

PETRI AHO
VISUALIZING MINING DATA
Master of Science Thesis

Examiner:
Professor Tommi Mikkonen
Examiner and topic approved by the
Council of the Faculty of Computing
and Electrical Engineering on
03.06.2013

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
AHO, PETRI: Visualizing Mining Data
Master of Science Thesis, 44 pages, 0 Appendix pages
August, 2015
Major: Software Engineering
Examiner: Professor Tommi Mikkonen
Keywords: Mining, visualization, Python, Qt

Interpreting data collected from the mining rigs provides challenge which is allevi-

ated with help of visualization techniques. A good visualization shows all the relevant
information at a glance and helps make decisions. In mining the information can be
used for example to follow the concentration of the mined minerals, adjust drill settings
according the rock properties, track wear of drill bits, make drill plans, detonation plans
and bolting plans in order to ensure efficient and safe work.

Visualizing methods include graphs such as line or bar diagrams, interpolation and
extrapolation algorithms and mapping data spatially or temporally. When observing
data within single hole or comparing few holes it is best to use line graph and plot in
respect of depth or time. When trying to visualize the whole mining pattern, such as the
tunnel face or drill field, the best way is to use 3D and draw the holes in the scene as
cylinders or lines and color them along the depth with different colors representing dif-
ferent values of the visualized quantity. Interpolations and extrapolations can be used to
spread the data in between and around the holes in the 3D view. Interpolations can be
visualized by using planes with either color coded height maps representing the data
that can be moved around the space or by using isosurfaces. Isosurface is visible where
the data matches the examined value and by adjusting the value isosurface changes ac-
cordingly.

This thesis concentrates on finding the best ways to present the data from drilling
machines. It has three main points: 3D visualization for analyzing large batches of col-
lected drill data, real time drill visualization for use in the drill equipment during and
immediately after the drilling and interpolation to find ways to interpret and expand
from the data available. All the features in this thesis are built into a DrillGraph soft-
ware, to be used as a basis for actual products.

Powerful computers available these days make it possible to visualize the 3D scenes
in real time. It is easier to get the grasp of the drill field when the visualization can be
panned, rotated, zoomed and moved around freely. In this thesis it was found that even a
laptop can handle drawing real time visualizations of moderate size drill fields when the
heavy drawing operations were done using OpenGL.

 II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
AHO, PETRI: Kaivostoiminnan visualisointi
Diplomityö, 44 sivua, 0 liitesivua
Elokuu 2015
Pääaine: Ohjelmistotuotanto
Tarkastaja: Professori Tommi Mikkonen
Avainsanat: Kaivos, Visualisointi, Python, Qt

Porauslaitteilta kerätyn porausdatan tulkinnan apuna on hyvä käyttää visualisointi-

tekniikoita. Hyvän visualisoinnin avulla voidaan nähdä oleellinen tieto yhdellä vil-
kaisulla ja toimia sen pohjalta. Kaivostoiminnassa visualisoinnin tarjoamaa tietoa voi-
daan hyödyntää muun muassa mineraalisuonien vahvuuden seurannassa, poran asetus-
ten säätämisessä porattavan kiven ominaisuuksien mukaan, poranterän kuluman seu-
raamiseen, poraussuunnitelmien, räjäytyssuunnitelmien ja pultitussuunnitelmien teke-
miseen. Nopea ja oikea päätöksenteko mahdollistaa tehokkaan ja turvallisen työskente-
lyn.

Visualisointitekniikoita on monia, kuten viiva- ja pylväsdiagrammit, interpolaatio-
ja ekstrapolaatioalgoritmit, ja datan kartoitus ajan tai paikan suhteen. Kun tutkitaan vain
yhtä tai muutamaa reikää, ne kannattaa sijoittaa viivadiagrammiin ajan tai poraussyvyy-
den suhteen. Kun taas halutaan tutkia koko porausaluetta, kuten tunnelinperää tai po-
rauskenttää, kannattaa reiät visualisoida 3D sylintereinä tai viivoina avaruuteen kuten ne
on porattu toistensa suhteen. Data voidaan tässä tapauksessa esittää väreinä jolloin eri
värit kuvaavat eri arvoja. Interpolaatiota ja ekstrapolaatiota voidaan hyödyntää ar-
viomaan visualisoitavan datan arvot reikien välillä ja ympäristössä. Interpolaatiot voi-
daan visualisoita 3D maailmaan käyttämällä 2-ulotteisia tasoja joihin on värein kuvattu
data ja jota voidaan liikuttaa 3D porauskentässä tai siinä voidaan hyödyntää tasa-
arvopintoja. Tasa-arvopinta on kuin massaa, joka näkyy vain niillä kohdin visualisoita-
vassa mallissa, missä arvo vastaa tutkittavaa arvoa. Kun arvoa muutetaan, myös tasa-
arvopinta muuttuu vastaavasti.

Tässä diplomityössä pyritään löytämään parhaat mahdolliset tavat esittää dataa po-
rauslaitteista. Datan esityksessä on kolme pääosiota: 3D visualisointi, millä pystytään
esittämään isoja määriä kerättyä porausdataa, Reaaliaikanäkymät, joita hyödynnetään
porauksen aikana sekä interpolointi, joka selvittää mahdollisuuksia tulkita ja laajentaa
käytettävissä olevaa dataa. Kaikki ominaisuudet tässä diplomityössä ohjelmoidaan
DrillGraph-sovellukseen, jota käytetään myöhemmin pohjana varsinaisille visualisointi-
tuotteille.

Nykyisillä tehokkailla tietokoneilla 3D visualisointi voidaan helposti tehdä reaa-
liajassa. Kun 3D mallia porauskentästä voidaan liikuttaa, pyöritellä ja zoomailla vapaas-
ti, sen hahmottaminen helpottuu huomattavasti. Tässä diplomityössä havaittiin että jopa
nykyaikainen kannettava tietokone pystyy suoriutumaan kohtuullisen kokoisen poraus-
kentän 3D-visualisoinnista, kun raskaat piirtokäskyt suoritetaan OpenGL:llä.

 III

PREFACE

Writing this thesis was an interesting project and quite a learning experience. In the
course of the writing many parts of the software got refactored several times because the
specifications kept changing and each time I feel I managed to improve on the previous
iteration so it was visible during the project how my skills as a programmer were im-
proving. The actual writing spanned lot longer than the actual software project it was
made to describe. Somehow documenting the results is not as much fun as making them
and when I did not finish the thesis immediately after ending the project, it was hard to
get started again.

I would like to thank my excellent examiner Professor Tommi Mikkola for all the
support and pushing he gave me to get this thesis done. Also integral in the making was
Miika Huikkola who was leading the project and gave me this possibility. He had a vital
role in supplying background information and specifications for the visualization needs
and confirming the results.

Jani Savuoja and Markku Pusenius gave invaluable technical assistance with many
aspects of the programming, taught me a lot and all in all were very supporting through-
out the process.

Tampere 29.7.2015
PETRI AHO

 IV

TABLE OF CONTENTS

Abstract .. I

Tiivistelmä.. II
Preface ... III
1. Introduction ... 1
2. Mining operations, needs and requirements .. 3

2.1 Mining Process .. 3

2.1.1 Drilling Equipment .. 5

2.1.2 Surface Mining .. 6

2.1.3 Underground Mining ... 7

2.2 Mining Data ... 8

2.2.1 Data Usage ... 9

2.2.2 Visualization Needs ... 10

3. Data Visualization ... 12
3.1 Data Types ... 12

3.1.1 Continuous Data .. 12

3.1.2 Discrete Data ... 13

3.2 Visualization Types ... 13

3.2.1 Relative Charts .. 13

3.2.2 Spatial Diagrams ... 15

3.3 Interpolation and Extrapolation ... 16

3.3.1 Continuous Data .. 17

3.3.2 Discrete Data ... 18

3.4 Reliability of data .. 18

3.5 Visualizing Interpolation ... 19

4. DrillGraph design .. 20
4.1 Tools .. 20

4.1.1 Qt ... 21

4.1.2 Python .. 21

4.1.3 Development environment .. 22

4.2 Architecture ... 23

4.2.1 Model ... 23

4.2.2 Controller ... 24

4.2.3 View .. 25

4.2.4 Inter-module communication .. 28

4.2.5 Load balancing .. 28

5. DrillGraph implementation ... 30

5.1 Data handling .. 30

5.1.1 Loading and saving data .. 31

5.1.2 Using data .. 32

5.2 Visualizing Options ... 35

 V

5.2.1 3D view ... 36

5.2.2 2D line diagram ... 39

5.2.3 2D spatial visualization ... 40

5.3 Interpolations ... 41

5.3.1 Continuous interpolations .. 42

5.3.2 Discrete interpolations ... 43

6. Conclusions ... 44
References ... 45

I

1. INTRODUCTION

Mining is the process of extracting minerals from the ground. It has traditionally
been seen relatively expensive, slow and even dangerous while at the same time gener-
ating lot of waste. However modern mining technology has made big strides in making
it much easier, faster and cost effective. Even small improvements at the early stages of
the mining process can make big difference in productivity and profitability when it
carries over all the steps. Waste management and other environmental side-effects have
become more problematic as legislation regarding those have gotten stricter and yields
smaller. Waste production can be minimized if the drill operator could minimize unnec-
essary drilling by detecting early if the drilling is not hitting the vein.

