ﬁ TAMPERE UNIVERSITY OF TECHNOLOGY

THANG LUONG CAO

Serial bus adapter design for FPGA
Master of Science Thesis

Examiner: Prof. Timo D. Hamalainen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
On May 6, 2015.

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Electrical Engineering

THANG, LUONG CAO: Serial bus adapter design for FPGA
Master of Science Thesis, 63 pages

April 2015

Major: Communication Circuits and Systems

Examiner: Prof. Timo D. Hamal&ainen

Keywords: Serial bus, I°C, adapter, SoC, FPGA, HPS, simulation

In recent years, FPGAs (Field Programmable Gate Arrays) have become a popular
platform for testing and implementing hardware designs by increasing their capacity
and cost efficiency in the competition with Application Specific Integrated Circuits
(ASICs). Processors can be used for any problem but they have not been optimized for
specific problems. The design of ASIC is an extremely complex task, very time
consuming and expensive; they are used for mass products. FPGA is an intermediate
solution between general purpose processors and ASICs. Altera Cyclone V 28nm is a
System On Chip (SoC), which integrates a Hard Processor Core (HPS), peripherals, and
memory controller with the FPGA fabric. However, HPS consist of only one-directional
serial data (SDA) buses and serial clock (SCL) buses and provides support for a
communication link only between integrated circuits on a board. It is necessary to build
an 1°C serial bus adapter in order to communicate between HPS and other devices
outside the board.

I°’C serial bus adapter is implemented and tested in this thesis. It adapts the
communication from one-directional serial data line of hard processor system to bi-
directional data line. In order to test the 1°C adapter in both writing data operation and
reading data operation, Signal Generator blocks to generate testing signals are
implemented and 1°C Slave block from OpenCores to detect and display data to LEDs is
used. All the blocks are implemented in VHSIC Hardware Description Language
(VHDL).

The verifications for 1°C Adapter, Signal Generator and 1°C Slave are inspected by
waveforms on Modelsim SE 10.2c simulator. The block implementations are compiled
and programmed by Quartus Il 13.1 to DE1-SoC FPGA development board. DE1-SoC
board buttons and LEDs are used to test the 1°C adapter operation by a user. The results
show that the adapter works as specified.

PREFACE

The research through my Master’s Thesis was conducted during academic year 2014-
2015 at the Department of Pervasive Computing at Tampere University of Technology.

I would like to thank Prof. Timo D. H&maél&inen for the opportunity to
work this project. | am especially grateful to Dr. Tech. Erno Salminen for his time and
dedication provided to the completion of my thesis, because of his long design
meetings, guidance and advices.

| also would like to thank to all of my friends in Finland who were being
with me during time in this beautiful country, my good friend Stefanus Arinno for
helping me a lot and Julio Cesar for his motivation pictures at my work station office
forcing me to finish my thesis all the time.

Last but not the least; I am grateful for my family, my parents Long and
Nguyen, my younger brother Loc for their support throughout my study and life.

Tampere, April 2015

Luong Cao Thang

CONTENTS
1. INTRODUCTIONiciiiiiieieieie ettt st stesnestesnesnaenes 1
2. DEVICES AND I2C PROTOCOLoeivieeeeeeeeeeeeeseeseeeesee s 6
0 R o - 0] 1 1 SR PRP 6
2.2 ULHZEA T00IS ...t e 7
2.3 TPC PIOLOCON .. oo 8
/220 T00 R 111 oo L1 T [0 o OSSPSR 8
2.3.2 PrOLOCONL ...t e 8
2.3.3 Start and Stop CONAITIONSccveiiiiieieciece e 10
2.34 BYIETOMMAL ..o s 10
2.3.5 Acknowledge (ACK) and not acknowledge (NACK)cccevevvevieennenn. 11
2.3.6 RIW DIl et 12
3. IMPLEMENTATION ON FPGAottt 13
3.1 BIOCK DIaQramS.....cccciuiiiiiiieieiie st e sieeee sttt e staesre e sve e sra e e e sra e e 13
31,1 WIIting data PrOCESS.....ccveeieiieeiieeie ettt e ste et sre et e e s sne e 13
3.1.2 ReadiNg daAA PrOCESS.....ccueitiriiriiriieiieieie ettt sttt bbb 14
3.2 SIgNAl gENEIALON.....c.ueeiieiie ettt sreete e nreeee s 15
3.2.1 Signal generator t0 WITTEcouiieieieieiesie s 15
3.2.2 Signal generator t0 readcooueieierieiiie s 17
3.3 120 AGAPIET ..ottt 19
331 1PC ACAPLET BIOCKo 19
3.3.2 Finite State Machineccoouviiiiiiie s 20
3.3.3 HOW I2C AdAPEr WOTK..... ..o 22
B4 PO SIAVE ... 27
3.5 TOP LEVEI DESIGN ..ottt 29
4. VERIFICATION AND RESULTcoiiiiicieieese et 30
4.1 Writing Data Process VerifiCationccccooeieiiniiininieeese e 30
4.1.1 Verification of Signal Generator To Write in Writing Data Process........ 30
4.1.2 Verification of I°C Adapter in Writing Data Process.............c..cccooveveen.. 35
4.1.3 Verification of I°C Slave in Writing Data Process.............cccccoeeveererenens 40
4.2 Reading Data Process Verificationccccevveiieeiie s 45
4.2.1 Verification of Signal Generator To Read in Reading Data Process........ 45
4.2.2 Verification of I°C Adapter in Reading Data Process............c.cccvevvvenen. 49
4.2.3 Verification of I°C Slave in Reading Data Process............coocvvvvrererveneen. 54

4.3 Whole System VerifiCationcccevveeiieiiiis e 59

5.

4.3.1 Register Transfer LeVEl.........cccviiiiiiiieecee e
4.3.2 Assign Pins and Display Result by DE1-SOC.........cccccooiiiiiniieninene
CONCLUSIONSttt

LIST OF FIGURES

Figure 1.1 Altera SOC FPGA Device Block Diagramcccccccevveiiiiiesieeneeie e 2
Figure 1.2 Board BIOCK DIagramccccoueiiiiiiiie et 2
Figure 1.3 Block Diagram on DEL-SOC.ccccciiiieiiiiie et 4
Figure 1.4 Block Diagram on DE1-SoC for Writing Data Operation.............c.c.cccevvenen. 5
Figure 1.5 Block Diagram on DE1-SoC for Reading Data Operation.ccccueenien. 5
Figure 2.1 DEL-SOC BOAIToouiiiiiiieiieieeite st 6
Figure 2.2 1°C bus CONFIGUIALIONc.oveeveceeeeeeeeseeses st 8
Figure 2.3 Start and StOp CONAITIONSooveiviiiiiiieieieec e 10
Figure 2.4 Data transfer 0N the IPC BUSc..ocevvereeeriieseieieressesesseessesssesses s 11
Figure 2.5 Acknowledgement 0N 12C DUSoc.vvervenrinreieieeceeeees s 11
Figure 2.6 A complete data tranSfer 12
Figure 3.1 Writing data process block diagram.cccoeiiiiiiiininieiceee e 13
Figure 3.2 Reading data process block diagram.cccoeeeieiininieniiiene e 14
Figure 3.3 Signal Generator To Write BIOCK............cocooiiiiiiiiiiiiceee 15
Figure 3.4 Address and data signals waveform generated by Signal Generator To

LA (SR 16
Figure 3.5 Signal Generator To Read BIOCK.ccoveiiiiiiiniiiieeee 17
Figure 3.6 Address and data signals waveform generated by Signal Generator To

T Vo SRS 18
Figure 3.7 12C Adapter BIOCK.ccooiiiiiiiiiic e 19
Figure 3.8 Finite state machine of 12C Adapter block............ccccoiiiiiiiinie 21
Figure 3.9 12C SIaVe BIOCKooiiiiiiiee e 27
Figure 3.10 Write Data Top Design BIOCKccociiiiiiiiiieiiseee e 29
Figure 3.11 Read Data Top Design BIOCK ..o 29

Figure 4.1 Modelsim testbench for reset, start and stop of Signal Generator To

Write in Writing Data ProCess.cocveiieiiieiie e 31
Figure 4.2 Modelsim testbench for address and data transmission of Signal

Generator To Write in Writing Data ProcCess.cccccevveevveviieeniesieeninns 32
Figure 4.3 Signal Generator To Write Block on RTL Viewer of Quartus Il in

WIItING Data PrOCESS.ccvvievieiie ettt 33
Figure 4.4 Inside Signal Generator To Write Block on RTL Viewer of Quartus Il

IN WEItING Data PrOCESS.voivieiiiieiiieiieeie e 34

Figure 4.5 Modelsim testbench for reset, start and stop of 12C Adapter in Writing
DAta PIrOCESS.evieiiiieiiiie ittt 35

Vi

Figure 4.6 Modelsim testbench for address transmission of 12C Adapter in

WIItING Data PrOCESS.ocvviivieiicie ettt 36
Figure 4.7 Modelsim testbench for data transmission of 12C Adapter in Writing

DAta PrOCESS. .. .eeieiiiiieitieiie ettt 37
Figure 4.8 12C Adapter Block on RTL Viewer of Quartus Il in Writing Data

PTOCESS. .. 38
Figure 4.9 Inside 12C Adapter Block on RTL Viewer of Quartus Il in Writing Data

PTOCESS. .o 39
Figure 4.10 Modelsim testbench for reset, start and stop of 12C Slave in Writing

DAta PrOCESS. .. .eeteeiiiieiiee sttt n e 40
Figure 4.11 Modelsim testbench for address transmission of 12C Slave in Writing

DAta PrOCESS.eeteeiiiieitie sttt r e 41
Figure 4.12 Modelsim testbench for data transmission of 12C Slave in Writing

DALtA PrOCESS. .. .eeteeiiiieitieieeiee ettt n e 42
Figure 4.13 12C Slave Block on RTL Viewer of Quartus Il in Writing Data

PIOCESS. ...t 43
Figure 4.14 Inside 12C Slave Block on RTL Viewer of Quartus Il in Writing Data

PIOCESS. ..o 44
Figure 4.15 Modelsim testbench for reset, start and stop of Signal Generator To

Read in Reading Data PrOCESS.c.coveviiiieiieiieee s 45
Figure 4.16 Modelsim testbench for address and data transmission of Signal

Generator To Read in Reading Data ProcCess..........ccccovvevveveieeiesiieseennnn 46
Figure 4.17 Signal Generator To Read Block on RTL Viewer of Quartus Il in

Reading Data PrOCESS.cccueiuieiiieieitiesie ettt ste e saa e 47
Figure 4.18 Inside Signal Generator To Read Block on RTL Viewer of Quartus Il

iN Reading Data PrOCESS.cccciuiiieiieiiece st 48
Figure 4.19 Modelsim testbench for reset, start and stop of 12C Adapter in

Reading Data PrOCESS.cccueiuieiieiiesie it cie st ste e s sre e saa e 49
Figure 4.20 Modelsim testbench for address transmission of 12C Adapter in

Reading Data PrOCESS.cciiiiieieieieriesie et 50
Figure 4.21 Modelsim testbench for data transmission of 12C Adapter in Reading

DAt8 PIOCESS.vvieiiiieiiit ettt 51
Figure 4.22 12C Adapter Block on RTL Viewer of Quartus Il in Reading Data

PIOCESS. .. e 52
Figure 4.23 Inside 12C Adapter Block on RTL Viewer of Quartus Il in Writing

DAt8 PIOCESS.vvieiiiiieiiiie sttt 53
Figure 4.24 Modelsim testbench for reset, start and stop of I12C Slave in Reading

DAta PIOCESS. ...eeeuveiiiiieiiee ettt 54
Figure 4.25 Modelsim testbench for address transmission of 12C Slave in Reading

DAta PIOCESS. .. .eeieeiiiieiiee et 55

Figure 4.26 Modelsim testbench for data transmission of 12C Slave in Reading
DAta PIOCESS.eeveiiiiieiiee et 56

Vii

Figure 4.27 12C Slave Block on RTL Viewer of Quartus Il in Reading Data

PTOCESS. ..o 57
Figure 4.28 Inside 12C Slave Block on RTL Viewer of Quartus Il in Reading Data

PTOCESS. ..o 58
Figure 4.29 Top Level Design for Writing Data Process on RTL Viewer of

L@ 11T (1 I PR 59
Figure 4.30 Top Level Design for Reading Data Process on RTL Viewer of

