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Prostate cancer is the most common cancer in Western countries. As the disease 

proceeds to castration resistant phase, it often leads to death due to lack of effective 

treatment methods and lack of knowledge of molecular mechanisms leading to it. 

Migration and invasion inhibitory protein (MIIP) has been shown to have tumor 

suppressing effects in other cancers. The effect of it in prostate cancer has not been 

previously studied. The aims of this study were to discover the effect of MIIP on growth 

and migration of prostate cancer cells and to detect possible mutations and a single 

nucleotide polymorphism (SNP) rs2295283 previously shown to affect breast cancer 

risk from the gene.  

DU145 and LAPC-4 prostate cancer cell lines were used. DU145 cells were stably 

transfected with a plasmid containing MIIP and an empty control plasmid. LAPC-4 

cells were transfected with small interfering RNAs (siRNAs) targeting MIIP and a 

control siRNA. Proliferation of the cells was studied with image analysis and 

alamarBlue methods. Migration was studied with scratch assay. Mutations and SNPs 

were studied by sequencing. 

Clear results from the effects of silencing MIIP in LAPC-4 cells were not achieved. 

In the proliferation assays, image analysis and alamarBlue methods gave contradictory 

result and due to difficulties in image analysis, results from alamarBlue should be 

considered more reliable. AlamarBlue assay showed the metabolic activity of DU145 

cells overexpressing MIIP to be significantly lower than in cells transfected with control 

vector. However, DU145 cells overexpressing MIIP migrated significantly faster that 

cells transfected with control vector. Mutations in the gene were not detected and SNP 

rs2295283 was not found to be associated with prostate cancer risk. 

It seems unlikely that MIIP would have a significant effect in most prostate cancer 

cases. However, it is possible that the role of MIIP is more notable in some of prostate 

cancer subtypes. More experiments are needed to fully uncover the effect of MIIP in 

prostate cancer cells. 
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Eturauhassyöpä on miesten yleisin syöpä länsimaissa. Taudin edetessä hormoneista 

riippumattomaan vaiheeseen se johtaa usein kuolemaan, sillä tarpeeksi tehokkaita 

hoitokeinoja ei ole. Eturauhassyövän syntyyn ja etenemiseen liittyvät molekyylitason 

mekanismit ovat huonosti tunnettuja, mikä rajoittaa uusien hoitokeinojen kehittämistä. 

Migraatio- ja invaasioinhibiittoriproteiinilla (MIIP) on havaittu syöpää ehkäiseviä 

vaikutuksia muissa syövissä. Sen vaikutusta eturauhassyövässä ei ole aiemmin tutkittu. 

Tutkimuksen tavoitteena oli selvittää MIIP:n vaikutusta eturauhassyöpäsolujen kasvuun 

ja migraatioon sekä tunnistaa mahdollisia mutaatioita tai kohonneeseen 

rintasyöpäriskiin liitettyä yhden nukleotidin polymorfismia (SNP) rs2295283 geenissä. 

Tutkimuksissa käytettiin DU145- ja LAPC-4-eturauhassyöpäsolulinjoja. DU145-

solut transfektoitiin pysyvästi MIIP:n sisältävällä plasmidilla sekä kontrolliplasmidilla. 

LAPC-4-solut transfektoitiin MIIP:in kohdistuvilla pienillä häiritsevillä RNA:illa 

(siRNA) ja kontrolli-siRNA:lla. Solukantojen kasvua tutkittiin kuva-analyysin ja 

alamarBlue-menetelmän avulla. Migraatiota tutkittiin naarmukokeella. Mutaatioita ja 

SNP:a tutkittiin sekvensoimalla. 

MIIP-geenin hiljentämisen vaikutuksista LAPC-4-soluissa ei saatu selkeitä tuloksia. 

Solukantojen kasvua arvioivissa kokeissa kuva-analyysin ja alamarBlue-menetelmän 

avulla saatiin ristiriitaisia tuloksia. Kuva-analyysiin liittyvien ongelmien takia, 

alamarBlue-menetelmän tuloksia tulee pitää luotettavampina. AlamarBlue-kokeissa 

huomattiin, että MIIP-geeniä yli-ilmentävien DU145-solukantojen metabolinen 

aktiivisuus oli huomattavasti matalampi kuin kontrollien. MIIP-geeniä yli-ilmentävien 

DU145-solukantojen migraatio oli kuitenkin odotusten vastaisesti huomattavasti 

nopeampaa kuin kontrollien.  Mutaatioita geenissä ei havaittu eikä SNP rs2295283:n 

huomattu liittyvän kohonneeseen eturauhassyöpäriskiin.  

Vaikuttaa epätodennäköiseltä, että MIIP:lla olisi yleisesti merkittävää vaikutusta 

eturauhassyövän synnyssä tai etenemisessä. On kuitenkin mahdollista, että MIIP:n rooli 

yksittäisissä eturauhassyövän alatyypeissä voi olla suurempi ja jatkotutkimuksia 

tarvitaan tämän selvittämiseksi. 
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1. INTRODUCTION 

Prostate cancer (PC) is the most frequently diagnosed cancer in men and the second 

most common cause of cancer related deaths in Western countries (American Cancer 

Society 2011; European Cancer Observatory 2011). Most PCs grow quite slowly and 

remain confined to the prostate (Abate-Shen and Shen 2000). Organ-confined PCs are 

often relatively successfully treated with prostatectomy or radiation to remove or 

destroy the cancerous tissue (Heidenreich et al. 2012). Nevertheless, if the cancer is not 

detected early enough, or in more aggressive forms of PC, it can advance to invasive 

and metastatic stages, which usually lead to death (Abate-Shen and Shen 2000). 

Treatment of these more advanced stages of PC is more difficult. Because most PCs are 

androgen-dependent in the beginning, the standard treatment for advanced disease is 

androgen deprivation (Tammela 2012). However, as PC progresses during hormonal 

treatment, it turns from androgen-dependent to castration-resistant PC (CRPC) and 

androgen deprivation stops working (Best et al. 2005). Newer treatment methods have 

been developed, but they often offer only few more months in the life expectancy 

(Higano et al. 2009; Mita et al 2009; Tran et al. 2009; de Bono et al. 2010; Kantoff et al 

2010; de Bono et al. 2011). PC is a very heterogeneous and complex disease and 

molecular mechanisms behind initiation and progression of it remain largely unclear 

(Barbieri and Tomlings 2014). Thus, better biological understanding is needed in order 

to be able to develop more efficient treatment methods.  

Migration and invasion inhibitory protein (MIIP) has been seen to function as a 

possible tumor suppressor in gliomas. MIIP binds and inhibits insulin-like growth factor 

binding protein-2 (IGFBP-2) (Song et al. 2003), which is overexpressed in several 

cancers including prostate cancer (Kanety et al. 1993). The MIIP gene is also located on 

a chromosome region known to be deleted in various cancers including prostate cancer 

(Wang et al. 2011). The effect of it in prostate cancer has not been previously studied. 

The aim of this thesis was to study the influence of MIIP on growth and migration 

of prostate cancer cells by overexpressing and silencing the gene in prostate cancer 

cells. Possible mutations and certain previously found single nucleotide polymorphisms 

(SNPs) were also studied by sequencing. 
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2. NORMAL ANATOMY AND FUNCTION OF THE 

PROSTATE GLAND  

The prostate is a sex gland of the male reproductive system. It is approximately walnut 

sized and shaped and is located below the bladder, where it surrounds a part of the 

urethra. Location of the prostate gland in the male reproductive system can be seen in 

Figure 1. The prostate parenchyma can be divided into four distinct zones; peripheral 

zone, central zone, transitional zone and periurethral zone. The peripheral zone contains 

most (70%) of the main prostatic glands and it is the zone most prone to inflammation 

and prostatic carcinoma. A smaller part (25%) of the glandular tissue is located to the 

central zone. The transition zone contains the mucosal glands and cells of this zone are 

susceptible to extensive division, causing condition known as benign prostatic 

hyperplasia (BPH). The periurethral zone comprises mucosal and submucosal glands. 

Mucosal glands secrete directly into the urethra, whereas submucosal and main prostatic 

glands have ducts that open into the prostatic sinuses. (Ross and Pawlina 2006.) 

The prostatic epithelial cells secrete several components of the semen such as 

prostatic acid phosphatase (ACPP), fibrinolysin, citric acid and a serine protease 

kallikrein-related peptidase 3 (KLK3) also known as prostate-specific antigen (PSA) 

(Ross and Pawlina 2006). The prostate gland also releases sugars, sulphate and a 

vitamin E-derivative to the seamen. (Boron and Boulpaep 2009). The seminal plasma, 

which is the remainder of the semen excluding sperm cells, functions to protect the 

sperm cells in different ways. (Ross and Pawlina 2006; Boron and Boulpaep 2009 ) 

 

 

Figure 1. Location of the prostate gland in the male reproductive system (Prostate 

Health Tips 2011)  
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2.1 Testosterones 

Male steroid hormones androgens are needed for the embryonic development and adult 

function of the prostate but also the growth of prostate cancer (PC) is generally 

dependent on androgens (Miyamoto et al. 2008). Most of the androgens are produced as 

testosterone (T) by Leydig cells in the testes (Taplin and Ho 2001). Adrenal cortex also 

secretes adrenal androgens, such as androstenedione, dehydroepiandosterone (DHEA) 

and its sulphate. Adrenal androgens are not as potent as T, but they still contribute to 

androgenic effects in the body and may be further metabolized to T. Androgen 

production in the Leydig cells is regulated primarily through hypothalamic-pituitary-

gonadal axis. Gonadotropin-releasing hormone (GnRH) is secreted by the hypothalamus 

in a pulsatile manner. In the anterior pituitary GnRH stimulates the release of 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH). LH in turn 

stimulates the production of androgens in Leydig cells. Secretion of GnRH and LH are 

inhibited through negative feedback control. (Grossmann et al. 2001.) Adrenal androgen 

production is controlled through adrenocorticotropic hormone (ACTH). In the 

circulation, T is bound to serum proteins, mostly sex hormone-binding globulin 

(SHBG), albumin and corticosteroid-binding globulin. (Taplin and Ho 2001.) After 

entering the cells in the end organs, such as prostate, T is usually converted to a more 

potent dihydrotestosterone (DHT) by 5-α reductase (Grossmann et al. 2001; Taplin and 

Ho 2001). Intracellular DHT is metabolized rapidly to 3α,17β-androstenediol which can 

be converted back to DHT or to 3β,17β-androstenediol and further to water soluble, 

inactive triol steroids (Taplin and Ho 2001). 

The action of androgens is mediated by a receptor molecule, a ligand-dependent 

nuclear transcription factor, androgen receptor (AR). In an inactive form AR is bound to 

heat-shock chaperone proteins, but when androgens bind to AR, conformation of AR 

changes, it dissociates from heat-shock proteins, forms dimers and the complex 

translocates rapidly to the nucleus. There the complex binds to AR response elements 

(AREs) in DNA and affects expression of hundreds of target genes, such as KLK3 and 

ACPP. (Helenius et al. 2008.) Co-regulatory proteins are also recruited to the site and 

they too can affect gene expression of AR target genes (Taplin et al. 2004). Both T and 

DHT are capable of binding to AR, but the affinity of DHT is about two to tenfold 

compared to T making DHT the primary androgen bound by AR (Grossmann et al. 

2001).  
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3. CANCER 

Most cancers are believed to be caused by interactions between genes and the 

environment. There is evidence suggesting that tumorigenesis is a multistep process, 

each step involving genetic alterations that drive normal cells to transform into 

malignant cancer cells (Hanahan and Weinberg 2000). Cancer initiates from a single 

cell, which starts to divide uncontrollably after being damaged. Even more DNA-

alterations accumulate to daughter cells, leading to the cancer tissue gaining growth 

advantage over other cells in the surrounding environment. (Joensuu et al. 1999.) 

The best known and foundation setting alterations are mutations producing 

oncogenes and mutations inactivating tumor suppressor genes. Through these 

mutations, activated oncogenes gain the function to drive cells towards cancer cells and 

tumor suppressor genes lose their function to prevent cancer. (Hanahan and Weinberg 

2000.) In normal cells, oncogenes are in their inactivated forms and are called proto-

oncogenes. They can be activated as a consequence of DNA alteration such as mutation, 

chromosomal translocation or gene deletion or amplification. (Joensuu et al. 1999.) 

Also epigenetic factors and changes in gene expression can cause oncogene activation 

(Vogelstein et al. 2013). Alteration of only one allele can cause the oncogenic effect of 

a certain gene, but in order to cancer to develop, several genetic changes are needed. 

The function of most oncogenes is related to controlling cell growth. (Joensuu et al. 

1999.) 

In tumor suppressor genes, DNA-alteration leads to impairment of their normal 

function. Usually both alleles of the gene need to be altered in order for the cancer 

promoting effect to be generated. (Joensuu et al. 1999.) However, cancer can also 

initiate from a gene alteration in only one of the alleles, like with PTEN, as described 

later. The most common alteration causing inactivation of tumor suppressor genes is 

deletion. Inactivation can also be caused by DNA-viruses or DNA methylation. 

