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ABSTRACT 
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The modern neuroscience aims for more and more detailed understanding of the reasons, 

which form the basis for search for cure or diseases related to the brain. Today we know 

that brain consists of multiple different cell types and functional organs ranging from 

blood vessels to glia cells and neurons. Each cell type has its specific functions which can 

be for example structural, immunological or signaling.  

To study the functions of different living systems, it is often necessary to disturb the 

normal function to understand the underlying mechanisms. For this reason, methods for 

avoiding the use of model animals have been developed. One of the tools available for 

this is in silico modeling of the systems. 

For this work, I have developed a computational model of a joint function of two cells 

types by combining existing models. Neurons form a neuronal network which is modeled 

using INEX by Kerstin Lenk (Lenk, 2011). The other cell type called astrocytes are 

modeled by Lallouette’s UAR model (Lallouette, De Pittà, Ben-Jacob, & Berry, 2014) 

and a near synapse simulator interface together with De Pittá’s presynapse model (De 

Pittà, Volman, Berry, & Ben-Jacob, 2011). The combined model is called INEXA. We 

present this simulation scheme in an attempt to model the interactions of astrocyte 

network and neuronal network. 

Eighteen simulations were run to test different stages of the simulator. In phase one, the 

simulator INEX was run so that neurons had no synaptic strengths to get noise output of 

the basic activity driving the network. In phase two, Tsodyks-Markram presynapses were 

added to the neuronal network. In phase three, the presynapse area simulation including 

local astrocytes was added, and in phase four, the full INEXA was tested with 10%, 20% 

and 30% of the simulated culture being astrocytes. 

The results show that the interconnected simulated astrocyte-neuron networks have 

properties that induce population bursting behavior while restricting hyperactivity. As 

such the astrocytes could be related to modulating signaling patterns towards bursting and 

restricting epileptic behavior. 
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Nykyaikainen neurotiede pyrkii yhä tarkemmin ymmärtämään syitä, joiden pohjalta 

voidaan etsiä parannuskeinoja aivoihin liittyviin sairauksiin. Nykyään tiedämme, että 

aivot koostuvat useista eri solutyypeistä ja elimistä, joita ovat esimerkiksi verisuonet, 

glia-solut ja neuronit. Jokaisella solutyypilla on oma tehtävänsä, joka voi olla esimerkiksi 

rakenteellinen, immunologinen tai viestinvälitys. 

Elävien systeemien tutkimisessa joudutaan usein rikkomaan mekanismin normaali 

toiminta, jotta mekanismin toimintaa voitaisiin ymmärtää. Tästä syystä jatkuvasti 

kehitetään metodeja välttää eläinmalleja. Yksi käytössä olevista työkaluista on systeemin 

mallinnus in silico. 

Tätä työtä varten olen luonut laskennallisen mallin kahden solutyypin yhteistoiminnasta 

yhdistelemällä olemassa olevia malleja. Neuronit muodostavat neuroverkon, 

jotamallinnetaan Kerstin Lenk:in INEX mallilla (Lenk, 2011). Toista solutyyppia 

kutsutaan astrosyyteiksi ja niiden toimintaa mallinnetaan Lallouetten UAR mallin 

(Lallouette et al., 2014), synapsinläheisen astrosyyttimallin ja De Pittán presynapsimallin 

avulla (De Pittà et al., 2011). Yhdistettyä mallia kutsutaan nimella INEXA. Pyrimme tällä 

simulaatiojärjestelmällä mallintamaan astrosyytti ja neuroverkkojen yhteistoimintaa. 

Simulaattorin eri osien lisäämisen vaikutuksia testattiin kahdeksallatoista simulaatiolla. 

Ensimmäisessä vaiheessa neuroverkkoa ajettiin synapsien voimakkuudella nolla, jolloin 

saatiin näkyviin verkkoa ajavan perusaktiivisuuden aiheuttama kohina. Toisessa 

vaiheessa tutkittiin neuroverkon ja Tsodyks-Markram presynapsien vastetta kohinaan. 

Kolmannessa vaiheessa synapseihin liitettiin synapsinläheiset astrosyyttimallit ja 

neljännessä vaiheessa koko INEXA-mallia testattiin käyttämällä 10%, 20% ja 30% 

astrosyyttejä sisältäviä solumääriä simuloidussa viljelmissä. 

Tulokset viittaavat siihen, että toisiinsa liitetyillä simuloiduilla astrosyytti-neuroverkoilla 

on ominaisuuksia, jotka tuottavat koko neuroverkon laajuisia purkauksia ja samalla 

vähentävät verkon yliaktiivisuutta. Täten astrosyyttien toiminta voisi liittyä neuronien 

viestinnän modulointiin kohti purkaustyyppistä toimintaa ja epileptisen toiminnan 

rajoittamiseen. 
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1 INTRODUCTION 

How the human brain works is one of the great mysteries of our time. The earliest 

recorded references to human brain are from 17th century BC in papyrus hieroglyphs 

(Feldman & Goodrich, 1999). The papyrus containing the markings describes symptoms, 

diagnosis and prognosis for two patients who were wounded in the head and had fractured 

skulls. The papyrus describes the symptoms in great detail while the lack of understanding 

the medical reasons behind the symptoms is apparent. 

The modern neuroscience aims for more and more detailed understanding of the reasons, 

which form the basis for the search for cure or diseases related to the brain. Today, we 

know that the brain consists of multiple different cell types and functional organs ranging 

from blood vessels to glia cells and neurons. Each cell type has its specific functions 

which can be for example structural, immunological or signaling. The most famous 

signaling cell type is neuron. However, of the all cell types in a cortex, neurons 

correspond to 27–60% (Collins, Airey, Young, Leitch, & Kaas, 2010) . What is the 

purpose of the rest 40–73% of the cells? 

Majority of the cerebral volume is taken by cells called glia cells. These cells perform 

multiple different important functions in the brain. Neuroglia are not one group but 

consist of multiple cell lines. Oligodendrocytes form myelin sheaths by wrapping around 

neuronal axons (Kiernan 2005, p. 20). This speeds up transmission along axons making 

the neurons able to transmit signals for long distances in shorter times (Kiernan 2005, pp. 

22–23). Microglia may perform multiple tasks ranging from immunogenic supportive 

tasks like phagocytosis (Kiernan 2005, p. 33). 

Neurons have been thought to form the basis for information processing in the brain. 

However, recently one glia cell type called astrocytes have been identified as a possible 

another cell type involved in information processing. The astrocytes are connected to 

neurons and to brain blood supply (Takano et al., 2006) as well as forming networks of 

their own (Halassa, Fellin, Takano, Dong, & Haydon, 2007). As such, they are ideally 

placed for local information processing. There have been studies (Bonansco et al., 2011; 

Lalo et al., 2014; Larrosa, Pastor, López-Aguado, & Herreras, 2006; Perea & Araque, 

2007) where astrocytes have been studied for their individual effects. The final 

interpretation of their modulatory effect to neuronal network function is difficult and 

some of the results seem contradicting (López-Hidalgo & Schummers, 2014). 

We approached the problem from a computational point of view and propose a simulation 

scheme, which describes different functions of astrocytes in mathematical formulas in 
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order to study the possible effects of astrocytes to neuronal network function. The 

simulation is based on previous work done by Kerstin Lenk on simulations of neuronal 

networks with INEX (Lenk, 2011).  

There have been other models (Amiri, Bahrami, & Janahmadi, 2012; De Pittà et al., 2012; 

Gordleeva, Stasenko, Semyanov, Dityatev, & Kazantsev, 2012) describing the 

functionality of astrocytes at tripartite synapses, but so far there has not been a model, 

which comprises of all the aspects mentioned. This is the first model at this scale trying 

to grasp the functionality of neuron-astrocyte networks.  

INEX describes neurons, which are connected to each other with synapses. A synapse is 

a connection between two neurons, where the cell membranes are brought almost to 

contact with each other. The first neuron called presynaptic neuron releases 

neurotransmitters into the small space left between the two cells when a spike occurs. 

This space is called synaptic cleft. The other neuron called postsynaptic neuron detects 

the transmitters and acts according to the transmitter in the cleft by increasing or 

decreasing the probability of the postsynaptic neuron also spiking. 

Astrocytes form tripartite synapses where a synapse is wrapped by an astrocyte process. 

The neurotransmitter released by the presynaptic neuron is now also detected by the 

astrocyte. Astrocytes can monitor the information flow even from thousands of synapses. 

Astrocytes respond to the signals in the synapses with a calcium signal inside the cell. 

Based on these internal calcium signals, the astrocytes can also release transmitters back 

to neurons. These transmitters modulate the functionality of the synapses the astrocytes 

are connected to. We modeled this by a replica of an astrocyte interface simulator by De 

Pittá et al. (De Pittà et al., 2011), which is based on Tsodyks-Markram synapse 

simulation. The small internal calcium signals caused by the releases at the synapses can 

spread to the whole astrocyte. Also astrocytes are connected to each other through gap 

junctions. This allows the calcium signals to spread between astrocytes. To simulate this, 

we used the UAR simulator by Lallouette et al. (Lallouette et al., 2014). However, so far 

there has been no models to show the combined effect of these functions in neuronal 

network level. The purpose was to study how astrocytes could affect the neuronal network 

behavior and suggest a greater role for astrocytes in neural computation than previously 

thought. Our hypothesis of the interconnected astrocyte-neuron network function is that 

it induces bursting behavior while restricting hyperactivity.  

We aim to study the effects of astrocytes in silico. Later it would also allow us to explore 

the key changes in the communication in interconnected computational systems formed 

by astrocyte and neuronal networks in order to identify the mechanisms to be targeted 

with drugs. Also understanding the computation performed by different cells might 

eventually bring us closer to understanding our own thoughts, minds, and self. 
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2 THEORETICAL BACKGROUND 

In this section, we will discuss first about the biology relevant to the simulation starting 

from basics and building up. After that, we discuss shortly about the simulations made by 

others describing the biological phenomena. The section biology will consist of basic cell 

communication regimes, relevant transmitter molecules, receptors and cell types. At first, 

we will start with the cell communication. 

2.1 Biology 

Essential difference between single and multicellular organisms is not only the size but 

also the complexity. Since in multicellular organisms a single cell is an autonomous 

functional unit working together with other autonomous units to form something bigger 

than the sum of their parts, some form of communication is needed to keep the cells 

working together. Cells communicate through multiple channels which have been defined 

as endocrine, paracrine, neuronal and contact dependent signaling between cells (Alberts 

et al. 2009, p. 533). Endocrinal communication involves hormones. These messenger 

molecules are spread by injecting them into the blood stream by various cells. The target 

of hormones is not a single cell but rather all cells the hormone reaches. In paracrine 

messaging, the message effect is meant for a smaller group of cells. The messenger 

molecule is released into extracellular matrix where it only spreads smaller distances. For 

even more specific communication cells can use contact dependent signaling or neuronal 

synapse based messaging. For our purposes paracrine, contact based and neuronal 

signaling methods are the most important ones.  

In the following sections, we will discuss the most important signaling pathways and 

transmitter molecules forming the basis of neuronal and astrocyte communication in the 

pathways used in the simulation.  

2.1.1 Cell membrane, action potential and MEA 

Each cell has an inside called cytosol or intracellular space and an outside called 

extracellular space. These two spaces are divided by a lipid bilayer forming a two 

dimensional liquid or membrane, which lets through water and other small molecules, but 

through which large water soluble molecules and ions do not pass so well (Alberts et al. 

2009 p. 389). The membrane has large amounts of membrane proteins bound to it. Some 

of these proteins form complexes, in which multiple proteins have joined together to 

perform a specific function. The function can be catalyzing a reaction or forming a 

physical opening through the membrane for other molecules to move through it (Alberts 

et al. 2009, pp. 372–375). 
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Some of these openings let through ions and are called ion channels. The ion channels let 

through charged molecules (Alberts et al. 2009, pp 400–405). Since the membrane does 

let through ions, the permittivity of the membrane to that ion is determined by the number 

and permittivity of the sum of open channels letting through the ion at any given moment.  

Membrane voltage 

There are two driving forces for ions across the membrane (Alberts et al. 2009, p. 392). 

First is the concentration of the molecule at each side of the membrane. The ions will 

diffuse through the membrane faster from the higher concentration to the lower than the 

opposite. The concentration of the ion is ion specific and thus different ions can have 

different and even opposing ion concentration gradients through the membrane.  

Ion concentration across a membrane is technically an electric current and the permittivity 

of the membrane determines the resistance of the membrane. Since the ions are charged, 

they will form a voltage across the membrane when they have moved to the other side. 

The accumulation of charges at the lower concentration side forms a voltage gradient 

across the membrane. Since the ions are charged, the voltage formed will have an effect 

to the current through the membrane. Eventually the current stops when the voltage over 

the membrane resistance raises high enough to exactly oppose the ionic flux driven by 

the concentration gradient. 

