

THANG LUONG CAO

Serial bus adapter design for FPGA

Master of Science Thesis

Examiner: Prof. Timo D. Hämäläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
On May 6, 2015.

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Electrical Engineering

THANG, LUONG CAO: Serial bus adapter design for FPGA

Master of Science Thesis, 63 pages

April 2015

Major: Communication Circuits and Systems

Examiner: Prof. Timo D. Hämäläinen

Keywords: Serial bus, I2C, adapter, SoC, FPGA, HPS, simulation

In recent years, FPGAs (Field Programmable Gate Arrays) have become a popular

platform for testing and implementing hardware designs by increasing their capacity

and cost efficiency in the competition with Application Specific Integrated Circuits

(ASICs). Processors can be used for any problem but they have not been optimized for

specific problems. The design of ASIC is an extremely complex task, very time

consuming and expensive; they are used for mass products. FPGA is an intermediate

solution between general purpose processors and ASICs. Altera Cyclone V 28nm is a

System On Chip (SoC), which integrates a Hard Processor Core (HPS), peripherals, and

memory controller with the FPGA fabric. However, HPS consist of only one-directional

serial data (SDA) buses and serial clock (SCL) buses and provides support for a

communication link only between integrated circuits on a board. It is necessary to build

an I
2
C serial bus adapter in order to communicate between HPS and other devices

outside the board.

I
2
C serial bus adapter is implemented and tested in this thesis. It adapts the

communication from one-directional serial data line of hard processor system to bi-

directional data line. In order to test the I
2
C adapter in both writing data operation and

reading data operation, Signal Generator blocks to generate testing signals are

implemented and I
2
C Slave block from OpenCores to detect and display data to LEDs is

used. All the blocks are implemented in VHSIC Hardware Description Language

(VHDL).

The verifications for I
2
C Adapter, Signal Generator and I

2
C Slave are inspected by

waveforms on Modelsim SE 10.2c simulator. The block implementations are compiled

and programmed by Quartus II 13.1 to DE1-SoC FPGA development board. DE1-SoC

board buttons and LEDs are used to test the I
2
C adapter operation by a user. The results

show that the adapter works as specified.

ii

PREFACE

The research through my Master’s Thesis was conducted during academic year 2014-

2015 at the Department of Pervasive Computing at Tampere University of Technology.

 I would like to thank Prof. Timo D. Hämäläinen for the opportunity to

work this project. I am especially grateful to Dr. Tech. Erno Salminen for his time and

dedication provided to the completion of my thesis, because of his long design

meetings, guidance and advices.

 I also would like to thank to all of my friends in Finland who were being

with me during time in this beautiful country, my good friend Stefanus Arinno for

helping me a lot and Julio Cesar for his motivation pictures at my work station office

forcing me to finish my thesis all the time.

 Last but not the least; I am grateful for my family, my parents Long and

Nguyen, my younger brother Loc for their support throughout my study and life.

Tampere, April 2015

Luong Cao Thang

iii

CONTENTS

1. INTRODUCTION .. 1

2. DEVICES AND I
2
C PROTOCOL .. 6

2.1 Platform .. 6

2.2 Utilized tools .. 7

2.3 I
2
C Protocol .. 8

2.3.1 Introduction ... 8

2.3.2 Protocol ... 8

2.3.3 Start and stop conditions ... 10

2.3.4 Byte format.. 10

2.3.5 Acknowledge (ACK) and not acknowledge (NACK) 11

2.3.6 R/𝑾 bit .. 12

3. IMPLEMENTATION ON FPGA ... 13

3.1 Block Diagrams .. 13

3.1.1 Writing data process .. 13

3.1.2 Reading data process ... 14

3.2 Signal generator.. 15

3.2.1 Signal generator to write ... 15

3.2.2 Signal generator to read .. 17

3.3 I
2
C Adapter ... 19

3.3.1 I
2
C Adapter Block ... 19

3.3.2 Finite State Machine ... 20

3.3.3 How I
2
C Adapter work.. 22

3.4 I
2
C Slave ... 27

3.5 Top Level Design ... 29

4. VERIFICATION AND RESULT ... 30

4.1 Writing Data Process Verification ... 30

4.1.1 Verification of Signal Generator To Write in Writing Data Process 30

4.1.2 Verification of I
2
C Adapter in Writing Data Process................................ 35

4.1.3 Verification of I
2
C Slave in Writing Data Process.................................... 40

4.2 Reading Data Process Verification .. 45

4.2.1 Verification of Signal Generator To Read in Reading Data Process 45

4.2.2 Verification of I
2
C Adapter in Reading Data Process 49

4.2.3 Verification of I
2
C Slave in Reading Data Process 54

4.3 Whole System Verification .. 59

iv

4.3.1 Register Transfer Level ... 59

4.3.2 Assign Pins and Display Result by DE1-SoC ... 60

5. CONCLUSIONS ... 62

v

LIST OF FIGURES

Figure 1.1 Altera SoC FPGA Device Block Diagram . .. 2

Figure 1.2 Board Block Diagram 2

Figure 1.3 Block Diagram on DE1-SoC. .. 4

Figure 1.4 Block Diagram on DE1-SoC for Writing Data Operation. 5

Figure 1.5 Block Diagram on DE1-SoC for Reading Data Operation. 5

Figure 2.1 DE1-SoC Board . .. 6

Figure 2.2 I
2
C bus configuration . .. 8

Figure 2.3 Start and Stop conditions . .. 10

Figure 2.4 Data transfer on the I
2
C bus 11

Figure 2.5 Acknowledgement on I
2
C bus . .. 11

Figure 2.6 A complete data transfer 12

Figure 3.1 Writing data process block diagram. .. 13

Figure 3.2 Reading data process block diagram. ... 14

Figure 3.3 Signal Generator To Write Block. .. 15

Figure 3.4 Address and data signals waveform generated by Signal Generator To

Write. .. 16

Figure 3.5 Signal Generator To Read Block. ... 17

Figure 3.6 Address and data signals waveform generated by Signal Generator To

Read. ... 18

Figure 3.7 I2C Adapter Block. ... 19

Figure 3.8 Finite state machine of I2C Adapter block... 21

Figure 3.9 I2C Slave Block ... 27

Figure 3.10 Write Data Top Design Block ... 29

Figure 3.11 Read Data Top Design block .. 29

Figure 4.1 Modelsim testbench for reset, start and stop of Signal Generator To

Write in Writing Data Process. .. 31

Figure 4.2 Modelsim testbench for address and data transmission of Signal

Generator To Write in Writing Data Process. ... 32

Figure 4.3 Signal Generator To Write Block on RTL Viewer of Quartus II in

Writing Data Process. .. 33

Figure 4.4 Inside Signal Generator To Write Block on RTL Viewer of Quartus II

in Writing Data Process. .. 34

Figure 4.5 Modelsim testbench for reset, start and stop of I2C Adapter in Writing

