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Viime vuosikymmeninä älylaitteiden kehitys on edennyt suurin harppauksin. Samal-

la Internetin mahdollistamat sosiaaliset palvelut, kuten Facebook tai Twitter, ovat

tulleet osaksi arkipäiväistä elämäämme. Tämän diplomityön kirjallisuuskatsaukses-

sa on esitelty Social Devices -konsepti, joka vie sosiaalisten palvelujen ideaa vielä

pidemmälle: konsepti ehdottaa uutta lähestysmistapaa, jossa älylaitteet ja ihmiset

keskenään muodostavat uudenlaisen sosiodigitaalisen järjestelmän. Tässä järjestel-

mässä laitteiden on tarkoitus osallistua ennakoivasti sosiaalisiin tilanteisiin rikas-

tuttamalla niitä jollakin tavalla. Konseptin mukaan laitteet pystyisivät esimerkiksi

osallistumaan keskusteluun tai tuottamaan sellaisia palveluita, jotka rohkaisevat so-

siaaliseen kanssakäymiseen.

Tämän diplomityön tarkoituksena on tutkia onko resurssivajavaisen sulautetun jär-

jestelmän, kuten Arduinon, mahdollista toimia osana Social Devices -järjestelmää.

Jotta laite voi toimia osana Social Devices -konseptia, sen äytyy omata asiakasoh-

jelma, jollainen tässä työssä on yritetty myös toteuttaa. Tämän lisäksi kirjallisuus-

katsauksessa on tarkoitus tutustua Social Devices -käsitteeseen tarkemmin.

Kirjallisuuskatsauksessa läpikävimme Social Devices -konseptin vaatimuksia sekä

ominaisuuksia. Lisäksi esittelimme konseptille kaksi eri toteutusta, Social Devices

Platformin sekä OrchestratorJS:n. Tutustuimme myös näiden arkkitehtuureihin ja

komponentteihin. Ohessa esittelimme myös aihetta sivuavia kommunikaatioproto-

kollia sekä alustan, jolle toteutettu asiakasohjelma on tehty.

Toteutusosuudessa toteutimme asiakasohjelman Arduinolle sekä käsittelimme asia-

kasohjelman suunnitteluun liittyviä asioita sekä niihin vaikuttaneita haasteita. Li-

säksi esittelimme ohjelman muodostaneet komponentit ja lopuksi kokeilimme asia-

kasohjelman toimivuutta Sovial Devices -rajapintaohjelmalla.

Totesimme, että toteutettu asiakasohjelma kykenee toimimaan osana Social Devices

-järjestelmää. Se täyttää sille asetetut vaatimukset, kuten itsensä rekisteröinnin pal-
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velimelle sekä kommunikoinnin palvelimen kanssa. Lisäksi se osaa päivittää tilansa

ja lähettää RSSI-arvoja lähellä olevista laitteista palvelimelle. Tunnustimme myös,

että on tilanteita, jolloin laite ei kykene vastaamaan palvelinkutsuihin luotettavasti.

Suorituskyvyltään asiakasohjelma täyttää tiettyjen ohjelmien vaatimukset, mutta

tiukkoihin reaaliaikavaatimuksiin se ei pysty vastaamaan.
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In the last few decades we have been witnessing great technology advancements re-

garding smart devices. At the same time we have accepted few social web services,

such as Facebook or Twitter, to become a part of our everyday lives. Social De-

vices takes a step further regarding social services and proposes a new approach

where people and devices would form together a new socio-digital system. In this

system devices could participate proactively in social situations by enriching them

somehow. According to the concept, the devices could, for instance, participate in a

conversation or enable certain services that would encourage socialising.

This thesis' research question is to �nd out if a modest embedded system, such as

Arduino, is capable of functioning as a Social Device. For a device to function as

a part Social Devices, it needs to have a client software that is tried to be imple-

mented in this thesis. In addition, the Social Devices concept is introduced in the

literature review part.

In the literature review part we discussed about requirements and characteristics of

Social Devices. Additionally, we presented two implementations, the Social Devices

Platform and OrchestratorJS, and introduced their architecture and components.

Furthermore, relating communication protocols and the target platform were pre-

sented.

In the implementation part, we designed a client software that is compatible with the

two implementations of the Social Devices. Additionally, general design paradigms

and matters that in�uenced the design were introduced. Furthermore, the architec-

ture and the components that the client consists of were presented as well. Final-

ly, an example of Social Devices application that demonstrates the client was shown.

We concluded that the implemented client functions as a proof of concept for Social

Devices. The client ful�ls the requirements as it is capable of registering itself to

the server and communicating with it. In addition, the client is able to update its
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state values and informing RSSI values of nearby devices to the server. However,

we acknowledged that there are speci�c circumstances where the client can not

respond reliably. Performance-wise we stated that the client is fast enough for certain

applications but can not meet the requirements of an application that needs real-

time responsiveness.
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1. INTRODUCTION

In the last few decades we have been witnessing great technology advancements

regarding smart devices. Nowadays, mobile phones or tablets are more powerful

than 1990s supercomputers [1]. The trend of making devices smart does not just

involve mobile phones but other everyday devices as well: televisions, car computers

or even watches are equipped with capable hardware and networking capabilities for

example.