When only one ion is taken into consideration, this dependency of membrane voltage of 

concentration difference is described by Nernst equation (Bear et al. 2007, p. 65): 

  1) 𝑽 =  
𝑹𝑻

𝒛𝑭
𝒍𝒏

[𝒊𝒐𝒖𝒕]

[𝒊𝒊𝒏]
 

In the equation, V is the membrane voltage at equilibrium, R the ideal gas constant, F 

Faraday’s constant, z is the charge of the ion and [i] the ion concentration.  

However, this is the case only for a single ion. Since concentration gradient is unique for 

each ion that part will stay the same for each ion, but voltage difference formed by 

contribution of different ions is the same. The membrane can have only one voltage. To 

calculate the membrane potential of a cell membrane when multiple ions contribute, the 

Goldman equation is being used. The main difference between the Nernst equation and 

Goldman equation is that the Nernst equation does not depend on permeability. 

Eventually the membrane will be at equilibrium as long as there is any permeability on 

the membrane. However, when there are multiple different ions contributing to the 

membrane potential, the speed of diffusion of different ions becomes important. Goldman 

equation (Matthews 2007, appendix B) is similar to the Nernst equation with the 

exception of permeability terms. 
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  2) 𝑽 =  
𝑹𝑻

𝑭
𝒍𝒏 (

∑ 𝑷
𝑴𝒊

+[𝑴𝒊
+]𝒐𝒖𝒕+∑ 𝑷𝑨𝒋

−[𝑨𝒋
−]𝒊𝒏

∑ 𝑷
𝑴𝒊

+[𝑴𝒊
+]𝒊𝒏+∑ 𝑷𝑨𝒋

−[𝑨𝒋
−]𝒐𝒖𝒕

) 

In Goldman equation (equation 2), the R, T an F are the same as in Nernst equation. 

Within the natural logarithms there are differences. First of all, each concentration [] is 

multiplied by their respective permeability P to that ion. Also the negative and positive 

charges induce opposing voltages and as such the in- and the out-terms for those ions are 

at the opposing sides of the division. Now, we have a final voltage over the membrane 

which changes relative to permeability of each ion. 

Neurons communicate using the membrane voltage as carrier to the signal (Bear et al. 

2007, p.76). This is why they are called electrically active cells. They use their membrane 

voltage to carry a signal over large distances.  

Action potential 

As in the last section was discussed, the membrane potential depends on permeability of 

the cell membrane to ions together with concentration gradient of the ions. Since the 

voltage drives ions to the opposing direction as the flux of ions from concentration 

gradient, the concentrations do not change by much. The balance of ion concentrations is 

also maintained by ion pumps transporting ions through the membrane. 

The normal resting potential of a neuronal membrane is around -65mV (Bear et al. 2007, 

p. 62). This is mainly due to sodium and potassium concentrations and permeability of 

the membrane to the ions (Bear et al. 2007, p. 67). The membrane potential may be 

changed by opening or closing ion channels and thus by changing the permeability of the 

membrane. The changes are local and gates opening at a certain area will have an effect 

to the voltage only at certain distance away from the gate. Neurons have a tree like 

structure which collects signals from other neurons (Bear et al. 2007, pp. 41–42). Those 

signals alter the membrane potential of the neuron at an area called axon hillock to 

determine if a new action potential is fired (Bear et al. 2007, p. 97). If the membrane 

potential is brought closer to 0V, it is said to be depolarized. On the other hand, 

permeability changes causing the membrane potential to drop lower than the resting 

potential is said to hyperpolarize the membrane. 

The axon hillock is a part of the neuron, where the inputs of various synapses are 

integrated. If the hillock is depolarized over a potential called action potential threshold, 

the membrane gets increasingly polarized. This is caused by voltage gated sodium 

channels, which as their name suggest open at a certain voltage. This means that the 

channels are closed when the membrane is at resting voltage and open when the 

membrane is depolarized enough. Action potential threshold is determined by the voltage 

opening enough voltage gated channels that it opens other nearby channels so that they 

again open other channels nearby them. This opening of channels along the membrane 
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transports the depolarization wave along an axon. Voltage gated potassium channels open 

at a small delay to bring the voltage back down as quickly as possible. 

Measuring the action potential: Microelectrode array recordings 

Microelectrode arrays (MEAs) are used to detect electrical changes at the membranes. 

The measurement setup consists of an array of micro sized electrodes, which record 

voltage changes in comparison to a reference electrode. The array measures local changes 

in voltages in a culture. Thus, the arrays can be used to study any electrically active cells. 

A MEA consists of an array of very small electrodes and the potential of the electrode is 

then compared with a reference electrode.  

MEAs have been used for example to study human embryonic stem cell derived neuronal 

networks (Heikkilä et al., 2009). This allows for more ethical research than use of test 

animals. For example, neurotoxic testing can be performed on MEA cultured neuronal 

networks (Johnstone et al., 2010). 

While neurons are electrically active cells the astrocytes are not. They do have membrane 

potential and even have voltage gated channels, but they are not used for signal 

transmission as the neurons do. Because of this MEA cannot detect astrocyte signaling. 

However, since neurons and astrocytes communicate with each other the neuronal 

signaling should change if astrocytes are present. 

The INEX simulator has been used to simulate the behavior of growing neuronal networks 

on MEA plates and the simulator built for this work is built on top of the INEX. It has 

been used for example for simulation of developing human neuronal networks.  

2.1.2 Endoplasmic reticulum and calcium signaling 

In many cells that may or may not be electrically active, there is another important 

signaling pathway. This pathway involves a cell organelle called endoplasmic reticulum 

(ER). The ER is another membrane sack inside the cell. It contains a high concentration 

of calcium which can be released into the cytosol (Perea & Araque, 2005). The release of 

calcium occurs when a transmitter called ionositoltrisphophate (IP3) opens gates at the 

membrane. Such gates are also found at the outer membrane and each type responds to 

different transmitter molecules. 

In order to open the IP3 gated channels at the ER, the IP3 needs to be produced. This is 

done by catalyzing a reaction where IP3 is formed. Catalysis of the reaction is done by a 

protein called phospholipase C (Gordleeva et al., 2012). This protein is activated when 

another transmitter is detected in the extracellular space by membrane proteins of the 

outer membrane. Thus, the signaling cascade of IP3 begins outside the cell and ends up 

releasing calcium from internal storage of ER inside the cell (Bear et al., 2007, p. 162). 

Calcium can perform many different functions in the cell. For example in heart and 
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muscle, it causes the contraction of the muscle cell (Alberts et al., 2009, pp. 599–604). 

The cells signaling with calcium often have specific types of membrane proteins called 

connexins forming channels called gap junctions through two outer cell membranes and 

allowing diffusion of calcium and other molecules from one cell to another. This allows, 

for example, coordinated contraction of the heart. Also there is a subtype of neurons that 

form so called electrical synapses, where instead of chemical synapse a gap junction is 

formed to conduct the membrane potential of the first neuron to the next (Bear et al., 

2007, pp. 103-105 ). However, it is different than chemical synapse, because it allows 

membrane potential information to flow both directions in the synapse in contrast to 

presynapse to postsynapse direction in chemical synapses. 

Calcium waves, where the calcium signal spreads from one cell to another can be found 

in many parts of our body doing different tasks. However, since they do not involve 

voltage changes, they cannot be detected with an electrode. To detect changes in calcium 

concentration another method has to be used. One method is to use fluorescent markers 

and fluorescence microscope (Földes-Papp, Demel, & Tilz, 2003; Paredes, Etzler, Watts, 

Zheng, & Lechleiter, 2008). This method called calcium imaging can reveal the calcium 

signaling occurring at the cellular or even subcellular level. However, the higher 

resolution images are taken, the more time it takes. Thus, taking images that have 

sufficient temporal resolution for detecting calcium signaling usually means too low 

spatial resolution for detecting small scale events.  

2.1.3 Relevant receptors and transmitters 

There are multiple extracellular transmitter molecules, which are important for the 

pathways being modeled. Each of these transmitters is tied to at least one signaling 

cascade. We will start with the most common transmitter called glutamate. Each of these 

molecules or keys have receptor molecules or locks into which each of them fits. The 

receptor can respond to some similar molecules as well but usually they respond the 

specific transmitter molecule the strongest.  

Glutamate 

Glutamate is an amino acid which is an excitatory neurotransmitter. This means that 

introduction of glutamate to synaptic cleft opens sodium permeable gates, which have 

glutamate as ligand. These receptors include α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPAR) and N-Methyl-D-aspartate (NMDAR) receptors. Both 

AMPAR and NMDAR let through both sodium and potassium and have equilibrium 

potential near 0V (Bear et al., 2007, pp.154–155). Thus, if glutamate is introduced, the 

membrane at the synapse area is depolarized. The summation of depolarization from 

multiple synapses at the axon hillock can cause the neuron to fire an action potential. 
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Glutamate is also detected by another type of receptor at the astrocytes. If an astrocyte 

detects glutamate through metabotropic glutamate receptors (mGluR) it initiates catalysis 

for IP3 production and thus contributes to release of calcium from internal storage. 

Neurons can also have mGluR and NMDAR at the presynapse areas. These extrasynaptic 

glutamate receptors alter the release of neurotransmitters at the synapses. Introduction of 

glutamate to the receptors potentiates the synapse (Perea & Araque, 2007). 

GABA 

γ-Aminobutyric acid (GABA) is the main inhibitory transmitter in the brain (Bear et al., 

2007, pp.146–147). It can act on ligand activated gates or metabotropic receptors, which 

open channels by a secondary messenger molecules (Bear et al., 2007, pp.157–158). 

However, the function of both types of channels is to hyperpolarize the membrane. When 

the membrane is hyperpolarized more or stronger excitatory voltages are required for 

action potential initiation. 

While glutamate and glycine are synthesized from glucose and other precursors, the 

precursor for GABA is glutamate. Thus, by introducing only one enzyme called glutamic 

acid decarboxylase the major excitatory neurotransmitter is converted into major 

inhibitory transmitter (Bear et al., 2007, p. 147, p.164). 

ATP and adenosine 

Adenosine trisphosphate (ATP) is the main energy storage molecule in cells. However, it 

and its derivatives adenosine disphopshate (ADP) and adenosine are also used as 

transmitter molecules. ATP released by astrocytes can act on multiple different receptor 

types some of which are potentiating and some depressing synaptic output. Adenosine 

acts primarily on depressing A1 receptors. ATP is hydrolyzed into ADP and adenosine 

after exocytosis. 

The functions of ATP signaling by astrocytes is not entirely clear (Lalo et al., 2014). 

However, it has been suggested that ATP release is another pathway for transmitting 

calcium waves from one astrocyte to another. It has been shown that adenosine 

accumulating in the brain is responsible for sleep pressure (McIver, Faideau, & Haydon, 

2013). 

2.1.4 Cell types 

The communication between neurons and astrocytes form a computational machinery that 

includes memory and plasticity. Neurons transmit signals through synapses and 

astrocytes monitor synaptic transmission. This allows for two complex systems to interact 

in ways that are not completely understood. In the next chapters we will look more closely 

into the functionality of these cell types. 
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Neurons  

As explained before neurons transmit signals using membrane voltage. Neurons can be 

of many shapes and sizes. Commonly a neuron has soma, which is the center of the cell 

containing nucleus and other organelles. Usually a neuron has a dendritic tree which 

receives incoming synapses and an axon, which transmits signals forwards to next cells 

(Bear et al., 2007, pp 29–45).  

The interface between two neurons is a synapse. In a chemical synapse, the signal is 

changed from electrical signal transmitted at the membrane to chemical signal. The type 

of the chemical species called neurotransmitter determines the effect of the signal to the 

next neuron. Each neuron may have hundreds or even thousands of synapses. However, 

they are all the same type.(Bear et al., 2007, pp. 133–167) So a neuron may release 

transmitters that increase the probability of the next neurons spiking or inhibit them. 

Based on this, the neurons can be categorized into two main types. The first type is 

excitatory and the second is inhibitory neuron. The most abundant excitatory neuron type 

releases glutamate and the inhibitory neuron type GABA. These same substances are also 

released by astrocytes into extracellular space as gliotransmitters (Angulo, Le Meur, 

Kozlov, Charpak, & Audinat, 2008; Perea & Araque, 2005). 

The membrane machinery transmitting signals is similar for all neuronal types. It can be 

either as it was described earlier, that the membrane potential is moved along the axon by 

opening voltage gated channels, which open the next ones, or the moving of voltage can 

be helped by a type of glia cell called oligodendrocyte. Oligodendrocyte wraps around 

the axon at certain intervals and alters the transmission into saltatory conduction in which 

voltage difference jumps over the high resistance areas into the next area free of 

oligodendrocytes myelin (Kiernan, 2005, pp. 20–22). This increases the speed of 

conduction.  

At the synaptic terminal where the action potential is changed from membrane voltage 

difference to neurotransmitter release, it is done using voltage gated calcium channels. 

While the conduction use voltage gated sodium channels the voltage difference at the 

nerve terminal is converted into calcium influx. This calcium binds to a soluble NSF 

attachment protein receptor (SNARE). When calcium binds to this protein it fuses 

transmitter containing vesicles with the membrane of the terminal, releasing its contents 

into the synaptic cleft (Bear et al., 2007, p. 116). New vesicles are formed and docked 

with SNARE proteins to replenish the synapse for next action potential. 