Data Process. ... 35

vi

Figure 4.6 Modelsim testbench for address transmission of I2C Adapter in

Writing Data Process. .. 36

Figure 4.7 Modelsim testbench for data transmission of I2C Adapter in Writing

Data Process. ... 37

Figure 4.8 I2C Adapter Block on RTL Viewer of Quartus II in Writing Data

Process. .. 38

Figure 4.9 Inside I2C Adapter Block on RTL Viewer of Quartus II in Writing Data

Process. .. 39

Figure 4.10 Modelsim testbench for reset, start and stop of I2C Slave in Writing

Data Process. ... 40

Figure 4.11 Modelsim testbench for address transmission of I2C Slave in Writing

Data Process. ... 41

Figure 4.12 Modelsim testbench for data transmission of I2C Slave in Writing

Data Process. ... 42

Figure 4.13 I2C Slave Block on RTL Viewer of Quartus II in Writing Data

Process. .. 43

Figure 4.14 Inside I2C Slave Block on RTL Viewer of Quartus II in Writing Data

Process. .. 44

Figure 4.15 Modelsim testbench for reset, start and stop of Signal Generator To

Read in Reading Data Process. ... 45

Figure 4.16 Modelsim testbench for address and data transmission of Signal

Generator To Read in Reading Data Process. ... 46

Figure 4.17 Signal Generator To Read Block on RTL Viewer of Quartus II in

Reading Data Process. ... 47

Figure 4.18 Inside Signal Generator To Read Block on RTL Viewer of Quartus II

in Reading Data Process. ... 48

Figure 4.19 Modelsim testbench for reset, start and stop of I2C Adapter in

Reading Data Process. ... 49

Figure 4.20 Modelsim testbench for address transmission of I2C Adapter in

Reading Data Process. ... 50

Figure 4.21 Modelsim testbench for data transmission of I2C Adapter in Reading

Data Process. ... 51

Figure 4.22 I2C Adapter Block on RTL Viewer of Quartus II in Reading Data

Process. .. 52

Figure 4.23 Inside I2C Adapter Block on RTL Viewer of Quartus II in Writing

Data Process. ... 53

Figure 4.24 Modelsim testbench for reset, start and stop of I2C Slave in Reading

Data Process. ... 54

Figure 4.25 Modelsim testbench for address transmission of I2C Slave in Reading

Data Process. ... 55

Figure 4.26 Modelsim testbench for data transmission of I2C Slave in Reading

Data Process. ... 56

vii

Figure 4.27 I2C Slave Block on RTL Viewer of Quartus II in Reading Data

Process. .. 57

Figure 4.28 Inside I2C Slave Block on RTL Viewer of Quartus II in Reading Data

Process. .. 58

Figure 4.29 Top Level Design for Writing Data Process on RTL Viewer of

Quartus II. .. 59

Figure 4.30 Top Level Design for Reading Data Process on RTL Viewer of

Quartus II. .. 59

Figure 4.31 Assignment Editor for Top Level Design. ... 60

Figure 4.32 Output of Top Level Design Block displaying on Leds of DE1-SoC in

Writing Data Process. .. 61

Figure 4.33 Output of Top Level Design Block displaying on Leds of DE1-SoC in

Reading Data Process. ... 61

viii

LIST OF SYMBOLS AND ABBREVIATIONS

FPGAs Field Programmable Gate Arrays

ASICs Application Specific Integrated Circuits

SoC System on Chip

HPS Hard Processor System

PCB Printed Circuit Board

SDRAM Synchronous dynamic random access memory

DAC Digital to analog converter

ADC Analog to digital converter

I2C I squared C

SDA Serial Data Line

SCL Serial Clock Line

ACK Acknowledge

NACK Not Acknowledge

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter

CAN Control Area Network

USB Universal Serial Bus

Rst Reset

Rst_n Negative Reset

Clk Clock

Clk_50 Clock 50 MHz

Scl_ex Serial clock line extra

Sda_ex Serial data line extra

Hps_scli Hard processor system serial clock line input

Hps_sdi Hard processor system serial data line input

Hps_sclo Hard processor system serial clock line output

Hps_sdo Hard processor system serial data line output

Data_in Data input

Wr Write state

Rd Read state

Rw_wr Read/Write of Write State

ix

Rw_rd Read/Write of Read State

Ack_wr Acknowledge of Write State

Ack_rd Acknowledge of Read State

ICs Integrated Circuits

MSB Most Significant Bit

LSB Least Significant Bit

I/O Input/output

RTL Register Transfer Level

FSM Finite State Machine

SPD Serial Presence Detect

EEPROMs Electrically Erasable Programmable Read-Only Memory

NVRAM Non-volatile Random Access Memory

1

1. INTRODUCTION

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to be

configured by a customer or designer after manufacturing. The basic blocks in an FPGA

device are Logic Elements (LE) and the interconnections between them are

programmable to communicate each other [1]. Reprogrammable logic device provides a

fast and cost efficient way for testing and implementing custom digital designs. A

variety of reusable Intellectual Property (IP) components allows the designer to create

complex designs in reasonable time and synthesizable soft-core processors providing

the possibility to implement functionality using software. It is often easier and faster to

implement complex functionality using software rather than implementing the same

functionality on hardware logic [2]. The field programmable can be understood as the

ability to program it in the field or programming can be done by the end-user [3]. In

compare to processors [4] and Application Specific Integrated Circuits (ASICs) [5],

FPGAs are inexpensive and they can even outperform the others, since designers can

develop application specific logic that take advantage of the inner parallelism of the

given problem; FPGA are designed to provide good performance for any application,

whereas ASIC are just designed for a given problem. Beside the advantages of FPGA

over ASIC in terms of flexible reprogrammable ability, early testing stages, shorter

time-to-market, it cannot get over ASIC by area, delay, power consumption and unit

price in high volume products. There is a measurement done by Kuon and Rose in their

research about the gap between FPGAs and ASICs [6].

2

Figure 1.1 Altera SoC FPGA Device Block Diagram [8].

Figure 1.2 Board Block Diagram [9].

3

Altera Cyclone V 28nm is a System On Chip (SoC), which integrates a Hard Processor

Core (HPS), peripherals, and memory controller with the FPGA fabric using a high-

bandwidth interconnect backbone [7][8]. Cyclone V is available on DE1-SoC FPGA

development board. The Altera SoC FPGA Device Block Diagram is shown in Figure

1.1 and Figure 1.2 illustrates the DE1-SoC board block diagram for Cyclone V in a

FPGA development board.

Inter-Integrated Circuit, abbreviated as I
2
C is a serial bus short distance protocol

invented by Philips Semiconductor to transfer data among ICs. Because of advantages

in simplicity and low manufacturing cost, I
2
C is nowadays one of the most popular

serial bus communication protocols in the market together with other serial bus

communication protocols such as SPI [26], UART [27], CAN [28], USB [29], and so

on. There are many devices, which have I/O I
2
C interface and communicate with other

devices following the I
2
C protocol. Examples of I

2
C compatible devices are Analog to

Digital Converter, Digital to Analog Converter, EEPROM, Real Time Clock [30],Real

Time Calendar [31], Temperature Sensor [32], LCD multimedia color touch panel from

TerasIC, and so on.

The I
2
C protocol is applied to I

2
C compatible devices which have bi-directional signals

serial data (SDA) and serial clock (SCL). However, the Hard Processor System on

Altera Cyclone V has only one-directional I
2
C buses, one serial clock and one serial

data for signals coming in to HPS, and one serial clock and one serial data for signals

coming out from HPS. In order to adapt the communication between one-directional

serial data line of HPS and bi-directional serial data line following the I
2
C protocol, it is

necessary to implement a serial bus adapter as illustrated in Figure 1.3.

4

Figure 1.3 Block Diagram on DE1-SoC.

For this thesis, a serial bus Adapter to make communication between HPS Portion and

FPGA Portion following I
2
C protocol in Altera SoC FPGA Device is created. In order

to test the I
2
C Adapter, there is also Signal Generator to produce testing signals and an

I
2
C Slave from OpenCores is involved. The data generated by the Signal Generator after

going through I
2
C Adapter is detected at I

2
C Slave and displayed to the LEDs of the

DE1-SoC Board for Writing Data Operation and Reading Data Operation as shown in

Figure 1.4 and Figure 1.5 respectively. The thesis is divided into the following chapters.

Chapter 2 introduces devices and tools used in the work. The implementation of blocks

is presented in Chapter 3. Chapter 4 shows verification and results of block

implementations by software as well as by compiling and programming the FPGA

device. Chapter 5 is the conclusions for this thesis.

5

Figure 1.4 Block Diagram on DE1-SoC for Writing Data Operation.

Figure 1.5 Block Diagram on DE1-SoC for Reading Data Operation.

6

2. DEVICES AND I
2
C PROTOCOL

This Chapter presents an introduction to the I
2
C protocol. Devices and utilized tools

used in this work are described.

2.1 Platform

The platform used in this work is DE1-SoC FPGA development board. The DE1-SoC

board has many features that allow users to implement a wide range of designed

circuits, from simple circuits to various multimedia projects [10].

Figure 2.1 DE1-SoC Board [10].

