
FARSHAD AHMADI GHOHANDIZI
CLOUD-BASED SOFTWARE DEVELOPMENT FOR A FED-
ERATED CLOUD

Master of Science thesis

Examiner: Prof. Kari Systä
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 8 October 2014.

i

ABSTRACT

FARSHAD AHMADI GHOHANDIZI: CLOUD-BASED SOFTWARE DEVEL-
OPMENT FOR A FEDERATED CLOUD
Tampere University of Technology
Master of Science thesis, 50 pages
October 2014
Master’s Degree Programme in Information Technology
Major: Cloud Computing and Software Development Automation Practice
Examiner: Prof. Kari Systä
Keywords: Cloud Computing, PaaS, IDE, Continuous Deployment, COAPS, ACCORDS,
EASI-CLOUDS

Cloud computing provides on demand network access to a shared pool of computing
resources that can be provisioned with minimal effort. These resources could be
categorised in 3 different levels including software, platform, and infrastructure. As
cloud computing gains traction, there is an increasing trend to switch from desktop
application to cloud-based ones. In this transition IDEs are not an exception. Some
cloud-based IDEs like MIDEaaS are already developed. Now the question is how
these IDEs could perform SW development and deployment.

The present thesis implements a cloud-based SW development demonstrator and
investigates issues of such an implementation. Developers should be able to use our
demonstrator to develop an application and deploy it into the best Platform as a
Service (PaaS) provider among the available PaaS providers. The SW development
practice our demonstrator follows is continuous deployment which automates phases
of SW development cycle including build and release. Since this thesis is part of
EASI-CLOUDS project, adopting our demonstrator to multi-provider PaaS archi-
tecture is by utilising EASI-CLOUDS platform. EASI-CLOUDS platform federates
available clouds (in our case PaaS providers) and negotiates relationship between
them and cloud consumer (in our case developers). Due to these two goals, two
components (ACCORDS and COAPS) are developed in EASI-CLOUDS project.

Based on the way ACCORDS performs to broker and find the most suitable PaaS
provider, two use cases are presented. First use case is based on deferred deployment
method of ACCORDS which allows a developer to have control (e.g. stop, start,
undeploy, etc.) over his deployed applications on the target PaaS. This use case was
not feasible since current implementation of ACCORDS does not support it. Second
use case is based on immediate deployment method of ACCORDS. Its main pitfall
is losing control over the deployed applications.

ii

PREFACE

The research work related to this Master of Science thesis is conducted in EASI-
CLOUDS (Extensible Architecture and Service Infrastructure for Cloud-Aware Soft-
ware) project as part of ITEA (Information Technology for European Advancement)
organisation, funded by Finnish Funding Agency for Technology and Innovation
(Tekes).This thesis is done during the year 2014 at the department of Pervasive
Computing, Tampere University of Technology.

I would like to express my great gratitude to my supervisor Prof. Kari Systä for
the given opportunity. It was a great pleasure to work under his precious guidance
and friendly support. I have learned a lot under his supervision. His patience and
willingness to impart his knowledge is outstanding. I would like to extend my thank
to Dr. Janne Lautamäki, M.Sc. Otto Hylli, and M.Sc. Antti Nieminen for sharing
their work and experience and for such a great cooperation we have had during the
research work.

I would also like to express my appreciation to all my friends in Tampere specially
Nader Daneshfar, Mojtaba Sarooghi, Farid Shamani, and Seyed Abolfazl Hosseini
who, in more ways than one, helped me in my academic and personal life.

My special thanks go to my family who has unconditionally supported me all the
time. I owe everything I have achieved to them. Without their sustaining support,
none of this would have been possible.

Finally I would like to express my deepest appreciation to my wonderful and patient
love, Zeinab Ashjaei, for always firmly standing beside me and filling me with her
peace.

Tampere, 31 December 2014

Farshad Ahmadi Ghohandizi

iii

TABLE OF CONTENTS

1. Introduction . 1

1.1 Introduction . 1

1.2 Purpose of the Thesis . 2

1.3 Research Question . 3

1.4 Structure of the Thesis . 3

2. Background . 4

2.1 Cloud Computing . 4

2.1.1 Definition and Characteristics . 4

2.1.2 Service Categories: SaaS, PaaS, IaaS 5

2.1.3 Cloud Federation/Brokerage . 10

2.2 EASI-CLOUDS and CompatibleOne 14

2.2.1 Introduction . 14

2.2.2 Objectives . 14

2.2.3 Thesis Contribution in EASI-CLOUDS 16

2.2.4 COAPS . 17

2.2.5 CompatibleOne . 19

2.3 Software Development Automation Practices 23

2.3.1 Continuous Integration (CI) . 23

2.3.2 Continuous Delivery (CD) . 25

2.3.3 Continuous Deployment . 28

3. Implementation . 29

3.1 Research methodology and materials 29

3.2 Use Cases . 35

3.2.1 First Use Case . 36

3.2.2 Second Use Case . 39

4. Results and Discussion . 42

4.1 Version Management System . 42

iv

4.1.1 Selecting Version Management System 42

4.1.2 Issues . 42

4.2 Limitations of ACCORDS . 43

4.2.1 COAPS URL in First Use Case 43

4.2.2 Deployable Artifact in Second Use Case 43

5. Conclusion . 45

Bibliography . 47

v

LIST OF FIGURES

2.1 Deploying software if forced to do all things alone 5

2.2 Different types of Cloud Computing services 6

2.3 Cloud Foundry [36] . 8

2.4 Openstack Software Diagram [26] . 9

2.5 Cloud federation . 10

2.6 Cloud brokerage . 10

2.7 EASI-CLOUDS High Level Architecture [13] 14

2.8 Cloud federation and cloud brokerage in EASI-CLOUDS [13] 16

2.9 COAPS federates existing PaaS providers [5] 17

2.10 COAPS PaaS resource provisioning and management API [32] 18

2.11 COAPS application and environment management methods [5] 19

2.12 Basic application deployment process through COAPS API [32] . . . 19

2.13 ACCORDS PaaS Logical Data Model 21

2.14 ACCORDS Platform Architecture . 21

2.15 ACCORDS Application PaaS Resource Provisioning 23

2.16 Continuous integration cycle . 26

2.17 Continuous Delivery cycle [20] . 27

2.18 continuous delivery vs continuous deployment [6][2] 28

3.1 MideaaS architecture facilitates adding new plugins 30

3.2 Item added to menu bar of Editor View for continuous delivery 30

3.3 CI server used [21] . 32

vi

3.4 Jenkins Job Life Cycle . 32

3.5 continuous deployment scenario utilised in the present thesis 33

3.6 A developer specifies required PaaS resources via Resource Specifier . 34

3.7 All required components to carry out continuous deployment offered
in this thesis . 35

3.8 ACCORDS calls two specific COAPS API for PaaS resource provi-
sioning . 36

3.9 First use case continuous delivery blueprint which is based on deferred
deployment method of ACCORDS 37

3.10 Use case based on deffered deployment method of ACCORDS 38

3.11 PaaS Management Screen of MIDEaaS continuous deployment plugin 38

3.12 Second use case continuous delivery blueprint which is based on im-
mediate deployment method of ACCORDS 39

3.13 Use case based on immediate deployment method of ACCORDS . . . 40

3.14 Deployment steps report shown to user of MIDEaaS 41

vii

LIST OF TABLES

2.1 Cloud federation definitions [9] . 12

2.2 Cloud brokerage definitions [9] . 13

viii

LIST OF ABBREVIATIONS AND SYMBOLS

ACCORDS Advanced Capabilities for CORDS
API Application Programming Interface
App Application
AWS Amazon Web Services
CD Continuous Delivery
CDMI Cloud Data Management Interfaces
CI Continuous Integration
COAPS Compatible One Application and Platform Service
CORDS CompatibleOne Resource Description System
CoRED Collaborative Real-time Editor
CSB Cloud Service Broker
DB Data Base
EASI-CLOUDSExtensible Architecture and Service Infrastructure for Cloud-Aware

Software
Env Environment
IaaS Infrastructure as a Service
ID Identifier
IDE Integration Development Environment
IT Information Technology
ITEA Information Technology for European Advancement
MIDEaaS Moblide IDE as a Service
NIST National Institute of Standards and Technology
OCCI Open Cloud Computing Interface
OS Operating System
PaaS Platform as a Service
SaaS Software as a Service
SCM Source Control Management
SLA Service Level Agreement
SW Software
TUT Tampere University of Technology
URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Virtual Machine
WAR Web Application Resource

1

1. INTRODUCTION

1.1 Introduction

From the first day internet appeared to the present day, computation has been
moving to different stages and different types of computing has been introduced,
including parallel computing, distributed computing, and grid computing. One type
of computing that has gained traction recently is cloud computing. Cloud computing
enables convenient and on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, services, etc.)
that can be rapidly provisioned and released with minimal management effort and
lower cost [25]. Customer is not concerned about infrastructure and everything
related to it like installation and maintenance. In addition to infrastructure level,
this also holds true in platform level, where services like database can be offered
to customers. This can even happen in application level. Applications could be
installed and maintained in a centralised location and accessed remotely via internet
[18]. Therefore, Infrastructure, platform and applications could be offered as a
cloud resource as a service to consumers. There are a large number of theses service
providers in real market and their number is increasing every day. This causes certain
sort of problems. Firstly, use of services provisioned by these cloud providers needs
knowledge specific to each of them. They do not follow any unified standard to
offer their services. Communicating with them necessitates a consumer to invest
time and learn their specific standards and APIs, resulting in vendor lock-in [29].
Secondly, due to high number and vast variety of cloud service providers finding the
appropriate one that meets user’s expectation (in terms of availability of requested
services, security, cost, etc.) is a hard job for consumer [37].

