
Miro Nieminen
Fallback Mechanisms for Connection Loss in Single-Page Web
Applications
Master of Science Thesis

Examiners: Tommi Mikkonen
Examiners and topic approved in
the Information Technology
Department Council meeting on
08.04.2015



I

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
Miro Nieminen: Fallback Mechanisms for Connection Loss in Single-Page
Web Applications
Diplomityö, 53 sivua
Toukokuu 2015
Pääaine: Ohjelmistotuotanto
Tarkastajat: Tommi Mikkonen
Avainsanat: JavaScript, Web Application, Single-Page Application, Computer Supported
Collaborative Work, Offline Support

Web-teknologioiden nopea kehittyminen niin työpöytä- kuin mobiililaitteissa on
tehnyt selaimesta varteenotettavan sovellusalustan lähes kaikenlaisille ohjelmistoille.
Suorituskykyisen selaimen löytyminen yhä useammasta taskusta tekee web-teknolo-
gioiden käyttämisestä yhä houkuttelevampaa ja kustannustehokkaampaa myös to-
teutettaessa liiketoimintakriittisiä sovelluksia.

Mobiililaitteiden määrän kasvuvauhti on ohittanut matkapuhelinverkkojen datay-
hteyksien kantokyvyn kasvuvauhdin. Laitteita myös käytetään yhä syrjäisemmissä
sijainneissa, missä datayhteydet ovat rajallisia tai jopa olemattomia. Tämä aiheut-
taa ongelmia käytettäessä web-sovelluksia, joiden toiminta on riippuvainen yhtey-
destä palvelimeen. Huono datayhteys tuottaa ongelmia web-sovelluksen käyttäjälle,
kun sovellus saattaa olla hetkittäin täysin toimimattomassa tilassa.

Tässä työssä keskitytään siihen, miten web-kehittäjät voivat varautua yhteyden
katkoksiin ja heikkoon laatuun sovellustasolla. Työn pohjana käytetään tapaus-
tutkimusta, missä päiväkotiympäristössä käytettävään Päikky-sovellukseen lisätään
offline-tuki. Tapaustutkimuksessa toteutettuja ratkaisuja arvioidaan käyttäjähaas-
tattelujen avulla sen kannalta, miten ne sopivat yleispäteviksi ratkaisumalleiksi web-
sovelluksissa yhteyskatkosten varalle. Tehtyjä ratkaisuja arvioidaan myös käytet-
tävyysnäkökulmasta, ja siitä, miten ne tukevat keskivertokäyttäjää ja ovat tälle
ymmärrettävissä.

Työn tulosten pohjalta esitetään suunnitteluperiaatteita sovelluskehittäjille yh-
teyskatkoksiin varautumista varten. Käyttäjähaastatteluissa ilmenneet epäkohdat
ratkaisun käyttökokemuksesa listataan ja niihin ehdotetaan mahdollisia parannus-
ehdotuksia.

Työn keskeisimmät tulokset osoittavat, että yhteysongelmiin tulee ainakin jol-
lakin tasolla varautua nykypäivänä kaikissa liiketoimintakriittisissä web-sovelluksissa.
Vaikka varsinaista offline-tukea ei toteutettaisikaan, voidaan työssä esitetyillä suun-
nitteluperiaatteilla parantaa huomattavasti web-sovelluksen käyttökokemusta.



II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
Miro Nieminen: Fallback Mechanisms for Connection Loss in Single-Page
Web Applications
Master of Science Thesis, 53 pages
May 2015
Major: Software Engineering
Examiner: Tommi Mikkonen
Keywords: JavaScript, Web Application, Single-Page Application, Computer Supported
Collaborative Work, Offline Support

Fast-paced evolution of web technologies in both desktop and mobile devices has
made browser environment a reckoned platform for almost any kind of application.
The fact that more and more people are carrying efficient browsers in their pockets
makes usage of web technologies more tempting and cost efficient solution even when
creating business critical applications.

The growth rate of mobile device usage has surpassed the rate in which new mobile
network is built. The devices are also used in more distant locations where the
data connection of the mobile network can be very limited or almost non-existent.
This causes problems when using web applications, which are dependent on the
connection to the server. Bad connectivity results in a degenerated user experience,
since the application might be completely unusable when the connection is dropped.

In this thesis we focus on how web developers could prepare the application for
connection loss on the application level. The research is based on a case study, in
which Päikky, an application from the kindergarten domain, is implemented with
an offline support. The solutions done on the case study’s offline support implemen-
tation are evaluated with user interviews from a technical viewpoint and from the
user experience perspective. The emphasis on the evaluation is that could the solu-
tions be generalized as a design guidelines for offline support, and are the solutions
understandable and usable for an average user.

Based on the results of the research a set of design guidelines for offline support
implementation are defined. The user experience flaws found in the user interviews
are listed, and possible solutions for them are discussed.

The essential results of this thesis indicate that connection issues are something
that application should be prepared for, at least if the application is business critical.
Even if there is no need for a full offline support, following the guidelines introduced
will improve any web application’s user experience significantly.



III

PREFACE

Academic writing surely is not for everyone, I can tell you that. The booklet you
are holding (or watching via screen) is the result of the mentally hardest project I
have ever pulled through. Even if I never actually doubt myself about finishing this
thesis, there were some dark moments during the creation of this ensemble.

This space is usually used for thanking relevant people. And by coincidence also
I have several people to thank for making this thesis happen.

I would like to thank my examiner Professor Tommi Mikkonen, who has the amaz-
ing ability to make the writing of a thesis to sound always so easy and straightforward
task. The various hands-on advices which made the writing easier were also highly
appreciated.

The completion of this thesis is a fact thanks to also my instructor D.Sc. Sami
Vihavainen, to whom I surely was not the most optimal thesis worker to mentor.
Even after three weeks of full-time thesis work which resulted only under 5 pages
of text Sami could find the positive sides of the work done and encourage me to go
further.

Massive thanks goes also to my employee Futurice, which supplied the extraor-
dinarily awesome circumstances for the creation of this thesis. Especially I HAVE
to thank the allmighty tribe Tammerforce, since without the peer pressure provided
by them this thesis would still be in the making.

Lastly I would like to send love to my home team J and D, who cheered me
through this project and withstanded my constant tantrums during it.

And now, as they say in Finland: “Torille!”

Tampere, April 17, 2015 Miro Nieminen



IV

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Single-Page Applications . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 REST APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Computer Supported Collaborative Work . . . . . . . . . . . . . . . . 7
2.3 Connectivity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Case Päikky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Kindergarten UI . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Presence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Presence Status and Presence State Machine . . . . . . . . . . . 17

3.2 Need for Offline Support on Päikky . . . . . . . . . . . . . . . . . . . 18
4. Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Design Science Research . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Data Collection with Semi-Structured Interviews . . . . . . . . . . . . 22
4.3.1 Finding Interviewees . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Preparing Interviews . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 Conducting Interviews . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.4 Analyzing Interviews . . . . . . . . . . . . . . . . . . . . . . . . . 24

5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 The Goal for the Offline Support . . . . . . . . . . . . . . . . . . . . 25
5.2 State Transitions to and from the Offline Mode . . . . . . . . . . . . 26
5.3 Limited Feature Set in Offline Mode . . . . . . . . . . . . . . . . . . 26
5.3.1 Disabled Features . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Simplified Data Synchronizing . . . . . . . . . . . . . . . . . . . 27

5.4 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.1 HTTP Cache Headers . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.2 Application Cache . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.3 Monitoring Connection Quality . . . . . . . . . . . . . . . . . . . 32
5.4.4 Using Local Storage as a Cache . . . . . . . . . . . . . . . . . . . 33



V

5.4.5 Job Queue: Promise-based Presence Marking Queue . . . . . . . 34
5.4.6 Storing and Receiving Presence Markings on the Backend . . . . 35
5.4.7 Duplicating the Presence State Machine . . . . . . . . . . . . . . 36

6. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1 User Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.1 General Feedback regarding Päikky Usage . . . . . . . . . . . . . 39
6.1.2 User Experience of Offline Mode Implementation . . . . . . . . . 40
6.1.3 User Experience of Limited Feature Set . . . . . . . . . . . . . . 42
6.1.4 Users’ Understanding of the Offline Mode . . . . . . . . . . . . . 42

6.2 Technical Effectiveness of the Implementation . . . . . . . . . . . . . 43
7. Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.1 Recognize the Essential Feature Set for Offline Support . . . . . . 45
7.1.2 Prepare for Possible Offline Support . . . . . . . . . . . . . . . . 46
7.1.3 Use Application Cache . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A. Appendix: Interview Template . . . . . . . . . . . . . . . . . . . . . . . . . 54



1

1. INTRODUCTION

The world is digitalizing around us in an increasing a pace. More and more of our
work tasks and everyday activities are affiliated to digital devices and services. Most
of these things are often useless without connectivity to a broader context, usually
the Internet.

Age of the desktop hegemony is already over. Globally over a third of the Internet
usage is done with mobile devices (smartphones and tablets) [1]. Unlike as in the
desktop devices, which usually are operated from static location aided by physical
access to the Internet, mobile devices often travel with their owners where ever they
might go. This creates challenges for connectivity which is nowadays essential for
the proper usage of the device.

The problem with mobile devices is that mobile broadband coverage varies within
different locations. When a mobile device is not in the coverage area of a Wireless
Local Area Network, the device relies on a possible mobile broadband connection.
When moving away from the nearest base station the reception of the signal weak-
ens. Mobile device user experiences this as an increased latency times, lower data
transferring speeds, or even as a total blackout of the broadband service. When
moving away from highly populated areas this is inevitable, since not all locations
are to be covered properly while keeping cost efficiency on a sane level, especially in
countries with large acreage but low population, like Finland. However digitaliza-
tion of services is even more important on places like this, since supplying physical
services to areas with a low population density is expensive.

This makes digital services more and more common in business critical tasks for
a emerging amount of applications. But how to use services and devices dependent
on the Internet with a coincidental connection? With the increasing mobile device
usage, adding offline support at least in some level will not be an uncommon task
for any web developer.

The Internet is build on top of the client-server -paradigm [2]. This means that
the server holds the master data, and clients has to do all the data fetching and
modifying through the server. Without connectivity to the Internet, the client has
to manage with the content it might already have loaded. This is the basic problem
surrounding connectivity issues – without access to the Internet, there is not much
what the client can do.



1. Introduction 2

1.1 Context

This thesis studies one real-life case of implementing offline support to already exist-
ing system created for supporting kindergarten personnel and the parents of daycare
children, the Päikky system. Päikky is used by various kindergartens in Finland and
its key feature is to provide passage control mechanism for the kindergarten’s chil-
dren.

The Päikky system is owned and managed by MukavaIT Oy (later referred to
as the client organization on this thesis), a Finnish start-up company. The client
organization has bought consulting and development to Päikky from Futurice Oy,
where the author of this thesis has also worked as a part of the Päikky development
team.

On a high level Päikky consists of four modules: Family UI, Kindergarten UI,
Manager UI and the backend. Under this thesis’ analysis is especially the Kinder-
garten UI, which is a mobile-first designed web application. Kindergarten nurses
use the Kindergarten UI on smartphones every time a child enters or leaves the
kindergarten. As this is an additional task to their current workload, it has to be
as effortless as possible, especially when it is performed tens of times per day.

The Kindergarten UI is a web application built in accordance with the single-
page application paradigm. In contrary to traditional web pages, where the server
outputs the requested content as structured and stylized HTML content, single-page
apps use mainly REST APIs1 for the exchange of the data. With REST API after
web application initialization only the actual information can be transfered between
the client and the browser, making the client in charge for the rendering format and
style of the data. This results in a business logic being duplicated on the browser,
making the client more “fat”. Since the logic exists side by side on the client as well
as on the server, the client can be prepared to operate even when the connectivity
to the server is temporarily lost.

In this thesis the emphasis will be on how to deal with the connection issue
inside the browser environment, ignoring the possible solutions that could be done
on the device platform tier. Therefore results of this thesis will apply for browsers
in desktop computers, tablet devices and mobile phones, while leaving the network
level solutions out of the scope.

1.2 Research Objectives

This thesis researches an implementation of an offline mode to an existing single-page
application, and studies the possible missteps that were made. Ultimately this thesis
aims to define design guidelines for both user experience and software development

1Representational State Transfer API



1. Introduction 3

-wise, so other developers would be able to achieve offline support implementation
with less work and potentially with better results.

The objective of this research is to find useful and working fallback mechanisms for
connectivity loss in single-page web applications, in both from the user experience
perspective and from the developer’s viewpoint. The state where the application
loses the connectivity to the Internet is referred on this thesis as an offline mode.
In this thesis an artifact is implemented and evaluated which allows the user to
continue their tasks when the connection is lost and the application enters the offline
mode.