An overview of the specification of DE1-SoC Board is following [10]:

FPGA Device:

 Cyclone V SoC 5CSEMA5F31C6 Device

 Duo-core ARM Cortex-A9 (HPS)

 85K Programmable Logic Elements

7

 44500 Kbits embedded memory

 6 Fractional PLLs

 2 Hard Memory Controllers

Configuration and Debug:

 Serial Configuration device – EPCS128 on FPGA

 On-Board USB Blaster II (Normal Type B USB connector)

Connectors:

 Two 40-pin Expansion Headers (voltage levels: 3.3V)

 One 10-pin ADC Input Header

 One LTC connector (One Serial Peripheral Interface (SPI) Master, one I2C and

one GPIO interface)

Switches, Button and Indicators:

 4 User Keys (FPGA x4)

 10 User switches (FPGA x10)

 11 User LEDs (FPGA x10; HPS x1)

 2 HPS Reset Buttons (HPS_RST_n and HPS_WARM_RST_n)

 Six 7-segment displays

2.2 Utilized tools

The following tools were used in this work:

 Altera Quartus II [11]

Quartus II is used for analysis and synthesis of the HDL design of the project.

Quartus II enables the developer to compile designs, perform timing analysis,

examine RLT diagrams, simulate a design’s response to stimulation, and

configure the target device with the programmer. The version used in the project

is Quartus II 13.1 (64-bit).

 Modelsim [13]

Modelsim is a hardware simulation and debug environment by Mentor Graphics,

primarily targeted at smaller ASIC and FPGA designs. Modelsim is used to

verify and simulate for VHDL design of project. The version used in the project

is Modelsim SE 10.2 c.

8

2.3 I2C Protocol

2.3.1 Introduction

From 1980s, Philips Semiconductors Company created the I
2
C interface which is used

for data transfer among ICs at the Printed Circuit Board (PCB) level. The concept is

connecting all the I
2
C bus compatible devices which have an I

2
C interface. This concept

allows devices communicate directly with each other devices via I
2
C bus [14].

In I
2
C, designs proceed rapidly from block diagram to final schematic and

interconnections are minimized that ICs have fewer pins. With simplicity and low

manufacturing cost, I
2
C is common in many applications such as reading configuration

data on SDRAM [15], supporting systems management for PCI cards [16], accessing

low speed DACs [17] and ADCs [18], and display data channel. I
2
C is now

implemented in over 1000 different ICs [19] and broadly adopted by many leading chip

design companies like Intel, Texas Instrument, Analog Devices, etc.

2.3.2 Protocol

In I
2
C, only two signal lines are required; a serial data line (SDA) and a serial clock line

(SCL). Each device connected to the bus is software addressable by a unique address

and simple master/slave relationships exist at all times; masters can operate as master-

transmitters or as master-receivers. The device that initiates communication is called the

Master, and at that time, all the other devices on the bus are considered Slaves.

Figure 2.2 I
2
C bus configuration [20].

9

Figure 2.2 illustrates I2C bus configuration and Table 2.1 describe some basic I2C bus

terminology. First, consider when microcontroller A wants to send information to

microcontroller B, microcontroller A is master and addresses microcontroller B is the

slave. Microcontroller A (master-transmitter) sends data to microcontroller B (slave-

receiver) and microcontroller A terminates the transfer. When a Master wants to initiate

a communication, it issues a “START” condition. At that time, Slave has to listen to the

bus for incoming data. After the “START” is issued, the Master sends the “ADDRESS”

of the Slave that it wishes to communicate with along with a bit to indicate the direction

of the data transfer (either read or write). Slave will then compare its address with the

address received on the bus. If the address matches, the Slave will send an

“ACKNOWLEDGEMENT” (ACK) to the Master. Slave whose address does not match

will not send an ACK. Once communication is established, the two lines are busy. No

other device is allowed to control the lines except the Master and the Slave which was

selected. When the Master wants to terminate communication, it will issue a “STOP”

signal. After that, both SCL line and SDA line are released and free.

So far we have introduced the “START”, “ADDRESS”, “ACKNOWLEDGEMENT”

and “STOP” signals. We will discuss these signals in more detail later. Terms used in

I
2
C bus are summarized in the Table 2.1.

Table 2.1 Definition of I
2
C bus terminology [21].

Term Description

Transmitter the device which sends data to bus

Receiver the device which receives data from bus

Master

the device which initiates a transfer,

generate clock signals and terminates a

transfer

Slave the device addressed by a master

10

2.3.3 Start and stop conditions

When a Master wants to initiate a data transfer, it issues a START condition and when it

wants to terminate the transfer, a STOP condition will be initiated. There can be

multiple STARTs during once transaction called a repeated START. The Master can

then release the STOP condition whenever it wants to.

Figure 2.3 Start and Stop conditions [21].

As you can see in Figure 2.3, a START is issued by bringing the SDA line low while

the SCL line is high. A STOP condition is implemented by transitioning the SDA line

high while the SCL line is high. START and STOP conditions are always generated by

the Master. The bus is considered to be busy after the START condition. The bus stays

busy if a repeated START is generated instead of a STOP condition. In this respect, the

STARTS and repeated START conditions are functionally identical. After that the

Master controls the SCL line and can generate clock signals.

2.3.4 Byte format

The I
2
C bus is a byte-oriented protocol. After signaling Slave by the START condition,

the Master sends “starting byte” to the Slave. There are two components that make us

the “starting bytes”: Slave address and data direction (Read or Write). The Master sends

the MSB (Most Significant Bit) first and the LSB (Least Significant Bit) last. There are

two addressing modes in the I
2
C protocol: the 7-bit and 10-bit address modes.

We will first consider the 7-bit addressing mode. Every byte put on the SDA line must

be eight bits long. The number of bytes that can be transmitted per transfer is

unrestricted. Each byte must be followed by an Acknowledge bit. If a Slave cannot

receive or transmit another complete byte of data until it has performed some other

function, for example servicing an internal interrupt, it can hold the clock line SCL

LOW to force the master into a wait state. Data transfer then continues when the Slave

is ready for another byte of data and releases clock line SCL. Data transfer on the I
2
C

bus is illustrated in the Figure 2.4.

11

Figure 2.4 Data transfer on the I
2
C bus [21].

With the 10-bit addressing mode, when the I
2
C bus became more popular, it was

recognized that the number of available addresses in the 7-bit addressing mode is too

small. Therefore, a new addressing mode (the 10-bit mode) was developed. The new

addressing mode also supports the old one. Devices with 7-bit addresses can be

connected with devices with 10-bit addresses on the same mode. In this mode, the first

two bytes are dedicated for address and data direction. The format of the first byte is

11110xx; the last two bits of the first byte, combined with eight bits in the second byte

form the 10-bit address.

2.3.5 Acknowledge (ACK) and not acknowledge (NACK)

Acknowledgement is obligatory in order to inform the transmitter that data has been

successfully transmitted. Figure 2.5 illustrates the acknowledgement mechanism. The

Master generates the acknowledge-related clock pulse and the transmitter releases the

SDA line (HIGH) during the acknowledge clock pulse so that the receiver can take

control of the SDA line. IF the receiver does not acknowledge, leaving the SDA line

high, the transfer must be aborted. If acknowledged by pulling the SDA line low, the

transmitter knows that data has been successfully received, so it keeps sending data to

the receiver.

Figure 2.5 Acknowledgement on I
2
C bus [21].

12

The acknowledge takes place after every bytes. The acknowledge bit allows the receiver

to signal the transmitter that the byte successfully received and another byte may be

sent. The Master generates all clock pulses, including acknowledge of the ninth clock

pulse. When SDA remains HIGH during this ninth clock pulse, this is defined as Not

Acknowledge signal. The Master can then generate either a STOP condition to abort the

transfer, or a repeated START condition to start a new transfer. There are five

conditions that lead to the generation of a NACK [21]:

1. No receiver is present on the bus with the transmitted address so there is

no device to respond with an ACKNOWLEDGE.

2. The receiver is unable to receive or transmit because it is performing

some real-time function and is not ready to start communication with the

Master.

3. During the transfer, the receiver gets data or commands that it does not

understand.

4. During the transfer, the receiver cannot receive any more data bytes.

5. A master-receiver must signal the end of the transfer to the slave

transmitter.

2.3.6 R/𝑾 bit

After the START condition (S), a Slave address is sent. This address is the first 7 bits,

the eighth bit is a data direction bit (R/𝑊). If the direction bit is ‘0’, it indicates a

transmission (or WRITE). IF the bit is ‘1’, it indicates a request for data (or READ).

Figure 2.6 is a complete data transfer including the direction bit.

Figure 2.6 A complete data transfer [21].