This thesis is part of EASI-CLOUDS1 project. EASI-CLOUDS stands for Extensi-
ble Architecture and Service Infrastructure for Cloud-Aware Software. The objective
of EASI-CLOUDS is to provide comprehensive, innovative, and open-source cloud
platform, EASI-CLOUDS platform. Major expected outcome of EASI-CLOUDS
platform is to offer beneficial solutions for cloud end users, cloud providers, and de-

1http://easi-clouds.eu

http://easi-clouds.eu

1.2. Purpose of the Thesis 2

velopers by removing obstacles cloud computing is facing. It helps cloud consumers
adopt multi-cloud architecture and avoid the vendor lock-in problem. It tries to
make cloud providers interoperable to interlink their clouds. EASI-CLOUDS plat-
form also exploits cloud computing power to simplify software development practice.
The latter one is also thesis contribution.

One of the main problems in software development cycle is creation of development
environments, build environments, test environments, staging environments, and
production environments. It is both time consuming and hard. Since cloud com-
puting provides instant access to cloud resources, it simplifies and accelerates the
creation of these environments. Another major problem in software development
cycle is the gap between the development and test and the deployment process [11].
Usually the development and testing team and the operation team are distinct teams
mostly concentrating on their own responsibilities. Lack of decent communication
among them results in delay or even failure in software release. There is a need
to simplify feedback cycle among these groups. Continuous delivery as a software
development practice offers a way by automating build, test, and release cycle and
providing visible feedback to all members involving in project. One of the best
practices of CD is to make testing and staging environment as closely as possible
similar to production environment [17]. This is where cloud computing could show
its power. It can simplify the interact of developers and testers with supporting
IT systems. Team members could request production-like cloud resources to create
(test and staging) environments that perfectly mimic production environments [6].

The present thesis helps EASI-CLOUDS demonstrate and investigate issues of soft-
ware development for a federated cloud. The whole lifetime of a software project
from development to build to test and finally to deployment on the most appropriate
cloud providers will be covered.

1.2 Purpose of the Thesis

Main purposes of this thesis are listed as following:

• Investigate issues of software development (continuous integration/delivery/de-
ployment) from cloud-based IDE to a federated/brokered cloud.

• Development of a demonstrator to show cloud-based software development for
a federated/brokered cloud.

• Study two main components of EASI-ClOUDS (COAPS and ACCORDS), and
some technologies (e.g. Git, Jenkins, Openstack, CloudFoundry) to investigate

1.3. Research Question 3

feasibility of development of the demonstrator previously mentioned as second
item.

1.3 Research Question

Two research questions are:

1. How should ’cloud based software development for a federated cloud’ be done?

2. Can available technologies and current implementations of EASI-Clouds com-
ponents answer the first research question?

1.4 Structure of the Thesis

The present thesis is divided into 5 chapters. Chapter 1 is introduction in which the
research question and structure of the thesis are provided. Chapter 2 explains cloud
computing, EASI-CLOUDS project (the project this thesis is part of), objectives of
EASI-CLOUDS and the thesis, software development practices including continuous
integration, continuous delivery, and continuous deployment. Chapter 3 illustrates
details about researcher’s implementation. In chapter 4 results and findings achieved
by implementation are presented. Conclusion and further work are stated in chapter
5.

4

2. BACKGROUND

2.1 Cloud Computing

There has been a substantial migration from desktop applications to cloud-based
software/services/resources during past decades [31]. But cloud computing is a
broad term offering a wide variety of services. In order to know how to use cloud
computing appropriately, first we should define it and its characteristics (subsection
2.1.1) and then its different service models (subsection 2.1.2).

2.1.1 Definition and Characteristics

One of the most acceptable definitions of Cloud Computing is represented by Na-
tional Institute of Standards and Technology (NIST)1. It says:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction [25].

NIST also mentions five essential characteristics for Cloud Computing services:

• On-demand self-service. The ability of consumer to use resources without the
need for interaction with vendor.

• Broad Network Access. Availability of resources through standard client plat-
forms (e.g laptops, tablets, mobiles, etc.)

• Resource pooling: Vendors’ resources are pooled so that multiple consumers
can use them.

1http://www.nist.gov/

2.1. Cloud Computing 5

• Rapid elasticity: Scaling of resources with demand.

• Measured service: Monitoring and reporting resource usage.

2.1.2 Service Categories: SaaS, PaaS, IaaS

Let’s first assume that a programmer wants to develop a software and deploy it into
the cloud, but with one limitation: he should do all things from scratch. He is neither
given a data center nor any higher level platform (Operating System) to deploy his
software. He cannot even use any other ready-made running piece of software to
develop his software. He should build all of them from a to z. First, he needs an
infrastructure, a data center, to give him resources like processing, networking, and
storage. Second, he needs a platform (alongside some services like Data Base Server,
Application Server, etc.) on top of infrastructure in order to run the software. Now,
he can develop and deploy his software. Figure 2.1 shows the process.

Figure 2.1 Deploying software if forced to do all things alone

Although nobody undergoes the whole process shown in figure 2.1 just to deploy a
software, thinking about it can help a lot to understand what cloud is and what kind
of cloud computing services organisations can use. Figure 2.1 could be divided into
3 parts, representing different types of Cloud Computing services named Software
as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS). Figure 2.2 classifies and shows these services.

2.1. Cloud Computing 6

Figure 2.2 Different types of Cloud Computing services

A simple conclusion could be drawn from figures 2.1 and 2.2; if there is no need to
go down in the stack, do not go. If there is a software available to use (as a service),
do not reinvent the wheel, just use it. For example, Google Map is already there,
coming up with a new map application is a waste of time. But what if a person has
a new idea? What if he wants to develop a new application? Now there is a need
to go one level down in cloud computing stack (to Platform as a Service) in order
to prepare all services needed for the application to be deployed and run. Finally,
if he wants to launch a new Virtual Machine in cloud and prepare essential services
on it to deploy his application, he should go to the lowest level, Infrastructure as a
Service.

For each level of Cloud Computing stack, there exist some solutions. In this project
we use solutions like CloudFoundry2 for PaaS and OpenStack3 for IaaS. The rest of
this section goes into more detail about these solutions.

SaaS (Software as a Service)

SaaS applications are running on a cloud infrastructure and delivered to user over the
web. Users can access these applications via thin client interfaces (like browsers) or

2http://cloudfoundry.org/
3https://www.openstack.org

http://cloudfoundry.org/
https://www.openstack.org

2.1. Cloud Computing 7

application programming interfaces (APIs). Underlying cloud infrastructure, hard-
ware resources (server, storage and network) and software resources (like operating
systems), and even application configuration settings (except some customisations)
could not be handled by users [25]. Characteristics of SaaS include [34] [15]:

• Web applications are available globally any time anywhere.
• Updates and patches can be distributed by updating application on server.
• No maintenance or back up is needed on client side, because software is man-

aged from a central location.
• There is no need for installation on local machines; applications are already

installed on server and delivered in a "one to many" model.
• Different pieces of software could be integrated by the help of Application

Programming Interfaces (APIs)

PaaS (Platform as a Service)

The same benefits SaaS brings in the software domain, PaaS provides in software
development world; instead of delivering software over the web, platform for offering
and running applications is delivered [34]. PaaS enables users to deploy applications
that are developed by programming languages, libraries and services supported by
the PaaS provider. Similarly in this level (like in SaaS level), underlying cloud
infrastructure could not be controlled by the user, but the deployed application and
some settings of hosting environment is under control of the user [25]. Characteristics
of PaaS include [34]

• Services to develop, test, deploy, host and maintain applications.
• Multiple users can use the same development tool simultaneously.
• Collaboration tools for development team.
• Tools for service management and billing.

CloudFoundry as PaaS Solution

As said in subsection 2.1.2, the application platform can be delivered over the web
known as Platform as a Service (PaaS). PaaS offers a range of resources (application
services, runtimes, development frameworks and languages, cloud deployment envi-
ronments). Developers can deploy, run and scale their applications created using
resources supported by a PaaS. Obviously, different PaaS provide developers differ-
ent resources. Some of them have limited runtimes and frameworks. Others support

2.1. Cloud Computing 8

deploying to a single cloud (private, public or Hybrid). By using an open PaaS, a
developer can choose resources to deploy and run his application.

CloudFoundry is an open source cloud computing PaaS developed in Ruby by
VMware under the terms of Apache License 2.0. CloudFoundry is open PaaS,
means while most PaaS offer restricted developer frameworks, application services
and deployment clouds, Cloud Foundry avoids vendor lock-in because of its open
and extensible nature. It supports multiple development frameworks like Ruby on
Rails, Sinatra for Ruby, Node.js, Spring for Java. Although all frameworks are not
supported, the open architecture will allow supporting new ones. Cloud Foundry
supports application services including MongoDB, MySQL and Redis databases.
Moreover, In Cloud Foundry, application deployment can be done to private and
public cloud environments including VMware vSphere, non-VMware public clouds
and AWS (Amazon Web Services). Developers can use Cloud Foundry specific tool
to deploy their applications without the need for any change in their codes [33] [35].

Figure 2.3 Cloud Foundry [36]

IaaS (Infrastructure as a Service)

In this level, Cloud Computing infrastructure is delivered over the web. Instead of
buying the whole infrastructure, user can purchase compute, storage, network and
other fundamental resources on-demand (as much as needed) [25]. Underlying cloud

2.1. Cloud Computing 9

infrastructure is not under control of user, but he can control operating systems,
storage, deployed applications and some networking management. Characteristics
of IaaS include [34]

• Distributed resources as services.
• Dynamic scaling.
• A piece of hardware can be used by multiple users.

Openstack as IaaS Solution

OpenStack4 is an open-source cloud operating system (cloud computing platform)
mainly used as an Infrastructure as a Service (IaaS) solution for public and private
clouds. It contains several components that communicate with each other to control
pools of (three main) resources of a data center: processing (compute), storage and
networking. These components can be managed and controlled through command
line, RESTful APIs or Openstack dashboard [26]. Figure 2.4 shows the whole idea
in a simple picture.