Other ways of increasing productivity come from data analysis. Proper analyzing
tools can help increase the output and validate the results fast and reliably by making
decision making easier. Knowing the characteristics of the rock and the behavior of the
veins makes planning on site easier by directing the work more efficiently and avoiding
unnecessary work. Researchers can make the work methods and tools more suitable for
certain rock types or scenarios improving safety, productivity and predictability.

This thesis is about visualizing data collected by mining drills in order to increase
efficiency and to understand the mining process better. Thesis emphasizes on the re-
search needs, with some aspects of specific visualizations for drill operators, chargers,
foremen and drill planners. The overall structure of the thesis is listed below.

Chapter 1 gives a brief description of the mining industry and explains the mining
process. There is also some explanation of the different mining types and drilling ma-
chines used in those.

Data gathering and usage are aspects that are needed by the visualizing so the chap-
ter goes through what kind of data is available, how it is used now and what it could be
used for.

Chapter 2 gives an introduction to different visualization methods and gives exam-
ples how they may be used in the mining context. Interpolation and extrapolation meth-
ods and data types are explained and explored how they are used in the visualization.

Chapter 3 is about the design of the DrillGraph software which is used to prototype
and demonstrate the different visualizations. The architecture and module structure is
included here. The development tools are also listed here along with all the libraries and
their versions.

Chapter 4 goes through the implementation details of the DrillGraph software. Data
handling is explained including how it is loaded, used and stored. Implementation de-

 2

tails of the visualizations and interpolations are explained, how they were made and
what problems do they solve. Some discarded methods are also described.

Chapter 5 sums up the results of the visualizations. It goes through the development
process and what was learned from it. Interpolation methods and their benefits are listed
and brief mention is given of the new visualization methods that could be helpful.

Chapter 6 wraps up the process used in researching the drilling visualizations and
sums up the results of the thesis. It also briefly explores what was good and bad in the
methods used.

 3 3

2. MINING OPERATIONS, NEEDS AND REQUIRE-
MENTS

Mining is defined according to Castree as the activities associated with the extrac-
tion of natural resources from the ground. Extraction is either by subsurface tunneling or
drilling, or by removal of the surface materials through quarrying, open-pit mining, or
strip-mining, i.e. the systematic removal of large amounts of surface material (Castree et
al. 2013).

Mining has played a vital role in the development of civilization and even with ef-
fective recycling of the materials the demand of the minerals has increased steadily as
industry and consumption has expanded. Today's mining operations may require whole
mining towns with associated infrastructure, including hospitals, air and seaports, power
plants, landfill facilities, and roads (Spitz & Trudinger 2008). The mining equipment
has improved considerably in recent years; the drill rigs have been outfitted with in-
creasing number of computers and sensors. As a result a large amount of data is availa-
ble from the mining operations which can be used immediately to monitor the progress
and help operator in adjusting the drilling parameters. This can affect the immediate
aspects of the mining, such as the efficiency and drill rig reliability, but also the follow-
ing phases such as blasting, hauling and crushing when more is known about the struc-
ture of the rock and it can be handled in the most efficient way for the equipment avail-
able.

Furthermore the data can be used in for research and development of the mining
methods and finding new ways to improve productivity in machine and tool design,
workflow planning, safety and other decision making.

2.1 Mining Process

Mining is done by fracturing the rock into manageable pieces that can then be pro-
cessed as the minerals are separated from the ore. Depending on the characteristics of
the rock material, different approaches can be used. For softer materials such as sand-
stone it may be enough to rip it with mechanical cutting devices or breaking it with rock
hammers. In most cases the most effective way of fragmenting the rock is blasting. To
direct the explosive force into the rock, holes are drilled into it and the explosive charg-
es inserted into the holes. This is called drill and blast method, which is illustrated in
Figure 1.

 4

Figure 1 Drill and blast cycle in tunneling . (Heiniö 1999)

In the drill and blast method, blastholes are typically drilled using either rotary or

percussive drilling methods. In rotary drilling, the rock is crushed and chipped by the
teeth of the rotating drill bits. Rotary drill head contains three separate rotating parts
which are pressed against the rock at constant pressure to crush it. It is necessary to
keep the bearings clean from the dust and particles with air and water flow. Percussion
drilling hits the drill bit against the rock causing minor fractures which then cause the
rock to chip. The bit is rotated so that buttons hit slightly different positions during each
strike. Water on air is used to clean the borehole and cool the drill. (Tatiya 2005)

In blasting phase the drilled blastholes are filled with explosives and in some appli-
cations sealed to concentrate the explosive force is to the rock. Blasting is a crucial
phase to assure safety, generate suitable fragment size for the loaders and crushers
available, e.g. avoidance of toes and other unwanted rock formations that would make it
difficult to load the rock material and to continue drilling the rock face.

Correct drilling and communication between the drill operator and the blaster is im-
portant in assuring correct blasting. The drill operator should inform the blaster of any
fragmentation and changes in the rock quality within the holes and possible deviations
from the drill plan.

Too big charge can cause vibrations in surrounding areas. This can damage struc-
tures, send flyrocks and create shock waves that can cause danger, collapses and general
instability in the mine and could make it difficult to continue and might require extra
support structures. Too small charge can leave humps and too big boulders that are dif-
ficult to handle and may not fit crushers. Humps prevent proper loading and execution

 5

of the further drill plans. Manual hammering with rock hammers would be required to
remove humps and break too large boulders.

After blasting the fragmented pieces of rock are loaded and hauled to crushers for
further comminution then processed by various methods to increase the concentration of
the wanted minerals and to separate minerals from the gangue. Processes differ for vari-
ous minerals, but they depend on the physical and surface chemical differences between
the extracted mineral and the other materials in the ore. Methods such as gravity con-
centration, froth flotation, electrostatic separation and magnetic separation are common-
ly used. (SME Mining Engineering Handbook (3rd Edition))

2.1.1 Drilling Equipment

Drill rigs for mining can be categorized in three categories: Rotary, tophammer and
down-the-hole (DTH) drill rigs. The different methods are shown in Figure 2. The type
of rig is selected depending of the rock type and hardness, diameter and the length of
the holes.

Figure 2 Drilling methods

Tophammer (Figure 2 a) has the piston at the end of the drill, where it hits the shank
and the shockwave is transferred through the string to the drill bit and the buttons in the
bit make the rock crack and crush. The feeding mechanism makes sure the bit is in con-
tact of the rock all the time and a slight rotation is done between the hits so the whole
hole area is worked. Percussive drill bits are shown in Figure 3a.

 6

DTH (Figure 2 b) machines lower the percussion mechanism in the hole where it is
in direct contact of the drill bit. This method can be used for longer holes, since there is
no loss of energy to the rods. Percussion mechanism is operated by compressed air and
the bits can be seen in Figure 3 b.

Figure 3 Drill bits for a) Tophammer b) DTH c) Rotary drills (Sandvik)

The rotary drilling (Figure 2 c) is used for softer rock materials like coal or lime-
stone, and it relies on the crushing force of the teeth to break the rock while a constant,
static force is pressing them towards it. Air is blown into the hole from within the string,
which will cool the drill head and push the cuttings out. Drill head usually has three
rotating heads with teeth that will crush the rocks as they rotate independently as seen in
Figure 3 c.

2.1.2 Surface Mining

Surface mining includes different methods such as strip mining, open-pit mining,
and mountaintop removal. In all methods it is first necessary to remove all the vegeta-
tion from the area, and then to remove the overburden or soil from the top of the mineral
vein by means of bulldozers, excavators and diggers. The exposed ore can then be
worked with suitable methods to extract the minerals.

Strip mining is most commonly used for coal but it is applicable for other minerals
as well. Strip mining is done in long narrow strips, where the ore is removed. The waste
from the next strip is dumped to the previous strip.

In open-pit mining which is shown in Figure 4, ore is worked in layers creating a
large pit. Drilling is done by the benches expanding those outwards by blasting then
continuing the layer below it. Result is a structure reminding of huge stairs leading up
from the pit.

Mountaintop removal blasts the top of a mountain and works down from there, leav-
ing the sides to cover the work. It is mostly used for coal.

 7

2.1.3 Underground Rock Excavation

Underground rock excavation typically includes tunneling, building underground
space for civil use and mining, extracting minerals utilizing an underground space to
have an access to ore body. Tunneling and mining have their own special requirements,
but possess many similarities as well.

Underground mining includes all the mining that is done in excavated space under-
ground. Underground mining can be done utilizing shafts, which are vertical tunnels,
drifts that go horizontally and slopes which are declining.

In underground mining the mining process is mainly characterized by the selection
of the mining method. As for example sublevel stoping.