13

3. IMPLEMENTATION ON FPGA

In this chapter, we describe the implement action of a Signal Generator, an I
2
C Adapter

and an I
2
C Slave on DE1-SoC FPGA development board manufactured by Terasic. All

the Signal Generator, I
2
C Adapter and I

2
C Slave are described in VHDL.

3.1 Block Diagrams

3.1.1 Writing data process

The writing data process includes three blocks, which are Signal Generator to Write,

I2C Adapter and I2C Slave. All the I
2
C interface of blocks is connected by I

2
C buses.

Figure 3.1 illustrated data transmission from Signal Generator To Write through the I2C

Adapter and terminated at I2C Slave. Signals generated by the Signal Generator To

Write include address signals and data signals, that are serial signals. Address serial data

signals is transmitted by the SDA bus sampling at frequency of SCL bus to I2C Adapter

first. Data signals are transmitted to the I2C Adapter after address signals finish

transmission. Address signals and data signals come in the I2C Adapter by one-

directional port hps_sdi and come out the I2C Adapter by bi-directional port sda. At the

end, I2C slave detects data signals from I2C Adapter and transfer it into 8 bits parallel

signal at data_in port.

Figure 3.1 Writing data process block diagram.

14

3.1.2 Reading data process

The reading data process includes three blocks, which are Signal Generator to Read,

I2C Adapter and I2C Slave. All the I
2
C interface of blocks is connected by I

2
C buses.

Figure 3.2 illustrated data transmission from Signal Generator To Read through the I2C

Adapter and terminated at I2C Slave. Signals generated by the Signal Generator To

Read include address signals and data signals, that are serial signals. Address serial

signals is transmitted by the SDA bus sampling at frequency of SCL bus from port

sda_ex of Signal Generator To Read to port hps_sdi of I2C Adapter first. Data serial

signals are transmitted from port sda of Signal Generator To Read to port sda of I2C

Adapter after address signals to finish transmission. Address signals come in the I2C

Adapter by one-directional port hps_sdi and come out the I2C Adapter by one-

directional port hps_sdo. Data signals come in the I2C Adapter by bi-directional port

sda and come out the I2C Adapter by one-directional port hps_sdo. At the end, I2C

slave detects data signals from I2C Adapter and transfer it into 8 bits parallel signal at

data_in port.

Figure 3.2 Reading data process block diagram.

15

3.2 Signal generator

3.2.1 Signal generator to write

Signal Generator To Write has one input port and three output ports as shown in the

Figure 3.3. The input port clk_50 is the sampling clock signal and is assigned to the 50

MHz frequency pin of DE1-SoC FPGA development board. The clk_50 is operated at

frequency 50 MHz inside the Signal Generator To Write block. Output port rst is reset

signal to reset the data transmission process. Output port scl is sampling clock to data

signals transmission. The last output port which is sda using to transmit address signals

as data signals from Signal Generator To Write block to I2C Adapter block.

Figure 3.3 Signal Generator To Write Block.

16

Figure 3.4 illustrates the waveform of signals generated from Signal Generator To Write

block. As you can see from Figure 3.4, the Signal Generator To Write Block generates

an active low reset signal, which makes a falling edge at the end of phase 0. Reset signal

is remained to be 0 for the rest of transmission process. The scl signal is sampling data

clock signal and operating at 200 Hz. The sda signal has falling edge, which is a

transition from high to low while scl is high at phase 2; it makes a start condition

following the start condition definition in I
2
C protocol. The sda then transmits a serial in

8 bits binary number 00000000 of address from phase 3 to 10 with the last bit is 0 for

write decision process. The sda signal has value 0 at phase 11 standing for the

acknowledge bit that correct address transmission. Serial 8 bits binary number

10101010 of data is transmitted from phase 12 to 19 with the last bit is 0 for the next

byte writing decision process. The sda signal has value 0 at phase 20 standing for the

acknowledge bit that complete data transmission. The sda signal has rising edge, which

is a transition from low to high while scl is high at phase 21; it makes a stop condition

following the stop condition definition in I
2
C protocol.

Figure 3.4 Address and data signals waveform generated by Signal Generator To
Write.

17

3.2.2 Signal generator to read

Signal Generator To Write has one input port and five output ports as shown in the

Figure 3.5. The input port clk_50 is the sampling clock signal and is assigned to the 50

MHz frequency pin of DE1-SoC FPGA development board. The clk_50 is operated at

50 MHz frequency inside the Signal Generator To Write block. Output port rst is reset

signal aiming to reset the data transmission process. Output port scl is sampling clock to

data signals transmission. Output port sda is used to transmit data signals from Signal

Generator To Write block to I2C Adapter block. Output port scl_ex is sampling clock to

address signals transmission. Output port sda_ex is used to transmit address signals

from Signal Generator To Write block to I2C Adapter block.

Figure 3.5 Signal Generator To Read Block.

18

Figure 3.6 illustrates the waveform of signals generated from Signal Generator To Write

block. As you can see from the figure, the Signal Generator To Write Block generates

an active low reset signal which makes a falling edge at the end of phase 0. The reset

signal is remained to be 0 for the rest of transmission process. The scl and scl_ex signals

are sampling data clock signal and sampling address clock signal respectively, they are

both operated at 200 Hz. The sda_ex signal has falling edge which is a transition from

high to low while scl_ex is high at phase 2; it makes a start condition following the start

condition definition in I
2
C protocol. The sda_ex is then transmit a serial 8 bits binary

number 00000001 of address from phase 3 to 10 with the last bit is 1 for read decision

process. The sda signal has value 0 at phase 11 standing for the acknowledge bit that

correct address transmission. Serial 8 bits binary number 10101011 of data is

transmitted from phase 12 to 19 with the last bit is 1 for next byte reading decision

process. The sda_ex signal has value 0 at phase 20 standing for the acknowledge bit that

correct data transmission. The sda_ex signal has rising edge which is a transition from

low to high while scl_ex is high at phase 21; it makes a stop condition following the

stop condition definition in I
2
C protocol.

Figure 3.6 Address and data signals waveform generated by Signal Generator To
Read.

19

3.3 I2C Adapter

3.3.1 I2C Adapter Block

The I2C Adapter has four input ports, two output ports and two inout ports as shown in

the Figure 3.7. The input port clk is the sampling clock signal and is assigned to the 50

MHz frequency pin of DE1-SoC FPGA development board. The clk is operated at 50

MHz frequency inside the I2C Adapter block. Input port rst_n is reset signal aiming to

reset the data transmission process inside I2C Adapter; it is an active low reset. Inout

port scl is output in writing data process, it is used for sampling clock to address signals

and data signals as well. Inout port scl is input in reading data process, it is used for

sampling clock to data signals. Inout port sda is output in writing data process, it is used

to transmit address signals and data signals as well. Inout sda is input in reading data

process and it is used to transmit data signals. Input port hps_scli is sampling clock to

address signals as data signals in writing data transmission and sampling clock to

address signals in reading data transmission. Input port hps_sdi is used to transmit

address signals as data signals in writing data transmission and transmit address signals

in reading data transmission. Output port hps_sclo is sampling clock to data signals in

reading data transmission. Output port hps_sdo is used to transmit data signals in

reading data transmission. Table 3.1 describes the I2C Adapter ports.

Figure 3.7 I2C Adapter Block.

20

Table 3.1 I2C Adapter ports description.

Port Width Mode Data Type Description

clk 1 in std_logic system clock

rst_n 1 in std_logic
asynchronous

active low reset

scl 1 inout std_logic
serial clock

line of I2C bus

sda 1 inout std_logic
serial data line

of I2C bus

hps_scli 1 in std_logic

serial clock

input line of

I2C bus

hps_sdi 1 in std_logic

serial data line

input of I2C

bus

hps_sclo 1 out std_logic

serial clock

output line of

I2C bus

hps_sdo 1 out std_logic

serial data

output line of

I2C bus

3.3.2 Finite State Machine

The I
2
C Adapter uses the state machine depicted in Figure 3.8 to implement the I2C bus

protocol. Upon start-up, the component immediately enters the idle state. It follows the

condition for each state as described and stops when finishing data transmission with

the stop condition. The explanation for each state is described more clearly in part 3.3.3

how adapter work.

21

Figure 3.8 Finite state machine of I2C Adapter block.