At the same time when devices have gotten smarter, we have accepted web ser-

vices to become a part of our everyday lives: e.g. Facebook, Twitter and Instagram

have hundreds of millions monthly active users. The aforementioned services have

something in common: they thrive from humans' need to socialize. In one way or

another, these web services o�er a way to share experiences and feelings and means

to stay in touch.

Social Devices try to combine these powerful smart devices and the social aspect

of services like Facebook. Social Devices proposes a new approach where people and

devices would form together a new system, where devices participate proactively in

social situations by enriching them somehow [2]. Devices could, for example, take

part in conversations or provide applications that encourage socialising. Figure 1.1

shows such an application: in this scenario a group of people have joined together.

The system recognizes this and proposes users to take part in an application that is

made possible by the devices.

This thesis' �rst purpose is to implement a Social Devices Platform client for

Arduino devices. The client is based on the requirements set for an SDP client. The

client is supposed to act autonomously and asynchronously accepting requests from

the server side. The client also gathers proximity information about devices nearby.

The thesis' second purpose is to implement the client in a way that a developer

can easily add in his own code modules that would include the implementations of

functionality that can be used for applications in the system.

The Third intention for this thesis is to present the Social Devices concept and the

two implementations that exist for the concept. Additionally, some of the relating

concepts are introduced in the literature review.

In addition to the topics above, as the fourth purpose of this thesis is to learn

developing software for an embedded system as well. This is important as developing
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Kuva 1.1: Social Devices use case [2].

software for embedded systems usually involves speci�c problems that usually are

not typical when it comes to regular desktop softwares.

Chapter 2 introduces the Social Devices (SD) concept that is the base idea for

the implementations, the Social Devices Platform (SDP) and OrchestratorJS. The

chapter also elaborates the implementations' architecture and explains the functions

of related components.

In Chapter 3, the communication protocol between the client and the server is

explained more thoroughly. In addition to the actual protocol used in SDP, the

sections in the chapter clarify few underlying protocols as well.

Chapter 4 presents the Arduino platform. First the discussion about why Ar-

duino platform was chosen is rationalized and the latter sections introduce all the

subcomponents needed for the device to function as an SDP client.

The actual implementation is shown in Chapter 5. The chapter consists of sec-

tions where general designs paradigms are presented and sections to introduce the

components that the client consists of. In the latter sections, examples of using the

client and performance evaluation are shown as well.

Chapter 6 presents overall evaluation of the client. In addition, the client is evalua-

ted performance-wise. For instance, response times and discussion how they might

in�uence the user-experience is presented.

Finally, Chapter 7 sums up the thesis by discussing about conclusions.
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2. SOCIAL DEVICES

In this chapter Social Devices concept is introduced along with two prototype imple-

mentations called Social Devices Platform and Orchestrator.js. Section 2.1 includes

general overview and needs of Social Devices. Section 2.2 elaborates implementa-

tions' underlying programming model and Section 2.3 discusses the needs and cha-

racteristics for the implementations. Implementation and architecture of Social De-

vices Platform are explained in Section 2.4 and Section 2.5 for Orchestrator.js res-

pectively. Related work is presented in Section 2.6. This chapter is based on the

reference [2] unless stated otherwise.

2.1 Social Devices concept overview

Mäkitalo et al. introduce the concept Social Devices in [2]. Social Devices aim at

enriching the interaction between devices or between the user and device by means

of technology. According to the concept, context aware and proactive devices form

together with users a new kind of a socio-digital system. In this system it is possible

for each participant, including devices, start an interaction with devices or people.

In situations where people meet face to face, Social Devices can enrich the inte-

raction and at the same time enrich the interaction between devices. It is possible,

e.g., make the device-to-device interaction explicit to the users.

The term action can be used for any interaction that is caused by Social Devices

(in Section 2.2 action is explained more thoroughly). The actions can di�er greatly

from one another but they share the same purpose: they typically provide some

explicit information to human users. Figure 2.1 demonstrates a variety of actions.

For example, in a situation where people meet, their devices can participate as well

by greeting each other aloud or they can just change business cards silently in the

background. It is also possible to make the communication process between mobile

phone and laptop more explicit to the user if the devices speak of progress out loud.

An example use of Social Devices can also be guiding or informative by nature: an

elevator can instruct a visitor to �nd what he is looking for based on the calendar

entries the visitor has on his mobile phone.

Since nowadays most people own a mobile phone and usually carry it everywhere,

mobile phones are very ideal social devices. Besides mobile phones, many other

devices can be considered as social devices as well, and the only preconditions for
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Kuva 2.1: Example uses of Social Devices Platform [2].

Social Devices are computational capability and ability to be aware of and interact

with surrounding devices. This means Social Devices can be very heterogeneous and

include, for example, devices which are highly personal like mobile phones. However,

devices can be impersonal and stationary and possibly located in public places like

an elevator or a screen in a meeting room. Furthermore, heterogeneity is also visible

in devices' di�erent resources, such as speakers, microphones or screens.

Regarding Social Devices, the environment in which actions are executed can be

very dynamic as people do their daily tasks. Sporadic nature of social situations

might lead into a situation where devices, like mobile phones, move in and out of

range of each other so the devices that are able to take part in an action, change

constantly. Considering the devices' state, such as battery level or other modes, are

also notable factor for making the environment more dynamic.