Products of these genes usually inhibit cell division. (Joensuu et al. 1999.)  
Cancer cells have deficiencies in regulating cell proliferation and homeostasis. Even 

though there are hundreds of different cancer types and subtypes, it is suggested that the 

malignant growth in all of them is caused by a small amount of alterations in cell 

physiology. Assuming that these changes are in common with most cancers is justified 

by the fact that the same kind of molecular mechanisms regulate cellular processes in all 

mammalian cells. (Hanahan and Weinberg 2000.) These hallmarks of cancer include 

maintaining proliferative signalling, avoiding growth suppressors, hindering cell death, 

enabling replicative immortality, inducing angiogenesis and activating tissue invasion 

and metastasis (Hanahan and Weinberg 2011) (Figure 2). 
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Figure 2: Characteristics of cancer presented by Hanahan and Weinberg (2011). 

 

Genome instability and inflammation facilitate these changes. Recent progress in 

cancer research has also introduced two potential emerging hallmarks – reprogramming 

of energy metabolism and evading immune destruction (Figure 3).  Tumor 

microenvironment also plays an important role in cancer development and progression. 

(Hanahan and Weinberg 2011.)  

 

 
 

Figure 3: Emerging characteristics and facilitating features by Hanahan and Weinberg 

                (2011). 
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4. PROSTATE CANCER 

In western countries, PC is the most frequently diagnosed cancer in men and the second 

most common cause of cancer related deaths (American Cancer Society 2011; European 

Cancer Observatory 2011). PC is strongly correlated with aging. Although 

morphological changes associated with initiation of cancer are quite common and can 

be found also in younger men, PC is usually not clinically detected until the age of 60 or 

70. (Abate-Shen and Shen 2000.) 
In addition to being a component of the seminal fluid, KLK3 more commonly 

known as PSA, can also be found in the serum of normal males in much lower 

concentrations and the amount of it in blood is often used to define the condition of the 

prostate. PSA measurements from the blood have been routinely used in detection of PC 

since 1980s. (Diamandis 1998.) However, in addition to prostate cancer, also benign 

prostatic hyperplasia (BPH) and infections can result in elevated PSA levels, so PSA is 

not a PC-specific marker (Pin et al. 2013). It has also been discovered that high- or 

intermediate-grade PC can be present in men with low PSA levels (Thompson et al. 

2004). Thus, better markers are needed for more efficient diagnosis.  
Prostate cancer lesions are often heterogeneous and multifocal. Histological 

inspections of PC tissue often show benign glands, preneoplastic (PIN) foci and 

neoplastic foci next to each other. Gleason scoring is the predominant prognostic tool 

used by pathologists. (Abate-Shen and Shen 2000.) The Gleason score is a sum of the 

most prevalent pattern grade and the second most prevalent pattern grade. Grades range 

from 1 to 5, so the sum can be from 2 to 10. A higher Gleason score means more 

advanced cancer and a bleaker prognosis for the patient. In practice, Gleason scores 

from 2 to 5 are very rarely assigned due to poor reproducibility, lack of good correlation 

with prostatectomy grade, sampling issues, and potentially misleading clinical 

implications. (Shah 2009.) The basics of the Gleason system can be seen in Figure 4. 
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Figure 4: Gleason scoring system (Epstein 2010). 

 

Gleason pattern 1 resembles normal prostate tissue the most and as the Gleason pattern 

becomes larger, the more abnormal characteristics it indicates (Ross and Pawlina 2006). 

Most PCs are quite indolent, grow relatively slow and remain confined to the 

prostate. Actually, most men diagnosed with PC will eventually die of other causes. 

Nevertheless, if the cancer is not detected early enough, or in more aggressive forms of 

PC, it can advance to invasive and metastatic stages, which usually lead to death. 

(Abate-Shen and Shen 2000.) As PC progresses, it turns from androgen dependent to 

castration-resistant PC (CRPC) during hormonal treatment. The exact mechanisms 

leading to androgen-independence remain unclear. (Best et al. 2005.)  
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4.1 Genetic changes in prostate cancer 

Previously it was thought that hereditary factors had quite small role in PCs and that 

those cases were often affiliated with early disease onset (Abate-Shen and Shen 2000). 

However, studies have given reason to believe that the effect of heritability in PC can be 

significantly higher than previously thought (up to 42 percent) (Lichtenstein et al. 

2000). In hereditary cancer, an alteration predisposing to cancer is already in a gamete 

and is thereby passed on to all the cells of the body. The gene aberration is in one allele 

and does not yet intrude the function of the cells. Cancer initiates when also the other 

allele in a certain cell gets inactivated. For this reason, hereditary cancer occurs often 

earlier in life than other cancers. The mechanisms leading to malignancy are still often 

similar and involve same genes with both types. (Joensuu et al. 1999.) 

In prostate cancer, genetic deletions have been found to occur most often in 

chromosomes 5q, 6q, 8p, 10q, 13q, 16q, 17p and 18q. Some of the target genes in these 

regions are known, such as NK3 homeobox 1 (NKX3-1) (8p) and phosphatase and 

tensin homolog (PTEN) (10q), but many are still unknown. (Saramäki and Visakorpi 

2007.) Gain-of-function alterations are less known in prostate cancer and only few have 

been identified (Taylor et al. 2010). Gains are most common in chromosomes 7p/q, 8q, 

9p and Xq and the known target genes include among others androgen receptor (AR) 

(Xq) and v-myc avian myelocytomatosis viral oncogene homolog (MYC) (8q) (Saramäki 

and Visakorpi 2007). Chromosomal aberrations at Xq (AR) (in CRPC) and 21q 

(TMPRSS2:ERG fusion) are also common (Taylor et al. 2010). 

NKX3-1 belongs to the NK subfamily of homeobox genes that are associated in cell 

differentiation and organogenesis in many species. NKX3-1 functions as a transcription 

factor and it has been shown to be very important in normal prostate development and 

function. Expression of NKX3-1 is androgen-dependent and primarily restricted to the 

prostate gland. (Bieberich et al. 1996; He et al. 1997.) The gene is located at 8p21, a 

region commonly deleted in prostate cancer and NKX3-1 expression has been shown to 

often be lost during PC progression (Bethel et al. 2006).  

PTEN, located at 10q23, is one of the most frequently mutated tumor suppressors in 

human cancer. In addition to mutations, PTEN can also be inactivated by loss of 

heterozygosity (loss of one parental copy in a chromosomal region) resulting in only 

one copy of the gene. PTEN has been found frequently deleted or mutated in prostate 

cancer cell lines and especially late stage prostate cancers. (Li et al. 1997; Cairns et al. 

1997.) PTEN is also important for embryonic development. PTEN has been shown to 

modulate cell growth, survival, migration and adhesion through its lipid phosphatase 

and protein tyrosine phosphatase activities. PTEN directly dephosphorylates two key 

tyrosine-phosphorylated proteins and thus inhibits interactions between integrins and 

extracellular matrix and integrin-triggered signalling pathways. PTEN also 

dephosphorylates a key signal transduction lipid that leads to maintaining cell 

sensitivity to apoptosis. (Tamura et al. 1999; Yamanda and Araki 2001.) 



   9 
 

C-myc proteins are transcription factors that regulate genes involved in cell division, 

differentiation and apoptosis. Overexpression of MYC accelerates cell division and 

prevents differentiation. (Pelengaris et al 2002.) MYC is overexpressed in especially late 

stages of PC (Qian et al. 2002). However, the role of MYC overexpression in prostate 

cancer is not entirely clear. 

The AR is a key molecule in the initiation and growth of prostate cancer and in its 

responsiveness to hormonal therapy. The AR is located at Xq11-12, composes of 8 

exons and the full length protein contains four functional domains: an N-terminal 

regulatory domain, a DNA-binding domain, a hinge-region and a ligand binding 

domain. The N-terminus contains transcriptional activation function (TAF-1) site and 

polyglutamine (CAG) and polyglycine (GCC) repeats. Two zinc fingers in the DNA-

binding domain are needed for ARE recognition. The nuclear localization signal is in 

the hinge region. The ligand binding domain has a second transcription activation 

function (TAF-2) site and the activity to bind ligands. (Taplin and Balk 2004.) During 

prostate carcinogenesis, AR signaling pathway is suggested to be converted from 

paracrine signaling, where stromal cells regulate the growth and development of 

prostatic epithelial cells, to autocrine signaling, where AR directly stimulates the growth 

of cancer cells (Gao et al. 2001).  

AR has been found present in different stages and grades of prostate cancer from 

primary to metastatic and CRPCs (Ruizeveld de Winter et al. 1991). It was previously 

believed that CRPCs were independent of AR signalling for growth and survival (Ryan 

et al. 2010). However, it has been shown that tissue levels of testosterone and 

dihydrotestosterone remain relatively high in recurrent prostate cancer tissues despite of 

androgen deprivation therapy and enable AR signalling to continue (Titus et al. 2005; 

Ryan et al. 2010). Sufficient T and DHT tissue levels in recurrent prostate cancer have 

been hypothesized to possibly result from intracrine metabolism of circulating adrenal 

androgens or synthesis from plasma membrane cholesterol (Titus et al. 2005). 

There are different mechanisms for cancer cells to utilize low levels of androgens, 

which are present in patients during castration. Potential mechanisms include 

amplification of the AR gene or increased protein expression by other ways. The AR 

gene has been reported to be amplified in 20-30 % of CRPCs. Untreated primary 

tumors, however, do not seem to harbor AR amplifications. Samples taken from the 

same patients before and after hormonal therapy also show no amplifications prior to 

therapy and AR amplifications after treatments and recurrence. (Visakorpi et al. 1995; 

Koivisto et al. 1997.) Amplification does not fully explain the high expression levels in 

CRPC tumors and other mechanisms leading to overexpression of AR are involved 

(Linja et al. 2001). These include for example tumor suppressor protein retinoblastoma 

(RB) loss, which may induce cell cycle activating transcription factor E2F1-mediated 

deregulation of AR locus leading higher AR expression. This in turn drives progression 

to CRPC. (Sharma et al. 2010.) 

AR point mutations are found in some local and locally advanced tumors, but more 

widely in advanced androgen-independent cancers, especially after treatment with 
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antiandrogens. (Taplin et al. 1995; Tilley et al. 1996.) Most AR gene missense mutations 

in the ligand-binding domain in prostate cancer have clustered in three regions, codons 

670-678, codons 701-730 and codons 874-910. Codons 670-678 are located near the 

hinge region and mutations in that region can affect AR interactions with co-regulators. 

Codons 701-730 contain the “signature sequence”, a highly conserved loop common for 

many steroid hormone receptors. Codons 874-910 flank AF-2, which is the primary 

binding site for co-activator proteins needed for AR activity. Mutations in these areas 

affect the ligand-binding pocket and allow binding of ligands other than testosterone or 

DHT, such as other steroid hormones and pharmaceutical antiandrogens. (Buchanan et 

al. 2001; Gelmann 2002.) The most commonly found and first identified point mutation 

of AR is the T877A mutation changing threonine at position 877 to alanine. It was first 

described in LNCaP cell line. (Veldscholte et al. 1990.) The T877A mutation changes 

the stereochemistry of the binding pocket and facilitates binding of progesterone and 

other ligands (Sack et al. 2001). 

The influence of AR cofactors has been studied in prostate cancer progression. 

Levels of some cofactors, such as transcriptional intermediary factor 2 (TIF2) and 

steroid receptor coactivator 1 (SCR1) have been found to increase with increases in AR 

expression in androgen independent prostate cancers (Gregory et al. 2001). It has been 

hypothesized that overexpression of AR cofactors could make AR more responsive to 

low levels of androgen or broaden ligand specificity like mutations of AR do, but the 

confirmation of the role of AR cofactors in prostate cancer progression awaits further 

studies (Taplin and Balk 2004). 

Alternative splicing can also be one way to alter the function of AR. Three novel 

AR splice variants lacking the ligand binding domain have been found in CRPC. One of 

the isoforms, AR3 (designated by the researchers) appears to be constitutively active 

and the activity is not regulated by androgens or antiandrogens. It has seen to be up-

regulated during prostate cancer progression and the expression levels correlate with the 

risk of tumor recurrence after radical prostatectomy. It also seems to regulate some 

genes not regulated by the wild-type AR. (Guo et al. 2009.) The amount of a 

constitutively active splice variant of AR has also been shown to rapidly increase right 

after androgen deprivation. The levels of the splice variant are not high enough to 

restore the high-level AR activity in relapsed tumors, but may allow tumors to preserve 

basal AR activity needed for survival until more powerful mechanisms arise to activate 

AR. (Yu et al. 2014.) 

Gene fusions involving E-twenty-six family (ETS) genes and androgen regulated 

prostate-specific transmembrane protease, serine 2 (TMPRSS2) gene occurs in 

approximately 40-50 % of prostate cancers (Tomlins et al. 2005; Huang and Waknitz 

2009). Fusion of TMPRSS2 and ETS-family transcriptional activation factor ERG is the 

most frequent rearrangement. TMPRSS2 is constitutively expressed in prostate and the 

expression is controlled by androgens. (Paoloni-Giacobino et al. 1997; Lin et al. 1999; 

Tu et al. 2007). Several TMPRSS-ERG fusions have been identified and most of them 

involve only the 5’ untranslated region of TMPRSS2. These fusions thus cause 
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overexpression of the ERG or ETV protein induced by the TMPRSS2 promoter. (Tu et 

al. 2007.) The expression of ERG proteins also becomes androgen regulated as a 

consequence of the fusion. In prostate cancer, ERG activates WNT signaling and this 

leads to loss of cell adhesion. ERG also modulates prostate cancer prostaglandin 

signaling and affects tumor metastasis. ERG is not expressed in normal prostate tissue. 

