, RedHat-based systems use rpm packages and yum to install them,

where the build specification is detailed in the RPM spec files. Package managers are

good to keep the software up to date and declaring dependencies but have limitations to

support different software builds or specific compliers as the manager takes care of spe-

cific version of the software. Other versions need own package manager. [46]

Different software components are often developed by different groups of people and

their dependencies are not clearly stated [16]. This can make software deployment a risky

process as the installation might not be successful and can disrupt existing system opera-

tion. Application build process uses libraries, binaries, files and source code or something

9

else. Once a new build is created from the source code, it can have dependencies to spe-

cific libraries and components. If versioning for these components changes then applica-

tion build process can fail as the libraries it dependents on are not found. Before

Traditionally different components and libraries are separated between build-time or

runtime dependencies and have them in separate directories inside a version control re-

pository. Build-time dependencies includes all components that must be present when

application is compiled. Runtime dependencies are those components that must be present

when the application is running. Each file in version control should also include their

version number to so that it is easier to detect which versions are up to date. Version

control need to be checked from time to time so that it doesn’t become too large and

unclear making it difficult to know which libraries are still in use. [2]

Software dependencies are typically discovered by the analysis of source code. These

relationships can be represented either by a data-related dependency or by a functional

dependency. Functional dependency is where function A calls for function B and data-

related dependency is where a particular data structure modified by a function and used

in another function [26]. Dependency hell describes situations when an application de-

pends upon one particular version of something, but is deployed with a different version.

This is common problem where there are lots of application libraries stored in a directory

without any versioning between them. Once updated versions of existing libraries are

added to this repository, they would override previous libraries. This causes the applica-

tion building process to fail as it depends on a certain version of libraries. Dependency

types can be divided into four different categories [28]:

 Circular dependencies. This dependency problem occurs when applications com-

ponent A depends on another component B, but component B also depends on

component A, thus creating dependency cycle where both components depend on

each other. Having circular dependency is a sign of bad design and too tight com-

ponent coupling.

 Long dependencies. Application component A depends on component B, which

depends on components C and so on to component X.

 Conflicting dependencies. Separate applications depend on the same component.

 Many dependencies. Application depends on multiple dependencies. This makes

application downloads heavier as all components need to be downloaded.

Version control is one solution to manage dependencies. Establish a common rule to ver-

sion components based on the changes made to them. Other solutions include using dif-

ferent directories for different builds. In this case after the code is compiled the created

libraries and binaries are stored inside their own directories. Finally third party applica-

tions, such as Maven, can be used to manage and describe software’s dependencies.

10

3. DEPLOYMENT PIPELINE FOR SOFTWARE DE-

LIVERY

This part will begin addressing the means on how downtime can be reduced though tools

and practices. This chapter will cover the use of deployment pipeline during deployment

process. First an overview of the pipeline is given followed by discussion on how to im-

plement one. End part of this chapter focuses on the patterns that can be used for reliable

software deployment.

Deployment pipeline is a part of continuous delivery practice. Continuous delivery is a

series of practices designed to ensure that the code can be rapidly and safely deployed to

a production-like environments. New software changes are tested in the pipeline so that

it is production ready and the software can be reliably deployed into production. Contin-

uous deployment is a practice where new software features are pushed into production

environment automatically. New features are tested automatically and if they pass the test

then these new features get deployed to production environment. Difference between con-

tinuous delivery and deployment is the manual sign off in continuous delivery where there

are many software versions in standby ready to be deployed. With continuous deployment

there are no manual steps and new software is pushed to live environment automatically.

3.1 Overview

Automating software deployment gives the ability to rapidly and reliably deploy applica-

tion to a selected environment. Performing deployments manually is prone to human er-

rors as deployments consist of many steps. Ideally, the amount of manual work is mini-

mized and automated as much as possible. Deployment pipeline is a software delivery

practice which contains all the steps that the software must pass before it is production

ready. The essence of deployment pipeline is to give visibility and fast feedback of soft-

ware’s end-to-end process thus making deployments more reliable and fast. Pipeline mod-

els all the steps that the software undergoes from development to releasing to production.

Different tools are used to automate stages of the pipeline and have the ability to deploy

software with the push of a button. The outcome of using deployment pipeline is an au-

tomated and reliable process for delivering software to target environment. Figure 3.1

shows an example deployment pipeline with different stages during software’s lifecycle.

[2]

11

Figure 3.1. Example deployment pipeline with different stages.

The process starts by committing changes into version control system. This triggers the

first instance, build stage, in which the code is compiled, tested and binaries created if the

tests are successful. These binaries get stored then in their own repository and moved onto

to the next stage. Next stage runs automated tests against the new binaries. Here the new

application gets deployed into separate environments where the tests are performed. Dif-

ferent tests can be done simultaneously for reduced cycle time. Successful test candidates

then get stored into own repository from which they are ready to be deployed to produc-

tion. Feedback is sent at each stage to inform what pipeline stages the build has passed or

failed. [2]

It is often easier to perform a release once the process is automated so that releases can

be performed more frequently. Getting feedback that is fast and relevant is one major

aspect of the pipeline. As the build passes each stage its reliability increases which means

that the build become progressively more production ready. The objective of feedback is

to eliminate unfit release candidates as early in the process and get feedback on the cause

of failure to the teams rapidly. Any build that fails a stage in the process will not generally

be promoted to the next. [2]

3.2 Implementing pipeline

Pipeline provides a framework that describes the stages that the software must undergo

from source control to production. Version controlled repository is used for production

ready builds which then can be released to production [9]. First step of implementation is

identifying the stages that the software must go between development and releasing.

These stages will serve as a base of the pipeline where each stage acts as a sign off gate

for the software build. Once the build passes a set of validations it will be promoted into

the next stage and so on until it release-ready. Each stage generates report that is the sent

12

to its own respective repository. If the build does not pass the stage it will be returned to

repository. Possible stages to use in deployment pipeline are [2]:

 Unit testing. Testing certain functions of the code and verifying that they work

appropriately.

 Acceptance testing. Acceptance test verifies that the new build delivers busi-

ness value to the customers by showing that the requirements for the applica-

tion are met.

 Performance testing. Testing the performance of the system under a particular

workload and that it meets certain criteria’s.

 Usability testing. Testing the software from end users point of view determin-

ing how easy the software is to use and how convenient it is.

 Code review. Searching for software bugs or any human made errors.

Above listed tests are a number of the tests that developer can decide to use for software

as stages in the pipeline. Once the different stages are identified, they are arranged into

an ordered pipeline in which each stage has certain inputs and outputs. Parallelization can

help reducing the cycle time of the software by running different tests at the same. Dif-

ferent tests running in parallel is illustrated in Figure 3.2.

Figure 3.2. Different tests running in parallel in deployment pipeline.

Running acceptance and usability tests in above pipeline can speed end-to-end delivery

process but can also increase total delivery time if the build has faults. For example, if

both acceptance and user tests are running at the same time and if the software build

happens to fail acceptance test, then the build needs to be repaired and run both

acceptance and user tests again instead of verifying acceptance test followed by usability

test. Pipeline presented in Figure 3.1 is very simple and shows a typical pipeline design

is a balanced between tradeoffs. Table 3.1 shows common tradeoffs.

13

Table 3.1. Tradeoffs when designing deployment pipeline. [9]

Ideal Tradeoff

All steps of the pipeline are automated. Requires substantial investment in automa-

tion tools.

Human re-work is expensive. Tests are carried out in parallel with other

tests which can pose a problem as some tests

might not be properly executed or some bugs

are missed if the personnel must focus on

many tests instead of focusing on just one.

Debugging these problems later on in the

pipeline will be more expensive and time

consuming.

Implement lots of environments to sup-

port testing phases.

Maintaining these environments can be ex-

pensive. This is emphasized if different envi-

ronments require their own dedicated hard-

ware which in large operating environments

may not be an option.

With different stages of the pipeline identified, the next step is to investigate how these

stages can be fully or partially automated. Typical early stage that is automated is the

software build process in which binaries are created from the source code. In this context

binaries mean the created executable application from the source code which is executed

on a machine. With fully automated build process, every time a commit is made in the

source code the monitoring software will generate automatically a new build of the soft-

ware which is stored in a version control system. Jenkins is an open source tool that trig-

gers new build process at every commit stage in the code or at different scheduled times

[10]. In the example pipeline covered in this thesis, Jenkins is used as integration server

to run an automated build process of the source code. This type of automated build prac-

tice is also called continuous integration, where developers commit changes to the code

which then creates new build that are saved in a shared repository [2]. Continuous inte-

gration allows early detection of problems through collaboration as developers have ac-

cess to the same repository from which different builds can be tested by different devel-

opers.

Once the build process is automated the next step is to automate the deployment of appli-

cation onto different machines. For example the application needs to be deployed onto

dozen different machine to test it with different operating systems and third party soft-

ware’s. In this thesis creating different environments and deploying the application fast

are carried out though virtualization and configuration management tool Puppet. This

stage of the pipeline is critical as it will affect the rest stages of the pipeline significantly.

This is because the operating environments created here must match the production envi-

ronment so that developers can have the reliability of that if the build works on their

computer then it will work on all others as well. This is ensured by using the same method

to provision and deploying the application though its lifecycle to avoid the problem in

14

which the application works in one environment but not the other. Feasibility of using

mentioned tools are addressed in Chapters 4 and 5. Once major parts of deployment and

provision process are automated the application is pushed to the next stage in the pipeline

where different tests are done.