2.2 Action-Oriented Programming

Aaltonen et. al. introduce a paradigm action-oriented programming model (AcOP)

in [3]. The paradigm suggests a new model for programs that involve multiple devices

that function in a cooperative way. The Socials Device Platform and OrchestratorJS

implementations are based on Action-Oriented programming (AcOP) model that

this section discusses in more depth. This section references to [3].

Typically traditional programming languages do not support multi-device pro-

grams by nature. For instance, they do not have the primitives to support synchro-

nized and coordinated activities between multiple devices. Next, the key concepts

that AcOP consists of are introduced.

Devices and Capabilities. In this context multi-device programs consist of

actions as their basic building blocks. Actions, in turn, rely on devices and capabilities
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that the devices o�er. A capability refers to an operation related to a capability that

device is able to perform. It is also expected that the device provides means to use

its capabilities. Additionally, capabilities function as indicators for an ability to

participate in an action: if user has installed a capability on his device, the device

is able to join in an action that utilizes the capability in question.

At the implementation level capabilities are manifested as interfaces. that consist

of operations. In other words, interface is a contract of operations that are related

to a speci�c device and its capability. For instance, later presented (Section 5.3)

TalkingDevice capability's interface contains operation say(). Listing 2.1 shows an

example how interface can be used.

AcOP model does not de�ne which programming language interfaces should be

implemented in. For example, the client presented in this document and its interfaces

are implemented as C++ classes. In practice, communication protocol between the

server and a client abstracts di�erences in programming languages.

Device capabilities or the number of interfaces are not de�ned by the program-

ming model. Since a device can only be invoked through its interfaces, a device with

no capability cannot participate in an action. Furthermore, capabilities are reusable

across di�erent actions and therefore a developer can write new actions without

having to implement device-speci�c programming code.

Actions. An action is the basic unit of modularity, encapsulating the joint beha-

viour of several devices, and de�ning roles, parameters, preconditions, and a body.

Roles are used to determine what roles the participating devices will be a part of.

For instance, in an imaginary action PhotoSharing users can share photos between

each other and roles can be used to de�ne which device shares photos and which

devices can only view the photos.

Parameters include action-speci�c information. In the case of PhotoSharing, pa-

rameter can contain, e.g., �le path or URI to a website where photos are stored. In

TalkingDevice example (Listing 2.1), strings are passed as parameters.

Precondition is a part of an action as well. Precondition de�nes what is expected

from devices that are participating in an action and it must evaluate as boolean

value true. Again when considering PhotoSharing as an action, system could check

if participating devices' owners are Facebook friends for example. TalkingDevice

example on the other hand expects that the devices are near of each other and their

users are friends.

In the body part of an action is de�ned what devices will do during an action

and in which order. Listing 2.1 shows an example of an action body: as a result of

execution of the body two devices will talk to each other.

Triggers and Scheduling. Triggers are AcOP model's manner to initiate ac-
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tions proactively. An action execution will be tried to get started when a trigger

is received. Triggers can be sent by dedicated service or by the devices themsel-

ves. Triggers are not necessarily needed in AcOP but the use of triggers reduces

constant evaluation of preconditions and therefore results in the system being less

resource-intensive.

Listing 2.1: An example of Action de�nition.

class GreetEachOther ( Action )

@act ionprecond i t ion

def pre cond i t i on ( s e l f , d1 , d2 ) :

return proximity ( [ d1 , d2 ] , 2 . 0 ) and

d1 . h a s I n t e r f a c e ( TalkingDevice ) and

d2 . h a s I n t e r f a c e ( TalkingDevice ) and

d1 . i sF r i end ( d2 )

@classmethod

def ge tTr i gg e r s ( c l s ) :

return [ ' GetCloseTr igger ' ]

@actionbody

def body ( s e l f , d1 , d2 ) :

s1 , s2 = smal lTa lkServer . getSentenceAndReply (d1 , d2 )

d1 . t a l k ingDev i c e . say ( "Hel lo ,  " +

d2 . getOwnerName ( ) + " ! " )

d1 . t a l k ingDev i c e . say ( s1 )

d2 . t a l k ingDev i c e . say ( "Oh,  h e l l o  " +

d1 . getOwnerName ( ) + " ! " )

d2 . t a l k ingDev i c e . say ( s2 )

2.3 Requirements and Characteristics

Requirements and characteristics are essential since the requirements for implemen-

tation of Social Devices are derived from these. The prototypes for the Social Devices

Platform and OrchestratorJS are described later.

In order to keep track of devices, a registry is needed. The devices are associa-

ted with identities since users usually have preferences regarding their devices and

therefore an identity can tell what the device is allowed to do. Identities can further-

more be used for indicating users' proximity e.g., the more personal the device is,

the better approximation of user's proximity is possible to calculate. Registry can

in addition hold information on users' personality that can for example be used for
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suggesting actions in di�erent contexts.

As precondition for Social Devices suggests, proximity of users and their devices

is needed for social interaction. Proximity is calculated, by each device, with respect

to each device that is supposed to participate in an action. The devices report the

proximity information to the centralized server, which maintains proximity informa-

tion of each device. From the information, the SDP forms a mathematical graph,

where nodes denote devices and edges denote the mutual distance of the devices.

The advantage of such a procedure is that this reduces the required computing on

the devices.