From software development point of view the question is, how to deliver seamless
user experience, even when the connectivity is bad or nonexistent? How much
resources can this reserve on the development phase? Is it possible to abstract the
connection quality completely away and handle the issues with connection internally
on the application level, invisible to the user?

From the user experience perspective thesis concentrates on how to notify the
user about the loss of Internet connection. Does the user need to be notified at all?
If the user is notified, what is exactly the message that needs to be told?

This thesis answers to the following question:

‘ ‘How to develop fallback mechanisms efficiently for Internet connection
shortages on a single-page web application to support user experience”

Based on the research, implementation and evaluation done on this thesis, a
recommendations for other developers are presented on the form of design guidelines.

1.3 Structure of this Thesis

Chapter 2 opens up the background in which from the themes of this thesis are
originating from. The research gap in which this thesis resides is also introduced.
Chapter 3 describes the real-life case which is in a vital role on this thesis. Parts
that are essential for understanding the concepts discussed on this thesis are opened
thoroughly. Chapter 4 introduces the methods used to conduct the research done
on this thesis. On Chapter 5 technical solutions implemented are summed up and
described. On Chapter 6 these solutions are evaluated, from both technical view-
point and from the user experience perspective. Evaluation is done based on user
interviews conducted during this thesis. Chapter 7 presents the design guidelines
formed based on the evaluation done on the previous chapters. Also aspects noted
during the evaluation but which were too indeterminate to be design guidelines are
discussed on the same chapter. Conclusions done based on the implementation and
the evaluation of the offline support are presented on the Chapter 8.



4

2. BACKGROUND

In this chapter the three prime themes around this thesis are introduced. Basic
knowledge of these themes are required in order to fully comprehend all the aspects
on the case study investigated on this thesis later on.

The basics of web as an application platform and more precisely the single-page
application paradigm are introduced as it is the method how the web application
is built on the case study. The concept of computer supported collaborative work
is introduced since the case study’s application is essentially that: multiple users
collaboratively viewing and editing the same data set. The most usual types of
connectivity issues and the reasons for them are portrayed, since the disruption
created by them to the case study’s application created the actual need for offline
supported functionalities in the first place.

2.1 Web Applications

In the past decade the software industry as a whole has been facing a major paradigm
shift on the way how and where applications are developed and operated. Progress in
web technologies and standards have made it possible for the browser environment to
become a more and more powerful but still universal computing platform. Software
applications that were previously built for different kind of operating system and
CPU combinations are now written with web technologies and run on the browser.
This change is mainly accomplished by the power of distribution the web platform
provides. Software provider or the organization’s IT function does not have to take
care of updating end user software to the latest version anymore, because the client-
server paradigm[2] makes running outdated software version virtually impossible.
In a traditional desktop application patching the software to fix bugs or introducing
a new feature requires downloading a installer or a patcher and then it must be
run on the computer. This requires action from the user or from the IT function.
This might not cover the whole upgrading process in every situation: sometimes
updating dependent libraries or operating system might be required. It also enables
possibility for different computers to be running different versions of the software,
creating circumstances for version mismatches between different clients. [3] [4]

The move from individual installations to a centralized services reverses the gen-
eral model how software is operated, the model which has been dominating since the



2. Background 5

start of the personal computing revolution [3, Chapter 3.3]. As stated above, this
comes with many benefits. One of the most important ones is the (almost) unified
platform provided for the developers. Thanks to automatic update mechanisms of
the modern browsers, this platform is one of the fastest updating ones there is when
it comes to speed of patches applied to end users’ computers [5]. Due to the easiness
of the deployment process, it is not unusual to see web application rolling in releases
to production on daily or even on hourly basis [3, Chapter 3.3].

2.1.1 Single-Page Applications

Executing complicated applications on the web platform has been made possible by
the evolution of the web pages from “classic”, static presentation consisting of single
pages to a more interactive and collaborative web applications. In the early phases of
World Wide Web user navigated through hyperlinks within single pages each of them
being formed and served by the server. Client, the browser, was responsible only
for rendering the response of the server. [4] The current state of technology allows
more of the functionality to be moved or duplicated from the server to the client.
When before web pages on the browser were stateless, and the state transforms were
done while moving to a new page, now it is possible for the browser to handle the
state transitions and retrieve only the needed data from the server when required
via AJAX1-requests. [6]

Applications following the paradigm described above can be generalized to be
single-page applications. These kinds of web applications makes a request to the
server, and based on the data of the server’s response, they form the layout of
the page manipulating the browser’s Document Object Model in real time. This is
contrary to the traditional paradigm where based on the client’s request the server
creates the layout for the data and sends an whole HTML page as a response, and
the whole page is refreshed in result. This is also the etymology behind the name of
the paradigm: there is no need for user to navigate away from the page, even when
the views on the application change.

The application state handling on the browser environment and the increased
amount of possibilities on the browser creates the basis for modern web development
and the platform for the offline feature: the single-page application. Single-page
application is tightly relevant to other hype terms such asWeb 2.0 and the nowadays
partly old-fashioned term DHTML2. All single-page applications could be called
Web 2.0 applications, but not all Web 2.0 applications are single-page applications.
While traditional web pages where synchronously fetched and generated by the web
server, single-page application relies on asynchronous pattern on data fetching. [7]

1Asynchronous JavaScript + XML
2Dynamic HTML



2. Background 6

With the asynchronous pattern the browser can fetch resources on smaller chunks
when the need arises, usually through REST APIs [8]. This also makes possible the
premise for an occasionally connected application, meaning that the web application
can function without having a continuous Internet connection [9]. The application
has the ability to fetch data from the API when there is connectivity, and when
the connectivity disappears it can function with application logic downloaded to the
browser. This widens a lot the range of use cases which can be covered by web
applications.

2.1.2 REST APIs

REST is a term first time introduced by Roy Fielding in his Ph.D. dissertation [10]
as a description for an architecture style of networked systems. The REST acronym
stands for Representational State Transfer. Even the term REST comes up often in
materials relating to web technologies, it has to be remembered that it is more of
an idea for architectural style than an actual well-defined standard.

Roy Fielding explained the term on his dissertation in the following way:

“Representational State Transfer is intended to evoke an image of how a
well-designed Web application behaves: a network of web pages (a vir-
tual state-machine), where the user progresses through an application
by selecting links (state transitions) resulting in the next page (repre-
senting the next state of the application) being transferred to the user
and rendered for their use.”

The momentum behind the wide use of the REST principles rises from the key
motivation behind it: REST captures the key components and ideas of which made
the Web successful. These characteristics are in use with guiding the evolution of
the Web today. [11]

All the single-page applications that interact with data that is used by various
clients requires some kind of backend service. Usually this is provided by creating
application programming interfaces (later on referrenced by APIs) on the backend for
the client-server communication. In practice the API exposes methods for fetching
and altering the server’s data. Therefore APIs can be thought as the face for the
web service, aimed for listening and responding the clients’ requests. [8]

Figure 2.1 provides a presentation from Masse [8] about the general principle
regarding a REST API. Well designed REST API is easily understood by humans,
since the URLs themselves should describe precisely what resources will be returned
to requests send to them. Using the URLs together with a describing HTTP method
as a “verb” for the operation makes the whole design logical. A REST API can be
thought as an assembly of interlinked resources. These resources forms the REST



2. Background 7

Figure 2.1: Basic structure of a REST API service, based on the work by Masse [8]
.

API’s resource model. [8]
REST APIs plays an integral part in single-page applications. After the client side

code is initialized on the browser, all the actual content (depending on the context
whatever that might be) is fetched to the browser via an API which nowadays are
almost always RESTful. All the modification and the creation of the data is also
done through the functionality exposed to the client by the API. Usually the data is
transferred between the client and the server using JSON objects (JavaScript Object
Notation) for the payload.

2.2 Computer Supported Collaborative Work

As the automation level of work tasks keeps getting higher, many of the tasks left for
human actors on the modern working life gets more complex. The nature of the work
also transforms to be much more distributed than before, both in the sense of location
and time. There is for example a lot more of problem solving and rule interpreting
left for the human employees to solve which usually need to be coordinated within the
other actors related to that activity. When doing decisions information from several
sources have to be considered and noted. Computer Supported Collaborative Work
(later referred to as CSCW) is a field of study concentrating on how collaborative
actions and coordination of them can be aided by support of computer systems. The
term was introduced for the first time in 1984 by Irene Greif and Paul M. Cashman.
[12]

The Web has been seen as a prolific platform for CSCW implementations since
the creation of WWW. The general idea behind WWW by Tim-Berners Lee could
be seen as an implementation of a CSCW system. Despite the limitations set by
the primitive web technologies of that time, the first implementations of CSCW
saw daylight and wide usage already on the 1990’s. Usual application for that time
concentrated on storing documents on a shared workspace, where a given group could
browse and share the documents relating to their work. Even with the limitations
set by the web technology that would seem very primitive compared to modern
standards, the power of web and “its ability to provide basic features for cooperation



2. Background 8

Figure 2.2: Collaborative systems in time / space matrix, based on the work by Saad and
Maher [15].

in an integrated service, accessible from different computing platforms and making
no demands on users to adopt new word processing, spreadsheet or other application
software” was recognized to be from the highest of potentials. [13]

People using CSCW tools can often be described as a group of individuals working
synchronously or asynchronously towards of achieving common goal(s). Depending
on the situation they can be located on different locations geographically and/or on
different time zones. In circumstances such as these all of the people involved have
to have up-to-date awareness about each other’s intentions, actions and results. [14]

From Figure 2.2 a reproduced time / space matrix of collaborative systems can be
seen based on research done by Saad and Maher [15]. This matrix splits the types
of collaborative systems in to four categories. These categories are not explicitly
limited to the CSCW domain but they concern collaboration activities in general.
Face to face discussion is the most common case of collaboration happening on same
place and time. Traditional physical bulletin boards are an example of collaboration
happening on same place different time. Video conference systems are nowadays a
common scenario of people from different locations collaborating simultaneously.
The evolved Internet version of bulletin boards – forums and wikis – can be seen as
a way of working from different place and on a different time. That is also the sweet
spot for CSCW systems; they deliver the most value to the users when they allow
people to collaborate without location or time restrictions.

CSCW tools can also be used to create disruption to the hierarchies of the applied
work environment, while getting more of the stakeholders involved in the creation
of the information. For example in kindergartens the primary gatekeepers for the
information flow towards children’s homes are the kindergarten nurses. On a research



2. Background 9

by Näsänen et al. (2009) a web service for showing parents photos taken on the
kindergarten were created. One of the goals for the research was to allow efficient
way of displaying the life on the kindergarten to the children’s parents, whom usually
just drop off and pick up the children without being otherwise present. The children
also had access to smartphones with camera, allowing them to upload photos directly
to the availability of homes without the moderation of kindergarten nurses. [16]

2.3 Connectivity Issues

For a single-page application it is possible to work without connection to the outside
world, in case the application code is delivered to the device via some medium. For
example for a spreadsheet application this might be a highly feasible idea. However
for applications that interacts with the surrounding world some kind of connectivity
is required in order to spare the person using the system having to input all the data
into it. When it comes to CSCW applications, where one of the key points is the
collaboration, at least occasional Internet connectivity is mandatory. This makes
issues on the Internet connectivity status and quality to concern closely CSCW
applications.

In many of the scenarios and application areas where CSCW is applied using
desktop computers is challenging or impossible. Often the usage is outlined to the
smartphone or/and tablet usage just by the requirement of having the access to
the system with the users on all occasions. If the information needs to be accessed
immediately on the fly, importable devices are out of the question.

For mobile devices the medium for the “last mile”3 of connecting to the Internet
is wirelessly over the radio waves using cellular network. As more and more of the
usage of the Internet moves to the mobile devices, the unprecedented cellular traffic
growth can easily exceed the deployment speed of cellular infrastructures [17]. This
results in a certain guaranteed unreliability to the connections of devices using the
mobile broadband as their primary method of reaching the Internet. For the time
being applications where the possibility of continuous usage is critical bracing oneself
to the possible temporary Internet outages is one of the factors which must be taken
into account.

One possible solution in overtaking the problems caused by the excess load of
cellular networks is to use Wireless LANs as the last mile. With correct configuration
this makes the wireless access as reliable as is the Internet connection of the WLAN’s
base station. However it is not exceptional for a CSCW system to be operated on
various locations, resulting in a situation where sometimes usage of cellular network

3Metaphor used in telecommunication industry when referring to the part of the network that
reaches the customer. When looking from the customer’s perspective it can be named as the “first
mile.”



