
Yuan Liu

INCREMENTAL LEARNING IN DEEP NEURAL NETWORKS

Master of Science Thesis

Examiners: Prof. Joni-Kristian Kämäräinen
Dr. Ke Chen

Examiners and topic approved in the Computing and Elec-
trical Engineering Faculty Council meeting on 6th May
2015



ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Program in Information Technology
YUAN LIU: Incremental Learning in Deep Neural Networks
Master of Science Thesis, 67 pages, 5 Appendix pages
June 2015
Major: Pervasive Systems
Examiners: Prof. Joni-Kristian Kämäräinen, Dr. Ke Chen
Keywords: incremental learning, deep neural networks, computer vision, machine learn-
ing

Image classification is one of the active yet challenging problems in computer vision field.
With the age of big data coming, training large-scale datasets becomes a hot research
topic. Most of work pay more attention to the final performance rather than efficiency
during the training procedure. It is known that it takes a long time to train large-scale
datasets. In the light of this, we exploit a novel incremental learning framework based on
deep neural networks to improve both performance and efficiency simultaneously.

Generally, our incremental learning framework is in a manner of coarse-to-fine. The
concept of our idea is to utilise the trained network parameters with low-resolution images
to improve the initial values of network parameters for images with high resolution. There
are two solutions to implement our idea. One is to use the networks with scaled filters.
The size of filters in deep networks is extended by upscaling parameters from the previous
trained network with lower-resolution images. The other is to add convolutional filters to
the network. We not only extend the size of filters by scaling the weights of filters, but also
increase the number of filters. The same transformed method with scaled filters can be
used for the same number of filters, whereas we initialise parameters of other new added
filters. Incremental learning can help neural networks to keep the learned information
from coarse images network for initialising the following more detail level network, and
continue to learn new information from finer images.

In conclusion, both of these two solutions can synchronously improve accuracy and effi-
ciency. For the networks with scaled filters, the performance is not raised too much, while
it can save nearly 40% training time. For the networks with added filters, the performance
can be respectively increased from 10.8% to 12.1%, and from 14.1% to 17.0% for the
ImageNet dataset and the Places205 dataset, and reducing about 30% training time. In
the view of our results, adding new layers to deep neural networks and progressing from
coarse to fine resolution is a promising direction.
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1 INTRODUCTION

Computer vision attempts to emulate the human visual system in general, and extracts
useful information from input, such as images or video sequences. This has proved a
surprisingly challenging task; it has occupied thousands of intelligent and creative minds
over the last four decades, and despite this we are still far from being able to build a
general-purpose "seeing machine" [6]. On the basis of this, image classification is one of
the essential tasks in computer vision. It deals with images whose contents are predicted
using a classifier represented by the features. In this thesis, we explore a novel method for
the improvement of image classification. In the following, there are the motivation and
several main objectives of the thesis work, as well as the structure of the thesis.

1.1 Motivation

Thanks to new technologies, there is a rapid growth of data in the real world, and we
live in an era called "the age of big data". However, many machine learning algorithms
require more resources that grow faster than data. In other words, majority of methods in
machine learning, especially to deal with the large-scale datasets, always require a longer
time to train a model. Consequently, there is a need to develop novel learning approaches
to handle large-scale training data to improve efficiency.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) provides a large-scale
dataset derived from ImageNet1. Commonly, deep learning is a class of machine learning
techniques that exploit many layers of non-linear information processing for supervised
or unsupervised feature extraction and transformation, and for pattern analysis and clas-
sification [7]. Deep learning aims at learning features from higher levels of the hierarchy
formed by the composition of lower level features [8]. There is an implementation for
the ILSVRC proposed by Krizhevsky et al. [5] for which every 20 iterations takes about
26.5 seconds on a machine with high-end GPU Nvidia K40 by Caffe2 [4]. For the entire
training procedure, the overall time is close to one week. Similar situation of training the
Places205 dataset3, it takes 6 days to finish 300, 000 iterations [9].

Evidently, it is quite time consuming to train a set of optimised parameters of a large
deep network. Therefore, we intend to seek a new solution to improve the efficiency.

1http://image-net.org/
2http://caffe.berkeleyvision.org/
3http://places.csail.mit.edu/index.html

http://image-net.org/
http://caffe.berkeleyvision.org/
http://places.csail.mit.edu/index.html
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Although training a large-scale dataset needs a lot of time to be completed, we attempt
to separate the entire training process into several parts and train the model in a coarse-
to-fine fashion to increase the efficiency. The main motivation of this thesis is to find
methods of implementing incremental learning to reduce the training time and increase
the performance in a unique framework.

1.2 Objectives

The main objective of this thesis is to propose a novel method based on deep neural net-
works (DNNs), incremental learning, to improve the performance and efficiency of image
classification. Incremental learning by using DNNs is a challenging research direction,
which has not been investigated in the existing literature. Our main idea is to transform
the "coarse" parameters from "tiny images network" to initial parameters in the following
"larger images network" incrementally, as explained in Figure 1.1. To achieve our goal, it

DNN

...

Tiny Original

Parameters

DNN

Parameters

transform

...

Coarse Fine

... DNN

Parameters

Figure 1.1. The main idea of incremental learning in DNNs.
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can be divided into several questions: how to scale and add filters from tiny images to full
size images network, how to transform parameters from coarse to fine through the scaled
methods, and how to initialise new parameters. Based on the main objective, there are
several supplementary purposes of the thesis.

The first purpose of this research is to learn neural networks along with DNNs and under-
stand their working principles. This is the theoretical foundation, which includes learning
how each layer works, and how parameters have an effect on input and output.

Moreover, the second purpose is to implement DNNs by Caffe, which is one of the popular
toolboxes. Learning how to install it, use it and extract neural weights from DNNs can be
useful to the experiments.

Finally, based on the theory and with using the toolbox, we need to employ them to
find the relationship between the coarse and fine weights of filters, transform them, and
implement them with Caffe to achieve our main objective.

1.3 Structure of the Thesis

The rest of the thesis is organised as the following. Chapter 2 describes literature re-
views on image classification, several popular datasets, neural networks, DNNs and re-
lated toolboxes. Chapter 3 presents the preparatory works, which consist of the concept of
incremental learning, data pre-processing, and setting network architecture before trans-
forming. Chapter 4 provides incremental learning methods used in the thesis to improve
the efficiency. Chapter 5 shows the details of the experiments. These consist of results,
analysis and comparisons among different methods. Finally, the conclusion of the thesis
work is given in Chapter 6.
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2 LITERATURE REVIEW

This chapter starts from introducing the general task of image classification. Then, we
introduce some popular datasets used in recent works. Furthermore, the basic theories of
the used methods are presented, which include different types of neural networks. Finally,
some trending toolboxes for training the neural networks are presented.

2.1 Image Classification

In artificial intelligence, machine learning is an important research topic, and classifica-
tion is one of the most fundamental problems in this area. Image classification is the
task of assigning an input images one label from a fixed set of categories according to
the content of the image, such as face recognition in biometrics [10] and inspection sys-
tem in product factory [11]. An algorithm that implements classification is known as a
classifier, which maps the input data to a category [12]. There are lots of techniques pro-

FeatureFeature
ExtractionExtraction

Input (image)Input (image)

ClassificationClassification

class

p(c)

Output (class label)Output (class label)

“kit fox”

ImageImage
ClassificationClassification

Figure 2.1. The pipeline of image classification.
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posed to complete the task of image classification. The most popular pipeline of image
classification is based on the assumption that the image depicts one or more features and
that each of these features belongs to one of several distinct and exclusive classes [13],
shown in Figure 2.1. The classes may be specified a priori by an analyst (as in super-
vised classification) or automatically clustered (i.e. as in unsupervised classification) into
sets of prototype classes, where the analyst merely specifies the number of desired cate-
gories [13].

Image classification is a critical task for both humans and computers. It is one of the
forms of data analysis that can be used to extract a model or classifier constructed to pre-
dict categorical labels [14]. A training set, a test set and a validation set are exploited for
discovering and evaluating the relationships of model. For example, if the most suitable
classifier is explored, the training set is used to train the candidate algorithms, the valida-
tion set is used to compare their performances and decide which one to take, and the test
set is used to obtain the performance characteristics such as accuracy [15]. Generally, the
techniques of image classification are made up of supervised learning and unsupervised
learning, illustrated in Figure 2.2.

Image Classification ApproachesImage Classification Approaches

Supervised LearningSupervised Learning Unsupervised LearningUnsupervised Learning

Labels LabelsImages Images

f()

Error

Input

Prediction

Target f()

Error

Input

Prediction

?

Figure 2.2. A comparison of supervised learning and unsupervised learning[1].
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Supervised Learning

Conceptually, the supervised learning is considered as the knowledge of the environment,
where the knowledge being denoted as a set of input-output examples. In other words,
each training data is a pair of an input and its corresponding target output. During the
training phase, a learning algorithm builds the classifier by analysing or "learning from"
a training set made up of database and their associated class labels [14]. The desired
output represents the optimum action which is performed by the classifier. The parameters
of a classifier are enforced to minimise the error between predicted labels and ground
truth. The knowledge of the environment available in the training set is transferred to
the classifier through the training as fully as possible. When this condition is reached,
we may then dispense with training set and let the classifier to deal with the environment
completely by itself [2]. The experiments in the thesis are based on supervised learning
for coping with image classification.