Figure 2.4 Openstack Software Diagram [26]

4https://www.openstack.org

2.1. Cloud Computing 10

2.1.3 Cloud Federation/Brokerage

Interlinking clouds of cloud providers can play an important role in cloud computing
success. It offers benefits for both cloud providers and cloud consumers. For ex-
ample, one cloud provider which lacks or ran out of a certain resource can buy and
utilise that of another cloud provider which is unused. In order to achieve this goal
the terms cloud federation and cloud brokerage emerge in cloud computing world.
Figure 2.6 depicts basic idea of cloud federation and cloud brokerage.

Figure 2.5 Cloud federation

Figure 2.6 Cloud brokerage

As described in section 2.1.1, cloud resources could be delivered to consumers in
3 levels: SaaS, PaaS, and IaaS. Every day more cloud resource providers emerge
to offer their resources as services to a large number of consumers. Although the
great number of cloud providers means more resources in terms of both variety and
quantity, it has its own challenges. In one hand, in order to request resources from
a cloud provider, a consumer must learn the way of communicating and requesting
those resources from that cloud provider. In other words, each cloud provider has its

2.1. Cloud Computing 11

own specific standards, interfaces, and APIs. Spending time to investigate how to
use resources from each cloud provider is time-consuming and inefficient, resulting
in vendor lock-in. On the other hand, a consumer always wants to have the best
possible cloud providers in terms of cost, security, geographical location, etc. Finding
the best offerings among enormous number of cloud providers is a real hard task, if
not possible.

Vendor lock-in, finding the most appropriate cloud providers, and lots of other chal-
lenges are barriers on the way of cloud computing success. Most of these barriers
could be handled if there was a way to interlink clouds of cloud providers. Cloud
federation and cloud brokerage help cloud providers interlink their clouds [9]. The
rest of this section explains these two terms in more details.

Cloud Federation

While cloud federation has been defined in different publications, certain commonal-
ities among these different definitions cloud be noticed. The table 2.1 lists some of
these definitions. All definitions agree that cloud federation relates to aggregation or
sharing of cloud resources which can be accessed via each member of federation [9].
Extracting the most common elements of different definitions ends up in the follow-
ing sentence which adopted by EASI CLOUDS project consortium (see subsection
2.2 for further information about EASI-CLOUDS):

Cloud federation is the possibility for a cloud consumer to send a cloud
request to multiple cloud providers as if they were a single cloud provider
[10].

Cloud Brokerage

Table 2.2 presents some definitions of cloud brokerage retrieved from different
sources. These definitions imply that cloud brokerage is an intermediary (person,
organisation, technology) that bridges cloud consumers and cloud providers while of-
fering value added services. On the other hand, according to Gartner, Cloud Service
Broker (CSB) businesses are divided into three main categories [27]:

• Intermediation: A CSB takes services from cloud providers and adds value-
added features (e.g. identity management, access management, etc.) to en-
hance and improve those services before delivering to cloud users.

2.1. Cloud Computing 12

No Definition
1 Cloud federation manages consistency and access controls when two or more

independent geographically distributed clouds share either authentication,
files, computing resources, command and control, or access to storage re-
sources [30].

2 Federated cloud is a cloud service model that connects (...) local infras-
tructure providers to each other, creating a global marketplace that enables
each provider to buy and sell capacity on demand [1] .

3 A federated cloud (also called cloud federation) is the deployment and man-
agement of multiple external and internal cloud computing services to match
business needs. A federation is the union of several smaller parts that per-
form a common action. [12]

4 Cloud federation refers to the unionization of software, infrastructure and
platform services from disparate networks that can be accessed by a client
via the internet. The federation of cloud resources is facilitated through net-
work gateways that connect public or external clouds, private or internal
clouds (owned by a single entity) and/or community clouds (owned by sev-
eral cooperating entities); creating a hybrid cloud computing environment.
[4]

5 Cloud federation comprises services from different providers aggregated in
a single pool supporting three basic interoperability features ? resource mi-
gration, resource redundancy and combination of complementary resources
resp. services [22].

Table 2.1 Cloud federation definitions [9]

• Aggregation: A CSB makes one or more new services by combining several
services from different cloud service providers. Combining services are chosen
statically.

• Arbitrage: Unlike aggregation in which fix services are integrated, service
arbitrage gives flexibility to service aggregator to choose and combine services
dynamically.

Generalising from these matters, two main points of view should be considered
while describing cloud brokerage: from technical perspective or from organisational
perspective. From technical perspective, I adopt the definition given by cloud com-
puting reference architecture of National Institute of Standards and Technology
[NIST]:

A cloud broker is an entity that manages the use, performance and
delivery of cloud services, and negotiates relationships between cloud
providers and cloud consumers [24].

2.1. Cloud Computing 13

No Definition
1 A cloud broker is a third-party individual or business that acts as an inter-

mediary between the purchaser of a cloud computing service and the sellers
of that service. In general, a broker is someone who acts as an intermediary
between two or more parties during negotiations [28].

2 A cloud broker is a software application that facilitates the distribution of
work between different cloud service providers. This type of cloud broker
may also be called a cloud agent [28].

3 A cloud broker is a strategic mediator who performs a selection of cloud ser-
vices for enterprises and consults the companies in this regard. Therefore,
the cloud broker builds up contacts with respect to multiple cloud service
providers, checks their services and selects out of the comprehensive ser-
vice offering the platforms and services that support [the] customers cloud
computing [activities] optimally. Cloud brokers are experts who assist the
clients regarding the selection and integration of the services and applica-
tions and ensure a smooth transition between services from multiple cloud
service providers [3].

4 A cloud broker is an individual or organization that consults, mediates
and facilitates the selection of cloud computing solutions on behalf of an
organization. A cloud broker serves as a third party between a cloud service
provider and an organization buying the provider’s products and solutions
[19].

5 A cloud broker is defined as an entity (person or organization) that provides
intermediary-type services between a cloud consumer and multiple cloud
providers [8].

6 A second definition of cloud broker pertains to a new type of software that
sits on top of cloud providers to abstract, simplify and map various cloud
offerings to your environment. Cloud broker software assists organizations
in creating solutions in the cloud, migrating solutions to the cloud and
moving solutions between clouds [8].

7 An entity that manages the use, performance and delivery of cloud services,
and negotiates relationships between Cloud Providers and Cloud Consumers
[24].

Table 2.2 Cloud brokerage definitions [9]

From this perspective, cloud brokerage is an essential requirement of cloud feder-
ation; At least some participants of cloud federation should perform the technical
function of a CSB, otherwise cloud federation could not be carried out [10].

From business perspective, depending on which functions participants are responsi-
ble for to carry out cloud federation, several business models emerge. These business
models can be viewed as more or less "broker-driven" or more or less "federation-
driven" [10].

2.2. EASI-CLOUDS and CompatibleOne 14

EASI-CLOUDS follows business perspective and the business model EASI-CLOUDS
platform applies is broker driven.

2.2 EASI-CLOUDS and CompatibleOne

2.2.1 Introduction

EASI-CLOUDS project stands for Extensible Architecture and Service Infrastruc-
ture for Cloud-Aware Software. It is part of EUREKA framework. It has 29 partners
from 6 countries. Tampere University of Technology is one partner participating
from Finland.

2.2.2 Objectives

Figure 2.7 EASI-CLOUDS High Level Architecture [13]

The goal of EASI-CLOUDS project is improving cloud computing in Europe and the
countries contributors are from. The major expected outcome of EASI-CLOUDS
project is a comprehensive cloud computing platform that remove obstacles and

2.2. EASI-CLOUDS and CompatibleOne 15

problems in all three main cloud computing categories: SaaS, PaaS and IaaS. High
level architecture of EASI-CLOUDS is depicted in figure 2.7.

Users of EASI-CLOUDS platform can be divided into three groups: cloud con-
sumers, cloud providers, and developers. Each of these groups has their own expec-
tations. Hence, objectives of EASI-CLOUDS platform can be introduced according
these different classes of users and their requirements [11]:

• For cloud consumers: EASI-CLOUDS facilitates adoption to multi-cloud
architecture, instead of using one cloud provider. Working with multitude
of cloud service providers simultaneously brings many advantages: security
(e.g. confidential data is distributed across and processed in several providers),
cost reduction (by moving data to lower price providers), risk reduction (ser-
vice replication across multiple providers reduces complete failure at the same
time), and etc. EASI-CLOUDS carries out this objective by providing tools to
support heterogeneous providers. Consumers selects cloud services they need
in form of a simple file named SLA (Service Level Agreements). SLA gives
freedom of choice to cloud consumers regardless of which cloud providers are
provisioning cloud services (Figure 2.8).

• For cloud providers: EASI-CLOUDS enables partnership between cloud
providers through federation and brokerage (Figure 2.8). European market
consists small providers comparing American giants. EASI-CLOUDS tries to
help providers use each other’s resources as simple as possible.

• For developers: Since developers can be considered as cloud consumers,
previously mentioned objective for cloud consumers (as first item in this list)
also hold true for developers. Moreover, EASI-CLOUDS provides tools to
create cloud-aware applications. This is also thesis contribution to EASI-
CLOUDS project (see subsection 2.2.3).

To reach its goals, EASI-CLOUDS does not reinvent the wheels. It uses Com-
patibleOne as the main component and plugs advanced features, capabilities, and
components to it. CompatibleOne has done cloud federation and brokerage to some
extent. It helps cloud consumers to select appropriate provider offers in terms of
supported technologies, security, billing, etc and cloud providers to provision their
resources to consumers. Due to this goal, some components like COAPS (subsection
2.2.4) and ACCORDS (subsection 2.2.5) have been developed in CompatibleOne
project.

2.2. EASI-CLOUDS and CompatibleOne 16

Figure 2.8 Cloud federation and cloud brokerage in EASI-CLOUDS [13]

2.2.3 Thesis Contribution in EASI-CLOUDS

The present thesis is part of EASI-CLOUDS project. Consequently, the objectives
of this thesis are aligned with objectives of EASI-CLOUDS project (objectives are
described in section 2.2.2). Some objectives have been followed by other partners
participating in EASI-CLOUDS project. As the result, some tools and components
have been developed. TUT, as a partner in this project, is responsible for investi-
gating issues of software development for a federated cloud and provides a tool to
perform it.