2. Background 10

Figure 2.3: The research gap covered by this thesis

is mandatory. For applications where the SLAs4 are strict and system is used from
various locations this method does not deliver any relief.

This thesis studies the issues on the Internet connectivity only from the applica-
tion level, within the possibilities provided by the browser environment on handling
the problem. Possible solutions available on the network-level are ignored.

2.4 Research Gap

This thesis studies the overlap of the themes previously introduced in this chapter,
as can be seen on the visualization in Figure 2.3. This thesis studies what is required
from a single-page application which enables computer supported collaborative work
for the users on a environment where issues with the Internet connectivity happens
regularly.

CSCW has been studied widely for over the past two decades. The need for
streamlining working methods in favor more productivity makes efficient will make
applications enabling it only more essential and common.

The fast-paced evolution of web technologies have created a powerful platform
for application development which is ubiquitously present and available everywhere.
On the last decade it was available on desktop computers, today it reaches 40 %
of the Earth’s population due of increasing usage of mobile devices and tablets [18]

4Service Level Agreement



2. Background 11

and by 2020 4.9 billion devices is estimated to be connected5 thanks to the Internet
of Things (IoT). This will make web technologies only more appealing method for
application creation on the future.

With all this taken into account, it would not be surprising if creating applications
with the web stack and the need for having an offline support on them would only
get more common. Even without the rising need of these kind of applications, the
user experience of any web application used over cellular network can be improved
significantly with the implementation of a proper offline support, making research
around it useful. On top of that there are no existing research covering all of these
themes together.

5http://www.gartner.com/newsroom/id/2905717



12

3. CASE PÄIKKY

This thesis approaches the research problem through a real-life case study in which
an offline support was implemented to an already existing system. This chapter
describes the basics of that system and the use cases of it. The technical character-
istics and domain knowledge of the system which are important for understanding
the functionality of the offline support are opened up in more depth. Moreover
the reasoning behind the decisions done regarding the implementation of the offline
support are described.

3.1 System Description

The system under the analysis is Päikky, a solution for daycare personnel and day-
care children’s parents for planning the needed daycare and providing passage control
of the children (and of the personnel) on the kindergarten.

Päikky is a collaborative web application for daycare personnel and children’s
parents to plan and coordinate daily activities in kindergarten. Päikky also provides
functionality which helps kindergarten personnel to coordinate the daily activities
on the kindergarten and communicate with the children’s parents.

Päikky consists of four parts:

1. Kindergarten UI, mobile-first single-page application used for logging children
in/out to kindergarten, referenced to as the application later on,

2. Family UI, single-page application used by parents when planning children
daycare time,

3. Manager UI, single-page application used by kindergarten management,

4. Backend, Grails1-powered server that implements REST API and other ser-
vices used by the Päikky UI’s.

Under the hood Manager UI and Family UI are located in the same codebase,
and from a technical point of view they are a single web application. Although they
are inseparable from a user’s standpoint and share the same architecture, the layout

1Java-based “high-productivity web application framework”. http://grails.org



3. Case Päikky 13

Figure 3.1: The high-level architecture of Päikky

and functionalities are completely different. Contrary to the Kindergarten UI they
are designed to be used primarily from desktop clients.

In this thesis we are focusing mainly on the Kindergarten UI, which is the tool
used on a daily basis by the kindergarten nurses for tracking the attendance of their
care group. Some emphasis is also on the backend due to its major role on the
system’s overall view.

3.1.1 Backend

The backend is the web server of Päikky, which holds all the master data of the
system. It serves HTML content and other resources (graphical assets, JavaScript
files, Cascading Style Sheets) to the other modules of Päikky. The backend also
implements a REST API which requests and alters the dat from the other modules
of the system. The abilities the API offers differs between the type of the user’s
account, but in practice all of the data can be modified via it. Data is exchanged
between the backend and the UI modules as JSON objects.

Currently the backend is operated as a single virtual machine on the Amazon
Web Services cloud. The data is stored on a single MySQL database. The back-
end is multitenant (principle, where single application and database instance serves



3. Case Päikky 14

multiple tenants): single instance serves multiple municipalities and kindergartens
[19].

3.1.2 Kindergarten UI

Kindergarten UI is the part of Päikky which is used daily by the kindergarten
nurses. From the Kindergarten UI nurses can also see elaborate information about
the children, including allergies and persons who are allowed to pick them up, and
whether parents have allowed the children to be photographed. Nurses can also
easily see the contact information for each child. Updating this information is also
possible.

Using the Kindergarten UI, the key activity for nurses is to log children in (and
the other nurses) when they arrive at the kindergarten and log them out when a
child or nurse leaves. This activity is repeated tens of times per day. To do this
conveniently nurses are equipped with Android smart phones. The marking of goings
and leavings has to be done in order to replicate the presence status from the real
world to the Päikky system. Since monitoring attendance and in the future creating
bills for provided daycare is based on the presence data generated by logging the
personnel in and out, it is crucial that this activity can be achieved successfully
under any kind of condition. Doing this activity should also be as effortless and
simple as possible for the nurses so that it would get done at the exact moment
when the actual event happens in the kindergarten.

Currently in Finland families are charged from the kindergarten service on a fixed
price basis. Every child with similar care plans is charged with an equal amount.
Upcoming changes in Finnish daycare legislation changes the basis for payment to
be hour rate based, which creates the need for systems like Päikky that are able to
track the children’s attendance on the kindergarten for billing purposes. This makes
the accuracy of the attendance data to be critical for the success of the system as a
whole.

The simplicity requirement goes for every other aspect of the system: the Päikky
users’ demography is a very mixed crowd. The kindergarten nurses’ age can be
anything from 18 to 65. Because of the age variation also the ability and the starting
level to use a digital service via smartphone varies a lot. Taking the easiness of
usage is also one of the key principles behind Päikky’s user interface and interaction
design. It is also one of the unique selling points of the company behind Päikky, the
MukavaIT 2: "using IT systems should not be hard or unpleasant".

Based on the plans done by parents on the Family UI, nurses can see how many
and who of the children they are expecting to appear for each day. If the parents

2http://mukavait.fi



3. Case Päikky 15

have to change the already existing plans with short notice, automated message is
sent to the nurses stating the change, and the plans visible for the child relating the
case get updated in real time. Nurses can also see the exact amount of children and
nurses present at the kindergarten for any given time.

As stated above, the attendance of nurses can also be tracked with the Kinder-
garten UI. With the Manager UI it is also possible to plan shifts for the nurses.
Combined with the planned attendance data of children done by the parents, this
makes Päikky a powerful tool for organizing the kindergarten’s daily schedule and
ensuring that there are always enough nurses present to take care on the children.
This is important since required nurses/children ratio is dictated by law in Finland.

From technical point of view looking the Kindergarten UI is a single-page web
application created to be used primarily with mobile devices. The libraries the
application consists of are the following:

1. Backbone3, Model-View-Template –framework providing the skeleton for the
application,

2. Marionette4, library of common design and implementation patterns for Back-
bone,

3. RequireJS 5, module loader and dependency manager,

4. Underscore6, functional programming inspired library for utility functions,

5. jQuery7, utility library for DOM manipulation,

6. Moment8, time and timezone handling library.

The method of data synchronizing between Kindergarten UI clients and the back-
end is polling. Each client sends checksums of its attendance data to the backend
on a regular interval, and if the backend calculates different checksum for the data
requested, new data is returned to the clients. This means that if child is logged in
to kindergarten with device A, it can take as long as the configured interval for the
device B to receive that information. The current interval is 45 seconds. Previously
the interval was only 20 seconds, but as the number of users increased the cur-
rent infrastructure on which Päikky is run could not handle the amount of requests
invoked in that interval.

3http://backbonejs.org/
4http://marionettejs.com/
5http://requirejs.org/
6http://underscorejs.org/
7http://jquery.com/
8http://momentjs.com/

http://backbonejs.org/
http://marionettejs.com/
http://requirejs.org/
http://underscorejs.org/
http://jquery.com/
http://momentjs.com/


3. Case Päikky 16

The devices and browsers targeted during the development process and which
were delivered to the kindergartens by the client organization were Samsung Ace 3
Style’s and the latest stable version of the Chrome browser. The devices use mobile
broadband connection as their access method in reaching the Internet. Usually each
of the kindergarten’s care groups have at least one dedicated device at their disposal.
Large groups might have two devices.

The usual – and most of the time the only – usage environment for Kindergarten
UI are the kindergartens around Finland which are using Päikky. The application
is used in both outdoors and indoors. Kindergartens can be located practically
anywhere, and the mobile reception can vary a lot between different kindergartens.
In some locations the coverage and experienced connection quality can be at par with
physical broadbands, but the locations with the worst reception are very challenging
when looking from the connection speed and latency point of view. It is not unusual
for the kindergarten to be located on a remote location, where getting 3G connection
is more of an exception than standard behaviour.

3.1.3 Presence Model

As the primary functionality for Päikky is the monitoring and planning of the at-
tendance of the people on the kindergarten, one of the most essential data models is
also the one implementing this feature. The backbone for holding and handling this
data is Päikky’s presence model. In brief presence model is an entity which indicates
a range of time when person has had a certain status. These entities are persisted
by the Päikky backend in the database.

There are different purposes for presences: actual, plan change, plan and default
plan. Each presence has always a single purpose. The purposes are similar for both
children and nurses. Each of the purposes exists on their own domain, resulting
in a layered construct of presences for each person. The actual presences are the
most significant, while the default plan is the least significant. This is visualized
in Figure 3.2. Person’s presences with same purpose may never overlap. For single
person there can be only one or zero presences per purpose at any given time.

Each presence also has a single type. The ones used the most are present, sick,
and day off. These basic types are the same for children and nurses, but nurses
also have a extended set of types indicating specialized reasons for not being at the
kindergarten. For example these types includes likes of different cases of sick leaves,
trainings and holidays. In this thesis we are concentrating at looking the system
primarily from the children’s presence markings perspective.

A single presence always belongs to a single person. The presence always has a
start time and an end time. There is one special case when presence does not need to
have an end time (it is then set null in the database): if the purpose for presence is



3. Case Päikky 17

Figure 3.2: The presence model of Päikky.

actual and that presence is the latest ongoing presence for the person. For example
when a person is logged in to the daycare in the morning, a new presence entity
is created. For this presence start time is set to be the time when he/she arrived
to the kindergarten, and end time is left null. This means that this presence is
active for the current person, indicating ongoing activity. When the person leaves
the kindergarten the active presence’s end time is set to be the leaving time. If their
state is otherwise altered, the active presence is ended and new presence entity with
the new type is created. The ending time for the previous presence is the same as
the starting time for the new presence.

3.1.4 Presence Status and Presence State Machine

Based on the presence entities of an individual person a presence status for them can
be determined at any time. For example if person has a planned presence for the day
but they has not arrived at the kindergarten yet, the status would be transcribed as
“not yet present” indicating that this person will be present later on today. Mutually
if the person has been today at the kindergarten but has already left, their status
would be “left for today”. The status mechanism is implemented for providing more
information about the current attendance status for the kindergarten personnel, in
contrary to what simple boolean “present / away” statuses would implicate.

Within presences sharing the same presence purpose, there is a set of rules of
allowed state transitions. These rules can be visualized as a finite-state machine
that shows the possible transitions from different status into another.

Figure 3.3 describes a simplified version of Päikky’s state machine. In this finite-
state machine each state indicates two things: is there an active ongoing presence
entity for the individual person which has “actual” as the presence purpose (“inac-
tive / active” on the visualization), and if the current state means that the person



3. Case Päikky 18

Figure 3.3: Presence State Machine. For visualizing purposes this state machine is a
simplified version of the one actually implemented in Päikky

is physically present at the kindergarten or not (“present / away”).
Based on the allowed state transitions different kinds of buttons for altering the

presence state are shown on the person’s profile UI. For the most straightforward
example if the person is already present on the kindergarten, only a sign out button
is shown. Since signing in a person already present on the kindergarten is prohibited
by the presence state machine, the button sign in is therefore also hidden from the
UI. This can be seen in Figure 3.4.

3.2 Need for Offline Support on Päikky

Päikky’s development was originally started with creating an MVP version9 of the
product which was used in validating the business case of the idea. Therefore it
only had a thin feature set, covering only the most essential features needed for the
application. According to the client organization’s CEO the need for some level of
of offline support was noticed at an early phase of the system’s development. The
marking of persons’ status was also recognized to be the key activity already at the
start of the development.

First time the Kindergarten UI’s total dependency on the backend realized to be
problematic was during a roll-out of Päikky to a kindergarten where for the first

9Minimum Viable Product



3. Case Päikky 19

Figure 3.4: Screen capture from a child’s profile on the Kindergarten UI

time the network quality was way worse than the average. On that site the latency
experienced on the Internet connection was often couple of seconds. This caused
the changing of the state of a person on Päikky to be frustratingly slow, since the
new state would update only after the server response was received. Although this
did not yet form to be a obligatory need for the offline support, since it could have
been solved with a more lighter solution.