Unsupervised learning

On the contrary, an alternative solution is to utilise the data with no class label of each
training set in an unsupervised learning. In the training phase, it tries to auto-associate
information from the input with an intrinsic reduction of data dimensionality or total
amount of input data [16] with the similarity across training samples. Once the network
has become tuned to the statistical regularities of the input data, it develops the ability to
form internal representations for encoding features of the input and thereby to create new
classes automatically [2].

2.2 Datasets

With the development of computer vision, the increasing number of datasets is collected
to solve the task of image classification. The dataset can be utilised to solve different
classification problems, such as classification based on attribute, object categories, size
and amount of images. There are several widely used datasets of images, and the last two
are used in this thesis.
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2.2.1 Animals with Attributes Dataset

The Animals with Attributes (AwA) dataset4 [17, 18] is a dataset for attribute based
classification with disjoint training and testing classes. The split of the classes is not
done randomly, but much of the diversity of the animals in the dataset (water/land-based,
wild/domestic, etc.) is reflected in the training as well as in the test set of classes [18]. It
is aligned with all 50 Osherson [19] and Kemp [20] animal classes by querying the im-
age search engines of Google, Microsoft, Yahoo, and Flickr, thus providing 85 numeric
attribute values for each class. The collection consists of 24, 295 images of 40 classes
for training, and 6, 180 images of the remaining 10 classes for testing. Each image has
six pre-extracted feature representations. It is formed by combining the collected images
with attribute-matrix. The dataset can be served as zero-data learning in computer vision,
and it is identified based on a high-level description that is phrased in terms of semantic
attributes, such as the object’s colour and shape [18].

2.2.2 Fine-Grained Classification Datasets

The Fine-Grained datasets are employed for fine-grained object categorisation, which
means to distinguish the breed of objects from an image, such as Chihuahua, Maltese
dog, and Blenheim spaniel. The datasets include many categories of aircraft, birds, cars,
dogs, and shoes. There are many datasets used for fine-grained visual categorisation
including Stanford Dogs dataset [21], Oxford-IIIT-Pet dataset [22], Caltech-UCSD Birds-
200-2011 [23], and Birdsnap [24]. We present two examples of Fine-Grained datasets as
below.

The Stanford Dogs dataset5 is one of the Fine-Grained datasets with 120 classes. There
are 20, 580 images of dogs annotated with a bounding box and object class labels. Both
of images and bounding boxes are from ImageNet [25], which we will introduce later.
The classification of dogs is a difficult problem. First, there is little inter-class variation,
such as different dog categories may share very similar facial characteristics but differ
significantly in their color. In addition, dogs in the same class could have different ages,
poses and even colours. Furthermore, a large proportion of images are leading to greater
background variation [21].

4http://attributes.kyb.tuebingen.mpg.de/
5http://vision.stanford.edu/aditya86/ImageNetDogs/

http://attributes.kyb.tuebingen.mpg.de/
http://vision.stanford.edu/aditya86/ImageNetDogs/
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The Caltech-UCSD Birds-200-2011 dataset6 is another fine-grained categorisation used
to distinguish species of birds. It contains 11, 788 images from 200 species. Each image
annotated by 15 part locations, 312 binary attributes, and one bounding box. The classi-
fication of bird species is a challenging problem, because different bird species can vary
dramatically in shape and appearance (e.g. pelicans vs. sparrows). At the same time, even
for expert bird watchers, some pairs of bird species are nearly visually indistinguishable,
such as the sparrow species. Intraclass variance is high due to variation in lighting and
background and extreme variation in pose (e.g. flying birds, swimming birds, and perched
birds that are partially occluded by branches) [23].

2.2.3 CIFAR-10 and CIFAR-100 Datasets

The CIFAR-10 dataset7 [26] is composed of 60, 000 natural images of 10 classes. There
are random-selected 5, 000 images from each class as training set, whereas the remaining
10, 000 images form the testing set. Each image is a 32× 32 RGB image. The ten classes
include airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

There is an extension of CIFAR-10 dataset, named CIFAR-100 dataset [26]. It has 100

classes (fine label) and 20 superclasses (coarse label). There are 500 training images and
100 testing images for each class. Each image is a 32 × 32 RGB image.

2.2.4 Places205 Dataset

The Places205 dataset [9] is a large-scale dataset provided by MIT Computer Science and
Artificial Intelligence Laboratory. It is used as the benchmark of scene recognition meth-
ods. The total size of the dataset is around 2.5 millions images of 205 scene categories.
There are randomly selected 2, 448, 873 images as the training set and the remaining 100

images per category as the validation set. There are distinct 41, 000 images in the separate
testing set. The Places205 dataset is designed to represent places and scenes found in the
real world, examples shown in Figure 2.3.

6http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
7http://www.cs.toronto.edu/~kriz/cifar.html

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.cs.toronto.edu/~kriz/cifar.html
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airfield

hospital

sauna

tree house

woodland

yard

Figure 2.3. Examples from the Places205 dataset.

2.2.5 ImageNet Dataset

The ImageNet dataset [25] is a large-scale database with millions of images from more
than 20, 000 categories. It is a useful resource for image classification, and object detec-
tion.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [27] has become the
benchmark in large-scale image classification as well as object detection. The main task
in this thesis is image classification, and therefore we choose the image classification
dataset provided by ILSVRC as the experimental target. It is a subset of the ImageNet
and collected from the Internet through several image search engines. The dataset consists
of 1, 000 classes, and each image contains one ground truth label. There are 1.2 million
images for training, 50, 000 images for validation, and 100, 000 images for testing. Fig-
ure 2.4 shows the example images from 5 classes of ILSVRC image classification dataset.
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Kit fox, Vulpes macrotis 

Grey fox, Gray fox, Urocyon cinereoargenteus 

Australian terrier 

Soccer ball

Table Lamp

Figure 2.4. Examples from the ILSVRC image classification dataset.

2.3 Neural Networks

A neural network is a massively parallel distributed machine learning method that con-
tains simple processing units, which has a natural propensity for storing experiential
knowledge and making it available for use [28], also called artificial neural network (ANN).
In other words, it has the computing power through parallel distributed structure and abil-
ity to learn. Basically, the general idea of a neural network is inspired by biological neural
networks, and is presented as a combination of neurons which can calculate values from
input. A neuron is defined as an information-processing unit that is fundamental to the
operation of a neural network [2]. However, neural networks are motivated by the goal
of obtaining highly effective machine learning algorithms, independent of whether these
algorithms mirror biological processes [29].

Neural networks have variety of useful properties and capabilities, like nonlinearity, input-
output mapping, adaptively and so on [2]. Their learning can be robust to errors in
the training data and has been successfully applied to problems such as interpreting vi-
sual scenes [30], speech recognition [31], and learning robot control strategies [32, 29].
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In the following subsections, a type of network architectures called multilayer percep-
tron (MLP), a common algorithm for training neural networks and recurrent neural net-
work (RNN) are introduced.

2.3.1 Multi-Layer Perceptron (MLP)

The purpose of any supervised learning algorithms is to find a function that adequately
maps between the input and output. Simple mapping can be learned by a single neuron,
but it cannot learn nonlinear separable data. The MLP overcomes this limitation as it can
create internal representations as layers and learn different features in each layer [33]. A
generic feedforward MLP neural network can adapt to difficult training data as presented
by Rumelhart et al. [34]. Generally, a MLP whose nodes are neurons with logistic activa-
tion, is a finite directed acyclic graph, which consists of an input layer with sensory units,
one or more hidden layers and an output layer with computational nodes. The input signal
propagates through the network to forward layer-by-layer direction. There are three main
characteristics of MLPs [2]:

• Each neuron in a MLP has a nonlinear activation function. The presence of non-
linearities is important because otherwise the input-output relation of the network
could be reduced to that of a single-layer perceptron [2]. Generally, the sigmoidal
nonlinearity defined by logistic function, who is biologically motivated, is used to
the nonlinearity, as

ϕ(v) =
1

1 + exp(−v)
(2.1)

where v is the induced local field of neuron, and ϕ(v) is the output of the neu-
ron [35].

• A MLP contains one or more layers of hidden neurons, which are not part of the
input or output. These hidden neurons enable the network to learn complex tasks
by extracting progressively more meaningful features from the input patterns [2].
In principle, each hidden layer performing a transformation of a scalar product of
the output of the previous layer and the vector of weights linking the previous layer
to a given node [36].

• The network reveals a high degrees of connectivity, determined by the synapses of
the network. A change in the connectivity of a network requires a change in the
population of synaptic connections or their weights [2].
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Figure 2.5. A simple MLP with one hidden layer.