Excavating the access tunnel is typically done by making a set of holes to the end
face of the tunnel, as shown in Figure 5, filling the holes with explosives and blasting
them. The rubble is then hauled away. Once the access tunnel is excavated and reached
the ore the actual production drilling can start. In sublevel stoping the production drill-
ing is typically done by drilling holes in fan-like pattern. While the holes on the tunnel
face are usually only few meters long, the production holes can extend to 20 meters and
over.

Figure 4 Simulator visualization of open pit mining (RigSimulator)

 8

When operating underground, there is also need for drilling support holes, which are
not blasted. Bolt holes are drilled perpendicular to the tunnel on the ceiling and walls
and bolts are driven to the holes to support the tunnel and when necessary beams, nets
and other support mechanisms can be attached to them.

2.2 Mining Data

Data used in this thesis comes from the sensors in the drill rigs, but it is possible to
get data from other machines and measurement devices too, such as laser scanners, den-
sity measurements, spectrometers and weight scales. Using the data visualization meth-
ods it is also possible to evaluate new measurements and possibly equip future drill ma-
chines with such sensors if the data is useful.

Sensors typically give information to the operator through gauges and meters in the
control panel, but the data is also often recorded for later analysis. Pressure sensors are
among the most typical ones that measure for example percussion, feed and rotation
pressure. More specialized sensors are always being developed for better understanding
and controlling the drilling process.

Drilling state is information that is important to know when analyzing the drilling
data. State could include different drill settings and adjustments that are made by the
operator or the automation. State could also include wear of the drill bit and amount of
rods in the drill. When combining the state data to the sensory data it is possible to gen-
erate normalized data for the rock properties.

Operator can give important feedback to the process as well. Operator can often de-
tect things that may be hard for machine to notice. There may be change in the tone of
the drilling sound or in the color of the cuttings. Water might sprout from the hole when

Figure 5 Tunnel face drilling

 9

water vein is hit if air flushing is used and operator can learn subtle changes in vibra-
tions to detect fractures as well even if the automation algorithms do not.

There are other measurements done outside of the drilling process that can be used
for extra information. There are devices that measure the curvature of the holes, such as
accelerometers which can be lowered to the surface holes. Also cameras can be lowered
or driven into the holes to assess color and other visual characteristics of the rock. Laser
measurements are used to map the walls of the tunnel or surface bench to create a model
of the tunnel or mine surface.

The data can be stored within the machine's own controller and extracted with a
USB-stick or other local means, but it is also possible to transfer the data further
through local area network in real time to a workstation, server or a cloud.

2.2.1 Data Usage

Drilling data can be used by the operator himself to adjust drilling parameters and
monitor how changing settings affect the drilling speed and equipment wear to maxim-
ize productivity. This requires the operator to use his or her own expertise to analyze the
information presented to him and make decisions to optimize the drilling parameters.

Alternatively the data can be collected by drill manufacturers to improve their drill
rigs, drill bits, automation settings and algorithms and other research and development.
The manufacturer customer support and maintenance personnel can also check the drill
data to see what was happening when problems occurred in order to give support and
advice.

Another important scenario within the mining process is letting the charger know
the rock properties for proper charging. Drill operators have traditionally given charger
paper schematic of the drill plan where they have made markings of the hole depth and
any problems such as fractures within the holes. With better drilling data it is possible to
make better decisions for the blasting. Proper blasting makes loading and crushing the
rock easier, does not endanger the structural integrity of the mine and ensures easy ac-
cess of the drill rig to the following drill patterns.

Safety issues are important especially in the underground mines, where drilling data
can give valuable information about reinforcement and support needs. Analyzing the
drilling data could reduce the need for other tests or at least confirm the results reducing
unnecessary reinforcement work and improving safety.

Geologic surveying often use separate sampling tools, but it is also possible to use
the data collected during production drilling. Data could be used to estimate rock types
and layering, hardness, abrasiveness and fragmentation level of the rock mass along
with mapping the ore veins.

Site supervisors and planners get information about the work pace, conditions and
behavior of the ore veins from the drilling data. The data can be used to alter plans and
refine work methods and equipment in the mine for best productivity.

 10

2.2.2 Visualization Needs

Most basic needs for visualization come from the needs of the operators. Especially
less experienced operators can benefit from visualized information from the drilling
data and possible interpolations and extrapolations based on the previous holes. Visuali-
zations can be used to predict rock behavior so correct drilling modes can be selected
and to warn about possible upcoming problems such as fractures or water holes.

Drill operators are usually required to make observations for chargers on the rock
qualities, fragmentation and other abnormalities in the holes. An example of a drill log
form is shown in Figure 6 where the drill operator has manually made markings about
the holes that have been drilled. Lot of this can be automated by the controller and re-
ports and visualizations can be generated to aid the charger in charging the block
properly. Blasting report could show where the fracture lines go and where the rock is
harder or softer.

Figure 6 Drill log form

 11

Visualization of the drill data can show weak points that would require extra support
and could minimize or even eliminate need for water testing in injection holes in order
to detect fracturing. Support visualizations could also include any detected fracturing
and information about the brittleness of the rock material along with the hardness.

For mine supervisors and planners, visualizing mining data can give a better over-
view of the mining operation and better understanding about the ore behavior and rock
properties. Analyzing data for the whole mining operation would be too inefficient and
properly generated visualizations can show problems immediately.

Maintenance and customer support can easily check the visualized rock model and
compare the drilling parameters to see if there are machine failures. This data can be
used to determine if problems are due to faulty operating methods.

Researchers can create rock models based on real drilling data by help of interpola-
tions and smart algorithms. Based on those models they can generate better drilling
methods and improve the hardware and software of the drilling products. Simulators can
be validated by comparing the simulator data to real data. The simulators can then be
used to speed up the development cycle when new ideas can easily be tested and veri-
fied in simulated environments and the results of those tests again visualized for easier
analysis that can be referenced against the real drill data.

 12

3. DATA VISUALIZATION

Processing large amounts of numerical data can be challenging for humans, so de-
veloping methods for structuring and presenting the data in a way humans can under-
stand and analyze it easier is important part of data processing. With proper visualiza-
tion tools large amounts of data can be checked with a glance and anything out of the
ordinary shows up immediately. Comparing the data with other data sets or with differ-
ent data channels makes it possible to draw conclusions and to understand the opera-
tions and the relations between measurements from different sensors.

When making visualization software, it is important to know what kind of data is
being visualized and what does the user want to see from it. It also makes a difference if
the data is static or if it changes or accumulates while being visualized. There may be
need to process the data for interpolation purposes or create derived attributes for visu-
alization.

3.1 Data Types

The type of the data can affect the visualization methods and the algorithms used for
processing it. Data type can refer to the units of the measurement, such as meters or
kilograms which should not be mixed together, but can use regular arithmetic methods
within the same units.

Alternatively values can represent different characteristics such as male, female,
dog, and cat or in the mining context it could be different mineral types such as granite
or sandstone. Differences between continuous and discrete data become significant
when making calculations such as interpolating and extrapolating the data.

3.1.1 Continuous Data

Most measured units are continuous types, such that the values can be anything
within the limits set by physics or measuring tools. These types of units can be pro-
cessed with arithmetic units so it is possible to take averages or calculate integrals of the
accumulated kilograms. This makes it possible to interpolate and extrapolate using usual
methods such as averaging and fit them to a curve by methods such as least squares.
Visualizing this type of data forms continuous lines without gaps or steps except those
from the precision of the measurements.

 13

3.1.2 Discrete Data

Another major data type is discrete data. Discrete data cannot be used in the same
way as the continuous as the actual values may mean completely different things. It is
common to use numerical values to denote such values in the computer and sensor
equipment, but using normal arithmetic methods on the data usually results in nonsensi-
cal results.

For example there could be an algorithm that detects whether there is copper in the
rock being drilled and copper is marked with 1 in the output, gneiss is marked with 2
and granite with 3. If the instrument or algorithm detects copper in one measuring point,
and plain granite in another, in the data they are marked as 1 and 3, but it is not possible
to interpolate the values and deduce there would be gneiss in between those measure-
ment points.

3.2 Visualization Types

Data visualization is a very common software application and many solutions are al-
ready available for it. The challenge therein lies with finding the suitable ways of visu-
alization and adapting them to the current problem. It is necessary to know what kind of
data is being processed, if there is pre-processing required, what is the expected behav-
ior and what kind of anomalies to look for.

Diagrams and charts can be very specific for different fields and applications to
convey different information. Well selected visualization makes the important issues
stand out from the less relevant information. Axes can have linear or logarithmic scale
and they may be normalized. There can be additional information such as variance, cer-
tainty or shown in the chart.

3.2.1 Relative Charts

The most basic diagrams are line, scatter, pie, and bar diagrams, which are shown in
Figure 7. They have somewhat different use cases and each also has many variations
that have own unique distinctions.

Line diagrams are used when visualizing how a variable changes relative to another
one. It shares the characteristics of scatter diagram, but generally the values on x-axis
are truly increasing, such as time or sample number. In drilling context one might visu-
alize any measured variable, i.e. Percussion pressure, as a function of time or depth.
Scatter diagram is more of a relation of measured values without connection. In some
cases it is possible to generate line diagram from scatter diagram by finding trends in
the relation of the measurements, such as least squares fitting.