The start for the process of planning and implementing the offline support and
was a request for tender in which the client organization participated. On this
request for tender it was explicitly stated the requirement for logging of persons to
be possible under any kind of network condition. Fulfilling this requirement was
also seen as a good prospect for improving the user experience of the application as
a whole.

The offline support would have materialized to the product even without the
existence of the request for tender, but on that scenario the possible schedule for it
remains unknown. It was also speculated that on that scenario the level of offline
support provided could have been slightly lighter.



20

4. RESEARCH METHODS

This chapter introduces the methods followed through this thesis and describes how
they are applied on the research.

4.1 Design Science Research

This thesis studies the research questions by adapting methodologies and toolbox
provided design science research (DSR). On the literature this research framework
is also referred to design science and design research.

Hevner and Chatterjee [20] define design science research as follows:

“Design science research is a research paradigm in which a designer an-
swers questions relevant to human problems via the creation of innovative
artifacts, thereby contributing new knowledge to the body of scientific
evidence. The designed artifacts are both useful and fundamental in
understanding that problem.”

Usually when DSR is applied three related cycles of operations can be recognized,
as can be seen in Figure 4.1 [21]. First there is the relevance cycle, which works as an
interface towards the application domain and gathers the information required for
producing the artifact. Secondly there is the rigor cycle, which provides the existing
scientific theories and methods to aid the creation of the artifact. The rigor cycle
works both ways, providing feedback on the theories applied on the creation of the
artifact and growing up the knowledge base by adding the results to the academic
continuum. Finally there is the design cycle, where the information from both the
application domain and knowledge base meets and possible artifacts for solving the
problems found on the application domain are built and evaluated.

The goal for DSR is that through the three cycles described above, solutions for
real-world business problems are found. As a by-product new insights found are
increasing the size of the knowledge base via the feedback to the rigor cycle, while
the resulting artifacts can be implemented to the application domain via feedback
to the relevance cycle. [22]



4. Research Methods 21

Figure 4.1: Design Science Research Cycles, based on the work by Hevner [21]

4.2 Case Study

Usually in any research, no matter in which field it is conducted, the size of the
sample is directly linked to the quality of the research’s outcome. Involving large
numbers of participants to the study results in a broader and more representative
sample. In some studies research done with a smaller sample will not necessarily be
statistically as clear as using a large sample would be. [23, page 144]

Getting a large sample can be extremely challenging or even impossible on some
occasions. This should not be a barrier forbidding the conducting of the research,
since methods for getting valid results with smaller sample sizes also exists. One of
these methods is case study, which is also one of the methods applied within this
thesis. [23, page 144]

It is also commonly questioned that how valid base does a single case study
provide for a scientific generalization. There is no straightforward answer for that.
To put it shortly, the aim for case studies should be “to expand and generalize theories
(analytic generalization)”, not “to enumerate frequencies (statistical generalization)”.
[24, page 15]

On this thesis the research problem is studied in the context of a single case
study using methods of design science research. The possible solutions found and
implemented in the case are then evaluated with semi-structured interviews.



4. Research Methods 22

4.3 Data Collection with Semi-Structured Interviews

This section covers the methods on collection of the data about the user experience
on the offline support done by conduction series of semi-structured interviews.

As stated in the previous chapters, there is no such thing as an average user
of Päikky, due to the fact that users of the system have very different kind of
backgrounds. The preparedness for using of technical devices might be very good
or it can be almost nonexistent. Because of that one of the goals for this thesis
was to study if the offline support implemented is actually understood by the users
of Päikky. The received user experience is studied through a series of interviews
executed with the nurses using Päikky.

In addition also a interview with the CEO1 of Päikky was performed. The goal
for the CEO’s interview was to find out the reasoning and the motives for the offline
support development. The amount of available resources and the reason of the
allocating them the way which was done is also discussed. The results of the CEO
interview are documented thorough this thesis on situations where references to the
client organization’s decisions can be found and especially in Section 3.2. Otherwise
this section focuses on the interviews done with the kindergarten personnel.

The structure used on the Päikky nurses’ interviews can be found from Appendix
A.

4.3.1 Finding Interviewees

Aim for the interviews was to find interviewees whom have used Päikky for an
extended period of time, and if possible, also before the production roll-out of the
offline support of the system. Other notable factor for the interviewees was the
location; it would not been prolific to interview nurses on kindergartens where mobile
broadband coverage would not have any issues. On locations where solid Internet
connectivity is a given it could be possible that the users would not even have notice
the existence of the offline support.

Since Päikky is a product sold explicitly by the client organization, the obvi-
ous mean of getting interviewee candidate was to go through them. The client
organization provided contact information of two kindergarten managers, whom ge-
ographical location had issues with the mobile broadband coverage and the time
frame of Päikky’s usage would match the requirements set for the interview. These
managers were then approached and asked if there would be any volunteers on their
staff to take part in a 45 minute interview done on the kindergarten’s premises. It
was noted to the managers that the optimum interviewee candidate would have used
Päikky prior and after the implementation of the offline support, and they would be

1Chief Executive Officer



4. Research Methods 23

within the ones who are using Päikky on daily basis.
This process resulted in four interviewees being found, two from each of the

kindergartens.

4.3.2 Preparing Interviews

Prior to the actual execution of the interviews a semi-structured format for the
interview was created. The purpose for this structure was to offer an baseline and
a general plan for the interview.

Instead of having a strict, hard-coded script for the interview, the structure was
meant to aid the interview process to find out answers and issues that were possibly
not realized by the interviewer before actually finding them out during the interview.
The questions were meant to set the topic and then allow the interviewer to dig out
all the possible aspects from that topic.

4.3.3 Conducting Interviews

Four kindergarten nurses were interviewed in total. All of the interviews were con-
ducted face-to-face locally on their kindergarten.

Every interview started with asking the basic information from the interviewee.
Any directly identifying information were not collected. These questions could be
considered as a warm-up for the more important topics, but they also were on a key
spot providing background information about the interviewee to the interviewer.

The middle part of the interviews concentrated about how the interviewees used
Päikky, and which kind of issues they had faced on it. Every time they described
an issue, they were asked how they handled it.

After that the interviewees were asked about their usage of the offline mode on
the Kindergarten UI. How often had they experienced the application going into
offline mode, how did it change their usage of Päikky, and what kind of issues had
they experienced. Also the influence about the limited feature set of offline mode is
investigated: did it impede the usage of the application and if so, how.

Also the understanding of the concepts related to the offline mode were enquired:
what they considered happening when the device entered the offline mode, how did
they understand the under-the-hood events when the device came back from the
offline mode. Also the impressions about the location of the data were asked. No
direct references were made to the client-server -architecture, but one of the topics
aimed to determine if the interviewees had any idea about the master data not being
located on their smartphones.

At the end of the interview the interviewees were asked to have a free word on
any topic considering Päikky – the good parts, the bad parts, and the features they



4. Research Methods 24

wished would exist on Päikky.
Since Finnish was the native language for the interviewer and all the interviewees,

the interviews were conducted in that language.
In all the questions were interviewee’s usage of Päikky was asked, the question

was aimed to be put in the form of “describe me last time you executed the [action]
with Päikky”. This was done trying to get the interviewee to reminisce the actual
usage of Päikky, instead of setting them mentally trying to guess what would be the
optimal and the instructed way (by the client organization’s trainings) of conducting
the asked action on Päikky.

During the interview only the interviewer and the interviewee were present. No
notes were made during the interview, the situation was aimed to have a relaxed
athmosphere, more of a conversation instead of an “official interview.” Interviewees
were told that if some of the questions seemed too distracting, it would be OK to
skip any of them they wish.

All the interviews were recorded. It was also stated that they would not be
identifiable from the results presented on this thesis. After this thesis is finalized, it
was promised to the interviewees that the recordings would get destroyed.

4.3.4 Analyzing Interviews

After the interviews the recordings were listened thoroughly and littered into text.
The interview recordings were not exported to the textual format from word for
word, but instead key ideas and themes were deducted. Due to the conversational
nature of the interviews, word for word littering would not have been beneficial to
the research.

After the major themes for each individual interviewee were found, they were
cross-matched in order to find what perspectives were mutual for each of the inter-
view. Also individual interesting viewpoints opinions were noted on the analyzing
process.

The interpreted results of the interviews are presented later on the Chapter 6.



25

5. IMPLEMENTATION

This chapter coverages what was done to the Päikky system in order to get it working
also during the Internet connection shortages, and how that was done.

This chapter is concerned with the facts of what the offline mode consists of
and how it was implemented. Reasoning for the decisions made are also explained.
Analyzing the consequences of those decisions are done later on Chapter 6.

5.1 The Goal for the Offline Support

The primary goal for the offline support on Päikky was to enable the most critical
tasks for kindergarten nurses on all situations on the Kindergarten UI (the mobile
friendly version of the Päikky system).

Päikky’s main and the most important feature is the ability to track the atten-
dance of the kindergarten’s children on real time. In order to achieve that, nurses
must be able to mark the children’s coming and going without getting interrupted
by the limitations of the application. In order to offer offline support on the Kinder-
garten UI, a new feature called Offline mode was implemented. Offline mode aims
at removing the Internet connection quality related limitations on the nurses’ key
activity. Nurses should be able to use the children logging feature on Päikky under
any kind of Internet condition. If the Internet connection is nonexistent, the appli-
cation should record user’s actions and save them to the server once the Internet
connection is achieved again.

The secondary goal for the offline support were to allow as seamless usage as
possible of the Päikky on kindergartens where Internet connection is weak. Nurses
should be able to see the information from Päikky even if there is no Internet con-
nection at the time. Information should be served based on the best-effort delivery:
application should show all the information it has at the time to the user while
trying to fetch the most latest version of the information.

Other parts of Päikky, the Manager UI and the Family UI, were left out of the
offline support.

The ultimate vision – yet to be reached – for the offline support is that it would
abstract the Internet connection quality completely away from the user’s considera-
tion. Under any connection quality the user should be able to use Päikky normally
without any interference. In the current version this is not yet achieved (nor was it



5. Implementation 26

scoped to be achieved).

5.2 State Transitions to and from the Offline Mode

Implementation of the offline support to the Kindergarten UI made it to have two
different states related to the Internet connection status. Application is on the
already mentioned Offline mode when the Internet connection is poor or nonexistent,
and on the Online mode when the Internet connection is working normally.

The current mode is implicated to the user clearly: while in Offline mode, the
Kindergarten UI’s header changes color scheme to greyscale and the title says di-
rectly "You are working on the offline mode", localized to the user’s language.

While in Online mode the Kindergarten UI works almost identically as it did
before the offline support implementation. Major changes are that all the API
requests done to the Päikky backend are cached to the Local Storage of the device
running the Kindergarten UI. Also the sending of Presence marking changes to the
backend are done by a dedicated component. Both of these are primarily refactoring
the inner parts of the Kindergarten UI, while using the application the user should
not experience any difference to the versions prior from these changes.

When entering the Offline mode the method on how data is fetched changes.
Instead of fetching the data user requests from the backend, the Kindergarten UI
fall backs to the data cached on the Local Storage. This will not guarantee the
availability of the up-to-date information to the user, but at least showing the best
effort version is possible. Due to the nature of the Päikky’s data, in most of the cases
this is acceptable (for example when looking for children’s parents’ phone numbers,
and other similar data that is not altered on daily basis). Also some of the features
on the Kindergarten UI are disabled when the Offline mode comes active.

While the Offline mode is active, the component responsible for sending the
Presence marking changes – the Job Queue – also acts differently. If there is a
recognized issue with the Internet connectivity (which triggers the Offline mode to
be activated), Job Queue stops sending the Presence Markings to the backend but
instead saves them to the Local Storage. User is notified on this by showing all the
time the size of the queue on the top right corner of the Kindergarten UI. When
the Internet connection is active again, the Job Queue starts to send the cached
Presence Markings to the backend one at a time.

5.3 Limited Feature Set in Offline Mode

Similarly to many other real life software project, also in Päikky compromises have
been made while balancing between the scope, available resources, and the quality of
the end product. In order to create software with good quality under given budget,



5. Implementation 27

the scope had to be kept reasonable and some prioritization between features had
to be made. This resulted the first version (the one studied by this thesis) to be
technically quite simple and even naive on some aspects. Users experience this as a
lack or disabling of some features on the offline mode.