L@ 11T (1 I PP 59
Figure 4.31 Assignment Editor for Top Level DeSign.c.cccevviieviereccie s 60
Figure 4.32 Output of Top Level Design Block displaying on Leds of DE1-SoC in

WIItINg Data PrOCESS.cvviiveeiecie ettt 61

Figure 4.33 Output of Top Level Design Block displaying on Leds of DE1-SoC in
Reading Data PrOCESS.cccueiieriieieieesie e s se e ste e s sre e esra e 61

LIST OF SYMBOLS AND ABBREVIATIONS

FPGAs
ASICs
SoC
HPS
PCB
SDRAM
DAC
ADC
12C
SDA
SCL
ACK
NACK
SPI
UART
CAN
USB

Rst
Rst_n
Clk
Clk_50
Scl_ex
Sda_ex
Hps_scli
Hps_sdi
Hps_sclo
Hps_sdo
Data_in
Wr

Rd

Rw_wr

Field Programmable Gate Arrays
Application Specific Integrated Circuits
System on Chip

Hard Processor System

Printed Circuit Board

Synchronous dynamic random access memory
Digital to analog converter

Analog to digital converter

| squared C

Serial Data Line

Serial Clock Line

Acknowledge

Not Acknowledge

Serial Peripheral Interface

Universal Asynchronous Receiver Transmitter
Control Area Network

Universal Serial Bus

Reset

Negative Reset

Clock

Clock 50 MHz

Serial clock line extra

Serial data line extra

Hard processor system serial clock line input
Hard processor system serial data line input
Hard processor system serial clock line output
Hard processor system serial data line output
Data input

Write state

Read state

Read/Write of Write State

viii

Rw rd
Ack_wr
Ack_rd
ICs

MSB
LSB

I/0

RTL
FSM
SPD
EEPROMSs
NVRAM

Read/Write of Read State
Acknowledge of Write State
Acknowledge of Read State
Integrated Circuits

Most Significant Bit

Least Significant Bit
Input/output

Register Transfer Level
Finite State Machine

Serial Presence Detect
Electrically Erasable Programmable Read-Only Memory

Non-volatile Random Access Memory

1. INTRODUCTION

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to be
configured by a customer or designer after manufacturing. The basic blocks in an FPGA
device are Logic Elements (LE) and the interconnections between them are
programmable to communicate each other [1]. Reprogrammable logic device provides a
fast and cost efficient way for testing and implementing custom digital designs. A
variety of reusable Intellectual Property (IP) components allows the designer to create
complex designs in reasonable time and synthesizable soft-core processors providing
the possibility to implement functionality using software. It is often easier and faster to
implement complex functionality using software rather than implementing the same
functionality on hardware logic [2]. The field programmable can be understood as the
ability to program it in the field or programming can be done by the end-user [3]. In
compare to processors [4] and Application Specific Integrated Circuits (ASICs) [5],
FPGAs are inexpensive and they can even outperform the others, since designers can
develop application specific logic that take advantage of the inner parallelism of the
given problem; FPGA are designed to provide good performance for any application,
whereas ASIC are just designed for a given problem. Beside the advantages of FPGA
over ASIC in terms of flexible reprogrammable ability, early testing stages, shorter
time-to-market, it cannot get over ASIC by area, delay, power consumption and unit
price in high volume products. There is a measurement done by Kuon and Rose in their
research about the gap between FPGAs and ASICs [6].

Altera SoC FPGA Device

HPS Portion
MNKMNNXRRARKRKRKK

Flash SDRAM Controller

FPGA Portion
MHMHNKRRENXRRERREA

Controllers Subsystem

Cortex-A9 MPU Subsystem

On-Chip Support
Memories Peripherals

Control| User HSSI
Block I[0] Transceivers

HPS-FPGA
Interfaces

FPGA Fabric
(LUTs, RAMs, Multipliers & Routing)

Interface

PLLs Peripherals

Debug

DD DI DI DD DI DI DI DT D

Hard Hard Memory
PLLs PCle Controllers

DDA DD DI D] DD D X A

©6c0000000
40 pin GPIO

Figure 1.1 Altera SoC FPGA Device Block Diagram [8].

B sons — iy

Nommal Type-B

25MHz Clock Input

(Clock Generator x1)

A 4
psral e oy

| | orolenetY

SCSEM4

x2
Switch Control|

[-

fime 2
+ r
N
11
B | T
L RGMIL LJ
x1 6

USB Host
Normal Type-A

SDRAM x32 1 GB

e

1—bm 2x7 LTC Header
x7

FTF fptmt&imf T '¥1%
MB&.%EM%%OM@ =

7-Segment Display x6

Figure 1.2 Board Block Diagram [9].

i

HPS WARM
User LED RST User RST

Altera Cyclone V 28nm is a System On Chip (SoC), which integrates a Hard Processor
Core (HPS), peripherals, and memory controller with the FPGA fabric using a high-
bandwidth interconnect backbone [7][8]. Cyclone V is available on DE1-SoC FPGA
development board. The Altera SoC FPGA Device Block Diagram is shown in Figure
1.1 and Figure 1.2 illustrates the DE1-SoC board block diagram for Cyclone V in a
FPGA development board.

Inter-Integrated Circuit, abbreviated as I°C is a serial bus short distance protocol
invented by Philips Semiconductor to transfer data among ICs. Because of advantages
in simplicity and low manufacturing cost, I°C is nowadays one of the most popular
serial bus communication protocols in the market together with other serial bus
communication protocols such as SPI [26], UART [27], CAN [28], USB [29], and so
on. There are many devices, which have /0O I°C interface and communicate with other
devices following the 1°C protocol. Examples of 1°C compatible devices are Analog to
Digital Converter, Digital to Analog Converter, EEPROM, Real Time Clock [30],Real
Time Calendar [31], Temperature Sensor [32], LCD multimedia color touch panel from
TeraslC, and so on.

The 1°C protocol is applied to 1°C compatible devices which have bi-directional signals
serial data (SDA) and serial clock (SCL). However, the Hard Processor System on
Altera Cyclone V has only one-directional I°C buses, one serial clock and one serial
data for signals coming in to HPS, and one serial clock and one serial data for signals
coming out from HPS. In order to adapt the communication between one-directional
serial data line of HPS and bi-directional serial data line following the 1°C protocol, it is
necessary to implement a serial bus adapter as illustrated in Figure 1.3.

DE1-SoC Board

1/012C
HPS FPGA INTERFACE
)
ps_sclo scl O
_hps_sdo sda O
12C

hps_scli Adapter

hps_sdi

Figure 1.3 Block Diagram on DE1-SoC.

For this thesis, a serial bus Adapter to make communication between HPS Portion and
FPGA Portion following I°C protocol in Altera SOC FPGA Device is created. In order
to test the 1°C Adapter, there is also Signal Generator to produce testing signals and an
I°C Slave from OpenCores is involved. The data generated by the Signal Generator after
going through 1°C Adapter is detected at 1°C Slave and displayed to the LEDs of the
DE1-SoC Board for Writing Data Operation and Reading Data Operation as shown in
Figure 1.4 and Figure 1.5 respectively. The thesis is divided into the following chapters.
Chapter 2 introduces devices and tools used in the work. The implementation of blocks
is presented in Chapter 3. Chapter 4 shows verification and results of block
implementations by software as well as by compiling and programming the FPGA
device. Chapter 5 is the conclusions for this thesis.

—_— Signal

Generator
To
Write

)

|

DE1-SoC Board

FPGA LEDs
Interface

-

data_in .
E -
-

o

e

-

-

Figure 1.4 Block Diagram on DE1-SoC for Writing Data Operation.

)

scl

Signa
Generator

sda

hps_sclo scl

To
Read

—

scl_e:

sda_ex hps_sdi

hps_sdo _sda

DE1-SoC Board

FPGA LEDs
Interface

-

data_in .
E ®
e

-

-

-

-

Figure 1.5 Block Diagram on DE1-SoC for Reading Data Operation.

2. DEVICES AND I°C PROTOCOL

This Chapter presents an introduction to the I°C protocol. Devices and utilized tools
used in this work are described.

2.1 Platform

The platform used in this work is DE1-SoC FPGA development board. The DE1-SoC
board has many features that allow users to implement a wide range of designed
circuits, from simple circuits to various multimedia projects [10].

W rrca

B
B systen VGA Out

Mic Line Line VGA
In In Out Video-In 24-bit DAC

JTAG Header

Audio Codec
Video Decoder
PS2 — =8

USB-Blaster || ===

2x20 GPIO x2
Power DC Jack !
e Altera 28-nm
' Cyclone V FPGA
Power ON/OFF : wilh ARM CortexA9
B SR T L e
ADC
ADC Header
7-Segment Display
LED x10 K R E X A 1R e, O,
f—lr\ﬂﬂﬂl—]ﬂmrr & IR-out
o]] ot st b e 1 1 B R.in

(@

Switch x10 Button x4

Figure 2.1 DE1-SoC Board [10].
An overview of the specification of DE1-SoC Board is following [10]:
FPGA Device:

e Cyclone V SoC 5CSEMAS5F31C6 Device
e Duo-core ARM Cortex-A9 (HPS)
e 85K Programmable Logic Elements

e 44500 Kbits embedded memory
e 6 Fractional PLLs
e 2 Hard Memory Controllers

Configuration and Debug:

e Serial Configuration device — EPCS128 on FPGA
e On-Board USB Blaster Il (Normal Type B USB connector)

Connectors:

e Two 40-pin Expansion Headers (voltage levels: 3.3V)
e One 10-pin ADC Input Header

e One LTC connector (One Serial Peripheral Interface (SPI) Master, one 12C and
one GPIO interface)

Switches, Button and Indicators:

o 4 User Keys (FPGA x4)

e 10 User switches (FPGA x10)

e 11 User LEDs (FPGA x10; HPS x1)

e 2 HPS Reset Buttons (HPS_RST_n and HPS_ WARM_RST n)
e Six 7-segment displays

2.2 Utilized tools

The following tools were used in this work:

e Altera Quartus Il [11]
Quartus 11 is used for analysis and synthesis of the HDL design of the project.
Quartus 1l enables the developer to compile designs, perform timing analysis,
examine RLT diagrams, simulate a design’s response to stimulation, and
configure the target device with the programmer. The version used in the project
is Quartus 11 13.1 (64-bit).

e Modelsim [13]
Modelsim is a hardware simulation and debug environment by Mentor Graphics,
primarily targeted at smaller ASIC and FPGA designs. Modelsim is used to
verify and simulate for VHDL design of project. The version used in the project
is Modelsim SE 10.2 c.

2.3 I°C Protocol

2.3.1 Introduction

From 1980s, Philips Semiconductors Company created the 1°C interface which is used
for data transfer among ICs at the Printed Circuit Board (PCB) level. The concept is
connecting all the 1°C bus compatible devices which have an I°C interface. This concept
allows devices communicate directly with each other devices via 1°C bus [14].

In 1°C, designs proceed rapidly from block diagram to final schematic and
interconnections are minimized that ICs have fewer pins. With simplicity and low
manufacturing cost, 1°C is common in many applications such as reading configuration
data on SDRAM [15], supporting systems management for PCI cards [16], accessing
low speed DACs [17] and ADCs [18], and display data channel. I°’C is now
implemented in over 1000 different ICs [19] and broadly adopted by many leading chip
design companies like Intel, Texas Instrument, Analog Devices, etc.

2.3.2 Protocol

In I°C, only two signal lines are required; a serial data line (SDA) and a serial clock line
(SCL). Each device connected to the bus is software addressable by a unique address
and simple master/slave relationships exist at all times; masters can operate as master-
transmitters or as master-receivers. The device that initiates communication is called the
Master, and at that time, all the other devices on the bus are considered Slaves.

MICRO - LCD STATIC
CONTROLLER DRIVER RAM OR
A EEPROM
[spa
['scL
MICRO -
GATE CONTROLLER
ARRAY ADC B

MBC645

Figure 2.2 1°C bus configuration [20].

Figure 2.2 illustrates 12C bus configuration and Table 2.1 describe some basic 12C bus
terminology. First, consider when microcontroller A wants to send information to
microcontroller B, microcontroller A is master and addresses microcontroller B is the
slave. Microcontroller A (master-transmitter) sends data to microcontroller B (slave-
receiver) and microcontroller A terminates the transfer. When a Master wants to initiate
a communication, it issues a “START” condition. At that time, Slave has to listen to the
bus for incoming data. After the “START” is issued, the Master sends the “ADDRESS”
of the Slave that it wishes to communicate with along with a bit to indicate the direction
of the data transfer (either read or write). Slave will then compare its address with the
address received on the bus. If the address matches, the Slave will send an
“ACKNOWLEDGEMENT” (ACK) to the Master. Slave whose address does not match
will not send an ACK. Once communication is established, the two lines are busy. No
other device is allowed to control the lines except the Master and the Slave which was
selected. When the Master wants to terminate communication, it will issue a “STOP”
signal. After that, both SCL line and SDA line are released and free.