In addition to registering and reporting proximity of other devices, devices have to

inform the server necessary information for action precondition. Action precondition

de�nes what is expected from the participants for the action. Action precondition is

a part of action description along with action body, which de�nes what participant

devices should do during an action. In action preconditions the term interface is used

to characterize the precondition, for example, a device with interface TalkingDevice

has the ability to talk. The owner of a social device can enable and install multiple

interfaces, capabilities, to his liking and by modifying interfaces, user can choose

which privileges SDP can have access to. In case of interface CalendarDevice, user

can give SDP rights to use work calendar in actions with colleagues.

Furthermore, the system needs a mean to determine which devices can and are

willing to participate in an action. This is solved by including information on de-

vices' logical expression in the precondition part of the action description. Interface

itself can function as a logical expression: an action involving a dialog may require

capability to talk; thus participant devices have to implement TalkingDevice inter-

face. Since the environment is usually fairly dynamic, more information is needed

from the devices. For example, a device might be able to talk but in case it is located

in a silent environment it may not be willing to talk. This is handled by monitoring

devices' states. States can vary from boolean-value to any more abstract value which

can indicate, for instance, speci�c state as if device is turned to silent mode or not.

Operations regarding when and if actions are to be executed are decided auto-

matically at runtime. Requests for initiating an action are handled with triggers.

Using of triggers prevents perpetual searching of devices which can be computatio-

nally hard. When certain trigger is received, corresponding action is attempted to

be scheduled. Triggers can also hold update to a state value of a device, an external

event, or change in the proximity group. The decision which action and whether the

action is launched is up to the centralized server that also receives the triggers. This

type of procedure further reduces the computing load of the devices and enables

concentrating functionality to one location.

In addition to scheduling an action, a decision must be made concerning which
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concrete devices are to participate in the action. For example, it may be the case

that after a trigger, there may be several potential actions and several devices that

possibly meet the action preconditions. This leads to a con�guration problem: decide

the action corresponding the trigger, �nd a set of devices and device roles that ful�l

the action preconditions. In practice, problem gets simpli�ed when it is required

that the device, which raised the trigger, �lls a certain role in the action and other

participating devices are in its proximity.

Finally, executing the action requires additional coordination and orchestration

for the devices since they have been designed to run their own software regardless of

other devices. This is solved by using a coordination approach by de�ning a platform

into which coordination is built in. Platform will take care of the control �ow for

the independently operating devices.

The goal of the design approach is to rely on concentrating functionality on the

server side rather than on device autonomy and intelligence. This shows in proximity

management and decision making about actions and device con�gurations that are

not handled by the devices themselves. Hence, rather modest devices can act as

social devices which this thesis arguments about as well.

2.4 Social Devices Platform

Above we introduced the concept of Social Devices and described the characteris-

tics and requirements of Social Devices. This section suggests an answer to these

requirements by showing the architecture and implementation philosophies of Social

Devices Platform. This section is based on the reference [2] unless stated otherwise.

The following subsections �rst introduce the architecture roughly and in the fol-

lowing subsections the necessary components for SDP are presented. The compo-

nents can be categorized as server side components and client component also known

as SDP Client. Server side components include Controller, Orchestrator and Con�-

gurator components.

2.4.1 Architecture

Figure 2.2 illustrates the SDP architecture. Architecture is divided into device side

and server side, which consists of Controller with Proximity subcomponent, as well

as the Con�gurator and the Orchestrator. Client component is a software that is

installed on devices.

Figure 2.2 introduces typical steps required running an action successfully among

devices. Step 1 involves pre-preparations: possible interfaces and actions have to be

de�ned �rst for the Controller and this is done by a developer. Next, users register

their devices and install new capabilities by installing interface implementations
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Kuva 2.2: An overview of the SDP architecture [2].

(Steps 2 and 3). Furthermore, in order to maintain proximity graph and information

about devices' states, devices report their proximities to other devices and state

values (Step 4). Step 5 presents a situation, where a device recognizes a potential

need for an action and raises a trigger. System responds to the trigger by �nding

corresponding action and suitable set of devices for action's preconditions (Steps 6,

7). Finally, if preconditions are met, the execution of the action is started and the

execution is orchestrated among devices (Steps 8 and 9).

2.4.2 Social Devices Platform Client

The SDP Client's main task is to handle device's communication between Controller

and Orchestrator. As Figure 2.2 suggested, �rstly client handles the registration to

the Controller and publishes the installed interfaces. By publishing interfaces the

device indicates that it implements operations regarding the interface. To ensure

that privacy concerns are handled properly, the user can at this point de�ne what

operations are allowed and which preferences are used. After publishing an interface,
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the device can participate in action that requires the respective interface.

The ongoing task of SDP Client is to keep its device's state values up to date and

informing the Controller about the changes. This is important as state values are

part of action precondition that de�nes, for example, which devices can participate

in an action.

The number of interfaces is not necessarily �xed since the SDP Client allows

users to install and enable new interfaces on a device. Information about the new

interfaces is sent to Controller after installing and enabling an interface.

SDP Client takes care of collecting proximity info. The Current implementation

approximates closeness of devices by the Bluetooth received signal strength indicator

(RSSI) value. Therefore the SDP Client devices keep their Bluetooth turned on and

they periodically search for other devices. Information of found devices and the

respective signal strengths are sent to the server, where the proximity graph is

formed. Since the proximity is calculated as symmetric relations, it is not requisite

that every device collects the proximity information.