(Wu et al. 2013.) 
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5. MIGRATION AND INVASION INHIBITORY 

PROTEIN 

The migration and invasion inhibitory protein (MIIP), also known as invasion inhibitory 

protein 45 (IIp45), was first discovered in a yeast two-hybrid screen in an attempt to 

identify binding partners of insulin-like growth factor binding protein 2 (IGFBP-2) 

frequently overexpressed in aggressive gliomas (Song et al. 2003). MIIP was found to 

bind and inhibit IGFBP-2 and other mechanisms of action related to cell migration and 

invasion have been discovered since. 

MIIP gene is located on chromosome 1p36.22, it has 10 exons and it comprises 12.6 

kb of genomic DNA (Wang et al. 2011). The transcript has 1588 base pairs. The MIIP 

protein consists of 388 amino acids with an estimated molecular mass of 43 kDa. In 

protein analysis MIIP was found to be highly hydrophilic and have three segments of 

low compositional complexity (SEG) domains and an arginine–glycine–aspartic acid 

(RGD) motif. (Song et al. 2003.) 

5.1 MIIP and cancer 

There are several factors pointing to the possibility of MIIP having a role in genesis and 

progression of cancer. First, MIIP inhibiting cancer cell migration and invasion 

promoting IGFBP-2 (Song et al. 2003). Second, the location of MIIP gene being on 

chromosome 1p36, a chromosome region known to be deleted in various cancers 

including prostate cancer, lung cancer, glioblastoma and breast cancer (Gibbs et al. 

1999; Yanada et al. 2005; Ichimura et al. 2008; Climent et al. 2010; Heinrich et al. 

2012). Many tumor-suppressor genes have been found to be located in commonly 

deleted chromosome areas. Such genes include TP53 on chromosome 17p, PTEN on 

chromosome 10 and Rb on chromosome 13. (Donehower el al 1992; Li et al. 1997; 

Burkhart and Sage 2008.)  

In addition to being deleted, tumor-suppressor genes are often found mutated. 

Although clear mutations in the MIIP gene have not been found in tissues or cell lines 

sequenced so far (Song et al. 2005, Wang et al. 2010), it does not rule out the possibility 

of MIIP being a tumor-suppressor. Tumor-suppressors can also function by other 

mechanisms, such as CHD5 and PTEN (Cairns et al. 1998; Fujita et al. 2008). In these 

cases cancer development is caused by loss of one copy of the gene without any 

mutations.  

Several single-nucleotide polymorphisms (SNPs) have also been found in different 

regions of the MIIP gene and can be found from the database of single nucleotide 
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polymorphisms, dbSNP (The National Center for Biotechnology Information 2013). 

SNPs in tumor-suppressor genes have been seen to affect cancer risk (Imyanitov 2009). 

SNPs of MIIP were investigated in a case-control study with breast cancer patients and 

healthy women and SNP rs2295283 was found to affect breast cancer risk. SNP 

rs2295283 has two variants; adenosine (A) and guanine (G) and they result in two 

different amino acids, lysine (Lys, K) or glutamic acid (Glu, E) at codon 167. Presence 

of G allele was found to be a protective factor for breast cancer in both AG (one A allele 

and one G allele) and GG (both G alleles) genotypes when compared with the AA 

genotype. Glu amino acid at codon 167 was associated with lower risk of breast cancer, 

but also to smaller and lower-grade tumors. (Song et al. 2010.) 

Expression of MIIP has been shown to inhibit glioma cell invasion both in vitro and 

in vivo. Correspondingly, in glioma tissues including highly invasive glioblastoma 

multiforme, expression of MIIP has been seen to be reduced. (Song et al. 2003.) In 

addition, MIIP is alternatively spliced in gliomas. Alternative splicing produces an 

unstable isoform of the protein and the frequency of it correlates with glioma grade. 

(Song et al. 2005.) 

 

5.2 Mechanisms of action of MIIP 

5.2.1 Insulin-like growth factor binding protein 2 

MIIP has been found to bind and inhibit IGFBP-2 (Song et al. 2003). As part of the 

insulin-like growth factor (IGF) network, insulin-like growth factor binding proteins 

(IGFBPs) are important in regulating cell proliferation, differentiation, migration, 

survival and metabolism (Duan and Xu 2005). IGFBP-2 has also been found to be 

overexpressed in several cancers including glioblastoma multiforme, prostate, ovarian, 

breast and colon cancers (Kanety et al. 1993; Fuller et al. 1999; Renehan et al. 2000; 

Busund et al 2005; Wang et al 2006). 

In addition to its effects on IGFs, IGFBP-2 has also been shown to specifically bind 

to the α5β1 integrin on the cell surface with its RGD-motif and promote de-adhesion of 

tumor cells (Schütt et al 2004). Integrins affect signalling through integrin-linked kinase 

(ILK), which binds to β1 and β3 integrins. ILK stimulates invasion and migration and 

induces tumor angiogenesis. IGFBP-2 has been shown to be connected to the 

integrin/ILK/NF-κB network. IGFBP-2 was seen to activate integrin β1 and its 

downstream pathways, require ILK for cell migration and to activate NF-κB, a 

transcriptional factor, which activates the transcription of many cancer-promoting 

genes. Blocking any constituent of the integrin/ILK/NF-κB network also hindered 

progression of gliomas driven by IGFBP-2 in vivo. (Holmes et al. 2012.) IGFBP-2 has 

also been discovered to contribute to glioma progression by promoting tumor cell 

invasion through increased matrix metalloproteinase-2 (MMP-2) transcription (Wang et 

al. 2003). 
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In addition, it has been shown that IGFBP-2 has an inhibitory effect on non-

malignant prostate cells, but for DU145 and LAPC-4 prostate cancer cells the effect is 

stimulatory in a mitogen-activated protein (MAP) kinase and androgen-modulated 

process. This suggests that there could be a molecular switch conversing IGFBP-2 from 

growth inhibitor to tumor promoting molecule. (Moore et al 2003.) 

In an invasion study with BioCoat Matrigel invasion chamber, LN-229 cells were 

transfected with MIIP, IGFBP-2 or MIIP+IGFBP-2. The invasiveness of MIIP-

expressing cells decreased by approximately 50 %, whereas that of IGFBP-2-expressing 

cells increased approximately 250 %, when compared with the invasiveness of cells 

transfected with control vector. Invasion was also attenuated in cells transfected with 

both MIIP and IGFBP-2, compared with cells expressing only IGFBP-2. (Song et al 

2003.) 

MIIP was found to bind to the same thyroglobulin-RGD region of IGFBP-2 that is 

also utilized in IGFBP-2 binding to integrin α5 (Song et al. 2003). Therefore binding of 

MIIP to IGFBP-2 could inhibit IGFBP-2 from binding to integrin and interfere with the 

downstream pathways (Wang et al. 2011). 

 

5.2.2 Histone deacetylase 6 

By using MIIP as a bait molecule in a yeast two-hybrid assay, Wu et al. found MIIP to 

bind to histone deacetylase 6 (HDAC6) (Wu et al. 2010). HDAC6 is a cytoplasmic 

enzyme that deacetylates α-tubulin, heat-shock protein 90 (Hsp90) and cortactin, and 

forms complexes with other partner proteins. Through these actions HDAC6 regulates 

many important biological processes such as cell migration. (Valenzuela-Fernandez et 

al. 2008.) HDAC6 possesses two functional deacetylase domains, which are both 

needed for intact enzymatic activity (Zhang et al. 2006)  and a zinc finger motif that 

could be involved in regulating ubiquitination (Seigneurin-Berny et al. 2001). 

Reversible acetylation of α-tubulin, an important component of the cytoskeleton, 

regulates microtubule stability and function and thus affects cell motility (Hubbert et al. 

2002).  

MIIP binds to both catalytic domains of HDAC6. Overexpression of MIIP and 

knockdown of HDAC6 was seen to cause increased levels of α-tubulin acetylation, 

whereas transfection with MIIP small interfering RNA (siRNA) decreased α-tubulin 

acetylation. This strongly suggests that MIIP inhibits deacetylase activity of HDAC6. 

MIIP was also found to reduce the protein stability of HDAC6. Through these 

mechanisms MIIP increases acetylation of α-tubulin and decreased cell motility. (Wu et 

al. 2010.) 

Cortactin is another protein that has an important role in regulating cell motility. Its 

interaction with F-actin promotes polymerization and branching of the actin assembly. 

The acetylation status of cortactin influences its F-actin binding activity. (Zhang et al. 
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2007.) MIIP could inhibit cell migration also by decreasing HDAC6 mediated 

deacetylation of cortactin (Wu et al. 2010). 

Hsp90 is a molecular chaperone that interacts with a large number of client proteins 

and regulates signal transduction pathways. Acetylation of Hsp90 is one of the 

regulators of Hsp90 activity. (Li et al. 2012.) When Hsp90 is inhibited, tyrosine 

phosphorylation of focal-adhesion kinase (FAK) and assembly of focal adhesions are 

reduced and further FAK-dependent actions such as actin cytoskeleton rearrangement, 

cell migration and cell invasion are inhibited (Rousseau et al. 2000; Masson-Gadais et 

al. 2003; Koga et al. 2007). Thus, inhibition of cell migration by MIIP may also 

function through deacetylation of Hsp90 by HDAC6 (Wu et al. 2010). 

 

5.2.3 Mitosis 

In normal conditions, cell cycle is tightly controlled by numerous regulatory elements 

and molecules. Cells go through the phases of cell cycle G1, S, G2 and finally M in a 

highly orchestrated manner and disruption of this balance may lead to different diseases. 

MIIP may also have an important role in regulation of mitosis. In flow cytometry 

analysis, MIIP expression was shown to markedly delay G2/M transition in the cell 

cycle in LN229 cells. MIIP was discovered to bind to cell division cycle protein 20 

(Cdc20), a molecule that activates anaphase-promoting complex/cyclosome (APC/C) 

ubiquitin-ligase E3. (Ji et al. 2010.) APC/C allows ubiquitination and degradation of 

securing and cyclin B1 which in turn contributes to mitotic exit (Yu 2007). A significant 

decrease in an APC/C substrate cyclin B1 ubiquitination was observed in the presence 

of MIIP, implying that the interaction of MIIP and Cdc20 causes reduction in APC/C 

ubiquitin-ligase activity. Cyclin B1 protein levels were also seen to positively correlate 

with levels of MIIP in several cancer cell lines, indicating that MIIP modulates cyclin 

B1 stability. MIIP expression in LN229 glioma cells was connected to increased 

chromosomal abnormalities and mitotic catastrophe. (Ji et al. 2010.) 

MIIP might regulate mitosis also through its previously described effect on HDAC6 

mediated α–tubulin acetylation (Wang et al. 2011). Microtubules consisting of the αβ–

tubulin heterodimers form the mitotic spindle during cell division and facilitate the 

separation of replicated sister chromatids. Microtubules also function in aiding the 

intracellular organelle and vesicle transportation. Acetylation of α-tubulin has a role in 

regulating these functions. (Westermann and Weber 2003.)  

 

5.2.4 Other 

In an attempt to find genes associated to expression of MIIP, a cDNA microarray 

expression profiling was made and several adhesion- and motility-associated genes were 

seen to be downregulated in cells expressing MIIP. Among them were integrin αL/β8, 

cell division cycle protein 42 (Cdc42), transcription factor nuclear factor kappa B 
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(NFκB) and its target genes intracellular adhesion molecule 1 (ICAM-1), interleukin 10 

(IL-10) and E-selectin (SELE). (Song et al. 2003.) However, it remains unclear how and 

how much MIIP affects these gene expressions. 
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6. PROSTATE CANCER TREATMENT 

6.1 Clinically localized prostate cancer 

Treatment methods for clinically localized prostate cancer currently include active 

surveillance (AS), radical prostatectomy, external-beam radiation therapy, and 

interstitial radiation therapy (brachytherapy) (Heidenreich et al. 2012). Active 

surveillance is an option for men with low-risk prostate cancer. It builds upon the 

assumption that in low-risk disease, the time between diagnosis and clinical progression 

is usually long, so men with diagnosed low-risk prostate cancer will not necessarily 

have any clinical symptoms of the condition during their lifetime. Men are not treated 

with anything, but are closely followed by serial PSA assessments, repeat biopsies, and 

possible other tests to identify early signs of progression. At the first signs of higher-risk 

disease, treatment is initiated. (Klotz 2010; Klotz 2012.) 

The gold standard in the surgical management of localized prostate cancer is radical 

prostatectomy (Mullins et al. 2012). The goal of radical prostatectomy is to remove all 

of the carcinoma tissue. The operation can be done as an open surgery or 

laparoscopically either manually or using robot-assisted techniques. All options have 

been found to be safe presenting similar overall complication rates. (Coelho et al. 2010.) 

Pelvic lymph nodes can be removed in the same surgery (El-Galley et al. 2002). 