So far we have introduced the “START”, “ADDRESS”, “ACKNOWLEDGEMENT”
and “STOP” signals. We will discuss these signals in more detail later. Terms used in
I°C bus are summarized in the Table 2.1.

Table 2.1 Definition of 1°C bus terminology [21].

Term Description
Transmitter the device which sends data to bus
Receiver the device which receives data from bus

the device which initiates a transfer,
Master generate clock signals and terminates a
transfer

Slave the device addressed by a master

10

2.3.3 Start and stop conditions

When a Master wants to initiate a data transfer, it issues a START condition and when it
wants to terminate the transfer, a STOP condition will be initiated. There can be
multiple STARTS during once transaction called a repeated START. The Master can
then release the STOP condition whenever it wants to.

S Y
« U\

START condition STOP condition

Figure 2.3 Start and Stop conditions [21].

As you can see in Figure 2.3, a START is issued by bringing the SDA line low while
the SCL line is high. A STOP condition is implemented by transitioning the SDA line
high while the SCL line is high. START and STOP conditions are always generated by
the Master. The bus is considered to be busy after the START condition. The bus stays
busy if a repeated START is generated instead of a STOP condition. In this respect, the
STARTS and repeated START conditions are functionally identical. After that the
Master controls the SCL line and can generate clock signals.

2.3.4 Byte format

The I°C bus is a byte-oriented protocol. After signaling Slave by the START condition,
the Master sends “starting byte” to the Slave. There are two components that make us
the “starting bytes”: Slave address and data direction (Read or Write). The Master sends
the MSB (Most Significant Bit) first and the LSB (Least Significant Bit) last. There are
two addressing modes in the 1°C protocol: the 7-bit and 10-bit address modes.

We will first consider the 7-bit addressing mode. Every byte put on the SDA line must
be eight bits long. The number of bytes that can be transmitted per transfer is
unrestricted. Each byte must be followed by an Acknowledge bit. If a Slave cannot
receive or transmit another complete byte of data until it has performed some other
function, for example servicing an internal interrupt, it can hold the clock line SCL
LOW to force the master into a wait state. Data transfer then continues when the Slave
is ready for another byte of data and releases clock line SCL. Data transfer on the 1°C
bus is illustrated in the Figure 2.4.

11

r—— ‘i B L [N
o N\ /XX XX/ OO XXX

| | MSB acknowledgement acknowledgement | Sr|

| | signal from slave signal from receiver | ‘
SCL lgorsrl 1 2 ___M__/_Wstoa 9 I srorp |

b——u ACK ACK b——d

START or STOP or

repeated START byte complete, clock line held LOW repeated START
condition interrupt within slave while interrupts are serviced condition

Figure 2.4 Data transfer on the I1°C bus [21].

With the 10-bit addressing mode, when the 1°C bus became more popular, it was
recognized that the number of available addresses in the 7-bit addressing mode is too
small. Therefore, a new addressing mode (the 10-bit mode) was developed. The new
addressing mode also supports the old one. Devices with 7-bit addresses can be
connected with devices with 10-bit addresses on the same mode. In this mode, the first
two bytes are dedicated for address and data direction. The format of the first byte is
11110xx; the last two bits of the first byte, combined with eight bits in the second byte
form the 10-bit address.

2.3.5 Acknowledge (ACK) and not acknowledge (NACK)

Acknowledgement is obligatory in order to inform the transmitter that data has been
successfully transmitted. Figure 2.5 illustrates the acknowledgement mechanism. The
Master generates the acknowledge-related clock pulse and the transmitter releases the
SDA line (HIGH) during the acknowledge clock pulse so that the receiver can take
control of the SDA line. IF the receiver does not acknowledge, leaving the SDA line
high, the transfer must be aborted. If acknowledged by pulling the SDA line low, the
transmitter knows that data has been successfully received, so it keeps sending data to
the receiver.

L XX XX/ \

|
|
| acknowledgement
|
|

signal from slave
o sas | /NS NSNS\
START or L

repeated START byte complete,
condition interrupt within slave

Figure 2.5 Acknowledgement on 1°C bus [21].

12

The acknowledge takes place after every bytes. The acknowledge bit allows the receiver
to signal the transmitter that the byte successfully received and another byte may be
sent. The Master generates all clock pulses, including acknowledge of the ninth clock
pulse. When SDA remains HIGH during this ninth clock pulse, this is defined as Not
Acknowledge signal. The Master can then generate either a STOP condition to abort the
transfer, or a repeated START condition to start a new transfer. There are five
conditions that lead to the generation of a NACK [21]:

1. No receiver is present on the bus with the transmitted address so there is
no device to respond with an ACKNOWLEDGE.

2. The receiver is unable to receive or transmit because it is performing
some real-time function and is not ready to start communication with the
Master.

3. During the transfer, the receiver gets data or commands that it does not
understand.

4. During the transfer, the receiver cannot receive any more data bytes.

5. A master-receiver must signal the end of the transfer to the slave
transmitter.

2.3.6 R/W bit

After the START condition (S), a Slave address is sent. This address is the first 7 bits,

the eighth bit is a data direction bit (R/W). If the direction bit is ‘0, it indicates a
transmission (or WRITE). IF the bit is ‘1°, it indicates a request for data (or READ).
Figure 2.6 is a complete data transfer including the direction bit.

<
:
:
5

|

RN |y '

-~
©
[{s]
-

1]
! 1]
~
o]
©
- 1
' 1]
~
©
©

——a

START ADDRESS RW ACK DATA ACK DATA ACK STOP

condition

condition

Figure 2.6 A complete data transfer [21].

13

3. IMPLEMENTATION ON FPGA

In this chapter, we describe the implement action of a Signal Generator, an 1°C Adapter
and an I°C Slave on DE1-SoC FPGA development board manufactured by Terasic. All
the Signal Generator, 1°C Adapter and I°C Slave are described in VHDL.

3.1 Block Diagrams

3.1.1 Writing data process

The writing data process includes three blocks, which are Signal Generator to Write,
I2C Adapter and 12C Slave. All the I°C interface of blocks is connected by I°C buses.

Figure 3.1 illustrated data transmission from Signal Generator To Write through the 12C
Adapter and terminated at 12C Slave. Signals generated by the Signal Generator To
Write include address signals and data signals, that are serial signals. Address serial data
signals is transmitted by the SDA bus sampling at frequency of SCL bus to 12C Adapter
first. Data signals are transmitted to the 12C Adapter after address signals finish
transmission. Address signals and data signals come in the 12C Adapter by one-
directional port hps_sdi and come out the 12C Adapter by bi-directional port sda. At the
end, 12C slave detects data signals from 12C Adapter and transfer it into 8 bits parallel
signal at data_in port.

rst rsi_n clk reset clogk

MY - N —
clk_50 scl hps_scli scl scl dafa_"”
Signal sda hps_sdi sda sda 8
Generator 12C 12C
To Adapter Slave
Write
— —— —

Figure 3.1 Writing data process block diagram.

14

3.1.2 Reading data process

The reading data process includes three blocks, which are Signal Generator to Read,
12C Adapter and 12C Slave. All the I°C interface of blocks is connected by I°C buses.

Figure 3.2 illustrated data transmission from Signal Generator To Read through the 12C
Adapter and terminated at 12C Slave. Signals generated by the Signal Generator To
Read include address signals and data signals, that are serial signals. Address serial
signals is transmitted by the SDA bus sampling at frequency of SCL bus from port
sda_ex of Signal Generator To Read to port hps_sdi of 12C Adapter first. Data serial
signals are transmitted from port sda of Signal Generator To Read to port sda of 12C
Adapter after address signals to finish transmission. Address signals come in the 12C
Adapter by one-directional port hps_sdi and come out the 12C Adapter by one-
directional port hps_sdo. Data signals come in the 12C Adapter by bi-directional port
sda and come out the 12C Adapter by one-directional port hps_sdo. At the end, 12C
slave detects data signals from 12C Adapter and transfer it into 8 bits parallel signal at
data_in port.

rst rst_n clk reset clock

) - N - N
clk_50 scl scl hps_sclo scl daja_in
Signal sda sda hps_sdo sda 8
Generator 12C 12C
To scl_ex hps_scli Adapter Slave
Read sda_ex hps_sdi
Ne—— - J N—

Figure 3.2 Reading data process block diagram.

15

3.2 Signal generator

3.2.1 Signal generator to write

Signal Generator To Write has one input port and three output ports as shown in the
Figure 3.3. The input port clk_50 is the sampling clock signal and is assigned to the 50
MHz frequency pin of DE1-SoC FPGA development board. The clk_50 is operated at
frequency 50 MHz inside the Signal Generator To Write block. Output port rst is reset
signal to reset the data transmission process. Output port scl is sampling clock to data
signals transmission. The last output port which is sda using to transmit address signals
as data signals from Signal Generator To Write block to 12C Adapter block.

rst

clk_50 scl 5
Signal sda
>
Generator
To
Write
____/

Figure 3.3 Signal Generator To Write Block.

16

Figure 3.4 illustrates the waveform of signals generated from Signal Generator To Write
block. As you can see from Figure 3.4, the Signal Generator To Write Block generates
an active low reset signal, which makes a falling edge at the end of phase 0. Reset signal
is remained to be O for the rest of transmission process. The scl signal is sampling data
clock signal and operating at 200 Hz. The sda signal has falling edge, which is a
transition from high to low while scl is high at phase 2; it makes a start condition
following the start condition definition in I°C protocol. The sda then transmits a serial in
8 bits binary number 00000000 of address from phase 3 to 10 with the last bit is O for
write decision process. The sda signal has value 0 at phase 11 standing for the
acknowledge bit that correct address transmission. Serial 8 bits binary number
10101010 of data is transmitted from phase 12 to 19 with the last bit is O for the next
byte writing decision process. The sda signal has value 0 at phase 20 standing for the
acknowledge bit that complete data transmission. The sda signal has rising edge, which
is a transition from low to high while scl is high at phase 21; it makes a stop condition
following the stop condition definition in 1°C protocol.

reset

RN

a [UUU U U P UUUpgUyU Uy uuyyLn
w g
0 J1/12 13 [4 f5 J6 J7 I8 Yo JioYi1[12]13 1415 161718192021 |22 {2324 2526)27 [28)29)

[| [|
start Address 00000000 Data 10101010 stop

acknowledge
acknowledge

Figure 3.4 Address and data signals waveform generated by Signal Generator To
Write.

17

3.2.2 Signal generator to read

Signal Generator To Write has one input port and five output ports as shown in the
Figure 3.5. The input port clk_50 is the sampling clock signal and is assigned to the 50
MHz frequency pin of DE1-SoC FPGA development board. The clk 50 is operated at
50 MHz frequency inside the Signal Generator To Write block. Output port rst is reset
signal aiming to reset the data transmission process. Output port scl is sampling clock to
data signals transmission. Output port sda is used to transmit data signals from Signal
Generator To Write block to 12C Adapter block. Output port scl_ex is sampling clock to
address signals transmission. Output port sda_ex is used to transmit address signals
from Signal Generator To Write block to 12C Adapter block.

rst

clk_50 ; . scl ;
Signal sda
Generator
To scl_ex
Read
sda_ex

Figure 3.5 Signal Generator To Read Block.

18

Figure 3.6 illustrates the waveform of signals generated from Signal Generator To Write
block. As you can see from the figure, the Signal Generator To Write Block generates
an active low reset signal which makes a falling edge at the end of phase 0. The reset
signal is remained to be O for the rest of transmission process. The scl and scl_ex signals
are sampling data clock signal and sampling address clock signal respectively, they are
both operated at 200 Hz. The sda_ex signal has falling edge which is a transition from
high to low while scl_ex is high at phase 2; it makes a start condition following the start
condition definition in 1°C protocol. The sda_ex is then transmit a serial 8 bits binary
number 00000001 of address from phase 3 to 10 with the last bit is 1 for read decision
process. The sda signal has value 0 at phase 11 standing for the acknowledge bit that
correct address transmission. Serial 8 bits binary number 10101011 of data is
transmitted from phase 12 to 19 with the last bit is 1 for next byte reading decision
process. The sda_ex signal has value 0 at phase 20 standing for the acknowledge bit that
correct data transmission. The sda_ex signal has rising edge which is a transition from
low to high while scl_ex is high at phase 21; it makes a stop condition following the
stop condition definition in 1°C protocol.

reset

N

o U PUUUpUyupuuypguyyupyUuyyguyyp
sda B 1__]_[_|__|_,_
sdex [T MU U Uy puyy iy e

sda_ex '—/Vl [T

0 112 13 Ja Js Y6 |7 Ie o f1oJ11[12]13]14f15]1617 18 19]20 21 {22354 25 {26)27 [28]29)

yau | | |

start Address 0000000 Data 10101011 stop

acknowledge
acknowledge

Figure 3.6 Address and data signals waveform generated by Signal Generator To
Read.

