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ABSTRACT 
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Measurements 
Tampere University of technology 
Master of Science Thesis, 66 pages 
September 2015 
Degree Program in Electrical Engineering  
Major: Technical Physics 
Examiners: Professor Hannu Eskola and Professor Ilpo Vattulainen 
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Recording electroencephalogram (EEG) is a common medical examination, 
which is commonly used in the diagnosis of epilepsy. Movements or tension of 
muscles, especially in the facial area, create electromyographic (EMG) signals, 
which often appear in EEG recordings. EMG artefacts hinder the interpretation 
of EEG, and because they are often located in the same frequency band as the 
actual EEG, they cannot be simply filtered away. 
 
In this Master’s thesis, completed at the Department of Clinical Neurophysiology 
at Seinäjoki Central Hospital, and at the Department of Electronics and 
Communications Engineering at Tampere University of Technology, the 
aforementioned EMG artefacts were investigated. The ultimate objective was to 
identify the frequency bands from the measured EEG signal where the actual 
EEG data and EMG artefacts are located and if occurring at the same 
frequency range identify and separate the EMG artefact from the EEG signal. 
One of the objectives was also to determine the muscular origin of EMG 
artefacts. Within the framework of this Master’s thesis, EEG and facial EMG 
from several muscles (frontalis, temporalis and masseter) were recorded 
simultaneously, under the condition of tensed muscles. Using these signals, 
frequency responses were calculated maintaining the tissues between EMG 
and EEG channels as a digital filter. A simulated facial EMG was utilized with a 
measured frequency response to simulate an EMG artefact. The simulated 
artefact was applied to EEG channels. The conduction of facial EMG signal to 
EEG channels was then analyzed using a simple spherically symmetric volume 
conductor model. Results obtained from the model were compared to results 
obtained from recordings. 
 
A comprehensive solution to the objective of separating EMG artefacts from the 
EEG signal was not directly achieved in the current project. Based on the 
calculated frequency responses, results suggest that a peak occurs at 
frequencies below 100 Hz, where signal between EMG and EEG channels 
attenuates least. Simulated signals are not necessarily the most informative 
result of the current project, but they could become a future focus area for 
separating EMG artefacts. The spherical model used for modeling of the head 
proved to be insufficiently precise for the description of signal conduction in 
tissues. Thus, in the future it would be worthwhile to obtain a more complete 
head model, e.g. produced from an MRI image. With the help of an accurate 
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model, the inverse problem (resolving the EMG source computationally when 
the EMG artefact is known) could also be addressed. 
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TIIVISTELMÄ 
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Syyskuu 2015 
Sähkötekniikan koulutusohjelma 
Pääaine: Teknillinen fysiikka 
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EEG:n eli aivosähkökäyrän rekisteröinti on yleinen lääketieteellinen tutkimus, 
jota käytetään erityisesti epilepsian diagnosoimiseen. Usein käyrässä esiintyy 
lihas- eli EMG-artefaktoja, jotka johtuvat siitä että potilas liikuttaa tai jännittää 
lihaksiaan, erityisesti kasvojen alueella. EMG-artefaktat haittaavat EEG:n 
tulkitsemista, ja koska ne usein esiintyvät samalla taajuusalueella varsinaisen 
aivosähkökäyrän kanssa, niitä ei pystytä yksinkertaisesti suodattamaan pois. 
 
Tässä Seinäjoen keskussairaalan kliinisen neurofysiologian osastolla ja 
Tampereen teknillisen yliopiston Elektroniikan ja tietoliikennetekniikan 
laitoksella tehdyssä diplomityössä tutkittiin mainittuja EMG-artefaktoja. 
Pohjimmainen tavoite olisi selvittää, millä taajuusalueilla mitatussa EEG-
signaalissa esiintyy varsinaista EEG:tä ja millä EMG-artefaktaa, ja pystyä 
erottamaan EEG ja EMG jos ne esiintyvät samalla taajuusalueella. Kiinnostavaa 
olisi myös tietää, mistä lihaksesta EMG-artefakta on lähtöisin. Diplomityön 
puitteissa ongelmaa lähestyttiin niin että rekisteröitiin samanaikaisesti EEG ja 
kasvo-EMG muutamasta lihaksesta (frontalis, temporalis ja masseter) silloin, 
kun niitä jännitettiin. Näitä signaaleja käyttäen laskettiin taajuusvasteet pitäen 
kudoksia EMG- ja EEG-kanavien välillä digitaalisena suotimena. Kasvo-EMG:tä 
myös simuloitiin, ja simuloidun EMG:n ja taajuusvasteiden avulla muodostettiin 
simuloitua EMG-artefaktaa EEG-kanaviin. Lisäksi kasvo-EMG:n leviämistä 
EEG-kanaviin tutkittiin yksinkertaisen pallosymmetrisen tilavuusjohdemallin 
avulla. Mallin antamia tuloksia verrattiin rekisteröinnin antamiin tuloksiin. 
  
Työssä ei suoraan onnistuttu vastaamaan kysymykseen EMG-artefaktan 
erottamisesta EEG-signaalista. Lasketuista taajuusvasteista voidaan kuitenkin 
lähes varmuudella sanoa, että alle 100 Hz taajuudella esiintyy huippu, jossa 
signaali vaimenee EMG- ja EEG-kanavien välillä vähiten. Simuloidut signaalit 
eivät sinällään ole tutkimustulos, mutta niitä voitaisiin hyödyntää jatkossa EMG-
artefaktan erottamiseen. Pään mallinnukseen käytetty pallomalli osoittautui liian 
epätarkaksi kuvaamaan signaalin johtumista kudoksissa. Tämän vuoksi 
kannattaisikin jatkossa käyttää realistista, esimerkiksi MRI-kuvasta saatua pään 
mallia. Sen avulla voitaisiin suoran ongelman lisäksi tutkia myös käänteistä 
ongelmaa, toisinsanoen tilannetta jossa EMG-artefakta EEG-kanavassa 
tunnetaan, ja EMG-lähde pyritään laskennallisesti selvittämään. 
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1. INTRODUCTION 

The brain is essentially an electrical organ, and because tissues are conductive, electric 

activity of the brain can be recorded from the scalp. This method, called 

electroencephalography (EEG), was invented in 1924 by German neurologist Hans 

Berger and in modern times has become a common medical examination. Generally, 21 

electrodes (channels) are attached to the patient’s scalp, from which time-dependent 

potential signals are recorded. EEGs can be used for diagnosing many neurological 

conditions which cause changes to electrical activity of the brain; the most important 

application, however, is diagnosing epilepsy. In previous eras of medicine, EEGs have 

also been important in diagnosing brain tumors, but development of medical imaging 

methods has reduced its applications in this field. [4] 

Disturbances often occur, or in medical terms, EEG artefacts. One of the most common 

artefacts is the electromyographic (EMG) artefact, which occurs if the patient moves or 

tenses muscles, especially in the facial area. This is explained by the fact that commands 

to move muscles proceed from brain to muscles electrically, specifically via so called 

action potentials. Because of tissue conductivity these action potentials are then 

recorded on the scalp as an EMG artefact. It’s important to mention that EMG is also a 

medical examination, which is used for investigating electric activity of the muscles. 

EMGs can be recorded from the surface of the skin or directly from muscle with a 

needle. [4] 

EMG artefacts hinder the interpretation of EEG signals, so the patient is asked to be still 

with muscles relaxed during EEG recording. It’s usually impossible to completely 

eliminate them; this is problematic in small children and patients unable to remain still 

due to their condition. Afterwards, it is possible to remove EMG artefacts by the means 

of signal processing. The ultimate aim would be to solve, in which frequency bands in 

measured EEG signal the actual EEG occurs, similarly, the frequency bands where the 

EMG artefacts are located. This would make it possible to distinguish and separate EEG 

and EMG signals when they occur in same frequency band. It would also be useful to 

identify the muscular origin of the EMG artefact. [4] 

In this Master’s Thesis, carried out at Department of Clinical Neurophysiology at 

Seinäjoki Central Hospital, and at the Department of Electronics and Communications 

Engineering of Tampere University of Technology, EMG artefacts are investigated. The 

thesis is divided into scientific background and experimental sections. In the scientific 

background, the anatomy and physiology of muscles and motor neurons is introduced, 

specifically with relevance to the facial area. Basics of EMG and EEG are covered, as 
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well as a mathematical background for the processing of these signals. The advanced 

signal processing topic of EMG decomposition is also introduced, and continues to a 

discussion of how to simulate an EMG signal. A final topic is volume conductor 

modeling, which is presented briefly. 

In the experimental section, EEG and needle EMG were recorded simultaneously from 

several facial muscles (frontalis, temporalis and masseter), with calculated frequency 

responses, monitored with tissues between EMG and EEG channels serving as a digital 

filter. In this task it’s essential to detect and average motor unit action potentials 

(MUAPs) of single motor unit, as to cancel out EMG signal originating outside the 

measurement point cancels out. Since EMG signal usually contains MUAPs of several 

motor units, EMG decomposition algorithms become useful here. As mentioned earlier, 

the motor unit consists of group of muscle fibers and a motor neuron which innervates 

them, whereas MUAP is sum of action potentials of muscle fibers belonging to same 

motor unit. 

The EMG signal was also simulated, and its simulated artefact was applied to EEG 

channels with the assistance of calculated frequency responses. Moreover, a simple 

spherical head model was constructed with COMSOL Multiphysics and potentials in 

EEG channels were calculated with the help of recorded EMG signals. These were then 

compared to potentials obtained from recorded EEG signals. Before the start of the 

project, it was known that it would have been preferable to use a more realistic head 

model obtained e.g. from MRI image. Due to the size of such a task and 

correspondingly lengthy computation times this was omitted. 

An issue not covered in this Master’s Thesis is the process of separating EMG artefacts 

from the EEG signal when the EMG source is unknown. One method is to calculate the 

entropy. Signal entropy, named after thermodynamic entropy, measures signal 

complexity and is larger if there’s an EMG artefact in the signal. It has been used 

especially during anesthesia and sedation monitoring [8] [32]. A newer method, used 

also in monitoring, is the Responsiveness Index (RI) algorithm [33][34][35]. It’s good 

to also mention ICA (Independent component analysis), which has been recently 

applied in EMG artefact separation [36]. It’s a statistical method and one case of blind 

source separation [6].  
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2. BACKGROUND 

In this chapter, the anatomy and physiology of the muscles and motor neurons is 

discussed. Skeletal muscles are the focus of this section, but cardiac and smooth 

muscles are discussed shortly. Muscles in the head area and their innervation are 

covered closely. Later, two important biophysical signals, electromyogram (EMG) and 

electroencephalogram (EEG) are discussed, including artefacts occurring in EEG. A 

mathematical background for processing EMG and EEG signals is covered, and from 

advanced signal processing, EMG decomposition with leader-follower clustering 

algorithm. EMG signal simulation is also discussed. Lastly, volume conductor modeling 

is shortly introduced, where the finite difference method (FDM) or finite element 

method (FEM) are generally utilized.  