22

3.3.3 How I2C Adapter work

As the description for I2C Finite State Machine in the Figure 3.8, it is easy to follow by

dividing it into separated processes as Start Process and Stop Process, Reset Process,

Getting Address Process, Writing Data Process and Reading Data Process. Each process

can be more understandable by looking the description of the code for it.

Start Process and Stop Process

Program 3.1 shows how the Start Process and Stop Process work inside the I2C

Adapter. At the Start Process, hps_sda_r keeps the previous value of data signal and

hps_sdi is the current data signal. When there is a transition in data value from high to

low as hps_sda_r = 1 and hps_sdi = 0 while the sampling clock signal is high as

hps_scli = 1, the start condition happens and marking as start_edge = 1. Without falling

edge of data signal during high period of sampling clock signal, start_edge = 0. At the

Stop Process, hps_sda_r keeping previous value of data signal and hps_sdi is the current

data signal. When there is a transition in data value from low to high as hps_sda_r = 0

and hps_sdi = 1 while the sampling clock signal is high as hps_scli = 1, the stop

condition happens and marking as stop_edge = 1. Without rising edge of data signal

during high period of sampling clock signal, stop_edge = 0.

Program 3.1 Start Process and Stop Process Program.

23

Reset Process

Program 3.2 shows how the Reset Process works inside the I2C Adapter. At the Reset

Process, rst_n stands for active low reset signal and it is assigned to be 1 at the

beginning. When rst_n = 1, I2C Adapter is in idle state which keeping the default values

for output signals as scl = 0, sda= 0, hps_sclo = 0 and hps_sdo = 0. The read/write bit

register rw_r, the acknowledge register from hard processor core ack_hps and the

acknowledge register from slave ack_cypress are also kept at 0 during idle state. When

rst_n = 0, output signals hps_sclo, scl, sda as well as register hps_scl_r hps_sda_r are

assigned to input signals hps_scli, hps_scli, hps_sdi, hps_scli and hps_sdi respectively.

There is always a waiting for start condition or stop condition when rst_n = 0. If the

start condition happens, I2C Adapter turns to getting address state as start_edge = 1. If

the stop condition happens, I2C Adapter turns to idle state as stop_edge = 1.

Program 3.2 Reset Process Program.

24

Getting Address Process

Program 3.3 shows how the Getting Address Process works inside the I2C Adapter. At

the Getting Address Process, scl_edge stands for the synchronous clock edge and is

used to synchronizing address signals transmission as data signals transmission. In the

idle state, I2C turns to getaddress in the next state when start condition happens. Bit

counter bit_cnt is counted down from 8 in idle state to 7 in getaddress state. In the

getaddress state, bit counter is continued to count down until it equals 0 to finish

address bits signal transmission. When bit_cnt = 0, I2C Adapter get into read/write

selection rw state. The read/write selection bit is asserted by the last bit of address bits,

the eighth bit; then I2C Adapter turns to acknowledge for address transmission state

ack. At acknowledge for address transmission state ack, acknowledge bit is taken at the

middle of ninth clock and it is the acknowledge bit from the slave. Bit counter is reset to

7 after the address transaction finishing. If the acknowledge from slave is 0, I2C

Adapter continue to next process Writing Data Process or Reading Data Process, which

is decided by the read/write selection bit register rw_r. If the acknowledge from slave is

1, it means wrong address, I2C Adapter turns to take the address again.

Program 3.3 Getting Address Process Program.

25

Writing Data Process

Program 3.4 shows how the Writing Data Process works inside the I2C Adapter. At the

Writing Data Process, scl_edge stands for the synchronous clock edge and is used to

synchronizing address signals transmission as data signals transmission. In the write

state wr, bit counter is counted down at the sampling synchronous clock edge until it

equals 0 to finish writing data bits signal transmission. When bit_cnt = 0, I2C Adapter

gets into read/write selection rw_wr state. The read/write selection bit is asserted by the

last bit of data bits, the eighth bit; then I2C Adapter turns to acknowledge for writing

data transmission state ack_wr. At acknowledge for writing data transmission state

ack_wr, acknowledge bit is taken at the middle of ninth clock and it is the acknowledge

bit from the slave. Bit counter is reset to 7 after the writing data transaction finishing. If

the acknowledge from slave is 0, I2C Adapter continue to next process Writing Data

Process wr or Reading Data Process rd, which is decided by the read/write selection bit

register rw_r. If the acknowledge from slave is 1, it means wrong data, I2C Adapter

turns to take the address again and start a new whole process.

Program 3.4 Writing Data Process Program.

26

Reading Data Process

Program 3.5 shows how the Reading Data Process works inside the I2C Adapter. At the

Reading Data Process, scl_edge stands for the synchronous clock edge and is used to

synchronizing address signals transmission as data signals transmission. In the read

state rd, bit counter is counted down at the sampling synchronous clock edge until it

equals 0 to finish reading data bits signal transmission. When bit_cnt = 0, I2C Adapter

gets into read/write selection rw_rd state. The read/write selection bit is asserted by the

last bit of data bits, the eighth bit; then I2C Adapter turns to acknowledge for reading

data transmission state ack_rd. At acknowledge for reading data transmission state

ack_rd, acknowledge bit is taken at the middle of ninth clock and it is the acknowledge

bit from the hard processor core. Bit counter is reset to 7 after the reading data

transaction finishing. If the acknowledge from slave is 0, I2C Adapter continue to next

process Reading Data Process rd or Writing Data Process wr, which is decided by the

read/write selection bit register rw_r. If the acknowledge from slave is 1, it means

wrong data, I2C Adapter turns to take the address again and start a new whole process.

Program 3.5 Reading Data Process Program.

27

3.4 I2C Slave

The I2C Slave code is taken from OpenCores respecting the copyright. The I2C Slave

has four input ports, seven output ports and one inout port as shown in the Figure 3.9.

The input port clock is the sampling clock signal and is assigned to the 50 MHz

frequency pin of DE1-SoC FPGA development board. The clock is operated at

frequency 50 MHz inside the I2C Slave block. Input port reset is reset signal aiming to

reset the data transmission process at I2C Slave; it is active low reset. Input port scl is

used for sampling clock to address signals and data signals as well. Inout port sda is

input to read address signal as data signal from I2C Adapter. Output port start_detected

is true if start condition is detected at I2C Slave. Output port transfer_started is true if a

valid address was received and acknowledged. Output port read_mode is true if master

wants to read device. Output port stop_detected is true if stop condition is detected ad

I2C Slave. Input port data_out is used to send byte to master. Output port

data_out_requested is true if data write has to be filled to send the next byte. Output port

data_in is the last received byte from master. Output data_in_valid is true if the master

sent a byte.

Figure 3.9 I2C Slave Block.

28

The I2C Slave includes three main processes, which are Control Process, Read Process

and Write Process. The Control Process is used to process for receiving and sending

bytes to I2C bus with the proper acknowledge generators and detection. The Read

Process provides 2 functions which are: if read_byte is set to true, then 8 bits are read

from the I2C bus into input_shift; if read_ack is set to true, then one bit will be read

from the I2C bus for the acknowledge from master into input_shift(0). The Write

Process provides 2 functions which are: if write_byte is set to true then 8 bits are written

from data_out to the I2C bus; if write_ack is set to true, then one 0 bit will be written to

the I2C bus for the acknowledge from slave. Start or stop bit detection resets the state

machine for both Read Process and Write Process. In this project, in order to display the

signal from Signal Generator To Write and Signal Generator To Read through I2C

Adapter on the LEDs of DE1-SoC FPGA development board, we need to use only

Control Process and Read Process. It also means we do not need to use input port

data_out and output port data_out_requested in this project.

29

3.5 Top Level Design

The Top Level Design is divided into two projects, which are one project for writing

data and one for reading data through the I2C Adapter. Figure 3.10 illustrates the Write

Data Top Design Block, which includes three other clocks inside: Signal Generator To

Write, I2C Adapter and I2C Slave. The connection of blocks inside Write Data Top

Design is as Figure 3.1. The input port clk_50 is the sampling clock signal and is

assigned to the 50 MHz frequency pin of DE1-SoC FPGA development board. The

clk_50 is operated at frequency 50 MHz inside the Write Data Top Design Block. The

output port output is 8 bits width and assigned to LEDs pin of DE1-SoC FPGA

development board.