19

3.3 I°C Adapter

3.3.1 I°C Adapter Block

The 12C Adapter has four input ports, two output ports and two inout ports as shown in
the Figure 3.7. The input port clk is the sampling clock signal and is assigned to the 50
MHz frequency pin of DE1-SoC FPGA development board. The clk is operated at 50
MHz frequency inside the 12C Adapter block. Input port rst_n is reset signal aiming to
reset the data transmission process inside 12C Adapter; it is an active low reset. Inout
port scl is output in writing data process, it is used for sampling clock to address signals
and data signals as well. Inout port scl is input in reading data process, it is used for
sampling clock to data signals. Inout port sda is output in writing data process, it is used
to transmit address signals and data signals as well. Inout sda is input in reading data
process and it is used to transmit data signals. Input port hps_scli is sampling clock to
address signals as data signals in writing data transmission and sampling clock to
address signals in reading data transmission. Input port hps_sdi is used to transmit
address signals as data signals in writing data transmission and transmit address signals
in reading data transmission. Output port hps_sclo is sampling clock to data signals in
reading data transmission. Output port hps_sdo is used to transmit data signals in
reading data transmission. Table 3.1 describes the 12C Adapter ports.

rst_n clk
4)
< scl S |'1F:os_sc|c>E
_ sda hps_sdol
12C
hps_scli Adapter
—_—
hps_sdi
\ _/

Figure 3.7 12C Adapter Block.

20

Table 3.1 12C Adapter ports description.

Port Width Mode Data Type Description
clk 1 in std_logic system clock
. . asynchronous
rst_n 1 in std_logic y
active low reset
. . serial clock
scl 1 inout std_logic line of 12C bus
serial data line
1 in logi
sda inout std_logic of 12C bus
serial clock
hps_scli 1 in std_logic input line of
12C bus
serial data line
hps_sdi 1 in std_logic input of 12C
bus
serial clock
hps_sclo 1 out std_logic output line of
12C bus
serial data
hps_sdo 1 out std_logic output line of
12C bus

3.3.2 Finite State Machine

The 1°C Adapter uses the state machine depicted in Figure 3.8 to implement the 12C bus
protocol. Upon start-up, the component immediately enters the idle state. It follows the
condition for each state as described and stops when finishing data transmission with
the stop condition. The explanation for each state is described more clearly in part 3.3.3
how adapter work.

21

BEGIN

if start condition

SetadB

bit_cnt=0

>

if reset if reset

bit_cnt=0

If stop condition

If stop condition

Figure 3.8 Finite state machine of 12C Adapter block.

22

3.3.3 How I°C Adapter work

As the description for 12C Finite State Machine in the Figure 3.8, it is easy to follow by
dividing it into separated processes as Start Process and Stop Process, Reset Process,
Getting Address Process, Writing Data Process and Reading Data Process. Each process
can be more understandable by looking the description of the code for it.

Start Process and Stop Process

Program 3.1 shows how the Start Process and Stop Process work inside the 12C
Adapter. At the Start Process, hps_sda r keeps the previous value of data signal and
hps_sdi is the current data signal. When there is a transition in data value from high to
low as hps sda r = 1 and hps_sdi = 0 while the sampling clock signal is high as
hps_scli = 1, the start condition happens and marking as start_edge = 1. Without falling
edge of data signal during high period of sampling clock signal, start_edge = 0. At the
Stop Process, hps_sda_r keeping previous value of data signal and hps_sdi is the current
data signal. When there is a transition in data value from low to high as hps_sda r =0
and hps_sdi = 1 while the sampling clock signal is high as hps_scli = 1, the stop
condition happens and marking as stop_edge = 1. Without rising edge of data signal
during high period of sampling clock signal, stop_edge = 0.

53 E| start_process: PROCESS (hps_scli, hps_scl_r, hps_sdi)

54 | BEGIN

55 = IF (hps_scli = '1' and hps_sda_r="1l"' and hps_sdi ='0") THEN --start condition, falling edge of hps_sdi

56 |— start_edge <= '1'; ——make a tick for start_edge signal

57 = ELSE

58 start_edge <= '0°; ——start_edge = 0 without falling edge of hps_sdi
59 END IF;

60

61 END PROCESS;

[

63

64 = stop_process: PROCESS (hps_scli, hps_scl_r, hps_sdi)

65 | BEGIN

(13 = IF (hps_scli = 'l1' and hps_sda_r="0" and hps_sdi ='1") THEN --stop condition, rising edge of hps_sdi

&7 I— stop_edge <= "1"; —-make a tick for stop_ edge signal

&6 K ELSE

(3] stop_edge <= "0'; ——stop_edge = 0 without falling edge of hps_sdi
70 END IF:

Program 3.1 Start Process and Stop Process Program.

23

Reset Process

Program 3.2 shows how the Reset Process works inside the 12C Adapter. At the Reset
Process, rst_n stands for active low reset signal and it is assigned to be 1 at the
beginning. When rst_n =1, I12C Adapter is in idle state which keeping the default values
for output signals as scl = 0, sda= 0, hps_sclo = 0 and hps_sdo = 0. The read/write bit
register rw_r, the acknowledge register from hard processor core ack hps and the
acknowledge register from slave ack_cypress are also kept at 0 during idle state. When
rst_n = 0, output signals hps_sclo, scl, sda as well as register hps_scl_r hps_sda_r are
assigned to input signals hps_scli, hps_scli, hps_sdi, hps_scli and hps_sdi respectively.
There is always a waiting for start condition or stop condition when rst_n = 0. If the
start condition happens, 12C Adapter turns to getting address state as start_edge = 1. If
the stop condition happens, 12C Adapter turns to idle state as stop_edge = 1.

T8 I_——_| IF (rst n = '1') THEN —-reset asserted

77

T8 =tate <= idle; ——state idle waiting for start condition

79 bit_cnt <= g7 ——keep value of counter at 8 bits for

80 —-trasmitting address signals and data signals
81 w_T <= ——read/write register asserted

82

83 =cl < ——zerial clock tof/from slave asserted

84 =da < ——serial data to/from slave asserted

85

86 hps_sclo <= ——zerial clock output to hps asserted

87 hps ado <= ——zerial data output to hps asserted

88

89 hps_scl r <= ——zerial clock register inside I2C Adapter asserted
a0 hps_sda r <= '0'; ——zerial data register inside I2C Adatper asserted
91

92 ack_cypress <= ——acknowledge from slave register asserted

IE ack hps <= ——acknowledge from hps register asserted

294 r

95 =] ELSIF (clk'EVENT and clk = 'l'}) THEN —-reset is actiwved

=14

a7 hps_sclo <= hps scli: ——assert serial clock output

a8 ——to be the same as serial clock input

59 scl <= hps_scli; ——asgsert serial clock to/from slave

100 ——to be same as serial clock input

101 =da <= hps_s=di; ——assert serial data to/from slave

102 ——to be same as data input

103 hps_scl r <= hps_scli; —-hps clock register is asserted as serial clock input
104 hps_sda_r <= hps_s=di; —--hps data register is asserted as data input
105

106 =] IF start_edge = '1' THEN ——start edge = 1 when start condition

107 state <= getaddress; ——transaction start with getting the address
io08 r

109 = ELSIF stop edge = '1' THEN ——-stop edge = 1 when stop condition

110 | state <= idle: ——transaction complete, go to next state

Program 3.2 Reset Process Program.

24

Getting Address Process

Program 3.3 shows how the Getting Address Process works inside the 12C Adapter. At
the Getting Address Process, scl_edge stands for the synchronous clock edge and is
used to synchronizing address signals transmission as data signals transmission. In the
idle state, 12C turns to getaddress in the next state when start condition happens. Bit
counter bit_cnt is counted down from 8 in idle state to 7 in getaddress state. In the
getaddress state, bit counter is continued to count down until it equals O to finish
address bits signal transmission. When bit_cnt = 0, 12C Adapter get into read/write
selection rw state. The read/write selection bit is asserted by the last bit of address bits,
the eighth bit; then 12C Adapter turns to acknowledge for address transmission state
ack. At acknowledge for address transmission state ack, acknowledge bit is taken at the
middle of ninth clock and it is the acknowledge bit from the slave. Bit counter is reset to
7 after the address transaction finishing. If the acknowledge from slave is 0, 12C
Adapter continue to next process Writing Data Process or Reading Data Process, which
is decided by the read/write selection bit register rw_r. If the acknowledge from slave is
1, it means wrong address, 12C Adapter turns to take the address again.

117 | WHEN idle => —-idle state waiting for start condition

118 [H IF (3cl_edge = '1') THEN —--synchronous clock edge

119 = IF sgart_edge = '1' THENW —--start_edge = 1 when start condition

120 bit_cnt <= bit_cnt - 1; --bit_cnt = 7 to go to getaddress state

121 astate <= getaddress:; —--getting bit of address

122 r END IF:;

123 END IF:

124

125 r

126 WHEN getaddress => --getaddress state getting 8 bits address

127 =] IF (bit_cnt = 0} THEN ——address bits transmission finished

128 |— state <= rw; --go to sla owledge

129 = ELSE —--n cloc

130 = IF (2cl edge = 'l') THEN --synchronous clock edge

131 bit_cnt <= bit_cnt - 1; —-keep track of counting down number of bits receiving
132 b END IF:

133 END IF;

134

135

136 WHEN rw => --read/write selection bit

137 ada <= "Z';

138 rw_r <= hps =sda r: —--read/ ite asserted by last bit of address

139 =] IF (scl edge = '1'") THEN ——SyT nous clock edge

140 hit_gnt <= bit_cnt - 1: —-keep track of counting down number of bits receiving
141 state <= ack:; —--next state is acknowledge when bit cnt = -1

142 END IF: -

143

144 r

145 WHEN ack =» --acknowledge for address transmission

146 =da <= "I';

147 [H IF (bit_cnt2 = 12) THEN --acknowledge bit is taken at the middle of ninth clock
i148 ack cypress <= =da; —-—acknowledge bit from slave

143 END IF:

150 =] IF (=cl_edge = 'l') THEN clock edge

151 | bit_cnt <= T7; reset after address transaction

152 =] IF (ack cypress = '0') THEN e following i2c protocol

153 =] IF (rw_r = '0') THEW —-read/ e selecti

154 |— state <= wr; -—-go to te state read/write selection bit = 0
155 [ELSE

156 state <= rd; --go to read state if read/write selection bit = 1
157 END IF;

158 =] ELSE --notacknowledge if ack cypress = 1

159 state <= getaddress; --if notacknowlege, go to getting address again
160 END IF;

161 END IF:

Program 3.3 Getting Address Process Program.

25

Writing Data Process

Program 3.4 shows how the Writing Data Process works inside the 12C Adapter. At the
Writing Data Process, scl_edge stands for the synchronous clock edge and is used to
synchronizing address signals transmission as data signals transmission. In the write
state wr, bit counter is counted down at the sampling synchronous clock edge until it
equals 0 to finish writing data bits signal transmission. When bit_cnt = 0, 12C Adapter
gets into read/write selection rw_wr state. The read/write selection bit is asserted by the
last bit of data bits, the eighth bit; then 12C Adapter turns to acknowledge for writing
data transmission state ack_wr. At acknowledge for writing data transmission state
ack_wr, acknowledge bit is taken at the middle of ninth clock and it is the acknowledge
bit from the slave. Bit counter is reset to 7 after the writing data transaction finishing. If
the acknowledge from slave is 0, 12C Adapter continue to next process Writing Data
Process wr or Reading Data Process rd, which is decided by the read/write selection bit
register rw_r. If the acknowledge from slave is 1, it means wrong data, 12C Adapter
turns to take the address again and start a new whole process.