A simple MLP with one hidden layer is illustrated in Figure 2.5. Here, we denote m
input signals as a vector x = [x1, x2, ..., xm]T , q hidden nodes as h = [h1, h2, ..., hq]

T ,
and p output nodes as y = [y1, y2, ..., yp]

T . The superscript is set to represent the layer of
parameters, so that the output of hidden neurons hj can be written as

hj = ϕ(
m∑
i=1

w
(h)
ij xi − b

(h)
j ) (2.2)

where w(h)
ij is the weight of jth node in the hidden layer h connected to the ith node from

the previous layer, b(h)j is the bias of jth node in the hidden layer, and ϕ is the activation
function in each neuron. Based on the equation (2.2), the final result yk can be written as

yk = ϕ(

q∑
j=1

w
(y)
jk hj − b

(y)
k ) = ϕ(

q∑
j=1

w
(y)
jk ϕ(

m∑
i=1

w
(h)
ij xi − b

(h)
j ) − b

(y)
k ) (2.3)
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Similarly, w(y)
jk and b(y)k are presented the weight and bias located in the output layer y.

Likewise, the general output of MLP with more hidden layers can be denoted as

y
(l)
j = ϕ(

m∑
i=1

w
(l)
ij y

(l−1)
i − b

(l)
j ) (2.4)

The MLP is a very flexible model, which gives good performance on a wide range of
problems in discrimination and regression [36], and applies in a variety of fields. MLPs
with back-propagation (BP) algorithm are the standard algorithm for numerous supervised
learning tasks.

2.3.2 Back-Propagation (BP)

BP algorithm is the most popular supervised method in training MLPs. It is described as
a multi-stage dynamic system optimization method by E. Bryson and Yu-Chi Ho [37, 38].
Since 1974, BP algorithm has been further developed by Paul Werbos [39], and David E.
Rumelhart et al. [33, 40]. The intention and motivation for developing the BP algorithm
is to find a way to train a multi-layered neural network which can learn the appropriate
internal representations to allow it to learn any arbitrary mapping of input to output. The
derivative of an error function can be calculated efficiently in MLPs. In other words, it is
based on error-correction learning rule [2] to minimize error and adjust parameters of the
network.

For further description of the algorithm, let a training vector as x = [x1, x2, ..., xm]T , and
its target output is t = [t1, t2, ...tp]

T . Normally, the BP algorithm can be divided into two
passes, forward pass and backward pass [2, 29, 41]:

Forward pass

An input vector x can be applied to the network to forward propagate layer by layer,
and obtain a set of output y = [y1, y2, ..., yp]

T as the actual response of the network
by the equation (2.4). During this pass, parameters of the network are not changed. In
conclusion, forward propagation can take a training data through the network for purpose
of generating the current output.

Backward pass
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After forward pass, there is an error between the output y and the desired response t.
When neuron j is located in the output layer of the network, it is supplied with a desired
response of its own. However, when neuron j is located in a hidden layer of the network,
the error signal would have to be determined recursively in terms of the error signals of
all the neurons to which that hidden neuron is directly connected [2]. Therefore, we can
write the local gradient δj(n) as [2, 36]

δj(n)(L) = e
(L)
j (n)ϕ

′
(v

(L)
j (n)) for j in output layer L (2.5)

δ
(l)
j (n) = ϕ

′
(v

(l)
j (n))

∑
k

δ
(l+1)
k (n)w

(l+1)
kj (n) for j in hidden layer l (2.6)

In the time of backward pass, the error is propagated inversely through the network to
adjust parameters according to the error-correction rule. On the basis of the delta rule [42,
43], the weight correction ∆wij is applied between the neuron i and neuron j defined as

∆wij(n) = ηδjyi + α∆wij(n− 1) (2.7)

where η is the learning rate, δj is the local gradient, yi is the input signal of neuron
j, α is the momentum constant, and n is the iteration. The BP algorithm provides an
"approximation" to the trajectory in weight space computed by the method of steepest
descent [2]. The smaller learning rate η leads to the smaller changes to the synaptic
weights in the network, while the larger η forms the unstable network. The momentum
constant α can increase the rate of learning yet avoid the danger of instability [2]. It
controls the feedback loop. Finally, the weight correction can be utilised to adjust weights
as

wij(n+ 1) = wij(n) + ∆wij(n) (2.8)

In a general sense, backward propagation can acquire the difference between the output
and the target of training data in order to generate the ∆w of all output and hidden neurons
to tune the weights of the network. The development of BP algorithm become a milestone
in the neural network field. When training networks in practice, derivatives should be
evaluated using BP, because this gives the greatest accuracy and numerical efficiency [35].

2.3.3 Recurrent Neural Networks

We have introduced MLPs previously whose connections do not form cycles. If the cycli-
cal connections are allowed, a RNN can be acquired, which is a class of ANNs and con-
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tains at least one feedback loop. In the light of this, it is known the simplest type of a
RNN is a MLP plus extra feedback loops. In general, a MLP can only map from input
to output, whereas a RNN can in principle map from the entire history of previous input
to each output. The key point is that the recurrent connections allow a "memory" of pre-
vious input to persist in the network’s internal state, and thereby influence the network
output [44]. The ability to use internal memory for processing arbitrary input sequences
makes it powerful on certain tasks such as handwriting recognition [45], and many other
sequential problems.

RNNs are powerful tools which allow neural networks to handle arbitrary length sequence
data. They can learn many behaviours/sequence processing tasks/algorithms/programs
that are not learnable by traditional machine learning methods [46]. In Figure 2.6, we
visualise an example of RNNs with only one hidden layer, which feedbacks connect to
both hidden neurons and output neurons. Moreover, there is a set of unit-delay elements
denoted as z−1 are used in feedback loops [2]. In other words, it uses feedbacks at time t
as the input at time t+ 1, where forms directed cycles between neurons in the RNN.

Inputs

outputs

z-1

z-1

z-1

z-1

⏞

⏞

Unit-delay 
operators

Figure 2.6. An example of RNN with one hidden layers [2].
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With feedforward networks, many varieties of RNNs have been proposed, such as Elman
networks, and Jordan networks [44]. RNNs are dynamical systems with temporal state
representations [16] with several methods for supervised training, like back-propagation
through time (BPTT), real-time recurrent learning (RTRL), and extended Kalman filter-
ing (EKF). Furthermore, BPTT and RTRL algorithms are based on gradient descent to
minimize error, while EKF is more effective on using higher-order information. EKF
can converge faster than BPTT and RTRL algorithms, but requires higher computational
complexity [47].

2.4 Deep Neural Networks

Background on a "deeper" network are described from the recalling literature of neural
networks. The depth is defined in the case of feedforward neural networks as multiple
nonlinear layers between input and output [48]. The general difference between neural
networks and DNNs is illustrated in Figure 2.7. A deep architecture is one in which there

“kit fox”
Neural

Network

D N N “kit fox”

Figure 2.7. A comparsion between shallow and deep neural networks.
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are multiple levels of representation, with higher levels built on top of lower levels (the
lowest being the original raw input), and higher levels representing more abstract concepts
defined in terms of less abstract ones from lower levels [49].

2.4.1 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of feedforward neural network using
convolution instead of general multiplication, inspired by biological processing and firstly
introduced by Kunihiko Fukushima in 1980 [50]. A CNN consists of one or more convo-
lutional layers and then followed by one or more fully connected layers as in one standard
MLP structure. With the rise of efficient GPU computing, it is possible to train larger
networks. CNNs are comprised of several layers, and we introduce the three main layers
below.

Convolutional layer

In the convolutional layer, a small sub region of the image for a convolutional filter is

.

.

.

      
    s

lide window (convolution)

Figure 2.8. Convolutional layer structure.
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applied to compute the output, also called feature map, shown in Figure 2.8. In other
words, each neuron takes its synaptic input from a local receptive field in the previous
layer to extract different features. Therefore, the function of the convolutional layers is to
extract different features from the input, and it can be represented as [51]

m
(n)
j = max(0,

K∑
i=1

m
(n−1)
i w

(n)
ij ) (2.9)

where the superscript n − 1 is the previous layer of n, mn
j is the jth output feature map,

mn−1
i is the ith input feature map, and wn

ij is the weight in the filter. Normally, there
are many convolutional filters in each layer, and each filter shares weights through the
entire image. For the first convolutional layer, it typically acquires low level features,
such as edges, lines and etc. In the light of this, the more layers network has, the higher
level features are obtained. Owing to the weight sharing, the evaluation of the activations
of these units is equivalent to a convolution of the image pixel intensities with a filter
comprising the weight parameters [35].

Pooling layer

Figure 2.9. Pooling layer structure.
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There can be a pooling layer after a convolutional layer, which is an important operation
for object classification and detection. Pooling layers in CNNs summarise the output of
neighbouring groups of neurons in the same filter map [5]. It is utilised to reduce vari-
ance by computing the mean (or max) value of a particular feature over a region of the
image, visualised in Figure 2.9. These summary statistics are much lower in dimension
(compared to using all of the extracted features) and can also improve results (less over-
fitting) [52]. The aggregation operation is called mean pooling or max pooling, which
depends on the pooling operation applied. By pooling filter responses at different loca-
tions we gain robustness to the exact spatial location of features [51].