2.2. EASI-CLOUDS and CompatibleOne 17

2.2.4 COAPS

In order to achieve cloud federation and cloud brokerage CompatibleOne developed
some components. One of these components is COAPS which aims to facilitate
provisioning PaaS resources through making PaaS providers interoperable.

Different PaaS providers use different PaaS solutions (CloudFoundry, Openshift5,
etc.) which have their own specfic APIs. No standardised interface is followed by
all or at least some PaaS providers. If a consumer using one PaaS wants to change
his provider, he encounters vender lock-in problem. Moreover, the interactions and
communications between PaaS providers itself could be problematic, resulting in
their isolation. Therefore, there is a need for a PaaS independent solution. COAPS
[29] offers a solution to federate available PaaS providers instead of isolating them
(Figure 2.9).

Figure 2.9 COAPS federates existing PaaS providers [5]

COAPS proposes the solution by the separation of 2 main concepts. Firstly, it
describes PaaS resources as a unified representation model (called PaaS resources
and Application Description model) regardless of which PaaS provider will provision
those resources. Secondly, it offers PaaS application provisioning and management
API (called COAPS API). By using COAPS API, consumers can manage and pro-
vision PaaS resources whatever PaaS provider is selected [5]. Figure 2.10 shows all
COAPS APIs required to manage PaaS resources of a PaaS provider.

5https://www.openshift.com

https://www.openshift.com

2.2. EASI-CLOUDS and CompatibleOne 18

Figure 2.10 COAPS PaaS resource provisioning and management API [32]

In COAPS point of view, PaaS resources are divided into two different kinds: Appli-
cations to deploy and Environments to host applications. Environment resource
defines set of configuration options needed in the PaaS to host and run application,
including runtimes (Java7, ruby, etc.), frameworks/containers (spring, tomcat, ruby,
etc.) and services (databases, messaging, etc.). Application resource specifies at-
tributes of application itself including version, number of instances, source archive
type, etc. For each resource type there are a description model and several man-
agement methods. Application and environment management methods are listed in
figure 2.11 .

To get the idea how COAPS performs application management and provisioning,
figure 2.12 shows a basic process to simply deploy and run an application through
COAPS. As the first step, specification of environment which is going to host the
application should be determined in the format of COAPS description model for en-
vironment resource. This environment manifest will be sent to Create Environment
method. A unique ID will be assigned to the newly created environment and will
be send back. Then application specifications in the form of application manifest
is sent to Create Application method. Similarly a unique App ID is received. As
the third step, Deploy Application method deploys the created application to the
created environment by referring to their IDs. Finally Start Application method
runs the deployed application.

2.2. EASI-CLOUDS and CompatibleOne 19

Figure 2.11 COAPS application and environment management methods [5]

[32] explains in details about PaaS resource types in COAPS, their description
model, and their management methods.

Figure 2.12 Basic application deployment process through COAPS API [32]

2.2.5 CompatibleOne

As cloud computing grows dramatically, the number of cloud service providers in-
crease rapidly. Cloud consumers therefore encounter a challenging task of finding
proper cloud providers that meet their needs in terms of cost, security, offered ser-
vices, etc. The advent of cloud brokers helped cloud end users find decent cloud
providers.

2.2. EASI-CLOUDS and CompatibleOne 20

CompatibleOne6 is an open source cloud broker. It meets all three service categories
defined by NIST. As one proof of meeting intermediation, CompatibleOne defines
who can access what by Service Level Agreements (SLA) negotiation. Meeting
aggregation and arbitrage, cloud users can combine different cloud services pro-
visioned by different cloud providers through CompatibleOne. That is the result
of the method CompatibleOne applies for provisioning cloud providers’ services;
This method is based on open standards, mainly Cloud Data Management Inter-
faces (CDMI), Open Cloud Computing Interface (OCCI)7 and a new feature called
CORDS (CompatibleOne Resource Description System) which is itself based on
OCCI.

CompatibleOne has a model and an execution platform. The model is called CORDS
and the execution platform is called ACCORDS.

CORDS

CORDS is an object-based description model for cloud resources. It is designed
based on OCCI open standard and makes CompatibleOne an interoperable middle-
ware that helps cloud end users switch between cloud service providers. CORDS
is the core concept behind the description and federation of heterogeneous cloud
resources offered by different cloud providers. These resources could be in differ-
ent levels (IaaS and PsaS). In figure 2.13, CORDS manifest that describes PaaS
resource is depicted. This PaaS CORDS manifest is similar to the combination of
COAPS environment manifest and application manifest. Later in this section the
reason behind this similarity will be discovered. As stated in section 2.2.4, to see
XML schema of COAPS application and environment manifest refer to [32].

ACCORDS

ACCORDS, Advanced Capabilities for CORDS, is the execution platform of Com-
patibleOne. ACCORDS uses CORDS to model and manage cloud resources.

ACCORDS launches several components and services (e.g. Publisher, Parser, Bro-
ker, etc.) during starts-up. Each component is an OCCI server that can commu-
nicate with other components through HTTP requests. First of all, Publisher is
started and then others register themselves to Publisher in a certain order. These

6http://www.compatibleone.com/community/conferences/
7http://occi-wg.org

2.2. EASI-CLOUDS and CompatibleOne 21

Figure 2.13 ACCORDS PaaS Logical Data Model

published services specify categories (of services) ACCORDS are able to provision.

As shown in figure 2.14 cloud resource provisioning is done in 4 steps, each of which
briefly described as following:

Figure 2.14 ACCORDS Platform Architecture

1. Handling the user’s requirements. Consumer specifies the needed (IaaS or
PaaS) resources and turns those into (PaaS or PaaS) CORDS manifest using

2.2. EASI-CLOUDS and CompatibleOne 22

an SLA template production tool.

2. Validation and provisioning plan. CORDS manifest are parsed into provision-
ing plan by Parser service. Provisioning plan contains blueprints for services
requested by consumers. Moreover, parser checks validation of requested ser-
vices though communication with Publisher.

3. Execution of the provisioning plan. Broker chooses proper cloud providers
based on requirements and constrains specified in provisioning plan. There are
also services that their participation depends on requirements stated in SLA.
Finally, broker aggregates selected services and collects them in a contact.

4. Delivering the Cloud services. Finally, Broker sends contract to proper AC-
CORDS Procci (a proxy which is heavily designed based on OCCI categories is
called Procci) to carry on the actual provisioning of correct requested resources
provided by cloud providers.

ACCORDS and COAPS

This theses is more interested in PaaS (not IaaS) provisioning aspect of ACCORDS,
that is why only PaaS CORDS manifest schema is presented (figure 2.13).

Each box (element) of CORDS manifest represents a cloud resource that resides in
an ACCORDS category. In other words, during second phase of CompatibleOne
functional cycle, Parser goes through all elements of PaaS CORDS manifest (e.g.
application, element, etc.), asks Publisher to correspond each element to a category
and instantiate related OCCI servers (ACCORDS services), adds OCCI server URIs
to each element to creates provisioning plan. As you can see, provisioning plan
structure is the same as that of CORDS manifest except that for each element, URI
of the related ACCORDS service instance is added.

During the third phase, Broker converts each element of provisioning plan into
a contract. These contracts will be sent to ACCORDS PaaS Procci. For each
contract, PaaS Procci communicates with a specified PaaS Provider (CloudFoundry,
Openshift, etc.) through CompatibleOne Application Platform Service (COAPS).
Here, as it is supposed, COAPS acts as a middleware (abstraction layer) between
CompatibleOne ACCORDS platform and existing PaaS Providers (Figure 2.15).

2.3. Software Development Automation Practices 23

Figure 2.15 ACCORDS Application PaaS Resource Provisioning

2.3 Software Development Automation Practices

2.3.1 Continuous Integration (CI)

Suppose a software project in which programmers are coding individually. After a
long time, when it is the time to make the deployable artifact and send it to operation
team, their codes must be merged and built. These codes are written in isolation for
a long period, therefore integrating them will result in lots of conflicts and errors.
Under these circumstances, integration is a long, error-prone, and unpredictable
process.

Continuous integration is a software development practice in which all project mem-
bers merge and verify their codes frequently, at least once a day. Subsequently, each
developer is coding at the most for a few hours without merging her codes to the
shared project state and when it turns to integration, spending a few minutes is
enough. Although continuous integration practice does not require any special tool,
it is beneficial to verify integration by build automation (including test) to identify
integration errors rapidly. The more integration period decreases, the less errors
rooting from integration could be found. Hence, integration could be carried out as
fast as possible [14].

According to Fowler [14], there are some elements to perform CI as well as possible:

2.3. Software Development Automation Practices 24

• Single source repository. A software project contains many files. In one
hand, these files are distributed among project members. On the other hand,
all files are essential while building different versions of product. Therefore,
there is a need for a tool to gather these distributed files and keep track of
their changes. Many tools (e.g. Git, Subversion, etc.) are available to use.
Regardless of which tool is chosen, one important note is that all project files
including (test scripts, properties files, database schema, install scripts, etc.)
must be in the shared repository.

• Build Automation. Getting project files and turning them into a running
software is a complicated and hard task. Automation of this process could
help a developer change some files and launch the final running software by
execution of a simple script. Many build automation tools (e.g. Ant, Maven,
etc.) are available. As the result of this variety, build scripts come in different
forms. So it is important to have a master build on development servers that
can be triggered from other scripts. Although it is acceptable that developers
use their IDE build management methods or any other build automation tool
while developing locally on their own machines, it is highly recommended
that developers utilise the same build automation tool which is used on the
development server.

• Making your build self-testing. Having a running software does not guar-
antee absence of bugs. Although testing does not remove all bugs, automated
tests could help a lot to catch many bugs. Automated tests investigate the
code base and announce the result as failure if there are bugs. Every developer
should commit to mainline, the unique and main path of development, at least
every day. There are some steps that make a developer eligible to commit to
the mainline. First updating the local working copy of the project by merging
it with the mainline, resolving all conflicts, and doing the build. If the result
of this local build (including tests) is successful, developer could commit to
the shared state single source repository.