Disease-specific mortality, overall mortality, and the risks of metastasis and local 

progression have been proven to be reduced with radical prostatectomy. Though the 

reduction in the risk of death after 10 years is small, the reductions in the risks of 

metastasis and local tumor progression are significant. (Bill-Axelson et al. 2005). 

However, radical prostatectomy can cause side-effects such as erectile dysfunction and 

urinary leakage, which have an impairing effect on quality of life after surgery (Steineck 

et al 2002). 

If surgical intervention is not possible or not wanted, another option is radiation 

therapy. Radiation therapy can also be given as adjuvant treatment after prostatectomy 

when the risk of recurrence is high. Three-dimensional conformal radiotherapy (3D-

CRT) is widely used but newer techniques like intensity-modulated radiotherapy 

(IMRT) and image-guided radiotherapy (IGRT) are also becoming more common. 

(Heidenreich et al. 2012.)  

It has been stated that the dose of external radiotherapy should be at least 74 grays 

(Gy) because biochemical disease-free survival is significantly higher when compared 

with a dose <72 Gy (Hayden et al. 2010). Studies have shown that higher, up to 78 Gy 

doses result in a significant improvement in freedom from failure for patients with 

intermediate to high risk tumors. However, escalated doses also increase the incidence 
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of rectal side effects, so techniques preventing radiation to the surrounding tissues are 

preferable. (Pollack et al. 2002.) In addition to the prostate gland, seminal vehicles are 

often also treated. Seminal vehicles can be given the same dose as the prostate gland or 

they can be left outside the treatment area after 45-50 Gy. (Prostate cancer: Current 

Care Guidelines 2007.) Pelvic lymph nodes can also be radiated at a dose of 45-50 Gy 

when there is a high risk for lymph node metastasis (Roach et al 2006). 

IMRT allows delivery of higher doses of radiation with very low toxicity and lesser 

side-effect (Vora et al. 2007). IMRT is delivered using a multileaf collimator (MLC) to 

shape the particle beams (Luxton et al. 2004). 

In IGRT the exact position of the prostate is being located with the help of imaging 

methods. Different methods such as rectal balloon catheters, fiducial markers (e.g. 1mm 

diameter gold seeds), three-dimensional ultrasound and computer tomographic imaging 

can be used. When the precise location is known, smaller margins can be used and 

radiation to normal tissues can be reduced. (Button and Staffurth 2010.) 

Increasing the radiation dose alone is not enough for high-risk PC and adjuvant 

androgen deprivation therapy (ADT) is used for 3 years. For high-risk PC, a short 

course of neoadjuvant hormonal ablation can also be applied for 2 months before as 

well as during radiotherapy. (Heidenreich et al. 2012.) The principle of ADT in more 

detail is explained in the following chapter. 

For low-risk PC, low dose rate (LDR) prostate brachytherapy can also be used 

(Heidenreich et al. 2012). In LDR brachytherapy radioactive seeds are delivered into the 

prostate using transrectal ultrasound imaging guidance. Radioisotopes can be either 

Iodine-125 (I-125) or Palladium-103 (Pd-103). (Machtens et al. 2006.) Finnish centers 

use I-125 (Prostate cancer: Current Care Guidelines 2007). The half-life of I-125 is 60 

days and it has an energy of 0.028 keV. 100-120 Gy is generally delivered in 2 Gy 

fractions. (Machtens et al. 2006.) In Finland, a dose of 140 Gy is used (Prostate cancer: 

Current Care Guidelines 2007). Good long-term results have been achieved with LDR 

brachytherapy (Taira et al. 2011). 

Cryosurgical ablation has been considered as a treatment method, but while there 

are no reliable long-term results, it is not in the official treatment recommendations 

(Heidenreich et al. 2012). In cryosurgical ablation, liquid nitrogen is used to freeze the 

prostate or areas of it using ultrasound guidance (Babaian et al. 2008). 

Several studies have shown that patients with localized disease do not benefit from 

added antiandrogen bicalutamide. However, adding bicalutamide to standard care 

results in considerable clinical benefits in patients with locally advanced prostate 

cancer. (McLeod et al. 2006; See et al. 2006.) 
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6.2 Advanced and castration resistant prostate cancer 

6.2.1 Traditional treatment methods 

Endocrine treatment of prostate cancer aims to deprive the cancer cells of androgens. 

This can be executed by eliminating the testosterone production of the testes or by 

blocking the androgen receptors (AR) with antiandrogens (Tammela 2012). The first 

method of permanent testosterone synthesis prevention was bilateral orchiectomy 

(surgical removal of the testes) and reversible castration was first achieved with 

estrogen treatment (Huggins and Hodges 1941). Charles B. Huggings received a Nobel 

Prize price for his discoveries concerning hormonal treatment of prostatic cancer in 

1966. 

Orchiectomy is still considered the primary option for ADT in cases related with 

high spinal cord compression risk, brain metastasis or severe pain (Prostate cancer: 

Current Care Guidelines 2007). Medically castration can be achieved with 

gonadotropin-releasing hormone (GnRH) (often used as a synonym of luteinizing 

hormone-releasing hormone (LHRH)) agonists and antagonists of which LHRH 

agonists represent the standard care (Tammela 2012; Heidenreich et al. 2013). 

Castration with oestrogen agonists has widely been abandoned due to unwanted side 

effects (Prostate cancer: Current Care Guidelines 2007; Tammela 2012). 

Continuous stimulation of the pituitary with high concentrations of GnRH agonist 

causes receptor desensitization and inhibition of LH release, which further blocks 

testosterone synthesis by the testes. GnRH agonists available include for example 

goserelin, leuprorelin, buserelin and tritorelin. During first 1-2 weeks of GnRH agonist 

therapy, there is an increase in LH production and plasma testosterone levels, referred 

often as the flare effect. Therefore, co-treatment with antiandrogen is used for 2-3 

weeks from the initiation of GnRH agonist treatment. (Tammela 2012.) GnRH 

antagonists on the other hand rapidly block the release of both LH and FSH resulting in 

more rapid and crucial decrease in serum testosterone level without the flare effect 

(Tammela 2012). GnRH antagonists have proven useful in patients with locally 

advanced or metastatic disease, but the benefits in other situations remain to be verified 

(Heidenreich et al 2013). Intermittent androgen deprivation (IAD) in which androgen 

blockade and treatment cessation alternate to enable hormonal recovery between cycles 

has been tested to improve tolerability and quality of life. Meta-analysis of 13 trials 

comprising 6419 patients showed that overall survival, time to progression and quality 

of life were similar in IAD and continuous androgen deprivation. However, patients 

treated with IAD had lower incidence of hot flushes and higher sexual activity scores. 

(Botrel et al 2014.) 

In maximum androgen blockade (MAB), the action of testosterone is inhibited by 

preventing the production by the testes using castration, and by blocking AR by 

antiandrogens to inhibit the effects of adrenal and locally produced androgens 

(Tammela 2012). However, MAB provides only small survival advantage compared 



   20 
 

with GnRH agonist monotherapy and is associated with significant impairment of 

quality of life (Heidenreich et al. 2013). 

There are steroidal and non-steroidal antiandrogens and they can be used as 

monotherapy or in combination with castration. Antiandrogens competitively inhibit the 

binding of DHT and testosterone to AR. Steroidal antiandrogens (cyproterone acetate) 

also binds to progesterone receptors in the pituitary inhibiting the release of LH and 

production of testosterone by the testicles. However, steroidal antiandrogens have been 

seen to cause more adverse effects than GnRH agonists and non-steroidal antiandrogens 

such as bicalutamide, flutamide and nilutamide. Currently, bicalutamide is the best 

tolerated antiandrogen. Bicalutamide offers benefits in quality of life, so bicalutamide 

has been considered as an option to castration for younger, sexually active men with 

locally advanced prostate cancer. (Tammela 2012.) However, clinical benefits are minor 

or nonexistent and therefore bicalutamide monotherapy is not recommended as a 

standard care (Heidenreich 2013). 

All types of endocrine treatment have adverse events which influence quality of life 

in different ways. The proper use and timing of endocrine therapy still remain subjects 

of debate. (Tammela 2012). 

In case of recurrence, local recurrences are often treated by salvage radiation 

therapy with 64-66 Gy. High-intensity focused ultrasound (HIFU) or cryotherapy have 

also been proposed as an alternative because of equal efficacy but less morbidity. 

(Heidenreich et al. 2013.) With metastatic CRPC, life-expectancy is short, only about 

one and a half years, and treatment often aims in alleviating the symptoms and 

improving quality of life (Prostate cancer: Current Care Guidelines 2007). 

Chemotherapy with docetaxel can be used for metastatic CRPC. Docetaxel is a 

semi-synthetic taxane which functions by disrupting the function of cellular 

microtubules and thus preventing cell division (Shelley et al 2006). It can offer pain 

relief and improve quality of life compared to other treatments and also extend life 

expectancy (Tannock et al 2004).  New and improved agents have also been developed 

and they are becoming more widely used. 

6.2.2 Newer treatment methods 

Although orchiectomy and chemical castration effectively block androgen synthesis 

of the testes, androgen synthesis still continues in adrenals and tumor cells resulting in 

adequate levels of androgens in the prostate to stimulate PC cell growth (Titus et al. 

2005). Abiraterone is a selective cytochrome P450 c17 (CYP17) inhibitor. CYP17 is a 

crucial enzyme in androgen biosynthesis despite production location, so abiraterone 

blocks androgen synthesis of adrenals and tumor cells in addition to that of testes. (de 

Bono et al. 2011.) Abiraterone also significantly increases adrenocorticotropic hormone 

(ACTH) levels and plasma levels of 11-deoxycorticosterone and corticosterone, leading 

to unwanted effects such as hypokalemia, hypertension and edema. These are 

suppressed by co-administration of a synthetic glucocorticoid. (Attard et al. 2008.) 

Abiraterone has also been found to reduce AR protein expression and R1881-induced 
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AR transactivation in prostate cancer cell lines, which may influence the anti-tumor 

effects (Solifer et al 2012). In patients with metastatic CRPC previously treated with 

chemotherapy, overall survival was seen to be longer with abiraterone compared to 

placebo (14.8 months vs. 10.9 months) (de Bono et al 2011). 

More effective AR antagonists have been developed to overcome issues related to 

first generation antagonists. First generation AR antagonists such as bicalutamide and 

flutamide have lower affinity to AR than DHT and they demonstrate partial antagonism, 

which leads to weak results especially when AR is highly overexpressed (Chen et al. 

2004). The AR affinity of the second generation AR antagonist enzalutamide is 8-fold 

higher than that of bicalutamide and no agonism is shown. Enzalutamide inhibits AR 

translocation into nucleus and impairs its DNA binding and co-activator recruiting, but 

also induces apoptosis in VCaP cells which have AR gene amplification. (Tran et al. 

2009.) Enzalutamide was seen to extend the survival of men with metastatic CRPC 

previously treated with chemotherapy. In the ezalutamide group, the median overall 

survival was 18.4 whereas in the placebo group it was 13.6 months. (Scher et al 2012.) 

Cabazitaxel belongs to taxanes like docetaxel and acts with the same mechanism by 

binding to tubulin and inhibiting microtubule depolymerization and consequently 

arresting mitosis. Cabazitaxel demonstrates greater antitumor activity and can be used 

also in docetaxel-resistant cancers. (Mita et al 2009; de Bono et al. 2010.) Cabazitaxel 

has a lower affinity for P-glycoprotein, the drug efflux pump responsible for multidrug 

resistance, which may affect the better antitumor properties (Mita et al. 2009). 

Cabazitaxel was found to improve overall survival in patients with metastatic castration-

resistant prostate cancer whose disease has progressed during or after docetaxel 

treatment. The median survival was 15.1 months in the cabazitaxel group and 12.7 

months in the mitoxantrone (control) group. Median progression-free survival was 1.4 

months higher in the cabazitaxel group than in the mitoxantrone group. (de Bono et al. 

2010.) 

Several gene therapy approaches have been proposed as possible treatment methods 

for prostate cancer. The anatomy and biology of the prostate gland allow prostate cancer 

to be an extremely powerful candidate for gene therapy. The prostate gland is not an 

essential organ so its complete removal or ablation is possible. In addition, it can be 

easily accessed for implantation of therapeutic agents or taking tissue samples. A 

number of genes, including KLK3, h-kallikrein-2, prostate specific membrane antigen, 

probasin and relaxin H2, are also specifically expressed in prostate tissue under tight 

control of tissue specific promoters. The osteocalcin gene encoding a major 

noncollagenous bone protein is also overexpressed in prostate cancer. These facts can 

be used in targeting the expression of therapeutic genes selectively to prostate cancer. 

(Harrington et al. 2001.) 

In gene therapy, a functional gene can be introduced to the target tissue to restore 

absent or deficient protein production, to modulate the immune system or to destroy 

cells in a controlled manner to slow down the disease (Kootstra and Verma 2003).  

Although the principle of gene therapy is relatively simple, one major problem has been 
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efficient delivery of the gene to the target tissue (Verma and Weitzman 2005). Viral and 

non-viral vectors can be used for gene delivery purposes. Viral vectors are more popular 

in clinical trials at the moment and of those adenoviral vectors are most widely used 

(Gene Therapy Clinical Trials Worldwide 2011). Other viral vectors used for gene 

delivery include retroviral vectors, poxvirus vectors, adeno-associated virus vectors and 

herpes simplex virus vectors (Harrington et al. 2001; El-Aneed 2004). Common non-

viral vectors include naked DNA injections, cationic polymers, cationic peptides, 

cationic lipids and cells (Harrington et al. 2001; El-Aneed 2004; MacRae et al. 2006; 

Kitchen et al. 2011). 