 

2.1 Muscles and motor neurons 

Muscles consist of muscle cells (myocytes), which are also called muscle fibers. The 

diameter of skeletal muscle fibers (Figure 1) is 10 – 100 µm, but length, depending on 

the muscle, can be up to 30 cm. They are distinct from other cells in that they are 

multinucleate, containing many nuclei. Most of the space within the cells is filled by 

rod-like myofibrils, which are divided in transverse direction by Z discs into ~2 µm 

long sarcomeres. Sarcomeres consist of myofilaments. Thick myofilaments primarily 

contain myosin, and thin myofilaments primarily contain actin. Thick and thin 

myofilaments can slide along each other, which mechanically allows for muscle 

contraction. [2] 
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Figure 1. Skeletal muscle fiber. [22] 

 

Cardiac muscle fibers resemble skeletal muscle fibers, but they are only 50-100 µm 

long and branched, joining each other in intercalated discs. They are also mononuclear. 

Both skeletal and cardiac muscles are called striated muscles, because single sarcomeres 

are clearly visible under a microscope. Instead, smooth muscle fibers resemble other 

cells of the body. They are small, mononuclear and have no myofibril and sarcomere 

structure. Their contraction is also based on myosin and actin myofilaments, but these 

filaments have an irregular arrangement. Smooth muscle fibers are connected to each 

other via gap junctions. [2] 

Muscles are innervated by motor neurons (MN), where somatic motor neurons 

innervate skeletal muscles and autonomic motor neurons innervate cardiac and smooth 

muscles. Somatic motor neurons are divided into upper motor neurons (UMN) and 

lower motor neurons (LMN). Upper motor neurons, which begin from motor cortex of 

the brain, belong to central nervous system. Lower motor neurons belong to the 

peripheral nervous system, connecting cranial nerves and the peripheral regions of the 

body to the spinal nerves. Upper and lower motor neurons are joined via synapses in 

cranial nerve nuclei (cranial nerves), or in the ventral horn of the spinal cord (spinal 

nerves). Lower motor neurons join muscle fibers at neuromuscular junctions (NMJ). 

Almost all motor neurons have their axons covered by a myelin sheath. This sheath 

consists of glial cells, oligodendrocytes in the central nervous system (in UMNs) and 

Schwann cells in the peripheral nervous system (in LMNs). Between the glial cells there 

are unmyelinated gaps in the axon called nodes of Ranvier. Axons are also 

unmyelinated near the neuromuscular junction. A single motor neuron innervates 

several muscle fibers, and together the neuron and muscle fibers form a motor unit 

(MU). The amount of fibers in MUs is lowest in small muscles, for example in the eye, 

and highest in large muscles producing more force, e.g. in the legs. In the autonomic 

nervous system there are two lower motor neurons, which join to each other via 
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synapses in autonomic ganglia. In the heart, the postganglionic neurons join to cardiac 

muscle fibers at neuromuscular junctions, even if only a few so called pacemaker cells 

are directly innervated. In smooth muscle tissue, there are no neuromuscular junctions, 

but instead bulbous swellings called varicosities in the axon of the postganglionic 

neuron. The area between varicosities and muscle fibers can be also called a diffuse 

junction. [2]       

At a resting state there’s about -70 mV potential between the inside outside of the motor 

neuron (negative voltage corresponds to lower potential). This membrane potential 

occurs in fact in all cells, and comes from concentration gradients of ions inside and 

outside of the cell. The most important ions are K+ (which has high concentration inside 

the cell and low concentration in extracellular space) and Na+ and Cl- (which have high 

concentration outside the cell and low inside the cell). Differences in ion concentrations 

tend to stabilize due to diffusion and electric field created by the presence of the ions. 

This process is slow, however, because permeability of the cell membrane is relatively 

low for all ions, with slight variation between them. Differences in concentration are 

also maintained by another mechanism, which is carried out by Na+/K+ pumps. They are 

protein structures in the cell membrane which pump Na+ ions out of the cell and K+ ions 

into the cell using ATP as energy source. [2][4] 

Signals in motor neurons (like in all neurons) are propagated via action potentials 

(APs). An action potential begins when membrane potential depolarizes (becoming less 

negative). This opens Na+ channels at the cell membrane; when Na+ ions flow fast into 

the cell, further depolarization occurs and shifts the potential to positive. After about 

one millisecond, Na+ channels are closed, but K+ channels are opened. At this point, K+ 

ions flow quickly out of the cell, returning membrane potential to negative again 

(repolarization), and to slightly more positive levels than the pre-AP potential 

(hyperpolarization). At last, K+ channels are closed, and Na+/K+ pumps return ion 

concentrations and membrane potential to their original state. The period when 

membrane potential differs from normal potential during action potential is called the 

refractory period. The period of depolarization and repolarization phases is called the 

absolute refractory period, because during which it’s impossible to generate a new 

action potential. The period when membrane potential returns from a hyperpolarized 

state to its original state is called the relative refractory period, because it’s possible to 

generate new action potential during it, but the stimulus must be stronger than normal. 

In Figure 2 membrane potential as a function of time during action potential is 

represented. Conduction of the action potential along the unmyelinated axons is based 

on the fact that depolarization opens also other Na+ channels from nearby area. In 

myelinated axons, action potential can occur only in nodes of Ranvier, because the 

myelin sheath prevents ion transfer through the cell membrane. However, the current 

carried by Na+ ions can easily flow inside the axon. When these ions reach next node of 

Ranvier, they depolarize the membrane so that Na+ channels are opened, and a new 
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action potential is generated. This process is called saltatory conduction, and it’s faster 

than continuous conduction in unmyelinated axons. Also thickness of the axon has an 

influence on conduction speed: the thicker the axon, the faster the conduction. 

Refractory period ensures that the signal doesn’t turn backwards, but proceeds always in 

the same direction, in the case of motor neurons towards muscles. [2][4] 

 

 

Figure 2. Membrane potential as a function of time during an action potential. [19] 

  

Signal moves from between two neurons chemically. When an action potential reaches 

the presynaptic terminal of the axon, it opens Ca2+ channels which are located there. 

Concentration of Ca2+ is higher in extracellular than intracellular fluid, so Ca2+ flows 

inside the cell, allowing synaptic vesicles to secrete neurotransmitter to the synaptic 

cleft. In the somatic nervous system, the neurotransmitter between UMN and LMN is 

glutamate, and in the autonomic nervous system between preganglionic and 

postganglionic neuron acetylcholine (ACh). [2][4] 

A neurotransmitter further diffuses to the postsynaptic terminal, where there are 

receptors to receive it. When enough receptors have been activated, Na+ channels are 

opened, allowing Na+ ions to flow in. Generated depolarized potential is the 

postsynaptic potential (PSP), more specifically the excitatory postsynaptic potential 

(EPSP), which can further generate action potentials in the postsynaptic dendrite. There 

are also inhibitory postsynaptic potentials (IPSP) in the nervous system. In the case of 

an IPSP, neurotransmitter makes postsynaptic membrane hyperpolarized, inhibiting the 

action potential generation. PSPs last much longer than action potentials. [2][4]  
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Between a neuron and a muscle, the mechanism is the same. The neurotransmitter in the 

somatic nervous system is ACh, and in the autonomic nervous system it is ACh or 

norepinephrine (also called noradrenaline). Also, the postsynaptic potential in the 

neuromuscular junction is called an end-plate potential (EPP). The EPP further 

generates an action potential in the muscle. The neuromuscular junction has been 

represented in Figure 3. [2][4] 

 

 

 

Figure 3. Neuromuscular junction. [17] 

 

In the muscle fibers, action potentials proceed in same way as in neuron, even if rest 

membrane potential is usually more negative, about -90 mV. There are structures called 

T tubules in the cell membrane of skeletal muscle fibers, which conduct the action 

potential inside the fibers. Here action potential triggers the sarcoplasmic reticulum 

(SR), which is a structure on the surface of myofibrils, to open its Ca2+ channels and 

secrete Ca2+ ions. Binding sites for myosin on the surface of actin filaments are present, 

but they are normally covered by tropomyosin chains. Attached to tropomyosin are 

troponin molecules. Ca2+ ions bind to troponin, which causes the shape of tropomyosin 

to change, exposing binding sites of actin. Myosin now binds to these sites, initiating 

muscle contraction. When an action potential is completed, Ca2+ channels in the 

sarcoplasmic reticulum are closed. Since the SR also continuously pumps Ca2+ ions 

back inside, soon calcium is no longer attached to troponin. Then tropomyosin returns 

to its original shape, covering actin-myosin binding sites, and thus relaxing muscle. 

[2][4] 



  8 

 

In cardiac muscle fibers the contracting mechanism is the same. However, even if 

autonomic motor neurons are used to adjust heart rate, pacemaker cells can generate 

action potentials independently. An action potential is also conducted to other cardiac 

muscle fibers via intercalated discs, so they don’t require innervation of their own. In 

smooth muscle tissue, an action potential spreads via a diffuse junction to several 

muscle fibers at once, and can also spread from fiber to fiber via gap junctions. A 

contracting mechanism is different (details omitted here), but like in striated muscles, 

it’s triggered by Ca2+ ions. There are no T tubules, but Ca2+ is obtained mainly from 

extracellular fluid, via Ca2+ channels opened by the action potential. [2][4] 

When some skeletal muscle is used, the quantity of activated motor units, and also the 

action potential rate (APR) depends on the force required. There’s also a difference 

between large and small muscles. In large muscles, the number of activated MUs and 

APR are low when force is low. When force is increased, more MUs are activated, until 

most of MUs in the muscle are in use. Only APR is increased noticeably after that. In 

small muscles, however, APR begins to increase earlier even if all motor units are not 

yet in use. When maximum force is produced, APR can be 50 Hz or higher. The 

refractory period sets the upper limit to APR. It’s noticeable that with APRs higher than 

20 Hz, muscle has no time to completely relax between APs. This is called a tetanized 

state. [3][31]. 

Another interesting phenomenon is that at a fixed force, APR is never fixed in muscles 

innervated by spinal nerves, but at intervals of two APs. However, in muscles 

innervated by cranial nerves APR can be fixed. This is due to the regulatory system of 

the spinal cord. [24] 

 

2.2 Head area muscles and their innervation 

Most muscles in the head area are responsible for facial expressions. All of them are 

innervated by the facial nerve (CN VII), which emerges from the brainstem between the 

pons and medulla, and divides to several branches (Figure 4). Even if a single muscle is 

often innervated by many branches, this can be generally divided into the following 

branches. [1] 

The temporal branch innervates the frontalis, which wrinkles forehead skin and raises 

eyebrows, orbicularis oculi, which closes the eyelids, and corrugator supercilii, which 

draws eyebrows downward and medially and also produces wrinkles in frowning. [1] 

The occipital branch innervates the occipitalis, which moves the scalp backward. 