• Building mainline on integration server after every commit. Doing
update and build on developers’ local machine before commit is not enough,
committing changes to mainline may cause conflicts and errors on integra-
tion server. Therefore, regular builds should be done on integration server to
confirm the quality of the mainline of the code. The developer who commits
changes is also responsible to monitor integration server build and further cor-
rections in the case of failure. It is really important to fix mainline as soon as
possible in the case of build break.

2.3. Software Development Automation Practices 25

• Keeping the build fast. Since one of the most important features of CI is
providing rapid feedback on errors and conflicts, build on integration server
must not take a long time. In order to reduce build time, first we need to
know about deployment pipeline (aka build pipeline or stage build). Deploy-
ment pipeline consists of several builds done sequentially. These builds could
be divided into two main stages: build that can be carried out quickly and
builds that are slower. First-stage build is triggered when developer commits
changes to mainline. Hence it is called ’commit build’. During commit build,
compilation and some rapid tests (like unit tests) are performed. In other
words, making commit build rapid is done by removing time-consuming tests
enough to balance speed and the needs of bug finding. Second-stage builds are
further, slower tests (like every test involving real database) that can also be
done on other machines. One important note is that the first-stage (commit)
build is supposed to be in the main CI cycle; Failure of this stage will result
in failure of integration. In contrast, since second-stage build takes the exe-
cutable from the last healthy commit build and run some tests on it, failure
of this stage does not mean integration failure; it alarms the team to fix bugs
as rapidly as possible.

Now that we know elements of best practices for CI, steps to show how to perform
CI could be stated [7]:

1. Developers check out the code base into their local working place.
2. Developers edit code and then commit changes to mainline.
3. When changes happen to mainline, CI server check out these changes.
4. CI server builds the product and runs unit tests.
5. If the result of build and tests is successful, CI server makes the deployable

artifact for further tests and notifies team about the success.
6. If the result of build and tests is not successful, CI server informs team about

failure for rapid fix.
7. The process of integration, building, and testing continues as development

goes on.

Figure 2.16 depicts the simplified version of steps to perform CI.

2.3.2 Continuous Delivery (CD)

As a development and delivery methodology, continuous delivery keeps application
in a release ready state at all times during software development [6]. A key pattern

2.3. Software Development Automation Practices 26

Figure 2.16 Continuous integration cycle

to carry CD out is deployment pipeline. As described in subsection 2.3.1 (read the
last element of CI best practices, ’keeping build fast’), deployment pipeline is the
collection of multiple sequential builds that could be divided into two stages. First-
stage build or commit build is considered as a main element of CI cycle. Hence,
continuous integration is an inevitable feature of deployment pipeline. But CI is not
enough to carry out CD. CI mainly concentrates on development team. It produces
executable for further tests and the rest of release process. But these two processes
(testing and operations) are the most time-consuming ones in software development
cycle [17]. For example:

• Operation team waits for fixes to be done.
• Test team members wait for successful commit builds.
• Development team gets notification of issues from test team members or op-

eration team late.

In one hand, these issues makes application’s way to reach production environment
a long process, resulting in an undeployable application. On the other hand, long
feedback cycle among the development team and the testing and operation team
leads to a software with many bugs [17].

2.3. Software Development Automation Practices 27

By automating build, test, and release processes, an end-to-end solution could be
implemented in order to deliver software fast and safely. Multiple environments are
needed, one to run commit builds, one or more to run tests (test environment), one or
more to deploy into staging (staging environment), and finally one or more to deploy
into production (production environment). CI server should move executable which
is output of CI (commit build) to these environments and triggers their associated
(CI server) builds successively and automatically (except production environment)
based on feedback of build done in previous environment. This process is what is
called deployment pipeline. Figure 2.17 depicts CD steps and shows deployment
pipeline concept. With this strategy, two important goals are achieved: speed and
safety. Team members (developers, testers, etc.) could see which build is in which
stage by checking feedback of each step visible to all, resulting in rapid actions to
issue fixing in case of any failure. [17].

Figure 2.17 Continuous Delivery cycle [20]

2.3. Software Development Automation Practices 28

The following scenario represents a usual CD workflow [20]. The present CD Work-
flow is the continuation of the CI workflow illustrated on subsection 2.3.1, that is
why it starts from number seven.

7. After packaging files into executable, the CI server deploys it into test server
to validate package and basic functionality of system by running automated
acceptance tests.

8. The CI server deploys the same package into testing environment for further,
comprehensive UAT (User Acceptance Test).

9. The CI server deploys the same package into staging environment.
10. The CI server deploys the same package into production environment (by

allowance of operation teams and not automatically).

2.3.3 Continuous Deployment

Understanding the difference between continuous delivery and continuous deploy-
ment (figure 2.18) could help a lot to figure out continuous deployment. While as
the result of CD practice, software is ready for release at all times during develop-
ment, it does not actually mean automatic releasing. Software is only in a release
ready state (in staging environment) and can be deployed into production by simply
pressing a button manually at any time. Now the question is: what is continuous
deployment? Continuous deployment is the practice of deploying every build that
passes CD successfully into production. It means releasing every change to actual
users automatically [16].

Figure 2.18 continuous delivery vs continuous deployment [6][2]

29

3. IMPLEMENTATION

The role of the present thesis in EASI-CLOUDS project (see subsection 2.2.3 ’Thesis
Contribution’) is investigating issues of cloud-based software development for a bro-
kered/federated cloud and providing a tool to perform it. The rest of this chapter is
structured as follows: section 3.1 provides the research method and materials used to
carry out the cloud-based SW development solution for a brokered/federated cloud.
Section 3.2 describes two different use cases to develop the SW development tool us-
ing research methods and materials mentioned in section 3.1 ’Research methodology
and materials’.

3.1 Research methodology and materials

As stated already, mission of thesis is to develop cloud-based SW development tool
for a brokered/federated cloud and to offer it as a cloud service (SaaS). The start-
ing point of development of such a tool has been CoRED1 which is a Collaborative
Real-time Editor developed in Tampere University of Technology. It allows several
programmers write code simultaneously while communicating and collaborating with
each other [23]. Later generations of CoRED has been named as MIDEaaS, stands
for Mobile IDE as a Service. In EASI-CLOUDS projects MIDEaaS has been ex-
tended for deployment (besides development) of applications. Flexible architecture
of MIDEaaS facilitates adding plugin for further development (Figure 3.1). An
interface (MideaasEditorPlugin) is defined in MIDEaaS as figure 3.1 shows. This
interface is an extension point; implementing MideaasEditorPlugin will add an item
to MIDEaaS menu bar (Figure 3.2).

Now that the IDE is selected, the second step is investigating an end-to-end solution
for SW development cycle and integrating this solution into MIDEaaS as a plugin.
Although different SW development models (e.g. Water fall model, V-model, Agile
model, etc.) follow different phases in their life cycle, a general model includes the
most common phases:

1http://cored.cs.tut.fi

http://cored.cs.tut.fi

3.1. Research methodology and materials 30

Figure 3.1 MideaaS architecture facilitates adding new plugins

Figure 3.2 Item added to menu bar of Editor View for continuous delivery

• Requirements
• Design
• Implementation (Coding)
• Testing
• Release

One approach which recently gain traction is automating the phases of SW devel-
opment from build to testing to release. One SW development automation practice
is continuous integration (section 2.3.1 ’Continuous Integration’). In continuous in-
tegration, codes written by project members are merged and verified frequently, at
least once a day. In order to perform CI, there need to be some elements:

• Single source repository: This is a shared repository where all project files
provided by project members are gathered together. One important note is

3.1. Research methodology and materials 31

that before committing changes to mainline, team members should update and
build on their local machines. But writing code in MIDEaaS frees developers of
performing this task. MIDEaaS is a real time editor; it means all changes made
by one developer will be applied and shown immediately to all other developers
(like Google Docs2). Developers therefore have the last and updated version
of the project at every single moment. The present thesis chooses Git3 as its
Source Control Management. Git is fast, able to handle large projects, open
source, simple, and fully distributed.

• Build automation: By build automation project members can execute a simple
script and automate phases of software development including compilation,
running tests, and packaging. Built automation tool utilised in this thesis is
Maven4.

• Continuous integration server: After every commit to mainline, there can be
conflict and errors during integration. Main task of CI server is to build
mainline after committing every change to ensure that there are no conflicts
and errors during integration. Based on EASI-CLOUDS’ decision Jenkins5 is
selected as CI server for our demonstrator. It is written in Java and origi-
nated form Hudson6 project but later was forked after a dispute with Oracle7.
Jenkins is known to be the dominant CI server as shown in figure 3.3. In
order to perform different tasks, Jenkins has a concept called ’job’. A job is a
runnable task that is controlled by Jenkins and goes through different phases
in its life cycle. For example lifecycle of a job which is configured to poll and
check out source code from Source Control Management (SCM) and build it
is depicted in Figure 3.4. For each newly created project in MIDEaaS, a job
will be instantly created in Jenkins and configured to check out the project
remote Git repository. After editing project source code in MIDEaaS, user
pushes changes to remote Git repository. Git receives pushed commit and
then triggers associated Jenkins job to poll, check out, and build the project.

CI performs frequent integrations, builds the executable, and runs some simple tests
like unit tests. It therefore does not cover testing and release phase of SW devel-
opment cycle. But our goal is to introduce an end-to-end solution that automates
the whole lifecycle of SW development. Due to this aim, continuous delivery (see

2https://docs.google.com/
3http://git-scm.com
4http://maven.apache.org
5http://jenkins-ci.org
6http://hudson-ci.org
7http://www.oracle.com/

https://docs.google.com/
http://git-scm.com
http://maven.apache.org
http://jenkins-ci.org
http://hudson-ci.org
http://www.oracle.com/

3.1. Research methodology and materials 32

Figure 3.3 CI server used [21]

Figure 3.4 Jenkins Job Life Cycle

subsection 2.3.2 ’continuous delivery’) is chosen. CD automates build, testing, and
deployment into staging environment. Note that testing and deployment into stag-
ing are not needed in our demonstration; that is why these steps are not realised in
the current implementation of our demonstrator. On the other hand, according to
CD practice, deployment into production should be done by operation team man-
ually, not automatically. But in our demonstration Jenkins deploys WAR file into
production automatically after commit stage. Actually, the automation practice of
our SW development solution is continuous deployment (see section 2.3.3 ’Continu-
ous Deployment’). Figure 3.5 depicts continuous deployment workflow used in this
thesis.

