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This master thesis is based on an autonomous wheeled mobile manipulator project,

directed in Tampere university of technology (TUT). In the beginning, we carried out

a comprehensive study on the linux-based real-time operating systems, meanwhile

existing limitation in the real-time operating system and real-time consideration in

the programming of the control application has been surveyed in more details. Then,

we studied force control strategies and control theories of the manipulators under

contact forces. After that, manipulator dynamic equations and internal motion

control loops were simulated using Simulink environment of Matlab. In this step,

three scheme of controller with di�erent area application were designed and was

simulated on the manipulator Simulink model. The implementation part is based

on the rapid prototyping method using Matlab/Simulink code generation products,

�rstly, the interfacing software between the manipulator joint actuators and the

main controller software which is run in the RTLinux Xenomai was developed. In

the next step, a similar interfacing application was developed for acquiring force data

from the force torque sensor. In the next step, force torque sensor was calibrated

using a calibration method according to gravity e�ects, then calibrated data was

provided as measuring(sensory) input of the force controller software. In the �nal

step, force control loop was closed around the motion controller loop and sti�ness

control scheme was achieved.
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1. INTRODUCTION

Wheeled mobile robots nowadays attract attention of robotic research groups all over

the world. Many new applications of this category of the autonomous robots have

emerged in last decades. As a result, extensive studies of mobile robots were directed

in research centers and technical universities. This thesis is directed in according

with design and fabrication of a wheeled mobile robot project called iMoro directed

in TUT. This mobile platform has 8 degree of freedom and also is equipped with a

light weight arm with six degree of freedom. Moreover, di�erent type of sensors like

encoder and laser scanner, IMU and camera are installed on the robot to increase

the autonomy capability of the robot. The robot is also equipped with an embedded

pc with a Linux-based realtime operating system to provide a platform to implement

control algorithms. All the sensors and the actuators of the robot are connected to

this embedded pc with various interface such as control area network (CAN) bus

and IEEE 1394 bus.

This thesis is divided into chapters. In the �rst chapter, we will describe the real-

time operating system and then the realtime concept of a control system is studied

in details. In addition to the concept of realtime systems, we brie�y examined the

realtime operating system that has been installed on the embedded pc. Then, the

software architecture of the control system and interfaces applications are described.

In the second chapter, interaction between the robot manipulator and environ-

ment is studied brie�y. The interaction of the end e�ector and the environment is

the main subject of this study. The exerted forces due to contacts are measured

by means of a force-torque sensor module and acquired data are sent to the control

unit through a CAN bus and then an appropriate action is done according to the

measured values. In this part, force control strategies and variety of control methods

are covered concisely.

In the third chapter, we will cover illustrate the implementation methodology and

after that details of implementations of control algorithm will be described. After-

math, we will describe the implemented software architecture and then, the force

torque sensor module calibration process and underneath theory will be explained

in details.
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Figure 1.1: iMoro

1.1 System architecture

This thesis is based on iMoro project which is a four wheel steerable mobile robot

with a 6-DOF robot manipulator installed on it [1; 2]. A force torque sensor module

and a gripper are also installed on the end-e�ector of the manipulator. Mobile

platform is consist of a rectangular rigid chassis with 4 legs on each corner. Each

leg has two servo motors which control motion of the wheel independently. The �rst

motor is for driving and produce movements in back and forth direction. In other

words, it rotates the wheel around its rotation axes. The second motor is devoted

to steering and it rotates the whole leg along its vertical axes. In fact, it changes

the plane which wheel is rotating around. The manoeuvrability and motion control

of the mobile platform are presented in [3; 4]. Motor actuators are Maxon servo

EC Motors which are controlled individually by control drives called EPOS2. These

drives provide both position and velocity control and their internal gains can be

tuned accordingly. Each motor has an encoder on its own which feeds the internal

control loop of the servo motor. In addition, there are two encoders installed on
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the end of the wheel's shaft to provide extra measurements for wheels position and

velocity. System architecture of the whole robot is depicted in �gure (1.2).

Figure 1.2: System architecture

As it is shown in Figure (1.2) a SCHUNK arm with 6 degree of freedom has been

installed on top of the platform. This arm has been equipped with a gripper and a

force torque sensor module as two separate modules. These auxiliaries modules are

installed on the end e�ector of the manipulator to extend the application area of

the robot. All drives of the mobile robot chassis and additionally all manipulator's

drives and modules are connected to an embedded pc through the CAN bus networks

spread all over the robot. This embedded pc plays the role of a control unit of our

mechatronics system. All the measured data is passed to the embedded pc and the

corresponding commands are sent through CAN networks to all the actuators and

drives. In the following sections, we will give more explanation over embedded pc

and data bus networks.

Embedded pc and CAN Network

The embedded pc, that has been used in this system is a Fan-less Tank-720-Q67

which is equipped with an IntelÂ R© Core i7 processor. Furthermore, an Intel VGA

Card and an On-board 2GB DDR3 memory and also one DDR3 SO-DIMM slot

have been installed on the main board of the embedded PC. In addition, 8-channel

audio/video capture with couple of USB 2.0 and 3.0 ports beside one SATA 6Gb/s
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port , and 2 PCAN-miniPCI Dual Channel Card have been included into the embed-

ded pc. Moreover, two dual-band Wi-Fi for high speed wireless transmission plus

a redundant dual DC power input (9V 36V) is set on the PC. As software point of

view, a special operating system consist of a realtime framework cooperating with

a linux kernel is installed on th PC. The realtime development framework is called

Xenomai and it provides hard realtime support and processing time requirements to

user-space applications run on this machine. For further information, we encourage

you to read section (2.1) which is devoted to the details of the realtime system and

the deterministic solutions in computer systems. The embedded PC Tank-720-Q67

is shown in �gure ( 1.3).

Figure 1.3: Tank-720-Q67

As we mentioned earlier, CAN buses has been used to connect most of mecha-

tronics devices of the system to the embedded pc as the main controller. All the

actuator and sensor units such as motor drives of the mobile platform, manipulator

joint derives as well as force torque sensor module and gripper boards have been

connected to the embedded PC through CAN buses spread all over the system.

CAN bus is a message-based protocol which had been designed at Robert Bosch

GmbH for automotive and truck applications in 1983. CAN is a multi Node serial

bus standard for electronics control unit connections, each node sends and receives

messages containing speci�c information about sensory data and state mode of the

control unit. Each sent message in the BUS have an identi�er and bunch of bits

devoted Data. Each Nodes in the CAN network must consist of a Host processor,

CAN controller and a transceiver to establish a CAN communication. Host proces-

sor is basically the logical control unit that decides what the taken messages mean

and what messages should be sent. CAN controller receive and send to the bus seri-

ally and the received messages are immediately fetched by host processor. Finally,

transceiver transforms signal level from bust to the CAN controller and vice versa

[5]. Data link layer and physical layer used in the CAN protocol are based on the

ISO 11898-1 standard. Other protocol layers are arbitrary and can be based on the

system developers choice. Application layer, object layer, transfer layer, physical

layer are the main layers of CAN protocol which each of them has speci�c duties.
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For instance, message �ltering and status handling are done by the object layer of

the CAN protocol. The physical layer and electrical details such like voltage and

current levels have been speci�ed in ISO 11898-2:2003. CANopen is a communica-

tion protocol which implements the network layer of this protocol. To have a better

understanding of CAN protocol, readers are encouraged to read [6].