Sometimes the frontalis and the occipitalis are considered parts (frontal and occipital 

bellies) of the same occipitofrontalis (or epicranius) muscle. [1] 
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The zygomatic branch innervates the zygomatic major, which draws the angle of the 

mouth backward and upward, and the zygomatic minor, which elevates the upper lip. 

[1] 

The buccal branch innervates the following muscles. The procerus draws down the 

medial angle of the eyebrows and produces transverse wrinkles over the bridge of the 

nose. The nasalis consists of transverse and alar parts. The transverse part (compressor 

naris) draws the ala of the nose toward the septum and compresses the nostrils, and the 

alar part (dilator naris) opens the nostrils. The depressor septi nasi narrows the nostrils 

and draws the septum downward. The orbicularis oris compresses, contracts and 

protrudes the lips. The risorius retracts the angle of the mouth. The levator labii 

superioris elevates the upper lip and dilates the nares. The levator labii superioris 

alaeque nasi has three heads. The angular head elevates the upper lip and dilates the 

nostrils; the infra-orbital head raises the angle of mouth while the zygomatic head 

elevates the upper lip laterally. The levator anguli oris elevates the angle of mouth. The 

buccinator compresses the cheeks, expels air between the lips and aids in mastication. 

[1] 

The marginal mandibular branch innervates the depressor anguli oris, which depresses 

the angle of mouth. The depressor labii inferioris depresses the lower lip and draws it 

lateralward. The mentalis raises and protrudes the lower lip. [1] 

The cervical branch innervates the platysma, which is also important to muscles of 

facial expressions even though it extends to the thorax. Its function is to draw tight the 

skin of the neck. [1] 

 

 

Figure 4. Branches of the facial nerve. Modified from [18] 
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Another large muscle group in the facial area is the mastication muscles. They are 

innervated by the mandibular nerve (CN V3), which is branch of the trigeminal nerve 

(CN V). All four mastication muscles (temporalis, masseter, lateral pterygoid and 

medial pterygoid) move the mandible. In the Figure 5 the most important muscles of 

both facial expressions and mastication are shown. [1] 

 

 

 

Figure 5. Most important muscles in facial area. [21] 

 

Other muscle groups in the head area are following: 

Intrinsic eye muscles dilate and constrict pupils and are responsible for focusing the 

eye. They are innervated by the oculomotor nerve (CN III) and sympathetic fibers from 

superior cervical ganglion (SCG), which is itself innervated by spinal nerves. [1] 

Extra-ocular muscles move the eyeball and open the eyelids, and are innervated by the 

oculomotor nerve, trochlear nerve (CN IV) and abducens nerve (CN VI). [1] 
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External ear muscles move the pinna, whose significance is negligible in humans. They 

are innervated by the facial nerve (CN VII). [1] 

The middle ear muscles are involuntary muscles which can move ossicles and thus 

dampen loud sounds. They are innervated by the facial nerve (CN VII) and the 

mandicular nerve (CN V3). [1]  

The intrinsic and extrinsic tongue muscles move the tongue, and are innervated by the 

hypoglossal nerve (CN XII). [1]  

The palatal muscles are used mostly in swallowing. They are innervated by the 

mandibular nerve (CN V3) and the pharyngeal branch of the vagus nerve (CN X). [1]  

The pharyngeal, intrahyoid and suprahyoid muscles are used both in swallowing and 

speaking. The pharyngeal muscles are innervated by the glossopharyngeal nerve (CN 

IX) and the pharyngeal branch of the vagus nerve (CN X). The intrahyoid muscles are 

innervated by the ansa cervicalis, a nerve loop which is part of the cervical plexus (the 

plexus of the ventral rami of the cervical nerves C1-C4), and also directly by the first 

cervical nerve (C1). The suprahyoid muscles are innervated by the facial nerve (CN 

VII), the mylohyoid nerve (which is sub branch of the mandibular nerve (CN V3)) and 

the first cervical nerve (C1). [1]  

The laryngeal muscles move vocal folds during speaking, and are innervated by the 

superior and recurrent laryngeal nerves, which are branches of the vagus nerve (CN X). 

[1]   

In the sternocleidomastoid of the neck, the splenius capitis, splenius cervicis and 

semispinalis, prevertebral and suboccipital muscles move the head. They are innervated 

by the cervical nerves, except for the sternocleidomastoid, which is innervated by the 

accessory nerve (CN XI). [1]   

The erector spinae which extends back, and the trapezius and the levator scapulae which 

move the scapula, also extend to the neck. The erector spinae and levator scapulae are 

innervated by spinal nerves, but the trapezius is innervated by the accessory nerve (CN 

XI). [1]  

 

2.3 EMG 

Because tissues conduct electricity, the action potentials of muscles can be easily 

recorded. This is called electromyography (EMG), and the obtained signal is an 

electromyogram. An EMG can be recorded from the surface of the skin, which is 

considered a surface EMG (sEMG) or directly from muscle tissue. This is called a 
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needle EMG (nEMG). In needle EMG, better resolution is obtained, because there’s no 

skin between muscle and electrodes to dampen the electric field. There are two types of 

needle electrodes. A monopolar (also called Morton’s) needle requires another reference 

electrode. A concentric needle, instead, contains an inner core and an outer cannula, 

with the latter used as a reference. [4] 

In needle EMG, action potentials of single muscle fibers can be distinguished in 

principle, but in surface EMG the smallest measurable signal is a sum of APs belonging 

to the same motor unit. This is called a motor unit action potential (MUAP). A signal 

where successive MUAPs of the same motor unit converge is called an MUAP train 

(MUAPT). Usually measured signal contains several MUAPTs (MUAPs of several 

motor units). [4] Figure 6 below represents approximately two seconds of typical needle 

EMG signal. 

 

 

Figure 6. Typical needle EMG signal. 

 

An EMG can in practice be recorded from all muscles. In this thesis, a facial EMG 

(fEMG) is recorded from frontalis, temporalis and masseter muscles. In real patients, 

fEMGs are often used to investigate emotional reactions. In this case, it often focuses on 

two muscles: corrugator supercilii, which is used in frowning, and zygomaticus major, 

which is used in smiling. [27]  

Another common procedure in clinical neurophysiology is electroneuromyography 

(ENMG). It’s divided into electroneurography (ENG), where motor neurons are 

electrically stimulated and conduction velocities are measured, and EMG, where the 

electric function of muscles is investigated. [4] 

 

2.4 EEG 

Tissue conductivity makes it possible to also record electric activity of the brain on the 

scalp. This is called electroencephalography (EEG), which is used to capture signal and 
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generate electroencephalograms. EEG signals originate mainly in the cerebral cortex. 

Unlike in an EMG, action potentials of the brain neurons are not seen in the EEG, 

because they are short-lived and temporally separate. Longer-lived postsynaptic 

potentials can be observed: however, PSPs of single neurons cannot be distinguished. 

The signal amplitude is usually some tens of microvolts. The first EEG (or, in fact, 

ECoG) was recorded for the first time on a human in 1924 by German neurologist Hans 

Berger, prior to which electric activity of the brain had been researched in animals. 

Earlier generations of EEG devices plotted the signal directly to paper, but nowadays 

data is converted digitally and processed with a computer. [4] Figure 7 below represents 

approximately 10 seconds of a typical EEG signal, recorded on a healthy, awake human 

test subject. 

 

 

 

Figure 7. Typical EEG signal, recorded from a healthy, awake human test subject. 

 

Usually 21 electrodes (channels) are used with a so called 10-20 system (Figure 8). In 

this system, the distance of nasion and inion, and the distance of frontal edges of the 

outer auditory canals are measured along the scalp. Electrode locations are then based 

on 10% and 20% percent values of these distances. In the naming of electrodes, Fp 

means frontopolar, F indicates frontal, T indicates temporal, C indicates central, P 

indicates parietal, O indicates occipital and A indicates auricle. Moreover, odd numbers 

refer to left hemisphere, while even numbers refer to the right hemisphere and z to the 

midline of the head. Common extra electrodes are zygomatic electrodes, which are set 

under the zygomatic arch. These allow for better signal acquisition from inferior part of 

the brain. If better resolution is needed, a 10-10 system where 75 electrode places have 

been defined can be employed. In research applications, the number of channels can be 

increased to 256 for example. Electrodes can be kept in place with a rubber net an 

electrode cap where electrodes are ready attached can be used. Skin dampens EEG 

signal significantly, because it has large impedance. Impedance can be reduced, 

however, by using electrode paste, and by removing stratum corneum by scratching the 

skin under electrodes. Shaving of the scalp at the location of electrodes is generally not 

needed. Impedances are usually measured before the EEG recording, the recommended 

maximum between electrode and reference electrode is 5 kΩ. [4] 
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Figure 8. Locations of the EEG electrodes in a 10-20 system. [3] 

 

In bipolar EEGs voltages are measured between two electrodes. In unipolar EEGs, 

voltages are measured between the electrode and some reference, which is often the 

average potential of all electrodes. During measurement using analog EEG devices, 

average potential was formed electrically by connecting electrode cables together. 

Nowadays a single physical reference electrode is generally used, and average potential 

is computed afterwards. This makes it possible to include only a portion of the 

electrodes in the average, if an interesting phenomenon is measured in the left 

hemisphere, the reference can be an average of electrodes in the right hemisphere. 

During EEG, electrocardiography (ECG) is usually recorded simultaneously. Standard 

12-lead ECG can be used, but two leads in the patient’s wrists or chest are often 

sufficient. Other common recordings during EEG are electrooculography (EOG) and 

respiratory airflow, which is obtained with a nose sensor. Video can also be recorded, 

which can be referenced afterwards to pinpoint moments when the patient moves his or 

her muscles. [4] 

The most important application of EEG is diagnosing epilepsy. In that case, during the 

recording photic stimulation with strobe light, is often carried out to trigger epileptic 

changes in EEG. A hyperventilation test is also common, with which absence epilepsy 

can be diagnosed. Outside epilepsy diagnosis, EEG has been important in other 

applications such as diagnosing brain tumors, but developments in medical imaging 

methods has reduced its importance in this field. Often so called evoked potentials 
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(EPs) are also investigated, which are EEG responses to external visual or auditory 

stimuli. Sleep stages and structure can be seen from EEG, which makes it possible to 

also investigate different sleep disorders. During surgery EEG is used to monitor the 

depth of anesthesia. Brain death can also be easily found with EEG, which is flat in a 

brain dead patient. [4]  

In normal EEG several frequencies are observed (mentioned boundaries are not exact 

and vary in source literature). Delta waves (< 4 Hz) are normally observed only during 

sleep. Theta waves (4 – 8 Hz) are observed mainly in children, but also in adults in 

dozing-off phase. Alpha waves (8 – 13 Hz) are observed when patient is awake with 

eyes closed. They originate in the visual cortex and are thus strongest in EEG in 

occipital area. Beta waves (> 13 Hz) are observed mainly when muscles are at rest. 

They originate in the motor cortex and are so strongest in EEG in frontocentral area. 

Gamma waves (> 40 Hz) are observed especially in conditions which require attention. 