164 WHEN wr => —-write byte state getting & bits data

165 sda <= hps_sdi; ——output serial data asserted by input serial data
166 [H IF (bit_cnt = 0) THEN —-reset counter when data bits transmission finished
167 |— state <= IW_Wr; --go to slave acknowledge

168 [H ELSE lock cycle

169 = IF (scl_edge = '1') THEN onous clock edge

170 bit_cnt <= bit_cnt - 1; rack of counting down number of bits receiving
171 r END IF:

172 END IF:

172

174

175 WHEN rw_wr => te selection bit

176 rw_r <= hps_s=sda r; te asserted by last bit of address

177 32 IF (scl_edge = '1') THEN

178 bit_cnt <= bit_cnt - 1; r of bits receiving
179 state <= ack_wr; t_cnt = -1

180 END IF;

181

182 r

183 WHEN ack wr => r byte transfer

ig84 sda <= "Z';:

185 = IF (bit_cnt2 = 12) THEN is taken at the middle of ninth clock
186 ack_cypress <= sda; from slave

187 r END IF:

isge =] IF (=cl_edge = '1') THEN clock edge

189 | bit_cnt <= 7; er reset after data transaction

180 = IF (ack cypress = '0') THEN ge following i2c protocol

1391 = IF (rw_r = 'O') THEW —-read te selection bit

192 |— state <= wWr; —-continue to write if read/write selection bit = 0
193 = ELSE

194 state <= rd; —-if read/wri ion bit = 1, go to read state
195 END IF:

136 = ELSE owledge if ack cypress = 1

ahz) state <= getaddress; —--if notacknowlege, go to getting address again

198 END IF:

188 END IF:

Program 3.4 Writing Data Process Program.

26

Reading Data Process

Program 3.5 shows how the Reading Data Process works inside the 12C Adapter. At the
Reading Data Process, scl_edge stands for the synchronous clock edge and is used to
synchronizing address signals transmission as data signals transmission. In the read
state rd, bit counter is counted down at the sampling synchronous clock edge until it
equals 0 to finish reading data bits signal transmission. When bit_cnt = 0, 12C Adapter
gets into read/write selection rw_rd state. The read/write selection bit is asserted by the
last bit of data bits, the eighth bit; then 12C Adapter turns to acknowledge for reading
data transmission state ack rd. At acknowledge for reading data transmission state
ack_rd, acknowledge bit is taken at the middle of ninth clock and it is the acknowledge
bit from the hard processor core. Bit counter is reset to 7 after the reading data
transaction finishing. If the acknowledge from slave is 0, 12C Adapter continue to next
process Reading Data Process rd or Writing Data Process wr, which is decided by the
read/write selection bit register rw_r. If the acknowledge from slave is 1, it means
wrong data, 12C Adapter turns to take the address again and start a new whole process.

202 WHEN rd => —-read byte state getting 8 bits data

203 =da <= 'Z':

204 hps_sdo <= =da: ——output serial data asserted by input serial data
205 = IF (bit_cnt = 0) THEN —-reset counter when data bits transmission finished
206 |— state <= rw_rd:; ——go to hps acknowledge

207 H ELSE lock cycle

208 = IF (scl_edge = '1') THEN I edge

209 bit_cnt <= bit_cnt - 1; p track of counting down number of bits receiving
210 r END IF;

211 END IF:

212

213 r

214 WHEN rw_rd =>

215 =da <= 'Z';

2le rw_r <= =da; address

217 H IF (scl_edge = '1') THEN

218 bit_cnt <= bit_cnt - 17 r of bits receiving
219 state <= ack _rd; t_cnt = -1

220 END IF;

221

222 r

223 WHEN ack rd => byte transfer

224 =da <= 'Z';

225 = IF (bit_cnt2 = 12) THEN is taken at the middle of ninth clock
226 ack hps <= hps_sdi; e bit from hps

227 r END IF:

228 =] IF (scl_edge = '1') THEN clock edge

229 | bit_cnt <= 7; reset after data transaction

230 H IF (ack_hps = '0') THEN ge following iZc protocol

231 [H IF (rw_r = '0') THEN te selection bit

232 |— state <= wWr; ——if read/write selection bit = 0, go to write state
233 H ELSE

234 state <= rd; —-continue to write if read/write selection bit =1
235 END IF;

2386 =] ELSE —-notacknowledge if ack cypress = 1

237 state <= getaddress; —-if notacknowlege, go to getting address again

238 END IF;

239 END IF:

Program 3.5 Reading Data Process Program.

27

3.4 I°C Slave

The 12C Slave code is taken from OpenCores respecting the copyright. The 12C Slave
has four input ports, seven output ports and one inout port as shown in the Figure 3.9.
The input port clock is the sampling clock signal and is assigned to the 50 MHz
frequency pin of DE1-SoC FPGA development board. The clock is operated at
frequency 50 MHz inside the 12C Slave block. Input port reset is reset signal aiming to
reset the data transmission process at 12C Slave; it is active low reset. Input port scl is
used for sampling clock to address signals and data signals as well. Inout port sda is
input to read address signal as data signal from 12C Adapter. Output port start_detected
Is true if start condition is detected at 12C Slave. Output port transfer_started is true if a
valid address was received and acknowledged. Output port read_mode is true if master
wants to read device. Output port stop_detected is true if stop condition is detected ad
I2C Slave. Input port data out is used to send byte to master. Output port
data_out_requested is true if data write has to be filled to send the next byte. Output port
data_in is the last received byte from master. Output data_in_valid is true if the master
sent a byte.

reset clock

data_in_valid

%

scl da;a_'\n

sda 8
start_detected

transfer_started
[12C read_mode
—

Slave stop_detected
-

datg, out data_out_requested
4 8

N——

Figure 3.9 12C Slave Block.

28

The 12C Slave includes three main processes, which are Control Process, Read Process
and Write Process. The Control Process is used to process for receiving and sending
bytes to 12C bus with the proper acknowledge generators and detection. The Read
Process provides 2 functions which are: if read_byte is set to true, then 8 bits are read
from the 12C bus into input_shift; if read_ack is set to true, then one bit will be read
from the 12C bus for the acknowledge from master into input_shift(0). The Write
Process provides 2 functions which are: if write_byte is set to true then 8 bits are written
from data_out to the 12C bus; if write_ack is set to true, then one 0 bit will be written to
the 12C bus for the acknowledge from slave. Start or stop bit detection resets the state
machine for both Read Process and Write Process. In this project, in order to display the
signal from Signal Generator To Write and Signal Generator To Read through 12C
Adapter on the LEDs of DE1-SoC FPGA development board, we need to use only
Control Process and Read Process. It also means we do not need to use input port
data_out and output port data_out_requested in this project.

29

3.5 Top Level Design

The Top Level Design is divided into two projects, which are one project for writing
data and one for reading data through the 12C Adapter. Figure 3.10 illustrates the Write
Data Top Design Block, which includes three other clocks inside: Signal Generator To
Write, 12C Adapter and 12C Slave. The connection of blocks inside Write Data Top
Design is as Figure 3.1. The input port clk_50 is the sampling clock signal and is
assigned to the 50 MHz frequency pin of DE1-SoC FPGA development board. The
clk_50 is operated at frequency 50 MHz inside the Write Data Top Design Block. The
output port output is 8 bits width and assigned to LEDs pin of DE1-SoC FPGA
development board.

e “

5o Write Data output
— Top 7
Design

e /

Figure 3.10 Write Data Top Design Block.

Figure 3.11 illustrates the Read Data Top Design Block, which includes three other
clocks inside: Signal Generator To Read, 12C Adapter and I12C Slave. The connection of
blocks inside Read Data Top Design is as Figure 3.2. The input port clk 50 is the
sampling clock signal and is assigned to the 50 MHz frequency pin of DE1-SoC FPGA
development board. The clk 50 is operated at frequency 50 MHz inside the Write Data
Top Design Block. The output port output is 8 bits width and assigned to LEDs pin of
DE1-SoC FPGA development board.

4)

s Read Data ousput
—=> Top ﬁ%
Design

N /

Figure 3.11 Read Data Top Design block.

30

4. VERIFICATION AND RESULT

Chapter 3 shows how to implement the Signal Generator, 1°C Adapter and I1°C Slave.
Chapter 4 presents verification and result for those blocks by simulation in Modelsim
SE 10.2c. The implementations on board are verified by the display of LEDs on DE1-
SoC FPGA development board.

4.1 Writing Data Process Verification

4.1.1 Verification of Signal Generator To Write in Writing Data Process

As described in 3.2.1, the Signal Generator To Write has to generate the sequence of
signals making reset, start condition, stop condition, address transmission and data
transmission following 1°C protocol. Figure 4.1 illustrates reset, start condition and stop
condition waveforms of signals generated by Signal Generator To Write in a testbench.
As can be seen from Figure 4.1, Signal Generator To Write generates an active low
reset at the end of phase 0 when signal rst changes from high to low and remains for the
rest of transmission. Start condition happens at phase 2 when the sda signal has a falling
edge while the scl signal is high. Stop condition happens at phase 21 when the sda
signal has a rising edge while the scl signal is high.

31

4 lg_gen_Bwtftemporal smd [0
4 Jig_gen jutjeounter ed smal [32d300

4 [sig_gen_tbjuut/dk_50

“4 [sig_gen_tbfuutjrst

“a [sig_gen_tb/uutfsd

“a [sig_gen_tbjuut/sda

Signals
Jsig_gen_tbfuutfcounter
[sig_gen_tbfuut/temporal
Jsig_gen_tbfuutfcounter_sd
[sig_gen_tbjuut/sd_small
/sig_gen_tb/uut/counter_small
Jsig_gen_tbfuutftemporal_small
/sig_gen_tbfuutfcounter_sd_small

reset start stop

Figure 4.1 Modelsim testbench for reset, start and stop of Signal Generator To Write in
Writing Data Process.

32

Figure 4.2 illustrates the address transmission and the data transmission waveforms of
signals generated by Signal Generator To Write in a testbench. As can be seen from
Figure 4.2, address bits are 0000 0000 with the last bit for read/write selection is
generated by Signal Generator To Write from phase 3 to 10. Bit value 0 at phase 11 is
used for acknowledge. Data bits are 1010 1010 with last bit for read/write selection is
generated by Signal Generator To Write from phase 12 to phase 19. Bit value 0 at phase
20 is used for acknowledge.

£ [sig_gen_tbjuut/dk_50
“a [sig_gen_tbjuut/frst
“a [sig_gen_tb/uut/sd
“a [sig_gen_tb/fuut/sda
Signals
/sig_gen_tb/uut/counter

/sig_gen_tb/uut/temporal | ' i
Jsig_gen_tbfuut/counter_sd 3 Ja 5 6 \7) /5 11
[sig_gen_tbfuut/sd_small
/sig_gen_tb fuut/counter_small
/sig_gen_tb/uut/temporal_small
Jsig_gen_tb/uut/counter_sd_small

address and acknowledge 000 00

“a [sig_gen_tbjuut/rst

“a [sig_gen_tbjuut/sd

“a [sig_gen_tbjuut/sda

Signals
/sig_gen_tb/uut/counter
/sig_gen_tb/uut/temporal |
Jsig_gen_tbfuut/counter_sd 2 Y13 Ji4 35 Yie iz 18 Y19 [0 |
[sig_gen_tbjuut/sd_small
/sig_gen_tb/uut/counter_small
ey e

/sig_gen_tbfuut/counter_sd_small

data and acknowledge 10101010 0

Figure 4.2 Modelsim testbench for address and data transmission of
Signal Generator To Write in Writing Data Process.

33

Figure 4.3 and Figure 4.4 show Signal Generator To Write Block and components
inside it respectively in Writing Data Process. Signal Generator To Write Block after
Compile Design process by Quartus Il and programing to FPGA device can be seen
from RTL Viewer.

sig_gen_write:signal_generator_to_write

rst
clk_50 scl

sda

Figure 4.3 Signal Generator To Write Block on RTL Viewer of Quartus Il in Writing
Data Process.

Al
Lﬁ“ﬁ“ﬁﬁﬁ*ﬁ“ﬂ% i ?ﬁjr

9

paar VAR
i

LM%% fo3diG4

Figure 4.4 Inside Signal Generator To Write Block on RTL Viewer of Quartus 11 in
Writing Data Process.