Testing the application is implemented at each stage in the pipeline. Automating these

tests can be done by writing scripts that perform them. Testing at each stage of the pipe-

line increases the reliability of the build as it fulfills the criteria’s set at these stages. This

can be implemented with the use of gateways at each stage. For example the integration

server notices that the build is finished with certain stage and triggers build to run in

another stage thus gradually moving through the whole pipeline. If the build doesn’t meet

the criteria’s of a certain stage then the integration server will notify about it to the devel-

oper in according manner. Many businesses will likely prefer manual sign offs [9] be-

tween stages for added certainty. Ideally after each run the summary of the procedures

are notified to the developer on the results of the test. Getting fast feedback of the run is

vital and notification is sent immediately after each run or after the build fails the run.

Motivation behind fast feedback is to identify possible problems as soon as possible and

fix them.

Implementing deployment pipeline will increase the chance of delivering software relia-

bly and fast as it gives the visibility of the whole delivery process and fast feedback.

Ideally deploying a new software to production is performed by push-button deployments

with little human intervention. Gateways are used in critical stages of the pipeline to en-

sure that the build is production ready. Each release candidate is validated that it has

passed the whole pipeline successfully with possible defects optimized and fixed. Each

pipeline design is different and depends on the application as there is no one-size-fits-all

solution. Good pipeline consists of: proper configuration management, automated scripts

for building and deploying the application and tests to prove that the application meets

the requirements [2]. To summarize functionality of deployment pipeline:

 Selected stages that the software must go through to be release-ready.

 Reporting after each stage it is successful or failed or once the build fails specific

stage. Each stage has certain criteria’s that the software must pass.

 Visibility of the software life cycle, showing progression of builds and what

changes are associated.

 Automated push-button like deployments.

3.3 Monitoring

During software deployment constant monitoring is necessary to detect defects in pro-

duction and during deployment process. Different metrics are gathered and compared

against baseline metrics to monitor the behavior of the new release. If something goes

15

wrong, the operations team is informed immediately about the incident, and use the tools

to track down the root cause of the incident and fix it [2]. User traffic is also monitored

to ensure that no data corruption happens when the users are switched between different

production environments. Monitoring needs to be implemented to minimize the effect of

unplanned downtime presented in Chapter 2. Alarms need to be triggered immediately if

the service is unavailable or reduced quality of service in the production e.g. high latency

in the network. Availability of the service over a certain period of time should also be

monitored to estimate the complete uptime of the service during throughout the year and

improve on change.

The essence of deployment pipeline is to provide feedback about the status of the software

build as it passes the stages of pipeline. Monitoring different components gives the assur-

ance that the systems performance doesn’t suffer when deploying new software. Feed-

back is used to provide metrics, and log files about the application in production. Reports

are used in development to fix bugs that were detected in a running system. [22] Follow-

ing attributes can be monitored during software deployment to ensure stability of the re-

lease: [22]

 Hardware. Monitoring physical hardware parameters will reduce the number of

hardware failures. Almost all modern server hardware implements the Intelligent

Platform Management Interface (IPMI), which monitors voltages, temperatures,

system fan speeds, peripheral health, and so forth. IPMI has four main features:

monitoring the hardware, ability to restart and recover the server, logging states

of the hardware and list of all monitored hardware components [30]. If any of the

hardware components reaches critical level then deployment process is aborted

and that component replaced before it fails.

 Middleware. Middleware means the layer of abstraction between hardware and

applications. Typically these are operating systems, hypervisors and kernels. All

these systems provide interfaces to get performance information such as memory

usage, swap usage, disk space, I/O bandwidth, CPU usage, and so forth.

 Software. Applications should monitor things that both operations and business

users care about, such as the number of business transactions, their value, conver-

sion rate, and so forth. They should record the status of connections to external

systems that they rely on.

Monitoring can be implemented through commercial and open source tools that will

gather everything described above across the whole data center, store it, produce reports,

graphs, and dashboards, and provide notification mechanisms. Well-known commercial

monitoring tools are Microsoft’s Cluster Server, HP Serviceguard and VERITAS Cluster

Server. Figure 3.3 illustrates monitoring dashboard with open source tool OpenNMS [23].

When selecting a system monitoring protocol or tool, make sure to select technologies

16

that are mature and that have reference sites and web sites as sources of good information

about successful deployments [1].

Figure 3.3. Open NMS Dashboard for monitoring application availability in produc-

tion.

3.4 Making deployments more reliable

Same deployment process should be used to deploy software to every environment,

whether its development, testing or production environment. Teams need to be sure that

the build and deployment process is tested effectively. Deployment process needs to be

practiced multiple times in different environments so that deployment process and scripts

are error-free. This makes debugging easier as when a deployment doesn’t work in a par-

ticular environment the problem most likely lies in the following causes:

 A setting in application’s configuration file is wrong.

 A problem with infrastructure or one of the services on which the application de-

pends is unavailable.

 Environment has different configuration.

If the production environment is simple or the enterprise have a sufficiently large budget,

there can be two exact copies of production environment where manual and automated

tests are performed. This environment needs to be exact copy of the real production en-

vironment with the same configurations so that teams are confident that the changes will

work in live environment. Binaries that get deployed into production should be exactly

the same as those that went through the pipeline process. Recreating binaries can cause

risk that some change will be introduced between the creation of the binaries and their

release, resulting that the binaries released will be different from the tested ones. [2]

The following configurations should be the same [2], [6].

17

 Infrastructure. Make sure that network topology, firewall configurations are the

same and software dependencies are clearly specified.

 Middleware. Operating system configuration, including installed patches and ser-

vices are the same.

 Applications. Third party software applications and application stack is the same.

Deploying software reliably depends on careful planning between teams that are respon-

sible for releasing. Result of good planning consists of proper documentation, automated

scripts, configuration and orchestration of the whole deployment process. Complexity of

the deployment depends on the size of application and its dependencies. Deployment

pipeline should be used to model the test and release process for the software. As the

build goes through the pipeline it must pass certain requirements that are set. When plan-

ning deployment process the following should be considered [2]:

 Configuration management strategy. Teams need to know how configurations are

applied to the operating environment and how they are managed.

 Description of the technology used for deployment. What tools are used when

deploying and documentation of each tool for debugging.

 Implementation of deployment pipeline. Whole deployment process is modelled

as a pipeline where each step is visible. This makes deployment more reliable as

possible bottlenecks can be spotted early and fixed

 Acceptance, capacity, integration, and user acceptance testing. These are neces-

sary tests to make sure the software operates in planned matter. Teams need know

how these are performed as part of the deployment.

 Rollback plan. Description of the steps required if something should go wrong

during deployment and restoring the system to previous state.

 Data migrations and keeping data synchronized between environments. If appli-

cation utilizes database servers then synchronization between environments must

be addressed. Worst case would be users experiencing data loss or data corruption

especially in money transactions.

 Problems with previous deployments and their solutions. Deploying multiple

times will make deployments more reliable process as teams get more familiar

with it. Each deployment should be documented so that time is minimized during

debugging if that problem has been previously solved.

18

4. CONFIGURATION MANAGEMENT WITH PUP-

PET

This chapter focuses on configuration management tool Puppet to automate different de-

ployment pipeline stages discussed in previous chapter. There are many configuration

tools to choose from besides Puppet, such as Chef, Ansible and Salt. Choosing the right

tool depends on the programming language and the complexity of the tool. Part of the

thesis was studying on how Puppet configures new environments, installs software pack-

ages and enables necessary services. For this study Puppet was evaluated based on the

literature and case studies available. Puppet was chosen because it is a mature technology

and is widely used in large enterprises. Puppet supports rapid scalability in infrastructure

and has flexibility in managing resources between managed devices. Puppet integrates

well with other products such as VMware, which is used at Nokia Networks and with the

ease of use and enhanced reporting Puppet felt as the right approach.

Puppet Lab’s website states:

“Puppet is a configuration management system that allows you to define the state of your

IT infrastructure, then automatically enforces the correct state. Whether you're managing

just a few servers or thousands of physical and virtual machines, Puppet automates tasks

that sysadmins often do manually, freeing up time and mental space so sysadmins can

work on the projects that deliver greater business value.” [11]

Configuration management tools work by specifying a system’s setup through a set of

rules. For instance, developer would specify rules for configuring the system’s basic in-

frastructure, storage and networking, necessary applications or services installed, and the

roles of the system’s users. Puppet is a tool that can manage all this in an automated

fashion. Puppet enables push-button deployments by executing scripts that install soft-

ware packages and configure necessary services in specific environment. This reduces

deployment time as manual configurations are not performed or are kept to a minimum.

From fault tolerance perspective Puppet can be used to provision new environments. For

example if a machine goes down, then Puppet is used to automatically redeploy the ap-

plication to a new machine with exact configurations as previous one. These features

support the idea for zero downtime deployments. Puppet allows automating the following

procedures.

 Installing software

 Configuring the software

 Managing services running on the machine

 Setting up users on the machine

19

4.1 Overview

Puppet is a Ruby based program that is developed by Puppet labs. Puppet can be used to

manage configuration on UNIX, Linux and Microsoft Windows platforms. Puppet is of-

ten used to manage a node throughout its lifecycle: from initial installation, to upgrades,

maintenance, migrations, and to software’s end-of-life. [8] Puppet provides a web-inter-

face that allows to manage state of monitored nodes with a graphical interface. On the

contrast in most commercial tools all management is done through command line and

graphical interfaces [38]. The language used in Puppet is declarative where the user de-

clares the state of the machine. Puppet uses a layer of abstraction that will take care on

the necessary actions needed to achieve that state.