5.3.1 Disabled Features

When the application enters the Offline mode all the features except the critical key
functionality are disabled from the user. These include features such as

1. sending messages in the application,

2. editing persons’ information,

3. changing persons’ photos,

4. editing existing presence markings or upcoming presence plans.

These features were left out from the Offline support based on feature importance
evaluation done by the client organization.

None of the listed activities are essential for the Päikky’s key feature, the real time
tracking of kindergarten’s personnel attendance. If there is no Internet connection
available at the time, each one of these activities can be postponed without sacrificing
the integrity of the presence data on the system until the Internet connection is
available again.

5.3.2 Simplified Data Synchronizing

The nature of the Päikky usage by the nurses allowed the development team to make
some simplifications to the implementation of the offline mode. These simplifications
included the way how conflicts between concurrent changes are solved. To put it
bluntly, they are not solved in any way.

To understand why this solution was feasible, one has to understand the envi-
ronment and practices about how Päikky is operated. The usual scenario in kinder-
gartens where Päikky is used is that each kindergarten group has only one dedicated
device. With minor exceptions all of the presence markings for the care group’s per-
sonnel are done via the group’s dedicated device, which is also the only device for
the group to access Päikky. This is also the way how usage of Päikky is instructed
by the client organization to the kindergarten personnel. Editing person’s presence
status from different devices while on offline mode is especially discouraged. With
these guidelines the probability for cases where two different devices have made
concurrent changes to individual person becomes almost non-existent.



5. Implementation 28

These circumstances allowed the development team to streamline the data syn-
chronization on the Päikky server. On agreement with the client organization, there
is no functionality that tries to solve possible merge conflicts on the presence data.
If there appears a situation where two devices have concurrently changed the at-
tendance status of a single person – contrary on the instructions given to the users
– both of the changes are saved to the database. Fixing the data to reflect the
situation happened in the real world is left to the responsibility of the kindergarten
personnel.

The decision which passed on the responsibility of the data correctness to users
also removed functionality needed on the Päikky backend. Because of this the work
done in order to implement the required level of offline support to Päikky was almost
entirely done to the Kindergarten UI. The backend required only minimal changes
relating this. The backend changes that were required are explained in depth in
Subsection 5.4.6.

The decision of implementing no merge conflict solving strategy removes the need
of offline related functionality on the Päikky server almost completely. By this the
development effort was cut significantly: the probability of creating data conflicts
has been made minimal with the user instructions, and in the implausible case of
a conflict to appear resolving it is left to the responsibility of the user, not by the
code base.

From the server point of view, presence markings done on the offline mode are
received and stored exactly same way as are the markings done real time on the
online mode. Only thing that differs is the time gap between the presence marking’s
timestamp and the occasion when the presence marking is received on the server.

5.4 Technical Details

The technical details of the implementation cover almost entirely only the Kinder-
garten UI of the Päikky system. This is due to the allowed boundaries for the
development team and the real life limitations of the Päikky system usage. In or-
der to achieve the required level of offline support on the system, almost all of the
work could have been done only on the mobile frontend codebase: the Kindergarten
UI. In addition to the changes made to the backend, no other modules (Family UI,
Manager UI ) of the system needed changes. However the other modules did not
gain any kind of added offline support either.

5.4.1 HTTP Cache Headers

Starting point for the offline support implementation was to take as much advantage
as possible from the techniques already in use on the Päikky system’s implementa-



5. Implementation 29

tion. The first task for the development team was to ensure that the cache related
features of the HTTP protocol were utilized thoroughly.

Previously there were issues reported by the users after production environment
updates that the new features announced were not visible on their devices. This
was the result of poor and some part nonexistent cache header usage. The cache
headers prior the change instructed the browser to save the index.html document –
the starting point of the Kindergarten UI web application – and all the JavaScript
files for 24 hours on the file system of the device. If those files were requested
within that 24 hours, the cached versions were used. This created a huge lag on
the rollout of the latest version to the end users’ devices, which caused work for the
development team since both the old and the new version of the frontend client had
to be supported on the backend.

The “release lag” was addressed by altering the HTTP 1.1 headers related to
caching, which are returned by the Päikky backend’s Apache web server to the
browser. The first solution was to disable cache entirely, forcing the browser to
fetch the data again each time from the backend while browsing. This was achieved
via headers described in Listing 5.1.

Listing 5.1: Päikky HTTP Cache Headers

Cache -Control:max -age=0, no-cache , no -store , must -revalidate
Pragma:no-cache
Date:Mon , 24 Nov 2014 08:36:04 GMT
Expires:Wed , 11 Jan 1984 05:00:00 GMT

The goal with these headers is that the browser saves intentionally none of the con-
tent it receives. Achieving this is done by several mechanisms to cover the most of the
browsers in use. From the HTTP 1.1 protocol view of point some of the instructions
overlap each other (for example Pragma:no-cache and Cache-Control:no-cache)
while some are there to address the HTTP 1.0 protocol (using Expire-date from
the past). [25]

Using these headers solved the release lag problem and streamlined the production
deploy process, but otherwise did little to actually help the development team to
get closer to the offline support on the system. Actually these changes made the
Kindergarten UI to be more reliable on Internet connection, since browsers were
instructed not to save any data fetched from the Päikky backend. This also increased
the average loads of the backend.

To take advantage of the HTTP Cache Headers from the offline support per-
spective, different cache rules were made for the most bandwidth-greedy assets: the
images. On the backend, the following headers were set to be sent on response to
each request that were made for images, no matter if they were graphical assets to
the web application (icons etc) or profile pictures of children and nurses:



5. Implementation 30

Listing 5.2: Päikky HTTP Cache Headers for images

Cache -Control:max -age =86400
Content -Type:image/jpeg
Date:Mon , 24 Nov 2014 12:41:01 GMT
Expires:Tue , 25 Nov 2014 12:41:01 GMT

These headers allow the browser to cache the image for 24 hours. For person
profile pictures there will not be any lag on updates when the image changes. Every
picture gets a generated unique file name on the upload, so from the browser’s point
of view they are totally new pictures instead of new version of the old picture. The
cache validness duration can therefore be decided based only on how fast the update
cycle on the graphical assets of the needs to be. If generating unique names for the
graphical assets would be done on the production version build phase, this cache
duration could be increased to for example one year and only side effect would be
increased cache sizes on the clients’ browsers.

Addressing the HTTP cache header related problems were not directly coupled
to the enabling of the offline mode, but fixing them would have benefit the Päikky
system even if the offline support would not have been on the product’s road map.

5.4.2 Application Cache

HTML 5 specification adds a new tool aiding the creation of offline supported web
applications: the Application Cache. The specification was designed to allow creat-
ing of web applications that would work (after caching) without Internet connection,
but it is also useful in decreasing load and start up times in a normal, Internet-aided
usage. [26]

Application cache is initialized by creating a Cache Manifest file for each HTML
document. In Single-Page Applications, which Päikky also is, this is achieved easily
since as the name implies there is only a single HTTP document for the whole web
application that needs to be loaded [27]. Whereas HTTP headers regarding cache
rules addresses the problem with generic information about the expiry date of the
fetched resources, cache manifest states more elaborate instructions for situations
where Internet connection is unavailable. [17]



5. Implementation 31

Listing 5.3: Snippet of Päikky’s Cache Manifest

CACHE:
js/configurations/local.js
js/main -b13f3e6.js
img/icon_delete.png
img/paikky_logo.png
css/client.css

NETWORK:
*

In Listing 5.3 a shortened version of the Cache Manifest of Päikky’s index.html
can be seen. The manifest describes the nature of the applications resources regard-
ing network status to the browser. On the complete version of the Päikky’s manifest
each of the known resources for the application is listed under the “CACHE:” nota-
tion, which means that these resources should be cached by the browser. After that
everything else is whitelisted with the “*” wild card to be downloaded from the
network. The whitelisting of the rest of the possible resources is important, since
when working with the Cache Manifest browser tries to do exactly as stated on the
manifest. This means that if that wild card network rule would be removed, the
browser would not be able to fetch the resources not listed on explicitly stated on
the manifest. [28, page 212]

When using the Cache Manifest, it must be noted that even when the user is
online, the files are served from the Application Cache. Developers must also notice
that updating the resources listed on the Cache Manifest is not enough. The browser
does not re-download them if the manifest itself is not updated (or if the cache expiry
date set by the HTTP headers for individual resource does not expire). When
visiting a site with a cache manifest again, the browser renders the first version of
the site with resources stored on the Application Cache, and only after that connects
to Internet for checking possible updates to the content. [29]

Due to the nature of the cache manifest (has to be updated on every web applica-
tion update, has to handle each of the resources somehow) it is highly recommended
that the creation of the manifest file is automated as a part of the build process
of the web application. In Päikky’s Kindergarten UI, this is done with the grunt-
manifest tool every time a new production version is created. For the development
environments, a different, static cache manifest is used, which tells the browser not
to use the application cache at all.

It is also possible to insert a fallback version for the resources on the Cache
Manifest that are used if the network connection is unavailable. In practice the
manifest can state alternate version for resources to be used, if there is no network
connectivity. This can be useful in some browser heavy applications that use minimal



5. Implementation 32

amount of data from the Internet, for example applications like Google Spreadsheet1

[30]. However this was not seen useful on the implementation of Päikky’s offline
support and therefore was not used.

As was the case with the HTTP Cache Headers, the Cache Manifest would also
have benefit Päikky even if the offline support would not have been implemented to
the system.

5.4.3 Monitoring Connection Quality

Identifying connection issues is a key activity regarding the Offline mode. When a
connection issue is noticed, the Kindergarten UI fall backs from the Online mode
to the Offline mode. While on the Offline mode, the application must monitor the
health of the connection to determine when it is safe to use the network connection
again.

On Päikky the connection quality is monitored via errors on Ajax requests [31],
triggered by the jQuery-library. As described before, the Kindergarten UI commu-
nicates to the backend via REST API requests for different kind of resources. There
is an application level error handler for cases when one of these requests should fail.
Main part of this handler can be seen in Listing 5.4.

Listing 5.4: Code Snippet which triggers Päikky’s Offline Mode

// Function for identifying network related Ajax errors
var isOfflineTriggerError = function(thrownError) {

return _.contains ([
’timeout ’, // "JavaScript -level" timeout
’’ // "network -level" errors - all of them

], thrownError);
};

// Error handler for Ajax errors
$(document).on(" ajaxError",

function (e, jqXHR , ajaxSettings , thrownError) {
// List of exceptions that triggers offline -mode
if (networkStatus.isOfflineTriggerError(thrownError)) {

vent.trigger(’offline ’);
}

});

In practice Kindergarten UI triggers Offline mode on two different kind of errors:
if there is a error coming from the JavaScript-level (usually meaning that no response
for request was received within the configured time period) or if there was an error
on the network level (connectivity was nonexistent). In these cases, an offline-event

1http://spreadsheet.google.com/



5. Implementation 33

is triggered via the vent, the event bus of the application.
Modern browsers also implement the navigator.onLine property, which indicates

the network status as a boolean value. Despite the promising specification this can
not be the only way of checking the network connectivity, since the behaviour is
heavily dependent on the browser. For example in Chrome and Safari having only
a connectivity to local area network will result the onLine property being true. [32]

After the application has entered the Offline mode, it halts all the Ajax requests
except a specified ping-request to the backend which is used to determine the health
of the connection. If the ping should fail, another ping request is scheduled. There is
a maximum time interval configured on the application in which the response must
be received. Only after a successful ping request within the allowed time range the
pinging is stopped and the Online mode is activated again.

5.4.4 Using Local Storage as a Cache

The new HTML5 standard adds also another important tool for the Päikky’s offline
support to take benefit from: the Local Storage [33]. It is an origin specific storage
which saves its contents to the user’s file system and persists them between sessions.
While being only a simple key-value -storage it is not the most sophisticated solution
for client-side storage mechanisms there is available on the modern web development
toolbox, but for simple use cases like the Kindergarten UI its simplicity is a decisive
advantage.

While being on the Online mode, every request made by Kindergarten UI to
the backend’s API is stored to the Local Storage. The request’s URL is used as
the key for the entry, and the response of request is saved as a value for that key.
At the current version of the application there are no optimization mechanisms
implemented with the Local Storage content. When Internet connection is available
the saved responses are ignored. On each request, the possibly already existing
responses are overwritten.

After the Offline mode is activated the Kindergarten UI continues to make API
requests based on user’s actions. But instead of making them to the backend’s API,
the Backbone-library – which is responsible for data fetching and synchronizing on
the application – forwards the requests to the Local Storage API, where cached
versions of the once fetched requests can be found. This allows the user to navigate
within the application and see the latest version he/she has fetched from the backend.
If the user navigates to a view not visited before, view without the actual content
is rendered.