[4] 

During brain surgery EEG can be also measured directly from the surface of the brain. 

This is called electrocorticography (ECoG) and is usually used in epilepsy surgery. In 

some conditions, for example in locked-in syndrome where the patient can move only 

his or her eyes, electrodes can be implanted permanently under the skull, and thus 

construct a brain-computer interface. The advantage of ECoG compared to normal EEG 

is better resolution at high frequencies, because the skull dampens them more than 

lower frequencies. Electrodes can also be implanted on the top of skull, but under the 

scalp. The newest innovation is an EEG device with wireless subcutaneous electrodes; 

there are also wireless devices with normal surface electrodes. Wireless measurement is 

convenient especially in ambulatory EEG studies. [4] 

 

2.5 EEG artefacts 

There are many artefacts which can occur in EEG. This thesis concentrates on the EMG 

artefact, which occurs, if a patient moves or tenses muscles during the recording, 

especially in the head area. It becomes a problem especially in small children and 

patients unable to be still due to their condition. It’s usually impossible to completely 

eliminate EMG artefacts, because it’s located within the same frequency band as actual 

EEG (mostly at beta frequencies [25]). In proportion, if fEMG is recorded, EEG occurs 

as an artefact. However, this is usually is a smaller problem than EMG artefacts in EEG. 

[4] 

EMG artefacts are naturally strongest when the source muscle (especially the activated 

motor unit) is directly under the electrode. So, in a 10-20 system artefacts in the 

frontopolar and frontal channels are mainly from the frontalis muscles, in the temporal 
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channels they come from the temporalis muscles, and in the occipital channels they 

come from the occipitalis muscles. If the zygomatic channels are used, the masseter 

muscles under the electrodes produce the strongest artefacts. Central and parietal 

electrodes are on the top of the galea aponeurotica where there are no muscles, so there 

are less EMG artefacts in those channels. However, an artefact can conduct to a more 

distant electrode, and that’s a particular research problem in this Master’s Thesis. [4] 

If the eyes are moved during EEG recording, there are also EOG artefacts present, 

because the eye can be modelled by a large electric dipole. EOG artefacts are a problem 

especially in sleep EEGs during REM sleep. When the patient is awake, it can be 

restrained by recording the EEG with the eyes closed, which naturally eliminates also 

blinking EMG artefact (which is necessary if the recording of alpha waves is desired). 

Also, eye weights can be used on top of the closed eyes to further restrain eye 

movement. ECGs can also cause an artefact in EEGs, especially in patients with 

substantial neck musculature. The removal of EOG and ECG artefacts can be attempted 

afterwards with the help of the EOG and ECG signals recorded during the EEG. Also, 

recognition of the EOG artefact can be made easier by asking the patient to purposefully 

move eyes horizontally and vertically during EEG measurement. [4] 

Motion artefacts arise when patient moves and causes the electrodes or electrode cables 

to move. They often occur simultaneously with EMG artefacts. Breathing doesn’t cause 

a significant EMG artefact, because respiratory muscles are located far from the head, 

but especially deep breathing can cause a motion artefact by moving the head and 

electrode cables. The breathing artefact can be identified afterwards by measuring 

respiratory airflow during the EEG recording. Another extracorporeal artefact is a 50 Hz 

disturbance induced to the EEG device from the electrical network. Usually the 50 Hz 

artefact is simply filtered away. However, when the researcher is interested in the 

analysis of gamma waves which can occur in the 50 Hz range, the artefact can be 

prevented by recording the EEG in Faraday cage. In addition to the 50 Hz artefact, there 

are also higher harmonics at frequencies of 100 Hz, 150 Hz, etc., although weaker than 

the original artefact. 

 

2.6 Basics of EEG and EMG signal processing 

Analog EEG and EMG signals are nowadays converted to digital and processed with a 

computer. According to Nyquist’s theorem, the sampling frequency of an A/D converter 

must be at least two times the largest frequency in the analog signal; otherwise aliasing 

of high frequencies occurs. Frequency of gamma waves can be up to 100 Hz, so usually 

a sampling frequency of at least 200 Hz is used. If needed, sampling frequency can be 

lowered by first filtering the analog signal with a low-pass filter. [5] 



  17 

 

In the days of the old analog devices, the frequency spectrum was usually obtained with 

analog filter banks. Nowadays it’s computed from a digital signal with the discrete 

Fourier transform (DFT): 

X(n) = ∑ 𝐱(𝐤)𝐰𝐍
𝐍−𝟏
𝐤=𝟎

−𝐤𝐧
         (1)  

Where N is the length of the signal as samples, and wN is Nth root of unity, which holds 

to the following: 

wN
N = (e2πi/N)N = e2πi = cos(2π) + isin(2π) = 1      (2) 

Values of X(n) are usually complex, but with absolute values |X(n)| it’s easy to see 

which frequencies the signal contains. Instead of Formula 1, DFT is usually computed 

with fast the Fourier transform (FFT) algorithm. [5] 

When signal X(n) has been filtered or otherwise processed, it can be returned to the time 

domain with the inverse discrete Fourier transform (IDFT): 

x(n) = 
𝟏

𝐍
∑ 𝐗(𝐤)𝐰𝐍

𝐍−𝟏
𝐤=𝟎

𝐤𝐧
,         (3)  

or in practice with the inverse fast Fourier transform (IFFT) algorithm. [5] 

The basic operation in frequency domain is filtering. There are four filter types. A low-

pass filter passes frequencies lower than a certain cutoff frequency, and filters the higher 

frequencies off. A high-pass filter works vice versa, so it passes high frequencies and 

filters off low frequencies. A band-pass filter passes the frequencies within a certain 

range, and a band-stop filter passes the frequencies outside a certain range. In practical 

filters (differing from ideal filter), amplification is never exactly one in a passband or 

exactly zero in a stopband, and there’s a transition band between a passband and a 

stopband. [5] 

All filter types are exploited in EEG and EMG signal processing. A high-pass filter is 

used to filter DC and low frequency components off, because they harm further 

processing of the signal. A low-pass filter is used to filter high, non-physiological 

frequencies off. Often both are needed, then it’s worth it to use band-pass filter. 

Electricity’s 50 Hz artefact is usually filtered away with a notch filter, which is a band-

stop filter with a very narrow stopband. An EMG artefact cannot usually be filtered 

away from the actual EEG, however, because they occur in the same frequency band. 

[4] 

In the days of analog devices analog filters were used. They are implemented by analog 

electronic components (in their basic forms: resistors, capacitors and inductors). Cutoff 

frequencies are determined by values of those components. The disadvantage in analog 

filters is that the properties of the components change when they age, and also vary with 
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temperature. Nowadays digital filters are used, which are implemented with a general-

purpose computer or separate signal processor. In real-time signal processing, signal 

processors are often used because they are faster. [5] 

Digital filters are represented with difference equations: 

y(n) = ∑ 𝐚𝐤𝐱(𝐧 − 𝐤)𝐊
𝐤=𝟎  + ∑ 𝐛𝐦𝐲(𝐧 − 𝐦)𝐌

𝐦=𝟏 ,      (4) 

where x(n) is the input signal and y(n) is the output signal. As seen from the equation, 

current output sample is calculated from the current input sample, some number K of 

previous input samples, and some number M of previous output samples. If there’s no 

the latter sum term (current output sample doesn’t depend on previous output samples), 

the equation becomes an FIR filter, and otherwise becomes an IIR filter. If x(n) = δ(n) 

(impulse), then y(n) is called an impulse response h(n). In an FIR filter there’s a finite 

number and in an IIR filter there’s an infinite number of h(n) terms deviating from zero. 

[5]   

The properties of the filter depend on coefficients ak and bm. The results of filtering 

improve with the more coefficients are used, but this lengthens computation time. In an 

IIR filter fewer coefficients are needed than in an FIR filter, so if speed is important, use 

of an IIR filter is optimal. However, the advantage of an FIR filter is that all frequencies 

are equally delayed. [5]   

With impulse response, the filter can also be represented in the form: 

y(n) = x(n) * h(n) = ∑ 𝐡(𝐤)𝐱(𝐧 − 𝐤)∞
𝐤=−∞ ,      (5) 

where asterisk indicates convolution. [5] 

Also, if a Fourier transform is taken from both the input signal and the impulse 

response, filter can be represented simply: 

Y(eiω) = H(eiω)X(eiω)          (6) 

Here H(eiω) is the frequency response. It’s usually complex, and its magnitude can be 

termed amplitude response and phase angle phase response. [5] 

When a FIR filter is designed, it’s usually started from the desired frequency response. 

A perfect frequency response would require an infinite number of coefficients, so some 

window function must be used (not further discussed here). The simplest window 

function is the rectangular window; MATLAB, however, uses the Hamming window as 

default. [5]  
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2.7 EMG decomposition 

If there are MUAPs of several motor units in the EMG signal, it’s often useful to 

perform a decomposition: in other words, extract MUAPs of single motor units. Several 

algorithms for decomposition have been developed. Here the leader-follower algorithm 

is presented, which has been successfully applied in practical problems. [3] 

First, the leader-follower algorithm assumes that the number of motor units is not 

known beforehand, which is often the situation. If the number of motor units is known, 

it’s better to use some other algorithm. Second, it’s assumed that MUAPs have already 

been recognized for example on the grounds of spikes in the signal. In other words, 

leader-following algorithms only clusters the MUAPs, and cannot answer whether or 

not there is an MUAP occurring at the same moment of time. Last, in the basic version 

of the algorithm all MUAPs must be temporally separate, MUAP overlapping (or 

superposition) cannot be overcome. [3] 

In the algorithm, MUAPs can be represented simply by vectors containing their 

potential values as a function of time. Another possibility is to use some feature vector, 

which is shorter than the original MUAP vector. This shortens computation time. The 

feature vector can be formed for example with a Karhunen-Loève transform (not 

addressed here). [3] 

First the MUAP in the signal is naturally located in the first cluster. The center and 

spread of the first cluster are initialized: 

µ1 = p1           (7) 

C1 = κI           (8) 

Here p1 is a vector of the MUAP (original potential vector or feature vector), κ is a 

design parameter representing uncertainty and I is an identify matrix. 

The second MUAP (vector p2) can be located in the first cluster or the new cluster. The 

choice is made by calculating the MUAP’s Mahalanobis distance to the first cluster. 

d2(p2, µ1) = (p2 - µ1)TC1
-1(p2- µ1)          (9) 

  

If the Mahalanobis distance is smaller than some threshold value η, the MUAP is 

located in first cluster, and the center and spread of this cluster are updated: 

µ1 = (1-α)µ1 + αp2            (10) 

C1 = (1-α)C1 + α(p2-µ1)(p2-µ1)T          (11) 
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Here α is again a design parameter describing the update rate. Otherwise, the new 

cluster is formed and its center and spread are initialized with Formulas 7 and 8. 

The same process is then continued, until all MUAPs have been assigned to clusters. 