Puppet architecture works in client-server fashion. Central server runs Puppet master dae-

mon which has a list of all machines that it controls. Each of the controlled machines runs

Puppet agent client that communicates with the master node. Puppet master contains all

configurations in modules that are then distributed to agent nodes by pull operation. The

agents talk to the Puppet master over client-certificate authenticated SSL and the master

hands out requested configuration catalog. In its default configuration, the agents work in

a polling mode and check in for catalog updates every 30 minutes [7]. Agents communi-

cate with the server to ensure that the environment that is under Puppet’s control is syn-

chronized with the latest version of the configuration. Puppet notifies the deployment

agents that a new specification is available and ready to be pulled. Workflow between

Puppet agent and master is illustrated in Figure 4.1.

20

Figure 4.1. Workflow between Puppet agent and master server.

Puppet agent first contacts the master server and requests for configurations. Puppet mas-

ter takes this information and compiles it into a catalog that is specific for the operating

system it is being applied to. This catalog is then applied to machine by the agent client.

[20] At the end of the configuration Puppet will generate a report on the changes made.

When a configuration changes, the master client will propagate new changes to all the

clients that need to be updated. Client agent installs and configures the applications, and

restarts the service if necessary. Configuration language used is declarative, and describes

the desired end state of the machine. This allows configuring from any starting state,

either a fresh copy of or existing machine. [2]

4.2 Puppet manifests

Puppet configuration files are called manifests which are grouped inside modules. These

manifests are written by domain-specific language to describe machine configurations.

[20] Modules hold all the resources related to specific configuration, this includes mani-

fests, templates and other files necessary. Modules can be used to configure new environ-

ment from their vanilla state. Listing 4.1 shows a general form that Puppet uses to declare

resources.

21

type {'title':

attribute => value,

}

Listing 4.1. General form of Puppet resource.

Resource consists of three components: type, a title, and a set of attributes. Resource type

describes what kind of resource is used configured. Typical resource types: files on disk,

cron jobs, user accounts, services, and software packages. Title is used to identify specific

resource to Puppet. Attributes are used to describe the desired state of the resource. [11]

Listing 4.2 shows an example configuration manifest file that configures postfix service.

Postfix is a mail transfer agent used in Linux environment to route mails. Once a postfix

module is created, user will then modify the manifest file with specified rules on how to

install the resource.

/etc/puppet/modules/postfix/manifests/postfix.pp

class postfix {

 package { postfix:

ensure => installed

}

service { postfix:

ensure => running,

enable => true

}

}

Listing 4.2 Puppet manifest file for installing Postfix service [2].

First line specifies the root directory of the manifest file. The class keyword declares a

group of resources that user wants to apply. The package statement checks if the postfix

package is installed, if not then it is installed. The service statement ensures that the

Postfix service is enabled and running. The ensure attribute controls whether or not the

service should be running. Attribute enable => true starts the service once the

machine is booted. If this is not desired the attribute is changed to enable => false.

Above manifest is a simple classification of how Puppet declares desired state of the ma-

chine. It describes what packages and services are need to be running. Puppet will take

care itself on how the installing procedures are carried out so that above state is achieved.

Next manifest file showcases flexibility on how user can declare additional rules when

configuring node. Listing 4.3 describes how sudo module is configured. Sudo is a pro-

gram designed to give limited root privileges to users.

22

/etc/puppet/modules/apt/manifests/init.pp

class sudo {

package { sudo:

ensure => present,

}

if $operatingsystem == "Ubuntu" {

package { "sudo-ldap":

ensure => present,

require => Package["sudo"],

}

}

file { "/etc/sudoers":

owner => "root",

group => "root",

mode => 0440,

source => "puppet://$puppetserver/mod-

ules/sudo/etc/sudoers",

require => Package["sudo"],

}

}

Listing 4.3. Example Puppet manifest file for configuring server to fetch application

builds from remote repository.

Above module contains a single class called sudo with three resources declared. First

package resource ensures that sudo package is installed. Second resource uses Puppet’s

if syntax for installing sudo-ldap package if the operating system is Ubuntu. Puppet will

check the value of the operating system fact for each connecting client. The require

parameter creates a dependency relationship between packages. Here the sudo package is

required by the sudo-ldap package. Hence, the sudo package must be installed first before

installing sudo-ldap. Last resource manages /etc/sudoers file and its first three attributes

specify the owner, group and permissions of the file. File is owned by the root user and

group and has its mode set to 0440 which gives read permissions. Next declaration

source, allows Puppet to retrieve a file from the Puppet file server and deliver it to the

client. It contains name of the file server and the location of the file. [8]

Last example shows how Puppet declares how resources are installed to specific node.

Node declarations identify a specific machine by its hostname, and tell Puppet which

resources should be applied to that node. Listing 4.4 specifies Posftfix service to be in-

stalled on nodes dev.example.com. Listing 4.2 specifies the installing procedures for post-

fix resource.

23

/etc/puppet/manifests/nodes.pp

node 'dev.example.com' {

include postfix

}

Listing 4.4. Manifest file that installs Postfix service to a specific node.

By default Puppet applies resources in the order they are declared in the manifest. To

avoid software dependency problems, described in chapter 2.4, resources can be man-

aged in specific order. Puppet uses parameters to manage dependencies between one or

more target resources. Target resource is the class resource, for example class sudo

from listing 4.3. Common parameters to manage dependencies are [11]:

 Before. Applies a resource before the target resource.

 Require. Applies a resource after the target resource. For example, declaring

require mysql in the manifest file will cause the mysql class applied be-

fore any class resource.

 Ensure. Declares what service needs be running, or stopped, package installed

or uninstalled and what file needs to be available.

4.3 Feedback

One of the objectives for using deployment pipeline was receiving fast feedback at the

end of each stage of the pipeline. Feedback makes deployments more reliable since de-

veloper can confirm that the deployment process has been performed correctly. This feed-

back can be provided with report documents, emails, checking into document repositories

and so forth. Report documents make debugging more bearable as good reports will in-

clude the applications information from previous and newly applied configurations.

Each time configurations are applied with Puppet agents, it will produce a detailed report.

Puppet clients can be configured to send reports at the end of every configuration run and

sent to master server. These reports include all of the log messages generated during the

configuration run and metrics related to what happened on that run. Reports [11], [15]

contain the following information:

 How long the configuration took?

 The total number of resources being managed.

 How many resources were skipped, because of either tagging or scheduling re-

strictions?

 Whether or not the resource was out of sync (didn't match the manifest).

 Whether or not the resource was changed.

 The number of properties (attribute values) that were out of sync.

24

 The number of properties that were changed.

 The total number of changes in the transaction.

These reports are in standard YAML (YAML Ain't Markup Language) [31] format and

are divided into three sections: time, resource and metrics. YAML formatted reports are

well supported by other tools such as Ruby. These reports can then be used by other pro-

grams that perform certain functions based on the data.

4.4 Summary

The goal of configuration management is to automate creation of new environments, con-

figuring application and minimize any manual errors that may occur. Puppet tool enables

faster software deployments by automating development, testing and production environ-

ments. Scalability ensures that Puppet can keep thousands of nodes up to date with right

configurations which manually would be impossible. During unplanned downtime creat-

ing new environments with necessary services fast is key to minimize the effect of down-

time by getting production up and running fast. Deploying new software with Puppet

ensures that the software is installed with predefined configurations and dependencies.

This will reduce the risk of human made errors during deployment which may cause

downtime.

Puppet tool gives an easy method to start manage infrastructure though version control

and automated workflows. Configurations are shared and accessed through directories by

other developers. To get started with configuration management developers need to think

small. For example looking up for any small actions which are performed manually when

setting up new environment. This can be something like configuring firewall, installing

users, downloading software and so on. Ideally with Puppet developers automate steps

that take the most time when deploying software. Another step is to think which stages

of the deployment process are most error-prone or requires manual procedures and start

automating from there. This might not seem much but when performing these tasks mul-

tiple times per day on many hosts the total process will take a lot of time. Instead write a

script that will perform this procedure. Automating software deployment needs to be

practiced multiple times. Measure each deployment with valuable metrics such as elapsed

time and improve the process from there.

25

5. VIRTUALIZATION AND LINUX CONTAINERS

This chapter will introduce hypervisor based virtualization and Linux container (LXC)

technology. Redundancy is also discussed and shown how it can help preventing system

downtime. Virtual environments are heavily used in Nokia’s infrastructure, thus it was

chosen as part of this thesis. Research was focused on investigating alternative methods

to traditional virtualization techniques. Because of this the research was conducted around

LXCs and Docker tool. VMware’s virtualization was selected because it is a leader in the

virtualization market [34], it supports wide variety of operating systems, hardware and

has solutions regarding reduced downtime.

LXCs offer a lightweight virtualization at operating system level and runs applications

inside containers which can be ported to any system that supports LXC. Virtualization

gives many advantages for software deployment by creating custom environments in

which application and its components are installed. First an overview of virtualization

and LXCs is given. This is followed up with introduction to redundancy and how it can

increase availability of the system. Docker tool is presented at the end of this chapter.

5.1 Overview

Virtualization describes the ability to run an entire virtual machine, including its own

operating system, on another operating system. Virtualization uses a layer of abstraction

on top of hardware resources. It enables creation of entire computer systems, called vir-

tual machines (VM) that run multiple instances of operating systems simultaneously on a

single physical machine. Each virtual machine is logically distinct, has been allocated

with necessary hardware resources from the host, has its own logical assignments for the

storage devices where operating system is installed, and can run installed applications

within its own operating environment. [28] VMs are isolated from each other completely

and can use different operating systems.

VMs are created and managed through hypervisors. Hypervisor is a layer of abstraction

that allocates specific amount of hardware resources to each VM including its memory,

processing power, storage space and network layer. Hypervisor has full control of the

physical machine’s hardware resources. [2] Figure 5.1 illustrates difference between vir-

tualized and traditional machine architecture.

26

Figure 5.1. Traditional machine architecture on the left and virtualized architecture on

the right.