Now a MIDEaaS user is able to develop software and deploy it into production en-

3.1. Research methodology and materials 33

Figure 3.5 continuous deployment scenario utilised in the present thesis

vironment. But our goal is to perform deployment into a brokered/federated cloud,
not into a predefined production environment or a specific PaaS provider. There are
many PaaS providers offering their resources. Among these providers, a developer
wants to find the best ones in terms of security, geographical location, cost, memory,
storage, supported services (like databases) and so on. There should be a mecha-
nism that gets the list of resources and specifications the developer expects from a
PaaS provider. In MIDEaaS, developers are given a tool which is called ’Resource
Specifier’ to specify their required PaaS resources. Resource specifier is developed
by a Finnish company named Lenonidas8. Figure 3.6 shows a snapshot of the re-
source specifier. The next step is to find the most appropriate PaaS provider based
on the required resources. This means cloud brokerage; therefore EASI-CLOUDS
platform (section 2.2 ’EASI-CLOUDS and CompatibleOne’) plays the role of a cloud
broker. In our demonstration, depending on which use case is followed (see section
3.2 ’Use Cases’), MIDEaaS or Jenkins interacts with ACCORDS (see subsection
2.2.5 ’ACCORDS’) to carry out brokerage to find the most proper PaaS provider.
After choosing the target PaaS provider, it turns to PaaS resource provisioning and

8https://leonidasoy.fi

https://leonidasoy.fi

3.1. Research methodology and materials 34

then actual deployment. For PaaS resource provisioning, we need communication
with the target PaaS provider; COAPS (see subsection 2.2.4, ’COAPS’) offers a
PaaS independent solution. It frees users from thinking about which PaaS solution
(e.g. CloudFoundry) is applied by the PaaS provider to provision its resources. AC-
CORDS or MIDEaaS therefore (again depending on which use case is followed) needs
to talk to COAPS. For our demonstration, CloudFoundry, COAPS and ACCORDS
must be installed:

• The unofficial one machine Cloudfoundry installer we used is called CF Nise
installer. One instance of CloudFoundry therefore is installed on a VM at
TUT.

• The CloudFoundry implementation of COAPS API is installed on a VM at
TUT and configured to talk to REST APIs of TUT CloudFoundry instance.

• ACCORDS is installed on a VM at TUT and configured to talk to REST APIs
of TUT COAPS instance.

Figure 3.6 A developer specifies required PaaS resources via Resource Specifier

As stated before, depending on which use case is followed, Jenkins needs to com-
municate with ACCORDS or COAPS. Jenkins job could be extended in different
phases of its life cycle (Figure 3.4) by implementing extension points related to that

3.2. Use Cases 35

phase. Implementing extension points enables writing plugins for Jenkins. In our
demonstration communication with ACCORDS or COAPS must happen after build
is successfully done, so extension point (Notifier9) related to the ’post build’ phase
must be implemented. Two Jenkins plugins have been developed:

• Jenkins COAPS plugin has been developed to communicate with heteroge-
neous PaaS providers.

• Jenkins ACCORDS plugin has been developed to communicate with AC-
CORDS plugin to do brokerage.

Figure 3.7 shows all required components to perform cloud-based SW development
solution for a brokered/federated cloud offered in this thesis. But how these compo-
nents works together? Next section presents two different use cases followed in this
thesis to perform continuous deployment.

Figure 3.7 All required components to carry out continuous deployment offered in this
thesis

3.2 Use Cases

In section 3.1 ’Research Method and Materials’, required components to perform
continuous deployment are stated. These components can communicate with each

9http://javadoc.jenkins-ci.org/hudson/tasks/Notifier.html

http://javadoc.jenkins-ci.org/hudson/tasks/Notifier.html

3.2. Use Cases 36

others in two different ways resulting in two different scenarios. This difference has
its roots in the way ACCORDS follows to perform deployment. The rest of this
section presents two use cases to perform continuous deployment.

3.2.1 First Use Case

First use case is based on ’deferred deployment’ method of ACCORDS. Deferred
deployment means ACCORDS first prepares environment on the target PaaS to
host and run application. Later, the actual deployment could be done in any time.
To get the idea better, take a look at figure 3.8. In Figure 3.8, ACCORDS sends
four requests to COAPS for completing deployment chain. In deferred deployment,
as the first step, ACCORDS sends the first two requests (create environment and
create application) in order to specify different characteristics of the application’s
environment and application itself. Later, when it comes to deployment, devel-
oper sends the second two requests (deploy application and start application) via
MIDEaaS directly to COAPS in order to deploy and start application. Continuous
deployment blueprint utilised in this use case is depicted in figure 3.9.

Figure 3.8 ACCORDS calls two specific COAPS API for PaaS resource provisioning

Exact details of deployment process from editing code in MIDEaaS to completing
deployment on the target PaaS are investigated in sequence as following:

1. User creates a project in MIDEaaS and writes source code to develop an
application.

3.2. Use Cases 37

Figure 3.9 First use case continuous delivery blueprint which is based on deferred de-
ployment method of ACCORDS

2. When user wants to deploy application, he opens ’resource specifier’ to specify
required PaaS resources (e.g. memory, disk, geographical location of PaaS,
etc.). Resource specifier sends these resources to ACCORDS.

3. Based on the requested resources, ACCORDS brokers and finds the most ap-
propriate PaaS provider.

4. PaaS procci server instance (a dynamically instantiated object in ACCORDS)
talks to COAPS associated with the target PaaS.

5. COAPS creates environment resource to specify characteristics of the applica-
tions environment (e.g. MySQL, Tomcat7, etc.) and application resource to
specify characteristics of application itself (application name, path to deploy-
able articat, etc.).

6. Application ID, Environment ID, and COAPS URL will be sent back to
MIDEaaS.

7. Now user pushes the source code along with Application ID, Environment ID,
and COAPS URL to the Git repository of the project.

8. Post-push command of Git repository triggers build of associated Jenkins Job.
Maven will be invoked and deployable artefact will be created as the result.

9. Jenkins COAPS plugin talks to COAPS of target PaaS (defined by PaaS URL)
to deploy and starts application (defined by Application ID) on previously
created environment (define by Environment ID).

Figure 3.10 shows outline of this use case. Main benefit of this use case is that
it allows management of deployed applications on different PaaS. In other words,
whenever a PaaS is selected by ACCORDS, it will be added to a table in MIDEaaS
plugin written for continuous deployment. Figure 3.11 shows a snapshot the man-

3.2. Use Cases 38

agement screen. Using management screen, the developer can stop, start, and delete
application deployed on a certain PaaS.

Figure 3.10 Use case based on deffered deployment method of ACCORDS

Figure 3.11 PaaS Management Screen of MIDEaaS continuous deployment plugin

3.2. Use Cases 39

3.2.2 Second Use Case

While first use case was based on deferred deployment method of ACCORDS, sec-
ond use case is based on ’immediate deployment’ method. Immediate deployment
means completing deployment chain right after preparing environment and describ-
ing application on the target PaaS. Again figure 3.8 could help to describe what im-
mediate deployment is. To implement immediate deployment, ACCORDS sends all
four requests (create environment, create application, deploy application, and start
application shown in figure 3.8) to COAPS one after another sequentially without
pause. Continuous deployment blueprint utilised in this use case is depicted in figure
3.12.

Figure 3.12 Second use case continuous delivery blueprint which is based on immediate
deployment method of ACCORDS

Exact details of deployment process from editing code in MIDEaaS to completing
deployment on the target PaaS are investigated in sequence as following:

1. User creates a project in MIDEaaS and writes code to develop an application.
2. When user wants to deploy application, he opens ’resource specifier’ to specify

required PaaS resources (e.g memory, disk, geographical area of PaaS, etc.).
Resource specifier sends these resources back to MIDEaaS.

3. Now user presses Use ACCORDS to Broker button to push the source
code along with the list of requested resources to Git repository of the project.

4. Post-push command of the Git repository triggers associated Jenkins Job.
Jenkins job checks out Git repository and builds project by invoking Maven.
As the result, deployable artefact (WAR file) will be created.

5. Jenkins ACCORDS plugin sends deployment request to ACCORDS (along
with required resources).

3.2. Use Cases 40

6. Based on required resources, ACCORDS brokers and finds the most appropri-
ate PaaS provider.

7. PaaS procci server instance (a dynamically instantiated object in ACCORDS)
talks to COAPS associated with the target PaaS.

8. COAPS creates environment resource on the target PaaS to specify charac-
teristics of the applications environment (e.g. MySQL, Tomcat7, etc.) and
application resource to specify characteristics of application itself (application
name, path to deployable artifact, etc.). It also deploys the created application
to the created environment and starts application. Now application is running
on the target PaaS provider.

Figure 3.13 Use case based on immediate deployment method of ACCORDS

Figure 3.13 shows outline of this use case. The main pitfall of this use case is that
user misses the advantage of having control over the applications he has deployed

3.2. Use Cases 41

previously. This defect is the result of hidden communication between ACCORDS
and COAPS from the MIDEaaS point of view.

Figure 3.14 Deployment steps report shown to user of MIDEaaS

Both use cases have been implemented in this thesis. Success or failure of primary
steps of each use case will be reported to user during deployment process, including:

• Committing changes to source code
• Pushing changes to remote Git repository
• Build log
• Deployment log in the first use case.

Figure 3.14 portrays report of each step in first use case which ended up in a
successful deployment.