Gene therapy for cancer can be divided into three main categories: immunotherapy, 

oncolytic virotherapy and gene transfer. The purpose of immunotherapy is to strengthen 

the immune system to attack and destroy the cancer cells. Cancer vaccines are an 

example of immunotherapy. (Cross and Burmester 2006.) In oncolytic virotherapy 

oncolytic virus (OV) vectors are used in destroying the tumor. Oncolytic viruses are 

able or can be modified to replicate specifically in cancer cells and cause their death as a 

consequence of the lytic viral cycle. Due to targeting to cancer cells, normal cells of the 

body remain intact. (Mullen and Tanabe 2002.) In gene transfer, a foreign gene is 

introduced into the cancer cells or the surrounding tissues. Genes with several different 

functions can be used, including genes causing cell death when expressed (suicide 

genes), antiangiogenesis genes, genes that restore the function of a deleted or mutated 

gene (often a tumor suppressor gene), genes that negate the effect of a tumor promoting 

gene (oncogene) or genes that enhance immune responses against tumor tissues. 

(Harrington et al. 2001; Cross and Burmester 2006.) 

Sipuleucel-T is one example of a successful gene therapy approach in prostate 

cancer. It is a cancer vaccine containing autologous peripheral-blood mononuclear cells 

(PBMCs); including antigen-presenting cells (APCs), that have been activated ex vivo 

with a recombinant fusion protein (PA2024). In PA2024, a prostate antigen, prostatic 

acid phosphatase (ACPP) is fused to granulocyte–macrophage colony-stimulating factor 

(GM-CSF). (Kantoff et al. 2010.) GM-CSF activates the APCs and ACPP works as the 

target antigen and navigating epitope. Back in the body, sipuleucel-T induces an 

immune response to ACPP, which is one of the major proteins secreted by prostate. 

ACPP serum levels are also significantly elevated in many metastatic prostate cancers. 

(Provenge: EPAR – Public assessment report 2013.) Sipuleucel-T was found to reduce 

the risk of death significantly compared to placebo in men with advanced prostate 

cancer (Higano et al. 2009; Kantoff et al 2010). 
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7. CELL LINES AND XENOGRAFTS AS 

PROSTATE CANCER MODELS 

One of the biggest obstacles to gaining more biological information about prostate 

cancer and developing drugs to fight it has been the paucity of adequate model systems. 

Prostate cancer is very heterogeneous morphologically and molecularly, it grows 

relatively slowly and is highly dependent on paracrine and endocrine signaling. Due to 

all this, it has been very challenging to grow human prostate cancer in the laboratory in 

vitro or in vivo. (Pienta et al. 2008.) 

Xenografts are widely used models in cancer research and drug development. 

Prostate cancer xenografts can be established by implanting surgically removed human 

prostate cancer explants into immunodeficient mice. The tissue can be from primary 

tumors or from metastatic sites and also prostate cancer cell lines can be used. However, 

xenografts from primary tumors are extremely difficult to carry out. (Chauchereau 

2011.) Xenografting is usually done to the three major graft sites; subcutaneous, under 

the renal capsule and orthotopic. Orthotopic xenograft model is achieved by implanting 

human prostate tumor cells into mouse prostate glands. Different graft sites have their 

advantages and disadvantages. (Wang et al.2005) 

The subcutaneous site has been the most commonly used because it can be easily 

accessed and large amounts of tumor can be grafted there. However, vascularization is 

relatively poor and especially with primary tumors the survival rates are low. The 

subrenal capsule has proven relatively successful with different tissue types, especially 

with primary tissues including localized prostate cancer. The vascularization under the 

renal capsule is high, assuring sufficient amount of nutrients to the tumor prior to 

developing their own vasculature. Yet, the surgery is more difficult and less tissue can 

be transplanted under the renal capsule than subcutaneously. Different approaches such 

as maintaining host androgen levels by implanting testosterone and precision cutting of 

tissue slices have been tested to achieve better survival rates. (Wang et al. 2005; Zhao et 

al. 2010.) Orthotopic graft site has the advantage of having similar microenvironment as 

the original tumor site and orthotopic xenografts seem to also mimic the actual disease 

better (Chauchereau 2011). Survival rate of grafts is lower than with subrenal graft site, 

but the proportion of glands in every surviving graft seems to be higher. However, 

rodent prostate is not very easily accessible and the capacity to carry xenografts is 

limited. (Wang et al. 2005) 

After implantation and tumor growth, it can be serially transplanted into other 

animals. Xenografts are able to retain various biological properties of the original 

human tumors they are derived from, but the major disadvantage of these models is the 
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need for continuous transplantation in animals and due to high transplantation failure 

rate, a large number of animals is needed, which is both expensive and laborious. 

(Chauchereau 2011.) Immunodeficient hosts are required for xenografting so that the 

host does not reject the transplanted tissue. Either athymic or severe combined 

immunodefiency (SCID) animals can be used.  Athymic animals lack a thymus and are 

unable to produce T-cells, whereas SCID is a genetic disorder. However, the absence of 

an immune system is not a normal situation with prostate cancer patients and it should 

be considered when applying results achieved with this type of model to practice. 

(Wang et al. 2005.) Ethical issues may also cause concern. 

The advantages of in vitro cell cultures are relatively low costs and high replicative 

capacity ensuring enough material for long-term use. They offer a simple approach to 

study cell behavior and molecular pathways involved in PC. However, the biological 

properties of the original cancer tissue are not well preserved in in vitro two-

dimensionally cultured cell lines. (Sampson et al 2013.) Immortalized cell lines can also 

harbor genetic alteration and mutations that are not typical for the original disease. The 

loss of AR and KLK3 is a common characteristic for several cell lines. (Peehl 2005). 

Most of the PC cell lines are derived from advanced or metastatic disease and same few 

most common cell lines are used for most experiments. This hinders the study of earlier 

stages of PC and lacks diversity normally seen in human prostate cancer. (Peehl 2005; 

Pienta et al. 2008.) Nevertheless, the usefulness of these models is proven by our 

continuously increasing knowledge of molecular mechanisms regulating PC 

development and progression. Development of three-dimensional co-culture systems 

has also given new extent to investigation of stromal-epithelial interactions, 

angiogenesis and metastasis. Several in vitro models have been created and each model 

system has its own characteristics. (Sampson et al 2013.) However, developing these 

cell lines is anything but simple and there are very few models available for PC despite 

the fact that PC is a common cancer. 

LNCaP, PC3 and DU145 were the first human prostatic tumor epithelial cell lines 

established and they are still the most commonly used PC cell lines (Sampson et al 

2013). LNCaP cells have been derived from lymph node metastasis of human prostate 

adenocarcinoma. They are androgen responsive and DHT regulates their proliferation. 

LNCaP cultures also produce acid phosphatase and KLK3. (Horoszewicz et al. 1983.) 

LNCaP cells express AR that carries the T877 mutation in the AR ligand binding 

domain changing threonine 877 with alanine which affects both binding specificity and 

the induction of gene expression (Taplin et al. 1995). LNCaP is widely used for 

studying AR signalling in prostate cancer. PC3 cells are established from bone 

metastasis and DU145 cells from brain metastasis and neither of these cell lines 

responds to androgens. (Sampson et al. 2013.) 

In addition to these most commonly used cell lines established directly form tissues 

of PC patients, there are several cell lines derived from human PC tissue first 

heterotransplanted into immune-deficient mice. Such cell lines include VCaP and 

DuCaP that were established from bone and brain metastasis of the same patient with 
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CRPC by xenografting them first into SCID mice and harvesting them later for in vitro 

culture. Both cell lines are sensitive to androgens and express wild-type AR. In 

addition, they harbour the TMPRSS2:ERG fusion and high level AR gene amplification. 

(Saramäki et al. 2008; Sampson et al. 2013.) The LAPC cell lines were established with 

the same principle from eight different patients (Sampson et al. 2013). LAPC-4 

expresses wild-type AR, KLK3 and HER-2/neu receptor tyrosine kinase and it has been 

used for example to compare drug efficacy with cell lines expressing mutated forms of 

AR (Cherian et al. 2012; Craft et al. 1999; Sampson et al. 2013). 22Rv1 is a cell line 

derived from a xenograft that was serially propagated in mice after castration-induced 

regression and relapse of the parental, androgen-dependent CWR22 xenograft 

(Sramkoski et al 1999). 22Rv1 cells secrete KLK3 and express AR, but in lower levels 

than LNCaPs. 22Rv1s also carry a H874Y mutation in AR, which results in change in 

codon 874 from CAT for histidine to TAT for tyrosine and leads to reduced specificity 

of AR. (Attardi et al. 2004.) In addition, these cells harbour two distinct forms of AR, a 

larger one with an extra zinc finger motif and a C-terminally truncated one (Sampson et 

al. 2013). 
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8. MATERIALS AND METHODS 

8.1 Cell lines and xenografts 

DU145, LNCaP, PC3 and 22Rv1 cell lines used in the research were obtained from 

American Type Cell Collection (Manassas, VA, USA). VCaP and DuCaP cell lines 

were kindly provided by Dr. Jack Schalken (Radboud University Nijmegen Medical 

Center, Nijmegen, the Netherlands) and LAPC-4 cell line by Dr. Charles Sawyers 

(University of California, Los Angeles, CA, USA). All cell lines were stored in liquid 

nitrogen and cultured under recommended conditions. 19 previously established 

LuCaP-xenografts (Royai et al. 1996) were available for the analyses by collaboration 

with Professor Vessella (University of Washington, Seattle, WA, USA). All samples 

were snap frozen in liquid nitrogen and stored at -80ºC. 

8.2 Plasmids and siRNAs 

pCMV6-AC-HA expression vector inserted with MIIP coding region was kindly 

donated by Wei Zhang (The University of Texas MD Anderson Cancer Center, 

Houston, USA) and verified by PCR and sequencing. PCR for plasmids containing 

MIIP was done using Dynazyme II DNA polymerase (Thermo Scientific, Thermo 

Fisher Scientific, Inc., Waltham, USA) and specially designed primers (sequences can 

be found from Table 4). Reaction volume of 25 µl was used. 20 nanograms of plasmid 

DNA was used in each reaction and manufacturer’s protocol was followed with the 

exceptions of not adding any MgCl2 to the reaction mix and using slightly modified 

denaturation times and temperatures (Table 1). 

 

Table 1: Dynazyme PCR reactions 

 

Cycle step Temperature Time Cycles 

Initial denaturation 95ºC 5 minutes 1 

Denaturation 95ºC 30 seconds  

35 Annealing 56ºC 30 seconds 

Extension 72ºC 60 seconds 

Final extension 72ºC 10 seconds 1 

Cooling 4ºC hold 1 
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PCR-products were run on 1 % agarose gel and visualized with ethidium bromide and 

the size of the PCR product was verified. MIIP gene was also sequenced from the 

plasmid according to the sequencing protocol described later. 

To generate a control vector, the insert was digested with EcoRI and MluI restriction 

enzymes and the empty plasmid was isolated from agarose gel. The empty plasmid was 

purified with QIAquick Gel Extraction Kit (Qiagen, Venlo, Netherlands) according to 

the manufacturer’s protocol. The ends of the plasmid were blunted with Klenow’s 

fragment (Fermentas Inc., Burlington, Ontario, Canada) and ligated together with T4 

ligase (New England Biolabs Inc., Ipswich, MA) according to manufacturer’s protocols. 

One Shot
®
 chemically competent TOP10 E. coli cells (Invitrogen Life Technologies, 

Carlsbad, CA) were transformed with pCMV6-AC-HA-MIIP- and empty pCMV6-AC-

HA- plasmids using heat-shock transformation according to manufacturer’s instructions. 

Cells were cultured overnight on LB plates containing ampicillin and individual 

colonies were further grown in suspensions to achieve sufficient amount of plasmids for 

transfections. Plasmids were isolated from the bacterial culture using Qiagen plasmid 

Maxi Kit (Qiagen, Venlo, Netherlands) according to manufacturer’s protocol. 

Commercially available small interfering RNAs (siRNAs) SI00392000 (named 

MIIP siRNA1 during the study), SI00392007 (MIIP siRNA2), SI00392014 (MIIP 

siRNA3) and SI04271365 (MIIP siRNA4) for MIIP (Qiagen, Venlo, Netherlands) were 

used in siRNA transfections. AllStars Negative Control siRNA SI0650318 (Qiagen, 

Venlo, Netherlands) was used as a control. 

 

8.3 Cell culture and transfections 

DU145 and LAPC-4 cells were maintained, respectively, in DMEM and IMDM (Lonza, 

BioWhittaker
®
, Basel, Switzerland) supplemented with 10% and 15% fetal bovine 

serum (FBS; Lonza, BioWhittaker
®
, Basel, Switzerland) and 1% L-glutamine (Lonza, 

BioWhittaker
®
, Basel, Switzerland) and incubated in a humidified incubator at 37°C 

with 5% CO2.  