The heterogeneity of the devices results in having speci�c client software for each

device type. Additionally, some devices can be relatively passive, for example a spea-

ker or a screen, therefore every device is not required to send proximity information

or trigger events. At simplest, the client needs only to implement software that com-

municates with the Controller and the Orchestrator and interface plugins that the

device is o�ering.

Kuva 2.3: The Social Devices Client plugin architecture [3].

Figure 2.3 illustrates a possible architecture of an SDP Client. Architecture is mo-

dular and divided into plug-ins that manage the subtasks introduced before: Orc-

hestrator plug-in maintains the connection to the server and, for example, registers

the device to the server. Proximity plug-in manages proximity info by measuring

Bluetooth RSSIs and storing nearby devices' MAC-addresses and reporting them

to the server. State plug-in is used for reporting all the contextual data and state

values such as battery level or silent mode. Additionally, capabilities are implemen-

ted as plug-ins. For example, TalkingDevice plug-in would implement TalkingDevice
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interface. The implementation of the SDP Client for an embedded system that is

introduced in this paper somewhat follows the architecture seen in Figure 2.3.

2.4.3 Controller Component

The Controller acts as a front-end for the SDP meaning it provides all the neces-

sary interfaces for accessing and modifying data on the server side. For example, it

provides a REST (Representational state transfer) API but a web user interface as

well. Furthermore, the Controller manages data such as actions, interfaces, triggers,

devices and user model, within the server side. Managing proximity information is

decentralized for the Proximity subcomponent.

As seen in Figure 2.2, the developer de�nes new interfaces and actions. This is

done in Python, and new code can be uploaded either using a REST API or a

web user interface. The Controller parses the interfaces and action descriptions and

stores them in a database. Furthermore, user can download the SDP client from

the Controller and register their devices to the Controller. The state values, which

indicated device's role in an action, are also stored in the Controller.

The Proximity subcomponent maintains the proximity information of the devices

registered to the SDP. Information is stored as mathematical graph V = (N,E),

where N is a set of nodes and E is a set of edges. Graph gets updated when devices

send their RSSI values and by using these signal strengths the Proximity component

calculates new distances that are attached to the edges between the nodes. To know

how old the proximity information is, distance is tagged with a timestamp, which

indicates when node was created or refreshed.

Utilizing REST, the Proximity subcomponent o�ers interface for querying proxi-

mities with respect to a speci�c device. For example, it is possible to search devices

around a device within a given radius. In practice, such subgraph is only an approxi-

mation: all the nodes are not always connected and devices might be closer than

subgraph indicates.

Additionally, the Controller provides a REST API for the SDP Client to update

its device's proximity data and state values. Correspondingly a similar REST API

is used for triggers as well. When the Controller receives a trigger, it processes it

and forms a request that is sent to the Con�gurator. The request holds information

on con�guration model and state values of all the devices including the ones within

the proximity of the device that sent the trigger. The Con�gurator processes the

request and chooses an action and assigns action-speci�c roles to each participating

device. The Con�gurator component and its tasks are explained more thoroughly in

the following subsection.
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2.4.4 Con�gurator Component

The decision whether an action can be executed for a set of devices is up to the

Con�gurator Component. The Con�gurator Component needs to consider several

issues when making the decision: Devices need to implement certain interfaces for

a speci�c role and state value conditions must be met as well. In addition, the

Con�gurator Component must assign roles in an action for each device. This set

of decisions can be formulated as a con�guration problem where certain action and

con�guration model, the task is to �nd a valid con�guration of devices and their

assignments to the action roles. The con�guration model includes, for example,

action preconditions and interface de�nitions.

The group of devices that are close to each other is dynamic since devices may

be constantly moving. Therefore the con�guration model needs to be generated at

runtime based on the information of the triggered actions and participating devices.

In addition to the con�guration model, the �nal con�guration depends on the con�-

guration selections as well. The con�guration selections consist of devices' state va-

lues. The Con�gurator acts as a service that �nds a valid con�guration based on the

con�guration model and selections and returns the con�guration to the Controller.

Kuva 2.4: An illustration of the con�guration model generation process [2].

Kuva 2.5: An illustration of the con�guration selection generation process [2].

To produce a valid con�guration, the Con�gurator utilizes the smodels inference
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engine. Smodels is a general-purpose inference tool based on stable model semantics

of logic programs [4]. As Figure 2.4 illustrates, the tool takes action preconditions

and proximity devices as input and generates Weight Constraint Rule Language

(WCRL, a general-purpose knowledge presentation language) con�guration model

using WCRL con�guration model template. WCRL con�guration selections are pro-

duced similarly using state values of proximity devices as input and utilizing WCRL

con�guration selection template as seen in Figure 2.5. The Con�gurator uses both,

WRCL con�guration model and selections, to form a valid con�guration that results

in assigning speci�c devices for speci�c roles of the action.

2.4.5 Orchestrator Component

Devices in the same proximity set can be considered as actors in an action. Actors

are responsible for their own local operations regarding an action but coordination

between actors is up to the server side, the Orchestrator Component to be exact.

The Orchestrator acts as centralized server that handles executing the actions.

The actual code to be executed is described in the action body part of the action

description. Executing actions utilizes services of the devices that the Controller

has selected. Services have interfaces for operations that de�ne what the device is

capable to do when an operation is invoked.

As seen in Figure 2.6, on the server side services are implemented in Python but

used programming language on the client side depends on the platform. Figure 2.6

also shows the relation in programming code between the server and the client side:

in this case the action body utilizes the interface by calling function say().