However, if there already exist two or more clusters, the Mahalanobis distance to all of 

them must be calculated, and the smallest one is chosen. This distance is then compared 

to threshold η to decide if the MUAP belongs to the cluster with that distance, or to a 

new cluster. [3] 

 

2.8  EMG simulation 

It’s often useful to simulate the EMG signal. In this task the most difficult part is 

modeling the morphology of a single MUAP. In one possible model, used by Jung, 

Meklenburg and Patrick [26], the positive spike of the MUAP is formed by following: 

 

FOR i=1 TO fiber_length 

 

 MUAP(i) = 
𝟏

√𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟐+(
𝐟𝐢𝐛𝐞𝐫_𝐥𝐞𝐧𝐠𝐭𝐡

𝟐
−𝐢)

𝟐
  

      (12) 

ENDFOR 
  

 

Here fiber_length is length of the muscle fiber and distance is the distance between the 

muscle fiber and the recording electrode. The units for fiber_length and distance have 

been not specified. It’s observed, however, that the smaller the distance, the larger the 

MUAP amplitude; and the larger the fiber length, the larger the spike width. The 

negative spike is formed with same formula with minus sign ahead. The final MUAP is 

obtained by combining positive and negative spikes and padding some zeros (Figure 9). 
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Figure 9. Single simulated MUAP. 

 

Better, more physiologically based MUAP simulations have been developed (for 

example Hamilton-Wright and Stashuk [30]), but they are not discussed here in depth. 

The Validity of the simulation must be tested by comparing the simulated and the 

recorded MUAPs with some other method (in mentioned the study, for example, means 

and standard deviations of the samples has been compared).  

Mathematically, the MUAP can be represented also as impulse response of a filter, h(t). 

In that case the MUAP intervals of a single motor unit can be represented by the sum of 

the impulse functions: 

dE(t) = ∑ 𝛅(𝐭 − 𝐭𝐤)𝑴
𝒌=𝟏           (13) 

where tk is time of kth MUAP. When simulating the EMG of facial muscles, the interval 

tk – tk-1 can be constant, in another case random values can be obtained by using a 

Gaussian distribution. 

Now the EMG signal of single motor unit is obtained by: 

u(t) = dE(t) * h(t) = ∑ 𝐡(𝐭 − 𝐭𝐤)𝐌
𝐤=𝟏         (14) 

Finally, total EMG signal is obtained by summing the signals of motor units.  

x(t) = ∑ 𝐮𝐥(𝐭)𝐋
𝐥=𝟏  + v(t) = ∑ ∑ 𝐡(𝐭 − 𝐭𝐥,𝐤)

𝐌𝐥
𝐤=𝟏  𝐋

𝐥=𝟏 + v(t)     (15)     

Here v(t) is the optional noise signal. [3] 
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2.9 Volume conductor modeling 

In addition to signal processing techniques, the EMG can also be investigated with a 

volume conductor model. In volume conductor modeling, body tissues are represented 

as a mesh of resistors, where resistance values depend on the tissue. If permittivity 

(capacitive properties) and permeability (inductive properties) of tissues are of 

particular interest, capacitors and inductors can be added to this mesh, too. The EMG 

source can be modelled with one or more voltage or current sources (dipole). [9]  

In the direct problem, the source is known. Thus, potentials in all nodes and currents in 

all wires connecting the nodes can be calculated. In the inverse problem, potentials in 

some nodes are known and the parameters for the source must be solved. The inverse 

problem is always more difficult than the direct problem and usually there’s no unique 

solution. The inverse problem isn’t investigated in this Master’s Thesis. [9] 

Due to the quantity of components, an analytical solution is usually impossible even in 

the case of a direct problem, and numerical methods must be used. Common methods 

are FDM (Finite Difference method) and the newer FEM (Finite Element Method), 

which are not discussed in depth here. However, it’s important to mention that in the 

FDM method elements between nodes are always cubical, but in FEM method they can 

have any shape. Currently, a popular software for volume conductor modeling is 

COMSOL Multiphysics, which uses the FEM method and tetrahedral mesh (Figure 10). 

However, if a voxel image (obtained for example from MRI imaging) exists, 

constructing the FDM model is easier, because the voxel is suitable for the cubical FDM 

element. [9] 

 

 

Figure 10. Sphere constructed from tetrahedral FEM mesh in COMSOL Multiphysics. 

A resistor appears in every wire connecting the nodes. 
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3. METHODS 

The experimental work for this Master’s Thesis was done at the Department of Clinical 

Neurophysiology at Seinäjoki Central Hospital. The human test subject was the author 

of the thesis himself. Using real patient data would have been possible, but it was 

decided that it was preferable to study the author instead to allow for simultaneous 

measurements (of EEGs and EMGs) and to avoid ethical approval for measurements.  

 

3.1 Recordings 

Several “exercise recordings” were taken, but only the data of the last recording was 

used in the computation (the exception being the needle EMG from the tibialis anterior, 

for which MUAP interval curve was plotted). In this last recording, EEG and facial 

EMG were recorded simultaneously with a sampling frequency of 2 kHz. The EEG was 

recorded with a standard 21-channel device (with extra zygomatic channels). Auricular 

channels linked together were used as a reference, and a separate ground electrode (Fpz) 

in the middle of the forehead was used. Loose button EEG electrodes were used. The 

reason for this was that when using the EEG electrode cap, electrodes can move on the 

scalp when facial muscles are moved. Also, it’s difficult to insert the EMG needle into 

muscles through the cap. Afterwards it was noticed, however, that signals in the 

zygomatic channels were in practice found to be zero, so they couldn’t be used in 

computations. It’s probable that zygomatic electrodes were properly attached, but there 

was an error somewhere else in the system. 

Facial EMG was recorded with the same EEG device with a concentric needle 

electrode. Morton’s needle had been tested earlier, but it didn’t work for simultaneous 

EEG and EMG recording. Amplitude differences of EEG and EMG signals were 

observed to be too large for the EEG amplifier, so a separate attenuator between the 

needle and the amplifier was used. The attenuation coefficient was not measured, 

however, which made it impossible to use absolute EMG signal values in calculations. 

EMG was recorded from three facial muscles: frontalis (4 cm above midline of the 

eyebrow), temporalis (3 cm above the ear) and masseter (just below the zygomatic 

arch), both from the left and from the right side. These muscles (Figure 11) are 

relatively large and close to the scalp, so it can be assumed that they cause a significant 

portion of EMG artefacts in real patient EEG recordings. The frontalis is activated when 

the eyebrows are raised, and the temporalis and masseter are activated when the teeth 
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are clenched. Due to the zygomatic EEG electrodes being placed on top of the 

masseters, it’s regrettable that signals from these electrodes were useless. EMG signals 

from the masseters were not omitted, however, because EMG artefacts from the 

masseters are also seen in standard EEG channels. During recording, the target muscle 

was tensed as lightly as possible, so that the minimum number of motor units would 

activate. 

Also the ECG was recorded with two chest leads, along with respiratory airflow with 

the nose sensor, but these signals were not used in the computation. Video was recorded 

to make it possible to monitor afterwards what occurred at each moment of time. 

Recording duration was about 25 minutes. In Figure 12, the recorded EMG from the left 

temporalis is presented. 

 

 

Figure 11. Sketch of the frontalis, temporalis and masseter. [20]. The EMG was 

recorded from these muscles. 
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Figure 12. Image from recording. The EEG is recorded with loose button electrodes 

attached to the head. The EMG is presently recorded with a needle from left temporalis. 

The nose sensor records respiratory airflow.  

 

Signals were recorded in .E-format (which was supported by Nicolet One software [10] 

used in the hospital), but were converted also to EDF (or actually EDF+) format. EDF 

(European Data Format) [12] is standard format for biophysical signals, and EDF+ [13] 

contains some new features, for example an annotation channel. In EDF format, signals 

were then read to MATLAB for processing. Also EDFbrowser [11] was used in 

investigating signals. It’s a free software which contains part of same functionalities as 

commercial Nicolet One. Also, it’s important to mention that ASCII format can also be 

used to store signals. However, if the number of channels is large, signals are long and 

sampling frequency is high, reading ASCII files in MATLAB is slow and consumes a 

large amount of computer memory, so it’s better to use EDF format.  

 

3.2 Processing of recorded signals 

First the signals were investigated visually. A large DC or low frequency component 

was noticed in the signals, so they were first high-pass filtered. FIR filter with a 

Hamming window was used, and 2 Hz proved to be a good threshold frequency. 

Significantly lower thresholds left non-physiological components, and significantly 

higher thresholds began to distort the signal in the time domain. The same filter was 

used in both EMG and EEG channels. Signals were not low-pass filtered, because even 

reasonably high (200 Hz) thresholds seemed to distort signal. Testing different window 



  26 

 

functions and adjusting the number of coefficients could have solved the problem, but 

that has been omitted. In the signal spectrum a 50 Hz artefact (and its higher harmonics) 

was also noticed, induced from electrical network, so signals were also filtered with a 

50 Hz notch filter. This probably had no large significance, because the 50 Hz artefact 

was not clearly observable in the time domain. In Figure 13 an EMG signal after 

filtering can be seen. 

 

 

Figure 13. High-pass filtered signal from EMG channel from the left temporalis. The 

MUAP of one motor unit is clearly seen. 

 

Recorded EEG signals were ear-referenced. Also average-referenced EEG signals were 

formed to cancel possible disturbances which occurred in auricular channels, and thus in 

all channels. In the average reference, the electrodes used were far from the EMG 

source. Moreover, the average reference differed for every electrode so that the 

electrode itself was not within the average. An example can be seen in Figure 14.   
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Figure 14. Example, where the average reference is formed to electrode Fp2. The EMG 

source here is the left temporalis, so only electrodes on the right side of the head are 

included in the average. Electrode Fp2 itself is not included, however. Modified from 

[3]. 

 

Even in the filtered EMG signal, disturbances with very large amplitudes were found, 

and also periods, where very many motor units were activated. So, a five second period 

which visually appeared to be the best option, was taken from each investigated muscle. 

From these five second periods were recognized spikes by demanding that amplitude in 

the spike exceeds some threshold value (f(n) > N), and moreover that the previous and 

subsequent signal values are smaller (f(n-1) < f(n) and f(n+1) < f(n)). There are more 

complicated algorithms for spike recognition, but this simple method proved valid in 

this work. It’s possible to obtain a more accurate temporal spike position for example by 

fitting a parabola to points (n-1,f(n-1)), (n, f(n)) and (n+1,f(n+1)) (Figure 15), in which 

case signal voltage values must also be interpolated. This proved unnecessary in this 

work, however, because of the reasonably large (2 kHz) sampling frequency. 
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Figure 15. Parabola fitted around a spike to obtain a more accurate temporal spike 

position. Not necessary with the 2 kHz sampling frequency, because maximum error is 

only 0,25 ms.  