Fully connected layer

Ultimately, CNNs have one or more fully connected layers after several convolutional
and pooling layers. It takes all output in the previous layer and connects to every single
neuron, shown in Figure 2.10. Fully connected layers are not spatially located anymore,
so there can be no convolutional layers after a fully connected layer.

.

.

.

Figure 2.10. Fully connected layer structure.

In addition to the above three types of layers, CNNs also have others, like dropout layer,
and loss layer [53]. Moreover, the whole network can be trained by the error minimization
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using BP algorithm. The architecture is designed to take advantage of the 2D structure
of an input image, which is achieved with local connections and tied weights followed by
some form of pooling which results in translation invariant features [52]. Another major
advantage of CNNs is the use of shared weight in convolutional layers, which means that
the same filter is used for each pixel in the layer; this both reduces required memory
size and improves performance [54]. On the basis of the shared weights, the number of
weights in the network is smaller than if the network is fully connected. Therefore, the
number of independent parameters to be learned from the data is much smaller, due to the
substantial numbers of constraints on the weights [35].

2.4.2 Deep Belief Networks

A deep belief network (DBN) is a probabilistic generative model introduced by Geoffrey
Hinton [55, 56], viewed as a composition of simple learning modules each of which is a
Restricted Boltzmann Machine (RBM). It has been used for generating and recognizing

RBM

Visible
Layer

Hidden
Layers

Directed
Belief Nets

Figure 2.11. A simple structure of DBN.
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images [56], and video sequences [57]. The structure of a DBN consists of multiple
layers, which can be divided into visible layer and hidden layer. Furthermore, the layer of
visible units represents the input data, while the layer of hidden units learns to represent
features that capture higher-order correlations in the data [58].

A simple structure of DBN is shown in Figure 2.11, where the bottom layer represents data
vectors and each unit in layer is a data element. The connections of the top two layers are
undirected and form an associative memory, whereas other lower layers have top-down
directed connections. There is a layer-by-layer procedure for learning the weights, which
is determined by how the variables in one layer depend on the variables in the layer above.
After learning, the values of the latent variables in every layer can be inferred by a single,
bottom-up pass that starts with an observed data vector in the bottom layer and uses the
generative weights in the reverse direction [58].

For the efficiency of DBNs, greedy learning can be followed by, or combined with, other
learning procedures that fine-tune all of the weights to improve the generative or dis-
criminative performance of the whole network [58]. Moreover, we can add a final layer
to represent the desired output, and use BP algorithm to enforce the supervised learning.
When networks with many hidden layers are applied to highly-structured input data, back-
propagation works much better if the feature detectors in the hidden layers are initialised
by learning a DBN that models the structure in the input data [55].

2.4.3 Deep Recurrent Neural Networks

A deep recurrent neural network (DRNN) is a combination of DNN and RNN in princi-
ple, and it can be exploited in, for example speech recognition [59], and character-level
language modelling [3]. It is mentioned that RNNs are inherently deep in time, since
their hidden state is a function of all previous hidden states [59]. Each network update,
new information travels up the hierarchy, and temporal context is added to each layer [3].
There is a simple DRNN visualised in Figure 2.12, which shows RNNs in the hierarchy,
and the previous layer sends the hidden state to the corresponding subsequent layer.

Furthermore, a DRNN also can be established by another way, like stacking multiple
recurrent hidden states on top of each other. It potentially allows the hidden states at
each level to operate at different timescale [3, 48]. Moreover, based on the paper of
Razvan et al. [48], there are two designs provided to extend RNNs to DRNNs, which are
deep transition RNN and deep output RNN respectively. Therefore, DRNNs combine the
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time

Input frames

Hidden states

Output frames

Figure 2.12. Schematic illustration of a DRNN [3].

multiple levels of representation that have proven effective in deep networks with flexible
use of long range context that empowers RNNs [59].

2.5 Deep Learning Toolboxes

Deep learning toolboxes are utilised to implement the experiment with the datasets. Here
we describe several widely used deep learning frameworks.

2.5.1 Caffe

Caffe [4] is a framework based on C++ library with Python and MATLAB interfaces
for deep learning. It provides a complete package for training, testing, fine-tuning, and
deploying models. There are several positive features in Caffe. Firstly, it is a modular
open framework, easy to extend to new data formats, network layers, and loss functions.
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Besides, models are defined in configuration files, which lead to separate representation
and implementation. In addition, Caffe also provides pre-trained reference models for
researchers.

Caffe defines a net layer-by-layer in its own model schema. The network defines the entire
model bottom-to-top from input data to loss. The Caffe network consists of blobs, layers
and networks. In Figure 2.13, there is the layer computation and connections in the left,
as well as an example of Caffe network in the right.

dataset (DATA)

Conv 
(CONVOLUTION)

loss 
(SOFTMAX_LOSS)

label

data

conv

name: "ExampleNet"
layer {
  name: "dataset"
  type: "Data"
  top: "data"
  top: "label"
  data_param {
    source: "input_leveldb"
    batch_size: 64
  }
}
layer {
  name: "Conv"
  type: "Convolution"
  bottom: "data"
  top: "conv"
  convolution_param {
    num_output: 12
    kernel_size: 2
    ...
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "conv"
  bottom: "label"
  top: "loss"
}

layer

blob

blob

Figure 2.13. Left: layer computation and connections; Right: an example of Caffe network [4].

• Blob: a 4-dimensional array utilised for store data and parameters, which can be
employed to check dimensions, read, transform and save parameters. The octagon
denotes a blob in Figure 2.13.

• Layer: a neural network layer by using blobs as input and output, presented by
rectangles. For operating networks, the layers take responsibilities to both forward
and backward pass. Caffe provides a complete package of layers in different types
to design networks in the experiments.
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• Network: a set of layers connected in a computation graph.

The solver is also need to be defined, which orchestrates model optimisation by coordi-
nating the network’s forward inference and backward gradients to form parameter updates
that attempt to improve the loss [4]. Firstly, it is used to scaffolds the optimization book-
keeping and creates the training network for learning and test network(s) for evaluation.
Secondly, it calls network forward and backward to optimise parameters in each itera-
tion. Moreover, it evaluates the test networks periodically. Finally, it snapshots the model
and solver state throughout the optimization. The Caffe solvers are Stochastic Gradient
Descent, Adaptive Gradient, and Nesterov’s Accelerated Gradient [4].

2.5.2 MatConvNet

MatConvNet [60] is a simple designed MATLAB toolbox for implementing of CNNs. It
includes simple functions to compute CNN building blocks, which are easy to use MAT-
LAB functions and integrate into a complete CNN. CNN computational blocks, CNN
wrappers, example applications and pre-trained models are the elements in MatConvNet.
Furthermore, it is flexible to modify, extend, or combine with new networks in MAT-
LAB code. The implementation is efficient to run the latest models such as Krizhevsky et
al. [5], and supports both CPU and GPU computation. The only requirements is to work
with Matlab and C/C++ compiler. MatConvNet borrows its convolution algorithms from
Caffe, while is somewhat slower than Caffe.

2.5.3 OverFeat

OverFeat [61] is an integrated framework for utilising CNNs for classification, localisa-
tion and detection. It is a feature extractor, which provides powerful features for computer
vision research. The C++ source codes are provided to execute the OverFeat network for
recognising images and extracting features. The main idea is to use a multiscale and
sliding window approach to efficiently implement within a CNN. That is meant a CNN at
multiple locations and scales to predict one bounding box per class. The integrated frame-
work is the winner of the localisation task of ILSVRC 2013 and obtained very competitive
results for the detection and classification tasks.
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2.6 Summary

In summary, we demonstrated the general task of image classification, datasets, methods
and toolboxes related to this thesis. First, the task of computer vision, image classification,
is explained. In addition, CNNs are the main method used in the thesis. Finally, Caffe is
utilised to implement and run the experiments.
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3 INCREMENTAL TRAINING OF DEEP CONVOLU-
TIONAL NEURAL NETWORKS

This chapter describes the preliminaries required to understand for the next methodology
chapter. The chapter starts from explaining the concept of incremental learning in detail.
Secondly, the pre-processing of the datasets with low-resolution images and the structures
of DNNs are investigated. Finally, the dataset and its corresponding DNN implementation
in Caffe to train the model is explained.

3.1 Our Concept of Incremental Deep Learning

With the increasing number of databases in the real world, there is a requirement to ex-
ploit better learning algorithms to handle more training data. Inspired by human’s brain,

Low resolution image

Upscaled image Details

High resolution image

  LowLow

                                                                                      HighHigh

Figure 3.1. The relation between low- and high-resolution images.
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incremental learning is the fastest and the most comprehensive way of learning available
to people [62]. Therefore, it is also one possible solution to adopt for machine learning.
Incremental learning is a machine learning paradigm where the learning process takes
place whenever new example(s) emerge and adjusts what has been learned according to
the previous example(s) [63].

Generally, the concept of our idea is in an coarse-to-fine manner. We utilise the trained
"coarse" models from low-resolution images as initial parameters of the network for im-
ages with high resolution to improve efficiency of the entire training procedure. Compared
with low-resolution images, high-resolution images can be divided into two parts, shown
in Figure 3.1. The first part has the same information to the low-resolution images and
learned by a tiny DNN, the second part has new detail information needed to be incremen-
tally learned by the fine DNN from larger images. If the fine DNN needs to learn them
from the start, it wastes time and memory to train the part available during low scale.
Therefore, the pre-trained model for low-resolution images can be used to transform the
information to the DNN trained with high-resolution images.