42

4. RESULTS AND DISCUSSION

4.1 Version Management System

In order to integrate version management system with MIDEaaS, two main questions
should be answered:

• Does version management system applied in previous version of MIDEaaS
meet continuous deployment goal targeted for this thesis? If not, what should
be done? (Section 4.1.1)

• What are the issues of version management system for a real time editor?
(Section 4.1.2)

4.1.1 Selecting Version Management System

Previous versions of MIDEaaS (before exploiting in EASI-CLOUDS project) had
Github as its Git server. There were several problems with GitHub. First, every
user must have GitHub account in advanced. Remember that in order to make
MIDEaaS usage as easy as possible, even for signing into MIDEaaS only the name
of user is required. With this philosophy, MIDEaaS could not expect users to have
GitHub accounts already. Second, for a specific project, when some users try to
push project code on their GitHub accounts, Jenkins must be configured to fetch
that project from all GitHub accounts of those users. This makes the process of
building a project complicated.

4.1.2 Issues

For every IDE, it is important to have version management system. Designing
version management system for a web-based IDE where several users are working in
a same project may seem tricky, because there is a chance for each of them to push
a different version of the project and cause conflict. Fortunately, the way MIDEaaS

4.2. Limitations of ACCORDS 43

is designed prevents these kind of conflicts. In one hand, in MIDEaaS, changes to
code are shown in a real time manner; this means that if one user changes some part
of project, these changes will be applied and shown to the project itself. To get the
idea better, an analogy to Google Doc may work. When a person is editing some
part of a text in Google Doc, the changes are immediately applied to the document
and shown to others. Therefore only one and the last version of the document - in
our case, project - is available every single moment of time for all users. When a
user decides to push the project, only the last version of that project is pushed. On
the other hand, there is only one remote Git repository associated to each project.
A user does not have local or remote Git repository exclusive for him/her. Therefore
there cannot be several Git repositories with different versions of the same project.
Otherwise, merging them into one Git repository would have been a real problem.

4.2 Limitations of ACCORDS

In both use cases described in section 3.2, ACCORDS lacks some certain features.
In this section, I am going to investigate those defects.

4.2.1 COAPS URL in First Use Case

In first use case described in subsection 3.2.1, at sixth step (in both figure 3.10 and
the list which states all steps necessary for deferred deployment), three important
info must be sent from ACCORDS to MIDEaaS. This info is Application ID, En-
vironment ID, and target COAPS URL. Application ID and Environment ID can
be accessed through ACCORDS, but COAPS URL could not be achieved. In order
to have management screen, COAPS URL is a must; otherwise MIDEaaS could not
manage deployed application on the target PaaS by directly communicating with
COAPS installed on that PaaS. It seems that current implementation of ACCORDS
lacks this feature.

4.2.2 Deployable Artifact in Second Use Case

Take a look at fifth step of the list (which states all steps necessary for immediate
deployment) or eighth step in figure 3.13 in second use case (subsection 3.2.2).
When ACCORDS plugin for our Jenkins-based CI sends deployment request to AC-
CORDS, it specifies the path to the deployable artifact inside Jenkins machine in a
manifest (called deployment manifest). Consequently, ACCORDS must download

4.2. Limitations of ACCORDS 44

war file and send it to COAPS for completing deployment. But it seems that AC-
CORDS is not able to download a file which is on a machine other that ACCORDS
machine. We came up with a solution to handle this problem. The defect is compen-
sated by copying war file via scp command programmatically from Jenkins machine
to ACCORDS machine and making deployment manifest point to this copied war
file on ACCORDS machine.

45

5. CONCLUSION

In this thesis a demonstrator for cloud-based SW development was developed. The
demonstrator could be used by programmers to develop and deploy applications into
a brokered/federated cloud.

Our SW development demonstrator utilised MIDEaaS as its IDE for two main rea-
sons. First, MIDEaaS is a cloud-based IDE that can be offered as SaaS to devel-
opers. There is no need for developers to install and maintain IDE on their local
machines. Second, MIDEaaS supports real-time collaboration so that every change
is applied immediately and shown to others (like Google Docs) in a real-time man-
ner. MIDEaaS therefore has only one and the last version of each project at every
single moment of time. Hence, when a developer decides to push a project into re-
mote Git repository, the last version is the only available version that can be pushed.
Now assigning only one remote Git repository to every project in MIDEaaS makes
pushing to and updating Git repository as simple as possible. Having one remote
Git repository avoids further merging of several repos.

SW development practice followed by our demonstrator was continuous deployment.
Continuous deployment delivers every change to actual users. Typical continuous
deployment approach automates build, testing, and release (deployments both into
staging and production) phases of SW development cycle. But our demonstrator
skipped testing and deployment into staging; so the risk of ending up in a buggy
software is high in our case. CI, CD, and continuous deployment as SW development
automation practices are hot topics nowadays. Automating SW development phases
accelerates feedback cycle by making reports of result (success or failure) of each
phase instantly available to all project members. These practices therefore make
time to release shorter and risk of buggy software lower.

For cloud federation/brokerage, COAPS and ACCORDS components of EASI-CLOUDS
project are used to find the most suitable PaaS provider and negotiate relationships
between that PaaS provider and MIDEaaS. Based on the two ways ACCORDS car-
ries out deployment into the target PaaS provider, two use cases were offered, each
of which has its own advantages and disadvantages. The use case which is based on

5. Conclusion 46

deferred deployment method of ACCORDS allows a developer to have control (e.g.
stop, start, update, undeploy, etc.) over his deployed applications; the problem is
current implementation of ACCORDS lacks some features to carry out this use case.
The second use case is based on immediate deployment method of ACCORDS. Al-
though (with some manipulation) current implementation of ACCORDS supports
the second use case, losing control over deployed application is the main pitfall of
this method.

Our demonstrator was presented in the final ITEA review meeting held in Berlin
and received highly positive feedback.

As stated previously current version of our demonstrator lacks testing and deploy-
ment into staging phases. As future work theses phases of SW development could
be added to our continuous deployment solution. Furthermore typically there is no
need to deliver every change to actual users. If the testing and staging environment
are available for performing further comprehensive tests, it is recommended to ap-
ply continuous delivery instead of continuous deployment. CD keeps software in a
release ready state in staging environment; actual release into production could be
done manually by simply pressing a button in any time.

Another plan for later work should be implementing missing features of ACCORDS
so that it suits both use cases presented in this thesis.

MIDEaaS IDE could be improved on various ways. Main culprit for failing or
delaying a project is communication and collaboration of developers involved in the
process of development. Since MIDEaaS is a cloud-based IDE where all developers
log in to it in order to write code, it is the best place to provide communication
tools for developers. Although current version of MIDEaaS has some collaborative
features like chatting, more innovative ideas like combining MIDEaaS with tools
similar to Confluence1 and JIRA2 could be interesting for future work. For example
when a feature is implemented successfully, a notification to other developers could
be sent. Furthermore, using current version of MIDEaaS, a developer can only
develop Vaadin projects. Making MIDEaaS support more programming languages
like C++, Python, etc. would be a nice idea.

1https://www.atlassian.com/software/confluence
2https://www.atlassian.com/software/jira

https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/jira

47

BIBLIOGRAPHY

[1] J. Ames, “Federated cloud: A new frontier,” January 2013, Avail-
able (accessed on 17.11.2013): http://blog.appcore.com/blog/bid/170244/
Federated-Cloud-A-New-Frontier.

[2] C. Caum, “Continuous delivery vs. continuous deployment: what’s the diff?”
August 2013, Available (accessed on 26.11.2014): http://puppetlabs.com/blog/
continuous-delivery-vs-continuous-deployment-whats-diff.

[3] “Cloud-broker,” Available (accessed on 21.11.2014): http://www.itwissen.info/
definition/lexikon/Cloud-Broker-cloud-broker.html.

[4] “Cloud federation,” Apprenda Inc. Available (accessed on 17.11.2013): http:
//apprenda.com/library/glossary/definition-cloud-federation/.

[5] “Coaps api: A generic cloud application provisioning and management api,”
institut Mines-Telecom, Telecom SudParis. Computer Sciences department,
SIMBAD team Available (accessed on 2.09.2014): http://www-inf.int-evry.fr/
SIMBAD/tools/COAPS/.

[6] “Continuous cloud delivery,” [White paper], CloudBees, Inc. Available
(accessed on 26.08.2014): http://pages.cloudbees.com/rs/cloudbees/images/
Continuous-Cloud-Delivery.pdf.

[7] “Continuous integration,” ThoughtWorks, Inc. Available (accessed on
25.11.2014): http://www.thoughtworks.com/continuous-integration.

[8] M. C. Daconta, “Cloud broker software an emerging force for enterprise migra-
tions,” April 2013, Available (accessed on 21.11.2014): http://gcn.com/articles/
2013/04/23/cloud-broker-software-enterprise-migrations.aspx.

[9] “Deliverable1.3 - business models for the easi-clouds use cases and analysis of
market impact,” Available (accessed on 17.11.2013): https://redmine.dai-labor.
de/EASI-CLOUDS/projects/easi-clouds/dmsf?folder_id=214.

[10] “Deliverable1.5 - final business models for easi-clouds,” ITEA3. Available
(accessed on 17.11.2013): https://itea3.org/project/workpackage/document/
download/1931/10014-EASI-CLOUDS-WP-1-D15-Finalbusinessmodels.