Figure 3.10 Write Data Top Design Block.

Figure 3.11 illustrates the Read Data Top Design Block, which includes three other

clocks inside: Signal Generator To Read, I2C Adapter and I2C Slave. The connection of

blocks inside Read Data Top Design is as Figure 3.2. The input port clk_50 is the

sampling clock signal and is assigned to the 50 MHz frequency pin of DE1-SoC FPGA

development board. The clk_50 is operated at frequency 50 MHz inside the Write Data

Top Design Block. The output port output is 8 bits width and assigned to LEDs pin of

DE1-SoC FPGA development board.

Figure 3.11 Read Data Top Design block.

30

4. VERIFICATION AND RESULT

Chapter 3 shows how to implement the Signal Generator, I
2
C Adapter and I

2
C Slave.

Chapter 4 presents verification and result for those blocks by simulation in Modelsim

SE 10.2c. The implementations on board are verified by the display of LEDs on DE1-

SoC FPGA development board.

4.1 Writing Data Process Verification

4.1.1 Verification of Signal Generator To Write in Writing Data Process

As described in 3.2.1, the Signal Generator To Write has to generate the sequence of

signals making reset, start condition, stop condition, address transmission and data

transmission following I
2
C protocol. Figure 4.1 illustrates reset, start condition and stop

condition waveforms of signals generated by Signal Generator To Write in a testbench.

As can be seen from Figure 4.1, Signal Generator To Write generates an active low

reset at the end of phase 0 when signal rst changes from high to low and remains for the

rest of transmission. Start condition happens at phase 2 when the sda signal has a falling

edge while the scl signal is high. Stop condition happens at phase 21 when the sda

signal has a rising edge while the scl signal is high.

31

Figure 4.1 Modelsim testbench for reset, start and stop of Signal Generator To Write in

Writing Data Process.

32

Figure 4.2 illustrates the address transmission and the data transmission waveforms of

signals generated by Signal Generator To Write in a testbench. As can be seen from

Figure 4.2, address bits are 0000 0000 with the last bit for read/write selection is

generated by Signal Generator To Write from phase 3 to 10. Bit value 0 at phase 11 is

used for acknowledge. Data bits are 1010 1010 with last bit for read/write selection is

generated by Signal Generator To Write from phase 12 to phase 19. Bit value 0 at phase

20 is used for acknowledge.

Figure 4.2 Modelsim testbench for address and data transmission of

Signal Generator To Write in Writing Data Process.

33

Figure 4.3 and Figure 4.4 show Signal Generator To Write Block and components

inside it respectively in Writing Data Process. Signal Generator To Write Block after

Compile Design process by Quartus II and programing to FPGA device can be seen

from RTL Viewer.

Figure 4.3 Signal Generator To Write Block on RTL Viewer of Quartus II in Writing

Data Process.

34

Figure 4.4 Inside Signal Generator To Write Block on RTL Viewer of Quartus II in

Writing Data Process.

35

4.1.2 Verification of I2C Adapter in Writing Data Process

As described in 3.3, the I2C Adapter is used to transmit data from the hard processor

core ARM Cortex-A9 to a slave in Writing Data Process following I
2
C protocol. Figure

4.5 illustrates reset, start condition and stop condition detection waveforms of signal

transmission through I2C Adapter in Writing Data Process in a testbench. As can be

seen from Figure 4.5, I2C Adapter can detect the active low reset, start condition as

falling edge of hps_sdi during high hps_scli period and stop condition as rising edge of

hps_sdi during high hps_scli period.

Figure 4.5 Modelsim testbench for reset, start and stop of I2C Adapter in Writing Data

Process.

36

Figure 4.6 illustrates the address transmission waveforms of signals through I2C

Adapter in a testbench. As can be seen from Figure 4.6, address bits are 0000 0000 with

the first seven bits in getaddress state and the last bit for read/write selection in rw state.

Address bits come in from input port hps_sdi of I2C Adapter. Inout port sda, which is

output in Writing Data Process, shows exact value of address bits following input port

hps_sdi. Acknowledge from slave as from port sda in Writing Data Process shows in

ack state.

Figure 4.6 Modelsim testbench for address transmission of I2C Adapter in Writing

Data Process.

37

Figure 4.7 illustrates the data transmission waveform of signals through I2C Adapter in

a testbench. As can be seen from Figure 4.7, data bits are 1010 1010 with the first seven

bits in wr state and the last bit for read/write selection in rw_wr state. Data bits come in

from input port hps_sdi of I2C Adapter. Inout port sda which is output in Writing Data

Process shows exact value of data bits following input port hps_sdi. Acknowledge from

slave as from port sda in Writing Data Process shows in ack_wr state.

Figure 4.7 Modelsim testbench for data transmission of I2C Adapter in Writing Data

Process.

38

Figure 4.8 and Figure 4.9 show I2C Adapter Block and components inside it

respectively in Writing Data Process. I2C Adapter Block after Compile Design process

by Quartus II and programing to FPGA device can be seen from RTL Viewer.

Figure 4.8 I2C Adapter Block on RTL Viewer of Quartus II in Writing Data Process.

39

Figure 4.9 Inside I2C Adapter Block on RTL Viewer of Quartus II in Writing Data

Process.

40

4.1.3 Verification of I2C Slave in Writing Data Process

As described in part 3.4, the I2C Slave is used to detect the data transmission from I2C

Adapter and display to the LEDs of DE1-SoC FPGA development board by 8 bits

output port in Writing Data Process following I
2
C protocol. Figure 4.10 illustrates reset,

start condition and stop condition detection waveforms of signal transmission at I2C

Slave in Writing Data Process in a testbench. As can be seen from Figure 4.10, I2C

Slave can detect the active low reset, start condition as falling edge of sda during high

scl period and stop condition as rising edge of sda during high scl period.

Figure 4.10 Modelsim testbench for reset, start and stop of I2C Slave in Writing Data

Process.

41

Figure 4.11 illustrates the address transmission waveforms of signals at I2C Slave in a

testbench. As can be seen from Figure 4.11, address bits are 0000 0000 with the first

seven bits from phase 3 to 9 and the last bit for read/write selection in phase 10.

Address bits 0000 0000 is correct and there is high signal for transfer_started at phase

11. Acknowledge from slave in Writing Data Process is given in phase 11.

Figure 4.11 Modelsim testbench for address transmission of I2C Slave in Writing Data

Process.

42

Figure 4.12 illustrates the data transmission waveforms of signals at I2C Slave in a

testbench. As can be seen from Figure 4.12, data bits are 1010 1010 with the first seven

bits from phase 12 to 18 and the last bit for read/write selection in phase 19. Data bits

1010 1010 is shown at output port data_in when there is high signal for data_in_valid at

phase 20. Acknowledge from slave in Writing Data Process is given in phase 20.

Figure 4.12 Modelsim testbench for data transmission of I2C Slave in Writing Data

Process.

43

Figure 4.13 and Figure 4.14 show I2C Slave Block and components inside it

respectively in Writing Data Process. I2C Slave Block after Compile Design process by

Quartus II and programing to FPGA device can be seen from RTL Viewer.

Figure 4.13 I2C Slave Block on RTL Viewer of Quartus II in Writing Data Process.

44

Figure 4.14 Inside I2C Slave Block on RTL Viewer of Quartus II in Writing Data

Process.

45

4.2 Reading Data Process Verification

4.2.1 Verification of Signal Generator To Read in Reading Data Process

As described in part 3.2.2, the Signal Generator To Read has to generate the sequence of

signals making reset, start condition, stop condition, address transmission and data

transmission following I
2
C protocol. Figure 4.15 illustrates reset, start condition and

stop condition waveforms of signals generating by Signal Generator To Read in a

testbench. As can be seen from Figure 4.15, Signal Generator To Read generates an

active low reset at the end of phase 0 when signal rst changes from high to low and

remains for the rest of transmission. Start condition happens at phase 2 when the sda_ex

signal has a falling edge while the scl_ex signal is high. Stop condition happens at phase

21 when the sda_ex signal has a rising edge while the scl_ex signal is high.

Figure 4.15 Modelsim testbench for reset, start and stop of Signal Generator To Read

in Reading Data Process.