M
8

DNN
8I

8

M
16

DNN
16 I

16++

relationshiprelationship

transform

train

fine-tuning

incremental learning

Figure 3.2. One procudure of incremental learning of CNNs.
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The entire procedure of one incremental learning can be separated into several steps.
Firstly, the datasets of tiny images and their corresponding tiny DNNs are constructed,
e.g. 8×8 images dataset (denoted as I8) with its DNN8, and 16×16 images dataset (I16)
with its DNN16. Secondly, the trained "coarse" model can be obtained by implementing
the traditional method with the low-resolution images dataset and its DNN. That yields to
the trained model M8 for I8 by using DNN8. Similarly, the relationship between DNN8

and DNN16 can be investigated, and transform the model form M8 to M16t. Eventually, a
new trained model M16 can be further trained using the higher resolution images by fine-
tuning DNN16 with I16. The aforementioned procedure is our process of incremental
learning from I8 to I16, shown in Figure 3.2. Similarly, incremental learning can be
implement over and over until accomplish the final fine-tuning of the full size images,
and obtain the final performance.

In the following section, the specific steps of incremental learning method are presented.
The core part of our idea is described in Chapter 4. The ILSVRC image classification
dataset is utilised in the experiments. For the Places205 dataset, the same networks and
methods can be executed, and we show its results in the Chapter 5.

3.2 Generating ImageNet-Tiny Datasets

As described in Section 2.2.5, the ILSVRC image classification dataset is a large-scale
dataset, which contains 1.2 million images for training, and 50, 000 images for testing.
These images belong to 1, 000 object classes, and each image corresponds to one ground
truth class label. For implementing the idea of incremental learning, "tiny" datasets of
low-resolution images are created by downscaling the full size images, and fed to the
DNN implemented in Caffe.

Firstly, the images conversion provides by the ImageMagick tool8 in Linux operating
system. The convert command can be executed as

$ convert <INPUT>.JPEG -resize (weight)x(height) <OUTPUT>.bmp

which resizes the images to size weight×height. The parameters of weight and height are
set to desired values to obtain the low-resolution images. Besides resize option, there are

8http://www.imagemagick.org/script/index.php

http://www.imagemagick.org/script/index.php
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CONVERT

Original Image

8x8 Image 16x16 Image 32x32 Image

Figure 3.3. An example of full size image from class "kit fox" uses to generate 8 × 8, 16 × 16,
32× 32 tiny images.

also other useful options, such as extend, colorspace and etc. The 8 × 8, 16 × 16, and
32×32 images are generated for the experiments, and the example is shown in Figure 3.3.

After that, the set of images are required to convert into a lmdb/leveldb database, which
is an efficient way to enter Caffe networks. Caffe provides a program for the conversion,
executed as [4]

$ convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME

Ultimately, the Caffe compatible datasets of low-resolution images are obtained, denoted
as I8, I16, and I32, which are used in the following experiments.
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3.3 Rescaling Deep Networks for Incremental Training

Our testbench is the Caffe deep learning architecture with a network configuration equiv-
alent to that proposed by Krizhevsky et al [5]. The scaling procedure and the actual
networks for each size of images are described in Table 3.1.

Table 3.1. The scaling procedure of DNNs for incremental learning.

Network parameters
L1(conv) L2(conv) L3(conv) L6(full) L8(full)

orig [5] 96(11)P3/2 256(5)P3/2 384(3)P -/- 4096 1000
25-scaled (8 × 8) 3(0.3)P0/0 8(1)P1/1 12(3)P -/- 128 1000
24-scaled (16 × 16) 6(0.7)P1/0 16(3)P2/1 24(3)P -/- 256 1000
23-scaled (32 × 32) 12(1.3)P2/1 32(4)P3/2 48(3)P -/- 512 1000
net-1 3(2)P1/1 - - 128 1000
net-2 6(2)P1/1 - - 256 1000
net-3 12(2)P1/1 - - 512 1000
net-4 6(2)P2/1 16(3)P3/2 - 256 1000

In the table, the network structure corresponds to Krizhevsky et al. [5] and L# (L1-L8)

refers to the corresponding layer. Layers not mentioned were switched off in our experi-
ments since their spatial extent would be less than 1 pixel. Original and correspondingly
scaled (256/25 = 8) numbers are given for comparison to the selected structures. The
numbers in brackets for the convolutional layers corresponds to the size of the filters
(N ×N ). Filter sizes ≤ 1 were not tested since they are not filters. Pooling was disabled
(NP: No Pooling) if its spatial size would be less than one pixel. The pooling setting P1/1

corresponds to no-pooling.

The results of training I8 corresponded to the networks in Table 3.1 are shown in Fig-
ure 3.4. We choose the net-3 as the original network to implement our following ex-
periments, because it has the highest accuracy. The architecture of net-3 contains one
convolutional layer (conv1) and two fully connected layers (fc6 and fc8), shown in Fig-
ure 3.5. This network is with the low-resolution images, and provides the initial network
to extend to the networks corresponding the high-resolution images.

With the increasing resolution of images, there are new details need to be learned by
DNNs. In the light of this, DNNs for high-resolution images need a larger size filters
or more filters than the network of low-resolution images. Thus, there are two kinds of
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Figure 3.4. Results of training I8 with net-1, net-2, net-3 and net-4 for the ImageNet dataset.

network rescaling steps designed for the experiments, the networks with scaled filters
and the networks with added filters. The number of filters and the size of filters in the
convolutional layer are shown in Table 3.2 which are readily utilised in DNN8, DNN16,
and DNN32 .

Table 3.2. Summary of parameters in convolutional layer in DNN8, DNN16, and DNN32.

Filters number (size)
DNN8 DNN16 DNN32

Scaled 12(2) 12(4) 12(8)
Added 12(2) 16(4) 24(8)

• The scaled filters: The size of convolutional filters is extended to higher resolution,
while the number of filters is kept the same (12). During the experiments, the filter
of 2×2 (denoted as K2) is applied to I8, extend to K4 for I16, and extend to K8 for
I32.

• The added filters: Besides the size of filters, the number of filters is changed from
12 in I8, to 16 in I16, and to 24 in I32.

For setting these parameters of DNNs, Caffe provides an easy configuration file to set
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data(DATA)

data

conv1(CONCOLUTION)

conv1

relu1(RELU)

relu1

norm1(LRN)

norm1

fc6(INNER_PRODUCT)

fc6

relu6(RELU)

relu6

drop6(DROPOUT)

drop6

fc8(INNER_PRODUCT)

fc8

label

loss(SOFTMAX_LOSS)

Figure 3.5. Net-3 architecture.

them, where networks are defined by plain text schemas [4]. An example of DNN8

configuration files is given in Appendix A for the experiments.

3.4 Training Deep Networks

Based on generating ImageNet-tiny datasets and rescaling deep networks, the datasets
and networks were prepared for the experiments. The last step is to train the "coarse"
model of low-resolution images as the initial values for the next "fine" network. The
experiments start from the dataset of lowest resolution images I8 and its corresponded
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networks DNN8 to obtain the model M8. Before the training phase begins, a solver is
defined in Appendix B. In addition, the model requires us to subtract the image mean
from each image [4, 5], which can be computed by the program provided in Caffe. After
completed the pre-defined files, the network can be trained to obtain the model.

Caffe provides three interfaces for users [4], which are the command line, python and
MATLAB. The command line interface was chosen for our experiments. For training a
model, the caffe train command is used as

$ caffe train -solver path/to/solver.prototxt

When the code is executed, it provides a lot of details of briefly demonstrated in Fig-
ure 3.6, showing details such connections among layers and the shape of blobs. For ex-
ample, "conv1 -> data" is the connection between data layer and conv1 layer, and "(256,
12, 7, 7)" is the shape of conv1 blob.

Figure 3.6. Caffe log output during network initialisation.

After initialisation, the training phase begins from iteration 0 as displayed in Figure 3.7.

Figure 3.7. Caffe log output during training.

For each training iteration, lr is the learning rate of that iteration, and loss is the training
function defined in the solver. For the output of the testing phase, score 0 is the accuracy,
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and score 1 is the testing loss function, shown in Figure 3.8.

Figure 3.8. Caffe log output during training and testing.

After training, the final result can be obtained as "Test net output #0: accuracy = 0.0835801",
and the trained modelM8 will be saved, like "Snapshotting to ./TEMPWORK/caffe_ImageNet_tiny-
8 × 8-sRGB-net-3_iter_120000.caffemodel", visualised in Figure 3.9.

Figure 3.9. Caffe log output during training completion.