[11] “Easi-clouds project flyer,” Available (accessed on 21.10.2014):
https://itea3.org/project/workpackage/document/download/964/
10014-EASI-CLOUDS-WP-5-D51A-Projectflyer.pdf.

http://blog.appcore.com/blog/bid/170244/Federated-Cloud-A-New-Frontier
http://blog.appcore.com/blog/bid/170244/Federated-Cloud-A-New-Frontier
http://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
http://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
http://www.itwissen.info/definition/lexikon/Cloud-Broker-cloud-broker.html
http://www.itwissen.info/definition/lexikon/Cloud-Broker-cloud-broker.html
http://apprenda.com/library/glossary/definition-cloud-federation/
http://apprenda.com/library/glossary/definition-cloud-federation/
http://www-inf.int-evry.fr/SIMBAD/tools/COAPS/
http://www-inf.int-evry.fr/SIMBAD/tools/COAPS/
http://pages.cloudbees.com/rs/cloudbees/images/Continuous-Cloud-Delivery.pdf
http://pages.cloudbees.com/rs/cloudbees/images/Continuous-Cloud-Delivery.pdf
http://www.thoughtworks.com/continuous-integration
http://gcn.com/articles/2013/04/23/cloud-broker-software-enterprise-migrations.aspx
http://gcn.com/articles/2013/04/23/cloud-broker-software-enterprise-migrations.aspx
https://redmine.dai-labor.de/EASI-CLOUDS/projects/easi-clouds/dmsf?folder_id=214
https://redmine.dai-labor.de/EASI-CLOUDS/projects/easi-clouds/dmsf?folder_id=214
https://itea3.org/project/workpackage/document/download/1931/10014-EASI-CLOUDS-WP-1-D15-Finalbusinessmodels
https://itea3.org/project/workpackage/document/download/1931/10014-EASI-CLOUDS-WP-1-D15-Finalbusinessmodels
https://itea3.org/project/workpackage/document/download/964/10014-EASI-CLOUDS-WP-5-D51A-Projectflyer.pdf
https://itea3.org/project/workpackage/document/download/964/10014-EASI-CLOUDS-WP-5-D51A-Projectflyer.pdf

BIBLIOGRAPHY 48

[12] “Federated cloud (cloud federation),” Available (accessed on 17.11.2013): http:
//whatis.techtarget.com/definition/federated-cloud-cloud-federation.

[13] M. L.-R. Florian Chazal, “Easi-clouds kick-off preparation,” Avail-
able (accessed on 2.09.2014): http://www.compatibleone.com/community/
wp-content/uploads/2013/06/20130618-COandEASICloudsv03.pdf.

[14] M. Fowler, “Continuous integration,” May 2006, Available (accessed
on 24.11.2014): http://www.martinfowler.com/articles/continuousIntegration.
html.

[15] B. Gopularam, C. Yogeesha, and P. Periasamy, “Highly scalable model for tests
execution in cloud environments,” in Advanced Computing and Communications
(ADCOM), 2012 18th Annual International Conference on, Dec 2012, pp. 54–
58.

[16] J. Humble, “Continuous delivery vs continuous deployment,” August 2010,
Available (accessed on 26.11.2014): http://continuousdelivery.com/2010/08/
continuous-delivery-vs-continuous-deployment/.

[17] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation, 1st ed. Addison-Wesley
Professional, 2010.

[18] Y. Jadeja and K. Modi, “Cloud computing - concepts, architecture and chal-
lenges,” in Computing, Electronics and Electrical Technologies (ICCEET), 2012
International Conference on, March 2012, pp. 877–880.

[19] C. Janssen, “Cloud broker,” Available (accessed on 21.11.2014): http://www.
techopedia.com/definition/26518/cloud-broker.

[20] S. Karadzhov, “Fundamentals of continuous integration with
jenkins and zend server,” Zend Technologies Ltd, Avail-
able (accessed on 26.11.2014): http://static.zend.com/topics/
WP-Fundamentals-of-Continuous-Integration-with-Jenkins-and-Zend-Server-2014-03-31-EN.
pdf?

[21] K. Kawaguchi, “Geek choice awards 2014,” July 2014, Available (accessed on
29.08.2014): http://jenkins-ci.org/content/geek-choice-awards-2014.

[22] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, “Cloud
federation,” in Proceedings of the 2nd International Conference on Cloud Com-
puting, GRIDs, and Virtualization (CLOUD COMPUTING 2011). IARIA,
September 2011, Inproceedings, best Paper Award.

http://whatis.techtarget.com/definition/federated-cloud-cloud-federation
http://whatis.techtarget.com/definition/federated-cloud-cloud-federation
http://www.compatibleone.com/community/wp-content/uploads/2013/06/20130618-COandEASICloudsv03.pdf
http://www.compatibleone.com/community/wp-content/uploads/2013/06/20130618-COandEASICloudsv03.pdf
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://www.techopedia.com/definition/26518/cloud-broker
http://www.techopedia.com/definition/26518/cloud-broker
http://static.zend.com/topics/WP-Fundamentals-of-Continuous-Integration-with-Jenkins-and-Zend-Server-2014-03-31-EN.pdf?
http://static.zend.com/topics/WP-Fundamentals-of-Continuous-Integration-with-Jenkins-and-Zend-Server-2014-03-31-EN.pdf?
http://static.zend.com/topics/WP-Fundamentals-of-Continuous-Integration-with-Jenkins-and-Zend-Server-2014-03-31-EN.pdf?
http://jenkins-ci.org/content/geek-choice-awards-2014

BIBLIOGRAPHY 49

[23] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and
M. Englund, “Cored: Browser-based collaborative real-time editor for java
web applications,” in Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, ser. CSCW ’12. New York, NY, USA: ACM,
2012, pp. 1307–1316. [Online]. Available: http://doi.acm.org/10.1145/2145204.
2145399

[24] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, NIST
Cloud Computing Reference Architecture: Recommendations of the National
Institute of Standards and Technology (Special Publication 500-292). USA:
CreateSpace Independent Publishing Platform, 2012.

[25] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud computing,”
Gaithersburg, MD, United States, Tech. Rep., 2011.

[26] “Openstack: The open source cloud operating system,” OpenStack Foundation,
Available (accessed on 8.09.2014): http://www.openstack.org/software/.

[27] C. Pettey and R. van der Meulen, “Gartner says cloud consumers need bro-
kerages to unlock the potential of cloud services,” September 2009, Available
(accessed on 21.11.2014): http://www.gartner.com/newsroom/id/1064712.

[28] M. Rouse, “cloud broker,” Available (accessed on 21.11.2014): http://
searchcloudprovider.techtarget.com/definition/cloud-broker.

[29] M. Sellami, S. Yangui, M. Mohamed, and S. Tata, “Paas-independent provi-
sioning and management of applications in the cloud,” in Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on, June 2013, pp. 693–
700.

[30] T. Sridhar, “Cloud computing: A primer, part 2: Infrastructure and implemen-
tation topics,” The Internet Protocol Journal, vol. 12, no. 4, pp. 1–40, December
2009.

[31] K. Srinivasa, C. Harish Raddi, S. Mohan Krishna, and N. Venkatesh, “Meghaos:
Cloud based operating system and a framework for mobile application develop-
ment,” in Information and Communication Technologies (WICT), 2011 World
Congress on, Dec 2011, pp. 858–863.

[32] “The compatible one application and platform service api specification,”
telecom SudParis. Computer Sciences department. Available (accessed on
2.09.2014): http://www.compatibleone.com/community/wp-content/uploads/
2014/05/COAPS-Spec.v1.5.3.pdf.

http://doi.acm.org/10.1145/2145204.2145399
http://doi.acm.org/10.1145/2145204.2145399
http://www.openstack.org/software/
http://www.gartner.com/newsroom/id/1064712
http://searchcloudprovider.techtarget.com/definition/cloud-broker
http://searchcloudprovider.techtarget.com/definition/cloud-broker
http://www.compatibleone.com/community/wp-content/uploads/2014/05/COAPS-Spec.v1.5.3.pdf
http://www.compatibleone.com/community/wp-content/uploads/2014/05/COAPS-Spec.v1.5.3.pdf

Bibliography 50

[33] “Understanding the bosh deployment manifest,” Pivotal Software Inc.
Available (accessed on 13.09.2014): http://docs.cloudfoundry.org/bosh/
deployment-manifest.html.

[34] “Understanding the cloud computing stack saas, paas, iaas,” [White paper],
Rackspace, US Inc. Available (accessed on 04.09.2014): http://radar.oreilly.
com/2009/03/continuous-deployment-5-eas.html.

[35] “Vmware news releases, vmware delivers cloud foundry, the industry’s first open
paas,” VMware Inc. Available (accessed on 8.09.2014): http://www.vmware.
com/company/news/releases/cloud-foundry-apr2011.

[36] “Vvmware cloud foundry - an insight,” October 2014, Available (ac-
cessed on 8.09.2014): http://www.eukhost.com/blog/webhosting/
cloud-foundry-an-insight/.

[37] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, “Compatibleone: The open
source cloud broker,” Journal of Grid Computing, vol. 12, no. 1, pp. 93–109,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10723-013-9285-0

http://docs.cloudfoundry.org/bosh/deployment-manifest.html
http://docs.cloudfoundry.org/bosh/deployment-manifest.html
http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html
http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.html
http://www.vmware.com/company/news/releases/cloud-foundry-apr2011
http://www.vmware.com/company/news/releases/cloud-foundry-apr2011
http://www.eukhost.com/blog/webhosting/cloud-foundry-an-insight/
http://www.eukhost.com/blog/webhosting/cloud-foundry-an-insight/
http://dx.doi.org/10.1007/s10723-013-9285-0

	Introduction
	Introduction
	Purpose of the Thesis
	Research Question
	Structure of the Thesis

	Background
	Cloud Computing
	Definition and Characteristics
	Service Categories: SaaS, PaaS, IaaS
	CloudFoundry as PaaS Solution
	Openstack as IaaS Solution

	Cloud Federation/Brokerage
	Cloud Brokerage

	EASI-CLOUDS and CompatibleOne
	Introduction
	Objectives
	Thesis Contribution in EASI-CLOUDS
	COAPS
	CompatibleOne
	CORDS
	ACCORDS
	ACCORDS and COAPS

	Software Development Automation Practices
	Continuous Integration (CI)
	Continuous Delivery (CD)
	Continuous Deployment

	Implementation
	Research methodology and materials
	Use Cases
	First Use Case
	Second Use Case

	Results and Discussion
	Version Management System
	Selecting Version Management System
	Issues

	Limitations of ACCORDS
	COAPS URL in First Use Case
	Deployable Artifact in Second Use Case

	Conclusion
	Bibliography