Each neuron is releasing only certain types of transmitters. Even though it is known that 

a neuron can co-release different transmitters they are generally having either inhibitory 

or excitatory effect (Bear et al., 2007, 141–142). Thus, all synapses from a single neuron 

will have the same effect to the neurons they are connected to. For example, glutamatergic 

neurons are excitatory neurons and promote firing of action potential in the next neuron. 
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Glia cells and Astrocytes  

Neuroglia are a diverse group of cells that are not neurons found in abundance in the 

brain. They are known to perform many different tasks in the brain from nourishing 

neurons to maintenance of chemical balance to immunogenic response (Kiernan, 2005, 

pp. 30-33). One group of cells in particular is very interesting since it is known to do all 

these tasks and possibly more. The cell type in question is astrocyte. These star shaped 

cells were originally thought to offer structural and chemical support to neurons and their 

gap junctions joining their cytosols were thought to be for quick distribution of excess 

ions away from the area where neurons were highly active (Kiernan, 2005, pp. 31–32). 

Especially maintaining potassium balance was considered to be their main task.  

Astrocytes are also known to form a part of a vital component in our brain called blood 

brain barrier (Abbott, Patabendige, Dolman, Yusof, & Begley, 2010). This is a layer of 

cells which filters nourishments and ions from blood stream so that the rest of the brain 

is never directly in contact with the blood supply. Blood brain barrier is a vital defensive 

and chemical balance structure since it prevents access from pathogens to the brain as 

well as maintains different extracellular chemical balance in the brain than is found in the 

other parts of the body. 

In case of damage to central nervous system (CNS), a structure is formed into the 

damaged area and this scaring comprises mainly of astrocytes (Sofroniew, 2005). The 

scaring is the first step in healing of CNS. However, in some cases the scarring formed 

by astrocytes can be detrimental to clinical outcome. This is particularly troublesome with 

some in vivo long term electrical measurements since the scaring encapsulates the 

electrodes and makes them virtually useless (Polikov, Tresco, & Reichert, 2005). 

The astrocytes just like neurons come in at least two different types (Kiernan, 2005, p. 

32). They can be distinguished by their chemical composition. Fibrous astrocytes contain 

Glial fibrillary acidic protein (GFAP) which is an intermediate filament. These proteins 

allow for more rigid structures. The fibrous astrocytes are found mainly in the grey matter, 

which essentially means that these are the type found near neurons cell bodies. Astrocytes 

which lack this protein are called protoplasmic astrocytes and are mainly found in the 

white matter. White matter consists mainly of neuronal axons and oligodendrocytes 

wrapped around them. Tightly packed lipid membranes, which are essentially fatty acids, 

give the tissue its white color. The astrocytes we are interested in are the fibrous 

astrocytes. It is also possible that these astrocytes divide into subgroups but that is not 

known. 

While oligodendrocytes wrap their processes around axons to speed up the information 

transfer, the astrocytes wrap their processes around synapses (Kiernan, 2005, p. 32). This 

allows them to detect transmitters leaking from the synapse (Porter & McCarthy, 1996). 

Astrocytes are known to take up transmitters like glutamate, but they also respond to the 

synaptic input with increased calcium through mGluR activation at the astrocyte process. 
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An astrocyte may have wrapped around up to thousands of synapses (Hines & Haydon, 

2014); yet every synapse is connected up to one astrocyte. This places astrocytes into 

unique position in sensing the general activity of the neuronal network since they have a 

large sample from multiple synapses. Astrocytes can also modify synaptic transmission 

at single synapse level. 

As mentioned, the astrocytes are also in direct contact with the blood vessels in the brain 

(Takano et al., 2006). Functional magnetic resonance imaging (fMRI) is used to image 

neuronal activity indirectly. This means that it does not actually image neuronal activity 

but it detects increased blood flow through areas in which activity occurs (Jueptner & 

Weiller, 1995). Thus, there is a mechanism for increasing blood flow in relation to 

neuronal activity. This would suggest that astrocytes are also involved in regulating blood 

supply related to neuronal activity detected by fMRI. 

2.1.5 Communication differences between astrocytes and neurons  

As we have seen so far, the neurons and astrocytes utilize different mechanisms for 

transmitting and integrating information. However, in the end it all comes down to 

membranes and concentration gradients and voltages across those membranes. In the next 

sections we will look into the cellular structures responsible for the differences and how 

they are linked together.  

Calcium and voltage 

Calcium is used in many cells as a messenger molecule. Astrocytes use it to integrate 

signals, muscle cells to contract, and neurons to release transmitters. Calcium signaling 

can be based on concentration gradient across the outer membrane as in nerve terminals 

or stored inside the cell in another membrane. The main difference is that while the 

calcium moving through the ER membrane within the cell does not induce voltage to the 

outer membrane of the cell the voltage of the outer membrane is the key to opening the 

voltage gated channels at the nerve terminal. In the case of the nerve terminal, also 

calcium ions need to be taken into account when calculating the membrane potential with 

Goldman equation. However, when calcium is released from within the cell from ER to 

another compartment inside the cell, no net charge is moved across the outer membrane 

and no voltage at the outer membrane is involved. Astrocytes exhibit two types of calcium 

signaling. There are local calcium events occurring at astrocyte processes and full 

astrocyte wide calcium signals (De Pittà et al., 2012). 

The ER is the main structure at astrocytes involved in calcium signaling. Signaling 

cascades involving calcium use some pathway to open calcium permeable gates at the ER 

membrane to increase calcium concentration in the cytosol. The ER in astrocytes is 

separated into small spatially distinct compartments as functionally distinct units. This 

allows the calcium signals to be spatially and temporally restricted within the cell 

(Golovina, 1997). Neurons have the ER membrane as well. However the calcium used 
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for release of neurotransmitters is thought to originate from extracellular space and enter 

the synapse through voltage gated calcium channels (Llinás, Steinberg, & Walton, 1981). 

This means that there is a higher concentration of calcium outside the cell than inside and 

the concentration and voltage gradients drive calcium into the cell when permeability 

increases. 

Time and spatial scales 

The temporal and spatial properties of these events are also of importance. The different 

opposing signals start to make sense when they are put to their respective time scales. 

Astrocytes have two forms of calcium signaling. One is spatially restricted within the 

processes of the astrocytes or full astrocyte wide signaling that can spread in the astrocyte 

network (Kozlov, Angulo, Audinat, & Charpak, 2006). 

The spatial scales of the full astrocyte signaling is in seconds timescale (Lallouette et al., 

2014) while the spatially restricted calcium signals occur in the timescales of hundreds of 

milliseconds (Winship, Plaa, & Murphy, 2007). The calcium waves or “glissandi” are 

blocked by tetrodotoxin, which inhibits neuronal signal transmission (McIver et al., 

2013). This indicates that the calcium waves occurring in astrocyte network level are 

driven by neuronal activity. Astrocytes occupy spatial domains that are approximately 

100µm in diameter. The astrocytes control their own space (Bushong, Martone, Jones, & 

Ellisman, 2002). In the same study it was also noticed that presence of blood vessels 

influence interastrocytic interactions. The astrocytes seemed to be competing for access 

to a passing blood vessel. 

While astrocytes function in the timescales of hundreds of milliseconds to seconds, 

neurons transmit signals in millisecond scale. An action potential at the membrane lasts 

approximately 2ms (Bear et al., 2007, p. 76). The transmission speed of a typical axon is 

in the scale of 10m/s (Bear et al., 2007, p. 94). 

2.2 Models 

Modeling is a useful tool for testing theories and trying to understand complex problems 

and when the model is good enough it can produce predictive results. Predictive models 

can test theories and produce results of possible changes in the system in small amount 

of time compared to biological research done in a lab. 

A model has its own abstraction level. This means that it will assume certain things and 

make approximations. No model is perfect and knowing the limitations of a model is 

important. The models used for building this combined model are phenomenological 

meaning that they describe the phenomena rather than try to be perfectly accurate. This 

allows for more freedom and building a model of more complex systems than an accurate 

model would. There will be a tradeoff between accuracy and computing power 

requirement.  
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In the next chapters we will go through the three models used to build the neuron-

astrocyte model INEXA and few other models describing tripartite synapses.  

2.2.1  INEX model by Kerstin Lenk 

INEX is a phenomenological model built to simulate neuronal firing in a MEA culture 

(Lenk, 2011). It is a cellular automaton in which inhibitory and excitatory neurons are 

connected to each other with synapses and a general noise is applied. Each neuron has its 

own base probability of generating spikes and this is driving the network activity. The 

input from each spiking neuron connected to a neuron via a synapse effects the probability 

of a spike being generated at the next neuron. The part of the biology being covered by 

INEX includes neuronal dendrites, axons, synapses, and axon hillock computation. 

INEX has been used for simulations of networks cultured on MEA plates for neuron 

amounts ranging from 100 to 10000 neurons (Lenk & Priwitzer, 2011; Lenk, 2011). The 

model works well for simulating spiking activity of MEA.  

 

Figure 1: An example of a simulated neuronal network with two three neurons.  Figure 

from (Lenk, 2011). 

Briefly, the INEX model is a cellular automaton whose cells are neurons with two possi-

ble states: ON or OFF. Each neuron obtains several inputs and produces exactly one out-

put (spike or no spike). In order to simulate spontaneous activity, we assumed that the 

spikes obey an inhomogeneous Poisson distribution. The momentary firing rate λi of neu-

ron i in time slice tk was calculated as follows:  

  3) 𝝀𝒊(𝒕𝒌) =  {
𝒄𝒊 + ∑ 𝒚𝒊𝒋 ∙ 𝒔𝒋(𝒕𝒌−𝟏)𝒋 , 𝒊𝒇 𝒄𝒊 + ∑ 𝒚𝒊𝒋 ∙ 𝒔𝒋(𝒕𝒌−𝟏)𝒋 > 𝟎

𝟎,                                     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
, 

where ci denotes the basic activity, yji the synaptic strength of all neurons j connected to 

neuron i and sj the particular spike of the previous time slice of neuron j (1 for a spike and 
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0 for no spike). The parameter values were randomly chosen from a triangular distribu-

tion. The values lie between zero and an upper boundary that is at most 1 to indicate the 

release of all vesicles from the synapse. For ci, the upper boundary varies from 0.01 to 

0.03 with intervals of 0.01 to produce networks with different noise levels. For the excit-

atory synaptic strength y+
ji boundary of 0.7 was used and for the inhibitory synaptic 

strength y−
ji = -0.7.  

The probability Pi for the occurrence of a spike in time slice ∆t is defined as follows: 

  4) 𝑷𝒊(𝟏 𝒔𝒑𝒊𝒌𝒆 𝒊𝒏 ∆𝒕 ) =  𝒆−𝝀𝒊∆𝒕 ∙ 𝝀𝒊∆𝒕  

The time slice ∆t is chosen with a length of 5 milliseconds to cover the temporal length 

of the action potential and the subsequent refractory period. For each time slice, the algo-

rithm tested if xi < Pi, where x are uniformly distributed random values. 

INEX also contains a spike time history variable f, which makes it more likely for a neu-

ron to spike if there was a spike in the network in the previous time slice. 

2.2.2 Presynapse model by De Pittá et al. 

De Pittá et al. have introduced a simulation scheme for astrocyte-neuron communication 

at tripartite synapses. They introduced the model and its effects in a paper called “A tale 

of two stories: astrocyte regulation of synaptic depression and facilitation” (De Pittà et 

al., 2011) and later discuss the plausibility of the signaling pathway in the review article 

“Computational quest for understanding the role of astrocyte signaling in synaptic 

transmission and plasticity” (De Pittà et al., 2012). 

The model uses Tsodyks-Markram (Tsodyks & Markram, 1997) synapse simulation 

together with an astrocyte interface. The astroycte is modeled with similar dynamics as a 

synapse, which responds to glutamate released to synaptic cleft. They have also modeled 

astrocytes with more complex functions previously to study calcium signaling in 

astrocytes in response to neurotransmitter glutamate (Wallach et al., 2014). The system 

being modeled is part of the scheme shown in Figure 2. 
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Figure 2: Pathways of astrocyte function by De Pittá et al. The model they used 

comprises of presynapse calcium dynamics, astrocyte dynamics and interfaces for 

detecting glutamate and releasing gliotransmitters to extrasynaptic space. Figure from 

(De Pittà et al., 2012) 

Their results in De Pittà et al. (2011) show that a synapse can change between paired 

pulse depressing (PPD) and paired pulse facilitating (PPF) modes based on the 

gliotransmission and the total effect of receptors detecting the gliotransmission in 

extrasynaptic space. PPF means that when after a spike another spike occurs in a short 

interval, the next one will be stronger than the first one. On the contrary in PPD the second 

spike will be weaker. The change between the modes depends on the original release 

amount the synapse would have as well as the effect the presynaptic receptors have.  