The main advantages [2], [28] for using virtualized infrastructure are:

 Reduced costs. Developers may need to work with specific versions of tools, an

operating system kernel, or a specific operating system distribution. Virtualization

allows creation of own independent machine clusters and use them as develop-

ment platforms. Reducing the amount of hardware used will reduce overall costs

which overtime will result in significant cost savings.

 Improved downtime recovery. Virtualization has the ability to migrate virtual ma-

chines from one host to another during outage. Booting up a snapshot is faster

than typical server thus reducing downtime. These snapshots can be taken

throughout the day ensuring that data is up-to-date.

 Testing. Developers can create base images that contain proven configuration of

the system. Then apply own configurations and test them. If something goes

wrong or just unsatisfied with the changes then changes are erased by reverting

back to the base image. Virtualization also enables speedy testing as multiple tests

can run in parallel between VMs. For example, developer wants to test how the

application works with different browsers, he can create own VM for each

browser and run the tests at the same time instead of testing them one by one.

5.2 Virtualization vs Containers

Linux container technology is a lightweight form of virtualization that performs the same

functions as a typical VM. LXC creates an environment that is close to standard VM but

without the use of separate kernel and guest OS. Traditional virtualization abstracts the

hardware layer of a machine, meaning that there is no need for actual physical hardware

for a VM. Hypervisor allocates hardware resources to each VM and serves as an abstrac-

tion between hardware and VMs. Containers abstract the operating system layer, elimi-

nating the need for having an OS to run application. Removing the need for additional

OS will increase the performance of the system significantly.

27

Containers inside the host share the host's resources with all other containers and pro-

cesses allowing to dynamically increase processing power if needed. VMs have limited

amount of resources to use and can only use allocated amount of resources to operate.

This translates into greater resource usage, redundant running processes, and performance

overhead [13]. Figure 5.2 illustrates difference between LXC and VM architecture.

Figure 5.2. Comparing Linux container and traditional virtual machine architecture.

The problem with traditional VM approach is over allocation and uneven use of hardware

resources. For example, if a VM uses 2 gigabytes of memory to operate but it has been

allocated with 4 gigabyte of memory for its use and once the VM is booted this memory

is instantly reserved. Another example is where a server uses ten VMs, each with 4 giga-

bytes of memory allocated to them, and once the VMs are booted a total of 40 gigabytes

of memory is reserved from the hardware pool for the VMs even though each VM uses

only 2 gigabytes of memory. Same principle applies for CPUs, memory and storage in

VMs.

Another problem with VMs is boot ups. Since VM is treated as a normal machine it has

to be rebooted after. For example a virtual server is running inside a VM and it needs to

be rebooted, this boot process takes a lot of time and depending on the size of environment

this downtime may not be acceptable. The extra overhead caused by guest OS and kernel

is main reason for long boot ups. Speed is one main reasons why we are interested in

containers as starting and rebooting applications within containers can be done much

faster as there is no additional OS to reboot. Changing hardware resources for VM is by

done by first bringing down the machine, reconfiguring it and rebooting. During this

28

planned downtime the machine may be rebooted multiple times and this sequence takes

more time than LXCs.

Containers have a clear advantage over VMs because of performance improvements and

reduced startup times [14]. There is nothing stopping us from having containers running

inside virtual machines. Combining both techniques brings best of both worlds, VM iso-

lation and performance of LXCs. Both techniques can be used in deployment pipeline to

deploy application more rapidly to specific environment. For instance create a dedicated

testing environment inside a VM that consists of containers. Different testing environ-

ments are inside own containers where tests are executed in parallel. Table 5.1 compares

LXCs and virtualization from different points.

Table 5.1. Comparison between hypervisor based virtualization and Linux con-

tainers [14].

 Virtual Machine Linux Container

Guest OS Each VM runs on virtual hard-

ware and Kernel is loaded into in

its own memory region

All the guests share same

OS and Kernel. Kernel im-

age is loaded into the physi-

cal memory

Communication Will be through Ethernet Devices Standard IPC mechanisms

like Signals, pipes, sockets

etc.

Security Kernel is responsible for isolating

virtual environments.

Containers use namespaces

to isolate processes and

SELinux feature for secu-

rity.

Performance Virtual Machines suffer from a

small overhead as the Machine

instructions are translated from

Guest OS to Host OS.

Containers provide near na-

tive performance as com-

pared to the underlying Host

OS.

Isolation Sharing libraries, files etc be-

tween guests and between guests

hosts not possible.

Subdirectories can be trans-

parently mounted and can

be shared.

Startup time VMs take a few minutes to boot

up

Containers can be booted up

in a few seconds as com-

pared to VMs.

Storage VMs take much more storage as

the whole OS kernel and its asso-

ciated programs have to be in-

stalled and run

Containers take lower

amount of storage as the

base OS is shared

Key difference is that while the hypervisor abstracts an entire device, containers just ab-

stract the operating system kernel. [31] LXCs eliminate the need for having OS in order

to execute application. This gives immense performance boost as containers don’t have

29

performance overhead caused by running additional OS. VMs offer improved isolation

and security than containers at the cost of performance. Inside a container the application

has its own file system, storage, CPU, RAM, and so on. Only thing developer need to

worry is that the application is compatible with the host OS and kernel that runs contain-

ers.

5.3 Redundancy

Virtualization provides an easy and cost effective to include redundancy in the system.

Redundancy is achieved by using additional standby components in the system. If one of

these components fails, then other one will take its place thus ensuring uninterrupted ser-

vice. Component failures in this context can mean data corruption, connection loss,

crashes, power outages, device errors. For this thesis redundancy is inspected by site-level

solution where a standby VM takes over the role of a failed node. This method is power-

less if the whole data center is wiped out or is fatally damaged. To cope with disaster

recovery scenarios some sort of data redundancy needs to be implemented at secondary

sites [49].

Using redundant VMs on separate physical hardware provides better protection against

physical hardware failures. The main focus for using virtualization is that it can save a lot

of money as virtualized standby nodes can be created on existing hardware instead of

dedicated hardware for specific application. If one virtual system fails, then another vir-

tual system running the same application takes over. In case of a physical hardware failure

hypervisors and LXCs operation need to be moved to a failover standby node. From

downtime perspective, LXCs would perform faster as there is no additional guest OS that

needs to be booted [50].

Designing redundancy starts by analyzing existing system, operating environment and

their usage. Typical approach includes identifying the single points of failure and adding

redundancy to protect against or recover from failures. [39] Single point of failure means

a critical system component in the system that in case upon failure will stop the system

of operational functions [41]. Also possible bottlenecks that affect the systems perfor-

mance system are considered single points of failure. During software deployment, pos-

sible failure sources can include network equipment that is responsible for switching us-

ers, shared resources be-tween multiple servers and clusters and dependencies between

components.

Newer systems eliminate maintenance downtime by using load balancing and failover

techniques. Two main redundancy models are used, passive redundancy and active re-

dundancy. Passive redundancy is used to achieve high availability by including extra

hardware that mitigates failure scenarios by using a backup component. Active redun-

dancy is used to achieve high availability with no performance decline. Multiple items of

the same kind incorporate into a design that includes a method for the automatic detection

30

of a failure and failover capabilities. Redundant components will increase the availability

of services but more components means that the number of points where failures can

occur increases and the system becomes more complex. [40] The system will become

more homogeneous with specific type of architecture. For example the system cannot use

mixed architectures between Intel and AMD processors due to hardware requirements.

Different redundancy models [47], [48] are:

 Active/Standby redundancy model: In this model, one Node is active and one Node

which is in standby. If active node fails then all service is failed over to the other

controller. This is the most expensive method as every active node has a standby

node in the background, thus requiring more hardware resources.

 Active/Active redundancy model: This model has only active nodes and no

standbys. Both nodes are running critical applications at the same time. Each node

acts as the standby for its partner in the cluster, while still delivering its own critical

services. When one server, A, fails, its partner, B, takes over for it and begins to de-

liver both sets of critical services until A can be repaired and returned to service.

 N+M, Active/Standby redundancy model: It has N active nodes and M standby

nodes. The number of active/standby Nodes is not limited. This model is commonly

used to manage power supply outages by having backup power supplies when one

supply fails [39].

 N+1, Active/Standby redundancy model: It has N active nodes and 1 standby node.

If an active controller fails, all traffic served by the active node would failover to the

standby node. This model requires that the traffic capacity of the standby controller

is able to support the total amount of traffic distributed across all active nodes in the

cluster.

5.4 Reducing unplanned and planned downtime

Unplanned downtime is reduced by using a load balancer and redundant nodes. This will

help with both software and hardware failures as if the service performance starts to de-

grade then the standby node will take over. Load balancer is used for distributing the load

across VMs so that no VM will fail because of excessive amount of requests that exhaust

its resources. Production environment is formed by using VMware’s virtualization where

multiple VMs form a cluster. Clustering requires, at the very least, servers installed with

processors of the same architecture. Servers should have identical configuration. This

ensures that when a VM is migrated to a new host, minimal interruption occurs from

conflicting configurations. This cluster is managed by VMware’s load balancer which

distributes the incoming load across virtual hosts evenly. Load balancer monitors CPU

usage, memory, disks, and network and distributes the load to each VM based on these

parameters. Distributing the load evenly also means that no single machine gets over-

loaded which can lead to a high strain of the hardware resources. Stressing the hardware

31

will increase the higher risk of component failure and increases the temperature which in

result will require better cooling for the system. [49]

Active/standby model is selected for redundancy, where redundant VM is used to create

a backup copy of hard drives and the primary VM. Only the primary VM responds to

service requests, while the redundant VM is kept in sync with the primary VM in the

background. If the primary fails, the secondary VM takes over immediately with no in-

terruption in service. Since the secondary VM now becomes the primary, a new redundant

VM will be created immediately and kept in sync with the new primary VM. Ac-

tive/standby model provides the best reliability as the switchover between VMs can be

done quickly as the data is synchronized between machines. Active/standby model is

more expensive due to the fact that the standby node must be exact copy of the primary

node and use a sophisticated synchronization algorithm. This model was selected because

of the critical uptime requirement for the service by adding reliability at the increased

cost.