 

It proved, however, that all recognized spikes didn’t belong to MUAPs of the same 

motor unit. Since EMG signals from outside the measurement point should cancel, 

signal decomposition was further made by using EMGLAB (decomposition software 

implemented with MATLAB) [15]. In EMGLAB, it’s possible to choose between two 

different algorithms, the default called simply automatic decomposition algorithm, and 

the second one called Montreal algorithm (both differing from the leader-follower 

algorithm represented in Chapter 2.7). Details of the algorithms are not covered here. 

Neither of the algorithms required any numerical design parameters, so using them was 

in a sense easier than using the leader-follower algorithm. It was decided to use default 

algorithm. User interface of EMGLAB is seen in Figure 16. 

Only spikes belonging to one motor unit were left, others were removed. Choice of the 

motor unit was made on the grounds of MUAP amplitude (the larger, the better) and 

number of MUAPs of this motor unit (the more, the better). Errors in decomposition 

were possible. Since MUAP morphology can gradually change with time [3], it can be 

that MUAPs of the same motor unit were interpreted as MUAPs of different motor 

units. This was accepted to avoid other type of errors, namely interpreting MUAPs of 

different motor units as MUAPs of same motor unit.  
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Intervals of MUAPs belonging to same motor unit were calculated and interval curves 

were plotted. The corresponding interval curve was plotted also from the tibialis 

anterior, for which needle EMG had also been recorded. Information from MUAP 

intervals could be exploited in separating the EMG artefact from the measured EEG 

signal. Results have been represented in Chapter 4.1.  

 

 

Figure 16. EMGLAB decomposition software. MUAPs of two different motor units have 

been found from EMG signal from left temporalis. 

 

Next, 100 ms periods from the EMG signal around the spikes were taken and averaged. 

In averaged periods (Figure 17) disturbances vanish and only the pure MUAP signal 

remains. Averages were also taken separately from odd and even epochs, and they were 

then compared to each other (Figure 18). With this technique, it can be ensured that all 

MUAPs belong to same motor unit.  
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Figure 17. 100 ms averaged MUAP from the left temporalis. 

 

 

Figure 18. Averaged odd and even MUAPs from the left temporalis. Because they are 

close to each other, they probably belong to the same motor unit. 

 

From the same positions as EMG measurements, periods were further recorded and 

averaged 100 ms from all EEG channels. In these averaged epochs, the actual EEG 

signal vanishes and the EMG signal conducted from muscle (EMG artefact) remains. 

Both ear-referenced and average-referenced EEG signals were used. Averaged EEG 

epochs were pre-investigated by plotting them to different images (Figure 19) and to the 

same image with the averaged MUAP from the EMG channel (Figure 20). The latter 

image is more easily visible (despite amplitude attenuations); phase delays between 

EMG and EEG channels are also visible. 
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Figure 19. 100 ms averaged epochs from EEG channels. The EMG source here is the 

left temporalis 

 

 

 

Figure 20. 100 ms averaged epochs from EMG and EEG channels in the same image. 

EMG source here is the left temporalis. Amplitude differences between EMG and EEG 

signals are not correct because of the unknown EMG attenuation coefficient. 
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Distribution and dispersion of the EMG inside the head was illustrated also by plotting 

topographic maps. Single potential values needed here were obtained by taking peak-to-

peak values from the averaged EEG channel epochs. Also here both ear-referenced and 

average-referenced EEG signals were used. Topographic maps were plotted with 

EEGLAB (software implemented with MATLAB) [14]. 

Since it’s useful to know which EMG frequencies are most visible in EEG channels, 

and how much they are delayed, signals were further investigated in the frequency 

domain by considering tissues between EMG and EEG channels as a digital filter. 

Fourier transforms was taken from both input and output epochs and frequency 

response H(eiω) was calculated with formula six. Amplitude and phase responses 

|H(eiω)| and unwrap(arg(H(eiω))) were plotted. Here the MATLAB function unwrap( ) 

plots a smooth curve where the phase angle can have any value. Without using it, the 

phase angle is always between -180º and 180º, and there can be discontinuities where 

the angle jumps from -180º to 180º or vice versa. Again, both ear-referenced and 

average-referenced EEG signals were used. Results have been represented in Section 

4.3. 

 

3.3 Simulation 

If there’s an interest in investigating how to separate the EMG artefact from measured 

EEG signal, EMG simulations are quite useful. In this Master’s thesis, existing 

MATLAB code implemented by Jung, Meklenburg and Patrick [26] was employed. In 

this simulator the single MUAP has been modelled with Formula 12. Sampling 

frequency was set to 2 kHz (as in recordings).  

The length of the muscle fiber has been included in the code. Facial muscle was 

approximated at 10 cm long with a conduction velocity of 3,5 m/s, thus length for 

samples is (0,1 m / 3,5 m/s) * 2000 ≈ 60. The value for conduction velocity was 

obtained and falls in the average range of 2 – 5 m/s, given by Sörnmo and Laguna [3]. 

Since the simulator was designed to simulate surface EMG, distance between the 

muscle fiber and the electrode was also randomized between the MUAPs of the same 

motor unit. Now the idea was to simulate a more accurate needle EMG, so distance was 

set as constant (exact value had no meaning, because the unit of distance was not 

specified). However, different distance values were used for different motor units. 

In the original code, MUAP intervals of single motor unit were largely randomized. 

Randomizing was maintained even if it was utilized to simulate facial muscles tensed 

with constant force, but the range was set to a narrow range (50 - 70 ms), so the MUAP 
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frequency became 14,3 – 20 Hz. According to the interval curves obtained from the 

EMG recording, this is a realistic approximation. 

Five motor units was used to describe the situation where muscle is tensed lightly 

(decomposition of recorded EMG signals also produced only a few motor units). For 

every motor unit, 100 MUAPs were generated. A segment of simulated signal is seen 

below in Figure 21. 

 

 

Figure 21. Simulated facial needle EMG, when the muscle is tensed lightly. 

 

The Fourier transform was further taken from simulated signal. With the help of 

frequency responses H(eiω) obtained from recordings, a simulated EMG artefact was 

applied to EEG channels with Formula six. Lastly, it was returned to the time domain 

with the inverse Fourier transform. Results have been presented in Chapter 4.4. 

 

3.4 Volume conductor modeling 

If the EMG artefacts in EEG channels are known, and there’s a sufficiently good 

volume conductor model in use, it’s possible to calculate the muscular origin of the 

artefact. In this Master’s thesis the inverse problem was not addressed. Instead the 

quality of the model in the situation where EMG source is known was investigated, 

which is the direct problem. 

A relatively simple head model was desired for this project. The simplest one is a 

homogenous sphere, but the ability to distinguish tissues was considered to be orderly. 

Thus, the model by Malmivuo and Plonsey [7] was chosen, represented in Figure 22. In 

this model the head has been divided into brain, skull and scalp tissues which have 

different resistances. Other values for tissue resistivity are found from other sources, so 

they are approximations. It’s essential to set the model so that the skull has much higher 

resistivity than brain and scalp tissues.  
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The model was constructed with COMSOL Multiphysics (Figure 23). Alternative 

software would have been utilized, for example Noname Bioelectric Field Software 

(NBFS) implemented by Takano [16], which was used in earlier studies in the 

Department of Electronics and Communications Engineering [9]. Using NBFS proved 

difficult, however, so it was decided to employ COMSOL. NBFS uses the FDM method 

whereas COMSOL uses FEM. When the spherical model was used, it was easy to locate 

EEG electrodes on the scalp (their spherical coordinates are found e.g. from EEGLAB). 

 

 

Figure 22. Simple spherical head model. [7] 

 

 

Figure 23. Head model constructed with COMSOL Multiphysics. 
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Even if the EMG signals were investigated, the muscle tissue itself was not modelled, 

because its resistivity is relatively close to scalp resistivity. If it had been added, it 

would have been worthwhile to take into account that there’s no muscle tissue in the 

midline of the head. Other possibilities would have been adding eyes with their own 

resistivity value, and dividing the brain into white matter, grey matter and cerebrospinal 

fluid. Still another issue is tissue anisotropy. Muscle tissue is especially anisotropic, 

which means that it conducts electricity best in the direction of muscle fibers. Modeling 

anisotropic is difficult, however, so it’s generally not carried out in volume conductor 

modeling.  

In addition to resistivity, permittivity (capacitive properties) of tissues can also be taken 

into account. This was not included, so it was possible to use single potential values in 

the computation. When permittivity is used, temporal behavior of the signals must be 

taken into account. Permeability (inductive properties) of tissues was also omitted (they 

are not completely negligible, either, since the body contains ferromagnetic iron).  

The most accurate head model would be a realistic model obtained from CT, MRI or 

cryosectional imaging data. In practice, the last method is the best. In cryosectional 

imaging of the head, the dead patient has been frozen and sliced (slice thickness can be 

in the hundreds of micrometers), and then each slice is photographed. Due to time 

consuming construction work and computation times, a realistic model was not used in 

this thesis. If it had been completed, perhaps an MRI image from test subject’s head 

would have produced the best results. Ready raw data is available from The Visible 

Human Project [23] and other sources; an example of one slice of cryosectional data has 

been represented in Figure 24. Differences in head anatomy compared to the test 

subject’s head could have influenced results, however. For example, if head imaging 

data belonged to a significantly overweight patient, who had substantial adipose tissue 

in the face. Also, using the FDM method (with NBFS or some other software) instead of 

FEM could have resulted in orderly results, if a realistic head model had been used. In 

that case voxels of the source image would have been suitable for cubical FDM 

elements. 
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Figure 24. One slice of cryosectional raw data from the Visible Human Project, 

suitable for constructing a realistic head model. Not utilized in this Master’s Thesis. 

[23] 

 

The EMG source was modelled with a single voltage dipole for the needle. The 

distributed model, where the dipole has been distributed along a motor unit [28], is 

more accurate, but a simpler model was considered sufficient in this case. Also, instead 

of a voltage dipole, a current dipole [29] could have been used, but in this case both 

muscle resistivity and the motor unit cross-sectional area would have been known. A 

voltage dipole was chosen, because in this case the only quantity needed in the addition 

of potentials was conduction velocity. 

Since the muscle tissue itself was not modelled, the needle was located in scalp tissue. 

In COMSOL, the voltage dipole was formed so that for two points different potential 

values were given, in this case the maximum and minimum of the averaged MUAP of 

the muscle in question. The distance between the points was obtained by multiplying 

the conduction velocity by the temporal distance between the MUAP maximum and 

minimum. The direction of the vector between these points was the direction of the 

muscle fiber. Dipole formation has been further clarified in Figure 25. 

Conduction velocity could have been measured with two needles. Because only one 

needle was used, however, velocity was estimated to be 3,5 m/s. Its average in the range 

of 2 – 5 m/s was given by Sörnmo and Laguna [3], so this velocity is likely near the real 

value. The directions of the muscle fibers were roughly approximated. Dipoles of the 

frontalis and temporalis were set to point directly upwards (parallel to z-axis in Figure 

26), even if it was known that in reality directions of muscles fibers also had some x- 

and y-components. Respectively, dipoles of masseters were set to point directly 
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downwards. If a realistic MRI-based head model had been in use, directions could have 

been looked at from an MRI image. 