46

Figure 4.16 illustrates the address transmission and the data transmission waveforms of

signals generating by Signal Generator To Read in a testbench. As can be seen from

Figure 4.2, address bits are 0000 0000 in sda_ex with the last bit for read/write selection

is generated by Signal Generator To Read from phase 3 to 10. Bit value 0 at phase 11 is

used for acknowledge. Data bits are 1010 1010 in sda_ex with last bit for read/write

selection is generated by Signal Generator To Read from phase 12 to 19. Bit value 0 at

phase 20 is used for acknowledge.

Figure 4.16 Modelsim testbench for address and data transmission of

Signal Generator To Read in Reading Data Process.

47

Figure 4.17 and Figure 4.18 show Signal Generator To Read Block and components

inside it respectively Reading Data Process. Signal Generator To Read Block after

Compile Design process by Quartus II and programing to FPGA device can be seen

from RTL Viewer.

Figure 4.17 Signal Generator To Read Block on RTL Viewer of Quartus II in Reading

Data Process.

48

Figure 4.18 Inside Signal Generator To Read Block on RTL Viewer of Quartus II in

Reading Data Process.

49

4.2.2 Verification of I2C Adapter in Reading Data Process

As described in part 3.3, the I2C Adapter is used to transmit data from a slave to the

hard processor core ARM Cortex-A9 in Reading Data Process following I
2
C protocol.

Figure 4.19 illustrates the reset, start condition and stop condition detection waveforms

of signal transmission through I2C Adapter in Reading Data Process in a testbench. As

can be seen from Figure 4.19, I2C Adapter can detect the active low reset, start

condition as falling edge of sda during high scl period and stop condition as rising edge

of sda during high scl period.

Figure 4.19 Modelsim testbench for reset, start and stop of I2C Adapter in Reading

Data Process.

50

Figure 4.20 illustrates the address transmission waveforms of signals through I2C

Adapter in a testbench. As can be seen from Figure 4.20, address bits are 0000 0001

with the first seven bits in getaddress state and the last bit for read/write selection in rw

state. Address bits come in from input port hps_sdi of I2C Adapter. Inout port sda

which is output in transmitting address to slave in Reading Data Process shows exact

value of address bits following input port hps_sdi. Acknowledge for address bits from

slave core as from port sda in Reading Data Process shows in ack state.

Figure 4.20 Modelsim testbench for address transmission of I2C Adapter in Reading

Data Process.

51

Figure 4.21 illustrates the data transmission waveforms of signals through I2C Adapter

in a testbench. As can be seen from Figure 4.21, data bits are 1010 1011 with the first

seven bits in rd state and the last bit for read/write selection in rw_rd state. Data bits

come in from inout port sda of I2C Adapter which is input for transmitting data in

Reading Process. Output port hps_sdo shows exact data bits following port sda.

Acknowledge from the hard processor core as from port hps_sdi in Reading Data

Process shows in ack_rd state.

Figure 4.21 Modelsim testbench for data transmission of I2C Adapter in Reading Data

Process.

52

Figure 4.22 and Figure 4.23 show I2C Adapter Block and components inside it

respectively in Reading Data Process. I2C Adapter Block after Compile Design process

by Quartus II and programing to FPGA device can be seen from RTL Viewer.

Figure 4.22 I2C Adapter Block on RTL Viewer of Quartus II in Reading Data Process.

53

Figure 4.23 Inside I2C Adapter Block on RTL Viewer of Quartus II in Writing Data

Process.

54

4.2.3 Verification of I2C Slave in Reading Data Process

As described in part 3.4, the I2C Slave is used to detect the data transmission from I2C

Adapter and display to the LEDs of DE1-SoC FPGA development board by 8 bits

output port in Reading Data Process following I
2
C protocol. Figure 4.24 illustrates reset,

start condition and stop condition detection waveforms of signal transmission at I2C

Slave in Reading Data Process in a testbench. As can be seen from Figure 4.24, I2C

Slave can detect the active low reset, start condition as falling edge of sda during high

scl period and stop condition as rising edge of sda during high scl period.

Figure 4.24 Modelsim testbench for reset, start and stop of I2C Slave in Reading Data

Process.

55

Figure 4.25 illustrates the address transmission waveforms of signals at I2C Slave in a

testbench. As can be seen from Figure 4.25, address bits are 0000 0000 with the first

seven bits from phase 3 to 9 and the last bit for read/write selection in phase 10.

Address bits 0000 0000 is correct and there is high signal for transfer_started at phase

11. Acknowledge from slave in Reading Data Process is given in phase 11.

Figure 4.25 Modelsim testbench for address transmission of I2C Slave in Reading Data

Process.

56

Figure 4.26 illustrates the data transmission waveform of signals at I2C Slave in a

testbench. As can be seen from Figure 4.26, data bits are 1010 1011 with the first seven

bits from phase 12 to 18 and the last bit for read/write selection in phase 19. Data bits

1010 1011 is shown at output port data_in when there is high signal for data_in_valid

during phase 20. Acknowledge from slave in Reading Data Process is given in phase

20.

Figure 4.26 Modelsim testbench for data transmission of I2C Slave in Reading Data

Process.

57

Figure 4.13 and Figure 4.14 show I2C Slave Block and components inside it

respectively in Reading Data Process. I2C Slave Block after Compile Design process by

Quartus II and programing to FPGA device can be seen from RTL Viewer.

Figure 4.27 I2C Slave Block on RTL Viewer of Quartus II in Reading Data Process.

58

Figure 4.28 Inside I2C Slave Block on RTL Viewer of Quartus II in Reading Data

Process.

59

4.3 Whole System Verification

4.3.1 Register Transfer Level

Register Transfer Level is the flow of digital signals between hardware registers and

logical operations, which models a synchronous digital circuit. The implementations for

Top Level Design of Writing Data Process and Reading Data Process after Compile

Design process and Programmer to DE1-SoC FPGA development board can be seen

from RTL Viewer of Quartus II. Figure 4.29 illustrates blocks and connection between

them in an FPGA device following Writing Data Process as in 3.1.1. Figure 4.30

illustrates blocks and connection between them in an FPGA device following Reading

Data Process as in 3.1.2.

Figure 4.29 Top Level Design for Writing Data Process on RTL Viewer of Quartus II.

Figure 4.30 Top Level Design for Reading Data Process on RTL Viewer of Quartus II.

60

4.3.2 Assign Pins and Display Result by DE1-SoC

In order to check the transmission of the whole Writing Data Process and Reading Data

Process, it is necessary to assign the output of Top Level Design to the LEDs of DE1-

SoC FPGA development board. Table 4.1 and Table 4.2 show the Pin Assignment with

FPGA Pin numbers for 50 MHz frequency and LEDRs in DE1-SoC FPGA development

board.

Table 4.1 Pin Assignment of Clock Inputs.

Table 4.2 Pin Assignment of LEDs.

Figure 4.31 illustrates the Assignment Editor for Top Level Design after Compile

Design process and Programmer process by Quartus II to DE1-SoC FPGA development

board. Pin Assignment is made by Pin Planner of Quartus II software.

Figure 4.31 Assignment Editor for Top Level Design.

61

Figure 4.32 and Figure 4.33 show output of Top Level Design for Writing Data Process

and Reading Data Process respectively by LEDRs of DE1-SoC FPGA development

board. The data output for Writing Data Process is 1010 1010 as displaying from LEDR

[7] to LEDR [0] as the picture caption in Figure 4.32.

Figure 4.32 Output of Top Level Design Block displaying on Leds of DE1-SoC in

Writing Data Process.

The data output for Reading Data Process is 1010 1011 as displaying from LEDR [7] to

LEDR [0] of DE1-SoC FPGA development board as the picture caption in Figure 4.33.

Figure 4.33 Output of Top Level Design Block displaying on Leds of DE1-SoC in

Reading Data Process.

62

5. CONCLUSIONS

The thesis presented an I
2
C adapter for the new Altera Cyclone V SoC-FGPA. The I

2
C

Adapter was created between the HPS part and FPGA part of the Cyclone V.