On the other hand the diagram can show where the values are concentrated. This
kind of data representation works well when comparing two measured attributes that

 14

affect each other to find the correlation. In drilling it could be for example the correla-
tion between penetration rate and rotation pressure as in Figure 8.

Figure 7 Line, scatter, pie and bar diagrams

Pie diagrams are used to depict portions or distribution of some values. This could
be used to show the percentages of different rock types within an area or within a spe-
cific hole.

Figure 8 Scatter diagram

Bar Diagrams are good for comparing separate instances of an attribute and distribu-
tion of discrete values within those instances. There could be a comparison for number

 15

of factors. For example bars could be different kind of pets and the bar height could
represent the number per thousand people. In mining scenarios the bars could represent
different holes and their length and different colors within the bars amount of ore and
non-ore rock.

3.2.2 Spatial Diagrams

When it is necessary to see the location of the data samples in relation to each other
and other possible objects in the surrounding it becomes necessary to assign one or
more of the coordinate axes to location. This brings new challenges for visualizing the
sample values. In static diagrams even three dimensions are becoming more difficult to
visualize and comprehend because of perspective. More than three dimensions are not
possible by conventional means so other ways must be used to make the values appar-
ent.

There are many ways to go about this depending on the type and density of the data
samples. For example in weather maps, such as in Figure 9, it is enough to show the
numerical values of the temperature (red numbers) or wind speed (blue circled numbers
with an arrow to show direction) for the area under it or use symbols for more discrete
type of data such as weather type in cloud, snow flake or sun symbols.

Figure 9 Weather map shows symbols and numerical data

 16

When the data is more densely populated, the diagram or map would become too

cluttered and impossible to read. Then the values can be mapped to a color and these
colors drawn into the diagram. This can be seen for example in topographical maps in
Figure 10. The height of the surface is visualized in colors that are explained in a sepa-
rate color map. Contour lines are another way to visualize data in two dimensional
graphs. It shows edges of an area that has same data. Most common example is height
lines in maps, where it denotes an area of certain height. Data might have to be simpli-
fied for this kind of mapping to avoid crowding the figure, but it can be useful tool in
many cases and easy to combine with other data.

Figure 10 Topographic map of the moon using color (NASA)

3.3 Interpolation and Extrapolation

Interpolation is estimating values between measured values and extrapolation is es-
timating outside the measured range or beyond the end of the measured time. Estima-
tions are used when planning drilling or estimating what is coming ahead while drilling
to be able to prepare. It can give insight into placing explosives and make it possible to
create geological models. In mines interpolation and extrapolation can be used to show
inside the rock wall. For example the rock can be in layers and each layer may require

 17

different drilling parameters, the veins may go in thin stripes and minimizing the drill-
ing outside of the vein can increase productivity considerably.

3.3.1 Continuous Data

Interpolation algorithms weight the relevance of different data points in relation to
the interpolated point. Most commonly values are weighted with distance. The most
basic method is Inverse Distance Weighting by Donald Shepard (Shepard 1968). In
Shepard’s Method interpolated value at point x is calculated from samples using func-
tion

���� =� �������
∑ �
����
�

�

��
, where

����� = 1
���, ����.

(Eq. 1)

The weight is the inverse of the distance between the interpolated point and the data
point in power p, where p is positive real number and can be used for adjusting how fast
the significance of the value deteriorates with distance. A problem with the Shepard’s
method is the processing time needed when the data-sets get massive and interpolation
resolution increases, especially with sparsely populated data clouds where most of the
data affects the result.

Variation of the Shepard’s Method where only the data points within a given radius
around the interpolation point are calculated is called Modified Shepard’s Method.
Modified Shepard’s is considerably faster since it only uses a subset of the data points
to calculate the interpolated value. However, finding the data that is within the range for
the algorithm could possibly deter from the benefits. Therefore selecting a suitable data
structure with fast nearest neighbor search can make a big difference in processing the
data.

Modified Shepard’s uses the same formula as the Shepard’s Method. Only change is
in the weight function which is in form of

����� = �� − ���, �������, ��� �
�
,

(Eq. 2)

to take into account the R-sphere around the point of interpolation. With an efficient
data structure such as KD-tree (Bentley 1975), the algorithm becomes O(NlogN), which
scales very well even with big data sets.

Another method commonly used in geostatistics is Kriging (Wackernagel 1998),
which is a group of techniques used to interpolate using probability distributions. It is
more complex and will not be discussed further in this thesis.

 18

3.3.2 Discrete Data

When interpolating discrete values, the values are predefined and it does not scale in
between these values. In some cases it is possible to use continuous interpolation meth-
ods by rounding, but this is a special case. In that case the values in between the two
discrete values can be thought of as probabilities between these two, but it only works if
there are only two values.

For example in mining the controller could detect if the drill is penetrating regular
rock wall that is denoted by value 0 or if it is within the ore vein which would be
marked with 1. Now it could be useful to generate a graph showing where in the wall
the vein goes and extrapolate where we want to continue drilling. We could use Shep-
ard’s method and round it to get an estimation of where the ore is most likely located.
However if we have more values, for example 0 for granite, 1 for marble and 2 for iron
ore, it is not possible to deduct that in between one measurement for granite and another
of iron ore there would be marble.

Instead there are specific interpolation methods for discrete data. Three methods are
investigated for this thesis. These methods are mode, nearest neighbor and classification
tree. They are addressed in the following.

Mode means that the most frequent element in the data set is selected. This can be
implemented by having certain radius around the interpolated point and calculate the
mode for all the data samples within that radius. It is also possible to take into account
covariance of the data samples so the interpolation better follows the general shape and
weighting of the samples. Problem with the mode-based approach is that it can vary
drastically based on the radius selected and also the cases where there are no data sam-
ples at all within the radius require special attention.

Nearest neighbor is distance based interpolation based on finding the nearest data
sample for each interpolated point and assigning the value from the nearest sample to
the interpolation point. This is a simple and fast method, but the results can be some-
what skewed when using Euclidean distance. Instead using measurements that take into
account the covariance of the samples such as Mahalanobis distance (Mahalanobis)
give much better results.

The last method is a classification tree, which functions somewhat differently from
the previous methods. It can be used to deduct the result from several measured varia-
bles traversing through a binary tree where each node contains a Boolean condition ac-
cording which the path is chosen. Resulting value is located at the leaf of the tree.

3.4 Reliability of data

There can be errors in measurements and there can be errors in the algorithms used
in interpolation. The reliability can be taken into account in the interpolation itself by

 19

using different weights depending in the certainty of the correctness or it is possible to
calculate separate uncertainty for each data point.

If there are many samples and only one or few show considerably different values
that do not fit the curve it can be determined there may be a measuring error. However
this may not always be the case. In the mining it is possible there may be fractures and
other anomalies in the rock that can cause spikes in the measurement data. This could
possibly be detected also in adjoining holes that could give more reliability to the differ-
ing values or further discount them as an error.

In interpolation and extrapolation there are several factors that can affect the uncer-
tainty of the interpolated point. The most important is the amount and distance of the
data samples in the vicinity. Also, if the samples surround the interpolated point or if
they are only on one side can be a factor as is the variance of the nearby points. For ex-
ample if there are 3 data samples nearby but they all have considerably differing values
the interpolation is less certain than it would be if all the samples would be same. Final-
ly the certainty of the actual data itself has an impact to the interpolation as well. If the
error margin of the data is high, the certainty of the interpolated values cannot be high
either.

3.5 Visualizing Interpolation

Once the interpolations have been calculated there are number of ways to present
the results to the user. Depending on the application it may be enough to show merely
the prediction of what lies ahead of the hole currently being drilled. That could be
shown simply as a line graph or colored bar. For two-dimensional visualization such
representation consists of a plane using height maps or coloring. Usually due to the
three dimensional nature of the rock being drilled height is not as intuitive visualization
as colors and from the plane it is easier to see the exact location of visualized values. To
visualize a space up to three perpendicular planes can be used and independently placed
along each axis to visualize any point of the interpolated space.

 20

4. DRILLGRAPH DESIGN

DrillGraph is piece of software developed for reading various drilling measurement
data and to visualize it. Development of DrillGraph was done in prototyping fashion,
with the main focus on coming up with new ways of visualizing drilling. Visualizations
were created and iterated on to find what things work and how different ideas look. Lat-
er on the findings of the DrillGraph development were utilized in the specification and
design of the actual product.

DrillGraph was designed to work with both real time data and previously recorded
drilling data files. These are somewhat different use cases, since the real time data is
something that usually is only accessible to the operator himself, so he would need tools
and views that would aid the current drilling process. The previously recorded data on
the other hand can be used for analysis of the work done later on and possibly aiding
with planning and adjusting the process during the mining operation. Collected data is
also used for research in the drilling equipment and methods as well.

However as the drilling gets more automated, it is possible the operator is moved to
an office monitoring multiple machines at the same time. This could change the focus
from the immediate control of the machine to more on the go planning and give more
possibilities for analytical process control.