Planned downtime is addressed by using live migration functionality which is built in

VMware’s live migration solution. Live migration means moving the application between

physical machines with little to no perceived downtime in service. After successful mi-

gration, the service is running on another host and the previous host is brought offline.

Once the machine is brought offline it can be modified or upgraded as explained in Chap-

ter 2.2.2. The administrator should take down the VMs so that interruption of service is

minimized.

When live migration starts, the entire state of a virtual machine is encapsulated by a set

of files stored inside a shared storage between hosts. Then it makes iterative copies of a

running VM’s memory from its current node to another node. The purpose is to preserve

the changes in the memory of the VM, each iteration copying only changes made since

the last. Thus each copy is smaller than the previous one. When the size of the memory

gets small enough, live migration pauses the VM and copies the last portion of changed

memory. It then resumes the VM on the node that is the migration target and applies all

changes in memory. The result is that the VM now runs on another node, with its memory

in the state it was in when it was paused. Since the VM’s folder is stored in shared storage,

it does not have to be copied to the second node. Downtime occurs after the VM is paused

on the original node and before it was resumed on the second node. This entire process

takes less than two seconds on a Gigabit Ethernet network. Network connections and

virtual identity are managed in the process. Once the new host is activated, the migration

service pings the network router to ensure that it knows about the new physical location.

[49], [51]

VMware’s resource manager evaluates the load on the hosts and decides whether migra-

tion is necessary to meet the service requirements. VMware uses three settings for this.

32

First setting only warns the administrator that load balancing should take place but does

not initiate balancing. Second setting moves VM to a recommended host in the cluster

when VM is powered on. Third setting monitors the resource utilization and if the host is

over utilized, the manager automatically moves VMs from that host to another physical

host where more resources are available. Automated migration can be done either by

moving VM the moment resource utilization goes above the threshold, or by waiting until

overutilization has exceeded threshold substantially. An administrator can also create and

apply own rules. [49], [52]

5.5 Docker Containers

Docker is a container virtualization technology that encapsulates application and all of its

dependencies into a system and language-independent package. Docker creates a virtual

container, inside which the application is used. This Docker container holds all necessary

services and other dependencies that is needed for the application to run. [19] This con-

tainer is generated into a Docker image which then can be ported to a different physical

Docker environments where the application can be booted fast. Docker was selected be-

cause of its speed during application deployments. Docker has less performance overhead

than traditional VMs as it doesn’t use additional OS and has better hardware utilization.

Docker containers offer lightweight virtualization with agile compute resource and offer

more scalability than traditional virtualization. Docker helps with continuous integration

and continuous deployment as developers can build stacks of Docker containers on their

laptops that replicate production environments and run their application in that stack.

Docker uses a client-server architecture where user uses Docker client to communicate

with the Docker daemon. Docker client sends actions to Docker daemon which then per-

forms building, running, and distribution of Docker containers. Docker container consist

of an operating system, user-added files, and meta-data. Docker image tells what the con-

tainer holds, what process to run and a variety of other configuration data. When Docker

runs a container from an image, it adds a read-write layer on top of the image in which

the application runs. Both the Docker client and the daemon can run on the same system,

or the Docker client can connect to a remote Docker daemon. Figure 5.3 illustrates Dock-

ers client-server architecture. [12]

33

Figure 5.3. Docker communication overview between Docker client and daemon.

Docker technology utilizes several Linux kernel features [14] from which them main fea-

tures are:

 Chroot (change root) is a Linux command to change the root directory of the cur-

rent process and its children to a new directory. Some of the containers use chroot

to isolate and share the filesystem across virtual environments.

 Cgroups is part of kernel subsystem, provides a fine grained control over sharing

of resources like CPU, memory, group of processes etc. Almost all the containers

use cgroups as the underlying mechanism for resource management. Cgroups set

the limits on the usage of these resources.

 Namespaces create barriers between containers and provide isolation between

processes. When docker container is started it creates set of namespaces and

cgroups for the container. Following namespaces are used.

o PID namespace provides process identifiers to a list of processes.

o NET namespace allows each container to have its network artifacts like

routing table and iptables.

o IPC namespace provides isolation for various IPC mechanisms namely

semaphore, message queues and shared memory segments.

o MNT namespace provides container with its own mountpoint.

34

o UTS namespace ensures that different containers can view and change

hostnames specifically to them.

Docker client provides a command line tool to inspect containers’ resource consumption.

Docker stats monitors for CPU utilization for each container, memory used, total memory

available and total data sent and received over the network by the container. This infor-

mation can be used to identify possible performance problems during testing. Default

monitoring client does not provide ability for alarms but additional plugins can be in-

stalled for alarms.

5.6 Docker Images

A Docker image is a collection of all of the files that make up a software application.

Docker uses union file system to combine different parts of the system into a single image.

Union file systems allow files and directories of separate file systems, known as branches,

to be transparently overlaid, forming a single coherent file system. A Docker image can

build on top of another Docker image that builds on top of another Docker image and so

on. The first image layer is called a base image, and all other layers except the last image

layer are called parent images. They inherit all the properties and settings of their parent

images and add their own configuration in the Docker file. [54]

When a new change is made to a Docker image, Docker will add a new layer to the image.

Now instead of replacing the whole image or entirely rebuilding, as with a virtual ma-

chine, only that layer is added or updated. Docker containers are built from these base

images by using a simple, descriptive set of instructions. Each instruction creates a new

layer in the image. Docker reads this Docker file, executes the instructions, and returns a

final image of the system. Common instructions used in Docker are [12]:

 Run a command.

 Add a file or directory.

 Create an environment variable.

 What process to run when launching a container from this image?

Docker provides developers with lightweight abstraction, better performance than VMs,

and easy application portability. Combining Docker with VMs is one option that brings

the best of both worlds. Docker is Linux centric technology and runs only on Linux, this

can be leveraged with the use of virtualized infrastructure that runs Linux system [12].

Main challenges with Docker are [25]:

 Security. The Docker engine dependents on the host operating system for security,

which means that the developer needs to ensure resource isolation and access con-

trol. User needs to ensure that the right personnel have access to the execution

35

environment. Process control isolates the applications from interfering with one

another.

 Scalability. Large productions infrastructures have large application stacks to

which Docker needs to be compatible. Also applications running inside Docker

containers don’t store data within the file system and once container is shutdown

the data is lost. This data needs to be backed up with recovery mechanisms. Build-

ing large container images for large applications still takes time and

Docker won’t be implemented as a part of the deployment framework. This is due to two

reasons. First, Docker is pretty new technology and getting reference help can be difficult

performance in large production environments is unclear. Second, Docker relies heavily

on Linux environment and can have issues running in large heterogeneous production

environment. If Docker were to be implemented, it would be used to set for testing the

application where tests would be done simultaneously in separate containers. Docker be

used for its speed and flexibility during development by rapidly creating different envi-

ronments. The advantages of Docker do not necessarily outweigh the opportunity cost of

rewriting the company’ entire IT infrastructure. Docker is suitable for enterprises that

build their infrastructure from ground up. For this thesis Docker was showcased as an

alternative virtualization technology to implement in businesses infrastructure.

36

6. DEPLOYING SOFTWARE WITH ZERO DOWN-

TIME

This chapter will focus on software deployment process. Based on the research, a deploy-

ment framework is presented. The framework is used for software deployment and it uti-

lizes deployment pipeline, Puppet tool and virtualization. Overview of these techniques

was given in previous chapters. First, an overview of two zero-downtime deployment

methods: blue-green deployments and canary release, is presented. Next a deployment

framework is proposed and explained. Evaluation of the framework is given at the end of

the chapter.

6.1 Zero- Downtime deployments

6.1.1 Blue Green deployments

Idea behind blue-green deployments is to have additional, completely identical, operating

environments in standby that will become as a new environment. First environment is

serving as live environment while the second environment acts as a staging environment

for the new software version. Team installs new software to the second environment and

performs all necessary tests to make sure it is working properly. Once satisfied with its

stability all users are then switched from current production environment into a newly

created environment. Switching users happens by changing the router configurations so

that all new incoming requests come into new environment. This switchover happens in

seconds.

During switchover process the users may have some data lost as it takes time to migrate

data between databases. One solution to this is to have database migration done separately

from application deployment and perform the upgrade independently. Another solution

is by putting application into read-only mode, synchronize this database to new environ-

ment, and then perform deployment process after which application is put back to read-

write mode. Once performance of the new production environment is stable, operations

team brings down previous production environment route users to second environment.

This standby environment becomes now primary production environment while the pre-

vious one is idle. [17] Figure 6.1 illustrates this idea.

37

Figure 6.1. Blue-green deployment method where all users are switched from one pro-

duction environment into a new upgraded production environment.

Both environments are completely separate inside their own networks with own IP iden-

tities. Each environment is operating on the same or different hardware as long as they

are partitioned in different zones with separate IP addresses. Changing environment con-

figurations will not affect other environments functionality in any way. [2] Both environ-

ments need have same configurations so that during switching the operation stays the

same way. Advantage of using this deployment method is that it makes rollbacks easy. If

something goes wrong with the new deployment just rollback to previous environment,

which is in good state and ready. [17]

6.1.2 Canary release

Canary releasing method uses additional environment for production just like in blue-

green deployment. Instead of switching all users to the new environment, only a small

part of users are switched. This idea is illustrated in Figure 6.2. Users are routed to another

environment where the stability of new software is tested under actual load. Canary

method can be used if the success of the new deployment is not guaranteed. Furthermore

it makes debugging the deployment process easier as it provides fast feedback on the new

features. If performance of a new environment does not meet the requirements, then users

are switched back to the previous environment. Users are incrementally routed to the new

environment, ensuring that no data is lost and that the performance doesn’t suffer until all

users are using the new environment.