Due to the limited feature set of the Offline mode there is no need for checking
dirty cache entries [34, page 138], since user can not alter the cached data while
having no Internet connectivity. Only after the Online mode is activated the editing



5. Implementation 34

of the data is made possible, and then the contents of the cache is ignored. Excep-
tion to this are the Presence Markings, whose are explained in more detail on the
following section.

5.4.5 Job Queue: Promise-based Presence Marking Queue

The key activity for nurses recognized before on this thesis is the altering of the
kindergarten’s personnel presence data. This activity must be available for user
no matter what the Internet connection status is. Allowing this activity was also
the primary goal for the offline support to have. With the resource limitations the
development process had it was therefore apposite to create a dedicated mechanism
for syncing specifically this data and disabling other data altering features while the
Offline mode is active.

In the Kindergarten UI, this is enabled by a component called the Job Queue. Job
Queue is an array of jQuery’s Promise objects. Each objects in the array represents
a single Presence Marking to be saved to the backend. Every time the user creates
a new Presence Marking, it is added to the queue, no matter if there is an Internet
connection problem recognized or not.

The concept of "promise" was first time introduced in 1976 by Friedman and
Wise [35]. It is used to describe an object whose value is yet to be resolved, being a
temporary placeholder and a promise for the to-be value. In asynchronous languages
such as JavaScript this is highly useful since for example when fetching data the
developer can not trust that the results are available immediately after the request.
Promise makes sure that altering the state or the progress of its internal request is
not possible from outside. This makes it an ideal capsule to wrap the AJAX requests
with. [36]

When the user creates a new Presence Marking on the Kindergarten UI (for
example logs child in to the kindergarten when he/she arrives), a new Promise is
created which includes Ajax request to the backend. Request’s payload is the new
Presence Marking. That Promise is then added to the job queue. In Figure 5.1 a
screenshot of the Kindergarten UI is given while the offline mode is active. In the
figure, the size of the job queue is indicated to be five.

While the Online mode is active, job queue constantly looks for the oldest job on
the queue and tries to execute it. Executing it means activating the Ajax request
inside the Promise. After the request is successfully sent to the backend and a
response is received, the promise marks itself as solved and that job is then removed
from the queue. This process is repeated within a configured interval as long as the
application is active on user’s browser. If an ongoing request fails due to a network
error, the application fall backs to the Offline mode, and the job queue execution
halts until Internet connectivity is gained again. It is possible for the request also



5. Implementation 35

Figure 5.1: Kindergarten UI’s care group view, offline mode being active. The size of the
presence marking queue is indicated at the top right corner of the user interface.

to fail due a mismatched parameters, which causes the job being removed from the
queue.

The state of the queue is saved on the local storage to address the case where
the user shuts down the application before the whole queue is sent to the server.
Therefore every time the application starts the queue is initialized from the contents
stored locally on the user’s browser. However also this solution outsources some of
the responsibility to the user: in order to have up-to-date information about the
attendance status every nurse must ensure that the queue is empty when their shift
ends.

5.4.6 Storing and Receiving Presence Markings on the Back-
end

Due to the simplicity of the offline support required for Päikky, most of the code
related work was done on the Kindergarten UI only. Only offline supported feature
which needed modifications to the backend was the ability for the user to create
Presence Markings without active Internet connection at the time. This required
some changes to be done on the mechanisms which receives and stores the Presence
Markings coming from the Kindergarten UI.

Before the offline support Kindergarten UI did not send timestamps of the created
Presence Markings to the backend. Timestamps were created on the backend at the



5. Implementation 36

time when the requests from the Kindergarten UI were received.
To allow the postponed sending of the Presence Markings created in the past, the

responsibility of creating the timestamps for the markings had to be moved from
the backend to the Kindergarten UI. Since the client’s clock can be set to anything,
this created a need for a mechanism that could synchronize the clocks between the
backend and the application.

Since the precision required by the application area is closer to a minute than a
second, the client-backend clock synchronization could be done with a quite simple
and straightforward approach. The same ping functionality which is used to deter-
mine the network status has also the ability to measure the time spent from sending
the request from the client to the receiving of the backend’s response. When this
interval is known, the offset of the clocks on the application and on the backend
can be determined. The backend returns the timestamp when the ping request is
received on the backend to the application. When the measured duration of the
request is split into half, the application can determine what is the offset between
its and the backend’s clocks. This offset is saved to the local storage, and added to
each presence markings timestamp.

Due to the nature of TCP protocol (on which HTTP packets are delivered), the
exact amount of spent on receiving the response from server can not be measured.
Due to handshakes and other required precautions TCP does, more time is spent
on the sending and delivering of the request than what it takes the response to
arrive from the backend to the application. This creates the basic problem why the
clock synchronizing can never be exact with this method. Päikky is configured to
allow synchronizing result only from pings done within a three second timeframe,
and as stated above, this is easily within the required precision for this use case.
For applications where precise clock synchronization would be required, usage of a
more sophisticated protocol engineered specially for that purpose would be required.
Protocol of choice for that kind of use case could be the Network Time Protocol
(NTP) [37].

5.4.7 Duplicating the Presence State Machine

Before the offline support the backend also validated the state transfer for the
Kindergarten UI. If the new Presence type requested by the application was in-
valid, the backend would have returned a legal state, which the Kindergarten UI
would have applied to the current person. From the user experience point of view
this could be seen as a slight lag on the changing of the person’s state when the
new Presence marking was created. Kindergarten UI at time would not have known
what the new state would be and therefore was forced to wait for the backend’s
response.



5. Implementation 37

In order to enable the Kindergarten UI to know the allowed possible state transfers
and to determine the new Presence state. This resulted as a need for duplicating
the Presence State Machine from the backend to the Kindergarten UI. Duplicating
it created some redundancy to the backend and Kindergarten UI codebases. Having
the Presence state machine on both components of Päikky was inevitable, since
as the keeper of the master data, removing the state validating from the backend
would be shortsighted. Requests made to the API can be tampered with, and the
actual payload has to be always validated by the backend. However having the same
validation in two places creates a challenge for the developers: both have to be kept
in sync in order for the system to operate properly.

On the positive side, the lag in the user interface with the Presence state transfer
got minimized with the added functionality, since new state could be determined on
the browser instantly without having to wait for the backend interaction’s result.



38

6. EVALUATION

This chapter goes through the results got from the interviews. Solutions and com-
promises done on the technical side are also evaluated critically.

6.1 User Interviews

This section covers the analyzed results from the interviews. The main goal is to
validate the prediction that the user experience of the offline mode is supporting the
actual use cases on the kindergartens. Full transcriptions of the interviews are not
available.

The interviews were conducted in two different kindergartens, both located in
Pirkanmaa region of Finland. They are referred later only as Kindergarten A and
Kindergarten B. Both kindergartens were fairly similar when looked by the main
characteristics, both shares almost identical build years and have the ability to
serve same amount of daycare children.

All of the users interviewed were full-time kindergarten nurses. Average age for
the interviewees was 36,5 years. Youngest interviewee was 31 years old and the
oldest was 52 years old. Both kindergartens where interviews were executed were
opened fairly recently making the average length of employment only about 1,5 years
(exact length of the employment periods were not questioned). Nevertheless there
were lots of experience from the day care sector within the interviewees; the oldest
interviewee had started their career in this field of operation in 1997.

The interviewees are not referred by their real name or the kindergarten they work
in. Referring them is done by a randomly generated1 number from a range from
two to ten. The linking between interviewees or kindergartens and the generated
numbers is not provided.

Interviewees were asked about what kind of phone they own, and how they would
describe their skills on taking advantage from the phone. This aimed at charting the
readiness and the base level of the user in using a digital service via smartphone.
These basic characteristics are presented in Table 6.1, where each interviewee is
indexed by the generated random number.

Only one of the interviewees did not have a phone that could not be described
as a smartphone. They were also the only one who directly stated that their skills

1http://random.org



6. Evaluation 39

Table 6.1: Summary of the interviewees

# Age Own smartphone Own description of smartphone usage skills
8 31 years Samsung Galaxy S4 "Basic user"
2 31 years Nokia Lumia 925 "Advanced user"
5 55 years "Some old Nokia" "I can only call and send SMS’s"
8 33 years "Lumia Something" "Fairly good"

on using modern devices were fairly low. Other interviewees had smartphones, but
only one had a smartphone sharing the same operating system used by Päikky.
That correspondent was also the only one who described themselves as an advanced
user of a smartphone. Other two stated that they can achieve basic functionality
without much hesitation, but everything beyond that would be a challenge from
some magnitude.

The mobile network coverage varied a lot between the kindergartens. Kinder-
garten A was said to have fairly good reception on most of the places, while having
couple of dead spots. In the Kindergarten B, the reception was reported to be
very bad or almost nonexistent, and this was also noticed by the interviewer when
arriving in the premises.

6.1.1 General Feedback regarding Päikky Usage

In general the interviewees stated that they are satisfied with Päikky, and that it
makes a lot of the daily activities easier. For example looking for children’s parents’
phone numbers from Päikky is a really straightforward and simple task in contrast
to the old way of finding them from paper archives.

Nevertheless neither of the kindergartens did use Päikky as the only method of
recording children attendance on the daycare. Both kindergartens created markings
also in writing to the care group diary. Goings and leavings did not get marked to
the diary as precisely as they get to Päikky though; no time markings were written
into it. The diary logs could be seen more of an coexistence of a legacy system than
a direct backup method. The diaries have existed long before the implementation
of Päikky, since they were the method for tracking attendance prior it.

A non-surprising result from the interviews was that each of the interviewees
stated the logging of children in and out as the activity they do the most with
Päikky. This was said to be done tens of times per day.

At the start of the Päikky usage parents asked quite often instructions from
the nurses. Interviewees stated that this stopped shortly thereafter. Mostly this
was caused by the nurses’ instructions which told the parents to contact the client
organization’s help desk in case of issues. In day-to-day interaction with parents the
interviewees said that Päikky did not usually come up as an topic, unless there were



6. Evaluation 40

some issues with it. Usually the issue was parents who forgot to add care plans for
their children.

Interviewees from Kindergarten A said that they have successfully moved all the
communication between the homes and the kindergarten to be done via Päikky.
Kindergarten B also used Päikky as their primary communication channel, but on
addition to that they had standard procedure on communicating via paper which
was used on some occasions.

All the interviewees told that within the nurses Päikky is a daily topic. Inter-
viewees number 9, 2 and 5 stated that sometimes they vent their frustration with
blaming Päikky out loud to fellow colleagues. More often talks relating to Päikky
were regarded syncing with colleagues that did they correct some noticed inaccuracy
on the attendance data or something else relating to correction of the markings.

Interviewee number 2 said that in their care group Kindergarten UI was often
used on a desktop computer. Also the standard way of using it via smartphone was
in use. The desktop computer was mostly in use due the easiness of the usage, and
the central location of the said computer.

Interviewee number 8 stated that if they run against any issues with Päikky,
they usually try to find someone else to solve them. Other interviewees could not
remember issues with Päikky that they could not handle. The only exception to this
was the case with the Kindergarten A’s devices, that would seemingly load Päikky in
an infinite loop. In situations like that the loader icon would not disappear after user
started Kindergarten UI from the home menu, making the using of the application
impossible. This was fixed on an update to the system later on.

6.1.2 User Experience of Offline Mode Implementation

All the interviewees stated that they would always notice if the application goes to
offline mode. The offline mode header was said to be too eye-catching to be missed.

When the application entered offline mode, the common model of operation was
just to wait for the connectivity to be reached again and keep on using the application
on the offline mode as best as they can. Interviewees were asked if they had a habit
of going to a specific place in order to achieve better reception, but this was said to
be impossible since the nurses found themselves usually in a situation where they
where the currently only supervisor for the children, and therefore they were unable
to move. One interviewee said that they sometime try to move the device higher
while trying to get a better reception.

Interviewees from the Kindergarten A reported that the Kindergarten UI can be
on the offline mode for several minutes once it has entered it. Gaps on the Internet
connectivity and the time for the application being on the offline mode were reported
to be up to 15 minutes in length. Interviewees from the Kindergarten B – which had



6. Evaluation 41

better general coverage of mobile broadband network – said that the usual length
for the offline mode being active was only couple of minutes. When asked directly
about the speculated average length, both interviewees supposed that it would be
near one minute.

In general the interviewees were satisfied to the offline mode regarding the key
activity for Kindergarten UI, the logging in and out of kindergarten personnel. In-
terviewees had a consensus about the offline mode supporting their use case well;
if the connection was nonexistent, they could still mark the children and the other
nurses in or out, and the application would save them after the connectivity was
reached again. If the offline mode was active at the end of the day, it was experienced
as somehow burdensome. The client organization has instructed the nurses not to
turn off the device when the offline mode is active, since not all the data is sent to
the backend yet on that case. They have also been instructed to log out from the
application and shut down the device when the kindergarten closes, so if the offline
mode is active when they should end their workday and leave, they must wait for
the Internet connectivity before they are allowed to leave. This was reported to
happen only rarely, however.