4.1 Tools

Few main points rose during the choice of the development tools. The client owns
the source code, so they had a say in the development language. Since the software was
only meant for internal use it was not necessary to obfuscate the implementation details.

Libraries and software components were chosen with licensing that allowed com-
mercial use in case the software is ever distributed or used as part of commercial prod-
ucts.

Target platform was Microsoft Windows operating system ranging from XP to
Windows 7. However in the end the tools used made it possible to run on Linux and
Mac computers too, but those were not officially supported or tested thoroughly. 32-bit
tools were used for wider support.

 21

4.1.1 Qt

Qt is a programming framework that offers mainly graphical user interface related
libraries for cross-platform development that supports Windows, Linux and Mac envi-
ronments.(Blanchette & Summerfield 2006) Qt has several benefits for GUI design such
as graphical design tools and vast selection of ready GUI components that have a native
look in the target operating environments. For more specific GUI needs there is also Qt
Quick, which uses declarative QML language for describing the user interface, but is
still completely compatible with the rest of the Qt code. Qt has its own signal-slot sys-
tem, which allows components to send signals that any other component can bind into
and get called whenever the signal is sent e.g. when user interaction happens or data
changes.

Besides GUI components Qt also offers various other useful features. Threading
support makes it easy to make concurrent programs and to communicate between the
separate threads using asynchronous signals. Network support offers high level access
to sockets and makes it easy to create or connect to network services. Database services
offer easy access to various data storages and built-in model-view-delegate system can
bind the data to views and interact with it. Graphics allow drawing on the GUI compo-
nents or separate buffers using OpenGL(Shreiner & The Khronos OpenGL ARB Work-
ing Group 2009) , 2D painter or separate Graphics view framework which allows more
complex scenes and graphical objects to be drawn than would be possible with simple
paint operations. Qt also has a resource system that makes it easy to embed images and
other resources within the program itself. Finally there is extensive unit testing frame-
work that helps testing all the Qt functionalities.

Features that were utilized in the making of this thesis were network, threading,
OpenGL and drawing tools. Network tools were used for making a server that listens for
real time data. Threading makes it possible to separate time consuming operations such
as interpolation to another thread so they do not affect the responsiveness and other op-
erations. OpenGL and 2D drawing tools were used for drawing or viewing all the visu-
alizations. Qt version 4.7 was used in DrillGraph software.

4.1.2 Python

Python (van Rossum 1995) was chosen as the implementation language. Python is
an interpreted language. It does not have strong typing and does not require compiling.
Therefore it fits well in the type of project that does not have a rigid specification, but
instead is based on trying different things out and finding out the best solutions. It also
has a big selection of libraries for scientific calculation, visualization, and UI design.
Python 2.7.1 was chosen and the minor versions were updated during the project. In the
end DrillGraph was shipped with Python 2.7.3.

There were two different Python wrapper libraries available for Qt; PyQt and Py-
Side. PyQt is the older and further developed, but PySide was chosen because of the

 22

more licensing was more permissive and fit the needs better. On top of that, it was the
one developed by the Qt crew themselves. The most recent stable version of PySide at
the time was used and it was shipped with version 1.1.2.

DrillGraph includes lot of data processing and scientific calculations so it was nec-
essary to use SciPy and NumPy, which include wide variety of useful mathematical and
scientific functions. Most useful features in the SciPy were array and matrix classes and
huge variety of mathematical functions that operate with those. SciPy offers packages
for interpolation, signal processing and Fourier transforms, linear algebra, spatial data
structures and algorithms, statistics and image processing. SciPy version 0.11.0b1 and
NumPy version 1.6.2 were used.

Matplotlib was another library that added visualization tools and plotting interface
similar to Matlab. Matplotlib takes advantage of SciPy and NumPy and offers ways to
create plots and graphs of the data calculated with them. Version 1.1.0 of Matplotlib
was used.

3D graphics were drawn using PyOpenGL version 3.0.2a5. Using OpenGL made it
possible to use GPU to accelerate heavy graphical drawing functions. Shaders are pro-
grams that are run on the graphics card instead of CPU which is highly parallel architec-
ture and allows efficient calculation of algorithms that can take advantage of parallel
execution. This allowed it to transfer some heavy calculations to the GPU to take the
load off the CPU. Downside of OpenGL shaders is that the program is evaluated every
draw cycle, which happened every 1/30 seconds. There are ways to utilize the pro-
cessing power of the graphics card outside of the draw commands too such as OpenCL
(Stone et al. 2010). PyOpenCL version 2012.1 was experimented with on heavier inter-
polation tasks that would be easily parallelizable. It was found useful, but other things
were prioritized over efficiency, so in the end it was not used in the software.

4.1.3 Development environment

Microsoft Visual Studio 2010 Professional was used as the developing environment
with Python Tools for Visual Studio plugin. Visual Studio was the default programming
environment used in the company, so it was the logical choice and the Python tools
worked very well.

Other tools used or tried were IPython interactive shell for testing various Python re-
lated code fragments or syntax outside of the actual software. It was found extremely
useful for checking what and how various libraries worked what kind of parameters
they took and what they returned, and to test small snippets of code without having to
run the whole program. Subversion version control was used with TortoiseSVN and
AnkhSVN clients. WinMerge was used for comparing between versions of code files.
PyLint version 0.25.2 was tested for code analysis, but it was never taken in serious use.
Modulo 2.2 was used for UML-designs.

 23

4.2 Architecture

The basic requirement of the software is to read data and present it in various forms.
Model-View-Controller architecture (Krasner & Pope 1988) is one of the most com-
monly used design patterns and it is specifically designed to separate presentation from
the data, so it is very fitting basis for the DrillGraph. It is also well known and Qt has
implementation structure ready to support variation of it. Module structure of Drill-
Graph is illustrated in Figure 11.

Figure 11 Module structure of DrillGraph software

4.2.1 Model

Model handles loading, storing, saving and processing the data for use with the rest
of the program. It can read the XML-files consisting of the drilling measurement data
and save it in a unified project file that can include multiple XML-files and any interpo-
lations that have been already calculated for them. Class diagram for the model is
shown in Figure 12.

 24

Figure 12 Model class diagram

DrillBlock represents one drilling report that usually equals to one drilling plan.
These XMLs are loaded under the DRPQualityReport and DrillPlan classes that are part
of the DrillBlock. DRPQualityReport also includes set of DRPHoleReports which are
the individual holes and the drilling measurements within that report. The hole reports
are also saved in separate XML-files.

SiteModel is the largest level model that represents the whole drilling site or the part
of it that is being inspected. It may be one level of drilling field at the surface or one
tunnel in the underground mine and includes all the DrillBlocks within that site. It also
offers selection model to the views and can return holes or blocks according to the se-
lection.

ChannelModel represents all the measurement channels within the holes. It takes
care of all the channel specific tasks such as color schemes and value limits. It is same
for all the blocks and holes within the site.

4.2.2 Controller

Controller module contains all the program logic. It owns the other components and
handles user inputs then passes the commands forward to the other modules. Controller
class diagram is shown in Figure 13.

 25

Figure 13 Controller class diagram

DRPController is the main class which is called from the program starter. It initial-
izes the program and creates the View and Model objects. DRPController consists
mostly of Qt signal handlers that are actuated from other modules or user input.

TCPServer listens to the configured port for real time measurement data according
to the communications protocol (Appendix 1) and relays the information to the model
by Qt Signals. TCPServer can handle one connection and it can be started and stopped.

4.2.3 View

View consists of three separate modules as shown in Figure 11: DrillingView, GUI
and DrillDiagram. DrillingView and DrillDiagram are separate visualizations within the
GUI and GUI contains even other diagrams, but these have been separated to their own
modules due to their size and many classes that are part of the same diagram.

The main window, menus, buttons, dialogs and other controls are all part of the
GUI. Class diagram for the GUI is shown in Figure 14. GUI module mostly takes ad-
vantage of Qt dialogs and controls. UIWindow is the active part of the main window
which owns all the UI-controls. Mapview is a 2D spatial view of the holes and PlotView
depth based line diagram for one or more channels in one or more holes.

DrillingView is prototype view for real time view for the drill operator. Class dia-
gram for the DrillingView module is shown in Figure 15. DrillingView shows currently
drilled holes and how the drilling progresses. It shows the desired channel information
within the hole, the depth of the hole and it is also possible to show estimates of what’s
coming ahead by interpolating from the nearby holes. DrillScene listens to the Qt Sig-
nals from the Model about new holes or data points and updates the view accordingly.

 26

Figure 14 GUI Class diagram

It is also possible for the operator to make his own notes to the hole at desired depth
by clicking the hole, which creates a new MarkingGraphicsItem at that spot and sends
the information to the model. A discrete operator channel is also added to the model
which is controlled from DrillingView by radio buttons which can be set to some val-
ues, for example to indicate different color of dust or different sound from the drill.
Whenever operator changes the value of the radio button, the model starts recording that
value to the operator channel.