35

4.1.2 Verification of I°C Adapter in Writing Data Process

As described in 3.3, the 12C Adapter is used to transmit data from the hard processor
core ARM Cortex-A9 to a slave in Writing Data Process following I°C protocol. Figure
4.5 illustrates reset, start condition and stop condition detection waveforms of signal
transmission through 12C Adapter in Writing Data Process in a testbench. As can be
seen from Figure 4.5, 12C Adapter can detect the active low reset, start condition as
falling edge of hps_sdi during high hps_scli period and stop condition as rising edge of
hps_sdi during high hps_scli period.

4 fizc_thfuutfdk

4 fizc_tbjuutfrst_n
To/From HPS

* fi2c_tb/th_phase
£ fize_tbfuutfhps_sdi
£ fi2e_tbjuut/hps_sdi

“a fi2c_tbjuutfhps_sdo
44 fi2e_tbjuut/hps_sdo
Internals
fi2c_tbjuut/sd_edge
fizc_tbjuutfstart_edge
fizc_tbfuutfstop_edge
fize_thjuut/state
fi2c_tbfuutpbit_cnt
fi2c_thfuutphps_sd _r
fi2c_tbfuutphps_sda_r
f2c_tbfuutfrw_r
Ji2c_tb/stimulus_process/ack_v
Ji2e_tbfuutfack_cypress
fi2c_tbfuutfack_hps
To/From CYPRESS
‘. fiec_thfuut/sd
‘e fi2c_tbjuutfsda
— New Divider
4 fizc_tbjuutfit_cnt2 | I
4 fizc_thjbit_ent3 i st ittt
4 fi2c_thfth_phase] A

(S

N e

reset start stop

Figure 4.5 Modelsim testbench for reset, start and stop of 12C Adapter in Writing Data
Process.

36

Figure 4.6 illustrates the address transmission waveforms of signals through 12C
Adapter in a testbench. As can be seen from Figure 4.6, address bits are 0000 0000 with
the first seven bits in getaddress state and the last bit for read/write selection in rw state.
Address bits come in from input port hps_sdi of 12C Adapter. Inout port sda, which is
output in Writing Data Process, shows exact value of address bits following input port
hps_sdi. Acknowledge from slave as from port sda in Writing Data Process shows in
ack state.

{ address and
acknowledge
00000000 0

fi2c_tbfuutfack_cypress

fize_thfuutfack_hps

— New Divider

¢ f2c_thfuutpbit_nt2 1 1]
4 f2c_topit_ent3 ptfiii-itshitt et et R
?_ fi2c_thjth_phase 2 |

Figure 4.6 Modelsim testbench for address transmission of 12C Adapter in Writing
Data Process.

37

Figure 4.7 illustrates the data transmission waveform of signals through 12C Adapter in
a testbench. As can be seen from Figure 4.7, data bits are 1010 1010 with the first seven
bits in wr state and the last bit for read/write selection in rw_wr state. Data bits come in
from input port hps_sdi of 12C Adapter. Inout port sda which is output in Writing Data
Process shows exact value of data bits following input port hps_sdi. Acknowledge from
slave as from port sda in Writing Data Process shows in ack_wr state.

data and
acknowledge
101010100

fi2c_tb/stimulus_processfack_v 5 e

fi2e_thfuutfack_cypress
fizc_tbfuut/ack_hps

— New Divider
4 fie_tbfuutpit_ant2
4 fizc_thjbit_nt3 ot R R
¢ hi2c_tbjth_phase 2 I A A —

Figure 4.7 Modelsim testbench for data transmission of 12C Adapter in Writing Data
Process.

38

Figure 4.8 and Figure 4.9 show 12C Adapter Block and components inside it
respectively in Writing Data Process. 12C Adapter Block after Compile Design process
by Quartus 11 and programing to FPGA device can be seen from RTL Viewer.

i2c:i2c_adapter

clk
hps_scli
hps_sdi
rst_n scl

sda

Figure 4.8 12C Adapter Block on RTL Viewer of Quartus Il in Writing Data Process.

==
g

—&

1 gzl
= [=

T
g

L1

Figure 4.9 Inside 12C Adapter Block on RTL Viewer of Quartus Il in Writing Data
Process.

39

40

4.1.3 Verification of 1°C Slave in Writing Data Process

As described in part 3.4, the 12C Slave is used to detect the data transmission from 12C
Adapter and display to the LEDs of DE1-SoC FPGA development board by 8 bits
output port in Writing Data Process following 1°C protocol. Figure 4.10 illustrates reset,
start condition and stop condition detection waveforms of signal transmission at 12C
Slave in Writing Data Process in a testbench. As can be seen from Figure 4.10, 12C
Slave can detect the active low reset, start condition as falling edge of sda during high
scl period and stop condition as rising edge of sda during high scl period.

* o sove._tbfstims_process/ack v
* fac_stove_Bfaitfontyol_state

L fi2c_slave_tbjuut/dock
4 fi2c_slave_tbjuutfreset
L fizc_slave_tbfuut/sd
“u fi2c_slave_tbfuut/sda
-’ fi2e_slave_tbjuut/data_in
£ fizc_slave_tbfuut/dock_frequency
fi2c_slave_tbfuutfaddress
“a fi2c_slave_tbjuut/start_detected
“a fi2c_slave_tbjuut/transfer_started
44 fi2c_slave_tbjuut/stop_detected
“a fi2e_slave_tbjuutfread_mode
‘. fi2c_slave_tbfuutf/data_out_requested
44 fi2c_slave_tbfuut/data_in_valid
New Divider
4 fi2c_slave_tbjtb_phase
4 fize_slave_tb/counter_sd
4 fi2c_slave_tb/stimulus_processfack_v
¢ fi2c_slave_tbjuut/control_state

Figure 4.10 Modelsim testbench for reset, start and stop of 12C Slave in Writing Data
Process.

41

Figure 4.11 illustrates the address transmission waveforms of signals at 12C Slave in a
testbench. As can be seen from Figure 4.11, address bits are 0000 0000 with the first
seven bits from phase 3 to 9 and the last bit for read/write selection in phase 10.
Address bits 0000 0000 is correct and there is high signal for transfer_started at phase
11. Acknowledge from slave in Writing Data Process is given in phase 11.

address and
acknowledge
100000000 0

EﬁEEEEi;E‘“"

FTEE

£ fizc_slave_tbfuut/dock
L fi2c_slave_tbjuutfreset
L fi2c_slave_tbfuut/sd

“a fi2c_slave_tbfuut/sda

“u fi2c_slave_tbjfuut/data_in
£ fi2c_slave_tbfuut/dock_frequency

fi2c_slave_tbfuut/address

“a fi2c_slave_tbfuut/start_detected

“a fi2c_slave_tbfuut/transfer_started

W fi2c_slave_tbfuut/stop_detected

“a fi2c_slave_tbfuutfread_mode

“a fi2c_slave_tbfuut/data_out_requested

4 fi2c_slave_tbjuut/data_in_valid

New Divider

4 fi2c_slave_tb/tb_phase 32h2

4 jic_slave_tb/counter_sd 3 Ta 5 T 7 B Yo o
4 fi2c_slave_tb/stimulus_process/ack_v

< fi2c_slave_tbfuut/control_state

Figure 4.11 Modelsim testbench for address transmission of 12C Slave in Writing Data
Process.

42

Figure 4.12 illustrates the data transmission waveforms of signals at 12C Slave in a
testbench. As can be seen from Figure 4.12, data bits are 1010 1010 with the first seven
bits from phase 12 to 18 and the last bit for read/write selection in phase 19. Data bits
1010 1010 is shown at output port data_in when there is high signal for data_in_valid at
phase 20. Acknowledge from slave in Writing Data Process is given in phase 20.

data and
acknowledge
1 101010110

fi2c_slave_tbjfuut/dock
fi2c_slave_tb/uut/freset
fi2c_slave_tbjuutfsd

‘s fi2c_slave_tbjuutfsda

4a fi2c_slave_tbjuut/data_in

£ fizc_slave_tbjuut/dock_frequency
fi2c_slave_tbfuut/address

“a fi2e_slave_tbfuut/start_detected

“a fi2c_slave_tbjuut/transfer_started

“a fi2c_slave_tbjuut/stop_detected

“a fi2c_slave_tbjuutfread_mode

“. fi2c_slave_tbjuut/data_out_requested

“a fi2e_slave_tbfuut/data_in_valid

New Divider
fi2c_slave_tb/tb_phase
fi2c_slave_tb/counter_sd
fi2c_slave_tb/stimulus_process/ack_v

fi2c_slave_tbjuut/control_state vait_for read byte war.“

Figure 4.12 Modelsim testbench for data transmission of 12C Slave in Writing Data
Process.

43

Figure 4.13 and Figure 4.14 show 12C Slave Block and components inside it
respectively in Writing Data Process. 12C Slave Block after Compile Design process by
Quartus Il and programing to FPGA device can be seen from RTL Viewer.

i2c_slave:slave

data_in[7..0]
clock
8'h0 data_out[7..0
reset sda

scl

Figure 4.13 12C Slave Block on RTL Viewer of Quartus Il in Writing Data Process.

T

g
H

mm
HmiHE
I

it

TITT W&f ‘H’% %JH'
g

S SNIE i
BT i
Biisddlii i
Figure 4.14 Inside 12C Slave Block on RTL Viewer of Quartus Il in Writing Data
Process.

44

45

4.2 Reading Data Process Verification

4.2.1 Verification of Signal Generator To Read in Reading Data Process

As described in part 3.2.2, the Signal Generator To Read has to generate the sequence of
signals making reset, start condition, stop condition, address transmission and data
transmission following 1°C protocol. Figure 4.15 illustrates reset, start condition and
stop condition waveforms of signals generating by Signal Generator To Read in a
testbench. As can be seen from Figure 4.15, Signal Generator To Read generates an
active low reset at the end of phase O when signal rst changes from high to low and
remains for the rest of transmission. Start condition happens at phase 2 when the sda_ex
signal has a falling edge while the scl_ex signal is high. Stop condition happens at phase
21 when the sda_ex signal has a rising edge while the scl_ex signal is high.

£ [sig_gen_read_tbfuut/dk_50
“a [sig_gen_read_tbfuutfrst

“ o [sig_gen_read_tbjuut/sd

‘4 [sig_gen_read_tbfuut/sda

“a [sig_gen_read_tbjuut/sd_ex

“a [sig_gen_read_tbfuut/sda_ex

Signals
[sig_gen_read_tbfuutfcounter_sd_small
[sig_gen_read_tb/uut/counter
[sig_gen_read_tb/uut/temporal
[sia_gen_read_tbfuut/counter_sd
[sig_gen_read_tb fuut/sd_small
[sig_gen_read_tb/uut/counter_small
fsig_gen_read_tb/fuut/temporal_small

reset start stop

Figure 4.15 Modelsim testbench for reset, start and stop of Signal Generator To Read
in Reading Data Process.

46

Figure 4.16 illustrates the address transmission and the data transmission waveforms of
signals generating by Signal Generator To Read in a testbench. As can be seen from
Figure 4.2, address bits are 0000 0000 in sda_ex with the last bit for read/write selection
is generated by Signal Generator To Read from phase 3 to 10. Bit value 0 at phase 11 is
used for acknowledge. Data bits are 1010 1010 in sda_ex with last bit for read/write
selection is generated by Signal Generator To Read from phase 12 to 19. Bit value 0 at
phase 20 is used for acknowledge.

address and acknowledge 00000001 O

£ [sig_gen_read_tb/uut/dk_50

“ . [sig_gen_read_tbjuutfrst

“a [sig_gen_read_tb/uut/sd

“a [sig_gen_read_tb/uut/sda

“a [sig_gen_read_tb/uut/sd_ex

“a [sig_gen_read_tbjuutfsda_ex

Signals
[sig_gen_read_tb/uut/counter_sd_small
/sig_gen_read_tb fuut/counter
/sig_gen_read_tb/uut/temporal | f | |
/sig_gen_read_tb/uut/counter_sd 3 & 7 B B Jio Ji1)
[sig_gen_read_tb/uut/sd_small
/sig_gen_read_tb/uut/counter_small

/sig_om_read_tb/wt/wtpofal_snal

£ [sig_gen_read_tbfuut/dk_S0

« [sig_gen_read_tb/uutfrst

“a [sig_gen_read_tb/uut/sd

“a [sig_gen_read_tb/uut/sda

“a [sig_gen_read_tbjuut/sd_ex

“a [sig_gen_read_tb/uut/sda_ex

Signals
/sig_gen_read_tbfuut/counter_sd_small
/sig_gen_read_tb fuut/counter
/sig_gen_read_tbfuut/temporal
/sig_gen_read_tb/uut/counter_sd
/sig_gen_read_tb/fuut/sd_small
/sig_gen_read_tbfuut/counter_small
/sig_gen_read_tbfuut/temporal_small

data and acknowledge 10101011 O

Figure 4.16 Modelsim testbench for address and data transmission of
Signal Generator To Read in Reading Data Process.