Offline support also made the logging of kindergarten children and personnel more
faster and easier, mostly due to the speed of the response got from clicking a button
in the UI. This is a direct result of duplicating the state machine from the backend
also to the Kindergarten UI.

Some inconvenience was experienced on how the offline mode affected the total
head count of the kindergarten stated by the application. Since with the offline
mode the devices can hold the data for long period of time without sending it to the
backend, and therefore the information about changes in attendance would not get
propagated into other devices. This resulted in an extra effort required especially
on the morning and on the late afternoon, when most of the comings and leavings
happens, and the information about the current headcount present is important.
Usually the nurses kept the total headcount on their mind manually, because the
amount implied by the application was felt too imprecise for real usage. Nevertheless
it was said to be used as a general guide about the current amount of persons present.

Some randomly appearing issues on the application were reported by the intevie-
wees, but they were not identifiable as a direct errors on the functional logic of the
offline mode. They seemed to be related on the startup procedure of application and
how the user interface is initialized. Once found, these errors were left to a lower
emphasis on the interview.

All of the interviewees had used Päikky prior to the existence of the offline mode.
All of them stated that the offline mode has made their usage of Päikky more easier
and less frustrating. The interviewees also said that even with its flaws, Päikky has



6. Evaluation 42

made their job easier, and they would not stop using it even if they were offered a
chance on that.

6.1.3 User Experience of Limited Feature Set

As described in the previous chapters, once the application enters the offline mode,
some of the features are disabled from the users. The interviewees did not find this
distracting. The key activity being possible on both online and offline mode covered
the major part of use cases described by the interviewees.

When asked about tasks that the interviewees had to have postponed due to
Internet connection shortages and the limited feature set of the offline mode, they
had hard time thinking of one. Two from the interviewees described writing a
message to be one of the use cases that would some time need postponing due to
the offline mode being active, but they did not think that this was frustrating.
For some part this can be explained by the method they create messages with the
application: in the Kindergarten B, where the reception was very bad, they use
application on a desktop computer, which has physical access to the Internet.

6.1.4 Users’ Understanding of the Offline Mode

Interviewees were asked a set of questions around technical theme on how do they
understand the actual functionality behind the offline mode. These questions aimed
at resolving if the concepts and abstractions done on the user interface were under-
standable by the users.

When asked to describe what causes the application going into offline mode, each
of the interviewees successfully linked that into the Internet connection being lost.
The understanding on what happens after that or why does it matter was not so
well comprehended.

Every interviewee except one understood that the presence markings done while
being on the offline mode were stored on the current device. The purpose of the
size of the presence marking queue indicated on the user interface’s header was also
well comprehended. When asked about what happens when the application comes
from the offline mode to the online mode, each of the interviewees correctly stated
that the application sends the markings done to a place which none of them could
not describe in more depth.

Each interviewee was asked what would happen on a imaginary scenario like this:

“You are in the middle of morning rush, and lots of children are coming
into the kindergarten. The application is on the offline mode, but you
ignore that and keep on marking the children in. The rush settles, but
the application is still on the offline mode. Then on a blink of an eye, a



6. Evaluation 43

lightning strikes from the clear sky and turns your device into a pile of
dust. What happened to the presence markings you created during the
rush?”

None of the interviewees could give a straight, right answer to this scenario and
about the data’s destiny. With some aid, three of them came to the conclusion
that the data was indeed lost. What was confusing was that even the interviewees
understood that after the offline mode being active the presence markings created
during it must be synchronized, they did not understand that the actual data was
not located on the smartphones. The concept of the master data being on the
backend was not clear to any of them, and this resulted in a kind of a hole on their
logic. They recognized the importance of having an Internet connection, but they
did not exactly know what is the main purpose for having the Internet connection.

6.2 Technical Effectiveness of the Implementation

With the scope being kept on mind, the implementation of the offline support can
be considered to be successful.

Lot of the functionality implemented on the offline mode development would have
been beneficial to the system and the users even if the actual offline support would
not been on the Päikky’s road map. For example effort towards the HTTP cache
header optimization and the usage of application cache makes the Päikky’s usage
better for the user, resulting smaller data bandwidth usage and faster starting times.

The missing merge functionality on the backend is a downside, but that was a
known compromise done in order to save available development resources during the
creation of the offline support. The lack of this feature is covered with the instruc-
tions given to the users by the client organization. The nature of the general use
case of the application also makes the nonexistence of this feature less meaningful,
since most of the time care group’s children are handled on a dedicated device. This
makes the possibility of conflicted data happening relatively small.

The outsourcing of some responsibilities to the user – such as the possible merge
conflict solving – can be seen as a kind of half-baked solution. It is also unfortunate
when looking from both the user experience point of view and from the technical
perspective. However this was a known decision in order to save resources and
simplify development, evaluating it further is beneficial regarding this thesis.

In this area of operation the caching of the data on the browser is not problematic,
but this might not be the same for every case. No encryption would be possible for
that data, since both the key for decrypting and the actual data would need to
be delivered and stored on the same place. This would make efficient encrypting
impossible. For strictly confidential data the approach used in Päikky with the API



6. Evaluation 44

response caching would not therefore be useful.
Otherwise no compromises were made that would have left the technical aspect

of any feature partial. This leaves the main emphasis on evaluating the success of
the offline support to be decided on the user experience point of view.



45

7. LESSONS LEARNED

This chapter introduces lessons learnt by the developers while implementing the
offline support to Päikky. The points presented in the design guidelines section are
factors that are recommendations for developing similar functionalities into other
single-page applications. The discussion also contains speculation on points detected
during the development and deployment of the offline support, but which were too
vague for basing any recommendations on.

7.1 Design Guidelines

This section introduces guidelines recommended by the development team for other
developers facing similar scenarios. These guidelines are literally lessons learned
by the development team and factors that they will take into consideration on the
future projects.

7.1.1 Recognize the Essential Feature Set for Offline Support

When creating offline support to an application, optimal approach is naturally to
support the whole user experience no matter if there is network connectivity or not.
But the experiences gotten from the interviews of Päikky users indicate that splitting
the features into primary and secondary categories and after that providing offline
support only for the primary ones is a viable solution. This allows streamlining
the development process and decreasing the amount of new code required a lot by
having the possibility of simply disabling the secondary features when the Internet
connection is not available.

It is important to identify the key activities of the use case at hand. They are
different between systems operating in different kind of domains. These activities
share the basic aspect of being non-postponable actions. In Päikky’s case they are
activities which include the time factor being a key part of the activity, like the
marking of children and nurses to the application. If this is not done exactly when
the arrive to or the depart from the kindergarten happens, extra work is required.

The kindergarten nurses did not experience the limited feature set of offline mode
in the Kindergarten UI to be problematic. Postponing sending messages and editing
the presence data later on was natural to them, since these were either way tasks
that they would do on occasions when they have a moment of spare time from the



7. Lessons Learned 46

actual work.
By recognizing the essential features for offline support a great user experience

can be achieved without refactoring the whole codebase to comply with stoppages
on the Internet connection.

7.1.2 Prepare for Possible Offline Support

As web applications are used more often as the implementation method of “serious”
use cases, the need for cases when offline support is required can be expected to
grow. When developing new applications and making design decisions regarding
architecture, it is reasonable to at least keep the possibility of needing to implement
offline support later on in mind.

On the browser environment a great level of the preparedness can be achieved
with simple solutions. For example in Päikky it was very advantageous that all
the interaction towards the backend was implemented through a single module (on
Kindergarten UI that module was Backbone’s sync function). Overriding it to use
the local storage cache on the offline mode could be done in only single location on
the code, in contrast to what it would have been if AJAX requests would have been
made individually by different modules.

The most important part of a single-page application where this can be taken
into account is the section of the system where data synchronizing happens. It is
essential that there is a centralized point where this happens. By this a drop-in
creation of offline support is made much more feasible. This can be seen as a good
practice on web applications overall, even when the possible offline support is left
out of consideration.

7.1.3 Use Application Cache

Use application cache regardless you are implementing offline support or not. At
the same time know the limitations and pitfalls of it.

User experience of the application gets better when using the application cache.
Proper usage of it results in form of shorter initializing times and faster loading
of content when switching between the views on the application. Amount of data
transfer required can also be reduced.

One should not try to get advantage from the application cache without proper
exploration of the technique. The nature of the application’s resources (image assets,
JavaScript files) must also be studied and the cache manifest has to be tailored to
match the unique characteristics of each application. In order to create an efficient
production roll-out processes creating a build step to the deploy process is also
required, if one does not already exist for the application.



7. Lessons Learned 47

The use of HTTP cache headers has also to be synchronized with the usage of
cache manifest. Otherwise the cache invalidation in end users’ browsers can become
a major challenge, and without knowledge of the mechanisms involved developers
can easily find themselves on a situation where the application’s cache manifest itself
is cached.

With all this taken into consideration, a well considered and planned usage of the
application cache is encouraged to any kind of single-page application.

7.2 Discussion

No direct guidelines regarding user experience design could be pinpointed from the
development process researched on this thesis. However a need for re-thinking the
concepts presented on the user interface of the Kindergarten UI regarding the offline
support was recognized. The current version – especially the concept of the job queue
– can not be easily adapted intuitively. Instead instructions or trainings are needed.

As described above, users’ understanding on the concepts of offline mode seemed
to be inadequate. They are aware that the application being on the offline mode is
a result of problems on the Internet connection, but they do not fully understand
why it matters. The client-server model is not apparent to them, nor is the fact
(originating from the unawareness of that model) that the master data exists in a
single, centralized point instead of their smartphones. Without acknowledging the
fact that the smartphones are merely a terminals where from the data can be looked
and modified from, shaping a thorough understanding on the need for offline mode
is challenging.

Abstracting the Internet connection status completely away from the end user is
a handful. This depends on the domain of operation and the requirements set for
the application, but some level of awareness regarding connection status is usually
required from the user. Nevertheless the ultimate goal for offline support would be
the removal of the network status from the user consideration, and maybe notice
them about unsynchronized data only in the cases like exiting the application while
unsaved changes exist.

With that being kept in mind, it is worth speculating on cases like Päikky where
the status of the Internet connection is all the time implied to the user that should
the users be taught the basics of how web services work? Knowing that they
are based on the client-server model and understanding that model would result in a
better context for understanding the offline mode in general and give the motivation
for working with the inconvenience it causes. The users would not need to know the
technical specifics of the system’s architecture, but teaching them only the fact that
the data exists somewhere else than on their smartphones would probably make a
difference on understanding the main reason for the offline mode.



7. Lessons Learned 48

General naming of the concepts regarding offline support must also be recon-
sidered in cases where the Internet connection status must be implied to the user.
The words online and offline (exactly the same term is used on all localizations of
Päikky’s user interface) are obvious for software engineers, but for a kindergarten
nurse the meaning of those words might not be so clear. Choosing of terminology
coming not from foreign origin would make assimilation of the concepts easier.

Therefore, and probably also more generally, further research on this topic could
focus more on the human aspects of the development and give the technical point
of view less significance.



49

8. CONCLUSIONS

Requirement for offline support in single-page applications is not extraordinary to-
day, and the need for it can be expected to grow in the future. Developers should
keep that in mind when developing web applications and especially when designing
software architecture of single-page applications.

Offline support can be implemented to an application with different levels of
extent. The support can also be implemented to an already existing application,
and in case the architecture is well designed, this can be done without extraordinary
effort. Providing offline support may not require major changes to the server side of
the system, but can be applied primarily to the code ran on the browser environment.

Knowing the specifics of the domain area helps in identifying the essential key
activities within the application. Supporting only these activities during an Internet
connection blackout is usually sufficient and will not sacrifice the user experience
disturbingly much. This allows restricting of the scope of offline support, resulting
in a fewer resources required on the development effort.

New features on the HTML standards – such as application cache and local storage
– forms a great toolbox for implementing offline support for single-page applications.

When looking from the user experience point of view, the technical methods
introduced and evaluated in this thesis can also be beneficial in the development
of single-page application in cases where there is no need for enabling usage of the
application during a total Internet connection blackout. Applying these methods
properly will result in a faster initialization times and smaller bandwidth usage
than when using traditional approaches.

In cases where the status of the Internet connection can not be fully abstracted
from the user’s comprehension (only partial offline support is implemented), the
concepts shown in the user interface must be considered thoroughly. For an average
user the client-server model on which Internet is built might not be distinct at
all, and that can make motivating them to observe or care for the network status
challenging. In scenarios like these, instructing the users about the context of the
web applications in general might be the best alternative.