Generally, force control applications demand a heavy tra�c of CAN packets in

the CAN bus. Each individual Bus has a master host node which is basically the

micro controller's transceiver of the CAN cards in the embedded pc. Additionally,

there are couple of device nodes in each individual bus and as a matter of fact, the

number of needed packets is a criteria to aggregate bunch of devices in a single bus.

Furthermore, developer should consider the fact that the number of nodes are also

dependent to the length of the wirings. In our case, three separate CAN bus has

been deployed in the system. Each bus is devoted to a number of devices (nodes) in

the system. Due to limitation for ratio of the number of nodes to the packet tra�c,

a baud rate of 1 Mb/s has been set, which was actually the highest possible option.

The �rst bus is devoted to the four legs of the mobile platform. Since each legs

have two distinct servo motor drive, so there is eight nodes in the �rst CAN bus.

The second bus is devoted to the six joint drives of the Schunk robot manipulator

and the third bus is devoted to the force torque sensor module and the gripper. The

arrangement of the robot CAN buses is depicted in �gure (1.4).

Figure 1.4: CAN Bus arrangement

Robot Manipulator

The installed manipulator on the iMoro is called Powerball Light Weight Arm

LWA 4.6 and is a product of the SCHUNK GmBH. The payload is up to 6 kg and

it needs a 24 V DC power supply. All the integrated control and drive electronics
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are placed inside three ball shaped joint called Powerball ERB and each powerball

provides two perpendicular axes of movement. A powerball diagram and its included

elements are sketched in the �gure ( 1.5).

Figure 1.5: powerball diagram

This actuators are connected to each other through internal CAN buses of the

robot manipulator. Moreover, all the cabling for power supply and CAN bus are

Internal and are done using especial design of SCHUNK GmBH company. This light

manipulator with only 12 Kg weight is designed for mobile application as well as

handling operations.
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2. REAL-TIME SYSTEM

preview

In this chapter, �rstly we will give a brief description over the embedded system

and introduction to the realtime constraints which all have been faced during Imple-

mentation. Then, realtime operating system and their application in mechatronics

system will be illustrated. Furthermore, Linux and its capability to be a realtime

operating system will be surveyed. At the end, a widely used realtime linux called

Xenomai and its architecture will be described in details.

2.1 Embedded systems

Nowadays, computer systems are found in every aspects of human life. In many

cases, they are not even noticed by operator that a computing unit has been included

into the device. The term embedded system is utilized for those system which are

a combination of computer hardware and software as well as a number of mechan-

ical and electrical elements incorporated into the system. Embedded systems are

designed to carry out speci�c jobs. On the other hand, general-purpose computers

have the potential to serve in di�erent applications. General-purpose computers

are used extensively in our daily lives. By the advent of world's �rst microproces-

sor namely 4004 chip which has been introduced by Intel in 1971, an evolution in

computation devices had happened. This chip has been designed in a way that it

could read and execute a series of instructions stored in the external memory chip.

In fact, it was this instruction which was giving the device speci�c features. This

product of Intel and its successors gain lots of attraction from designers. Especially,

because of their applications in the aircraft and automotive control systems, devel-

opers brought embedded PCs in every subsystems of their projects [7]. Nowadays,

there exist plenty of the small embedded systems, they contain a small size appli-

cation or at most a moderate size one. In this dissertation , we are going to cover

bigger embedded devices which typically use RTOS in their structure and have many

applications running simultaneously.
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2.2 Introduction to realtime systems

One subclass of embedded systems are realtime systems and in computer science

disciplinary, it is referred to a system that has time constraints while data process-

ing. In fact, they perform the calculations in a timely manner. These calculations

should be done in a speci�c point in the future. We call these points dead lines. If

the embedded PC misses any of these deadlines, it is a failure. Only Imagine, such a

missed deadlines happens in the auto pilot control system of a landing aircraft with

hundreds of passengers on board. This wrong answer could cause a catastrophic

incident and puts the passengers lives in a hazardous situation. Likewise, in the

robot surgery applications, any missed time-constraints may cause a fatal accident

for the patience whom under the robotic surgery is [7]. In other word, in the realtime

systems, whatever the computations and their results are, they must be done not

only in proper form but also on a speci�c point in the time. Few beginners in pro-

gramming think that the realtime concept means fast performance and it demands

a super fast hardware for calculations. However, a true realtime application can be

performed by a slow and very cheap hardware, which has been designed based on

the realtime considerations. For converting a normal embedded PCs to a realtime

one, we need an operating system capable of performing controls over processing

and time management. In fact, realtiming guarantees the exact execution time of

the critical operations, but not the speed of the operations. In practice, it is possible

that the a realtime operating system scari�es the calculation results in favor of time

constraints to reach a deadline [8].

2.3 Realtime operating systems

In general, an operation system provides principal services to the applications run-

ning on a computational platform. For instance, memory and process management

as well as �le systems are parts of the services which any operation system usually

provides for the user applications. In addition to what just mentioned, facilitating

programs execution service such as process creation and process scheduling is an-

other crucial service, that the operation systems generally should provide. The way

how a program requests a service from kernel is called system calls, they facilitate

interfacing between processes and the operating system.

A computational platform alone, is not a practical controller in an embedded sys-

tem. In fact, these are peripheral device of the PCs that enable PCs to receive data

from the environment (sensor) and send them commands for performing an action
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(actuator). Sensors or actuators of the robot in an embedded system are considered

the peripheral devices or I/O Devices. Various vendors and companies all over the

world produce these interfacing devices. These companies apply standard commu-

nication protocols in their products to facilitate a standard communication between

devices with di�erent vendors. Standard data buses connect these peripheral devices

to the board cards included into the embedded PCs. These electronics board cards

receive the analogue streams of data in low level of physical layers and transform

them in the understandable digital streams to the higher levels of communication.

In other words, electronics cards supply 0 and 1 data for CPU and internal data

bus of the PCs, in a real world which every phenomenon is inherently analogue. In

�gure (2.1), you can see how board cards are connected to the outside world.

Figure 2.1: I/O commutation

Additionally, hardware related services are part of the operating systems duties

based on programs demands. Example of such a services are write access to the

printer and display screen or reading from the interfacing devices like keyboard or

mouse and even communication bus board cards. These sort of service are provided

by the system's kernel which is consist of hundreds of control algorithms. For in-

stance, when an application wants to print some log information for the operator

on the screen, it requests a system call from the operating system's kernel. Then, it

is the duty of the system's kernel to communicate with the hardware and printing

the related information on the screen. In the case of network applications like CAN

communications, operation system commands CAN card to send the CAN packets
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in the CAN Bus.

In the software point of view, these are device drivers that enables operating

system to communicate with device cards. They make a hardware to react to a

de�ned internal programming interface commands. Generally, device drivers are

black boxes that hides the device internal operations to the users. In fact, they map

some standardized system calls to the device speci�c operations. Software engineers

who work in hardware manufacturer companies usually develops these device drivers

because they have better understanding of their hardware design [9] than system

developers. Moreover, vendors usually provide These device drivers for well known

and popular operation systems not for uncommon or scares operating systems which

may be employed by speci�c designers. In the case of using an uncommon OS,

developers are obliged to compose the device drivers themselves. This would impose

an extra burden of overwhelming low-level programmings to the developers.