Figure 15 Drilling view class diagram

 27

DrillDiagram is 3D view of the site. It can draw either all the holes in the site or just
selected blocks using user defined color schemes to depict changes in the selected chan-
nel along the length of the holes. It also can visualize interpolations with planes that can
be moved along the axes or using isosurfaces to show the areas where the interpolated
value is within some range. Detected fractures within the holes are shown and can be
combined into a fracture planes. Class diagram of the DrillDiagram is shown in Figure
16.

Figure 16 DrillDiagram class diagram

GlDrillScene is the main class for the module and offers the interface outside of the
module. GlDrillScene takes a reference to the model in constructor parameter so it can
fetch the hole information directly as it needs. It also connects to the Qt signals in the
model to detect changes in the data or selection so the diagram can be changed accord-
ingly.

GlHole represents a hole object that is drawn to the diagram. GlHole will be given
the data vector of the visualized channel and each data point within the hole is colored
according to the color scheme if the hole is selected or shades of gray if it is not.

 GlPlanHole represents where a hole should be drilled. GlPlanHole does not contain
any drilling data so it will be colored purple when selected or white when not.

GlIsoSurface handles the drawing of the isosurfaces. The user selects the desired
value within the value range in the channel and +/- tolerance for it and GlIsosurface fills
all the space where the interpolated value is within that tolerance of the selected value.
There can be several GlIsoSurfaces at the same time, each with different color and val-
ue.

 28

GlPlane is an interpolation plane. There are three planes and they can all be shown
and moved individually along each of the axis they are perpendicular to. Colormap of
the interpolated values at that plane in space is shown in the GlPlane and it is updated in
real time as the plane is moved.

GlFracture shows red discs on the hole where fractures are detected. It is possible to
create fracture surfaces by selecting a new fracture from the fracture dialog and clicking
these fracture discs.

4.2.4 Inter-module communication

Inter-module communications are handled either by direct function calls or indirect-
ly by Qt signals, a mechanism that Qt uses. Each module should have one interface
class through which all the inter-module communications is done to keep the dependen-
cies down. DrillGraph is merely the starting point for the software; it creates the DRP-
Controller object and starts the event loop. DRPController has the ownership of the oth-
er modules. It creates UiWindow that initializes all the views, SiteModel, which sets up
the data model, and TCPServer to start waiting for clients.

A reference of the model is passed to the views and TCPServer. Model itself does
not depend on the other parts of the software except the interpolation module. Interpola-
tion is a separate module from model, but it is only accessed through the model, and
interpolation information is saved in the project file.

The model interface affects all the other parts of the software, so it is important to
keep it stable. Core interface includes getting hole names, coordinates, channel names
and data vectors, and various meta-information. Bounding box and transformation ma-
trix to transform holes into local coordinate system are also calculated in the model. The
core interface is kept the same and it is expanded as new functionality is added.

Real time communication offers interface for machines to send drilling data through
TCP/IP connection to the DrillGraph. It implements server-client model, where Drill-
Graph acts as a server waiting for clients, which can be drilling machines, simulators or
other sources of drilling data. Protocol is text based with messages sent as strings of
ASCII characters. Each command and its parameters are separated by space and the
message is terminated by a carriage return. The client sends commands to the server and
server only sends acknowledgments back to the client. Only one client connection at a
time is supported.

4.2.5 Load balancing

DrillGraph is designed to be run in several threads. The graphical user interface runs
in the main thread along with the main event loop. Majority of the program logic is run
within the main thread. Interpolation thread does the interpolation calculations in the
background without affecting the usability of the program. The intermediate results of

 29

the interpolation can be asked at any time and visualized. TCP/IP server also works in a
separate thread so it can work separately from the rest of the program logic.

Parts of the heavy visualization routines are offloaded to the GPU using the shaders
to do the calculations. This code is run every drawing cycle, so it is only suitable for
specific cases such as calculating the isosurfaces. OpenCL also takes advantage of GPU
outside of the drawing routines and using it was considered as well.

 30

5. DRILLGRAPH IMPLEMENTATION

The first phase was to parse IREDES type quality and drill measurement files and
show the holes and channel data in the graphical user interface. This iteration included
the Main window module with list widgets for holes, channels and for data values of the
selected hole and channel. Using this basic view it was possible to implement parsing of
the IREDES files and to validate the data was correct. Once the data model, that loaded,
stored and served the information, was implemented it was possible to start adding dif-
ferent visualizations for the data. As the complexity grew, majority of the logic was
moved from the main window class to the DRPController class.

Since Qt was chosen as implementation framework, Qt-style View-Model structure
was used. When the model is inherited from the QAbstractItemModel it automatically
sends signals whenever data changes within the model and the views all stay synchro-
nized with current data. This supports the architecture where model does not need to
know what views, if any, use it. It merely sends the signals and the views connect to
those signals if they want to get updates.

Most of the program runs in the main thread along with the Qt event loop, but heav-
ier operations have been moved to separate threads. Parsing the IREDES files is done in
a separate thread that sends pulses to the progress bar in main thread about the progress.
Also interpolations are done in another thread so it is possible to calculate interpolations
in the background without it affecting the other use of the program. TCP Server had to
be moved to another thread with a separate receive buffer as more and more real time
visualization was added and it could not be guaranteed that the server could keep up
with the sender in all situations. Some of the error checking and reporting to the sender
was lost as a result since it was not possible to validate the data between the incoming
samples, but it was considered necessary to make sure no data is lost.

Threading is done using QThreads and communication between threads happens
with asynchronous Qt signals. There were many ideas for optimizing the interpolation
using multiple cores or GPU, for example with OpenCL, but in this prototype software
it was more important to work on the visualizations than the interpolation algorithms.

5.1 Data handling

Data is handled by the model module which is described in the Figure 12. Data
comes in either from IREDES files, existing project files or over TCP/IP connection.
Currently all the data is loaded in the memory. This may become problematic with larg-

 31

er sites, which would require keeping it on the hard drive and loading as needed, but
that case is not considered in this thesis.

5.1.1 Loading and saving data

To load an IREDES-report into the system, user chooses Load Report from the File-
menu and selects a report file. This creates a temporary ThreadedReportReader-object
that handles the report loading in a separate thread to keep the user interface from freez-
ing. It sends progress ticks periodically to a progress bar so user can see something is
happening. The actual process is shown in Figure 17

Figure 17 Reading IREDES files

 32

First a new DRPQualityReport object is created which parses all the metadata from

the IREDES files. Then it checks all the hole IDs in the report and tries to fiend hole
reports with those IDs. For each hole report file a DRPHoleReport object is created and
it is checked whether the ID matches one in the quality report. If the hole report is valid
the hole measurement data is parsed in.

Once all the holes are parsed, the information is relayed with Qt signals to the views
so they can show the new data. Also ChannelModel is adjusted according to the meas-
urement channels in the hole reports.

Loading and saving the data is done in separate project file which includes all the
relevant information about the holes and also any interpolations that have been calculat-
ed already since the calculations can take a long time. This makes it possible to use the
calculations at a later time without having to do the heavy calculations again.

The project file is composed by serializing all the metadata in the model in json
format in one file including a version information so when changes are made to the
model it can still handle the old project files and alternatively if an old version of the
software is trying to open newer project file it will report it cannot handle it. Along with
the metadata hole coordinates and channel data are stored as numpy arrays. The separate
data files are then zipped as one project file.

Real time data can be appended to an existing project or just start adding to a new
one. The server listens to clients on a port that is defined in the configuration file. Origi-
nally the logic was working synchronously so whenever a message game through the
client it was processed and validated in the model then a response was sent indicating
whether there were errors or not. As the system grew and views and interpolations were
updated with new data it become impossible to keep up with the incoming data especial-
ly since it is possible that one drill rig has several booms that are drilling at the same
time.

The receiver was detached to a separate thread from the rest of the program logic
and a buffer added for received commands. Buffer size was not limited except by
memory, but in tests we could not make a case where the buffer size would have been
growing without limit. Majority of the time there was only one message in the buffer at
most there were three even on a relatively slow laptop.

5.1.2 Using data

Model offers an interface to the rest of the program to access the data. Python does
not have private methods so everything is accessible outside of the class, but methods
intended to be used by the views are listed in Listing 1. These methods are only meant
for accessing data and not for modifying it.

 33

Return value Method name
numpy.array getHoles()
numpy.array getChannels()
string getPlanId()
string getReportId()
numpy.array getStartCoordinates(holeId)
numpy.array getEndCoordinates(holeId)
numpy.array getDirection(holeId)
numpy.array getPlannedStartCoordinates(holeId)
numpy.array getPlannedEndCoordinates(holeId)
numpy.array getPlannedDirection(holeId)
numpy.array getBoundingBox()
numpy.array getLocalBoundingBox()
numpy.array getLocalTransformation()
numpy.array getChannelData(holeId)
double getLatestValue(holeId, channel)
double getValueAtDepth(holeId, channel, depth)
double getValueByIndex(holeId, channel, index)
numpy.array getSelectedHoles()
numpy.array getActiveHoles()
int getMaxDataCount()
int getHoleCount()
boolean isData()
list getMarkings()
int getRowColumn(holeId)
int getRowCount()
numpy.array getColumns()
numpy.array getRowHoles()
numpy.array getColumnHoles()
int getNearestRow()
dictionary getHoleInformation(holeId)
string getReportFileName()
string getPlanFileName()
ChannelModel getChannelModel()
DateTime getStartTime()
DateTime getEndTime()
DateTime getHoleStartTime(holeId)
DateTime getHoleEndTime(holeId)
numpy.array getPivotPoint(holeId)
double getTiltAngle()
double getRotationAngle(holeId)
double getRowDistance()
string getPeg()

Listing 1 Drillblock public interface

In addition to the call interface, model has Qt signals that can be connected to. The
most important ones used to notify the views about changes in the model are listed in
Listing 2.