This procedure is repeated for allDNNx networks, but the parameter transformation from
the lower to higher scale is explained in the next section.
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4 UPSCALING DEEP NETWORKS

To upscale DNN, we must transfer coarse DNN parameters to fine DNN before training.
In this chapter, parameter transformation for incremental learning is proposed and anal-
ysed. The first two parts cover the transformation of parameters in different layers of
upscaled networks described in Chapter 3. Furthermore, several methods to initialise pa-
rameters of new added filters in DNNs are presented. Finally, the function of fine-tuning
provided by Caffe can be utilised to verify new models with transformed parameters.

4.1 The Networks with Scaled Filters

The networks with scaled filters need to extend the size of filters. According to Table 3.2,
K2 is applied to DNN8, K4 to DNN16, and K8 to DNN32 in the experiments. The
upscaling does not only affect to the filters, but also increases the dimension of the output,
which is used as the input to the next layer. The parameters (output weights) must be
initialised in both filters and the next layer connections. In this section, the transformation
of parameters in convolutional layer and its next layer, inner product layer, are discussed
respectively.

4.1.1 Convolutional Layer

Conceptually, the output feature maps can be computed by a convolution from the input
images with a linear filter, adding a bias, and through a nonlinear function. If we assume
the kth output feature map as Y k, the convolutional filter is defined by the weights W k

and the bias bk, which can be written as,

ykij = ϕ((W k ∗ x)ij − bk) (4.1)

where ϕ is the nonlinear function, and ykij is the (i, j) value of Y k. To simplify the
problem, only the kth output feature map is discussed to exploit a solution. The label k is
omitted, and a numeric label is added to distinguish the different size of images.

Firstly, in the convolutional layer of DNN8, a 8 × 8 matrix X(8) is the input image, a
matrix Y (8) is the output feature map, a matrix W (8) of 2 × 2 and b(8) are the weights
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and the bias of the filter. Based on the equation (4.1), the output can be written as

y
(8)
11 = ϕ((W (8) ∗ x)11 − b(8))

y
(8)
12 = ϕ((W (8) ∗ x)12 − b(8))

...

(4.2)

In addition, the same method can be applied to obtain the output of the convolutional layer
of DNN16, as

y
(16)
11 = ϕ((W (16) ∗ x)11 − b(16))

y
(16)
12 = ϕ((W (16) ∗ x)12 − b(16))

y
(16)
13 = ϕ((W (16) ∗ x)13 − b(16))

...

(4.3)

In the pre-trained model, the parameters of W (8) and b(8) can be extracted to tentatively
utilise in W (16) and b(16), and the output of DNN16 should be kept the same. Note that,
in our experiments, the dimension of W (16) is twice as W (8), and the bias are the same.

For the bias, the same value can be used in DNN16. The reason is that they have the
same effect to the output, which is subtracted from the result of convolution. Based on
the equations (4.2) and (4.3), the bias can be simply copied as

b(16) = b(8) (4.4)

Nevertheless, for transforming the weights, W (8) and W (16) have different dimensions,
how to extend the weights becomes the main concern. Here the sample images is in-
troduced to analysis the problem. I16 sample images are converted from I8 by using the
method of pixel replication, which extends each pixel into four pixels with the same value,
denoted as I16s, shown in Figure 4.1. Thus, the relationship between I8 and I16s is

x
(16s)
11 = x

(16s)
12 = x

(16s)
21 = x

(16s)
22 = x

(8)
11

x
(16s)
13 = x

(16s)
14 = x

(16s)
23 = x

(16s)
24 = x

(8)
12

...

x
(16s)
31 = x

(16s)
32 = x

(16s)
41 = x

(16s)
42 = x

(8)
21

...

(4.5)
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Figure 4.1. Parameters transformation in convolutional layer of DNNs.

Based on the equation (4.1), the output of I16s can be similarly written with Y (16) as

y
(16s)
11 = ϕ((W (16s) ∗ x)11 − b(16s))

y
(16s)
12 = ϕ((W (16s) ∗ x)12 − b(16s))

y
(16s)
13 = ϕ((W (16s) ∗ x)13 − b(16s))

...

(4.6)

If the same result intend to be earned between Y (8) and Y (16s), the weights should also
be copied and repeated as

w
(16s)
11 = w

(16s)
12 = w

(16s)
21 = w

(16s)
22 =

w
(8)
11

4

w
(16s)
13 = w

(16s)
14 = w

(16s)
23 = w

(16s)
24 =

w
(8)
12

4

...

w
(16s)
31 = w

(16s)
32 = w

(16s)
41 = w

(16s)
42 =

w
(8)
21

4

...

(4.7)
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The reason of the values of the weights in W (16s) to be 1/4 in W (8) is that one pixel in
I8 is repeated 4 times in I16s. Therefore, the weights need to be divided by 4 to keep the
same output between Y (8) and Y (16s). In addition, when the I16s is utilised to convolve
with the filter, the same results can be scored with Y (8) in every other values, which
means,

y
(8)
11 = y

(16s)
11

y
(8)
12 = y

(16s)
13

...

y
(8)
21 = y

(16s)
31

...

(4.8)

Moreover, the different values between them can be ignored in the next layer.

Finally, the solution of transforming parameters in the convolutional layer is proposed.
It is achieved by extending and copying from W (8) to W (16), and from b(8) to b(16).
Although there is some difference between I16 and I16s, the performance maybe reduced
a little while not impact too much. The difference between them is that I16 has the new
details needed to be learned by DNN16. This keeps old information in I8 and DNN16

continues to learn from I16. The entire process of one transforming in convolutional layer
is shown in Figure 4.1.

4.1.2 Inner Product Layer

Generally, the inner product layer is also referred as the fully connected layer. It treats
the input as a simple vector and takes all neurons to produce output. In the experiments,
the input for this layer is the output of the previous convolutional layer. Based on the
relationship between Y8 and Y16, the solution to omit undesired output and keep similar
output is required to be exploited in this layer.

Firstly, the inner product layers of DNN8 produces the output as a vector v(8), and com-
putes matrix multiplication with the weights W (8), as

y(8) = W (8) ∗ v(8) − b(8) (4.9)

where W (8) and b(8) denote the weight and the bias in the inner product layer, respec-
tively. The same inner product in DNN16 is

y(16) = W (16) ∗ v(16) − b(16) (4.10)
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The parameters of W (8) and b(8) of the pre-trained model can be extracted and trans-
formed into W (16) and b(16). For the bias, it is similar with that in the convolutional
layer.

Nevertheless, W (8) and W (16) do not have the same dimensions, which causes the prob-
lem on the transformation between them. As a result, the equation (4.8) is recalled, the
relationship between Y (8) and Y (16) of convolutional layer is shown in Figure 4.2. In
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Figure 4.2. Parameters transformation in inner product layers of DNNs.

the figure, there are two sets of feature maps from the convolutional layers of DNN8

and DNN16 in the left. The coloured blocks are represented by the corresponding pixels
needed to be kept, while the values of grey blocks are necessary to be omitted in this
layer. Next, they are reshaped as a vector for the next step of multiplication. In the right
side of the figure, there are two matrices of parameters in the inner product layer, which
also have corresponded colour coding. For example, the red blocks in the both feature
maps and vectors are the pixels with the same values, which need to be multiplied with
the corresponding red blocks in the matrices of parameters. Since the coloured blocks in
feature maps or vectors of DNN16 need to be retained, the blocks in the parameters of
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DNN8 should be put to the corresponding position of DNN16. The grey blocks in the
feature maps and vectors of DNN16 are omitted, and the grey blocks in the parameters
of DNN16 are set to zero. After multiplying by parameters matrices, the values of grey
blocks are changed to zeros, which do not have an effect to the result. In other words,
we can add zeros between two original values of W (8) in both horizontal and vertical
direction to generate W (16).

Eventually, the solution of transforming parameters in inner product layers has been pre-
sented. For the weights, add zero values between two original values in W (8) to earn the
transformed parameters of W (16). The zero values can assist to omit the difference from
the output of convolutional layer and keep the output as similar as DNN8. Meanwhile,
for the bias, a direct solution is to copy b(8) to b(16). For following inner product layers
with the same input (e.g. fc8 layer), the parameters can be simply copied.

In general, this subsection provides a solution to deal with parameters of upscaled filters
for both convolutional layer and inner product layer. Algorithm 1 summarises the pro-
cedure of parameters transformation from M8 to M16t by using our incremental learning
idea. In the experiments, the same way can be employed to transform parameters from
M16 to M32t. In brief, the weights in the convolutional layer just need to be extended
and copied, while in the inner product layer zeros need to be added. The bias vectors are
copied in the both layers.

Algorithm 1 Transform parameters from M8 to M16t

1: Load the tiny images network DNN8 and model M8

2: Load the large images network DNN16

3: Create the model file M16t and initialise as 0
4: for i in all layers do
5: copy the bias vector from M8 to M16t . transform the bias
6: if i is ’conv1’ then . transform the weights in convolutional layer
7: copy and extend the weights by 1/4
8: else if i is ’fc6’ then . transform the weights in the first inner product layer
9: add zeros and copy the weights

10: else
11: copy the weights . transform the weights in the other inner product layer
12: end if
13: end for
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4.2 Adding Convolutional Filters

The networks with additional filters not only extend the size of filters, which are the same
with the networks with scaled filters, but also add the number of filters to the convolutional
layer. This requires the initialisation of new added filters. In the experiments, 12 filters
(denoted as F12) is applied to DNN8, F16 to DNN16, and F24 to DNN32. Next, we
introduce three methods to initialise parameters for the new added filters.