2.3.1 Linux operating system

To avoid these kind of problems, developers prefer to employ well known and sup-

ported operating system. Linux is a free and open source Unix-like operating system

with the capability of conversion to the realtime operating system. At �rst, it has

been designed for the Intel x86-based personal computers. Linux developer aimed

to make an OS which could show acceptable performance under constant load con-

ditions and had the ability to handle plenty of users in the same time. Linux as an

open source operating system has lots of attributes along with its vast number of

users and developers. These reasons would tempt designers to employ this practical

OS in their designs. Due to these essential features, it is widely utilized in many

robotic applications. Nowadays, even micro-controller versions of linux are used on

many devices run by microprocessor. Moreover, annually hundreds of stable distri-

butions of linux are released in the OS market. Each distribution is based on linux

kernels which are released annually by linux community. These distributions are

customized according to speci�c usability and special users. Due to its e�cient per-

formance, it is a popular operating system in community of meachatronics designers

and system developers. Furthermore, linux community provides new device drivers

form vendor companies as well as application software almost immediately. This

features enable system developers to employ new sensors and devices with various

interface in their design without the need of spending lots of time and e�ort on the

implementation details. Normal linux kernel architecture is depicted in the �gure

(2.2).

As previously mentioned, a mechatronics system must react to the sensory inputs

in a timely-deterministic manner to avoid catastrophic accidents. Let's check that

if a standard linux distribution can achieve this exigent goal of operating system in
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Figure 2.2: Linux kernel architecture

the mechatronics schemes. To this end, number of elementary concepts are pointed

in the following paragraphs.

In standard linux, the processor which is executing a normal task, are warned

from high-priority conditions by interrupts. In fact, interrupts inform the processor

that it is required to cut o� current code execution and advert to another event which

needs attention. Equivalently, each interrupt has its own interrupt handler which is

generally stored in the kernel core code of the operating system. If an external device

emits such a signal, it is called hardware interrupt and if an executing program emits

it, it called software interrupts.

To measure how much a realtime system is accurate, operating system developers

introduce a concept that is called latency. It is the delay between occurrence of a

triggering event and the time that the corresponding program begins to handle it.

For example, interrupt latency is the delay that may occur between an interrupt

and its correspond interrupt handler execution. There are many operations such as

bus connection, cache misses, direct memory access (DMA) which can cause this

delay to occur. To have a better understating over latency, imagine that after an

interrupt handler awake a task to be run, it may take time for the kernel to complete

its ongoing duties and concede the CPU to the task, this delay is called scheduling

latency [8].
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In �gure (2.3), two kind of latency is demonstrated. The �rst one is the time

between the moment which interrupt is sent and the moment which interrupt service

routine (ISR) is awakened and the other one is to the moment in which the task in

the charge of these events is practically resumed back.

Figure 2.3: Latency

As it had been mentioned before, realtime applications respond frequently to the

device interrupts to handle data acquisition process. To have a better understanding

of this interaction, consider the de�nition of Worst-case interrupt latency. It is the

longest time that it is needed for an OS kernel to run an interrupt handler software

corresponds to its pending interrupt. Before designing any realtime software, it is

signi�cant to know that how high and accurate is this latency value for the target

platform that the realtime application is going to run in [8].

We should also consider, while the standard subsystem of linux like virtual mem-

ory management, virtual �le-system layer and the networking stack are performing

their tasks, linux kernel masks the external interrupts for an unlimited amount of

time. In fact, non-realtime linux do it to prevent running concurrent tasks on the

very same processor from attaining non-shareable resource. Therefore, it is possi-

ble to say standard kernel prefer to keep a better throughput over responsiveness.

Throughput-oriented design is best suitable case for the general-purpose operating

system (GPOS). However, as we know a realtime system must be predictable and

as it just mentioned, the potential interrupt latency in the standard linux kernel is

not acceptable for realtime application [8]. As it is widely known, linux is a GPOS

which has been initially designed to share resource fairly among the users.
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Furthermore, today's realtime applications are constantly in interaction with non-

realtime software and OS services. Furthermore, any mechatronics designs demand

couple of conventional OS services such as networking capabilities as well as richness

in implemented hardware driver which are inherently features of a GPOS. Tradi-

tional RTOSes don't encompass these features and designers must think of some ad

hoc solution for them. Based on what has been mentioned above, system designer

tried to add realtime capabilities to a viable GPOS like linux. In the following

section, the concept of the realtime linux (RT linux) and possible architectures are

surveyed.

2.3.2 Realtime linux

Actually, linux alone is not a realtime system, albeit it is possible to install a

realtime micro kernel beneath linux kernel and run the realtime applications on

it. In this case the realtime kernel has a higher priority than the normal linux

kernel. In RT linux, realtime programs are made by creating realtime threads which

are also called realtime tasks. Moreover, non-realtime programs are put in normal

linux threads. Realtime micro kernel puts realtime tasks in the execution line and

when there is no realtime task on the line of execution, normal linux programs are

allowed to run. Actually, normal linux kernel is just an idle task for the realtime

scheduler and only when the realtime kernel scheduler concedes the CPU to linux,

it can execute its own scheduler and manage its own normal processes. Whenever

a realtime task is ready to run, normal linux process is preempted by the realtime

scheduler and the realtime task is executed immediately.

Mechanisms of interrupts in realtime linux

Basically, in multitasking computing, interrupts �ow is a common technique for

rescheduling higher priority tasks. They can be considered as the computer heart-

beats. Schedulers as process management unit of the kernel and is driven by the

timer interrupts from an internal clock in certain periods. A well-granular inter-

rupt timer makes the system more accurate and provides more rescheduling point

to handle the realtime tasks.

There could be some case where a normal linux thread is on execution line and on

the same time a new interrupt which is corresponding to a waking realtime task

arrives. At �rst, an interrupt handler set by the realtime kernel handle the inter-

rupts and it awakes the realtime task corresponds to interrupts. Then, the realtime
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scheduler which is also called by interrupt handler code, perceive that a realtime

task is ready to run and then, it sets the linux kernel to sleep mode and set the

realtime task in execution line.

Furthermore, there are some weak point of interrupt follow concept. Consider that

the realtime kernel preempt a higher priority task after receiving an interrupt from

a lower priority realtime task. After kernel resume this low-priority task execution

and concede the CPU to that, then it realizes that the lower priority task is on

the execution. However, it can not immediately stop this task and switch to high

priority one. Hence, High priority task has to wait until kernel reach to the next

rescheduling point. Mentioned case is a common problem which is called priority

inversion and is one of the most complicated problem in realtime programming sub-

ject. Su�cient rescheduling points make a realtime operating system victorious to

insure a limited scheduling latency [8].

Providing many rescheduling points for a realtime kernel enables it to switch as

soon as possible between tasks and activates high-priority task that needs attention.

Needed time for this switch is called the preemption granularity and worst-case dis-

patch latency is the longest time that it takes for a kernel to accomplish a pending

rescheduling. In past, rescheduling could be done only when kernel duties have been

�nished and it was out of kernel context. In other words, while kernel was perform-

ing activities in order to accomplish a demands from an application or a system

call, it wouldn't stop anything to resume a high-priority task to execution. Robert

Love who is an open source software developer initiate a new approach in linux

kernel which enables it to be preempted while performing its internal duties, this

approach is called preemptible kernel support. It has been included into linux 2.6 as

a standard feature [8].

Considering what has been mentioned above about possible mechanism of a RT

linux, numerous versions of RT linux are suggested during last decade. Three most

important, common and free RT linux-based OS are as follow:

1. Realtime Application Interface (RTAI).

2 .RTLinux.