Using a REST API, the Orchestrator o�ers a way to initiate action executions.

Speci�c parameters are given to the API and they are used to initialize the action and

the actor devices. During the initialization process it is checked that the devices and

their services are still available and after successful initialization action execution

can start.

The operation calls (e.g. mobilePhone.talkingDevice.say("Hello") in Figure 2.6)

somewhat correspond to regular method calls: the calling is synchronized and pos-

sible return values are relayed to the action execution that is being processed at the

server side. This design approach enables also relaying the values to every other ac-

tor in an action. Furthermore, the design allows relaying exceptions and in case of a

failed operation, actors are noti�ed and possibly released from an action. Similarly

devices can cancel an action if they need to. However, if an error occurs at the server

side, actors can be noti�ed with using the same functionality.



2. Social Devices 14

Kuva 2.6: Execution of service operations. [2].

2.5 Orchestrator.js

This section presents an alternative implementation for the SDP that supports Social

Devices. Orchestrator.js is the next iteration of the SDP that, for example, is imple-

mented in a cloud service unlike the SDP [5]. Additionally, Orchestrator.js midd-

leware is designed to reduce the complexity of the architecture to improve compa-

tibility with embedded devices and to improve prototyping abilities [5]. Next, the

architecture of Orchestrator.js is presented.

Figure 2.7 presents the most relevant components related to the architecture of the

Orchestrajor.js middleware: it consists of Orchestrator Core, Application Manager,

Device Registry, Action Repository and Capability Repository.

Orchestrator Core handles the creation of actions and ensures that actions work

correctly. In addition, it coordinates the executions of actions between devices. When

compared to the SDP, Orchestrator Core combines some of functionality of the

Controller and the Orchestrator components into single unit.
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Kuva 2.7: Orchestrator.js middleware.

The Application Manager stores and executes applications and provides user

interface for starting and stopping applications. The application utilizes the help

of observers that monitor changes in various sources. These sources can be, for

example, websites or RSS feeds.

The Device Registry functions similarly as the Controller component in the SDP:

it preserves contextual information about devices and keeps proximity graph up to

date. In addition, it provides suitable API that o�ers noti�cations about devices'

context data.

The Action Repository is reserved for storing the action de�nitions. In this imple-

mentation de�nitions are written in JavaScript holding preconditions and error hand-

ling. Additionally program code includes description how the devices function toget-

her. In contrast to the SDP, the Orchestrator component was used to contain action

de�nitions.

The Capability Repository includes descriptions for each capability. In practice,

descriptions only de�ne what methods (and parameters) need to be implemented.

The actual implementation depends on the device and the language used and it is

up to the developer how the implementation is done. This kind of approach can

simplify designing new applications when there's explicit agreement which methods

certain capability requires, which was not the case in the SDP.
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2.6 Related Work

Various other research �elds are somewhat related to Social Devices. For example,

smart spaces resembles Social Devices as they both make use of the proximity of

devices when providing services. Especially social devices, which are stationary, func-

tion as smart spaces like elevator or meeting room screen. What distinguishes these

two, is that Social Devices are not tied to a speci�c location nor speci�c devices.

The philosophy behind the actions is also rather di�erent: Social Devices tend to

provide more user-visible behaviour instead of just background services. This is also

in contrary to pervasive computing and Internet of Things which intend to minimize

user distraction [6]. For example, Social Devices precisely might interrupt social in-

teractions and therefore is in contrast to pervasive computing that has the vision of

indistinguishable form or minimal user distraction [6].

In comparison to Web Services or Service-Oriented Architectures (SOAs) [7],

Social Devices utilizes resources and capabilities of various physically co-located

devices and the proximity of the devices in a user observable manner rather relying

services that are produced on the server side.
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3. COMMUNICATION PROTOCOLS IN THE

SOCIAL DEVICES PLATFORM

This chapter aims at clarifying the communication between the client and the server.

The sections introduce few key concepts and explain their reliance to the software.

Kuva 3.1: OSI model.

The concepts of this chapter are mainly related to the Open Systems Intercon-

nection (OSI) model. OSI model (Figure 3.1) is a conceptual model that divides

internal functions of a communication system into abstraction layers [8]. Abstrac-

tion layers are grouped into seven logical layers that provide services for the layer

above it and it uses services provided by the layer under. The following sections int-

roduce protocols that belong to transport, session and application layers of the OSI

model. Sections 3.1, 3.2,3.3 and 3.4 discuss Transmission Control Protocol, Hyper-

text Transfer Protocol, Websocket and Socket.IO protocol, respectively. Section 3.5

is reserved for presenting the protocol that is used in OrchestratorJS.
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3.1 Transmission Control Protocol

Transmission Control Protocol, commonly known as TCP, belongs to the core pro-

tocols of the Internet protocol suite (IP). TCP is a part of transport layer and it

provides reliable, ordered and error-checked transferring of packets between pro-

grams that run on di�erent computers and that are connected through a network.

Packets consists of data and of header that describes packet's source, destination

and control information. [9]

TCP acts between IP and application layer. It accepts any data sent from an

application. TCP takes care of sending data by breaking it into appropriate pieces

suitable for IP. When receiving data, TCP makes sure, for example, that the data

is in right order and the passes the data for the right target application.