4.2.1 Initialisation of Zero

The straightforward way is setting all parameters of the new added filters to zero. Using
zero to ignore the extra output of new filters in each layer can reduce the influence of
output, which has the similar idea used in transforming parameters in inner product layer
with scaled filters. In short, the first method is to set all the weights and the bias in the
new added filters as zero.

4.2.2 Initialisation of Random Gaussian Values

In addition, the original approach implemented in Caffe can be utilised. After checking
the net configuration file, the random Gaussian values are used in the weights, and con-
stants are set to the bias. The settings of initialising parameters in the three layers of
DNNs in the experiments are shown in Table 4.1. The Gaussian distribution [64] has zero

Table 4.1. Summary of initialising parameters.

weight bias
conv1 Gaussian (0.01) 0
fc6 Gaussian (0.005) 1
fc8 Gaussian (0.01) 0

mean and standard deviation shown in parentheses. Based on that, the same mean value
and standard deviation are used to generate the random Gaussian values for the weights
and the same constants can be set to the bias. In addition, there are three related extensions
for the experiments, which are random Gaussian values divided by 10, random Gaussian
values divided by 100, and random Gaussian values divided by 1000. They attempt to
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scale the initialised values for reducing the influence to the output. Thus, there are four
methods in the experiments to set the parameters of new added filters based on random
Gaussian Values.

4.2.3 Initialisation of Flipping the Existing Filters

After training a DNN model, the convolutional filters can be learned and visualised. In
the paper of Krizhevsky et al [5], there are 96 convolutional filters of size 11 × 11 × 3

learned by the first convolutional layer (conv1) that show a variety of frequency- and
orientation-selective filters, as well as various coloured blobs (Figure 4.3). Even though
the number of filters implemented in our experiments is less, they still can learn parts of
them. Thus, we attempt to find a way to initialise the new added filters as supplementary
filters. Theoretically, if the supplementary filters are necessary in the network, they can
boost trains.

Figure 4.3. The first convolutional layers filters by Krizhevsky et al [5].
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From Figure 4.3, it can be seen that there are several orientation-selective filters. If the
operations of copy and flipping can be exploited, more directions of filters will be acquired
to extract features. For example, if the network has learned a orientation-selective filter in
one orientation/angle, more orientations in different angles can be obtained by flipping.
Therefore, the flipping idea is proposed to supplement filters, which includes flipping
horizontally, vertically, diagonally, and centrally, illustrated in Figure 4.4.
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Figure 4.4. Flipping filters.

To summarise, a solution for adding convolutional filters is proposed. In general, the
transformation of additional parameters can be divided into two parts. One is the same
part with scaled filters, which can be executed by the same method. The other is the new
added filters, different initialised ways should be implemented. The algorithm is similar
to Algorithm 1, which needs to initialise new added filters. In brief, three main ideas
to implement initialisation are provided, including zero, setting random Gaussian values,
and flipping the existing filters. In the experiments, these are tested by upscaling from
DNN8 to DNN16, and DNN16 to DNN32.
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4.3 Fine-Tuning

After dealing with upscaled parameters transformation in the previous section, the idea
of incremental learning is realised through training DNN of the "fine" model. Caffe pro-
vides fine-tuning function, which takes an already learned model, adopts the architecture,
and resumes training from the already learned model weights [4]. The corresponding
command is

$ caffe train -solver path/to/solver.prototxt

-weights path/to/weights.caffemodel

In the experiments, the trained model M8 was scaled and filters added to form the model
M16t, which is used to I16 in DNN16 for fine-tuning. After fine-tuning, the trained model
M16 can be obtained, and the same method is applied to generate the modelM32t. Finally,
repeat the fine-tuning step to I32 in DNN32 with M32t. As a consequent, three step
incremental learning is completed, using DNN8, DNN16, and DNN32. Figure 4.5 is
a sample log of fine-tuning where iteration 0 accuracy starts from that achieved with
DNN8.

Figure 4.5. Caffe log output during fine-tuning.

It is noted in the instructions of Caffe about tricks for fine-tuning, which consist of learn-
ing the last layer first, and reduce the learning rate [4]. Based on our own situation, only
the overall learning rate base_lr in the solver is decreased. It makes the model more
slowly to learn the new data, and preserves the initialisation from pre-training. In the
experiments, the learning rate is dropped down by 10, when using the transformed model
M16t for fine-tuning with I16 and DNN16, and also for M32t.



45

4.4 Summary

In conclusion, the method of implementing incremental learning in DNNs is elaborated,
which consists of three parts. First is to construct the networks with scaled filters. Sec-
ond, the networks are formed with additional filters. Finally, the method of fine-tuning
provided by Caffe is described to complete the incremental learning. Based on the meth-
ods presented above, we will illustrate experimental results in the next chapter.
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5 EXPERIMENTS AND RESULTS

In this chapter, the experiments are summarised to present the results on the ImageNet
dataset and the Places205 dataset. Firstly, the results by using the incremental networks
with scaled filters are shown, and compared to the traditional training method. In ad-
dition, there are results of initialising new added filters based on different initialisation
methods. Finally, the results of incremental networks with added filters are illustrated,
which involve two comparative evaluations. One is the traditional training method and
incremental learning with added filters, the other is the networks with scaled filters and
added filters. From the results, our method achieves superior efficiency and higher per-
formance.

5.1 Evaluation of Incremental Learning with Scaled Filters

Here is the result of I16s with K4 in DNN16 transformed from I8 with K2 in DNN8,
illustrated in Figure 5.1. The red curve with squares depicts the training curve by the
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Figure 5.1. Comparison of training curves of the traditional method and incremental learning with
scaled filters on the ImageNet dataset.

traditional method for training I16s from the beginning. The curves with circles depict the
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incremental learning method, while green and blue describe the training curves of I8 and
I16s, respectively. From the curves, there is no performance gap when transforming mod-
els fromM8 toM16t but similar final results are obtained. This means that the transformed
modelM16t successfully keeps the original information from the pre-trained coarse model
M8 and continues to learn the new information in DNN16. Therefore, the idea of incre-
mental learning by transforming DNN parameters from coarse images network to fine
images network seems to work.

In the Figure 5.2, for the networks with scaled filters, they are extended twice by the same
method. The first is from DNN8 with K2 to DNN16 with K4, the other is continuously
from DNN16 with K4 to DNN32 with K8. Similarly, the red curve with triangles depicts
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Figure 5.2. Comparison of training curves of the traditional method and incremental learning with
scaled filters on the ImageNet dataset.

the training curve by traditional method for training I32 from beginning. The curves with
squares show the incremental learning method, while green, blue, magenta respectively
describe the training curves of I8, I16, and I32. There are two gaps when the size of filters
are scaled. The reason of that is new details added to the input and needed to be learned
by DNNs. For example, there is a gap of transformation from DNN8 to DNN16. It
is meant that I16 brings new visual features, the I8 does not have, which are necessary
to be learned by DNN16. It is known that DNN16 learns the new details as the curve
quickly improves. The transformation from DNN16 to DNN32 has the same situation.
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As a result, the accuracy can be improved from 10.8% to 11.2% and only costs 61% time,
shown in Table 5.1.

Table 5.1. Final accuracies of the traditional method and incremental learning with scaled filters
on the ImageNet dataset.

Accuracy Time
Traditional Method 10.8% 13160s

Scaled Filters(Sec. 4.1) 11.2% 8011s

In addition, the Places205 dataset is also applied to verify the idea of scaled filters, which
utilises the same structure of networks with the ImageNet dataset. The results are shown
in Figure 5.3 and Table 5.2, where the incremental method saves 38% of the training time
and increases the accuracy from 14.1% to 15.9%.
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Figure 5.3. Comparison of training curves of the traditional method and incremental learning with
scaled filters on the Places205 dataset.
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Table 5.2. Final accuracies of the traditional method and incremental learning with scaled filters
on the Places205 dataset.

Accuracy Time
Traditional Method 14.1% 16431s

Scaled Filters 15.9% 10239s

5.2 Experiments on Adding and Initialising New Convolutional Fil-
ters

Before showing the final results of incremental training with added filters, we show the
results of initialising new filters by different methods. In this part, the parameters of
convolutional layer are F12 with K4 in I16, and F24 with K8 in I32. The method of scaled
filters is the same with previous experiment, and the number of filters is doubled from 12

to 24. As a result, the extra 12 filters are necessary to initialise with zero (Sec. 4.2.1),
random Gaussian values (Sec. 4.2.2), or flipping the existing filters (Sec. 4.2.3).