Plasmid transfections were performed using Lipofectamine LTX and Plus reagents 

and their protocol (Invitrogen Life Technologies, Carlsbad, CA). Briefly, DU145 cells 

were plated 50 000 cells per well on 24-well plates and transfected 2 days later when 

cells were approximately 70% confluent. For each well, 0.5 µg of plasmid DNA was 

diluted into 100 µl of Opti-MEM I Reduced Serum Medium without serum. PLUS 

reagent was gently mixed and 0.5 µl of PLUS reagent per every 0.5 µg of DNA was 

added to the diluted DNA. Solution was gently mixed and incubated at room 

temperature for 5 minutes. For each well 1.5 µl of Lipofectamine LTX reagent was 

added to the diluted DNA solution, mixed gently and incubated at room temperature for 

25 minutes to form DNA-Lipofectamine LTX complexes. Growth medium was 

removed from the cells and replaced with 0.5 ml of complete growth medium. 100 µl of 

the DNA-Lipofectamine LTX complexes were added dropwise directly to each well 
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containing cells and mixed gently by rocking the plate back and forth. Transfected cells 

were then incubated in normal incubating conditions. Two wells were transfected with 

pCMV6-AC-HA-MIIP plasmid and two wells with pCMV-AC-HA empty plasmid. 

To generate cell lines stably expressing MIIP, transfected DU145 cells were selected 

in the presence of 400 µg/ml geneticin (G418; Gibco
®
, Life Technologies, Carlsbad, 

CA) for 3 weeks and after that maintained in 200 µg/ml of G418. Transfected DU145 

cells were seeded sparsely on 10 ml petri dishes and individual colonies were ring-

cloned into 96-well plates to achieve populations originating from a single cell. 

Colonies were further grown in normal cell culturing conditions to gain sufficient 

amount of cells for the functional tests. 

siRNA transfections for LAPC-4 cells were done using INTERFERin (Polyplus-

transfection SA; Illkirch, France) and its reverse transfection protocol. In short, for each 

well, 30 pmol (in the optimizing phase also 6 pmols) of siRNA duplexes were diluted 

into 100 µl of Opti-MEM. 3 µl of INTERFERin was added to the diluted siRNAs and 

the solution was mixed by pipetting up and down. The mixture was incubated for 15 

minutes at room temperature to form transfection complexes. For proliferation assays, 

LAPC-4 cells were trypsinazed and plated 100 000 cells per well on 24-well plates. 100 

µl of the siRNA solution was pipetted on each well and mixed gently by moving the 

plate in a figure of 8. After transfection, cells were incubated at 37ºC in normal cell 

culturing conditions. 8 wells were transfected with each siRNA; MIIP siRNA1, MIIP 

siRNA2 and Qiagen All Stars negative control. Proliferation assays were started the day 

after transfection (day 0). 

Transfections for migration analysis were done in a similar manner, except LAPC-4 

cells were plated 300 000 cells per well and 350 000 cells per well on 24-well plates. 3 

days later scratches was drawn across (from 11 o’clock to 5 o’clock) the confluent cell 

layer on the bottom of the wells with a 10 µl pipette tip. 100 µl of the incubated siRNA 

solution was pipetted dropwise on each well. 4 parallel samples (one of 300 000 cells 

per well and three of 350 cells per well) was used for each siRNA; MIIP siRNA1, MIIP 

siRNA2, MIIP siRNA3 and control siRNA. First images were taken the day of 

transfection (day 0). 

 

8.4 Sequencing 

Genomic DNA from cell line and xenograft samples was also amplified with Dynazyme 

II as with plasmid DNA, using 400 ng of DNA for cell lines and 200 ng of DNA for 

xenografts. Cell line and xenograft PCR reactions were also purified with QIAQuick 

PCR purification kit (Qiagen, Venlo, Netherlands) according to manufacturer’s protocol 

prior to sequencing reactions. For full length transcript sequencing, complementary 

cDNA from cell lines was amplified with Phusion DNA Polymerase (Finnzymes, 

Espoo, Finland) and purified with QIAQuick PCR purification kit (Qiagen, Venlo, 
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Netherlands) prior to sequencing with the protocol described in tables 2 and 3. Primer 

sequences can be found from Table 4. 

 

Table 2: Phusion PCR Program outline 

 

Phusion PCR Program 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98ºC 3 min 1 

Denaturation 98 ºC 10s  

40 Annealing 56,3/57 ºC 20s 

Extension 72 ºC 30s 

Final extension 72 ºC 10 min 1 

Cooling 4 ºC hold 1 

 

Table 3: Phusion PCR components and pipetting order 

 

Phusion PCR components and pipetting order 

Component µl/20 µl reaction 

H2O 11.72 

5x Phusion GC Buffer 4 

dNTPs 0.4 

DMSO 0.6 

MgCl2 0.08 

Phusion DNA polymerase 0.2 

forward-primer 10 µM 1 

reverse-primer 10 µM 1 

template DNA 1  

 

Sequencing was performed using the Big-Dye Terminator v3.1 Cycle Sequencing 

Kit (Applied Biosystems, Foster City, CA) and the ABI PRISM 3100 sequencer 

(Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. 

Each sequencing reaction included 20 ng of DNA, 5 pmol of primers, 1.5 µl of 5x 

sequencing buffer and 1.0 µl of BigDye Terminaton ready Reaction mix (Applied 

Biosystems, Foster City, CA). The volume of the reactions was adjusted to 10 µl with 

sterile water. Sequences for the primers used can be seen in Table 4. The sequencing 

reactions were denatured at 96 °C for 1 minute, followed by 30 cycles of 10 s at 96 °C, 

10 s at 50 °C and 4 min at 60 °C. 

Amplified DNA was precipitated by adding 26 µl of a mixture containing one part 

of 3 M sodium acetate and 25 parts of 96% ethanol and incubating for 15 minutes at 

room temperature. DNA was pelleted by centrifugation at 2000 g for 45 minutes and the 

supernatants were discarded. Pellets were washed with 125 µl of 70 % ethanol and 
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DNA was re-pelleted by centrifugation at 2000 g for 15 minutes. Supernatants were 

again discarded and the DNA pellet was suspended into 12.5 µl of Hi-Di
TM

 formamide 

(Applied Biosystems, Foster City, CA). Suspensions were denatured by incubating the 

samples at 95 for 3 minutes and after that cooled on ice. Sequences were analyzed with 

DNAStar Software (DNASTAR Inc., Madison, WI, USA). 

 

8.5 Determination of MIIP mRNA levels 

8.5.1 RNA isolation 

Total RNA from cultured cells was isolated using TRIZOL (Invitrogen Life 

Technologies, Carlsbad, CA) reagent according to manufacturer’s protocol. Shortly, 

cells were lysed by adding 1 ml of TRIZOL reagent per 10 cm
2
 (200 µl per 24-well) 

directly to the culture dish and the cell lysate was passed through the pipette several 

times. Lysate was pipetted to a plastic tube and stored in the freezer at -70ºC if the 

isolation was not continued right away. 

Samples were then incubated at room temperature for 5 minutes. 0.2 ml of 

chloroform was added per 1 ml of TRIZOL reagent (40 µl for one 24-well), tubes were 

capped, shaked vigorously by hands for 15 seconds and incubated for 3 minutes. 

Samples were centrifuged at 12000 x g for  15 minutes at 2-8°C for phase separation. 

The colourless upper aqueous phase containing the RNA was transferred to a fresh tube 

and the rest was discarded. RNA was precipitated from the aqueous phase by adding 0.5 

ml of isopropyl alcohol per 1 ml of TRIZOL reagent (100 µl for one 24-well). Samples 

were incubated at room temperature for 10 minutes and centrifuged at 2-8°C at 12000 x 

g for 10 minutes. The supernatant was discarded and the gel-like pellet formed in the 

bottom of the tube was washed once with 75 % ethanol using at least 1 ml of ethanol 

per 1 ml of TRIZOL reagent used in the beginning. Samples were mixed by vortexing 

and centrifuged at 7500 x g for 5 minutes at 2-8°C. The ethanol was removed and the 

RNA pellet was air dried. The dried RNA pellet was dissolved in RNase-free water by 

passing the solution a few times through the pipette tip. 

8.5.2 Reverse transcription and quantitative RT-PCR 

In order to carry out complementary DNA (cDNA) reverse transcription, concentrations 

of total RNA were determined using NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE, USA). 

1-5 micrograms of total RNA from cell samples was reverse transcribed to cDNA with 

AMV-reverse transcriptase (Finnzymes, Espoo, Finland) according to the enzyme 

manufacturer's protocol using random hexamer primers. 

Quantitative real-time PCR (Q-RT-PCR) was done with the LightCycler equipment 

(Roche Diagnostics, Mannheim, Germany) using FastStart DNA Master SYBR Green I 

Kit (Roche Diagnostics, Mannheim, Germany) for xenograft samples. For the rest of the 
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samples Q-RT-PCR was done with CFX96 real-time PCR detection system (Bio-Rad 

Laboratories Inc., Hercules, CA) using TaqMan Gene Expression assay (Applied 

Biosystems, Foster City, CA) for MIIP expressions and Maxima™ SYBR Green 

(Fermentas Inc., Burlington, Ontario, Canada) for TBP expressions. The expression 

levels of MIIP were normalized by the expression level of the housekeeping gene for 

TATA box binding protein (TBP). The sequences for the PCR-primers were designed 

with Primer3-program (http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.htm) and can be 

seen in Table 4. TaqMan probe Hs00976263_m1 (Applied Biosystems, Foster City, 

CA) was used for detection of MIIP. The specificity of the reactions was confirmed 

with 1% agarose gel electrophoresis in addition to the melting curve analysis. Standard 

curve was done using LNCaP + universal prostate cDNA (stock 14.6-10) by using 5-

fold dilution series. 
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Table 4: Primer sequences. 

 

Sequencing primers for plasmids 

 Primer sequence 5’-3’ 

forward vector primer T7 TAATACGACTCACTATAGGG 

reverse vector primer XL39 ATTAGGACAAGGCTGGTGGG 

forward MIIP AAAGAGCTTTGACGCCTCTG 

reverse MIIP GTCAGTCCTCAGGGCTTCTG 

SNP sequencing primers for cell lines and xenografts 

 Primer sequence 5’-3’ 

forward MIIP AAGAGGCTCCTGGGAGATAC 

reverse MIIP GAGGATGGCACGGTCAGA 

PCR primers for Dynazyme PCR for plasmids 

 Primer sequence 5’-3’ 

forward MIIP AAAGAGCTTTGACGCCTCTG 

reverse MIIP GTCAGTCCTCAGGGCTTCTG 

PCR primers for Dynazyme PCR for cell lines and xenografts 

 Primer sequence 5’-3’ 

forward MIIP AAAGAGCTTTGACGCCTCTG 

reverse MIIP GTCAGTCCTCAGGGCTTCTG 

RT-qPCR primers 

 Primer sequence 5’-3’ 

forward MIIP AAAGAGCTTTGACGCCTCTG 

reverse MIIP GTCAGTCCTCAGGGCTTCTG 

forward TBP GAATATAATCCCAAGCGGTTTG 

reverse TBP ACTTCACATCACAGCTCCCC 

Phusion PCR and transcript sequencing primers 

forward 1
st
 MIIP TCACCTGACCAATCAAGACG 

reverse 1
st
 MIIP AGGCGCCAGCTCCTCTTA 

forward 2
nd

 MIIP CGAGACCCCACTCAGCAC 

reverse 2
nd

 MIIP TGTCAGAGGCGTCAAAGCTC 

forward 3
rd

 MIIP TGCGTGTACTGTTACCGTGTC 

reverse 3
rd

 MIIP CAGACAAGCTTGGGTCCAC 

8.6 Determination of MIIP protein levels 

8.6.1 Protein isolation 

25 ml cell culture flasks were placed on ice and the cells were washed three times 

with 10 ml of ice cold phosphate buffered saline (PBS). Cells were then collected into 
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1.5 ml of PBS with rubber policeman and the tubes were centrifuged gently. Any excess 

PBS was removed from the tubes and the tubes were stored at -70 ºC. 

Nuclear and cytoplasmic proteins were isolated using modified Dignam’s method 

(Dignam et al. 1983). The samples were melted on ice and possible excess PBS was 

removed. The volume of the cell pellet was estimated and it was suspended to three 

times the volume of the pellet of hypotonic buffer (for detailed composition, see 

Appendix 1). The solution was homogenized by pipetting back and forth for 10 seconds 

and incubated on ice for 10 minutes. The samples were centrifuged at 3300 x g at 4 ºC 

for 15 minutes. The supernatant containing cytoplasmic proteins was carefully collected 

and stored at -80 ºC.  

The pellet containing nuclear proteins was diluted to low-salt buffer (for detailed 

composition, see Appendix 1) to a volume half of that of the hypotonic buffer used for 

the same sample. The solution was mixed by pipetting back and forth a few times 

before adding high-salt buffer (for detailed composition, see Appendix 1) in a dropwise 

manner. The volume of the high-salt buffer used was half the volume of low-salt buffer 

used for the same sample. The samples were incubated on ice for 30 minutes and mixed 

gently during the incubation. After incubation, the samples were centrifuged at 2500 x g 

for 30 minutes at 4 ºC. Supernatant was collected and stored at-80 ºC. 