3.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for di-

stributed, collaborative, hypermedia information systems that is layered on top of

TCP [10]. It is widely used protocol for data communication for the World Wide Web

(WWW). HTTP is the actual protocol for exchanging or transferring hypertext that

usually carries information of websites in the form of HTML-�les. In this context,

hypertext includes information about SDP-speci�c communication protocol.

Hypertext and its contents di�er from the normal use but HTTP still functions in

traditional way as a request-response protocol. Request-response is a basic method

used for computers to communicate with each other, which works as follows: a

computer shows interested in some data by sending a request and a target computer

simply responds to the request. In the case of HTTP, normally a computer sends

a request for a server for an HTML-�le and if the request is successful, the server

responses by sending the requested HTML-�le. Similarly in the SDP if, for example,

device wants to register itself to the server, it sends a request holding information

about the device and the server responds to the request.

Comet is an application model that allows a web server to push data to a client

without the browser explicitly requesting it [11]. This can done by AJAX Long-

Polling that functions as follows. A client requests normally but the response is put

on hold until there is new information available. The server responds when there is

new information available and the client immediately responds starting a new cycle.

The approach described is used in the Social Devices Platform.

3.3 Websocket

Websocket is rather new protocol that provides, unlike HTTP, full-duplex (simul-

taneous communication in both directions) communication over a single TCP con-
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nection [12]. Websocket was developed mainly to answer real-time requirements of

various applications. The client and the server are able to send messages at any time

and they must handle message receiving asynchronously.

The advantage of Websocket connection over HTTP connection is that after initial

handshake, which is done over HTTP, Websocket has lower overhead per message.

Additionally, the transmission of packets is faster as one data frame can be sent as

soon as one frame is �lled and there's no need to know the complete length of data

beforehand.

3.4 Socket.IO protocol

Socket IO adds another abstraction layer on top of Websocket and HTTP. Socket IO

functions nearly similarly to Websocket but adds some additional features: It o�ers

disconnection detection through heartbeats and enables optional acknowledgements.

Socket IO also has reconnection support with bu�ering. [13]

As Socket IO protocol works typically on top of Websocket, connection is started

with handshake, which is done over HTTP. After the handshake, a client receives a

session id that will be used for opening connections. Client also receives information

about how often heartbeats are sent and when socket is considered disconnected

after transport connection has closed.

After the initial handshake, the actual payload consists of messages that imple-

ment the protocol in question. The messages can be seen in Table 3.1.

The protocol requires that the messages are sent in speci�c encoding, that has

the following format:

[ message type ] ' : ' [ messageid ( '+' ) ] ' : ' [ message endpoint ] ( ' : ' [ data ] ) ,

where in addition to self-explanatory message type, format includes messageid that

is used for optional ACKs and message endpoint that indicates the socket used if

multiple channels of communication is in use.

3.5 Implementation of the SDP Communication Protocol

This section describes how the communication between a client and the server is

initialized and used in practice. The SDP supports communication protocol over

HTTP or Websocket (and SocketIO), but the latter one is presented next.

Before the device can be used in the system, it needs to be registered to system

and this is done by sending a message to the server holding client identity. An

example message using format required for SocketIO is given as follows:

5 : 1 : : { "name" : " l o g i n " , " args " : [ "username@devicename" ] }

Attribute consists of key name and value that indicate which kind of message is in

question. Currently client identity consists of username and devicename.
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Taulukko 3.1: The messages in Socket.IO protocol [13].

Type Explanation
(0) Disconnect Signals disconnection. If no endpoint is speci�ed, discon-

nects the entire socket.
(1) Connect Only used for multiple sockets. Signals a connection to

the endpoint. Once the server receives it, it is echoed
back to the client.

(2) Heartbeat Sends a heartbeat. Heartbeats must be sent within the
interval negotiated with the server. It is up to the client
to decide the padding (for example, if the heartbeat ti-
meout negotiated with the server is 20s, the client might
want to send a heartbeat every 15s).

(3) Message Regular message.
(4) JSON Message A JSON encoded message.
(5) Event An event is like a json message, but has mandatory name

and args �elds. name is a string and args an array.
(6) ACK An acknowledgment contains the message id as the mes-

sage data. If a + sign follows the message id, it is treated
as an event message packet.

(7) Error Error message.
(8) Noop No operation. Used for example to close a poll after the

polling duration times out.

After initializations are done, a device starts to listen if there has an action

started. A method invocation by server has the following format:

5 : 1 : : { "name" : "methodcal l " , " args " : [

action_id , methodcal l Id , capabil ityName , methodcallName ,

[ arguments ] ] }

Before the device can join in an action, it is checked that the device meets capability

requirements (capabilityName) and if it does, the device changes its method call id

to match the current method call id received in the message. Method call id is used

to keep track of the execution status of an action. In other words, it keeps all of

the participating devices synchronized regarding an action. When the action execu-

tion continues, the device updates its method call id accordingly. MethodcallName

is rather self-explanatory, arguments on the other hand includes method-speci�c

parameters.

Responsing to a method call has same attributes as the request but also includes

return value:

5 : 1 : : { "name" : "methodca l l r e sponse " , " args " : [

action_id , methodcal l Id , re turnva lue , re turnva luetype ,

[ arguments ] ] }
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Return value can be of any type but the type must be informed in the corresponding

parameter. If action execution fails or the client wants to raise an exception for

another reason, it is done with following message:

5 : 1 : : { "name" : " except ion " , " args " : [

action_id , methodcal l Id , c l i e n t i d e n t i t y , reason ] }

When the device changes its state, the information is sent to the server with

context message:

5 : 1 : : { "name" : " context_data" , " args " : [

action_id , c l i e n t i d e n t i t y , [ medata ] ] }

Metadata includes necessary state changes.