2.2.3 Chl and UAR models by Lallouette et al. 

Lallouette et al. studied the spreading of calcium waves using networks of astrocytes 

comprising of 1331 astrocytes (Lallouette et al., 2014). This allows them to be set into a 

grid of 11x11x11 astrocytes in three dimensional space. Their Chl model uses differential 

equations to solve calcium signaling based on knowledge of those pathways. They then 

combine astrocytes having their own states with fluxes of IP3 through gap junctions. Their 

results show that on the contrary to neuronal network, the more connected the astrocytes 

are the worse they transmit signals. In Figure 3 can be seen the calcium wave spread in 

differently connected networks as shown by the Chl model. 
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Figure 3: Six differently connected astrocyte networks being stimulated at the middle. 

Green dots show astrocytes activated during the simulation. Figure from (Lallouette et 

al., 2014) 

Based on the results with the model using differential equations, they made a hypothesis 

of the spread of the wave to be related to two-hop-neighborhood of the astrocyte network. 

This means that each astrocyte transmitting signal to the next one has the IP3 flux divided 

between its inactive neighbors but also the activation of the next astrocyte is related to 

the number of inactive neighbors. Thus, astrocytes two hops away will affect the effect 

of a flux induced by the first one. To test their hypothesis, they constructed a simplified 

model called UAR that takes into account these phenomena. The result indicates that the 

hypothesis is true. The UAR model uses three state astrocytes, probabilistic activation of 

astrocytes and fluxes between astrocytes. The conversion from Chl model to UAR model 

is illustrated in Figure 4.  
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Figure 4: Conversion of Chl model using differential equations for accurate results to 

simplified UAR model. Figure from paper by Lallouette et al. (Lallouette et al., 2014) 

The UAR model astrocytes can have three possible states: active signaling state (A), in-

active dormant state (U) and refractory period (R) during which the cell cannot transmit 

calcium signal (Lallouette et al., 2014). At any time, the cell will be in one of these states 

and can transit between the active to refractory and back to inactive on its own depending 

on probability values based on average time the cell spends in these states. The astrocyte 

calcium signaling is governed by the following equations (Lallouette et al., 2014): 

  5) 𝒇𝒍𝒖𝒙𝒂 𝒐𝒖𝒕(𝒕𝒌) =  {
𝑨:

𝟏

𝑰𝒂(𝒕𝒌)

𝑼, 𝑹: 𝟎
 

  6) 𝒇𝒍𝒖𝒙𝒂 𝒊𝒏(𝒕𝒌) =  ∑ 𝒇𝒍𝒖𝒙𝒃 𝒐𝒖𝒕(𝒕𝒌) 

  7) 𝒂𝒄𝒗𝒂(𝒄𝒂) = 𝒚𝒄𝒂 + 𝒃 

  8) 𝑷(𝑼 → 𝑨)𝒂(𝒕𝒌) =  {
𝒇𝒍𝒖𝒙𝒂 𝒊𝒏(𝒕𝒌) >  𝒂𝒄𝒗𝒂(𝒄𝒂): ∆𝒕/𝑨𝒕𝒊𝒎𝒆

𝒇𝒍𝒖𝒙𝒂 𝒊𝒏(𝒕𝒌) <  𝒂𝒄𝒗𝒂(𝒄𝒂): 𝟎
   

  9) 𝑷(𝑨 → 𝑹) = ∆𝒕/𝑹𝒕𝒊𝒎𝒆 

  10) 𝑷(𝑹 → 𝑼) = ∆𝒕/𝑼𝒕𝒊𝒎𝒆 

Equation 5 describes the IP3 flux out of the astrocyte to its neighbors when it was active. 

The flux is equal to 1 divided by the number of inactive neighbors. The fluxes into an 

astrocyte were summed up in equation 6.  
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The flux in must be higher than a threshold set for the activation of the astrocyte. This 

threshold was set with the linear equation 7. In the equation, y is the increase of needed 

flux per each additional connection 𝑐𝑎 and b is the baseline threshold. 

Equations 8-10 describe the probabilities of state change. The state changes from acti-

vated to refractory and from refractory to inactivated state which happens spontaneously 

over time. The probability for activation is based on the fluxes being higher than the 

threshold. 

2.2.4 Other models  

In this section, we go through a few other results obtained with astrocytes in silico. We 

discuss two other models and one neuronal network classification problem using 

astrocyte effects as part of an artificial neuronal network (ANN). While the previous three 

(see section 2.2.1 to 2.2.3) will be used for building the astrocyte model, these three are 

purely for comparison. 

Tripartite synapse simulation by Gordleeva et al. 

In this model, Gordleeva et al. (2012) show that activations of local astrocytes may effec-

tively control network through the combination of different actions of gliotransmitters. 

Their model consists of a computational model of synapses involved in spontaneous firing 

of neuronal network using a mean field approach. The output of the neuron is channeled 

back as output through the mean field of a neuronal network. Thus, the neuron will have 

an effect to the neuronal network and the network affects the firing pattern of the synapse. 

In their model, they use glutamate as a transmitter to depress presynaptic output and D-

serine to increase postsynaptic response. The simulation scheme can be seen from Figure 

5. 

 

Figure 5: Simulation scheme by Gordleeva et al. The input of the neuron to presynapse 

is calculated from a mean field of network input. Astrocyte gliotransmitters glutamate 

and D-serine are released to pre and post synapses in response to synaptic activity. 
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Their results show that it is possible to have astrocytic activation that leads to frequency 

dependent increase or decrease to synapse. Their mechanism is based on D-serine 

enhancing the effectivity of the postsynaptic NMDAR and glutamate depressing 

presynapse output. Their results also indicate that this kind of a mechanism could be 

responsible for bistable dynamics where the neuron shifts between two different 

frequency firing states. Their model indicates that the tripartite synapse functions as a 

kind of a high pass filter. 

Astrocytes generating neuronal synchrony by Amiri et al. 

The model by Amiri et al. (Amiri et al., 2012) consists of coupled Morris-Lecar models 

of neurons together with a dynamic model of an astrocyte. In the model, an increase of 

calcium concentration causes the release of astrocyte mediator. The astrocytes release 

ATP to inhibit the synaptic output of excitatory neurons mediated by adenosine which 

accumulates after the hydrolysis of released ATP. On the other hand, glutamate released 

by the astrocyte facilitates neurotransmitter release. They assume that when astrocyte cal-

cium reaches a threshold an amount of gliotransmitter is released into the nearby synapse. 

Their model consists of single astrocytes controlling single synapses. In addition, the as-

trocytes are coupled with calcium flux to represent the gap junctions joining their cyto-

sols. 

Their simulations consisted of minimalistic network of 50 excitatory neurons and 50 in-

hibitory neurons. Astrocytes are placed in between the coupled excitatory and inhibitory 

neurons. The arrangement of the simulation can be seen in Figure 6. 

 

Figure 6: Simulation scheme by Amiri et al. White circles represent inhibitory synapses 

and black spheres represent excitatory synapses. Figure from (Amiri et al., 2012). 

Their results show that astrocytes in the network are able to shift the network between 

synchronous and asynchronous states. 
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Astrocytes as part of ANN classification by Porto-Pazos et al. 

The last computational scheme described is not a model in the sense as the previously 

mentioned models. Artificial neuronal networks have been used in computer science for 

machine learning and classification problems before. However, those networks have only 

contained artificial neurons. Porto-Pazos et al. presented an artificial astrocyte-neuron 

network, where each neuron is connected to an astrocyte (Porto-Pazos et al., 2011). The 

astrocytes gradually increased the strength of the connection if there had been spikes and 

decreased it if there had not been. Spatial spread of the signal by gap junctions and cal-

cium had not been taken into account. 

Their results show that addition of slower time course dynamics of astrocytes into ANN 

increased the performance of the network in most classification tasks. After that they 

tested if the increase in performance was due to added elements in the system and in-

creased the number of neurons in the neuronal network. However, similar increase in 

performance was not achieved. 

2.3 Path to INEXA model 

As discussed in the previous chapters, in the field of neuroscience the focus has been for 

long in neuronal networks and neuronal connections. In addition to neurons, the brain 

consists also of a large number of different other cell types. One of the main cell types 

are astrocytes representing roughly 50% of the cerebral volume (Kettenmann & 

Verkhratsky, 2008). The astrocytes form a part of blood-brain-barrier, interact with blood 

vessels and offer metabolic support to neurons. Until recently, the astrocytes connection 

to neurons were considered to be mainly metabolic support by regulating extracellular 

potassium (Volman, Bazhenov, & Sejnowski, 2012) and uptaking and degrading of neu-

rotransmitters (Swanson & Graham, 1994). However, astrocytes have also been noted 

due to their ability to communicate with neurons directly and modulate neuronal commu-

nication. Part of the communication between a neuron and an astrocyte happens at the 

neuronal synapses, where the astrocyte wraps around the synapse forming so called tri-

partite synapse. The astrocytes have been found to perform complex functions and com-

municating with neurons through tripartite synapses using gliotransmitters. Release of 

gliotransmitters has been linked to astrocytes internal calcium pathways, and astrocyte 

dysfunction has been linked to many diseases like epilepsy and Huntington’s disease 

(Maragakis & Rothstein, 2006; Seifert, Carmignoto, & Steinhäuser, 2010; Seifert & 

Steinhäuser, 2013; Volman et al., 2012).  

Essentially gliotransmission consists of secretion of neurotransmitter molecules such as 

glutamate, GABA and ATP. Astrocytes release gliotransmitters like glutamate in re-

sponse to synaptic activity. The astrocytes are also connected to each other by gap junc-

tions. The gap junction forming proteins called connexins build a pore through the cell 

membranes of both cells joining their cytosols and letting through certain sized molecules 

(Fellin, 2009). Each of these systems is interconnected and as such has an effect to the 
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others. Each of these parts have been researched and also computational models of these 

subsystems have been developed (De Pittà et al., 2011; Lallouette et al., 2014; Lenk, 

2011). However, there is no clear understanding about their joined function. In this work, 

we aim to develop a mathematical conceptual model of the combined astrocyte-neuron 

network modulation including all above parts of the astrocyte-neuron communication 

modeled in a biologically plausible way. In the model, we introduce for the first time a 

scheme, where each astrocyte is connected even up to hundreds of synapses and where 

astrocytes form a functional, calcium based communication network in parallel to the 

neuronal network. 
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3 METHODS 

In this study, we take the best of the models found suitable for describing effects at dif-

ferent levels and combined them in a biologically reasonable way. Our hypothesis is that 

the astrocytes should promote bursting behavior in the neuronal network, while restrict 

hyperactivity. This would increase the operable range of neuronal activities where the 

network does not exhibit epileptic behavior but can still transmit signals. If the system 

can work in such a way, it could explain why a dysfunction in astrocytes can cause a 

certain disease. Our model aims to broaden the astrocyte’s effect into large cells control-

ling multiple synapses and gathering their inputs.  

3.1 Neuron-astrocyte network model INEXA 

In this thesis, a model that integrates the above explained various parts of the astrocyte-

neuron modulation was developed. The basis of the model was the neuronal network 

simulator INEX (Lenk, 2011). The simulator consisted of inhibitory and excitatory 

neurons and their connections based on inhomogeneous Poisson processes.  

Here the model was further developed and a spatial topology was constructed using 

probabilistic functions. Cells were randomly placed on a virtual culture area and 

connected according to their distance from each other In order to model tripartite 

synapses, we used a modified version of the presynapse astrocyte interface by De Pittá et 

al. (De Pittà et al., 2011) for excitatory synapses. De Pittá’s model is based on Tsodyks-

Markram model synapse (Tsodyks & Markram, 1997), which we applied to all synapses. 

We made further modification to the presynaptic model that enables astrocytes to increase 

or decrease synaptic strength based on gliotransmission introduced by De Pittá et al. This 

modification takes into account different time scales of different transmitters and thus the 

effect gliotransmission depends on time scales. Astrocyte’s IP3 and calcium were 

modeled using simple exponential equations. Astrocyte calcium signaling between 

astrocytes was modeled by a simplified calcium signaling UAR model by Lallouette et 

al. (Lallouette et al., 2014). In order to combine the synaptic inputs from all the synapses 

belonging to a single astrocyte, each synapse area astrocyte’s IP3 and calcium was 

summed up into one astrocyte’s calcium response (Figure 7) and the total calcium of each 

astrocyte was modelled by Lallouette UAR model. In addition, each astrocyte was 

affected by IP3 flow through gap junctions from connected astrocytes. The astrocyte’s 

calcium leads to a signal back to the connected synapse. The astrocytes also released 

GABA to signal directly to INEX. Thus, the model integrated for the first time the 

neuronal network with presynaptic astrocyte effect and astrocyte calcium network into 

one system with a two-dimensional topology.  
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To demonstrate the model function and the role of the astrocytes in neuronal network 

level, we constructed the modeled one step at a time to see what affects each added stage 

had to the neuronal network behavior. 

 

Figure 7: Schematic of the model. 1. Excitatory presynaptic neuron. 2. Postsynaptic 

neuron. 3. Astrocyte. A. INEX with neurons and connections. B. A version of Tsodyks-

Markram model joined to each synapse with modified De Pittá astrocyte interface. C. 