3. Xenomai ( It is basically a new version of RTAI linux)

In the following section, Xenomai operating system is surveyed with more details

and some information over Xenomai skins, scheduling mechanisms and realtime

object are given.
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2.4 Xenomai Project

The Xenomai project has begun in August 2001 to facilitates porting of the

realtime industrial program to a free linux-based operating system while keeping

realtime constrains. Gradually, it adds supports of di�erent computer architecture

in embedded platforms such as PowerPC32, PowerPC64, Black�n, ARM, x86, x86_

64 and ia64. As it has been mentioned in the previous sections, this OS is based on

a small co-kernel patched into a standard linux kernel and runs beneath it on the

same computer hardware.

Scheduler, realtime objects, services are the components that has been built into

the Xenomai's kernel on the top of a nucleus. Nucleus provides a set of traditional

RTOS services for realtime objects which has been implemented into the Xenomai.

These objects are basically kernel constructs such as tasks, semaphores and message

queues which assist developers to create realtime applications [10]. On the top of

the Xenomai nucleus, number of generic building blocks called skins are provided.

These blocks provide traditional APIs of the RTOSes and they include the speci�c

interfaces to the realtime objects which has been created by the realtime framework.

The following skins on the generic core of Xenomai are included :

• POSIX

• pSOS+

• VxWorks

• VRTX

• Native

• uITRON

• RTAI

Now, this question may arise that why these skins are introduced in the Xenomai's

structure?

Generally speaking, while importing realtime software application codes to a RT

linux, the main columns of these software applications do not experience substan-

tial changes. Speci�cally, realtime APIs of RTOS which are considers these main

columns of a realtime application software. In fact, a realtime API does mean certain

speci�c semantics and represents particular behaviors in an application. Further-

more, action line of these applications are often depend on the structure of these

OS API. In other words, whole operation of an application could be manipulated if

a set of similar APIs from another OS is used instead of original ones. For instance,

two realtime APIs from two di�erent OS may be similar super�cially. Although,
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Figure 2.4: Xenomai Architecture

they still have some subtle di�erences which could change the way applications ac-

tually behave if the original system calls have been simply mapped to their closest

equivalents in the target environment [8]. In �gure 2.4 Xenomai Architecture is

depicted.
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3. FORCE CONTROL OF MANIPULATOR

preview

At the beginning of this chapter, we present robot manipulator applications in

the modern industry and then the control models and dynamic of manipulator is

covered. Then, various force control strategies are described brie�y and at the end,

the compliance control model is described in more details.

3.1 Industrial robot manipulator

In last decades, robot manipulators are one of the crucial devices which have been

used in the automation lines of a modern factories. Fast production rate and low

maintenance expenses caused vast utilization of these robots in the industry. Due to

the advances in technology and evolution of the sensors and advent of the modern

sensor (e.g. force torque sensor) as well as emerging of more powerful computation

units, the implementation of more advanced operations like contact tasks are feasible

now. It is worth mentioning, that the contact tasks are those in which the robot

manipulator either grasps or pushes a workpiece in the work cell or perform an

operation in which an speci�c amount of force or torque are needed. For instance,

grinding, assembling and deburring are the tasks where the mechanical interaction

between robot manipulator and environment is an important issue. Furthermore,

modern robots must have the ability to work more closely with the human and even

in the case of medical robotic application, they sometimes are employed to interact

with the human soft body tissues.

Control of the robot manipulators demands a good understanding of their math-

ematical models. In the following sections, motion control models as well as dynam-

ical models of the manipulator is studied to clarify the underlying concept of the

force control strategies.

3.2 Motion Control Models

As we know, the robot manipulator is composed of many segments, such as links,
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joints, actuators, sensors, data buses, power supply, actuator drives and the main

controller which could be an embedded PC equipped with a RTOS. The mechan-

ical structure of a manipulator comprises a sequence of links which are connected

through joints. According to the desired planed task, a tool or sort of end-e�ector is

attached on the tip of the manipulator. Joints are independently driven by means

of motor actuators to provide maneuverability and �exibility for the manipulator

to perform complex tasks in a spatial space. Joint values are measured by the en-

coders to enable the implementation of a servo control system in each individual

joint. There is a kinematic relationship between the position and orientation of the

robot Manipulator's end-e�ector and the joint values.

These equations are usually dependent on the relative geometrical situation of

the joints in the space and also the length of the connecting links. Whenever the

joint values are known, the end-e�ector position and orientation can be calculated

by substituting the joint values into the forward kinematic equation.

Pe = Pe(q) (3.1)

And for the orientation we have:

Re = Re(q) (3.2)

where q is a (6 × 1) joint value vector and Pe is the desired position which in

fact, is a (3× 1) vector. Additionally, Re is a (3× 3) rotation matrix describing the

origin and the end-e�ector desired orientation frame.

On the other hand, whenever an end-e�ector position or orientation are desired,

the inverse kinematic equation can be solved to obtain the joint values equivalent to

the desired position. In the latter case, there could be multiple solution which one of

them needs to be selected by the robot controller based on the initial con�guration

of the manipulator. Generally speaking, keeping tool center point of a robot on a

desired path is called motion control. In the case of no contact force, the customary

way of solving such a problem is to �nd the desired joint values by solving inverse

kinematic equation according to the given end-e�ector position and orientation in

the space. After that, desired joint values are sent as the input to the designed

controller of the joint actuators. This strategy is called kinematic control [11].

To obtain the governing equations, we need to de�ne the following conventions.

Let's assume that q̇ denotes the time derivative of the joint values, Ṗe denotes the

(3× 1) linear velocities of the end e�ector and ωe denotes (3× 1) rotational velocity

vector of the end e�ector. So, we can show the end e�ector velocity of the robot

with ve and de�ne it in the following equation.
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ve =

[
Ṗe

ωe

]
(3.3)

Joint values derivatives could be separated from the left side of the above equation

and therefore, it can then rewritten as below:

ve = J(q)q̇ (3.4)

Where J is the (6 × n) Jacobian of the end e�ector which is dependent to joint

values and the length of the manipulator's links and type of the connecting joints.

This can also be written as below.

J =

[
Jp

Jo

]
(3.5)

By this, we can separately study the contribution of the joint space velocities to

the linear and angular velocities of the end e�ector in the Cartesian space. Where

Jp is the Jacobean e�ecting on the linear velocities and Jo is the Jacobean e�ecting

on the angular velocities.

Singularity

By obtaining the Jacobean matrix, we have linear transformation which relates

the joint velocities to the cartesian velocities. Now, let's consider the inverse rela-

tionships of the equation (3.4) which leads to the following equation.

q̇ = J−1(q)ve (3.6)

As you can see above, in equation (3.6), the inverse of the Jacobian is utilized to

calculate th necessary joint velocities to accomplish the desired cartesian velocities.

In such a situation, a question could be posed that if the Jacobian matrix is invertible

for all value of q? on the next step, we calculate the q vectors on which Jacobian

matrix is not invertible. Such a q is called singularities point of the robot which are

inherently dependent to the robot architecture [12]. There are two di�erent type

of singularities, the �rst type is called workspace-boundary singularities which

happens at the end of the workspace limits of the robots when the arm is completely

stretched out and the other one is called workspace-interior singularities which

usually happen when two or more joint axes are lining up [12].
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3.3 Dynamics of the manipulator

So far, we have focused only on the kinematic considerations of the manipulators.

In this stage, we also consider the external forces applied to the manipulator as

well as the torques applied by the actuators, in motion equations . There are two

type of problem in the study of manipulators dynamics, the �rst one which is called

Inverse Dynamics and is when a trajectory of points and velocities are given and

joint torques are required. The other type of problem is called Forward Dynamics

and is the case when the joint torques are given and the resulting end e�ector mo-

tion variables are desired[12]. It is worth mentioning that, the solution to the �rst

problem possess a crucial importance in control point of view.