 

 

Figure 25. Forming the voltage dipole for modeling the EMG source. 

 

 

 

Figure 26. Chosen dipole directions to frontalis, temporalis and masseter. Dipoles only 

have z components. If a realistic head model would had been used, the accurate 

direction could have been defined. Modified from [20]. 

 

When the dipole was so defined, COMSOL calculated the potentials at all points on the 

surface of the head (Figure 27). After that, potentials in EEG electrode places were 

lowered, and the potential of the EEG reference electrode was subtracted from these 
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values (this, by the way, proved to be clumsy in COMSOL GUI, so the data was first 

exported to MATLAB). Here, the reference electrode was the ground point in the 

middle of the forehead (using ears as a reference would have required modeling the 

metal conductor linking them, too). Thus, peak-to-peak values of EMG artefacts in EEG 

channels were obtained. Topographic maps also were plotted. Computed results were 

compared to corresponding peak-to-peak values obtained from recording. Results have 

been presented in Chapter 4.2. 

 

 

Figure 27. COMSOL has computed potentials on the surface of the head, when the 

EMG source is the left temporalis. The potential gradient is largest near the source. The 

Face is in the direction of the positive x axis. 
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4. RESULTS 

4.1 MUAP intervals 

Possible errors in EMG decomposition, more exactly interpreting MUAPs of the same 

motor unit as MUAPs of different motor units, make interval curves useless. Figure 28 

only one piece of an interval curve (from left temporalis) is represented, where there 

should be no missing MUAPs in the intervals. Figure 29 features the interval curve from 

the tibialis anterior.   

 

 

Figure 28. MUAP interval curve from the left temporalis. Interval variation is 

reasonably small. 

 

 

Figure 29. MUAP interval curve from the tibialis anterior. Interval variation is 

reasonably large. 
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4.2 Peak-to-peak values  

In the first three tables peak-to-peak values of EMG artefacts in all EEG channels are 

represented, where the EMG source is one of six investigated muscles. Both values 

obtained from recording and values computed from the volume conductor model are 

shown. In recorded values, ear-referenced and average-referenced values are 

distinguished. Since the EMG attenuation coefficient was not measured, computed 

values are relative so that the numerical value in the channel nearest the EMG source is 

the same as the recorded average-referenced value. Measurement accuracy has been 

estimated to be ±0.1 µV. In Figures 30, 31 and 32 all tabulated values are also plotted to 

topographic maps. 

 

 Left temporalis Right temporalis 

Channel Recorded 

ear-

referenced 

value (µV) 

Recorded 

average-

referenced 

value (µV) 

Relative 

value 

computed 

from volume 

conductor 

model 

Recorded 

ear-

referenced 

value (µV) 

Recorded 

average-

referenced 

value (µV) 

Relative 

value 

computed 

from volume 

conductor 

model 

Fp1 20.2 17.1 0.0 14.6 7.0 0.0 

Fp2 13.6 6.5 0.0 19.6 18.1 0.0 

F7 48.2 42.0 0.4 20.3 15.8 0.0 

F3 38.8 40.1 2.0 19.6 17.9 0.4 

Fz 15.8 9.0 0.9 7.4 13.4 1.1 

F4 20.0 18.4 0.3 49.2 58.4 2.6 

F8 15.1 15.6 0.0 61.6 52.1 0.5 

T3 104.8 92.1 92.1 14.7 8.9 0.0 

C3 32.1 45.0 4.8 10.0 8.5 0.5 

Cz 6.6 8.0 1.2 3.1 11.8 1.6 

C4 23.2 21.0 0.4 64.1 75.7 6.2 

T4 13.1 9.8 0.0 127.4 125.4 125.4 

T5 11.5 18.8 0.3 12.9 5.9 0.0 

P3 43.1 56.0 2.1 8.6 5.3 0.4 

Pz 2.3 13.2 0.9 3.8 10.0 1.1 

P4 11.2 4.5 0.3 30.8 42.5 2.6 

T6 12.8 6.8 0.0 13.2 17.2 0.4 

O1 9.8 10.3 0.0 11.1 9.8 0.0 

O2 13.1 9.5 0.0 11.6 10.3 0.0 

 

Table 1. Recorded and computed potential values from the left and right temporalis. 

Channels nearest the EMG source are grayed. It’s clearly seen that the volume 

conductor model attenuates the signal too quickly when distance to source increases. 
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 Left frontalis Right frontalis 

Channel Recorded 

ear-

referenced 

value (µV) 

Recorded 

average-

referenced 

value (µV) 

Relative 

value 

computed 

from volume 

conductor 

model 

Recorded 

ear-

referenced 

value (µV) 

Recorded 

average-

referenced 

value (µV) 

Relative 

value 

computed 

from volume 

conductor 

model 

Fp1 86.8 86.0 86.0 131.3 134.5 7.1 

Fp2 82.6 82.8 7.2 77.4 81.2 81.2 

F7 5.6 6.7 5.7 23.0 22.4 8.9 

F3 29.4 30.1 28.0 71.3 75.7 12.3 

Fz 9.8 14.6 20.3 25.4 29.9 20.0 

F4 19.9 22.3 12.4 55.7 59.9 27.4 

F8 9.8 10.2 9.0 43.3 44.2 5.5 

T3 2.0 2.1 8.9 11.3 9.3 9.1 

C3 3.5 4.6 12.6 9.2 12.8 10.5 

Cz 1.0 1.6 12.4 4.6 9.0 12.2 

C4 3.1 5.1 10.7 45.2 51.0 12.4 

T4 3.2 3.6 9.2 29.0 30.4 8.7 

T5 0.8 0.9 9.2 6.6 5.8 9.1 

P3 1.1 1.7 10.1 3.3 5.9 9.7 

Pz 2.2 3.4 10.2 1.7 3.7 10.1 

P4 2.0 3.5 9.9 10.4 13.4 10.0 

T6 0.7 0.4 9.3 5.6 4.9 9.1 

O1 1.4 0.5 9.3 5.5 5.9 9.1 

O2 2.6 2.3 9.3 6.7 5.6 9.1 

 

Table 2. Recorded and computed potential values from the left and right frontalis. 

Channels nearest the EMG source are grayed. Here the volume conductor model 

describes reasonably well how the signal attenuates when distance to source increases.  
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 Left masseter Right masseter 

Channel Recorded 

ear-

referenced 

value (µV) 

Recorded 

average-

referenced 

value (µV) 

Relative 

value 

computed 

from 

volume 

conductor 

model 

Recorded 

ear-

referenced 

value (µV) 

Recorded 

average-

referenced 

value (µV) 

Relative 

value 

computed 

from volume 

conductor 

model 

Fp1 2.4 3.3 1.0 4.3 3.1 1.1 

Fp2 5.2 4.1 0.4 12.3 12.1 2.6 

F7 7.2 7.8 7.8 7.1 4.4 1.7 

F3 10.0 11.8 2.3 4.3 3.8 0.2 

Fz 1.6 2.8 0.7 6.9 8.3 1.8 

F4 2.7 3.4 0.1 32.4 33.2 6.1 

F8 9.9 9.5 0.7 23.1 20.4 20.4 

T3 6.8 5.5 10.7 8.2 6.4 1.9 

C3 6.7 9.4 2.3 2.9 4.3 0.4 

Cz 0.3 3.0 0.5 2.3 4.7 1.4 

C4 0.9 1.9 0.1 28.8 29.3 6.0 

T4 6.3 6.9 0.7 26.8 24.1 27.8 

T5 2.5 2.0 1.9 5.9 4.4 1.9 

P3 1.1  1.9 1.0 3.6 3.7 0.6 

Pz 0.8 1.3 0.2 2.1 1.8 0.6 

P4 1.2 2.3 0.2 8.7 12.0 2.6 

T6 2.5 2.3 0.7 7.5 5.5 4.8 

O1 4.4 3.6 0.3 5.7 3.8 1.7 

O2 4.6 3.6 0.6 6.6 5.3 0.7 

 

Table 3. Recorded and computed potential values from the left and right masseter. 

Channels nearest the EMG source are grayed. Here the volume conductor model 

describes reasonably well how the signal attenuates when distance to source increases.  
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Figure 30. Spreading of the EMG artefact of the left temporalis (above) and right 

temporalis (below). On the left ear-referenced values are used and in the middle 

average-referenced values obtained from recording are used. On the right relative 

values computed from volume conductor model are used. It’s clearly seen that the 

volume conductor model attenuates the signal too quickly when distance to source 

increases. 
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Figure 31. Spreading of EMG artefact of the left temporalis (above) and right 

temporalis (below). On the left ear-referenced values are used and in the middle 

average-referenced values obtained from recording are used. On the right relative 

values computed from volume conductor model are used. Here the volume conductor 

model describes reasonably well how signal attenuates when distance to source 

increases. 
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Figure 32. Spreading of EMG artefact of the left masseter (above) and right masseter 

(below). On the left ear-referenced values are used and in the middle average-

referenced values obtained from recording are used. On the right relative values 

computed from volume conductor model are used. Here the volume conductor model 

describes reasonably well how signal attenuates when distance to source increases. 

Some disturbance signal is seen in the left masseter’s recording. It also misrepresents 

that signals from the zygomatic channels are now not in use. 

 

4.3 Frequency responses 

In Figures 33-38 amplitude and phase responses of all six investigated muscles have 

been plotted, when tissues between the muscle and the EEG channels have been 

considered a digital filter. Blue curves correspond to ear-referenced values, and red 

curves correspond to average-referenced EEG signals. Amplitude responses have been 
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normalized for maximum amplification; when all channels are taken into account it is 

one. Absolute amplifications cannot be defined, because the EMG attenuation 

coefficient was not measured. 

 

 

 

 

Figure 33. Normalized amplitude responses and phase responses, when tissues between 

the left temporalis and the EEG channels have been considered a digital filter. It’s 

clearly seen that the signal attenuates least in some frequency < 100 Hz. Large 

amplitude responses in frequencies > 500 Hz are non-physiological and occur due to 

pre-filtering. It’s difficult to make conclusions from the phase responses. 
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Figure 34. Normalized amplitude responses and phase responses, when tissues between 

the right temporalis and the EEG channels have been considered a digital filter. It’s 

clearly seen that the signal attenuates least in some frequency < 100 Hz. Large 

amplitude responses in frequencies > 500 Hz are non-physiological and occur due to 

pre-filtering. It’s difficult to make conclusions from the phase responses. 
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Figure 35. Normalized amplitude responses and phase responses, when tissues between 

the left frontalis and the EEG channels have been considered a digital filter. It’s clearly 

seen that the signal attenuates least in some frequency < 100 Hz. Large amplitude 

responses in frequencies > 500 Hz are non-physiological and occur due to pre-filtering. 