 34

Signal name Signal signature
holeAdded QtCore.Signal(HoleItem)
datapointAdded QtCore.Signal(HoleItem)
holeClosed QtCore.Signal(str)
holeSelected QtCore.Signal(QtCore.QModelIndex)
modeSignal QtCore.Signal()

Listing 2 Drillblock signal list

HoleItem is a convenience class that does not store data of its own, but offers easy
access to the data of a specific hole without having to know what block it belongs to. It
offers a selection of properties that internally fetch the data from the DrillBlock inter-
face using the holes Id. The properties are listed in Listing 3.

Property type Property name
numpy.array start
numpy.array end
numpy.array direction
numpy.array localStart
numpy.array localEnd
numpy.array localDirection
numpy.array localPlanStart
numpy.array localPlanEnd
numpy.array localPlanDirection
numpy.array planStart
numpy.array planEnd
numpy.array planDirection
string id
double depth
double planDepth
list markings
numpy.array boundingBox
numpy.array localBoundingBox
numpy.array transform
bool finished
list selected
list toggleSelection

Listing 3 HoleItem properties

HoleItem class also implements several methods that similarly forward the calls to
the DrillBlock. This makes it possible that views can make various changes and fetch
channel information from the hole, just by having a reference to the HoleItem class. The
methods are listed in Listing 4. HoleItem became necessary after the model was ex-
panded to multiple DrillBlocks. Some views may handle holes separately from the
block and different blocks can have holes with same hole Id, so it would have been nec-
essary to make a unique identifier for every hole independent of the hole id used in the
block level and ask for the information from the site level model interface. Having a

 35

separate for the hole to ask the information from simplified things and it was not neces-
sary to pass the model to every view that only handled separate holes.

toggleSelection()
isData(channel)
toggleSelection(channel)
setData(channel, dataVector)
normalizedData(channel)
convertToLocal(coord)
value(channel, index = None, depth = None)
addChannel(channel, data)
setMarking(depth, text)
changeMarkingDepth(oldDepth, newDepth)
setHoleMessage(message)
removeMarking(depth)

Listing 4 HoleItem methods

Visualizations are done in local coordinate system, which depends on the type of
drilling being done. It turns the holes so they can be viewed, depending on the situation,
from the side, top or from behind. The transformation matrix can be asked by
DrillBlock method getLocalTransformation(). Alternatively the transformed coordinates
can be asked from the HoleItem object with the properties starting with local.

Bounding box is the box which encloses all the holes in the block and it is used as
the size of the interpolation matrix. Bounding box can also be turned to local coordinate
system.

5.2 Visualizing Options

The views offer access to the different visualizing options for the drilling data. The
main view of DrillGraph is shown in Figure 18 with UiWindow parts emphasized with
cyan and yellow ones part of MainWindow. Figure 18 also lists the different parts of the
main view. The menus are at the top ad the view is then divided with the list of drill
blocks, holes, channels and selected hole information at the left and view area for visu-
alizations at the right. All the visualizations are shown in separate tabs in the view-port.
UiWindow object owns all the classes that handle drawing to the visualization tabs and
works as the connection point to the GUI module. Dialogs however are initiated from
the DRPController module, even though they are part of the GUI module. UiWindow
also handles all the toolbars and controls in the main window, while MainWindow class
handles menus and status bar.

It was considered that the block, hole and channel lists are used in all the views so
they are always visible, and the view specific toolbars are in the individual visualization
views. The dialogs are always accessible from the menus even if they only are used in
specific views.

 36

Figure 18 Main user interface

Views are inherited from QWidget and dialogs from Qdialog or their child classes.

Different visualization views are added to a QTabWidget, which take the whole right
side of the window. Tabs are shown at the top of the window and the visualizations can
be changed clicking those. Each of the visualization views has its own toolbar and view-
port where the visualizations are drawn.

Changes in the model are propagated to the other modules by Qt Signals. Signals are
also used between other classes along with direct method calls. When communicating
between threads, it is necessary to use asynchronous signals, otherwise the called func-
tion will run in the callers thread and the caller will suspend until the call is finished.

5.2.1 3D view

Drill Diagram visualizes holes in 3D as seen in Figure 19. Holes are visualized as
tubes in in space as they are drilled in the rock in relation to each other. Channel data is
visualized along the depth of the holes in colors. Colors and the scale can be adjusted in
the color dialog. Same colors are used in interpolations as well.

Interpolations in 3D Drill diagram can be shown in two different way; interpolation
planes or isosurfaces. The planes show a slice of the drill site with interpolated values.
There is a plane for each axis, which can be turned on and it moved along the axis.
Isosurface fills the space where the interpolation value equals the value it is being com-
pared to.

 37

Figure 19 3D Drill Diagram

3D Drill Diagram is implemented using OpenGL. The Diagram is drawn to a GL

Viewport in class RenderPanel which is derived from QGLWidget. GlDrillScene sets up
the scene for the 3D Drill Diagram initializing the objects that belong into the scene
using the data from the model. Once the scene is built, RenderPanel starts a refresh tim-
er and calls the render function in its PaintGL function. GlDrillDiagram then calls the
render functions of all the sub elements of the diagram.

Objects in the scene are created as separate classes such as GlHole or GlPlane. The
interpolation textures are handled in the GlDrillScene as well, and the handles can be
shared to the GlPlanes, GlIsosurfaces, and possible other classes in the future. Having
all the elements in separate objects allows more control of what is being drawn and
makes it possible to easily add new features. All the communication between 3D drill
diagram objects and the rest of the program is done through GlDrillScene.

To draw the 3D diagram, the user has to first select which drill block is to be plotted
and what channel drawn to the holes and then click Plot 3D –button in the 3D-view
toolbar. The internal process for drawing the visualization is shown in Figure 20.

GlDrillScene has a reference to the SiteModel from which it asks a list of holes in
the build method. From this list for each of the holes it creates GlHole and GlPlanHole
as needed according the info in the HoleItem, The data to be visualized is stored in a
two dimensional array in the GlDrillScene and the data from each of the holes is added
to that. Once all the holes have been processed the array is normalized according the
channel limits and given to the GlHole class in a static function addData. GlHole inter-

 38

polates the data into predefined size array that is transferred as a texture to the GPU.
This texture is used as a lookup table in the shader when drawing each hole so the hole
index divided by max holes gives the x-coordinate and depth divided by the max depth
of that hole gives the y-coordinate to index the texture.

Once the normalized channel value is found from data texture, this value is then
used to index one dimensional color texture that is defined by the color scheme and val-
ue ranges the user has set from the color dialog. Color for each fragment in the hole is
thus found using the given depth for that fragment.

Figure 20 Initializing 3D view

The static Build method for the GlHole initializes the texture and sends it to the

GPU. GlDrillScene also sets up GlPlanes and other parts of the scene and then sets its
build flag up to indicate that it is ready to be drawn.

The actual draw loop is in the RenderPanel object, which is called every 1/30 sec-
onds. It calls the render-method of GlDrillScene each time and once the scene is built, it
will then call the render-method of each of the GL-objects in the scene which then will
handle all the transformations and rendering required to show the scene on the screen.

RenderPanel also handles moving and adjusting the field of view of the camera in
order to look at the scene from different sides. Moving the camera is done by moving
the mouse around with right mouse button pressed and zooming in and out by mouse
wheel. Moving the camera is done by having a focus point in the picture around which
the camera rotates at the same distance, and zooming is done by moving the camera
further and closer to that point. With the arrow keys it is possible to move the focus
point of the camera. It is also possible to select holes in the scene by clicking them in
the scene.

 39

By doing a separate color lookup in each render cycle it is possible to change the
colors in real time. So user can adjust the colors in the color dialog shown in Figure 21.

Figure 21 Color dialog

Color dialog can be used to change the color values for each of the channels sepa-

rately, which is then saved in the ChannelModel. The minimum and maximum limits of
the color scale can be adjusted along with the minimum and maximum of the normal
operating mode. This will compress and expand each of the color areas accordingly. If
the data values exceed the minimum and maximum set in the color scale exceeding
numbers are colored either with the lowest or the highest color. Number of colors
shown and the color scheme is also possible to change for user preference.

Every time the values for the visualized channel are changed in the color dialog a
new color map is calculated and sent to the GPU. This is then again indexed by the
normalized data value.

5.2.2 2D line diagram

Line diagram can be used to show either multiple channel data for one hole or mul-
tiple holes for same channel for comparison. The X-axis can be either depth or time.
The user interface differs a bit from the other views since there are somewhat different
use modes in this view. Line plot can be seen in Figure 22.