There are two approach in deriving the dynamical equations of a manipulator,

the �rst one is the Newton-Euler approach which is based on two basic dynamic

laws namely newton's second law and Euler formula. It is based on the analysis of

forces and moments of the links. The other approach is called Lagrangian dynamic

formulation. This approach is base on a energy point of view. The �nal results of the

both approach are similar, however as it is widely known the Lagrangian dynamic

formulation is briefer and faster[12]. In the following paragraphs the Lagrangian

approach is illustrated in more details.

As it has been mentioned before, Lagrange equation is derived from the potential and

kinetic energy calculations of the mechanical systems. It is shown in the following

equation.

d

dt

∂L
∂q̇i
− ∂L
∂qi

= ξi i = 1, ..., n (3.7)

where,

L = T − U (3.8)

ξi is a general force at the joints of the manipulator, type of this general force

depends on the utilized joint type in the manipulator architecture. This general

force is considered force in prismatic joints and torque in revolute joints respectively.

Moreover, L, the Lagrangian variable is the di�erence between kinetic energy and

potential energy of the dynamic system that we consider.

Potential and kinetic energy of the system can be calculated based on the en-

ergy equations of the bodies. By substituting them into the equation (3.8) , the

Lagrangian expression can be obtained. Then, by substitution of the Lagrangian

expression into the equation (3.7) the dynamics equation of the manipulator is ob-

tained. The general form of this equation is usually as follow.
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B(q)q̈ + C(q, q̇)q̇ + g(q) = ξ (3.9)

Where, B(q) is the (n×n) inertia matrix of the manipulator, ξ is a (n×1) vector

of the torques exerted on the joints, g(q) is the torques exerted on the manipulator

caused by gravitational forces of the manipulator links and C(q, q̇)q̇ is a (n × 1)

vector of the torques caused by Coriolis and centrifugal forces.

Now, let's consider the elements of the general force ξi in the equation 3.7 in more

details. ξi can be decomposed to the following elements.

ξ = τi − τfi − τei (3.10)

Where, τi is the torque exerted on the joint i by the driving mechanism which

it can be the combination of a servo motor with a gear or a timing belt or even in

some speci�c cases only a motor and a coupling. τfi is the torque caused by the

frictional forces in the joint i of the manipulator and the τeiis torque on the joint i

which is the e�ect of the external contact forces or the moments exerted on the end

e�ector from the environment.

While modeling τf we only consider viscous friction for simplicity. By de�ning F

as a diagonal matrix of the friction coe�cients we can write as bellow.

τf = F q̇ (3.11)

Now, by applying the virtual work principal and based on the application of the

Jacobean matrix, we can write the τe as follow.

τe = JT (q)h (3.12)

Where JT (q) is the Transpose of Jacobean matrix and h is the external force and

torque matrix which is de�ned in the following way:

h =

[
f

µ

]
(3.13)

Where, f is a (3× 1) force vector exerted on the end e�ector of the manipulator

and µ is a (3× 1) moment vector exerted on the end e�ector.

By substituting (3.12), (3.11) in the (3.10) and using the result to substitute in

the dynamical model equation which has been developed earlier in (3.9), we will

have a more general form of the manipulator dynamical model as follow:

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ − JT (q)h (3.14)
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This equation is a basis for the further study of force control theories which are

going to be described in the following sections.

3.3.1 Static model-based Compensation

Consider that our task is to move the robot manipulator to a desired position through

controlling torques exerted by the motors at the joints. Note that, for the simplicity

we only consider position, linear velocities and forces on the end e�ector. Orientation

and rotational velocities and moment on the end e�ector is an option for further

developments. To this end, let's denote the desired position of the end e�ector by Pd

and the actual current position of the end e�ector by Pe. In addition, the position

error is de�ned as below:

∆Pde = Pd − Pe (3.15)

Now, using mechanical intuition, suppose that for moving the robot end e�ector

toward Pd, we need to exerted on the end e�ector, an equivalent controlling force γp.

This equivalent force can be chosen to a proper action proportional to the position

error.

γ = Kp∆Pde (3.16)

Now by considering the equivalent controlling force, the joint torques could be

estimated as follow:

τ = JTγp −KDq̇ + g(q) (3.17)

Where JT is Jacobean Transpose matrix, g(q) is the compensation of the static

gravity torque and the term −KDq̇ is designed to improve the transient response of

the system and provide damping torques which can be tuned by changing the gain

values in KD that is a (n × n) matrix. The control scheme based on the (3.17) is

called proportional derivative control with gravity compensation.

Now, let's �nd the dynamical behavior of the system after closing the control loop

using this scheme. So, by substituting (3.17) into (3.14) we will have the closed-loop

dynamical response as follow:

B(q)q̈ + C(q, q̇)q̇ + (F +KD)q̇ = JT (q)γp (3.18)

As you may know, Stability is the most important issue when a controller is

suggested. To check the stability of this closed-loop controlled dynamical system

the following Lyapunov function is suggested:
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ν =
1

2
q̇TB(q)q̇ + Up (3.19)

The �rst term in the equation(3.19) is the kinetic energy of the manipulator and

the second term is considered as the potential energy of the manipulator which is

related to the position error of the end e�ector and it can be shown as follow:

Up =
1

2
∆P T

deKp∆Pde (3.20)

Then the whole system is stable with the proof given in [11].

3.4 Force control strategies

Controller of the normal industrial robot manipulators are usually programmed

using a motion control scheme, this enables them to accomplish non-contact tasks

like welding or spraying. For this kind of controller, one can de�ne only desired

trajectory of tool center point which has been pre-programmed before run-time.

However, In some applications, it is more important to precisely control the con-

tact forces applied by the end-e�ector on the environment rather than controlling

the robots positioning. In this type of applications, a force control scheme must be

integrated to the motion control scheme. Experiences have shown when the contact

forces exist in a robotic operation, using merely motion control scheme is not fea-

sible. For instance, in the case of hard contact surfaces, a small position error can

lead to a big growth in the contact force and consequently causing a deviation of

the TCP from the desired position. On the other hand, the control system reacts

to compensate this error, and ultimately this interaction can cause unstable oscil-

lations in the system and �nally leads to huge contact forces until the saturation

of the joint actuators or even breakage of the parts in the worse possible cases[11].

In this situation, even apparently easy contact tasks like wiping a surface could be

inherently complicated. [13].

This issue can be solved if a compliant behavior while interaction with the envi-

ronment is employed. This could be accomplish in two di�erent approach, passive

compliant method and active compliant method. The passive one can be obtained

by installing a soft and �exible mechanical device (e.g. made of some spongy ma-

terial) on the end-e�ector in contact to the environment, and the active might be

obtained by employing a way to measure the interacting force along with a proper

control strategy [11]. Although, in some speci�c situation, if the interaction task

have been accurately planned, it could be performed using only the motion control

schemes. To this end, a precise model of both the robot manipulator and the inter-

acting environment is required. It is notable that, modeling a robot manipulator is

much easier job than modeling the interacting environment [11].
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As it has been mentioned above, a proper force control strategy along with a

way of measuring the external force are the keys to achieve a force control schemes.

Basically in these schemes, the output force or torque which are applied by the

end-e�ector on an external object, are controlled to the desired force value. In some

other cases, whole the robot manipulator shows a desired behavior to applied force

to its end-e�ector.

To measure the interacting force, a force torque sensor module (FTM) can be

mounted on the robot manipulator, typically between the wrist and the end-e�ector.