38

Figure 6.2. Canary release where a small test set of users are switched from one pro-

duction into a new upgraded production environment.

Having two production sites up and running at the same time can be painful as existing

resources need to work with both versions of the application. Data synchronization needs

to be fast to avoid data corruption if the users are switched between environments. Bene-

fits for using canary releases are [2]:

 Rolling back is easier than in blue green deployment. Only a handful of users are

switched to new environment instead of all at once.

 Testing new environments. Perform smoke tests, capacity tests to the new version

as more users are routed and verify that it performs well. Performance tests are

more reliable as software monitors applications metrics with added user load. Dif-

ferent metrics to monitor include CPU usage, I/O, and memory usage. For large

production environments this is only reasonable way of conducting the perfor-

mance tests.

 A/B testing. Canary releases can be used to test new features of the software to

get real user feedback and deciding whether new features need to be implemented.

39

6.2 Requirements for deployment setup

Based on the research done at Nokia the following requirements are identified for the

software deployment framework.

 Horizontally scalable. The system needs to handle addition of new nodes and have

a way to quickly provision them. Performance of the system should not be de-

graded when new nodes are added.

 Reliable. Once the application is ready for deployment, it needs to be sure that

new application can handle production environment needs and possible unex-

pected scenarios eliminated. Feedback needs to be delivered at the end of each

stage.

 Fault Tolerant. System need to be able to report possible defects to responsible

teams as soon as possible. Also the system needs to store generated reports in

centralized repository.

6.3 Proposed deployment framework

Figure 6.3 presents proposed software delivery framework that utilizes deployment pipe-

line, Puppet tool and hypervisor based virtualization. The pipeline presented consists of

five stages: Commit, Acceptance, User, Capacity and Production stage. The process starts

with developers committing changes into version control system. Continuous integration

server, Jenkins, monitors for changes and starts a new pipeline instance if it detects new

commits. Jenkins will automatically trigger a new instance in the pipeline where the new

code is propagated.

Figure 6.3. Proposed deployment pipeline for software delivery.

40

Before application is released to production it must pass the following stages.

 Commit stage. Commit stage begins the pipeline. Jenkins monitors possible

changes done to the code are compiled, unit tests performed, code and syntax

analysis and installers created. The outcome of commit stage are binaries from the

source code.

 Acceptance stage. Jenkins triggers the build into acceptance tests after successful

commit stage. This stage serves as testing the environment for the application.

This stage is heavily focused with automation to reduce cycle time, as this stage

is the most manually intensive if different scenarios are performed manually.

 User acceptance stage. Once developer is confident with the application it is show-

cased to the business analyst to verify the user requirements.

 Capacity stage. This stage tests the systems performance with simulated traffic.

Capacity testing environment acts as a staging environment for the application.

Once the application is verified to be production ready it is turned into live envi-

ronment by routing real users into it. This stage is manually triggered from ac-

ceptance test environment. Capacity stage acts as a quality assurance as this is the

last stage before release and it ensures that the application meets the requirements

of the customer. This stage is most important stage in this pipeline as it ensures

that the build is fit for the new production environment, it can handle the user load

and checks all previous stages in the pipeline.

In this framework VMware is used to create VMs that will serve as testing environments.

Linux operating system is installed after the VM is provisioned. Next Puppet tool is in-

stalled. Once Puppet is installed on a VM, the client will connect to a master node pro-

ceeded by downloading and applying configurations to that node. Puppet handles instal-

lation tasks by first pulling the build from repository, followed by installing and config-

uring the package. Post installation tasks include smoke tests that verify that the software

can be started and it communicates with different environments. At the end of each pipe-

line stage Jenkins will send a result report to repository.

Current framework is not an optimized solution for deployments but acts more of a start-

ing point from which teams start optimizing it. Deployment pipeline follows a linear pat-

tern which is not optimal as it takes the most time to execute. Issues may occur once

certain stages take too long to execute thus prolonging other stages. Such possible bottle-

neck can happen with acceptance stage as it takes usually the longest to complete. This is

problematic in fault tolerant cases where setting up new emergency environment would

take much time. Solution to this would be running tests in parallel so that deployment

ready versions are pushed out quickly. In this framework both acceptance stages could

run parallel as well as capacity testing and releasing to production stages.

41

Parallelization was not included in this design because of reliability and feedback require-

ments. When deploying for the first time, teams need to get optimized feedback on dif-

ferent stages of the pipeline. Increased reliability is done at the cost of deployment time.

Once the deployment process gets reliable enough certain stages could be executed in

parallel. Optimized solution for reduced deployment time would be running all automated

stages of the pipeline is parallel. In this case commit, acceptance and user acceptance tests

would be done in parallel, then manually moved on to operations environment where

capacity and production stages would be done in parallel.

Manual signoff is used between development and operations environment. This is be-

cause this stage typically means handing the software to other team that then performs

deployment. Manual signoff increases deployment reliability with the collaboration be-

tween teams. Possible issue may rise with access control as only certain parties should be

able to do the signoff. Also possible bugs and glitches may be introduced between differ-

ent environments. This may result in blaming each other between teams. Ideally there

would be no specific teams instead all responsible parties collaborate with each other for

increased efficiency.

6.3.1 Provisioning environments

Puppet is used to provision new environments. New VMs are created by copying existing

VM images. These images have operating system and Puppet preinstalled inside. New

VM is created by cloning existing ones. Puppet downloads and installs necessary software

packages, configures them and enables necessary services. Hypervisor sets necessary in-

formation about the VM including host id and IP address.

Puppet master is installed in development environment with necessary manifest files

stored in own directory. Following procedures are carried out when installing agent

nodes. First Puppet is installed to the system and connection established to the master

node. Establishing connection happens through command line in following manner [8]:

1. puppet agent --server=dev.master.com. The --server part specifies the name of

Puppet master node which in this case is dev.master.com. Agent client sends a

request that master node accepts.

2. puppet cert --sign test.node.com. Puppet master completes and authenticates by

signing the certificate to out agent node ‘test.node.com’. Puppet master can now

propagate changes to the client.

Manifests are stored inside Puppet master’s directory /etc/puppetlabs/puppet/modules,

from which they are distributed to agent nodes. Two types of configurations are used to

provision VMs. First type of manifests describe what software packages are installed

42

alongside necessary configurations of files and services associated with the software

package. Listing 6.1 shows this type of configuration module.

class ssh {

package { "openssh":

ensure => present,

}

file { "/etc/ssh/sshd_config":

ensure = > present,

owner => 'root',

group => 'root',

mode => 0600,

source => "puppet:///modules/ssh/sshd_config",

}

service { "sshd":

ensure => running,

hasstatus => true,

hasrestart => true,

enable => true,

}

}

Listing 6.1. Class module for managing ssh service.

Above module manages ssh resource on a node. The module declares that openssh pack-

age needs to be installed, configures ssh file to the user and specifies that sshd service

needs to be running. Other Puppet modules follow this same pattern to configure their

resources. Second type of configurations describe which packages are installed to speci-

fied nodes. Listing 6.2 shows an example manifest, nodes.pp, that specifies configurations

to different nodes.

43

/etc/puppet/manifests/nodes.pp

class base {

include postfix

include ssh

include python

}

node 'acceptance.dev.com' {

include base

include acceptance

}

node 'user.dev.com' {

include base

include user

}

node 'capacity.dev.com' {

include base

include capacity

}

Listing 6.2. Example module used to specify necessary resources for different nodes.

Above listing declares which resources are installed to selected nodes. Base resource is

deployed to all nodes. It contains configuration for services, files needed to run the soft-

ware. Other listed resources create environment specific VMs that are used at different

stages of the pipeline. Each resource follows the general format as in listing 6.1.

6.3.2 Running tests

The commit test compiles the code into binaries and produces reports. These binaries are

tested and then propagated along the pipeline. Commit stage consists of the following

steps:

 Compiling the code.

 Create binaries.

 Perform analysis of the code

Commit stage is the first step where code errors are checked and feedback is sent to de-

velopers if criteria’s are not met. At the end of successful commit stage generated binaries

and reports are saved in repository ready for next stage in the pipeline. Created binaries

are deployed into production-like environment where different tests are carried out. Pup-

pet is responsible for deploying binaries to target environment. First, virtual environment

is created by VMware. Next, Puppet installs binaries to this environment, runs necessary

44

smoke tests. Then acceptance tests are performed. Each acceptance test executes a certain

function in the software and verifies the results. This stage is the most time consuming as

the tests are typically performed manually since writing a script for every application

build may be time consuming. If a build fails acceptance test then it is discarded from the

pipeline and returned to development environment. Objective in this stage is to fail fast,

meaning that teams try to locate possible defects as soon as possible and fix them. For

user acceptance test there are business analyst and developers. Business analysts defines

what requirements are set to the software and reports them to developer. Once developer

has performed acceptance tests and verified that they work then this build is then demon-

strated to analysts and the customer [2].

Once the build passes user acceptance test it will be manually promoted to last stage

where capacity tests are done. Again Puppet is used to provision this capacity test envi-

ronment. At this stage the configurations for testing environment need to replicate real

production environment as this is last stage before deploying the application. Again ob-

jective of capacity testing is to fail fast by discovering possible performance issues, re-

porting and fixing them. Capacity tests are carried out by simulating user traffic to the

server and recording these interactions. During capacity test the following metrics are

monitored [2]:

 Load tests. How the system handles production-like capacity with increasing

number of requests made to the system. This includes the maximum number of

transactions the system can handle.