Protein samples were diluted 1:100 with water for concentration measurements. The 

standard curve was prepared from bovine serum albumin (BSA) with concentrations of 

8, 26, 44, 62 and 80 µg/ml. Protein concentrations were measured with Bio-Rad protein 

assay reagent (Bio-Rad Laboratories Inc., Hercules, CA). 40µl of Bio-Rad reagent was 

added to 160µl of standard or diluted sample. The samples were incubated at room 

temperature for 15 minutes and after that absorbances were measured at 595 nm with 

Multiskan GO Microplate Spectrophotometer (Thermo Scientific, Thermo Fisher 

Scientific, Inc., Waltham, USA). 

8.6.2 SDS-PAGE 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out in a 10% separating gel and a stacker gel (for details, see Appendix 2). 

Protein samples were diluted with water to two different concentrations: 1 µg/µl and 

0.65 µg/µl to a total volume of 10 µl. 10 µl of a mixture containing 9/10 parts of 3 x 

SDS reaction sample buffer (Bio-Rad Laboratories Inc., Hercules, CA) and 1/10 parts of 

1.25 M dithiothreitol (DTT) was added to samples, mixed and the samples were then 

denaturated at 97ºC for three minutes. Samples were then loaded in the wells of the gel. 

Kaleidoscope Prestained Standard (Bio-Rad Laboratories Inc., Hercules, CA) was used 

as a marker. The samples were run with Bio-Rad Mini-PROTEAN
®
 3 Cell, 67S/09185 

(Bio-Rad Laboratories Inc., Hercules, CA) with 100 V to the interface of the gels (about 

15 minutes) and after that the voltage was raised to 200 V. Samples were run until the 

dye of the SDS sample buffer reached the bottom of the gel (about one hour). 
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8.6.3 Western blotting 

Western blotting was done with Bio-Rad Trans-Blot
® 

SD Cell, 221BR 18151 (Bio-

Rad Laboratories Inc., Hercules, CA). Immobilon-P PVDF membrane (Millipore, 

Billerica, MA, USA) was cut to appropriate size and prepared for blotting by soaking it 

in methanol for 15 seconds, in water for 5 seconds and transferring it then into the 

blotting buffer (see Appendix 2). First, three pieces of chromatography paper 

(Whatman, Brentford, UK) were soaked in the blotting buffer and placed on the blotting 

cell. Then, PVDF membrane was placed on top of the papers and the SDS-PAGE gel on 

top of the membrane. At last, three pieces of chromatography paper soaked in the 

blotting buffer were laid on top. The blotting was carried out at 20 V for one hour. 

The PVDF membrane was carefully moved to mixture made of 2.5 grams of 

powdered milk and 50 ml of PBS and blocked overnight at 4ºC. The primary 

monoclonal antibody HA.11 Clone 16B12 (Covance Inc., Delaware, USA) was diluted 

1:1000 in a 1% BSA, PBS-0.1%Tween-20 mixture. After blocking, the membrane was 

placed to the primary antibody solution and incubated for two hours at room 

temperature. The membrane was washed five times for 5 minutes with PBS-Tween20. 

The secondary polyclonal antibody, rabbit anti-mouse immunoglobulins (Dako, 

Glostrup, Denmark) was diluted 1:1000 in a 1% BSA, PBS-0.1%Tween-20 mixture. 

The membrane was placed to the secondary antibody solution and incubated for one 

hour at room temperature. The membrane was then washed again two times for 10 

minutes and once for 20 minutes with PBS-Tween20.  

The detection was done with Western Blotting Luminol Reagent, cat# sc-2048 

(Santa Cruz Biotechnology, Santa Cruz, CA) for one minute. The films (Kodak BioMax 

MR Film, Sigma-Aldrich Co., Missouri, USA) were exposed for 15 seconds. 

8.7 Proliferation assays 

Proliferation of transfected cells was measured with alamarBlue and image analysis 

methods. For proliferation assays, stable DU145 clones and parental DU145 cells were 

plated 5000 cells per well on 24-well plates. Four parallel samples were used in each 

experiment. Proliferation assays were initiated the next day from plating (day 0). 

LAPC-4 cells were plated 100 00 cells per well and transfected as previously 

described for proliferation assays. Four parallel samples were used in each experiment. 

8.7.1 AlamarBlue 

The amount of cells in the beginning of the experiment and in the end of the 

experiment was analyzed using alamarBlue reagent (Invitrogen Life Technologies, 

Carlsbad, CA). 10% alamarBlue reagent was added to every well and the plates were 

incubated at 37ºC and 5%  CO2 for 3 hours for DU145 cells and 2 hours for LAPC-4 

cells. After incubation, 100µl of alamarBlue containing medium from each well was 

pipetted to a 96-well plate. The fluorescence was measured with ELISA plate reader, 
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(Wallac 1420 Victor, PerkinElmer, Fremont, CA). Medium with 10% added alamarBlue 

reagent without cells was used as a control. For relative growth analysis, the 

luminometric values of the cells in each well at the end of the experiment were divided 

by the mean values at the beginning of the experiment. 

8.7.2 Imaging and image analysis 

25 images from each well were taken at regular intervals using motorized, inverted 

fluorescence imaging microscope system (Märzhäuser micro-positioning systems, 

Germany). The amount of cells in each well was analyzed by calculating the area of the 

images covered by living cells using freely available ImageJ image analysis software 

(http://imagej.nih.gov/ij/). Values were normalized with the area covered by cells in 

each well at the first day of imaging (day 0). 

8.8 Migration assays 

For LAPC-4 cells, scratches were drawn to the cell layer in the bottom of the wells 

prior to siRNA transfections as previously described. For stable DU145 clones and 

parental DU145 cells, 100 000 cells were plated on each 24-well plate well. The next 

day, scratches was drawn across (from 11 o’clock to 5 o’clock) the confluent cell layer 

on the bottom of the wells with a 10 µl pipette tip in the same manner as for LAPC-4 

cell, growth medium was exchanged and cells were imaged. 

25 images from each well were taken at regular intervals using motorized, inverted 

fluorescence imaging microscope system (Märzhäuser micro-positioning systems, 

Germany). The size of the scratch was analyzed by manually drawing the edges of the 

scratch and calculating the surface area of it with ImageJ image analysis software. 

Values of each well were compared to the area of the scratch in that well at the first day 

of imaging (day 0). 
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9. RESULTS  

9.1 Sequencing 

A segment of MIIP gene containing SNP rs2295283 previously shown to affect the risk 

of breast cancer was sequenced from seven prostate cancer cell line and 17 prostate 

cancer xenograft genomic DNA samples. Cell line copy numbers and most xenograft 

copy numbers (23.1, 35, 49, 58, 69, 70, 73, 77, 86.2, 93, 96, 105 and 115) were obtained 

from Saramäki et al. (2006) data and the rest of the xenograft copy numbers from 

Kivinen, Saramäki et al. (unpublished). The results are shown in Table 5. 
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Table 5: Copy numbers and single nucleotide polymorphism forms of MIIP in prostate 

              cancer cell lines and LuCaP xenografts 

 

Cell line/ 

Xenograftt 

Copy 

nro 

SNP 

DU145 1 A- 

VCaP 2 GG 

PC-3 2 AA 

LNCaP 2 AG 

DuCaP 2 GG 

22Rv1 2 GG 

LAPC-4 3 AG/n/a 

LuCaP 23.1 2 GG 

LuCaP 23.1 AI 1 n/a 

LuCaP 23.8 n/a GG 

LuCaP 23.12 1 G- 

LuCaP 35 2 n/a 

LuCaP 35 AI 1 G- 

LuCaP 41 1 n/a 

LuCaP 49 1 A- 

LuCaP 58 2 GG 

LuCaP 69 1 G- 

LuCaP 70 2 GG 

LuCaP 73 2 AG 

LuCaP 77 2 GG 

LuCaP 78 2 AG 

LuCaP 81 2 n/a 

LuCaP 86.2 2 AA 

LuCaP 92.1 n/a GG 

LuCaP 93 2 AA 

LuCaP 96 1 G- 

LuCaP 96AI 1 n/a 

LuCaP 105 2 AG 

LuCaP 115 1 G- 

 

AA means both alleles contain A, AG means one allele contains A and the other G and 

GG means both alleles contain G. If information of the copy number or SNP status was 

not available, it is marked as n/a.  

Of the 24 cell line and xenograft samples sequenced, 58% carried GG (or G-), 21% 

AA (or A-) and 21% AG form of the functional SNP in MIIP in their genome. Genomic 

DNA and copy number information was not available for some samples (indicated n/a).  
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The full-length transcript of MIIP was also sequenced in three parts from 7 cell line 

cDNA samples to identify possible mutations. Mutations were not detected in the 

samples screened.  

9.2 Expression levels of MIIP 

9.2.1 MIIP mRNA levels 

Relative expression of MIIP in prostate cancer cell lines and xenografts was measured 

with quantitative RT-PCR to evaluate the connection of the level of expression of MIIP 

with SNP results and to determine which cell lines to use for functional experiments. 

The expressions are plotted in Figures 5 and 6. 

 

 
Figure 5: The relative expression of MIIP (MIIP/TBP) in different prostate cancer cell 

lines.  
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Figure 6: The relative expression of MIIP (MIIP/TBP) in prostate cancer LuCaP 

xenografts 

 

The lowest expression of MIIP in cell lines was found in 22Rv1 and PC3 and in 

LuCaP xenografts in 96AI, 23.1, 78 and 69.  

LAPC-4 cell line with the highest expression of MIIP was chosen for experiments 

with small interfering RNAs (siRNAs) to properly see the effects of gene silencing. 

LAPC-4 cells were transfected with four different siRNAs targeting MIIP (indicated 

with numbers 1,2,3 and 4), a pool of aforementioned containing equal amount of each 

siRNA and a control siRNA in two different concentrations to determine the optimal 

transfection conditions. Relative expression of MIIP was measured from the samples 

with quantitative RT-PCR and the results can be seen in Figure 7. 
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Figure 7: Relative expression of MIIP (MIIP/TBP) in LAPC-4 after different siRNA 

transfections. 

 

MIIP was found to be most efficiently silenced with 50 nM siRNAs 1 and 3. In 

those samples, the expression of MIIP was less than one third of that of the control. The 

difference in expression between siRNAs 2 and 3 was so small, that siRNA 1 and 2 

were used for proliferation assays. In the migration assay, also siRNA 3 was included. 

Interestingly, DU145, a cell line derived from PC brain metastasis, was found to 

express MIIP in relatively low levels, and to carry only one copy of MIIP and the more 

risk prone A-genotype of the SNP rs2295283. For these reasons, and due to fast growth 

of cells, DU145 cells were chosen for MIIP overexpression studies. DU145 cells were 

transfected with a pCMV6-AC-HA plasmid containing MIIP and an empty pCMV6-

AC-HA control plasmid. Stable clones were created and their relative expression of 

MIIP was measured. Results are shown in Figure 8. 
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Figure 8: Relative expression of MIIP (MIIP/TBP) in stable DU145 clones. 

 

Over eightfold expression was seen in clones MIIP A1 and MIIP A6 transfected 

with the plasmid containing MIIP when compared to controls empty A2 and empty A4 

with the lowest expression of MIIP (clones indicated MIIP A1, MIIP A6, empty A2 and 

empty A4 according to the wells they were first ringcloned to in 96-wellplates).  

 

9.2.2 MIIP protein level 

Due to technical difficulties, MIIP protein level could not be measured. Protein 

concentrations after isolation were low or could not be measured for most nuclear 

protein components. 

9.3 Proliferation assays 

 

Relative growth of transfected cells was assessed with image analysis method and with 

alamarBlue method as described in sections 8.7.1 and 8.7.2. 

Relative growth of siRNA transfected LAPC-4 cells measured with both methods 

are shown in Figures 10 and 11. 
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Figure 10: Relative growth of siRNA transfected LAPC-4 cells obtained by image 

                  analysis 

 

 
Figure 11: Relative growth of siRNA transfected LAPC-4 obtained with alamarBlue 
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growth was seen with MIIP siRNA 1. However, the misguided information is due to 

floating cells that the image analysis software incorrectly interpreted as growing cells.  

Image analysis results show, that the growth of the cells transfected with MIIP 

siRNA 2 was faster than with the cells transfected with control siRNA (p=0.03<0.05, 

Mann-Whitney U-test). On the contrary, alamarBlue results show that the metabolism in 

MIIP siRNA 2 transfected cells is lower than in the control (p=0.03<0.05, Mann-

Whitney U-test) It should be noted that transfections with the control siRNA caused 

changes in the phenotype of the cells. LAPC-4 cells grow clustered together also in 

normal conditions but the transfection with control siRNA caused the cell clusters to be 

more round and distinct from each other.  

Relative growth of stable, MIIP overexpressing DU145 clones was also assessed 

with both methods and the results are seen in Figures 12 and 13.  

 

 

Figure 12: Relative growth of stable DU145 clones obtained by image analysis. 
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Figure 13: Relative growth of stable DU145 clones obtained with alamarBlue. 