The exerted forces and torques on the end e�ector are changed from the contact

surfaces to the digital signals by means of strain gages installed on the sensor internal

structure. After that, they are usually sent to a data bus to be used to close the

force control loop in a digital PC-base controller[11].

Furthermore, force control schemes are similar to the position control schemes,

but the complication in force control comes from the fact that the robot needs to

follow a speci�c trajectory in the space in the speci�c directions and meanwhile a

force control strategy must be performed in other directions. For instance, when

a robot is polishing a surface, a speci�c amount of force is needed in the direction

perpendicular to the surface and at the same time in tangent direction of the surface

a position control strategy should be hold. Therefore, in the reality, the force control

is a hybrid force/position control.

3.5 Direct and Indirect Force Control

Force control strategies can be categorized into two di�erent group. The �rst group

is indirect force control and the other one is direct force control. In the �rst one,

force control is achieved via an inner loop motion control, but without explicitly

using closure of force feedback loop and in the second one contact force is controlled

directly to achieve desired force vector, by use of a force feedback loop.

In fact, if a proper model of the interacting environment has been formerly ob-

tained, control methods of the second category is a feasible and viable choices. To

clarify that , hybrid position/force control method which lies in the second category

can be depicted. This method is designed in a way that the position is controlled in

the unconstrained directions and force is controlled along the constrained directions.

In the planar surfaces, a switching matrix is employed to select the proper control

approach(position or force control) according to the model of the surface, while in

a general curved surfaces task, a de�nite constraint equations must be utilized to

achieve a proper control action[14].

However, As it has been mentioned earlier, obtaining a precise and detailed model

of the interacting environment is not a straightforward task. Albeit, there is still an

e�ective scheme in the �rst category which is called inner/outer motion/force control
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and can be used in such a situation. In this strategy, a force control loop is closed

around a position control loop and in the case of no contact force (unconstrained

task), the desired input motion of the TCP is the input signal of the inner motion

control loop. Via this control structure, the force and motion control are active in

a parallel way ,whiles the motion control section of the scheme is dominated by the

force control section to ensure force control in the case of contact force [15], [16].

3.5.1 Indirect Force Control

Another type of force control strategy is achievable through motion control schemes

and these strategies are basically grouped in the indirect force control category.

For instance, compliance control and impedance control are achievable by using only

motion control with some small modi�cation in the structure. In this type of strategy

the position error is directly associated to the contact force and torques through a

group of tunable variable which de�ne the behavior of the manipulator. In another

words, these variable determine how a manipulator reacts to an external excitation.

The general form of these behavior is identical to a dynamical system, composed of

spring, damper and mass. These approaches will be described in more details in the

following sections.

Compliance control

Active compliance control is categorized under the indirect force control schemes and

it is also called sti�ness control. As it has been mentioned earlier in the previous

section, indirect force control schemes are based on the idea of controlling the force or

moment through changing the position or orientation of the end e�ector. Moreover,

it has been mentioned that we can design the controller in a way that the whole

dynamical systems shows an speci�c behavior to the force excitations.

To illustrate this issue, it is worth reanalyzing the static model-based compensa-

tion control approach which has been covered earlier in the section (3.3.1). Consider

the position error de�nition in the (3.15) as well as choosing γ in the (3.16) to sub-

stitute in the equation (3.17) which was the control action estimation of torques.

The proper torque estimation will be as follow:

τ = JTKp∆Pde −KDq̇ + g(q) (3.21)

Now by assuming steady state condition (q̇ = 0, q̈ = 0) and substituting the

control torque estimation into the system dynamical equation (3.14), the response

of the system to this speci�c control action will be as follow:

JTKp∆Pde = JTf (3.22)
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Now, let's assume that the Jacobean is a full-rank matrix, therefore we can rewrite

the equation (3.22) as below:

∆Pde = K−1
p f (3.23)

The equation(3.23) indicates that the manipulator in the steady state condition,

responds to the contact forces on the end e�ector similar to a spring and make a

position error correspond to the exerted force. K−1
p is called Active compliance and

one can tune its element to change the sti�ness of the manipulator springy behavior

and ensure the compliant response of the controlled system. Using the equation

(3.15), we can rewrite the equation (3.23) by the force as follow :

Xe = K−1
p f +Xd (3.24)

Control system architecture of the compliance control is depicted in the �gure(3.1).

Figure 3.1: Compliance(Sti�ness) control architecture

The properties of the environment surface can in�uence the selection of the el-

ement of K−1
p . In this project sti�ness control scheme has been implemented on

a Schunck robot manipulator. In the following chapter, we will describe how this

control method has been implemented in the robot manipulator.
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4. IMPLEMENTATION

Firstly in this chapter, we are going to describe the simulation scheme of the control

strategy which has been illustrated earlier and then, the methodology of implemen-

tation is depicted brie�y. Finally, the implementation process of the control theory

which has been mentioned in the previous chapters will be described in more details.

4.1 Simulation of controller performance

After a precise study on the theories of the manipulator force control and describing

the conventional strategy of solving the force control problems in the robotic world,

some of these control schemes have been simulated using the Simulink environment

of the MATLAB. This will help us to anticipate the behavior of the force controlled

manipulator under the di�erent excitation contact forces. To this end, �rstly we

need to model the dynamic behavior of the servo controlled joints of the manipulator

mathematically. Namely , the response of the joint control systems to a change in

their desired position has been modeled as a conventional second-order dynamic

system with a mass, spring and a damper. By tunning these variables, the desired

behavior of the manipulator such as response time, rise time and bandwidth are

achievable. In the next section compliance controller is simulated.

4.1.1 Simulation of compliance controller

After obtaining a rough mathematical model of the joint controlled manipulator,

other elements of a force control system are modeled. To this end, excitation force

and motion control elements are also modeled mathematically in the simulation

software. Now, by placing previously designed compliance force controller from

equation (3.24) into the modeled system, we can simulate the behavior of a compli-

ance controlled manipulator under di�erent forms of excitation force. As it has been

illustrated earlier, the output vector of a compliance controller is in the cartesian

space and the input to a robot manipulator motion controller is vector of desired

joint values. Moreover, we consider that we need to send joint value commands to

the servo controllers in an speci�c manner, to this end, a motion planner block is

usually added to the controller of industrial robots. In our simulation, it was not

necessary to design a substantial and practical motion planner sub-system model.

However, in the implementation phase on the SCHUNK Arm designing such a block
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is a mandatory step. The elements of such a block will be described later. The

simulation architecture and blocked are depicted below in the �gure (4.1)

Figure 4.1: simulation architecture

Now, let's describe the procedure of the simulation, at �rst an initial position and

orientation is assumed for the manipulator and based on them, joint values of the

manipulator are calculated using inverse kinematic. As we know, if a springy behav-

ior is desired, an equilibrium point must be de�ned for the manipulator oscillations.

In this case, we assumed that TCP is located at [x=50, y=30, z=100] with respect

to the robot base frame. Additionally, we assumed that a vector of excitation force

is exerted on the TCP. The following �gure illustrates how the excitation force was

selected.

Figure 4.2: Excitation Forces

As you can see in the �gure (4.2), the excitation force are exerted in three direction

in the cartesian space with respect to the axes of the base frame. Force magnitude

is [25 30 40] and the excitation frequency is [3 2 1].

For the �rst experiment, we set the the sti�ness factor of the compliance controller

to the 10 and run the simulation.