DE1-SoC FPGA development board [22] was used and the sampling frequency for the

whole system verification is 50 MHz frequency. The operating frequency inside Signal

Generator, I
2
C Adapter and I

2
C Slave is 200 Hz. In this thesis, the purpose is testing the

communication of I
2
C Adapter. The 7-bit addressing mode of I

2
C protocol is applied for

getting address of I
2
C Slave. As the results shown in Chapter 4 Verification And Result,

address transaction and data transaction is correct. The waveforms action of Signal

Generator, I
2
C Adapter and I

2
C Slave is shown by Modelsim SE 10.2c simulator. After

compiling the design and programming by Altera Quartus II 13.1, LEDs on DE1-SoC

FPGA development board shows correct data from Signal Generator in both Writing

Data Process and Reading Data Process through the I
2
C Adapter. It can be seen from

the Flow Summary of Quartus II that, in the Writing Data Process, the total number of

logic utilization (in ALMs) used is 121, total number of registers is 143, and total

number of pins is 9. In the Reading Data Process, the total number of logic utilization

(in ALMs) used is 135, the total number of registers is 158, and the total number of pins

is 9.

The goals of the thesis are reached by implementing I
2
C Adapter and verifying data

transactions going through it properly. The testing with Hard Processor System will be

future work. Using and applying the I
2
C Adapter built in this thesis; users can take

access data input to HPS from real devices. The I
2
C bus is popular and when the

number of available addresses in the 7-bit addressing mode is recognized too small, the

new addressing mode (the 10-bit mode) will be necessary. The future improvement can

be done by modifying the I
2
C Adapter to 10-bit addressing mode. The new addressing

mode also supports the old one. Devices with 7-bit addresses can be connected with

devices with 10-bit addresses on the same mode. In this mode, the first two bytes are

dedicated for address and data direction. The format of the first byte is 11110xx; the last

two bits of the first byte, combined with eight bits in the second byte from the 10-bit

address. After testing communication with data input from dual-core ARM processor

and modifying to 10-bit addressing mode, I
2
C can be utilized in any device that need to

communicate with HPS such as the LCD multimedia color touch panel from TerasIC

[23], SPD EEPROMs [24] on SDRAM or NVRAM chips [25]. For this thesis, the

default address of I
2
C Slave is 00000000 for Writing data operation, and 00000001 for

Reading data operation. The address of I
2
C Slave can be modified to the real device

63

address; the user also can connect I
2
C Adapter to the slaves other than I

2
C Slave from

this thesis. Modification and verification data transmission through other slaves and real

devices will be future work.

64

REFERENCES

[1] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.

Found. Trends Electron. Des. Autom., 2:135-253, Feb.2008.

[2] O. Esko, ASIP Integration and Verification Flow for FPGA. Master’s thesis,

Tampere University of Technology, Finland, June 2011.

[3] S.D. Brown. An overview of technology, architecture and CAD tools for

programmable logic devices. In Proc. IEEE Custom Integrated Cir. Conf., pages

69-76, May 1994.

[4] C. Riviere, Supercomputers for all, the next frontier for high performance

computing. Special Report, 2013, available at: http://www.prace-

ri.eu/IMG/pdf/prace_report_october_2013.pdf.

[5] P. Franzon, S. Perelstein, A. Hurst. Introduction to ASIC Design, spring 1999,

available at: http://www.ece.ncsu.edu/asic/tutorials/tutor1/tutor1.pdf.

[6] I. Kuon and J. Rose. Measuring the Gap between FPGAs and ASICs. IEEE Trans.

Computer-Aided Design Integrated Circ. Syst., 26(2):203-215, Feb. 2007.

[7] Altera Corporation. Cyclone V Overview, available at:

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html,

Referenced 2.4.2015.

[8] Altera Corporation. Introduction to Cyclone V Hard Processor System, February

2014.

[9] Terasic Corporation. DE1-SoC Board, available at:

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=165&No=836&PartNo=2,

Referenced 2.4.2015.

[10] Terasic Corporation. DE1-SoC Board Overview, available at:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836.

Referenced 5.4.2015.

[11] Terasic Corporation. DE1-SoC Board Specification, available at:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836.

Referenced 5.4.2015.

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836

65

[12] Altera Corporation. Introduction to the Quartus II Software, Version 10.0,

available at:

https://www.altera.com/en_US/pdfs/literature/manual/archives/intro_to_quartus2.

pdf. Referenced 5.4.2015

[13] Mentor Graphics Corporation. ModelSim SE Tutorial, Software Version 10.1,

available at:

http://cs.colby.edu/courses/S15/cs232/labs/lab01/modelsim_se_tut.pdf.

[14] Philips Semiconductors Corporation. I
2
C Manual, March 24, 2003, available at:

http://www.nxp.com/documents/application_note/AN10216.pdf.

[15] B. Akesson. An introduction to SDRAM and memory controllers, available at:

http://www.es.ele.tue.nl/premadona/files/akesson01.pdf.

[16] Security Standards Council. Payment Card Industry Security Standards, available

at: https://www.pcisecuritystandards.org/pdfs/pcissc_overview.pdf.

[17] H. Zumbahlen, Basic Linear Design. Chapter 6: Converter, Section 6.1, Analog

Devices, 2007.

[18] H. Zumbahlen, Basic Linear Design. Chapter 6: Converter, Section 6.2, Analog

Devices, 2007.

[19] M. Rabaey, Digital Integrated Circuit. Prentice Hall, 1995.

[20] Philips Semiconductors Corporation. The I
2
C Bus Specification, Version 2.1,

January, 2000, available at: http://i2c2p.twibright.com/spec/i2c.pdf.

[21] NXP Semiconductors Corporation. I
2
C bus specification and user manual, Rev. 6-

4 April 2014, available at:

http://www.nxp.com/documents/user_manual/UM10204.pdf.

[22] Terasic Corporation. DE1-SoC User Manual, June 2014, available at:

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=165&No=836&PartNo=4.

[23] Terasic Corporation. VEEK-MT-SoCKit Overview, available at:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=882.

[24] Microchip Technology Inc. Basic Serial EEPROM Operation, 1993, available at:

http://ecee.colorado.edu/~mcclurel/man536.pdf.

http://cs.colby.edu/courses/S15/cs232/labs/lab01/modelsim_se_tut.pdf
http://www.nxp.com/documents/application_note/AN10216.pdf
http://www.es.ele.tue.nl/premadona/files/akesson01.pdf
https://www.pcisecuritystandards.org/pdfs/pcissc_overview.pdf
http://i2c2p.twibright.com/spec/i2c.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=882

66

[25] STMicroelectronics More Intelligent Solutions. Non-Volatile RAM and RTC,

Selection Guide, available at:

http://www.mouser.com/catalog/supplier/library/pdf/STNVRAM.pdf.

[26] Microchip Technology Inc. Section 20. Serial Peripheral Interface (SPI),

available at: http://ww1.microchip.com/downloads/en/DeviceDoc/70067E.pdf,

Referenced 7.4.2015.

[27] Microchip Technology Inc. Section 21. UART, available at:

http://ww1.microchip.com/downloads/en/DeviceDoc/39708B.pdf, Reference

7.4.2015.

[28] Renesas Electronics. Introduction to CAN. Application Note, available at:

http://documentation.renesas.com/doc/products/mpumcu/apn/rej05b0804_m16cap

.pdf, Referenced 7.4.2015.

[29] R. Kamal. Embedded Systems. Chapter 3: Serial Bus Communication Protocols –

USB. McGraw-Hill Education, 2008.

[30] Texas Instruments. Real-Time Clock (RTC), November 2010, available at:

http://www.ti.com/lit/ds/symlink/bq32000.pdf. Reference 7.4.2015.

[31] NXP Semiconductors. Real-time clock/calendar, Rev. 10 – 3 April 2012,

available at: http://www.nxp.com/documents/data_sheet/PCF8563.pdf.

[32] D. Gilliam. Temperature Sensors, March 2003, available at:

http://coecsl.ece.illinois.edu/ge423/sensorprojects/gilliam%20-

%20temp%20sensors.pdf. Referenced 7.4.2015.

http://www.mouser.com/catalog/supplier/library/pdf/STNVRAM.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70067E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39708B.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rej05b0804_m16cap.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rej05b0804_m16cap.pdf
http://www.ti.com/lit/ds/symlink/bq32000.pdf
http://coecsl.ece.illinois.edu/ge423/sensorprojects/gilliam%20-%20temp%20sensors.pdf
http://coecsl.ece.illinois.edu/ge423/sensorprojects/gilliam%20-%20temp%20sensors.pdf