 

With image analysis, it was seen that the growth was only a little faster with the 

clones with the higher expression of MIIP (MIIP A1 and MIIP A6) than with the empty 

controls (empty A2 and empty A4) (p=0.19>0.05, Mann-Whitney U-test). The growth 

of all transfected clones (MIIP and empty control) was significantly faster than with 

parental DU145 (p=0.0004<0.05, Mann-Whitney U-test). AlamarBlue showed that the 

metabolic activity was significantly higher in controls empty A2 and empty A4 than in 

MIIP A1 and MIIP A6 clones with higher expression of MIIP (p=0,0002<0,05, Mann-

Whitney U-test). The lowest metabolic activity in the transfected clones was observed 

in MIIP A6 which had the highest expression of MIIP. 

 

9.4 Migration assays 

The effect of MIIP expression on cell migration was studied with scratch assay. Figure 

14 representing relative scratch size in siRNA transfected LAPC-4 shows that 

significant difference was not seen between migration in cells transfected with MIIP 

siRNAs and cells transfected with control siRNA (p=0,33>0,05, Mann-Whitney U-test). 

Transfection with MIIP siRNA 1 did not cause the cells to completely detach from the 

bottom of the wells as in the proliferation assay, but it prevented the cells from 

migrating. Transfection in general with all siRNAs inhibited migration which was seen 

when compared to parental LAPC-4 (data not shown). 

0

2

4

6

8

10

12

MIIP A1 MIIP A6 empty A2 empty A4 DU145



   45 
 

 

Figure 14: Relative scratch size in siRNA transfected LAPC-4 cells. 

 

Results of the effect of MIIP overexpression on cell migration in stable DU145 

clones are shown in Figure 15.  

 

 

Figure 15: Relative scratch size in stable DU145 clones and in parental DU145. 
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The migration of parental DU145 was very significantly faster than that of 

transfected clones (p=0,000075<0,05, Mann-Whitney U-test) and clones MIIP A1 and 

MIIP A6 migrated significantly faster than clones empty A2 and empty A4 

(p=0,000018<0,05, Mann-Whitney U-test). 
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10. DISCUSSION 

In this study, we examined the effect of MIIP on prostate cancer cell proliferation and 

migration by overexpressing and silencing MIIP in two prostate cancer cell lines. In 

addition, the gene was screened for mutations and SNP rs2295283 previously proven to 

affect the risk of breast cancer. Previous studies have shown overexpression of MIIP to 

inhibit proliferation and migration in glioma cell lines (Song et al. 2003). This gene and 

its effects in prostate cancer have not been previously studied. Due to its significance in 

other cancer types, mechanisms of action of the protein and the location of the gene in a 

commonly deleted area, the effect of MIIP in prostate cancer is a topic worth studying.  

 

10.1 Methodological aspects 

MIIP protein level could not be discovered. One possible reason for this could lie in the 

used antibody. The antibody has previously been used in another research group with no 

problems. However, the received aliquot had been stored for some time before using it 

again in this assay. Even though it had been stored according to manufacturer’s 

instructions, it is possible that the storage time could have reduced the efficacy of the 

antibody. Since the antibody used was against the human influenza hemagglutinin (HA) 

tag of the protein, it is also possible that for some reason the expression of the tag was 

disrupted and caused the antibody not to recognize the protein. 

Image analysis was done using ImageJ software. Measured proliferation was based 

on the area of the cells covering the well. Since the area of the wells is relatively small, 

any air bubbles left in the surface of the growth media during plating or media 

exchange, might affect the amount of cells seen in a specific image.  

ImageJ program calculated the area covered by cells based on contrast differences 

between areas where cells were growing and the background. Since cells were grown in 

a humidified incubator, condensing water on the lids of the plates made lightning 

adjustments of the microscope very difficult as the amount of condensed water was 

different on each well and at each timepoint. Too much lightning caused ImageJ to 

interpret also areas with cells as background, especially with DU145 cells which seem 

very transparent in the bottom of the culture vessel. Contrast could be enhanced with 

ImageJ, but it probably still caused some errors in the calculated values. Also floating 

cells detached from the bottom were incorrectly interpreted as growing cells by the 

software and might have had an effect on the achieved results.  
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Scratch area was measured with ImageJ by manually defining the edges of the 

scratch. Although the work was done with utmost attention in the accuracy, human 

errors are still possible. Due to these numerous difficulties, results from image analysis 

methods in both assays are very unreliable. Results from alamarBlue method should be 

considered more trustworthy. 

Transfections with all siRNAs reduced proliferation and migration when compared 

to parental LAPC-4 cells. Transfections with all siRNAs also caused changes in the 

phenotype of the cells and transfection with MIIP siRNA1 caused the cells to detach 

from the bottom of the wells in the proliferation assay. Transfection in general is a 

procedure that can disrupt the highly orchestrated balance of cellular functions so these 

alterations could be due to that. It is also possible that the siRNAs were not completely 

specific to MIIP and interfered also the expression of other genes. In migration assays, 

transfection efficiency also suffers from the fact that cell density is high. Maybe by 

optimizing the transfection conditions even further and possibly using a lower 

concentration of siRNAs, better results could have been achieved. Therefore, 

conclusions about the connection of silencing MIIP and cell migration cannot be drawn 

until the assays have been replicated with different conditions and possibly different 

siRNAs and the results confirmed. 

10.2 Sequencing 

The entire MIIP gene was sequenced from prostate cancer cell lines and xenografts for 

mutations and SNPs. Mutations have not been found in previous studies in other cancers 

and they were not distinguished in this study either (Song et al. 2005, Wang et al. 2010). 

However, as stated earlier, this does not rule out MIIP being a tumor suppressor. 

Mutation is not the only mechanisms that can inactivate tumor suppressors and since the 

overall mutation rate in prostate cancer is relatively low (~1 per MB) compared to other 

cancers, these alternative inactivating mechanisms may play even bigger role in prostate 

cancer than in other cancers (Barbieri and Tomlings 2014). One possible way could be 

alternative splicing, which has been seen in gliomas and was not studied in this thesis 

(Song et al. 2005). 

If SNP rs2295283 would have a drastic effect on prostate cancer risk, it could be 

thought that the more risk prone allele A would be more common among cancer cell 

lines and xenografts. However, most of the samples carried the protective G allele in 

their genotype either as homozygous or heterozygous. This would implicate that SNP 

rs2295283 has no considerable effect on prostate cancer risk. In addition, clear 

correlation between SNP rs2295283 variant and expression of MIIP was not seen, 

supporting this conclusion. 

 



   49 
 

10.3 Proliferation and migration assays 

It could be hypothesized that when a tumor suppressor gene is silenced, the growth of 

these cells is accelerated. And in turn, when the expression of a tumor suppressor is 

increased, growth is hindered. However, in reality the situation is not necessarily that 

simple. Since the regulatory mechanisms of cancer cells are already impaired, silencing 

yet another protection mechanism could function as the final trigger to induce apoptosis. 

Then again, cancer cells develop mechanisms to overcome growth obstacles rather 

readily (Hanahan and Weinberg 2000). Thus, overexpressing a single growth 

suppressing gene may not have that drastic effect on growth, when growth inhibitory 

signals are cancelled out with new or excess growth promoting ones. 

Transfections with all siRNAs inhibited LAPC-4 cell migration compared to 

parental cells and significant differences in migration between cells transfected with 

MIIP siRNAs or with control siRNA were not seen. Image analysis showed that the 

growth of the cells transfected with MIIP siRNA 2 was faster than with the cells 

transfected with control siRNA but as stated earlier, results are not very reliable. On the 

contrary, alamarBlue results show that the metabolism in MIIP siRNA transfected cells 

is lower than in the control.  

In the proliferation assays, image analysis method revealed that stable MIIP 

overexpressing DU145 cells proliferated slightly faster than cells transfected with the 

control vector and significant differences were not observed. All transfected cells also 

proliferated faster than parental DU145 cells. However, results of the image analysis 

method cannot be fully trusted. AlamarBlue assay showed the metabolic activity of cells 

transfected with MIIP to be significantly lower than in cells transfected with control 

vector. Metabolic activity of parental DU145 cells was found to be lower than that of 

transfected ones. Transfection in general seemed to decelerate migration since migration 

of all transfected clones was significantly slower than that of parental DU145. DU145 

cells overexpressing MIIP also migrated significantly faster that cells transfected with 

control vector.  

In both cell lines and transfection methods, similar contradiction was seen in the 

proliferation results of image analysis method and alamarBlue method. It is possible 

that even though overexpression of MIIP did not slow DU145 cell growth, it caused 

changes in cell metabolic activity. The metabolic activity of the transfected clones was 

seen to be the lowest with the DU145 clone expressing highest levels of MIIP, which 

supports this possibility. However, it is more likely that this contradiction is caused by 

some systematic error in performing the assays or by the problems with image analysis. 

Due to numerous technical difficulties in the image analysis method, results of 

alamarBlue should be considered more reliable and results of image analysis method in 

both assays should not be fully trusted. Differences between samples transfected with 

siRNAs were so minor, even though considered statistically significant, and number of 

samples was so small that conclusions should not be drawn, especially when taking into 

notice other issues related to the siRNA transfections described earlier. 
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A simple explanation for the results could be that MIIP does not have a direct effect 

on cell proliferation and migration and for that reason overexpression or silencing of the 

gene does not have an apparent effect on the behaviour of the cells on such short time 

scale. The observed changes in cell growth and migration can also be due to other 

factors, such as harmful effects of the transfection process, transfection efficiency or 

other extrinsic factors. Also, the effect of MIIP on proliferation and migration in 

prostate cancer cells might be dependent on some other, still unknown factor or factors 

that were not present in sufficient quantities in the studied cells. 

It is also possible, that other prostate cancer cell lines would behave differently in 

these assays. They all have their distinct properties and only LAPC-4 and DU145 cells 

were tested in this study. It should be noted, that stable transfections with pCMV-AC-

HA-MIIP and the control vector was attempted also for LNCaP cell line (data not 

shown). Despite optimizing the transfection protocol several times and using different 

transfection reagents, stable clones overexpressing MIIP eventually died. It is possible 

that overexpression of MIIP had a more notable inhibitory effect on cell growth in 

LNCaP cells and cell death was at least partly due to that. Then again, also cells 

transfected with control vector eventually died, although later than those overexpressing 

MIIP. Thus, the reason for the failure in maintaining transfected cells was more likely 

that LNCaP cells were more sensitive to transfection conditions and optimal conditions 

were not found in spite of persistent attempts. 

It should also be remembered that prostate cancer cell lines and clinical prostate 

cancer are very different things. Clinical prostate cancer is genetically remarkably 

heterogenic and clinically variable (Barbieri and Tomlings 2014). Many changes occur 

in cancer cells during progression of the disease and cancer cell lines represent quite 

advanced stages of cancer. The behaviour of cells also changes when they are grown in 

laboratory conditions and go through multiple passaging series. However, they 

represent an easy and in some cases also only possibility to model effects of different 

genetic events on behaviour of cells. It is still possible that MIIP could have a more 

profound effect in earlier stages of prostate cancer. 
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11. CONCLUSIONS 

In conclusion, the observed effect of MIIP in prostate cancer cells was small and 

inconsistent. It seems unlikely that MIIP plays a significant role in all or most prostate 

cancer cases. However, prostate cancer is very heterogeneous and there are numerous 

different kinds of prostate cancers. It is thus possible, that MIIP has an important effect 

in genesis and/or progression of some of the subtypes, even though tests with the 

studied cell lines and xenografts did not reveal significant effects. More experiments are 

needed to fully uncover the effect of MIIP in prostate cancer cells. 
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APPENDIX 1: SOLUTIONS USED IN DIGNAM’S METHOD 

Hypotonic buffer: 

10 mM Hepes, pH 7.9 

1.5mM MgCl2 

10mM KCl 

0.2mM PMSF 

0.5mM dithiothreitol (DTT) 

 

Low-salt buffer: 

20mM Hepes, pH 7.9 

25% glycerol 

1.5mM Mgcl2 

20mM KCl 

0.2mM EDTA 

0.2mM PMSF 

0.5mM DTT 

 

High-salt buffer: 

20mM Hepes, pH 7.9 

25% glycerol 

1.5mM Mgcl2 

1.2M KCl 

0.2mM EDTA 

0.2mM PMSF 

0.5mM DTT 
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APPENDIX 2: COMPOSITIONS OF GELS AND BUFFERS USED 

IN SDS-PAGE 

Separating gel: 

 

H2O     6,2 ml 

Glycerol     2 ml 

1.5 M Tris     5 ml 

30% Acrylamide-N,N’methylene-bis-acrylamide mix  6.7 ml 

10% Ammonium persulfate (APS)  100 µl 

N,N,N’,N’-tetramethylenediamine (TEMED)  10 µl 

 

Stacker gel: 

 

H2O     6.5 ml 

0.5 M Tris     2.5 ml 

30% Acrylamide-N,N’methylene-bis-acrylamide mix  1.3 ml 

10% Ammonium persulfate (APS)  90 µl 

N,N,N’,N’-tetramethylenediamine (TEMED)  10 µl 

 

Running buffer: 

 

25mM Tris 

190 mM glycine 

0.1% SDS 

 

Blotting buffer: 

 

48mM Tris 

39mM glycine 

0.0375% SDS 

10% methanol 
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APPENDIX 3: IMAGES OF PROLIFERATION ASSAYS 
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APPENDIX 4: IMAGES OF MIGRATION ASSAYS 
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