As you can see in the �gure (4.3) the compliance position of the end e�ector is

oscillating corresponds to oscillations in the excitation forces. Note that, the bigger

force magnitudes would cause the the bigger oscillation amplitude of the end e�ector

position.
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Figure 4.3: Compliance Controlled With K=10

Now, For the second experiment we set the the sti�ness factor of the compliance

controller to the 1 and run the simulation. here is the result :

Figure 4.4: Compliance Controlled With K=1

As you can see in the �gure (4.4) by decreasing the sti�ness factor of the controller,

the robot show a softer response to the external forces and it is possible to change

the position of the end e�ector with a smaller force. In other words,the pliability of

the springy behavior has been increased.

Now, let's see what if the sti�ness factor is set to 100 in the �gure , the resultant

has been shown in �gure (4.5), as we can see a sti�er response of the manipulator

to the external forces.

4.2 Implementation methodology

Developing mechatronics systems means intergeneration of the various areas of sci-

ence in a single system. A system developer needs to �rstly study and comprehend
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Figure 4.5: Compliance Controlled With K=100

the theory which leads to a viable and feasible solution of the problem. Then, she

or he implements the results of his e�orts on the intelligent system whose intelli-

gence come from a means of embedded controller. In general, system developers

must have a good commands of the computer science, speci�cally in the computer

programming languages. Furthermore, there are mathematical tools like MATLAB

and Simulink which provide ready to use functions and algorithm to facilitate devel-

oping control theories. Although, these high level programming tools aren't suitable

when a realtime tasks in realtime operating system is developed[17]. In this regard,

several research has been done to provide a framework to facilitate code generation

of the realtime system in MATLAB.

In fact, the most complex task while developing such realtime systems is inter-

facing the computational controllers developed in a mathematic tool like MATLAB

with the data buses of sensors and actuators. To this end, data bus card driver

like CAN or serial port which are provided usually by manufacturer must have the

ability to work in realtime operating system under realtime constraints. Developing

control layers and strategies merely in traditional C, C++ environment demands a

lot of time and e�orts. Although, in this situation, it would be easier for system

developers to integrate device drivers to the control application.

In this section, a software development environment will be described which will

enable us to develop realtime control application of a mechatronics system on the

Matlab and Simulink Softwares. In this method, there are two PC involved, the

one which is called developing PC and the other one which called target PC and

play the role of embedded PC to host the execution of the control application.

The developing PC hosts a MATLAB software whose all the code generation tool

boxes installed with. Generally speaking, a realtime specialized for realtime linux

(in our case Xenomai) is generated from a Simulink project. The generated code is

conveyed to the Target PC and is compiled there versus realtime libraries. Finally,
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a standalone control application is created from the generated source codes [17].

As it has been mentioned earlier, the most complex job is the integration of the

device drivers and the control applications. To this end ,an interface applications is

incorporated into the code-generation Sumulink project. As you may know, these

interface applications are usually developed using C, C++ and they are related to

their API library which the manufacturer provides with device driver for the devel-

opers. To integrate interface applications into Simulink model, They are needed to

turn into Simulink block libraries. This can be done using S-Function programming

which is a attribute of the MATLAB software [17]. In fact ,S-functions can repre-

sent as a Simulink block. In the case where, the interface applications are developed

earlier, S-functions are generated using Matlab Legacy Code Tool and TLC �les. In

code generation process, the interface code which is extracted for the S-function is

connected to the main body of the generated code [17].

4.3 Detail of implementation

The methodology which has been used to implement the force control theory has

been described in the previous section. Based on the system architecture which

was described in the section (1.1), detail of implementation will be illustrated. The

universal control application of this manipulator is run on an embedded PC which

we call it Black box pc in our convention. As it was mentioned earlier in (1.1), a

realtime operating system kernel called Xenomai is installed on the top of a linux

kernel in the black box embedded pc.

This operating system provides realtime services and realtime environment for

control applications to run with hard realtime constraints. Additionally, this em-

bedded pc has two built-in CAN card and two Ethernet card ports. As it is widely

known, the Ethernet connection is necessary for SSH or SFTP communications.

Developer can transfer their realtime control applications sources which have been

developed previously in developing PC to the black box and then compile and run

it in Xenomai environment.

The controller is connected to other parts of the system through 2 CAN buses.

One of them is devoted to manipulator drives and the other one is reserve for the

Force Torque Sensor Module and Gripper. Force Torque sensor Module (FTM) is

installed on the robot arm between the 6th joint and the end e�ector which in our

application is a gripper. In the following picture the CAN port plate of the Schunk

manipulator is shown.

Note that, the CAN buses baud rates are set to 1 Mbit/s. The baud rate con�g-

uration is dependent on the vendor of the CAN card. It could be either con�gured

in the Service Application which will be run beside the control application or in the

realtime operating system RTCAN �le.
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Figure 4.6: CAN port plate of the Schunk manipulator

There exist two service applications run on the embedded pc beside the generated

control application. They are developed in C programming language using realtime

API which is provided by Xenomai. These applications are deigned to convey the

data between the CAN buses and realtime control application. Realtime queues are

implemented in the service application to provide IPC tools. They are binded by

the previously implemented queues of the interfacing part of the control application.

As it has been mentioned earlier in methodology section, the C, C++ project

of the controller application has been generated from a Simulink model using the

Simulink coder toolbox of Matlab. This simulink model contains several S-functions

which have been developed using Legacy Code Toolbox of Matlab. These S-functions

are basically the implementation of the realtime queues which in fact is not possible

to implement in Matlab environment. The legacy code tool creates S-functions from

the formerly developed C or C ++ codes.

These codes are usually device drivers and basically they are dependent to the

vendors or the operating system APIs. Created S-function can be incorporated to

the Simulink model of the controller and then using Simulink coder an appropriate

C code can be created to run on the embedded PC.

In our case, the generated code is transferred to the embedded PC, where using a

generated make �le which again has been created by Simulink coder can be compiled,

linked and run respectively. Development scheme and system outline is depicted in

the �gure (4.7). As you can see in the �gure, CAN buses are depicted with the

blue line and the red line represents the Ethernet connection for SSH or SFTP

communications.

The software architecture of the system is depicted in the �gure ( 4.8). As you

can see in this �gure, the control application consists of two main part, the control
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Figure 4.7: Development scheme

algorithms and the interfacing application. The procedure of obtaining the interfac-

ing application and its performance has been described in the previous sections. It

was also mentioned implicitly that, what are its control layers and how the control

algorithm works.

4.3.1 Force Torque Sensor Module

Force/Torque sensors has extensive applications in the industrial robotic and re-

search projects. They are employed in various applications such as product testing,

robotic assembly, grinding and polishing in the industry. Robotic surgery, rehabil-

itation, haptic and neurology research are also related application of these sensors.

Basically a force/torque sensor system consists of strain gauges and the gauge values

are related to the amount of force and torque exerted to the sensor module. Strain

gauges of the force-torque sensor are installed in a speci�c manner on a particular

mechanical structure inside the sensor module. Their analogue signals are usually

converted to the digital signal via the micro-controller built into the module.

Then,the raw signals are sent through the communication buses to an embedded

pc or some sort of controller unit to serve as sensory data in a control level layer.

These sensors mostly need reliable and high-speed data transmission protocols to

communicate with the controller.

In the controller unit, these raw signals are captured in a realtime manner. Then,

using an initial calibration matrix, gauges values are related to the amount of the

force and torque exerted to the sensor module expressed in the sensor coordinates.
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Figure 4.8: Software Architecture

Usually, measured force and torques values are extremely noisy and contain bias

values and a variable gravitational force value. Before utilization of this sensory data

in the control layer, they must be calibrated accurately. To calibrate sensor values,

basically we need to reduce the bias values from the read values. Additionally,

the gravitational compensation terms must be applied to the remaining values to

neutralize FTM weight e�ects.