Near synapse astrocyte simulators joined to each excitatory synapse the astrocyte it be-

longs to. D. Lallouette UAR simulator takes input from near synapse simulators and 

from other astrocytes. 

3.2 INEX modifications 

INEX was implemented as described earlier. In addition to the equations 3 and 4, the 

presynapse simulators were applied between each synapse connection as described in the 

next section. Also an additional inhibitory pathway was added from astrocytes to 

postsynaptic neurons through each excitatory synapse controlled by the astrocyte. This 

represents the astrocyte releasing GABA (yGABA) to all nearby neurons. Equation 3 gets 

the following form for excitatory neurons: 

  11)𝝀𝒊(𝒕𝒌) =

 {
𝒄𝒊 + ∑ 𝒚𝒊𝒋 ∙ 𝒔𝒋(𝒕𝒌−𝟏)𝒋 + ∑ 𝒚𝑮𝑨𝑩𝑨 ∙ 𝑨𝒊𝒋(𝒕𝒌−𝟏)𝒋 , 𝒊𝒇 𝒄𝒊 + ∑ 𝒚𝒊𝒋 ∙ 𝒔𝒋(𝒕𝒌−𝟏) + ∑ 𝒚𝑮𝑨𝑩𝑨 ∙ 𝑨𝒊𝒋(𝒕𝒌−𝟏)𝒋𝒋 > 𝟎

𝟎,                                     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

In the equation, Aij denotes to if an astrocyte is in an active state that is connected to a 

synapse ij connected to the neuron. This indicates that the astrocyte is near enough that 

the GABA released by the astrocyte has an inhibitory effect to the postsynaptic neuron. 

The more connections there are, the closer and more encased in the astrocyte the neuron 

is and the stronger the effect. 
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In addition, the spike time history variable f was removed. To counteract the loss of 

activity in the network, the effect was applied all the time regardless if there was a spike 

or not and the basic activity of the network was reduced. 

3.3 Presynapse 

To implement the tripartite synapse into the INEX model, the synapses needed to be 

modeled in more detail. Since INEX uses a black box approach, it is possible to take part 

of the model out of the box and model it in more detail. Thus, we introduced the Tsodyks-

Markram presynapse model (Tsodyks & Markram, 1997) in similar fashion as De Pittá et 

al. (De Pittà et al., 2011) have used it. The combination of the models was based on the 

idea that the synaptic strength of INEX is the total sum of effects starting from a spike 

and ending to axon hillock of the next neuron.  

The Tsodyks-Markram model with the modifications by De Pittá et al. (De Pittà et al., 

2011) was implemented as follows. In an event of a spike, sj(tk)=1, an amount of 𝑈𝑖𝑗(𝑡𝑘) 

calcium enters the presynaptic terminal and binds to calcium receptors ū𝑖𝑗(𝑡𝑘). An 

amount of ǭ𝑖𝑗(𝑡𝑘) times ū𝑖𝑗(𝑡𝑘) resources were released (𝑅𝑅𝑖𝑗(𝑡𝑘)), where ǭ𝑖𝑗(𝑡𝑘) was 

the proportion of neurotransmitter vesicles ready to be released and ū𝑖𝑗(𝑡𝑘) the calcium 

bound to the sensors (equation 12). Since calcium entering the terminal ū𝑖𝑗(𝑡𝑘) depends 

on the amount of calcium present 𝑢𝑖𝑗(𝑡𝑘−1) and base amount of calcium 𝑈𝑖𝑗(𝑡𝑘) entering 

the terminal, it will have smaller influx if there was calcium left from previous time slice 

𝑢𝑖𝑗(𝑡𝑘−1) (equation 13). The amount of transmitters ǭ𝑖𝑗 to be released at time 𝑡𝑘 is the 

amount of transmitters qij at the terminal at the end of the previous time slice 𝑡𝑘−1 

(equation 14). 

  12)  𝑹𝑹𝒊𝒋(𝒕𝒌) = ǭ𝒊𝒋(𝒕𝒌) ∙ ū𝒊𝒋(𝒕𝒌) ∙ 𝒔𝒋(𝒕𝒌) 

  13) ū𝒊𝒋(𝒕𝒌) = (𝟏 − 𝒖𝒊𝒋(𝒕𝒌−𝟏)) ∙ 𝑼𝒊𝒋(𝒕𝒌) ∙ 𝒔𝒋(𝒕𝒌) + 𝒖𝒊𝒋(𝒕𝒌−𝟏) 

  14) ǭ𝒊𝒋(𝒕𝒌) = 𝒒𝒊𝒋(𝒕𝒌−𝟏) 

The amount of neurotransmitters 𝑄𝑖𝑗 left at the synapse after spike was calculated from 

the amount of resources at the start of the time slice and resources released. If there was 

no spike, 𝑅𝑅𝑖𝑗(𝑡𝑘) was zero (equation 15). In both cases, a spike or no spike, a percentage 

of the used transmitters was replenished by 𝑟𝑒𝑔𝑒𝑛𝑅 percentage of missing resources over 

time ∆𝑡 (equation 16) and percentage of 𝑟𝑒𝑔𝑒𝑛𝐶𝑎 calcium is left at the terminal after 

each millisecond (equation 17). The regeneration was done as many times as there were 

milliseconds between the time slices and thus taken to the power of ∆t.  
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  15) 𝑸𝒊𝒋(𝒕𝒌) = ǭ𝒊𝒋(𝒕𝒌) − 𝑹𝑹𝒊𝒋(𝒕𝒌) 

  16) 𝒒𝒊𝒋(𝒕𝒌) = 𝑸𝒊𝒋 + (𝟏 − 𝑸𝒊𝒋) ∙ 𝒓𝒆𝒈𝒆𝒏𝑹 

  17)  𝒖𝒊𝒋(𝒕𝒌) =  ū𝒊𝒋(𝒕𝒌) ∙ 𝒓𝒆𝒈𝒆𝒏𝑪𝒂∆𝒕 

Since the dynamics of the INEX model are based on constant synaptic strengths and the 

Tsodyks-Markram model has them variable, the only way to combine them was to 

consider steady state of the latter. I defined steady state as a state where the history of the 

synapse had no effect to the synaptic output. In steady state, where both the resources and 

calcium have time to settle near original value, the resources released are always the same. 

In this state, the synaptic output is independent of the history of the synapse and as such 

is in its base form. The formulas for this state are reduced from equations 12-14 to 

equations 18-20 and resulting in equation 21. Equation 18 is the same as equation 12, but 

since resources at the beginning of the time slice 𝑞𝑖𝑗(𝑡𝑘−1) = 1 and calcium left in the 

presynapse 𝑢𝑖𝑗(𝑡𝑘−1) = 0, the equations 13 and 14 are reduced to forms 19 and 20. The 

purpose of this was to show that the governing variable for neurotransmitter release 

amount was 𝑈𝑖𝑗(𝑡𝑘) and then use this to combine the models. 

  18) 𝑹𝑹𝒊𝒋(𝒕𝒌)  = ǭ𝒊𝒋(𝒕𝒌) ∙ ū𝒊𝒋(𝒕𝒌) ∙ 𝒔𝒋(𝒕𝒌) 

  19) ū𝒊𝒋(𝒕𝒌) = 𝑼𝒊𝒋(𝒕𝒌) 

  20) ǭ𝒊𝒋(𝒕𝒌) = 𝟏 

  21) → 𝑹𝑹𝒊𝒋(𝒕𝒌) = 𝑼𝒊𝒋(𝒕𝒌) ∙ 𝒔𝒊𝒋(𝒕𝒌) 

From equation 21 could be seen that 𝑈𝑖𝑗(𝑡𝑘) is the governing variable for steady state and 

that in the event of a spike, amount of 𝑈𝑖𝑗(𝑡𝑘) calcium entering the synapse determines 

alone the amount of resources to be released. To our convenience, the value for 𝑈𝑖𝑗(𝑡𝑘) 

was a real number between 0 and 1, just as the synaptic weights for INEX have when 

using a maximum upper boundary of 1. Since the upper boundary can be set to any value 

from 0 to 1, the highest release amount was set to the highest boundary value set in INEX, 

𝑈𝐵𝑚𝑎𝑥 using equations 22 and 23. The purpose of this was to be able to scale the strength 

of the synapse based on synaptic strengths at INEX and independently of a set synaptic 

strength for full release. 

To combine INEX and the synapse simulation, a base value of the synapse given at INEX, 

𝑦𝑖𝑗𝑏𝑎𝑠𝑒
was determined as the original synaptic strength set to a synapse in the 

initialization of INEX. The strength remains between 0 and its respective upper boundary 

value. Both y+
ji and y−

ji boundaries will be lower or equal to the higher one of the two 

boundaries called 𝑈𝐵𝑚𝑎𝑥. Also the value 𝑦𝑖𝑗𝑏𝑎𝑠𝑒
 will be lower or equal to 𝑈𝐵𝑚𝑎𝑥, since 

the synaptic strengths are selected with triangular distribution between 0 and the 

respective boundary. Both boundaries are lower or equal to the higher of the boundaries. 
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This means that the highest possible effect from releasing all the transmitters in the 

synapse should result in synaptic strength of 𝑈𝐵𝑚𝑎𝑥. The input from the INEX is scaled 

between 0 and 1 by dividing the base value of the synapse by the maximum release 

boundary as shown in equation 23. In the steady state special case, according to equations 

19 and 20 and based on equation 21 the output 𝑅𝑅𝑖𝑗(𝑡𝑘) is exactly 𝑈𝑖𝑗(𝑡𝑘). To scale the 

value back between the INEX boundaries, the resources released was multiplied with 

𝑈𝐵𝑚𝑎𝑥 (equation 22). In steady state, the 𝑈𝐵𝑚𝑎𝑥 canceled itself out and the final result 

was 𝑦𝑖𝑗𝑏𝑎𝑠𝑒
 as it should be. However, when the synapse is not in steady state it can gain 

resources released values that result in 𝑦𝑖𝑗(𝑡𝑘) values that are higher or lower than 𝑦𝑖𝑗𝑏𝑎𝑠𝑒
, 

but between 0 and 𝑈𝐵𝑚𝑎𝑥. 

  22) 𝒚𝒊𝒋(𝒕𝒌) =  {
𝒔𝒋(𝒕𝒌) = 𝟏 ∶  𝑹𝑹𝒊𝒋(𝒕𝒌−𝟏) ∙ 𝑼𝑩𝒎𝒂𝒙

𝒔𝒋(𝒕𝒌) = 𝟎 ∶ 𝒚𝒊𝒋𝒃𝒂𝒔𝒆

 

  23)  𝑼𝒊𝒋(𝒕𝒌) =
𝒚𝒊𝒋𝒃𝒂𝒔𝒆

𝑼𝑩𝒎𝒂𝒙
 

An example of scaling the output has been shown graphically in Figure 8. 

 

Figure 8: Visualization of the combination of the models. The upper boundary UBmax 

is the absolute maximum a synapse can have as its strength. Thus the synaptic strength 

in relation to UBmax is a value between 0 and 1. This value is then used as Uij of the 

Tsodyks-Markram simulation to make it independent of the actual synaptic strength 

values used by INEX. The output of the synapse is between 0 and 1 and this is scaled 

back to INEX by multiplying the value by UBmax. 

With tripartite synapses, the transmitter release is also detected by the astrocyte (De Pittà 

et al., 2012; Fellin, 2009; McIver et al., 2013; Min, Santello, & Nevian, 2012). For 

glutamatergic synapses, the astrocyte uses mGluR to detect the signaling. The mGluR 
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cleaves IP3 from Phosphatidylinositol 4,5-bisphosphate (PIP2) (Figure 9). This signaling 

molecule is detected by receptors at the endoplasmic reticulum (ER). IP3 causes a release 

of calcium from the cells internal calcium  stores in the ER (De Pittà et al., 2012, 2011; 

Hirase, Iwai, Takata, Shinohara, & Mishima, 2014; Lalo et al., 2014; Min et al., 2012; 

Sahlender, Savtchouk, & Volterra, 2014; Veletić, Mesiti, Floor, & Balasingham, 2015; 

Volman et al., 2012) which causes in turn more calcium release through calcium induced 

calcium release (De Pittà et al., 2012; Veletić et al., 2015). This is suggested to be related 

to gliotransmitter release. 

 

Figure 9: Astrocytes internal IP3 mediated calcium pathway. 

It has been seen that the calcium signaling in astrocytes can be of two main types. First 

of all, the full cell calcium signal can happen on its own, independent of neuronal activity. 

The other type is activity driven calcium signaling (Perea, Navarrete, & Araque, 2009; 

Wallach et al., 2014). In some cases, the activity driven calcium signaling does not reach 

the whole cell level but is contained near the synapse and causing calcium rise only locally 

at only one or few synapses range (Perea et al., 2009). 