It’s difficult to make conclusions from the phase responses. 
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Figure 36. Normalized amplitude responses and phase responses, when tissues between 

the right frontalis and the EEG channels have been considered a digital filter. It’s 

clearly seen that the signal attenuates least in some frequency < 100 Hz. Large 

amplitude responses in frequencies > 500 Hz are non-physiological and occur due to 

pre-filtering. It’s difficult to make conclusions from the phase responses. 
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Figure 37. Normalized amplitude responses and phase responses, when tissues between 

the left masseter and EEG channels have been considered a digital filter. Large 

amplitude responses in frequencies > 500 Hz are non-physiological, but occur due to 

pre-filtering. Also, in some frequency < 100 Hz a peak where signal attenuates least is 

visible. It’s difficult to make firm conclusions from the phase responses. 
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Figure 38. Normalized amplitude responses and phase responses, when tissues between 

right masseter and EEG channels have been considered a digital filter. Large amplitude 

responses in frequencies > 500 Hz are non-physiological, but occur due to pre-filtering. 

Peak at about 300 Hz is also probably a non-physiological disturbance. Also, in some 

frequency < 100 Hz a peak where signal attenuates least is visible. It’s difficult to make 

firm conclusions from the phase responses. 
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4.4 Simulation 

In Figures 39-44 a simulated EMG artefact from all six investigated muscles in EEG 

channels have been plotted. Both ear-referenced and average-referenced frequency 

responses have been used. The original simulated EMG signal is shown, too, but 

because the EMG attenuation coefficient is now known, it’s not in scale with artefact 

signals. 

 

Figure 39. Simulated EMG artefact from the left temporalis in EEG channels. On the 

left ear-referenced have been used and on the right average-referenced frequency 

responses have been used. Signals could be utilized in further studies into how to 

separate EMG artefact from measured EEG signal. 
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Figure 40. Simulated EMG artefact from the right temporalis in EEG channels. On the 

left ear-referenced have been used and on the right average-referenced frequency 

responses have been used. Signals could be utilized in further studies into how to 

separate the EMG artefact from measured EEG signal. 
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Figure 41. Simulated EMG artefact from the left frontalis in EEG channels. On the left 

ear-referenced have been used and on the right average-referenced frequency responses 

have been used. Signals could be utilized in further studies into how to separate EMG 

artefact from the measured EEG signal 
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Figure 42. Simulated EMG artefact from the right frontalis in EEG channels. On the 

left ear-referenced have been used and on the right average-referenced frequency 

responses have been used. Signals could be utilized in further studies into how to 

separate the EMG artefact from the measured EEG signal. 
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Figure 43. Simulated EMG artefact from the left masseter in EEG channels. On the left 

ear-referenced have been used and on the right average-referenced frequency responses 

have been used. Signals could be utilized in further studies into how to separate the 

EMG artefact from the measured EEG signal. 
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Figure 44. Simulated EMG artefact from the right masseter in EEG channels. On the 

left ear-referenced have been used and on the right average-referenced frequency 

responses have been used. Signals could be utilized in further studies into how to 

separate the EMG artefact from the measured EEG signal. 
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5. DISCUSSION 

5.1 MUAP intervals 

Interval curves of the facial muscles (in the cases when there were surely no missing 

MUAPs in the intervals) were observed to be relatively flat as expected. In the curve 

obtained from the tibialis anterior interval differences were much larger, due to the 

regulation system of the spinal cord. This information from MUAP intervals could be 

further used in investigating the separation of the EMG artefact from the measured EEG 

signal. Part of the interval variation (both in facial muscles and in the tibilias anterior) 

was probably due to variation of the force used during recording. If this phenomenon 

were investigated further, force should also be measured. The force has been measured 

in earlier studies for example from the lip muscles [24], but measuring it from all facial 

muscles could be difficult. 

 

5.2 Peak-to-peak values  

When the strengths of EMG artefacts obtained from EEG recordings are examined, it’s 

noticeable that there are no large differences between ear-referenced and average-

referenced values. Average-referenced values can be considered an improvement at 

least in the case of the temporalis and the masseter, because the EMG source was closer 

to the other ear. From individual muscles, the dispersion of the EMG artefact from the 

temporalis muscles appears as expected. It can be clearly observed that the artefact is 

weak in the midline of the head, because there’s no muscle tissue conducting electricity. 

It was also noticeable that the artefact from the left temporalis in channel P3 is larger 

than the artefact from the right temporalis in channel P4, even when the EMG was 

recorded from the same point at both sides. One explanation can be that the head is not 

completely symmetric. Also, the dispersion of the EMG artefact from the frontalis 

muscles appears as expected. The artefact from the right frontalis in channels Fp1, C4 

and T4 is larger than the artefact from the left frontalis in channels Fp2, C3 and T3, but 

this can again be explained by head asymmetry. However, in the case of the left 

masseter, results are not credible. MUAPs of a single motor unit were successfully 

extracted from the left masseter, but perhaps other muscles activated such that their 

EMG artefacts were not cancelled in averaging. However, the artefact is largest in 

channels F7 and F3 which seems correct. Results from the right masseter seem better, 

but it’s strange that the artefact is larger in channel F4 than in channel F8. Signals from 
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zygomatic channels would have been useful here, because the artefact would have been 

largest in these channels. 

When results computed from the volume conductor model are examined, it’s noticeable 

that in the case of the frontalis and the masseter, the model describes the signal 

attenuation when distance to EMG source increases reasonably well. In the case of the 

temporalis, the signal attenuates too quickly. It’s difficult to make conclusions from the 

absolute values, because the EMG attenuation coefficient was not measured. Thus, the 

model is not suitable for solving the inverse problem. Due to several approximations 

made in modeling, results differing from recorded values are not surprising. It would 

have been interesting to see results in the same model, but other parameters defined 

accurately (conduction velocities of the muscles and direction of the muscle fibers). 

Also, the metal conductor between the auricular electrodes could have been modeled 

with potential as a reference, as in recordings. After this, the model itself could be 

improved by adding tissue types and changing tissue thicknesses and resistivity. The 

final step could have been taking permittivity (capacitive properties of tissues) into 

account and using the distributed dipole model instead of single dipoles.  

 

5.3 Frequency responses 

When amplitude responses are examined, it’s noticeable that in all muscles, the 

response grows significantly after 500 Hz. This phenomenon is certainly not 

physiological, and the natural explanation is that the recorded EMG signal had already 

been filtered with a 500 Hz low-pass filter, but the EEG signals had not. In the right 

masseter the peak at about 300 Hz is likely another disturbance. However, in all 

measured muscles some peak at frequencies below 100 Hz is visible, which can be 

interpreted as a physiological signal. Strangely, the peak measured in the left temporalis 

is much larger than in the right temporalis. The influence of the 50 Hz electrical artefact 

should be the same in all cases since the same notch filter was used for all signals. 

Differences between ear-referenced and average-referenced EEG signals seem to be 

small. 

Interpreting phase responses is difficult. Since the EMG signal had been prefiltered it’s 

not possible to make conclusions regarding responses over 500 Hz. At lower 

frequencies, the response sometimes becomes positive, which cannot be correct, since 

an EMG artefact of any frequency cannot occur in EEG channels before the EMG 

channel. This could originate from noise which has not been cancelled in signal 

averaging. Differences between ear-referenced and average-referenced EEG signals 

seem to be much larger than in amplitude responses. Average-referenced responses 

could be considered better, for the same reason as peak-to-peak values in the time 

domain. A common trend is that the phase response is reduced when frequency grows, 
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but it’s difficult to determine whether reduction occurs linearly. This would imply that 

all frequencies are equally delayed. 

From earlier studies where EMG and EEG have been recorded simultaneously, other 

results can be mentioned, for example from Goncharova et al. [25]. In this study, the 

spectrum of EMG channels was observed for all frequencies from 0 Hz to over 200 Hz. 

In the frontalis, there was a peak at 20-30 Hz, and in the temporalis at 40-80 Hz. 

Attenuation and broadening of peaks was observed in EEG channels. Actual frequency 

responses between EMG and EEG channels were not calculated. The EMG was 

recorded with surface electrodes. 

 

5.4 Simulation 

Obtained simulated EMG artefacts in EEG channels are not in themselves an actual 

research result. They could be further exploited, however, for example by adding EEG 

data, and utilizing another method to separate the EEG data and the EMG artefact. Also, 

artefacts of single MUAPs could be extracted. Naturally different simulated EMG 

source signals should be used instead of just a single simulation. 

From simulated artefact signals, it’s clear that the aforementioned task would not be 

easy. In most cases there are no clear EMG spikes, and moreover, it’s impossible to 

determine in which positions the strongest MUAPs occur in the EMG source signal. 

However, it seems that it would be easier to recognize the artefact from the frontalis 

muscle than from the temporalis and masseter muscles. There are no large differences 

between the artefact signals, regardless of whether ear-referenced or average-referenced 

frequency responses have been used. 

In earlier studies, forming channel-specific EMG artefacts has generally not been 

attempted, but the same simulated artefact has been added to all EEG channels. For 

example in the study made by Gao et. al. [38], this type of simulated signal has been 

used, and investigated canonical correlation analysis (CCA) has been utilized in the 

removal of EMG artefacts from the EEG. 

 

5.5 Research limitations 

A limiting factor in this study was that there was only one test person, and data from a 

single recording was used. Research aims also should have been defined more clearly, 

taking into account that it was a Master’s thesis project, whose directive duration is half 

a year. EMG artefacts are an expansive topic. Research efficiency was also limited by 
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the fact that many techniques in use today previously unfamiliar to the author of this 

thesis. Completing additional university courses, for example from the signal processing 

and biomedical engineering departments would have been useful.  
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6. CONCLUSIONS 

In this Master’s Thesis, EMG artefacts from facial muscles in EEG were investigated. 

The ultimate objective was to determine the frequency bands from the measured EEG 

signal in which the actual EEG occurs, and in which frequency bands the EMG artefact 

occurs. Moreover, another goal was to separate the EEG and the EMG if they occur in 

same frequency band. Determining the muscular origin of the EMG artefact was also a 

subject of interest. 

A comprehensive solution to the objective of separating EMG artefacts from the EEG 

signal was not directly achieved in the project. Based on the calculated frequency 

responses, results suggest that a peak occurs at frequencies below 100 Hz, where signal 

between EMG and EEG channels attenuates least. More recordings, preferably from 

several test subjects, should be completed. Moreover, it should be verified that the 

software used hasn’t employed any unknown pre-filtrations to signals.  

Since simulated EMG artefacts in EEG channels are not in themselves an actual 

research result, they could be further exploited to separate the EEG data and the EMG 

artefact. Similarly, frequency responses calculated from several test persons should be 

used. Different simulated EMG source signals should also be tested. 

A conclusion that can be made from the results is that the volume conductor model is 

not accurate enough to describe EMG conduction inside the head, and thus 

inappropriate for inverse problems. Instead, a realistic model should be used, and EMG 

dipoles should be defined more accurately. Exact attenuation coefficient between the 

EMG needle and the amplifier (if an attenuator is needed) should also be determined. 
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