47

Figure 4.17 and Figure 4.18 show Signal Generator To Read Block and components
inside it respectively Reading Data Process. Signal Generator To Read Block after
Compile Design process by Quartus Il and programing to FPGA device can be seen
from RTL Viewer.

sig_gen_read:signal_generator_to_read

rst
scl_ex
clk_50 scl
sda_ex

sda

Figure 4.17 Signal Generator To Read Block on RTL Viewer of Quartus Il in Reading
Data Process.

|
ﬁﬁﬂzﬁﬁﬁﬁ%ﬁ
| i

il ARRRAK A ARRRRRA

i
‘J

B It R
leyenneaesnnantnoml vﬁ
P | |
| d %

49

4.2.2 Verification of I1°C Adapter in Reading Data Process

As described in part 3.3, the 12C Adapter is used to transmit data from a slave to the
hard processor core ARM Cortex-A9 in Reading Data Process following I1°C protocol.
Figure 4.19 illustrates the reset, start condition and stop condition detection waveforms
of signal transmission through 12C Adapter in Reading Data Process in a testbench. As
can be seen from Figure 4.19, 12C Adapter can detect the active low reset, start
condition as falling edge of sda during high scl period and stop condition as rising edge
of sda during high scl period.

fize_tbfuut/dk
£ fic_tbjuutfrst_n
To/From HPS
“ _ fi2c_tb/tb_phase
£ fic_tbjuuthhps_sdi
£ fizc_tbjuut/hps_sdi
“a fi2e_thjuut/hps_sdo
4+ fi2c_tbjuutfhps_sdo
Internals
fize_tbfuut/sd_edge
fizc_tbjuut/start_edge
fize_tbjuut/stop_edge
fizc_tbjuut/state
fi2c_tbjuut/bit_cnt
fizc_tbjuut/hps_sd_r
fi2c_thjuuthps_sda_r
fi2c_tbfuutfrw_r
fi2c_th/stimulus_process/ack_v
fi2c_tbjuutfack_cypress
fi2e_thjuut/ack_hps
To/From CYPRESS
“a fi2c_tbjuut/sd
“u fi2e_tbjuutfsda
New Divider
W — I —
! h2c_thppit ant3 T T
¢ fi2c_thjtb_phase "1 2 4

L& d i d d i d d i i

reset start stop

Figure 4.19 Modelsim testbench for reset, start and stop of 12C Adapter in Reading
Data Process.

50

Figure 4.20 illustrates the address transmission waveforms of signals through 12C
Adapter in a testbench. As can be seen from Figure 4.20, address bits are 0000 0001
with the first seven bits in getaddress state and the last bit for read/write selection in rw
state. Address bits come in from input port hps_sdi of 12C Adapter. Inout port sda
which is output in transmitting address to slave in Reading Data Process shows exact
value of address bits following input port hps_sdi. Acknowledge for address bits from
slave core as from port sda in Reading Data Process shows in ack state.

£ fi2c_tbjuutfrst_n

To/From HPS

4 fi2c_tb/tb_phase >

< fac_thjuuthps_sdii address and
£ fizc_tbjuutfhps_sdi

4. f2c_tbathps_sdo lacknowledge

“u fi2c_thjuuthps_sdo 00000001 0

fi2c_tb/stimulus_processfack_v
fi2c_tbjuutfack_cypress
fi2c_thjuutfack_hps

To/From CYPRESS

‘s fi2c_tbjuutfsd

“a fi2e_thjuut/sda

New Divider

4 f2c_tbjuutjbit_ont2

4 fizc_thjbit_ent3 Catiti R R
¢ h2c_tbjtb_phase)2 i

e d Ll

Figure 4.20 Modelsim testbench for address transmission of 12C Adapter in Reading
Data Process.

51

Figure 4.21 illustrates the data transmission waveforms of signals through 12C Adapter
in a testbench. As can be seen from Figure 4.21, data bits are 1010 1011 with the first
seven bits in rd state and the last bit for read/write selection in rw_rd state. Data bits
come in from inout port sda of 12C Adapter which is input for transmitting data in
Reading Process. Output port hps _sdo shows exact data bits following port sda.
Acknowledge from the hard processor core as from port hps_sdi in Reading Data
Process shows in ack_rd state.

£ foc_tojuutfrstn

To/From HPS

¢ _ fi2c_tbftb_phase

2 f2c_tbfuuthps_sci data and

£ fizc_tbfuut/hps_sdi

“u f2c_thfuthps_sdo acknowledge

4. fi2c_thjuuthhps_sdo 10101011 0

fi2c_tbjuutbit_nt
fizc_tbfuut/hps_sd_r
f2c_thjfuut/hps_sda_r
fize_tbfuutfrw_r
fi2c_tbfstimulus_processfack_v
fi2c_tbjuutfack_cypress
fi2c_tbfuutfack_hps

To/From CYPRESS

“a fi2c_tbfuutfsd

“a fi2c_thfuut/sda

New Divider

¢ fi2e_thfuut/bit_cnt2 | I A R .
¢ h2c_thjit_nt3 chtitHi e
4 _ fj2c_tbftb_phase > r 1T]

L A A

Figure 4.21 Modelsim testbench for data transmission of 12C Adapter in Reading Data
Process.

52

Figure 4.22 and Figure 4.23 show 12C Adapter Block and components inside it
respectively in Reading Data Process. 12C Adapter Block after Compile Design process
by Quartus 11 and programing to FPGA device can be seen from RTL Viewer.

i2c:i2c_adapter

hps_scli
hps_sdi hps_sclo

hps_sdo

Figure 4.22 12C Adapter Block on RTL Viewer of Quartus Il in Reading Data Process.

53

I %

Tl

-

B et [T
==
EEAE
|l
==
==
EE
=5

i

T
] :1@1 “$i7%|

- i

ff
o
|

ﬁ@?

Figure 4.23 Inside 12C Adapter Block on RTL Viewer of Quartus Il in Writing Data
Process.

54

4.2.3 Verification of 1°C Slave in Reading Data Process

As described in part 3.4, the 12C Slave is used to detect the data transmission from 12C
Adapter and display to the LEDs of DE1-SoC FPGA development board by 8 bits
output port in Reading Data Process following I°C protocol. Figure 4.24 illustrates reset,
start condition and stop condition detection waveforms of signal transmission at 12C
Slave in Reading Data Process in a testbench. As can be seen from Figure 4.24, 12C
Slave can detect the active low reset, start condition as falling edge of sda during high
scl period and stop condition as rising edge of sda during high scl period.

* o sove._tbfstims_process/ack v
* fac_stove_Bfaitfontyol_state

L fi2c_slave_tbjuut/dock
4 fi2c_slave_tbjuutfreset
L fizc_slave_tbfuut/sd
“u fi2c_slave_tbfuut/sda
-’ fi2e_slave_tbjuut/data_in
£ fizc_slave_tbjuut/dock_frequency
fizc_slave_tbfuutfaddress
“a fi2c_slave_tbjuut/start_detected
“a fi2c_slave_tbjuut/transfer_started
44 fi2c_slave_tbjuut/stop_detected
“a fi2e_slave_tbjuutfread_mode
‘. fi2c_slave_tbfuutf/data_out_requested
44 fi2c_slave_tbfuut/data_in_valid
New Divider
4 fi2c_slave_tb/tb_phase
4 fize_slave_tb/counter_sd
4 fi2c_slave_tb/stimulus_processfack_v
¢ fi2c_slave_tbjuut/control_state

Figure 4.24 Modelsim testbench for reset, start and stop of 12C Slave in Reading Data
Process.

55

Figure 4.25 illustrates the address transmission waveforms of signals at 12C Slave in a
testbench. As can be seen from Figure 4.25, address bits are 0000 0000 with the first
seven bits from phase 3 to 9 and the last bit for read/write selection in phase 10.
Address bits 0000 0000 is correct and there is high signal for transfer_started at phase
11. Acknowledge from slave in Reading Data Process is given in phase 11.

address and
acknowledge
§00000000 O

EﬁEEEEi;E‘“"

FTEE

£ fizc_slave_tbfuut/dock
L fi2c_slave_tbjuutfreset
L fi2c_slave_tbfuut/sd

“a fi2c_slave_tbfuut/sda

“u fi2c_slave_tbfuut/data_in
£ fi2c_slave_tbfuut/dock_frequency

fi2c_slave_tbfuut/address

“a fi2c_slave_tbfuut/start_detected

“a fi2c_slave_tbfuut/transfer_started

W fi2c_slave_tbfuut/stop_detected

“u fi2c_slave_tbfuutfread_mode

“a fi2c_slave_tbfuut/data_out_requested

“a fi2c_slave_tbjuut/data_in_valid

New Divider

4 fi2c_slave_tb/tb_phase 37h2

4 jic_slave_tb/counter_sd z a5 T 7 J8 Y Tio }
< fi2c_slave_tb/stimulus_process/ack_v

fi2c_slave_tbfuut/control_state

Figure 4.25 Modelsim testbench for address transmission of 12C Slave in Reading Data
Process.

56

Figure 4.26 illustrates the data transmission waveform of signals at 12C Slave in a
testbench. As can be seen from Figure 4.26, data bits are 1010 1011 with the first seven
bits from phase 12 to 18 and the last bit for read/write selection in phase 19. Data bits
1010 1011 is shown at output port data_in when there is high signal for data_in_valid
during phase 20. Acknowledge from slave in Reading Data Process is given in phase

20.

data and
acknowledge
1 10101011 0

£ fizc_slave_tbfuut/dock
£ fi2c_slave_tbfuutfreset
£ fi2c_slave_tbjuutfsd
“u fi2c_slave_tbjuut/sda
“a fi2c_slave_tbfuut/data_in
L fi2c_slave_tbjuut/dock_frequency
fi2c_slave_tbfuut/address
“a fi2c_slave_tbfuut/start_detected
“4 fi2c_slave_tbjuutftransfer_started
“a fi2c_slave_tbfuut/stop_detected
“a fi2c_slave_tbjuutfread_mode
“a fi2c_slave_tbjuut/data_out_requested
“a fi2c_slave_tbjuut/data_in_valid
New Divider
fi2c_slave_tb/tb_phase
fi2c_slave_tb/counter_sd h j

4

v

4 fi2c_slave_tb/stimulus_process/ack_v]

4 fi2c_slave_tbfuutfcontrol_state [Yfwait for read byte fwai...

Figure 4.26 Modelsim testbench for data transmission of 12C Slave in Reading Data
Process.

57

Figure 4.13 and Figure 4.14 show I2C Slave Block and components inside it
respectively in Reading Data Process. 12C Slave Block after Compile Design process by
Quartus Il and programing to FPGA device can be seen from RTL Viewer.

i2¢c_slave:slave

data_in[7..0]
clock

8'h0 data_out[7..0
reset

scl

sda

Figure 4.27 12C Slave Block on RTL Viewer of Quartus Il in Reading Data Process.

58

|||||7\\IIII i
[T TI I LI I T

;J LT T I|

—’LE F '_|_||||||||||||\
ﬁ? fﬁ%i@%mm

Figure 4.28 Inside 12C Slave Block on RTL Viewer of Quartus Il in Reading Data
Process.

59

4.3 Whole System Verification

4.3.1 Register Transfer Level

Register Transfer Level is the flow of digital signals between hardware registers and
logical operations, which models a synchronous digital circuit. The implementations for
Top Level Design of Writing Data Process and Reading Data Process after Compile
Design process and Programmer to DE1-SoC FPGA development board can be seen
from RTL Viewer of Quartus Il. Figure 4.29 illustrates blocks and connection between
them in an FPGA device following Writing Data Process as in 3.1.1. Figure 4.30
illustrates blocks and connection between them in an FPGA device following Reading
Data Process as in 3.1.2.

sig_gen_write:signal_generator_to_write i2c:i2c_adapter

rst ck
clkso [ck_50 sd hps_scl 1 i2c_slave:slave
sda hps_sdi o
[rst_n sd _M_D output(7..0]
sda |
clock N

8'h0data_out[7..01]

: " d
scl_slave_sig~direct reset sda

DATAIN [, OUTO sd
[

Figure 4.29 Top Level Design for Writing Data Process on RTL Viewer of Quartus Il.

i2c_slave:slave

k50 [_— 2c:i2c_adapter
sig_gen_read:signal_generator_to_read _M[_WD output[7..0]
clk] cdock |

st | hps_scil 8'h0data_out(7..Q1 B

s ex sl sig hps s hps_scio reset s

ck_50 sd DATANPS. outo | st n hps_sdo sda_siave_sig sd ol

lsda_ex = | s DATAIN [, OUTO sda B

=

sda sdal
sda_sig
DATAIN| ouTo

Figure 4.30 Top Level Design for Reading Data Process on RTL Viewer of Quartus 11.