To form our hypothesis of how the different transmitters are released, we need to look 

into what each of these transmitters is known to do. When CA3-CA1 hippocampal 

synapses were treated with fluorocitrate (FC) the astrocytic glutamate release is 

diminished. As a result paired pulse facilitation takes place together with reduced 

postsynaptic potency and reduced release probability. FC also decreases intracellular 

calcium signaling (Bonansco et al., 2011). This would suggest that glutamate increases 

the synaptic transmission as it has been shown that NMDARs can facilitate the synapse 
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(Jourdain et al., 2007; Larrosa et al., 2006). NMDARs are known for their possible role 

in long term potentiation and learning at the postsynaptic side (Min et al., 2012), but it 

turns out that there are also extrasynaptic NMDARs, which are located outside the 

synapse (Bonansco et al., 2011; De Pittà et al., 2012, 2011; Fellin, 2009; Papouin & Oliet, 

2014). These receptors are thought to be the target for astrocytic glutamate and the 

mediator of small inward currents (Parri, Gould, & Crunelli, 2001).  

In addition to NMDARs, the synaptic potency is increased by metabotropic glutamate 

receptors (Perea & Araque, 2007). Thus glutamate works through two different receptors 

to potentiate the synaptic transmission.  

Astrocytes also release ATP, which acts as a gliotransmitter at the presynapse through 

purinergic receptors. ATP is also suggested to act as an extracellular messenger for 

transmitting calcium waves between astrocytes. Moreover, ATP is hydrolyzed into 

adenosine (Hines & Haydon, 2014), which acts on A1 receptors at the presynapse by 

reducing synaptic strength.  

For modeling the tripartite synapse, we followed the paper by De Pittá et al., were a single 

parameter was used to describe the effects of co-operation of multiple receptors. This 

effect parameter is called the alpha parameter. We used an interface very similar to that 

described in the paper by De Pittá et al. (De Pittà et al., 2011) between near synapse areas 

and the presynapse. Thus, we counted the effect of different receptors as a lumped sum 

of their effects. To do this, we considered that the ATP and glutamate were released in a 

single release event and that their kinetics at the receptors were fairly similar. The 

receptors together determine the base level of synaptic modification under 

gliotransmission. However, all inhibitory and excitatory synapses still follow the 

Tsodyks-Markram dynamics.  

Presynapse model modifications 

Alpha parameter was implemented as described by De Pittá et al. The value of alpha is 

determined by the combination of presynaptic receptors. 

The effect of the alpha parameter is shown in equation 24, where 𝑈𝑖𝑗𝛼(𝑡𝑘) describes the 

new 𝑈𝑖𝑗(𝑡𝑘) after taking into account the effects of gliotransmission and 𝑔𝑖𝑗(𝑡𝑘) the 

amount of bound gliotransmitters at the presynaptic receptors. 

  24) 𝑼𝒊𝒋𝜶(𝒕𝒌) =  
𝒚𝒊𝒋𝒃𝒂𝒔𝒆

𝑼𝑩𝒎𝒂𝒙
∙ (𝟏 − 𝒈𝒊𝒋(𝒕𝒌)) + 𝜶 ∙ 𝒈𝒊𝒋(𝒕𝒌) 

This means that 𝑈𝑖𝑗𝛼(𝑡) which now governs the synaptic release instead of 𝑈𝑖𝑗(𝑡𝑘) in 

equation 23, corresponds to the synaptic weight of 𝑅𝑅𝑖𝑗(𝑡𝑘) =  𝑈𝑖𝑗𝛼(𝑡𝑘) =
𝑦𝑖𝑗𝑏𝑎𝑠𝑒

𝑈𝐵𝑚𝑎𝑥
  in 

steady state as in equation 21 as long as there is no gliotransmission. In the equation full 

release of 1 corresponds to the synaptic strength at the highest upper boundary as it should 
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be. In such a case 𝑦𝑖𝑗𝑏𝑎𝑠𝑒
= 𝑈𝐵𝑚𝑎𝑥 and according to equation 24 without 

gliotransmission 𝑈𝑖𝑗𝛼(𝑡𝑘) = 1. 

When gliotransmitters are introduced, the synapses strength shifts proportionally towards 

alpha times 𝑈𝐵𝑚𝑎𝑥. With these mechanics, astrocyte gliotransmission can both increase 

and decrease synaptic output within the natural limits set by Tsodyks-Markram dynamics. 

The strength of the synapse changes depending on gliotransmission and previous activity.  

Presynapse-astrocyte connections 

Each astrocyte has been divided into local areas comprising area around a synapse and 

the rest of the cytosol forms the other part. In the model, every excitatory synapse has its 

own near synapse calcium dynamics. These dynamics are governed by two variables. 

First, at an event of synaptic transmission, the astrocyte responds with 

ionositoltrisphosphate 𝐼𝑃3𝑖𝑗
(𝑡𝑘) increase. This value is used together with the calcium 

variable to slow down the astrocytes response. The 𝐼𝑃3 is decreased over time by 

degrading factor 𝐼𝑃3𝑑𝑔
 . New spikes at the presynapse will produce more 𝐼𝑃3(𝑡𝑘) signal. 

The increase at an event of a spike is dependent on previous 𝐼𝑃3(𝑡𝑘−1) as well as amount 

of resources released into the synaptic cleft 𝑅𝑅𝑖𝑗(𝑡𝑘) as shown in equation 25.  

The gliotransmission is governed by local astrocyte calcium concentration described as 

near synapse calcium 𝐶𝑎(𝑡𝑘). The previous level of 𝐶𝑎(𝑡𝑘−1) is changed towards 𝐼𝑃3(𝑡𝑘) 

by the amount of the difference of the values times an accumulation factor 𝑎𝑐𝑐. There is 

no calcium degrading term but instead it will follow the 𝐼𝑃3 variable with a small delay 

to increase or decrease 𝐶𝑎 (equation 26). This is done because the calcium release 

machinery is expected to function in the scale of hundreds of milliseconds and the 

simulation is run in 5ms intervals. 

When the near synapse calcium exceeds a set threshold, gliotransmission occurs. There 

are no more gliotransmission events at that synapse until the set threshold is met again 

after near synapse calcium has dropped below the threshold Cath (Equation 27). In this 

equation, the threshold is represented by 𝐶𝑎𝑡ℎ, the gliotransmitter amount by 𝑔𝑖𝑗(𝑡𝑘), the 

gliotransmitter release proportion by 𝑔𝑟 and the transmitter degrading term by 𝑔𝑑𝑔. The 

transmitter is degraded over time. 

  25)𝑰𝑷𝟑𝒊𝒋
(𝒕𝒌) =

 {
𝒔𝒋(𝒕𝒌−𝟏) = 𝟏 ∶ 𝑰𝑷𝟑𝒊𝒋

(𝒕𝒌−𝟏) ∙ 𝑰𝑷𝟑𝒅𝒈
+ (𝟏 − 𝑰𝑷𝟑𝒊𝒋

(𝒕𝒌−𝟏) ∙ 𝑰𝑷𝟑𝒅𝒈
) ∙ 𝑹𝑹𝒊𝒋(𝒕𝒌)

𝒔𝒋(𝒕𝒌−𝟏) = 𝟎 ∶  𝑰𝑷𝟑𝒊𝒋
(𝒕𝒌−𝟏) ∙ 𝑰𝑷𝟑𝒅𝒈

 

  26)  𝑪𝒂𝒊𝒋(𝒕𝒌) = 𝑪𝒂𝒊𝒋(𝒕𝒌−𝟏) + (𝑰𝑷𝟑𝒊𝒋
(𝒕𝒌) − 𝑪𝒂𝒊𝒋(𝒕𝒌−𝟏)) ∙ 𝒂𝒄𝒄 

  

 27) 𝒊𝒇 𝑪𝒂𝒊𝒋(𝒕𝒌) > 𝑪𝒂𝒕𝒉 &&   𝑪𝒂𝒊𝒋(𝒕𝒌−𝟏) < 𝑪𝒂𝒕𝒉  
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→ 𝒈𝒊𝒋(𝒕𝒌) = (𝒈𝒊𝒋(𝒕𝒌−𝟏) + (𝟏 − 𝒈𝒊𝒋(𝒕𝒌−𝟏)) ∙ 𝒈𝒓) ∙ 𝒈𝒅𝒈 

 𝒆𝒍𝒔𝒆   𝒈𝒊𝒋(𝒕𝒌) = 𝒈𝒊𝒋(𝒕𝒌−𝟏) ∙ 𝒈𝒅𝒈 

Unlike in the model by De Pittá et al., this model uses a fixed gliotransmission release 

proportions for simplification.  

3.4 Astrocyte-neuron network spatial topology 

We assume that in the case of high activity it would be possible to get even higher activity 

through glutamate acting on mGluR and NMDAR. We assume that GABA is released 

during the full astrocyte signaling to counteract excess activity. Since this type of 

signaling is related to astrocyte location we needed a model with topology. To model the 

astrocyte calcium signaling, we used the UAR model introduced by Lallouette et 

al.(Lallouette et al., 2014). The UAR model consists of an interconnected network of 

astrocytes. In the network each astrocyte is a node and gap junctions form connections 

between the nodes.  

To get a spatial distribution, the astrocytes were randomly placed on a virtual culture area. 

If two astrocytes are found to be closer to each other than a set minimum distance, one of 

them is randomly moved again until all the astrocytes are far enough from each other. 

Each astrocyte is connected by cap junctions to all neighbors within the maximum 

connection distance of 100µm. This represents the approximate diameter of one astrocyte. 

The spatial topology of neurons was built the same way as for astrocytes. However, the 

method for connecting the neurons differs. Since neurons are able to form long distance 

connections a probability of connection is set by a scaled Gaussian distribution shown 

Figure 10.  

 

Figure 10: Probability of a neuron being connected to another neuron based on the 

distance between the two neurons. The connection will be determined separately for 

both directions.  
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The connection of astrocytes to neurons was defined using a combination of the two 

previous methods. The synapses are connected to the nearest astrocyte by a probability 

distribution similarly to that of used to connect neurons (Figure 11: Connection 

probability for each synapse to the nearest neuron. If the synapse is found not to be 

connected to the nearest, the second to nearest is tested until distance limiter of astrocyte 

size is reached. The astrocytes further than that are not able to connect to the synapse due 

to them not being able to contact the synapse. The difference is of course the extent to 

which the astrocytes can connect to the synapses thus the distribution is a scaled Gaussian 

with a hard set limiter at 70 µm to represent an absolute maximum distance after which 

there are no astrocyte processes to contact with. If the synapse is not connected to the 

nearest astrocyte, the next one is tried and so forth. This represents the astrocyte processes 

being entangled at the edges of the astrocytes. This also leaves it possible for an excitatory 

synapse to be left without an astrocyte and thus not forming a tripartite synapse. In this 

case, it functions only with the Tsodyks-Markram synapse without any astrocyte 

interface.  

 

Figure 11: Connection probability for each synapse to the nearest neuron. If the syn-

apse is found not to be connected to the nearest, the second to nearest is tested until 

distance limiter of astrocyte size is reached. The astrocytes further than that are not 

able to connect to the synapse due to them not being able to contact the synapse. 

3.5 UAR model modification 

As described earlier the UAR model is a cellular automaton describing calcium signaling 

states of astrocytes. In our model we use UAR as  

  28) 𝒇𝒍𝒖𝒙𝒂 𝒊𝒏(𝒕𝒌) =  ∑ 𝒇𝒍𝒖𝒙𝒃 𝒐𝒖𝒕(𝒕𝒌) +  
∑ 𝑪𝒂𝒋

𝑵
∙ 𝑴 

Equation 28 describes the IP3 fluxes into an astrocyte that were summed up. The equation 

replaces equation 6 from the UAR model. The average of the time delayed variable at the 
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near synapse areas multiplied by a scaling variable 𝑀 was added to the fluxes. This 

internal flux can cause the astrocyte to start calcium signaling based on neuronal activity 

it detects. 

When the astrocyte is active it has high internal calcium and IP3. This is signaled back to 

near synapse area simulators by setting IP3ij to one for the duration of the active state. 

Also every excitatory synapse that was connected to the astrocyte form an inhibitory 

signal to the postsynaptic neuron in INEX. This represents astrocyte releasing GABA 

when the whole cell is active. 

3.6 Simulations 

To demonstrate the function of the model and the effect of each component to the network 

simulation the model components were added to INEX in three different stages. Each 

stage simulations consisted of INEX network with same basic properties simulated with 

three different basic activity in neuronal network.  The network consists of 250 neurons 

of which 200 are excitatory and 50 inhibitory. This gives us 80% excitatory and 20% 

inhibitory neurons.  

The simulator was run in different settings to get values for each added stage of the 

simulator. Each phase produced three sets of data that were analyzed. To test the effect 

of the number of astrocytes on the network activity we used in phase four simulated 

cultures with roughly 10%, 20% and 30% astrocytes, respectively. At each level of 

astrocytes the astrocyte network is formed anew but the same neuronal network was used 

in all simulations.  Thus these four phases produced 18 simulation scenarios. Simulation 

time of 5 minutes was chosen and simulation run with 5ms time intervals. The simulations 

were analyzed using spike counts and discrete Fourier transforms (DFT). 