To illustrate that how noisy the acquired data was, �gures (4.9) and (4.10) are

provided.

In �gure (4.9), we can see the force values of non-calibrated data sample captured

from a FTM.

This data has been obtained when the joint values were
[
30 −30 0 0 −40 0

]
.

As you can see they are too noisy and inaccurate it is. Furthermore, the equivalent

torque values captured from the FTM is shown in the below �gure as well.

In the following section, underlying mathematical equations in the FTM calibra-

tion and relevant process are discussed in more details.

4.3.2 Force torque sensor calibration method

In our method, force torque module values are acquired in two di�erent position

and orientation of the robot. Then to reduce the noise of data, an average value



4. Implementation 35

Figure 4.9: non-calibrated force data sample of the FTM

is taken over the acquired time period. Then, the derived equations are solved

using captured data in two position by a non-linear numerical solver. Now, let's

consider the governing equation in the FTM calibration. As we mentioned earlier,

in each sampling time, values read from the strain gauges are multiplied to an initial

calibration matrix. Resulted vector is a vector whose �rst three elements are force

exerted on the sensor and its last three elements are exerted torques and all of them

are expressed in the sensor frame. Read value Fread before calibration is assumed to

include the following terms.

Fread = Fex + Fbias + Fgrv (4.1)

Fex is assumed to be the exerted force on the FTM, Fbias is assumed to be a

constant term which is usually depend on the mechanical installation. The �nal

term is Fgrv which is the gravitational e�ect originating from the weight of the

module top section and the gripper to the the strain gouges.

As it has been mentioned in the sensor speci�cation, the output signal of force

torque sensor is expressed in the sensor frame coordinate. Although, the relative

orientation of the sensor frame and the joint frames of the manipulator is unknown.

hence , in addition to the force biases, the frame orientation should also be obtained

to calibrate the FTM and accordingly getting more accurate sensor data.

Now, if no external force is exerted on the FTM which means Fex = 0 ,we can

rewrite the equation(4.1) in the sensor frame as follow:
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Figure 4.10: non-calibrated torque data sample of the FTM

SFread = SFbias + S
UR

U

 0

0

mg

 (4.2)

The SFbias is a vector which is expressed in sensor frame and it can be shown as

follow:

SFbias = U

fbxfby
fbz

 (4.3)

Based on representation law of rotation matrix we can rewrite S
UR as follow:

S
UR = S

5R
5
bR

b
UR (4.4)

S
5R in equation (4.4) is the rotation matrix between the sensor frame and the

frame on the joint number �ve. 5
bR in this equation is the rotation matrix of the base

frame of the robot with respect to �fth joint frame which can be calculated easily

by substituting joint angles in the forward kinematic equation of the manipulator.

The last term in above equation is b
UR which is the rotation matrix of the world

frame with respect to the base frame of the robot. As we know the direction of

the weight vector is along the Z axis of the world frame , as we know, the base

frame of the manipulator and the world frame are not coinciding. In fact, the exact

orientation of the base frame to the earth frame is vague. Hence the rotation matrix
b
UR is considered as our unknown variables. Now, let's consider each element of the
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equation (4.4) individually.

Firstly, in considering S
5R let's assume that the Z axis of the �fth joint frame and

sensor frame are in the same directions. Therefore, we can say that only a single

rotation angle above z axis is enough to obtain S
5R , hence we can write as follow:

S
5R =

cos(θ5S) −sin(θ5S) 0

sin(θ5S) cos(θ5S) 0

0 0 1

 (4.5)

As we know the second term in equation (4.4) is dependent to the manipulator

joint value or in other words it depends on the position and orientation of the manip-

ulator end e�ector. b
UR is the dependent strongly on the way that the manipulator

has been installed on its platform and we consider the general form of the rotation

matrix between the base frame and the world frame. In addition, by considering the

equation ( 4.2) we can see this matrix is directly multiplied into the weight vector

which is expressed in world frame U

 0

0

mg

. hence the resultant vector would be as

follow:

S
5R =

 −sin(p)mg

cos(p)sin(r)mg

cos(p)cos(r)mg

 (4.6)

where p and r are the pitch and roll rotation angles of the manipulator base frame

and the world frame.

Now, by substituting result of equation (4.4), (4.5), (4.6) we can rewrite S
UR as

follow:

S
UR =

cos(θ5S) −sin(θ5S) 0

sin(θ5S) cos(θ5S) 0

0 0 1

 5
bR

 −sin(p)mg

cos(p)sin(r)mg

cos(P )cos(r)mg

 (4.7)

Now, by substituting the results from equation (4.7) and (4.3), we can write the

�nal calibration equation for the SFread as follow :

SFread = U

fbxfby
fbz

 +

cos(θ5S) −sin(θ5S) 0

sin(θ5S) cos(θ5S) 0

0 0 1

 5
bR

 −sin(p)mg

cos(p)sin(r)mg

cos(p)cos(r)mg

 (4.8)

In practice, the obtained value for the orientation angle of the base frame to the

earth frame p and r are negligible. by considering p=0 and r=0 degree we will have:
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SFread = U

fbxfby
fbz

 +

cos(θ5S) −sin(θ5S) 0

sin(θ5S) cos(θ5S) 0

0 0 1

 5
bR

 0

0

mg

 (4.9)

As you can see in the above equation,
[
fbx fby fbz mg θ5S

]
are 5 unknown

variables, so we need to solve 5 independent equations to obtain them. By studying

equation (4.10) more deeply, we can see that for any 5
bR there exists three equations

which are dependent to the position and orientation of the manipulator end e�ector.

In our case we moved the manipulator in two di�erent position and by recording

both force torque sensor values and joint values 6 non-linear equation are solved to

obtain the 5 unknown.

These set of non-linear equations has been solved using fmincon function of the

MATLAB software which is based on computational iteration using an initial guess

of the unknown variables. By obtaining these variables from above equations we can

use them to compensate the weight term in a realtime manner from Fread variable

which is captured every 10 millisecond from the FTM.

Calibration operation has been done 6 time with a set of joint values and the

resultant calibration data were as follow:


−18.2398 −18.9903 −19.2907 −18.8303 −18.8042 −18.2215

−0.0728 −0.4023 0.0270 −0.4224 −0.4377 −0.0158

−14.4664 −8.6122 −8.5442 −9.2661 −9.3822 −13.298

17.0953 17.1397 17.1007 17.1635 17.1730 17.1988

0.5144 0.3956 0.3582 0.4045 0.4038 0.3985

 (4.10)

The �rst three row in the above matrix are force bias calbrtaion data in X, Y

and Z directions, the fourth row is devoted to the wheight of the FTM module and

is in newton. The last row of the matrix represents the θ5S and is in radians..

We should note that the bias value of the FTM are possible to be altered, when

the CAN bus power is o�. Therefore, whenever the robot manipulator power is

cut o� or the CAN buses are rebooted, the FTM should be recalibrate . In this

case we just need to �nd
[
fbx fby fbz

]
, Since the weight of top section would

never change and θ5S could not alter unless some modi�cation has been done on the

FTM mounting �ange or the installation angle. Moreover, the pitch and roll angel

would not change unless the robot manipulator has been remounted or it has been

transported to another place or somehow the base �ange orientation is altered.
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