To select the channel and hole for which to draw the graph, those will be dragged
from the hole and channel lists at the left to the list at the left of the graph. Over the list
of attributes is a radio button where the mode is selected. Either hole or channel is the
main attribute to be examined.

When hole is selected to the main attribute, when a hole is dragged to the graph, it
will change the hole to be examined which is indicated next to the radio button. Any
channel dragged to the graph will then be added and plotted in. To remove a channel it
has to be double clicked.

When channel is selected to the main attribute, the logic is reversed and dragging a
channel to the graph changes the graph to be examined and dragging a hole will add it
to the graph.

 40

Some difficulties were encountered with the scales especially when comparing dif-
ferent measurement channels since their range could be vastly different so all the values
for normalized and the scale shown in the graph is chosen by the selected channel in the
list.

Figure 22 Line plot visualization

Value for any point could be checked by controlling the crosshair in the graph with
mouse. When it is close to a data point it will snap to that point and the channel and
depth values are shown in the upper right corner in the color of the channel in question.
This requires storing the multiplier for the normalized values in the graph so the correct
value can be displayed. The actual functionality for line plotting was already imple-
mented in Matplotlib which was used to implement the graph.

5.2.3 2D spatial visualization

2D spatial visualization was done with the machine operator in mind since the com-
puter in the drilling machines would not be powerful enough to draw the 3D view nor
would it be necessary to have such visualizations for the operator. However it would be
nice to see the drill plan and the how the drilled holes align with them. The map view is
shown in Figure 23.

The spatial view differs a bit depending on the drilling mode, which could be drill-
ing the end of a tunnel, surface drilling or production drilling to the ceiling of the tunnel.
In each of these cases suitable view is offered to aid the operator.

The view was implemented using the Qt QGraphicScene as a canvas and then using
simple paint commands to draw the graph. The hole information was extracted from the

 41

model and projected to the 2D view. Mouse click handlers were implemented to make it
possible to select and deselect holes by clicking them.

It is also possible to show interpolations in this view, which is calculated for a plane
that, for example in the tunnel case in the Figure 23, can be moved in z-direction along
the depth of the holes. The interpolation measurement channel is selected from the
channel list and depth from the slider at the top of the view then Interpolate-button is
clicked.

The depth is from the beginning of the bounding box to the end of it in that direction
and that is sent to the interpolation module which generates a color image of the inter-
polation which then can be queried and drawn to the background.

Figure 23 2D spatial view

5.3 Interpolations

There are several different use cases for interpolations in the software. Especially
the cases with continuous data and discrete data had to be handled completely different-
ly. Interpolation methods used can also extrapolate to a certain degree, but are mostly
useful when interpolating between the holes.

 42

5.3.1 Continuous interpolations

When the measurement channel to be interpolated was continuous data, interpola-
tion was done to a matrix with points at even intervals. The interval was defined in the
interpolation dialog and the matrix size is simply the bounding box size divided by the
interpolation interval. The size of the bounding box could be different in each direction
but the interval size is constant which can make the matrix arbitrary size as well.

In 3D case all the data points in the holes were added into a KD-tree and for each in-
terpolated point Modified Shepherd’s Method was used to evaluate the value. Since the
actual search for the points within the radius from the interpolated point and its weight
is the same for every measurement channel, it is possible to select multiple channels for
the interpolation at the same time.

The calculation is done so that the intermediate result can be asked at any time. This
result is used by the visualization methods such as interpolation planes and isosurfaces
in the 3D view and it was implemented by transferring the interpolation matrix to the
GPU as 3D texture, which then can be indexed and visualized in the 3D space.

For 2D interpolation only points that are within the radius to that plane are added to
the KD-tree which makes it considerably lighter and it can be done in real time without
having to store the results in the model. It is possible to calculate the new interpolation
image within seconds of moving the depth slider in the 2D spatial view.

Figure 24 Voronoi diagram

 43

5.3.2 Discrete interpolations

Discrete data could not be interpolated using the same methods as continuous data
as explained in section 3.3. First step was to use nearest neighbor algorithm, which gave
reasonable results, but due to the coarse interpolation matrix, it causes big steps in the
visualizations. This was corrected by using separate smoothing after the interpolation
was done. This however does not work with isosurfaces which look like they are made
from blocks with discrete data.

In 2D case the nearest neighbor method was replaced by voronoi diagram, which
was extremely fast and resulted in accurate and useful data. Voronoi diagram generates
areas within which the value does not change. Example of interpolation using Voronoi
diagram is shown in Figure 24.

 44

6. CONCLUSIONS

Mapping the visualization needs was a fluid target, which called for flexible tools.
Python offered an excellent range of libraries and easy way to test algorithms and code
blocks in an interactive python shell. This made it possible to fast prototype different
views and discard them if they did not work or adapt them until they did. In the end the
code was refactored a lot and it was becoming bloated and would have required clean-
ing up. Also the lack of compiler errors did make testing the product more difficult as it
grew in size and complexity.

The data model in particular underwent several refactoring phases when larger parts
of the drilling site were included into the same visualizations. This was handled by add-
ing outer layers to model which included the previous model and extended it further.

Actual visualization implementations were also iterated multiple times, but the tools
still remained the same, except with the 3D view, which was first implemented in Mat-
plotlib, which was considered way too slow so it was replaced with OpenGL implemen-
tation. OpenGL also made it possible to put some of the heavy calculations in the draw-
ing to the GPU which allowed for nice real time effects in the visualization.

Interpolations had many interesting possibilities that would have potential for theses
on their own, but in the end they were left to reasonably simple implementations, which
were then honed to serve the purpose with more finesse. Especially the implementation
of the isosurface within the GPU shader made for a quite impressive tool.

In discrete interpolation the Voronoi diagram gave some trouble with border cases,
but in the end it was very useful visualization and extremely fast to calculate. three-
dimensional discrete visualizations looked quite blocky because of the matrix they were
calculated in, so there would be need for expanding the voronoi in three dimensions as
well.

Real time data made challenges in drawing and interpolation. Adding new holes
during interpolation forced to calculate parts of it again and it was not easy to determine
what had to be recalculated. If the new hole did not fit in the previous bounding box, it
would be necessary to recalculate the box and start interpolation over. Views were easy
to update since they were fast to update, so they could be redrawn when new holes were
added.

In the end the software never was taken in use, but the various visualizations created
within it were evaluated and the code was used as a specification to the actual visualiza-
tion software. Interpolation techniques and shader code was also reused.

 45

REFERENCES

Bentley, J.L. (1975). Multidimensional Binary Search Trees Used for Associative
Searching, Commun.ACM, Vol. 18(9), pp. 509-517.

Blanchette, J. & Summerfield, M. (2006). C++ GUI Programming with Qt 4, Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, .

Castree, N., Kitchin, R. & Rogers, A. (2013). A Dictionary of Human Geography,
http://www.oxfordreference.com/view/10.1093/acref/9780199599868.001.0001/acref-
9780199599868 ed., Oxford University Press, Oxford, 592 p.

SME Mining Engineering Handbook (3rd Edition) Society for Mining, Metallurgy,
and Exploration (SME), .

Heiniö, M. (ed.). 1999. Rock excavation handbook for civil engineering. Finland,
Sandvik, Tamrock.

Krasner, G.E. & Pope, S.T. (1988). A Cookbook for Using the Model-view Control-
ler User Interface Paradigm in Smalltalk-80, J.Object Oriented Program., Vol. 1(3), pp.
26-49.

Mahalanobis, P.C. On the generalised distance in statistics, National Institute of Sci-
ences of India, verkkosivu. Saatavissa (viitattu 04/24):
http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20006193_49.pdf.

NASA Lunar far side as Seen by the Lunar Orbiter Laser Altimeter, NASA,
verkkosivu. Saatavissa (viitattu 4/10):
http://www.nasa.gov/images/content/604359main_WAC_CSHADE_O000N1800_1000
.jpg.

Sandvik Sandvik MediaBase, Sandvik AB, verkkosivu. Saatavissa (viitattu
29.7.2015): http://mediabase.sandvik.com/.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced
data, Proceedings of the 1968 23rd ACM national conference, ACM, pp. 517-524.

Shreiner, D. & The Khronos OpenGL ARB Working Group (2009). OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1, 7th
ed., Addison-Wesley Professional, .

Spitz, K. & Trudinger, J. (2008). Minerals, Wealth and Progress, in: Mining and the
Environment, CRC Press, pp. 1-67.

Stone, J.E., Gohara, D. & Shi, G. (2010). OpenCL: A Parallel Programming Stand-
ard for Heterogeneous Computing Systems, IEEE Des.Test, Vol. 12(3), pp. 66-73.

 46

Tatiya, R.R. (2005). Surface and underground excavations: methods, techniques and
equipment, CRC Press, .

Wackernagel, H. (1998). Linear Regression and Simple Kriging, in: Springer Berlin
Heidelberg, pp. 13-24.

van Rossum, G. (1995). Python tutorial, CS-R9526, Centrum voor Wiskunde en In-
formatica (CWI), Amsterdam, .