The parameters used in the simulations can be found at the table in Appendix 1.The 

simulations were run on Merope-cluster using mainly partitions parallel and bigmem 

(Appendix 2). Merope used on default MatlabR2013b. The results were analyzed on 

home PC using Matlab R2015a. 
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4 RESULTS 

The simulations were run in four phases. At the first phase the simulator was run with 

only noise and having synaptic strengths at zero to see the noise in the system. In the 

second phase INEX with Tsodyks-Markram presynapse simulators were added to see the 

response of the neuronal network to the noise. In the third phase presynapse area 

astrocytes were added to see their effect. In the final phase astrocyte networks were 

formed over the neuronal network. Twenty-eight, 63 and 107 astrocytes were added to 

each noise level simulation corresponding to 10%, 20% and 30% astrocyte proportions 

of all the cells. Graphs contain spike trains of all 250 neurons and below them graphs 

showing pooled spike counts are drawn with red. The results of the DFT are shown in 

separate figures. It is important to note that the frequencies of the DFT are not the 

frequencies of the neurons but the frequencies describing the behavior of the pooled 

spiking activity. 

4.1 Phase 1: Noise 

The networks in phase one are driven by basic activity of the neurons. The resulting noise 

in neurons is shown for low, medium and high basic activity in Figure 12. This was 

achieved by setting synapses to have no effect to the spiking of the next neuron. All 250 

neurons have their spike trains plotted in black at the top of each graph. Below them are 

pooled spike counts for each time slot. 
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A)  

B)  

C)  

Figure 12: Phase 1. Resulting noise from low (A), medium (B) and high (C) basic 

activity. Black graphs on top show spike trains of all 250 neurons for 5 minutes. The 

graphs below show pooled spike counts for each 5ms. 

Running DFT for the noises show that the very low frequency component at the left side 

corresponds to noise amount (Figure 13). The power of the low frequency component is 

roughly 0.023 for low, 0.042 for medium and 0.063 for high noise. Other than that the 

relative power ratios look very much alike Figure 13: Phase 1. DFT graphs of the spike 

counts resulting from low (A), medium (B) and high (C) noise. 
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A)  

B)  

C)  

Figure 13: Phase 1. DFT graphs of the spike counts resulting from low (A), medium 

(B) and high (C) noise. The blue graph shows the power of each frequency component 

needed to reproduce the spike count graph. 

4.2 Phase 2: Neuronal network 

At phase two INEX with Tsodyks-Markram simulator was added to see the response of 

the neuronal network to the noise. Figure 14 shows the responses of the neuronal network. 

However while it is possible to see population burst like activity in the low (A) and even 
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some on medium (B) noise levels, the high activity result (C) looks mainly amplified 

noise. 

A)  

B)  

C)  

Figure 14: Phase 2. Neuronal network response to low (A), medium (B) and high (C) 

noise. 

The DFT results in Figure 15 show the same development as the noise with the very low 

frequency component as for noise. In the DFT results the low and partly medium noise 
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response can be seen as higher relative power components in the 10-2 to 10-1 and even 

higher frequencies indicating more complex signaling behavior. 

A)  

B)  

C)  

Figure 15: Phase 2. DFT of neuronal network spikes with low (A), medium (B) and 

high (C) noise. 
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4.3 Phase 3: Presynapse area astrocyte simulation 

Addition of presynapse area astrocytes in phase three with alpha value higher than 

average synapse strength shifts all the noise levels to higher activity (Figure 16). They all 

resemble more the neuronal network response to high noise (Figure 14 C) than their 

corresponding neuronal network results (Figure 14). 

A)  

B)  

C)  

Figure 16: Phase 3. Presynapse area astrocytes added. Low (A), medium (B) and high 

(C) noise responses. 
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From the DFT graphs of the phase 3 the same phenomena can be seen as before. When 

population burst like behavior can be seen in the spike trains it is also visible in the 10-2 

to 10-1 region of the DFT (Figure 17). The DFT results of medium and high noise 

responses are very similar to those of noise (Figure 13) but with higher total power. 

A)  

B)  

C)  

Figure 17: Phase 3. DFT of neuronal network spikes with presynapse astrocytes with 

low (A), medium (B) and high (C) noise. 
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4.4 Phase 4: INEXA  

In phase four, the full INEXA model was implemented with different amounts of 

astrocytes. The results in this section are divided into three subsections each containing 

three simulation runs with different noise levels. Each simulation was analyzed separately 

as before. In addition the network topology was drawn and the amount of active astrocytes 

traced. The topology is represented with wire frame, where dots present the approximate 

location of the cell soma and wires the gap junction connections between the cells. Active 

astrocytes were pooled the same way as spike counts. 

4.4.1 10% Astrocytes 

First 28 astrocytes were added to get a mixture of cells having 10% astrocytes. Two-

hundred excitatory neurons, 50 inhibitory neurons and 28 astrocytes totals up 278 cells 

of which 28 astrocytes corresponds to roughly 10%. Figure 18 shows the formed astrocyte 

network. As it can be seen from the figure this amount of astrocytes do not really form a 

connected network. 

 

Figure 18: Astrocyte network formed by 28 astrocytes. Culture space is 750µm a side 

and 10 µm deep. 

The response after adding the full INEXA model with 10% astrocytes for low noise 

(Figure 19 A) seems to bring the response closer to that of the neuronal network without 

astrocytes. This can be seen clearly from Figure 20 where the three different stage spike 

trains and DFT results are presented side by side.  
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A)  

B)  

C)  

 

Figure 19: Phase 4. INEXA with 10% astrocytes. Low (A), medium (B) and high (C) 

noise responses. 
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A)   

B)   

C)   

Figure 20: Comparison: Spike trains and DFT of phase 2 (A), phase 3 (B) and phase 

4 with 10% astocytes (C) in response to low noise. There were higher absolute spike 

counts in the bursts with astrocytes (C) resulting in spike pools axis being higher than 

with neuronal network only (A). 

The DFT results of the responses to medium and high (Figure 21 B and C) look more 

similar to those of their corresponding noises (Figure 13 B and C) and the results from 

phase 3 simulations (Figure 17 B and C) than the population burst containing low noise 

results (Figure 21 A). As can be seen from the DFT in Figure 21 A it has higher relative 

power in the 10-2 to 10-1 region than the noise (Figure 13 A) just as with the pure neuronal 

network (Figure 15 A). Similarly in medium and high noise simulations (Figure 19 B and 

C) the astrocytes try to restrict the hyperactive network by GABA releases, but they are 

not strong enough to prevent it. 
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A)  

B)  

C)  

Figure 21: Phase 4: DFT of neuronal network spikes of INEXA with 10% astrocytes. 

Low (A), medium (B) and high (C) noise responses. 
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The number of astrocytes in activated state at any given time can be seen from Figure 22. 

The astrocyte responses to the neuronal network input from medium and high noise seems 

to cause more calcium signaling than the low noise which has population bursts. 

A)  

B)  

C)  

Figure 22: Phase 4: Amount of astrocytes active at any given moment of the simulation. 

INEXA with 10% astrocytes. Low (A), medium (B) and high (C) noise responses. 
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4.4.2 20% Astrocytes 

In the next set of simulations 63 astrocytes formed the 20% network. 250 neurons and 63 

astrocytes totals 313 cells. The network formed can be seen in Figure 23. When compared 

to 10% astrocytes there are distinct networks forming. However these networks are 

formed of “islands” of connected astrocytes rather than continuous synctum. 

 

Figure 23: Astrocyte network formed by 63 astrocytes. Culture space is 750µm a side 

and 10 µm deep. 

In the spike trains a clear pattern of population bursts can be seen as a response to low 

noise (Figure 24 A) and also some population burst like activity in response to medium 

noise (Figure 24 B) when the astrocytes manage to reduce the network activity enough. 

In Figure 24 C the effect of added astrocyte amount seems to bring the activity down from 

the corresponding 10% astrocytes result (Figure 19 C). However it still contains long 

periods of hyperactivity. 
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A)  

B)  

C)  

Figure 24: Phase 4. INEXA with 20% astrocytes. Low (A), medium (B) and high (C) 

noise responses. 

The same can be seen in in the DFT results (Figure 25). In response to low noise the high 

frequency components get more power. However, for medium and high noise responses 

the DFT distribution is only slightly shifted towards higher frequencies around 10-2. 
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A)  

B)  

C)  

Figure 25: Phase 4: DFT of neuronal network spikes of INEXA with 20% astrocytes. 

Low (A), medium (B) and high (C) noise responses. 

When comparing the activity patterns of 10% and 20% astrocyte responses to different 

noise levels there is a significant difference. Now the most active network over time 

seems to be the response to low activity (Figure 26 A) when compared to medium and 

high (Figure 26 B and C). However, the total number of astrocytes active at high activity 

stage when there is a high spike is generally lower for response to low noise than for 

medium and high noise. Estimating from the figures generally 15 astrocytes respond 
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simultaneously to low noise while 15–25 respond to medium and high noise at one time. 

Also the activity of the astrocytes seems to be more evenly spread over time in low than 

in medium and high activity cases. 

A)  

B)  

C)  

Figure 26: Phase 4: Amount of astrocytes active at any given moment of the simulation. 

INEXA with 20% astrocytes. Low (A), medium (B) and high (C) noise responses. 
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4.4.3 30% Astrocytes 

In the last simulation of phase 4, 107 astrocytes formed the astrocyte network totaling 

30% of the total cell amount. The network formed by the astrocytes can be seen from 

Figure 27. Now the astrocytes form a single continuous synctum in which the astrocytes 

are all connected to the same network. 

 

Figure 27: Astrocyte network formed by 107 astrocytes. Culture space is 750µm a side 

and 10 µm deep. 

What is interesting in the neuronal network responses to all noise levels is that they show 

population burst activity and no hyperactivity (Figure 28). 
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A)  

B)  

C)  

Figure 28: Phase 4. INEXA with 30% astrocytes. Low (A), medium (B) and high (C) 

noise responses. 

The same is clearly visible from the DFT graphs of all the noise level pooled spike counts. 

All three have significant shift in power to high frequencies (Figure 29). 
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A)  

B)  

C)  

Figure 29: Phase 4: DFT of neuronal network spikes of INEXA with 30% astrocytes. 

Low (A), medium (B) and high (C) noise responses. 

The astrocyte activity in response to different noise levels with 30% astrocytes (Figure 

30) show similar behavior as for the 20%. For low noise the activity is more even when 

going for medium and high activity, the extremes of having fewer or many cells active at 

one time get to lower and higher cell counts. 
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A)  

B)  

C)  

Figure 30: Phase 4: Amount of astrocytes active at any given moment of the simulation. 

INEXA with 30% astrocytes. Low (A), medium (B) and high (C) noise responses. 
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5 DISCUSSION 

At the beginning we made a hypothesis that the astrocytes should promote bursting 

behavior in the neuronal network, while restrict hyperactivity. Based on our results this 

seems plausible. While building the model, a large number of parameters were tested to 

find sets of parameters that worked together to produce plausible effects. While doing so 

we were able to see that the effects of each parameter is highly linked to others and as 

such the model produced results that were not always possible to predict from the way 

the parameter was changed. Sometimes even small changes had large effects while tuning 

an important parameter by a lot didn’t have much effect. These rise interesting questions 

about the nature of gliotransmission.  

The phase 1 simulations show that the total power of the noise is related to amount of 

spikes, but the power distribution is similar for all noise levels. When looking relative 

power distribution it can be seen that more complex patterns have more relative power in 

the higher frequencies. At phase 2 the neuronal network produces more complex patterns 

in relation to noise when driven by low noise. However if the noise is high enough the 

network output power distribution starts to resemble noise again as in medium and high 

noise responses. Adding presynapse area astrocytes at phase 3 pushes even the low noise 

response by neuronal network towards noise output. Adding more and more astrocytes at 

phase 4 has two effects.  What the astrocytes seem to do in simulations is to reduce the 

overall activity based on how much activity there already is, and facilitate communication 

with burst like patterns at the same time. Especially this can be seen in the Phase 4 30% 

astrocyte simulations, where all three noise levels produce population bursting activity. 

It is important to note that while in phase 4 the astrocyte effect is applied only to those 

synapses, which are controlled by astrocytes, in phase 3 it was applied to all excitatory 

synapses.  

On the other hand the activity of the astrocytes does not reach all the astrocytes at any 

time. In all the simulations the number of active astrocytes at any given time in most cases 

stays below half of all the astrocytes. When there are large portions of the astrocytes 

activated at one go like in the 10% astrocytes response to high noise, there are distinct 

times between the high activity phases when there is very low activity. This could mean 

that most of the astrocytes are activated at once due to high input from neurons and all go 

to refractory period at the same time. 

The implications of astrocyte calcium waves would become apparent in this kind of 

system. Since the astrocyte activity is tied to neuronal activity and astrocytes transmit 

calcium signal when they get enough input from synapses, the spread of calcium could 

be interpreted as an attempt to reduce the activity of an overactive network before 
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exitotoxicity takes place. This can also be seen from a study of spreading depression 

(Larrosa et al., 2006).  