50

REFERENCES

[1] StatCounter. Internet usage global stats. Available at: http://
gs.statcounter.com/#all-comparison-ww-monthly-201311-201411/ Ref-
erenced 04.12.2014.

[2] A. Berson. Client-server architecture. J. Ranade series on computer communi-
cations. McGraw-Hill, 1992.

[3] M. Jazayeri. Some Trends in Web Application Development. In Future of
Software Engineering, 2007. FOSE ’07, pages 199–213, May 2007.

[4] Antero Taivalsaari. Mashware: The future of web applications. Technical
report, Sun Microsystems, Inc., Mountain View, CA, USA, 2009.

[5] Thomas Duebendorfer and Stefan Frei. Why silent updates boost security. TIK,
ETH Zurich, Tech. Rep, 302, 2009.

[6] Linda Dailey Paulson. Building rich web applications with ajax. Computer,
38(10):14–17, October 2005.

[7] Jesse James Garrett. Ajax: A new approach to web applications. Avail-
able at: https://courses.cs.washington.edu/courses/cse490h/07sp/
readings/ajax_adaptive_path.pdf, February 2005.

[8] Mark Masse. REST API Design Rulebook. "O’Reilly Media, Inc.", October
2011.

[9] Marco Casario, Peter Elst, Charles Brown, Nathalie Wormser, and Cyril Han-
quez. HTML5 local storage. In HTML5 Solutions: Essential Techniques for
HTML5 Developers, pages 281–303. Apress, January 2011. chapter 11-2 / s.
285.

[10] Roy Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[11] Roger L. Costello. Building web services the rest way. URL:
http://www.xfront.com/REST-Web-Services. HTML. Ultima Consulta,
11:2007, 2007.

[12] Peter H. Carstensen and Kjeld Schmidt. Computer supported cooperative work:
New challenges to systems design. In K. Itoh (Ed.), Handbook of Human Fac-
tors, pages 619–636, 1999.

http://gs.statcounter.com/#all-comparison-ww-monthly-201311-201411/
http://gs.statcounter.com/#all-comparison-ww-monthly-201311-201411/
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf


REFERENCES 51

[13] Richard Bentley, Wolfgang Appelt, Uwe Busbach, Elke Hinrichs, Douglas Kerr,
Klaas Sikkel, Jonathan Trevor, and GerdWoetzel. Basic support for cooperative
work on the world wide web. International journal of human-computer studies,
46(6):827–846, 1997.

[14] John M. Carroll, Dennis C. Neale, Philip L. Isenhour, Mary Beth Rosson,
and D. Scott McCrickard. Notification and awareness: synchronizing task-
oriented collaborative activity. International Journal of Human-Computer
Studies, 58(5):605–632, 2003.

[15] Milad Saad and Mary Lou Maher. Shared understanding in computer-supported
collaborative design. Computer-Aided Design, 28(3):183–192, March 1996.

[16] Jaana Näsänen, Antti Oulasvirta, and Asko Lehmuskallio. Mobile media in the
social fabric of a kindergarten. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’09, pages 2167–2176, New York,
NY, USA, 2009. ACM.

[17] Feng Qian, Kee Shen Quah, Junxian Huang, Jeffrey Erman, Alexandre Gerber,
Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. Web caching on smart-
phones: Ideal vs. reality. In Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’12, pages 127–140,
New York, NY, USA, 2012. ACM.

[18] Internet Live Stats. Number of Internet Users (2015). Available at: http:
//www.internetlivestats.com/internet-users Referenced 19.4.2015.

[19] Cor-Paul Bezemer and Andy Zaidman. Multi-tenant SaaS Applications: Main-
tenance Dream or Nightmare? In Proceedings of the Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE), IWPSE-EVOL ’10, pages 88–92, New York, NY,
USA, 2010. ACM.

[20] Alan Hevner and Samir Chatterjee. Design Research in Information Systems:
Theory and Practice. Springer Science & Business Media, June 2010.

[21] Alan R. Hevner. A three cycle view of design science research. Scandinavian
journal of information systems, 19(2):4, 2007.

[22] Kalle A Piirainen and Rafael A Gonzalez. Constructive synergy in design sci-
ence research: A comparative analysis of design science research and the con-
structive research approach. Liiketaloudellinen Aikakauskirja, (3-4):206–234,
2014.

http://www.internetlivestats.com/internet-users
http://www.internetlivestats.com/internet-users


REFERENCES 52

[23] Dr Jonathan Lazar, Dr Jinjuan Heidi Feng, and Dr Harry Hochheiser. Research
Methods in Human-Computer Interaction. John Wiley & Sons, February 2010.

[24] Robert K. Yin. Case Study Research: Design and Methods. SAGE Publications,
Inc, Los Angeles, fifth edition, May 2013.

[25] W3.org. Hypertext transfer protocol 1.1 – header field definitions. Available
at: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
Referenced 4.11.2014.

[26] Andrea Wharry. HTML5 Offline Technologies. Available at: http://
andreawharry.com/assets/img/portfolio/WharryAndreaFinalPaper.pdf
Referenced 19.4.2015., 2014.

[27] Web Hypertext Application Technology Working Group. HTML specifica-
tion: Offline web applications. Available at: https://html.spec.whatwg.
org/multipage/browsers.html#offline Referenced 27.10.2014.

[28] Bruce Lawson and Remy Sharp. Introducing HTML5. New Riders, October
2011.

[29] Jake Archibald. Application cache is a douchebag. Available at:
http://alistapart.com/article/application-cache-is-a-douchebag/,
May 2012.

[30] Mozilla Corporation. Using the application cache. Available at:
http://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_
application_cache/ Referenced 24.11.2014.

[31] jQuery Foundation. .ajaxError(), jQuery API documentation. Available at:
http://api.jquery.com/ajaxerror/ Referenced 4.11.2014.

[32] Mozilla Corporation. Document object model: window.navigator.onLine.
Available at: https://developer.mozilla.org/fi/docs/DOM/window.
navigator.onLine/ Referenced 25.11.2014.

[33] W3.org. Web storage - the localStorage attribute. Available at: http:
//www.w3.org/TR/webstorage/#the-localstorage-attribute/ Referenced
11.12.2014.

[34] Philip A. Laplante. Dictionary of Computer Science, Engineering and Tech-
nology. CRC Press, December 2000.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://andreawharry.com/assets/img/portfolio/WharryAndreaFinalPaper.pdf
http://andreawharry.com/assets/img/portfolio/WharryAndreaFinalPaper.pdf
https://html.spec.whatwg.org/multipage/browsers.html#offline
https://html.spec.whatwg.org/multipage/browsers.html#offline
http://alistapart.com/article/application-cache-is-a-douchebag/
http://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache/
http://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache/
http://api.jquery.com/ajaxerror/
https://developer.mozilla.org/fi/docs/DOM/window.navigator.onLine/
https://developer.mozilla.org/fi/docs/DOM/window.navigator.onLine/
http://www.w3.org/TR/webstorage/#the-localstorage-attribute/
http://www.w3.org/TR/webstorage/#the-localstorage-attribute/


REFERENCES 53

[35] Daniel P. Friedman and David Stephen Wise. The impact of applicative pro-
gramming on multiprocessing. Indiana University, Computer Science Depart-
ment, 1976.

[36] jQuery Foundation. deferred.promise(),jQuery API documentation. Available
at: http://api.jquery.com/deferred.promise/ Referenced 20.11.2014.

[37] D.L. Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications, 39(10):1482–1493, October 1991.

http://api.jquery.com/deferred.promise/


54

A. APPENDIX: INTERVIEW TEMPLATE

Haastattelu Päikky-järjestelmän offline-tuesta
Vastauksia käytetään nimettömänä Miro Niemisen diplomityön aineistona. Vas-

tauksien perusteella pyritään jatkokehittämään Päikky-järjestelmää entistä käyt-
täjäystävällisemmäksi.

Haastattelu nauhoitetaan ääninauhurilla litterointia varten, ja nauhoitukset tuho-
taan diplomityön valmistuttua.

Jos jokin kysymys tuntuu arveluttavalta tai epämiellyttävältä, siihen voi jättää
vastaamatta.

Mihinkään kysymykseen ei ole olemassa oikeita vastauksia, vaan haen mahdol-
lisimman omakohtaisia kokemuksia asiasta.

1. Kerro lyhyesti työnkuvasi, ja kuinka kauan olet ollut töissä tässä päiväkodissa?
Saanko käyttää tätä tietoa DI-työssäni?

2. Taustaa: ikä, käytössä oleva puhelin, teknologiaosaaminen

3. Mihin käytit viimeksi Päikkyä?

4. Kuvaile yleisimpiä tehtäviä, mitä teet Päikyllä päivittäin?

5. Mikä on viimeisin ongelma, mikä Sinun Päikky-käytössäsi on ilmennyt? Miten
selvisit siitä?

6. Mitä olette keskustelleet Päikystä kolleegoiden kesken?

7. Onko Päikky ainoa kirjanpitoväline vai käytättelö jotain muuta sen lisäksi?

8. Kuinka ymmärrät sanan offline-moodi?

9. Jos Päikky menee offline-moodiin mitä mielestäsi silloin tapahtuu?

10. Oletko tietoinen Päikyn offline-moodista?

11. Näytä ja kerro kuinka Päikky mielestäsi kertoo onko se online vai offline-
moodissa?

12. Huomaatko aina, jos Päikky menee offline-moodiin?



A. Appendix: Interview Template 55

13. Kuinka usein käyttäessäsi Päikkyä järjestelmä menee offline-moodiin?

14. Mitä teet jos huomaat että Päikky menee offline-moodiin?

15. Onko jotain erityisiä paikkoja jossa Päikky menee offline-moodiin?

16. Kuinka pitkiä aikoja järjestelmä pysyy offline-moodissa kerran siihen men-
tyään?

17. Rajoittaako offline-moodi Sinun Päikyn käyttöä mitenkään? Joudutko lykkäämään
jotain tehtäviä, joita normaalisti tekisit heti?

18. Mikä on viimeisin ongelma, mikä Sinulla on ollut Päikyn offline-moodiin liit-
tyen?

19. Mitä olette keskustelleet kolleegoiden/vanhempien kanssa offline moodista?

20. Oletko käyttänyt Päikkyä ennen offline-moodin olemassaoloa?

21. Jos olet, niin miten offline-moodin olemassaolo on muuttanut Päikyn käyt-
töäsi?

22. Kerro omin sanoin, mitä käsität tapahtuvan Päikyn mennessä offline-moodiin

23. Jos merkitset Päikyssä lapsen saapuneeksi offline-moodin ollessa päällä, ja
hetki tämän jälkeen salama iskee laitteeseesi muuttaen sen kasaksi tuhkaa,
mitä oletat tapahtuvan juuri tekemällesi lapsen sisäänkirjaukselle?

24. Kerro omin sanoin, mitä käsität tapahtuvan Päikyn poistuessa offline-moodista

25. Haluatko jatkaa Päikyn käyttöä?

26. Kerro terveisesi ja kehitysehdotuksesi Päikky-järjestelmän kehittäjille

Kiitos!


	Introduction
	Context
	Research Objectives
	Structure of this Thesis

	Background
	Web Applications
	Single-Page Applications
	REST APIs

	Computer Supported Collaborative Work
	Connectivity Issues
	Research Gap

	Case Päikky
	System Description
	Backend
	Kindergarten UI
	Presence Model
	Presence Status and Presence State Machine

	Need for Offline Support on Päikky

	Research Methods
	Design Science Research
	Case Study
	Data Collection with Semi-Structured Interviews
	Finding Interviewees
	Preparing Interviews
	Conducting Interviews
	Analyzing Interviews


	Implementation
	The Goal for the Offline Support
	State Transitions to and from the Offline Mode
	Limited Feature Set in Offline Mode
	Disabled Features
	Simplified Data Synchronizing

	Technical Details
	HTTP Cache Headers
	Application Cache
	Monitoring Connection Quality
	Using Local Storage as a Cache
	Job Queue: Promise-based Presence Marking Queue
	Storing and Receiving Presence Markings on the Backend
	Duplicating the Presence State Machine


	Evaluation
	User Interviews
	General Feedback regarding Päikky Usage
	User Experience of Offline Mode Implementation
	User Experience of Limited Feature Set
	Users' Understanding of the Offline Mode

	Technical Effectiveness of the Implementation

	Lessons Learned
	Design Guidelines
	Recognize the Essential Feature Set for Offline Support
	Prepare for Possible Offline Support
	Use Application Cache

	Discussion

	Conclusions
	Appendix: Interview Template