 Latency. How long does it take to resolve each response and how this metric de-

pend on the number of users.

Releasing to production will happen with canary release method. Canary release method

was selected because the deployment framework is pretty general and its reliability is not

guaranteed. Also it is more flexible than blue-green method since it affects a small num-

ber of users making it ideal for testing deployments. Using canary release method gives

more confidence in systems stability as load the load increases in the system. This method

allows to incrementally synchronize data between different databases, thus minimizing

data losses. If something goes wrong during the switchover process the impact is mini-

mized by routing the users to previous environment. Switchover is done my mapping

incoming new requests to the new environment.

6.4 Discussion

Developed framework was evaluated based on the literature data. Evaluation was based

on the requirements presented in Chapter 6.3 Proposed framework reduces downtime by

eliminating the sources of downtime that were presented in Chapter 2. The frameworks

45

main goal was to minimize manual work and automate major many steps during deploy-

ment process. Different stages of the pipeline are orchestrated automatically by perform-

ing each stage automatically. Manual steps include provisioning the environments for the

first time and signing off the application between different teams. All tests are performed

automatically in the pipeline. This will require more planning on the test infrastructure

and maintenance of the test scripts compared to manual testing. Current framework may

suffer from unexpected bugs that are missed during automated test. If manual tests were

to be implemented in the current pipeline, they would be carried out in the later stages of

the pipeline. Getting closer to releasing means that more reliability is needed of the ap-

plication. Capacity testing is the last stage before releasing and that stage could have a

mixture of automated and manual testing. Performance test can be carried out manually

by monitoring the state of the application under load.

Virtualization was selected to create new environments. Virtualization reduces amount of

manual steps when configuring and installing the software. Once a VM is configured for

the first time, the image of this VM is saved and stored in a version controlled repository.

During new installation this preconfigured image is booted inside a new VM and the

operating environment is running in minutes compared to hours if done manually. This

can cut the potential downtime from one half to one quarter, depending on how the system

is configured [33]. These images are also used during unplanned downtime or in disaster

recovery situations to create new operating environments fast.

Running many VMs inside a single machine creates a single point of failure issue, where

if that machine happens to go down then all VMs are shut down. Same issue is associated

with the single version control repository as this repository contains the application, VM

images and Puppet configurations for the deployment pipeline to work. Currently there is

no redundancy at all and if the server fails then lots of data can be lost. In case of disaster

scenarios this setup suffers from lack of redundant hardware that contains backups for the

repository. The server that is responsible for routing the users between different environ-

ments does not have any redundancy right now and the load balancer might become a

single point of failure. One major cost consideration is the number of VMs on each host.

The downside is the related cost to provision the larger number of required physical serv-

ers. A smaller number of VMs is less likely to strain the hardware resources on the host.

Decision should be based on a cost-benefit analysis [49].

In this framework two distinctive teams are responsible for delivery process, development

and operations teams. This can pose a problem as it can make the developers not being

fully committed during the build stage which further results in bad tests later on in the

pipeline. For instance, planned changes during the build phase are sometimes not com-

municated to the operations team and, thus possibly breaking the tests without warning

[35].

46

Presumably development and operations environments are running on own separate hard-

ware’s with own virtual environments. Having two separate environments can pose a

problem if they differ from another. Components need to be exactly same that environ-

ments are consistent on all machines. Typical problem is that the deployment process

works on one machine but not the other. The pipeline now uses manual handoff between

development and operation teams. Manual handoff was selected to reduce the confusion

between different teams on the functionality of the application. Human error was one of

the main reasons behind downtime and was commonly result of insufficient knowledge

of the application. Manual handoff enforces collaboration between teams thus increasing

the reliability of the deployment process. Best way to mitigate downtime is communica-

tion between all responsible stakeholders for the pipeline by understanding the “big pic-

ture” [35, 36].

Puppet tool was selected because it supports multiple environments such as testing, stag-

ing and production and can manage up to ten thousand nodes for added scalability. Still

Puppet might not operate at a high enough abstraction level to manage an entire infra-

structure. [37], [38]. Currently there are two concerns related to Puppet. First one is that

Puppet just declares the state of the machine. How feasible solution would it be to just

provision virtual machine to a specific state and then create of copy of that machine? This

image would then be used to set up environments. Reasoning for Puppet is that it offers

flexibility for environment provisioning. Configurations to environments are done by

modifying the manifest file at Puppet master and then pulled by agent nodes. Another

issue with Puppet is scalability. Puppet uses client-server model to distribute configura-

tions. There is a limit on how many nodes the master client can serve until the service

suffers from increased lead times. Large production environments with thousands of

nodes can pose this threat. One solution would be using many Puppet masters at the cost

of added complexity. If the master server fails then client nodes cannot be managed until

master server is back online.

Proposed high availability mechanism is based on server clusters which can raise the bar

for hardware homogeneity. Homogeneity requirements can increase hardware acquisition

cost and reduce flexibility in hardware provision. [49] The main challenge with migration

is that both source and destination physical hosts need to have access to VM’s disks,

where the guest OS and data are stored. Shared storage or filesystems are used in local

environments, but the approach is not appealing when wide area networks are involved

due to performance and connectivity limitations. Also the network configuration of VMs

should remain unchanged after migration, which is easier if the migration is performed

within a single broadcast domain, but difficult when subnets boundaries are crossed. [53]

External factors may affect service availability, most notably distributed denial of service

attacks and malware that are capable of interrupting service. These attacks have serious

47

effect on routers and load balancers which manage the user traffic as they can cause out-

ages in these devices. Current availability method does not have native tools to address

these external factors. Prevention comes from firewalls, intrusion detection systems and

virus scanners [49].

48

7. CONCLUSIONS

The goal of this thesis was to study available tools and techniques that can be used to

reduce software deployment time. The study introduced deployment pipeline practice,

configuration management tool Puppet, hypervisor based virtualization and Docker tool.

Based on the study a deployment framework was developed that utilizes the practices and

tools presented in this thesis. Nokia Networks used this study to cross check it with their

deployment process and possibly optimize it. Study was carried by studying available

public documents and case studies.

Developed deployment framework was used to address research problem of the study.

Solution to reduce downtime was proposed by incrementally rolling out the software to

users while validating software’s stability. Puppet and virtualized environments are used

to create consistent environments that mimic real production environments. Motivation

behind proposed framework was to minimize the amount of manual work done by exe-

cuting deployment scripts that perform these steps during deployment. Software down-

time during installations is reduced substantially depending on the size of the application,

the quality of configuration scripts and architecture of production environment. Planned

downtime is reduced by creating operating environments fast, running automated tests,

installing and configuring the application to that environment. Built in redundancy and

migration service reduce unplanned downtime in the system by monitoring the systems

performance. Proposed framework acts more or less as a baseline for deployment process.

It is not an optimized solution to any specific environment and needs to be performed

several times and optimized based on deployment requirements.

Puppet tool proved to be easy to learn technology and had many references to ease the

study. Puppet is a mature technology and is widely used in many corporate environments

and proved to be viable solution in this study. Docker tool was introduced as out of the

box technology that imposed own advantages and disadvantages for deployment. Docker

allows more efficient use of virtual resources and fast deployment. Still LXCs and Docker

are promising technologies but using it in large heterogeneous enterprises can be unreli-

able, due to limited support and reliability and thus was not part of the deployment frame-

work.

Actual implementation of the framework was not part of this study. Future studies can be

conducted to evaluate other deployment techniques and solutions. One study proposal is

comparing releasing methods, blue-green and canary methods, described in this thesis in

more detail. Research can be done around switching process and how rollbacks are im-

plemented. Other research topics include studying feasibility of other tools that can be

used for deployment, migration tools for VMs so that service appears to be interrupted to

49

the client. All major virtualization service providers have high availability mechanisms

but they differ. Needless to say Puppet and Docker are one of the many tools which en-

terprises can use to implement own solution for reduced downtime. Based on this study

Table 7.1 sums up the patterns and anti-patterns covered in this thesis for software de-

ployment.

Table 7.1 Patterns and anti-patterns for software deployment process.

 Pattern Anti-Pattern

Automated

Deployments

All deployment processes are written in

a code which is then executed to perform

software deployment. Regular collabora-

tion between different teams is needed to

ensure that the deployment is applicable.

Manually deploying soft-

ware. Little collaboration

between teams causing

problems as teams don’t

fully understand the code.

Deployment

Pipeline

Deployment pipeline is used to automati-

cally validate the software with auto-

mated tests and feedback. Pipeline grants

the visibility of all the stages that the

software must undergo before releasing.

Not implementing feed-

back on the software

build. Manually triggering

different software build

and test stages.

Blue-Green

Deployments

Software is deployed to a staging - envi-

ronment while production continues to

run. Once staging environment is vali-

dated it is switched as a new production

environment.

Production is taken down

while new application is

installed.

Canary Re-

lease

Software is released to production for a

small subset of users to get feedback

prior to a complete rollout.

New software is released

to all users at once, thus

making rollbacks harder.

Monitoring Monitoring different metrics in develop-

ment and production with built it in

alarms. Monitoring deployment pipeline

to find possible errors fast.

Not having monitoring

software or monitoring is

carried out manually.

Virtualization Emulate hardware resources and create

environments to test and simulate the

software. Ensure that environments are

consistent.

All development is done

on separate machines thus

causing inconsistency be-

tween environments.

Configuration

management

Using configuration management tools

to manage infrastructure and to automat-

ically deploy software packages.

Configurations are done

manually or infrequent

use of configuration tools.