There have been studies that link dysfunction of astrocytes to for example epilepsy and 

Huntington’s disease. (Maragakis & Rothstein, 2006; Seifert et al., 2010; Seifert & 

Steinhäuser, 2013; Volman et al., 2012). Based on the simulation results showing that the 

biologically plausible mechanisms for gliotransmission can give astrocytes control over 

network overall activity as well as signaling patterns. Pathways related to the effects 

described in the model may be involved.  

In the simulations I used a set area for the simulated culture and added astrocytes to create 

mixtures of cells corresponding to certain percentages of astrocytes. By doing this, the 

total cell density in the culture was increased by over 28% from 10% astrocytes to 30% 

astrocytes. In reality the cell cultures with such a difference in cell density would probably 

have more differences than just connectivity between astrocytes and neurons. However 

in this work the same neuronal network was used in all the simulations to reduce the 

probability of the seen changes in the spiking patterns resulting from a change in the 

neuronal network response due to changed topology. Thus the results seen here should be 

for the most part be a result of added astrocytes.  

The models were combined using knowledge about the biology of the cells and 

approximations were needed to be done. Thus this model relies on assumptions made in 

the models and in combining them together with the hypothesis of astrocyte function. 

When considering the assumptions and approximations made one has to think about 

variables and parameters used to build the model. The INEX has already been used for 

simulation of neuronal networks and it has proven to work for simulations of MEA plate 

culture spiking patterns. The next part to be added was the tripartite synapse. The synapse 

was scaled so that it uses the INEX synaptic strengths and takes out the synapse from the 

black box simulation. The INEX synapse strength of one representing full release was 

scaled so that the full release corresponds to the higher limit of the boundaries. This 

allowed us to scale the memory containing Tsodyks-Markram synapse independent of a 

hard set limiter of one for full release. The addition of the presynapse simulator interface 

was done at the same time. Since the simulation uses relatively large networks the 

dynamics had to be kept as simple as possible. For example 250 neurons having 25% 

connectivity meant roughly 15000 synapses to be simulated.  

The alpha parameter introduced by De Pittá et al. is an important for the control of the 

network. If we consider the effects described by De Pittá et al. for paired pulse facilitation 

and depression we can already see that the network behavior is highly related to the alpha 

parameter together with the gliotransmission by astrocytes. The value of alpha determines 

the level of synaptic strength towards which the gliotransmission shifts synaptic strengths. 

From the results by De Pittá et al. (De Pittà et al., 2011), it can be seen that the alpha 

parameter can cause a synapse to change from paired pulse facilitation (PPF) to paired 
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pulse depression (PPD) and vice versa depending on the alpha parameter and 

gliotransmitter effect. That means that a synapse with low initial RR has PPF and when 

it gets glutamate and alpha is high it turns into PPD synapse. A synapse with high initial 

RR has PPD and turns into PPF. We used a value that increases synaptic strength for most 

of the synapses according to the presynapse response to glutamate. However since some 

of the synapses had their initial strengths higher than the alpha some of the synapses 

actually got depressed by gliotransmission.  

Increased releases at synapses at high activity induces more activity in the network as can 

be seen when comparing phase 2 and 3 simulations. This would mean that a network with 

high enough activity can’t get out of the high activity mode as seen in the results of phase 

3 simulations. If the only way for the network to leave the high activity state was by 

stopping the activity for a moment it might not be able to. In such a case the network 

could lock into high activity “epileptic” mode. Eventually it would result in 

excitotoxicity.  

What was suggested as a solution is backed up by experimental findings. Since the high 

activity needs to be calmed down and the astrocytes already monitor most of the synapses, 

it would be logical if they could inhibit the network activity in this case. If the astrocytes 

release GABA during full cell calcium signaling, and glutamate and ATP at a much lower 

concentration, that would also provide a means for astrocytic inhibition during overactive 

phase. GABA is shown to be a key transmitter for tonic inhibition by astrocytes (Yoon et 

al., 2011). However, not all astrocytes in different brain areas contained GABA. The 

effect of astrocyte released GABA causing synchronous inhibition at postsynaptic 

neurons has been suggested also by others (Angulo et al., 2008; Kozlov et al., 2006; Liu, 

Schaffner, Chang, Maric, & Barker, 2000). 

As was mentioned, the model has to be built with relatively simple components to keep 

it computationally as light as possible. As such many of the parameters have been deduced 

from other papers and some have been set by testing the model and with educated guess. 

However, the the amount of parameters in the model has considerably increased from the 

original INEX. The parameters at INEX are phenomenological. This means that anything 

we build on top of it will be phenomenological as well. By adding Tsodyks-Markram 

presynapse model we introduced another phenomena into the INEX, which was the 

memory at a single synapse level. The parameters for these were adapted from paper by 

De Pittá (2011). The INEX parameters were found using brute force to find sets of 

parameters that produced results in reasonable ranges. The near synapse area astrocyte 

simulator has the calcium and IP3 variables. These are not accurate descriptions of what 

truly happens in astrocytes and as such the presynapse area astrocyte values are educated 

guesses. Thus the variables describing astrocyte calcium and IP3 are just numerical. The 

UAR model uses the parameters described in the supplementary of the paper by Lallouette 

et al. (Lallouette et al., 2014). The GABA inhibition strength was an educated guess based 

on trial and error tuned so that the astrocyte don’t kill off the neurons signaling 
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completely, but greatly reduced the probability of it spiking. The building of neuron and 

astrocyte networks was done by selecting an area that would be reasonable for a cultured 

network on a microelectrode array. Then the amount of astrocytes was selected. 250 

neurons were found to be reasonably fast to compute since many runs were needed to 

optimize parameters. The network building values for neurons were selected so that they 

formed a network with roughly 25% connectivity. Astrocytes were set to be at least 30µm 

apart. The simulation does not take into account the exact micro domains (Bushong et al., 

2002) occupied by astrocytes but assumes that the shape of the astrocytes allows them to 

occupy spaces that are vaguely around the cell soma, which is located around the 

coordinates given to the cell. As such the astrocytes are connected if they are within 

100µm of each other. It is possible that two astrocytes are connected even if there is an 

astrocyte between them. In these cases the astrocyte domains are assumed to be in touch 

so that there is a physical contact between the two astrocytes going around the one in the 

middle. Similarly because the domains are slightly vague the astrocyte-neuron 

connections are possible to form if the distance between the cells is 70µm or less. This 

vague definition of astrocyte occupied domain also means that there is no need to set a 

hard limiter for how close a neuron and an astrocyte can be of each other. 

When comparing with the other models one thing in common with all the simulations 

seems to be some kind of switch between two different firing states of the neurons. The 

INEXA seems to produce such effect in whole network level. The model seems to work 

well when taking into account all the approximations that needed to be made. It would 

seem plausible that if these mechanisms are present in real neuron-astrocyte networks, 

they could have a part to play in epileptic seizures due to their ability to control the whole 

network activity. If the balance between spike inducing glutamate dynamics and network 

balancing inhibitory pathway is disturbed it might result in increased activity of the 

neuronal network. 

The model as it is works for studying the effects shown. However it would be also 

possible to add inhibitory neuron control to astrocytes as well as diffusion of transmitters 

in culture space. For example the diffusion of ATP and its effect in astrocyte calcium 

signaling could be studied this way. Also the hydrolysis of the ATP to adenosine and its 

time delayed effect could be studied in the culture. Eventually this could perhaps be used 

to study what happens to the neuronal signaling when the cerebrospinal fluid washes the 

tissue of excess transmitters and molecules in our sleep. 

The next step in developing the model should be to make a fit for parameters to match 

biological data. After that the model could have some predictive power for scenarios that 

have not yet been studied in vitro. 
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6 SUMMARY AND CONCLUSIONS 

Astrocytes are a type of glia-cells that are ideally positioned for local information 

processing in the brain. In this work we tried to create a simulation scheme that would 

describe the effect of astrocyte network to neuronal network. For this purpose three 

existing models were used. I built a model using the best features of all the three existing 

models. The model was built and tested on Matlab. Each phenomenon was separately 

tested and the outputs of each phase were run step by step. To ensure that the simulations 

run smoothly even with massive amounts of synapses, the code was built so that it uses 

as much matrixes as possible in the calculations. Even so the simulator is computationally 

heavy and the runtime increases exponentially when adding more neurons and astrocytes. 

The parameters were optimized based on literature and trial and error in finding 

parameters that produced a system where the phenomena described in literature could be 

seen. Then each of those parameters were adjusted to fit together. 

By combining INEX by Kerstin Lenk (Lenk, 2011), Presynapse simulator by De Pittá et 

al. (De Pittà et al., 2011) using Tsodyks-Markram synapse model (Tsodyks & Markram, 

1997) and astrocyte calcium signaling model UAR by Lallouette et al. (Lallouette et al., 

2014) in a biologically reasonable way, the INEXA astrocyte-neuron network simulator 

was created. 

Eighteen simulation runs were made with different settings to see the effect of added 

astrocytes to the network behavior. This was done in four phases, where first phase 

consisted of simulations with only the noise produced by different basic activities of the 

neurons. In the second phase neuronal network response with Tsodyks-Markram 

presynapses was run to see the neuronal network response to the noise. In the third phase 

presynapse area astrocytes were added. The simulations showed that the astrocytes with 

only increasing effect just increase the network activity. In phase 4 full INEXA astrocyte 

model was applied with different amounts of astrocytes. The results show that when there 

are enough astrocytes they reduce the overall activity and start to promote communication 

by bursting. 

In this thesis for the first time astrocyte-neuron networks were modeled at this level. 

Astrocytes with biologically plausible effects were modeled together with neuronal 

network simulator INEX to find out what kind of effect astrocytes could have to neuronal 

network behavior. The hypothesis was that the astrocytes should promote bursting 

behavior in the neuronal network, while restricting hyperactivity. This seems plausible 

based on the simulation results. If astrocytes communicate with the neurons this way it is 

no surprise that dysfunction in astrocyte function could be related to diseases like epilepsy 

and Huntington’s. This is the first model to combine all the components in this scale into 

a computational framework. 
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APPENDIX 1 

Parameter Value Name 

Boundary c 0.01, 0.02, 0.03 Upper boundary 

Boundary y+
ji 0.7 Upper boundary 

Boundary y−
ji -0.7 Upper boundary 

LengthST 300 000 Length of the simulation in ms 

regenR 0.02 Percentage of transmitters regenerated per time slot 

regenCa 0.998 Percentage of calcium left at the presynapse after each 

millisecond 

α 0.7 alpha 

gdg 0.999923 Percentage of glutamate left at the presynaptic receptors 

after each millisecond  

gr 0.3 Percentage of receptors not having gliotransmitters 

bound to it getting bound at astrocyte release 

Cath 0.1 Calcium threshold for gliotransmitter release 

acc 0.05 Accumulation rate between IP3 and Ca 

IP3dg 0.85873 Percentage of IP3 left after each millisecond at the near 

synapse areas. 

Astrocytes 28,63,107 Number of astrocytes at each simulation.  

M 1000 Multiplier between astrocyte near synapse and whole as-

trocyte self-induced IP3 flux. 

Connection distance 100 Maximum distance between two connected astrocytes in 

µm 

Atime 1500 Parameter used to determine probability of stage change 

Rtime 7000 Parameter used to determine probability of stage change 

Utime 5000 Parameter used to determine probability of stage change 

Slope 0.02 Increase in required flux to activate an astrocyte for each 

connection it has 

Intersect 0.205 Minimum flux needed to activate an astrocyte 

yGABA -0.01 Inhibition applied by astrocytes in GABA signaling 

through each controlled synapse 

Culture area [750 750 10] µm 

Minimum neuron 

distance 

10 µm 

Minimum astrocyte 

distance 

30 µm 

Neuro STD 200 (µm) standard deviation of neuronal connections 

Astrocyte STD 150 (µm) standard deviation of astrocyte-neuron connections 

without limiter 

Max astrocyte reach 

distance 

70 (µm) limiter cutting the gaussian standard deviation con-

nection probability set by standard deviation 
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APPENDIX 2 

Merope: General Information 

 Appr. 1500 CPU cores, total memory 4.3TB RAM, raw disk 200TB. 

 GPU/CUDA nodes with two NVIDIA M2090 GPU cards (each card with 6GB RAM). 

 A bigmem server with 512GB RAM and 32 CPU cores. 

 Infiniband network (QDR/FDR). 

 Scientific Linux release 6.5 (64bit) operating system. 

 SLURM batch job scheduler. 

The "parallel" partition contains compute nodes with 48GB of memory and max runtime is 1 day. Each 

of the nodes contains two Intel X5660 processors (192 CPU cores). Nodes should preferable be reserved 

completely for a single job allocation, such as 24, 36, 48, (and so on) CPU cores at a time. 

The "bigmem" partition contains one compute node with 512 GB of memory and four eight-core Intel 

X7550 processor (32 CPU cores). 

Matlab R2013b 

 

 

 

 