60

4.3.2 Assign Pins and Display Result by DE1-SoC

In order to check the transmission of the whole Writing Data Process and Reading Data
Process, it is necessary to assign the output of Top Level Design to the LEDs of DE1-
SoC FPGA development board. Table 4.1 and Table 4.2 show the Pin Assignment with
FPGA Pin numbers for 50 MHz frequency and LEDRs in DE1-SoC FPGA development
board.

Table 4.1 Pin Assignment of Clock Inputs.

Signal Name FPGA Pin No. Description I/O Standard
CLOCK_50 PIN_AF14 50 MHz clock input 3.3V
CLOCK2_50 PIN_AA16 50 MHz clock input 3.3V
CLOCK3_50 PIN_Y26 50 MHz clock input 3.3V
CLOCK4_50 PIN_K14 50 MHz clock input 3.3V
HPS_CLOCK1_25 PIN_D25 25 MHz clock input 3.3V
HPS_CLOCK2_25 PIN_F25 25 MHz clock input 3.3V

Table 4.2 Pin Assignment of LEDs.

Signal Name FPGA Pin No. Description /O Standard
LEDRJ[0] PIN_V16 LED [0] 3.3v
LEDR[1] PIN_W16 LED [1] 3.3V
LEDRI[2] PIN_V17 LED [2] 3.3V
LEDR[3] PIN_V18 LED [3] 3.3V
LEDR[4] PIN_W17 LED [4] 3.3V
LEDR[5] PIN_W19 LED [5] 3.3V
LEDR[6] PIN_Y19 LED [6] 3.3V
LEDR[7] PIN_W20 LED [7] 3.3V
LEDR[8] PIN_W21 LED [8] 3.3V
LEDR[9] PIN_Y21 LED [9] 3.3V

Figure 4.31 illustrates the Assignment Editor for Top Level Design after Compile
Design process and Programmer process by Quartus Il to DE1-SoC FPGA development
board. Pin Assignment is made by Pin Planner of Quartus Il software.

Status Fram To Assignment Mame Value Enabled
1 iE>_ clk50 Location PIN_AF14 Yes
2 o ok 2 output(7] Location PIM_W20 Yes
3 & Ok 2 output(s] Location PIM_Y19 Yes
4 o Ok 2 output[s] Location PIM_W1% Yes
5 & Ok 2 output(4] Location PIN_W17 Yes
6 o Ok 2 output[3] Location PIN_V18 Yes
7 o Ok 2 output(2] Location PIN_V17 Yes
8 & ok 2 output(1] Location PIM_W16 Yes
9 & ok 24 utput(0] Location PIN_V16 Yes

Figure 4.31 Assignment Editor for Top Level Design.

61

Figure 4.32 and Figure 4.33 show output of Top Level Design for Writing Data Process
and Reading Data Process respectively by LEDRs of DE1-SoC FPGA development
board. The data output for Writing Data Process is 1010 1010 as displaying from LEDR
[7] to LEDR [0] as the picture caption in Figure 4.32.

Download DE1-SoC CD from -

ttp://del-soc.terasic.com

Figure 4.32 Output of Top Level Design Block displaying on Leds of DE1-SoC in
Writing Data Process.

The data output for Reading Data Process is 1010 1011 as displaying from LEDR [7] to
LEDR [0] of DE1-SoC FPGA development board as the picture caption in Figure 4.33.

e TR = - Wi W N

Figure 4.33 Output of Top Level Design Block displaying on Leds of DE1-SoC in
Reading Data Process.

62

5. CONCLUSIONS

The thesis presented an 1°C adapter for the new Altera Cyclone VV SoC-FGPA. The I°C
Adapter was created between the HPS part and FPGA part of the Cyclone V.

DE1-SoC FPGA development board [22] was used and the sampling frequency for the
whole system verification is 50 MHz frequency. The operating frequency inside Signal
Generator, 1°C Adapter and 1°C Slave is 200 Hz. In this thesis, the purpose is testing the
communication of 1°C Adapter. The 7-bit addressing mode of 1°C protocol is applied for
getting address of I°C Slave. As the results shown in Chapter 4 Verification And Result,
address transaction and data transaction is correct. The waveforms action of Signal
Generator, 1°C Adapter and I°C Slave is shown by Modelsim SE 10.2c simulator. After
compiling the design and programming by Altera Quartus Il 13.1, LEDs on DE1-SoC
FPGA development board shows correct data from Signal Generator in both Writing
Data Process and Reading Data Process through the I°C Adapter. It can be seen from
the Flow Summary of Quartus Il that, in the Writing Data Process, the total number of
logic utilization (in ALMs) used is 121, total number of registers is 143, and total
number of pins is 9. In the Reading Data Process, the total number of logic utilization
(in ALMs) used is 135, the total number of registers is 158, and the total number of pins
is 9.

The goals of the thesis are reached by implementing 1°C Adapter and verifying data
transactions going through it properly. The testing with Hard Processor System will be
future work. Using and applying the 1°C Adapter built in this thesis; users can take
access data input to HPS from real devices. The I°C bus is popular and when the
number of available addresses in the 7-bit addressing mode is recognized too small, the
new addressing mode (the 10-bit mode) will be necessary. The future improvement can
be done by modifying the 1°C Adapter to 10-bit addressing mode. The new addressing
mode also supports the old one. Devices with 7-bit addresses can be connected with
devices with 10-bit addresses on the same mode. In this mode, the first two bytes are
dedicated for address and data direction. The format of the first byte is 11110xx; the last
two bits of the first byte, combined with eight bits in the second byte from the 10-bit
address. After testing communication with data input from dual-core ARM processor
and modifying to 10-bit addressing mode, 1°C can be utilized in any device that need to
communicate with HPS such as the LCD multimedia color touch panel from TerasIC
[23], SPD EEPROMSs [24] on SDRAM or NVRAM chips [25]. For this thesis, the
default address of 1°C Slave is 00000000 for Writing data operation, and 00000001 for
Reading data operation. The address of 1°C Slave can be modified to the real device

63

address; the user also can connect I°C Adapter to the slaves other than 1°C Slave from
this thesis. Modification and verification data transmission through other slaves and real
devices will be future work.

64

REFERENCES

[1] 1. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.
Found. Trends Electron. Des. Autom., 2:135-253, Feb.2008.

[2] O. Esko, ASIP Integration and Verification Flow for FPGA. Master’s thesis,
Tampere University of Technology, Finland, June 2011.

[3] S.D. Brown. An overview of technology, architecture and CAD tools for
programmable logic devices. In Proc. IEEE Custom Integrated Cir. Conf., pages
69-76, May 1994.

[4] C. Riviere, Supercomputers for all, the next frontier for high performance
computing. Special Report, 2013, available at: http://www.prace-
ri.eu/IMG/pdf/prace_report_october _2013.pdf.

[5] P. Franzon, S. Perelstein, A. Hurst. Introduction to ASIC Design, spring 1999,
available at: http://www.ece.ncsu.edu/asic/tutorials/tutorl/tutorl.pdf.

[6] I. Kuon and J. Rose. Measuring the Gap between FPGAs and ASICs. IEEE Trans.
Computer-Aided Design Integrated Circ. Syst., 26(2):203-215, Feb. 2007.

[7] Altera Corporation. Cyclone \Y Overview, available at:
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html,
Referenced 2.4.2015.

[8] Altera Corporation. Introduction to Cyclone V Hard Processor System, February
2014.

[9] Terasic Corporation. DE1-SoC Board, available at:
http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=165&N0=836&PartNo=2,
Referenced 2.4.2015.

[10] Terasic Corporation. DE1-SoC Board Overview, available at:
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No0=836.
Referenced 5.4.2015.

[11] Terasic Corporation. DE1-SoC Board Specification, available at:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836.
Referenced 5.4.2015.

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

65

Altera Corporation. Introduction to the Quartus Il Software, Version 10.0,
available at:
https://www.altera.com/en_US/pdfs/literature/manual/archives/intro_to_quartus2.
pdf. Referenced 5.4.2015

Mentor Graphics Corporation. ModelSim SE Tutorial, Software Version 10.1,
available at:
http://cs.colby.edu/courses/S15/cs232/labs/lab01/modelsim_se_tut.pdf.

Philips Semiconductors Corporation. 1°C Manual, March 24, 2003, available at:
http://www.nxp.com/documents/application_note/AN10216.pdf.

B. Akesson. An introduction to SDRAM and memory controllers, available at:
http://www.es.ele.tue.nl/premadona/files/akesson01.pdf.

Security Standards Council. Payment Card Industry Security Standards, available
at: https://www.pcisecuritystandards.org/pdfs/pcissc_overview.pdf.

H. Zumbahlen, Basic Linear Design. Chapter 6: Converter, Section 6.1, Analog
Devices, 2007.

H. Zumbahlen, Basic Linear Design. Chapter 6: Converter, Section 6.2, Analog
Devices, 2007.

M. Rabaey, Digital Integrated Circuit. Prentice Hall, 1995.

Philips Semiconductors Corporation. The 1°C Bus Specification, Version 2.1,
January, 2000, available at: http://i2c2p.twibright.com/spec/i2c.pdf.

NXP Semiconductors Corporation. I°C bus specification and user manual, Rev. 6-
4 April 2014, available at:
http://www.nxp.com/documents/user_manual/UM10204.pdf.

Terasic Corporation. DE1-SoC User Manual, June 2014, available at:
http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=165&N0=836&PartNo=4.

Terasic Corporation. VEEK-MT-SoCKit Overview, available at:
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=882.

Microchip Technology Inc. Basic Serial EEPROM Operation, 1993, available at:
http://ecee.colorado.edu/~mcclurel/man536.pdf.

http://cs.colby.edu/courses/S15/cs232/labs/lab01/modelsim_se_tut.pdf
http://www.nxp.com/documents/application_note/AN10216.pdf
http://www.es.ele.tue.nl/premadona/files/akesson01.pdf
https://www.pcisecuritystandards.org/pdfs/pcissc_overview.pdf
http://i2c2p.twibright.com/spec/i2c.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=882

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

66

STMicroelectronics More Intelligent Solutions. Non-Volatile RAM and RTC,
Selection Guide, available at:
http://www.mouser.com/catalog/supplier/library/pdf/STNVRAM.pdf.

Microchip Technology Inc. Section 20. Serial Peripheral Interface (SPI),
available at: http://ww1.microchip.com/downloads/en/DeviceDoc/70067E.pdf,
Referenced 7.4.2015.

Microchip Technology Inc. Section 21. UART, available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/39708B.pdf, Reference
7.4.2015.

Renesas Electronics. Introduction to CAN. Application Note, available at:
http://documentation.renesas.com/doc/products/mpumcu/apn/rej05b0804 _m16cap
.pdf, Referenced 7.4.2015.

R. Kamal. Embedded Systems. Chapter 3: Serial Bus Communication Protocols —
USB. McGraw-Hill Education, 2008.

Texas Instruments. Real-Time Clock (RTC), November 2010, available at:
http://www.ti.com/lit/ds/symlink/bg32000.pdf. Reference 7.4.2015.

NXP Semiconductors. Real-time clock/calendar, Rev. 10 — 3 April 2012,
available at: http://www.nxp.com/documents/data_sheet/PCF8563.pdf.

D. Gilliam. Temperature Sensors, March 2003, available at:
http://coecsl.ece.illinois.edu/ge423/sensorprojects/gilliam%?20-
%20temp%20sensors.pdf. Referenced 7.4.2015.

http://www.mouser.com/catalog/supplier/library/pdf/STNVRAM.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70067E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39708B.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rej05b0804_m16cap.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rej05b0804_m16cap.pdf
http://www.ti.com/lit/ds/symlink/bq32000.pdf
http://coecsl.ece.illinois.edu/ge423/sensorprojects/gilliam%20-%20temp%20sensors.pdf
http://coecsl.ece.illinois.edu/ge423/sensorprojects/gilliam%20-%20temp%20sensors.pdf