Redundancy Having additional hardware for mission

critical components in deployment sys-

tem so that in case of outages service can

be moved to another host.

No redundant hardware is

used thus posing single

links of failure.

50

REFERENCES

[1] E. Marcus, H. Stern, “Blueprints for High Availability”, Wiley Publishing, 2003.

[2] J. Humble, D. Farley, “Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation”, Addison-Wesley Professional, 2010.

[3] D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, “Software Aging Analysis of

the Linux Operating System”, Software Reliability Engineering (ISSRE), 2010.

[4] S. Cummins, “Pro SharePoint Disaster Recovery and High Availability”, Apress,

2013.

[5] D. Spinellis, "Don't Install Software by Hand", IEEE Software, vol.29, no. 4, pp.

86-87, 2012.

[6] P. Duvall, “Continuous Delivery Patterns and Antipatterns in the Software

Lifecycle”, [WWW], Available (accessed on 28.4.2015): http://ref-

cardz.dzone.com/refcardz/continuous-delivery-patterns

[7] J. Loope, “Managing Infrastructure with puppet”, O’Reilly Media, 2011.

[8] J. Turnbull, J. McCune, “Pro puppet“, Apress, 2011.

[9] B. Wootton , “Preparing for continuous delivery”, DZone Inc, .

[10] Jenkins, “Meet Jenkins”, [WWW], Available (accessed on 6.5.2015):

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins.

[11] Puppet Labs, “Puppet Documentation Index”, [WWW], Available (accessed on

1.5.2015): http://docs.puppetlabs.com/puppet/.

[12] Docker Inc, “About Docker”, [WWW], Available (accessed on 1.5.2015):

https://docs.docker.com/.

[13] S. Holla, “Orchestrating docker”, Packt Publishing, 2015.

[14] R. Dua, R. Raja, D. Kakadia, “Virtualization vs Containerization to support Paas”,

2014 IEEE International Conference on Cloud Engineering, 2014.

[15] J. Arundel, “Puppet 3 Beginners Guide”, Packt Publishing, 2013.

[16] M. Belguidoum, F. Dagnat “Dependency Management in Software Component

Deployment”, Electronic Notes in Theoretical Computer Science, 2007

51

[17] M. Fowler, “BlueGreenDeployment”, [WWW], Available (accessed on

29.4.2015): http://martinfowler.com/bliki/BlueGreenDeployment.html.

[18] M. Fowler, “Continuous Integration”, [WWW], Available (accessed on

29.4.2015): http://www.martinfowler.com/articles/continuousIntegration.html.

[19] M. Cohen, K. Hurley, P. Newson, “Google Compute Engine Managing Secure and

Scalable Cloud Computing”, O'Reilly Media, 2014.

[20] M. Peacock, “Creating Development Environments with Vagrant”, Packt Publish-

ing, 2013.

[21] Dzone, “Guide to Continuous Delivery”, 2015.

[22] M. Huttermann, “Devops For developers”, Appress, 2012.

[23] OpenNMS, “About OpenNMS”, [WWW], Available (accessed on 14.5.2015):

http://www.opennms.org/about/.

[24] J. Arundel, “Puppet 3 Cookbook”, Packt Publishing, 2013.

[25] B. Golden, “Docker and Its Challenges for Enterprise IT”, [WWW], Available (ac-

cessed on 16.5.2015): http://www.activestate.com/blog/2015/02/docker-and-its-

challenges-enterprise-it.

[26] M. Cataldo, A. Mockus, J. Roberts, J. D. Herbsleb, “Software Dependencies, Work

Dependencies, and Their Impact on Failures”, IEEE Transactions on Software En-

gineering, 2009.

[27] M. Hayun, “Continuous Integration & Package Management 101”, [WWW],

Available (accessed on 14.5.2015): http://www.slideshare.net/maorhayun/contin-

uous-integration-package-management-101-33131956

[28] W. Hagen, “Professional Xen Virtualization”, Wrox Press, 2008.

[29] “Assessing the Financial Impact of Downtime”, [WWW], Available (accessed on

18.5.2015): http://www.strategiccompanies.com/pdfs/Assessing%20the%20Fi-

nancial%20Impact%20of%20Downtime.pdf

[30] W. Fischer, “IPMI Basics”, [WWW], Available (accessed on 18.5.2015):

https://www.thomas-krenn.com/en/wiki/IPMI_Basics#Primary_IPMI_Features

[31] Puppet Labs, “Reporting”, [WWW], Available (accessed on 18.5.2015):

https://docs.puppetlabs.com/guides/reporting.html

52

[32] S.Vaughan-Nichols, “Why Containers Instead of Hypervisors?“, [WWW], Avail-

able (accessed on 18.5.2015): http://blog.smartbear.com/web-monitoring/why-

containers-instead-of-hypervisors/

[33] Jacob Haugen, “Improving Downtime and Disaster Recovery with Virtualization”,

[WWW], Available (accessed 18.7.2015): http://www.mbtmag.com/arti-

cles/2015/06/improving-downtime-and-disaster-recovery-virtualization

[34] Trefis Team, “Growing Competition For VMware In Virtualization Market”,

[WWW], Available (accessed 18.7.2015): http://www.trefis.com/stock/vmw/arti-

cles/221206/growing-competition-for-vmware-in-virtualization-market/2014-01-

07

[35] J. Gmeiner, R. Ramler. J. Haslinger, “Automated Testing in the Continuous Deliv-

ery Pipeline: A Case Study of an Online Company”, IEEE Eighth International

Conference on Software Testing, 2015.

[36] S. J. Bigelow, “The causes and costs of data center system downtime: Advisory

Board Q&A“, [WWW], Available (accessed 18.7.2015): http://searchdatacen-

ter.techtarget.com/feature/The-causes-and-costs-of-data-center-system-down-

time-Advisory-Board-QA

[37] B. Vanbrabant, W. Joosen, “A framework for integrated configuration manage-

ment tools”, IFIP/IEEE International Symposium on Integrated Network Man-

agement, 2013.

[38] T. Delaet, W. Joosen, “A survey of system configuration tools”, [WWW], Avail-

able (accessed 19.7.2015): https://www.usenix.org/leg-

acy/events/lisa10/tech/full_papers/Delaet.pdf?CFID=694697875&CFTO-

KEN=74147045

 [39] K. Schmidt, “High Availability and Disaster Recovery Concepts, Design, Imple-

mentation”, Springer Publishing, 2006.

[40] S. Pippal, S. Singh, R.K. Sachan, D.S. Kushwaha, “High availability of databases

for cloud”, 2nd International Conference on Computing for Sustainable Global

Development (INDIACom), 2015.

[41] C. Janssen, “Single Point of Failure (SPOF)”, [WWW], Available (accessed

19.7.2015): http://www.techopedia.com/definition/4351/single-point-of-failure-

spof

[42] E. Bauer, “Design for Reliability: Information and Computer-Based Systems”,

Wiley-IEEE Press, 2010.

53

[43] E. Katihar, F. Khendek, M. Toeroe, “Operating system upgrade in high availability

environment”, International Conference on Software, Telecommunications and

Computer Networks (SoftCOM), 2013.

[44] A. Kankkunen, “Non-service affecting software upgrades for multi-service rout-

ers”, Proceedings.5th International Workshop on Design of Reliable Communica-

tion Networks, 2005.

[45] S. Crouch, “Defending your code against dependency problems”, [WWW], Avail-

able (accessed 10.8.2015) http://software.ac.uk/resources/guides/defending-your-

code-against-dependency-problems

[46] K. Hoste, J. Timmerman, A. Georges, “EasyBuild: Building Software with Ease”,

Companion:High Performance Computing, Networking, Storage and Analysis

(SCC), 2012.

[47] A. Kanso, F. Khendek, A. Mishra, M. Toeroe, “Integrating Legacy Applications for

High Availability: A Case Study”, IEEE 13th International Symposium on High-As-

surance Systems Engineering (HASE), 2011.

[48] Aruba Networks, “High Availability Deployment Mode”, [WWW], Available (ac-

cessed 10.9.2015): http://www.arubanetworks.com/techdocs/Aru-

baOS_64_Web_Help/Content/ArubaFrameStyles/VRRP/HighAvOverView.htm

[49] M. Yang; Y. Wu, “Using Virtualization to Ensure Uninterrupted Access to Soft-

ware Applications for Financial Services Firms”, 45th Hawaii International Con-

ference on System Science (HICSS), 2012.

 [50] “Software Defined Boden, Boden's Cloud Computing, Virtualization and Software

Solutions web log“, [WWW], Available (accessed 10.9.2015): http://bodenr.blog-

spot.fi/2014/05/kvm-and-docker-lxc-benchmarking-with.html

[51] VMware, Inc. “VMware VMotion Live Migration for Virtual Machines Without

Service“, [WWW], Available (accessed 18.9.2015):

http://www.vmware.com/files/pdf/VMware-VMotion-DS-EN.pdf

[52] VMware, Inc. “VMware Distributed Resource Scheduler (DRS) Dynamic Load

 Balancing and Resource Allocation for Virtual Machines“, [WWW], Available

(accessed 18.9.2015): http://www.vmware.com/files/pdf/VMware-Distributed-

Resource-Scheduler-DRS-DS-EN.pdf

54

[53] M. Tsugawa, R. Figueiredo, J. Fortes, T. Hirofuchi, H. Nakada, R. Takano, “On

the use of virtualization technologies to support uninterrupted IT services: A case

study with lessons learned from the Great East Japan Earthquake”, IEEE Interna-

tional Conference on Communications (ICC), 2012.

[54] O. Hane, “Build Your Own PaaS with Docker Create, modify, and run your own

PaaS with modularized containers using Docker”, Packt Publishing, 2015.