Firstly, zero values are set to new filters and fine-tuning to generate the training curve,
illustrated in Figure 5.4 by the red solid lines with squares. In addition, the approach of
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Figure 5.4. Results on initialising new added filters as 0, random Guassian values, random Guas-
sian values divided by 10, 100 and 1000 on the ImageNet dataset.
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random Gaussian values is implemented. The mean value and standard deviation have
been defined in Table 3.2. In the light of that, the random Gaussian values are extended as
divided by 10, 100, and 1000. The different colours and labels are utilised to distinguish
the curves of these four methods, shown in Figure 5.4. It is known that they have very
similar results, except the random Gaussian values. The reason is that the random Gaus-
sian values are too large and affect to the output. Meanwhile the final result of fine-tuning
is undesirable, because the large values make the DNNs "forgot" the pre-trained model
and cannot adjust quickly. Thus, the division method to reduce the effect of the initial
values works better.

Next, the flipping method is implemented, which can generate supplementary filters to
the DNN. Here, four directions of flipping, horizontal, vertical, diagonal, and central,
are utilised in the experiments, whose training curves are illustrated in Figure 5.5. The
flipping method can obtain similar results at the end, while the starting points are quite
different. Because some filters are new to the network, they may influence the output as
giving different values with the pre-trained model.
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Figure 5.5. Results on initialising new added filters as flipping horizontally, vertically, diagonally
and centrally on the ImageNet dataset.

To conclude, several methods are provided to initialise the new added filters. Most of
them can get similar results, thus the original way, random Gaussian values divide by
100, is employed in the follow experiments.
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5.3 Evaluation of Incremental Learning with Added Filters

For evaluating the effect of networks with added filters, the number of filters can be sep-
arated into two parts. One is the same number of filters with the "coarse" network, the
other is the new extra filters in the "fine" network. For the same part, the method of scaling
filters described in Section 4.1 is utilised to transform parameters. For the extra part, the
initialisation method is applied. For example, the transformation from DNN8 with F12

of K2 to DNN16 with F16 of K4 consists of two parts. The first 12 filters in DNN16 are
transformed from the filters in DNN8, while the new 4 filters are initialised by random
Gaussian values divided by 100.
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Figure 5.6. Results of the traditional method and incremental learning with added and scaled
filters for the ImageNet dataset.

Table 5.3. Final accuracies of the traditional method and incremental learning with added filters
on the ImageNet dataset.

Accuracy Time
Traditional Method 10.8% 13160s

Added Filters 12.1% 9794s

In the experiments, the number of filters are increased twice by the same method. The
first is from DNN8 with F12 of K2 to DNN16 with F16 of K4. Secondly, incrementally
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add toDNN32 with F24 ofK8. The results of traditional method and incremental learning
method are shown in Figure 5.6. The red curve with triangles depicts the training curve
by traditional method for training I32 from the beginning. The curves with squares show
the result of incremental learning method, and green, blue, magenta describe the training
curves of I8, I16, I32, accordingly. As a result, the accuracy can be improved to 12.1%

and only use 74% time, shown in Table 5.3.

The results of networks with added filters by using the Places205 dataset are shown in
Figure 5.7 and Table 5.4. In these experiments, the same structure of networks with the
ImageNet dataset are implemented in adding filters, which raise the performance from
14.1% to 17.0% and only spend 66% time.
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Figure 5.7. Results of the traditional method and incremental learning with added and scaled
filters for the Places205 dataset.

Table 5.4. Final accuracies of the traditional method and incremental learning with added filters
on the Places205 dataset.

Accuracy Time
Traditional Method 14.1% 16431s

Added Filters 17.0% 10786s
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Finally, two results of incremental learning methods are compared, which include scaled
filters and added filters for the ImageNet dataset and the Places205 dataset, illustrated in
Figure 5.8. The red curve with triangles depicts the traditional training method for I32.
The cyan curve with diamonds shows the training procedure of I8. The two blue curves
with squares represent the method of scaled filters, while the two green curves with circles
are the method of added filters. Both of the methods spend less time to achieve a higher
performance than the traditional training method.

5.4 Summary

The two methods of incremental learning are successfully implemented. Both of them
can improve efficiency and increase performance. Although the training time of networks
with scaled filters is shorter, DNNs need more filters and larger size of filters to learn
images with higher resolution or more details.
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6 CONCLUSIONS

This thesis proposes a promising method, incremental learning, to solve the task of im-
age classification. It is shown to be an efficient tool for the task by using deep neural
networks. One of the advantages is that a pre-trained model can be utilised as the ini-
tialisation of other networks to shorten the training time. The time-consuming training
of large-scale datasets, e.g. ImageNet dataset, is a disturbing problem. The incremental
learning method can achieve superior efficiency for training without sacrificing any accu-
racy. Another beneficial point is that the performance can slightly improve. Therefore,
the main objective of the work is to improve the efficiency and the performance through
incremental learning methods.

There are two kinds of incremental learning methods based on DNNs. One is the networks
with scaled filters, which can improve the accuracy from 10.8% to 11.2% and from 14.1%

to 15.9% for the ImageNet dataset and the Places205 dataset, respectively. Although they
are not significantly improved, the training times were reduced 39% and 37% for these
two datasets, which means it takes a shorter time to achieve a similar accuracy. The other
method is the networks with added filters, which increase the accuracy to 12.1% for the
ImageNet dataset, and to 17.0% for the Places205 dataset. The computing times were
decreased by 25% and 34% for training, accordingly. These results imply that the perfor-
mance can also be improved while learning is more efficient. Therefore, both efficiency
and performance were improved by incremental learning.

The two methods of incremental learning were implemented in Caffe. On one hand, the
number of filters are retained and the size of filters are extended in the convolutional
layer to form the networks with scaled filters. The parameters of filters are copied and
extended with a small adjustment from "coarse" network to "fine" network for keeping
the learned information from low-resolution images. On the other hand, both the number
of filters and the size of filters are changed to construct the networks with added filters.
In addition, a suitable approach of initialisation to the new added filters were tested and
random Gaussian values divided by 100 found as the best.

The main idea of incremental learning is to retain and transform the learned information
from pre-trained model of low-resolution images to new "fine" model, and continually
learn among images of increasingly higher resolution. In an implementation of these
methods, one needs to pay attention on the training parameters, not to forget the pre-
trained parameters.
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The methods of incremental learning can improve the efficiency and the performance, and
there are some promising future directions. Firstly, the peculiar size of scaled filters may
need to be considered, such as transforming the parameters of filters from K2 to K3. In
the experiments, the size of filters is only doubled by each step of incremental learning.
Secondly, an integrated training procedure from "coarse" images to full size images may
promote the improvement of efficiency and performance observably. Finally, to train
images with high resolution, the method of adding layers in CNNs is a challenging and
promising problem needed to be investigated in the future.
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APPENDIX A. An Example of Network Configuration File
for DNN8

name: "CaffeNet"

layers {

name: "data"

type: DATA

top: "data"

top: "label"

data_param {

source: "path/to/training/set"

backend: LMDB

batch_size: 256

}

transform_param {

mean_file: "path/to/meanfile"

mirror: false

}

include: { phase: TRAIN }

}

layers {

name: "data"

type: DATA

top: "data"

top: "label"

data_param {

source: "path/to/validation/set"

backend: LMDB

batch_size: 50

}

transform_param {

mean_file: "path/to/meanfile"

mirror: false

}

include: { phase: TEST }

}

layers {
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name: "conv1"

type: CONVOLUTION

bottom: "data"

top: "conv1"

blobs_lr: 1

blobs_lr: 2

weight_decay: 1

weight_decay: 0

convolution_param {

num_output: 12 # the number of filters

kernel_size: 2 # the size of filters

stride: 1

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layers {

name: "relu1"

type: RELU

bottom: "conv1"

top: "conv1"

}

layers {

name: "norm1"

type: LRN

bottom: "conv1"

top: "norm1"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}
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}

layers {

name: "fc6"

type: INNER_PRODUCT

bottom: "norm1"

top: "fc6"

blobs_lr: 1

blobs_lr: 2

weight_decay: 1

weight_decay: 0

inner_product_param {

num_output: 512

weight_filler {

type: "gaussian"

std: 0.005

}

bias_filler {

type: "constant"

value: 1

}

}

}

layers {

name: "relu6"

type: RELU

bottom: "fc6"

top: "fc6"

}

layers {

name: "drop6"

type: DROPOUT

bottom: "fc6"

top: "fc6"

dropout_param {

dropout_ratio: 0.5

}

layers {

name: "fc8"
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type: INNER_PRODUCT

bottom: "fc6"

top: "fc8"

blobs_lr: 1

blobs_lr: 2

weight_decay: 1

weight_decay: 0

inner_product_param {

num_output: 1000

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layers {

name: "accuracy"

type: ACCURACY

bottom: "fc8"

bottom: "label"

top: "accuracy"

include: { phase: TEST }

}

layers {

name: "loss"

type: SOFTMAX_LOSS

bottom: "fc8"

bottom: "label"

top: "loss"

}
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APPENDIX B. An Example of Network Solver File

net: "path/to/network/configuration/file"

test_iter: 1000

test_interval: 1000

base_lr: 0.01

lr_policy: "step"

gamma: 0.1

stepsize: 50000

display: 20

max_iter: 120000

momentum: 0.9

weight_decay: 0.0005

snapshot: 10000

snapshot_prefix: "path/to/save/snapshot/file"

solver_mode: GPU
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