For instance, when running an example that involves a device registering itself,

the server invoking a method and the device responding to the request, messages

are as following:

1. 5:1::{"name":"login", "args":["akseli@arduino"]}

2. 5:2::{"name":"methodcall","args":[78,47,"TalkingCapability","say",["Hi"]]}

3. 5:3::{"name":"methodcallresponse","args":[121,47,"TRUE","BOOLEAN"]}

In step 1, the device gets registered with speci�c identity. The device's capability's

method say() is invoked with a string parameter in step 2. In the response message,

the device has updated its action id and method id to match the invocation (step 3).

Additionally, the response has a return value, simply a boolean value in this case.
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4. ARDUINO PLATFORM

In this chapter the Arduino platform is introduced and some argumentation is shown.

Additionally, the platform and all the related components are introduced. Further-

more, some key concepts regarding designing software for an embedded systems are

presented as well.

Section 4.1 discusses about why Arduino platform was chosen over other options

and which components developing toolchain consists of. In Section 4.2, the target de-

vice for the client software is presented. The components WiFi Shield and Bluetooth

module are introduced in Sections 4.3 and 4.4, respectively.

4.1 Motivation

Arduino platform is intended to make the development of interactive objects or en-

vironments more accessible [14]. The hardware consists of components that are open

source, meaning their circuit diagrams or drivers for example, are freely available.

Arduino has its own programming language (based on Wiring) that simpli�es

many functions like input or output operations in a user friendly way without con-

�guring microcontroller's registries for instance. As a toolchain, Arduino uses GNU

and AVR Libc to compile programs. Avrdude is an utility for uploading the actual

programming code into the program memory. [14]

Arduino was chosen as a target embedded system mainly due to easy prototyping

and open source nature of the platform. The availability of the accessories such as

WiFi-shield was also a key factor. Another embedded system would have been, for

example, very popular Raspberry Pi : the device is capable of running a Linux, has

networking capabilities and enough amount of general IO-ports. Development of

the client would have been also as straightforward as developing for any desktop

computer. Still Raspberry Pi was left out, since developing a software for Raspberry

Pi would have been "too straightforward"and would not have served one of the

purposes this thesis has learning developing a software for an embedded system.

Raspberry Pi o�ers much more powerful hardware and it has, for instance, roughly

50 times faster processor and 50 000 times more RAM than average Arduino board.

As developing software for an embedded system usually involves challenges regarding

performance and memory consumption, Raspberry Pi would easily handle this sort

of software.
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Arduino o�ers several prototyping boards that di�er in various ways. For instance,

microprocessor, amount of analog and digital ports and amount of SRAM or Flash

memories each depend on the Arduino board. Almost every Arduino is suitable to

run the Social Devices client, but currently the amount of RAM is the deciding

factor.

Usually embedded systems like an Arduino board and its microprocessor are de-

signed with Harvard architecture. As Figure 4.1 illustrates, in Harvard architecture

instructions and data are stored in di�erent physical memories. For example, the

microprocessor ATmega1280, used in the Arduino Mega, utilizes Harvard architec-

ture and uses di�erent memory technologies for data and program memory. Atmega

1280 stores the actual executable code in the program memory, which in this ca-

se is implemented with Flash technology. Correspondingly, SRAM (Static Random

Access Memory) is used for data memory. Data memory consists mainly of data

that is manipulated during run-time.

Kuva 4.1: Harvard architecture.

4.2 Arduino Mega

This section introduces the Arduino Mega that was chosen as the prototype board

mainly due to having the largest RAM amount in the Arduino family. Like most of

the Arduino boards, Mega is also equipped with Atmel's 8-bit microprosessor. Table

4.1 lists few features of Arduino Mega.

To highlight some of these, the size of SRAM is rather high since typically Arduino

boards have an average of 1 KB SRAM and therefore our program is easily �t into

the SRAM [14]. Operating voltage is ideal considering that it can be powered by a

regular battery and no external power source is necessarily needed. For prototyping

purposes the amount of analog or digital input pins suits rather well. Considering

that by attaching, for instance, a simple LCD panel can take up to 10 pins so more

modest Arduinos will have issues with the lack of pins. Processor's clock speed of

16 MHz turned out to be more than enough as our program does not include any

intensive processing.
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Taulukko 4.1: Arduino Mega speci�cations.

Microcontroller ATmega1280
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Digital I/O Pins 54 (of which 15 provide PWM output)
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 128 KB of which 4 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

4.3 WiFi Shield

PCB boards that can be placed on top of the Arduino board (or another shield) are

called shields. Shields are plugged into the Arduino board's pin-headers and using

long wire-wrap headers that extend through the shield leaves the board's original pin

layout intact. However, Arduino board communicates with the attached shield using

SPI (Serial Peripheral Interface) bus and therefore it uses certain pins for SCLK,

MOSI, MISO and SS signals. Therefore additional peripherals need to have the

slave select signal on a separate pin. Arduino Mega with the WiFi Shield attached

can be seen in Figure 4.2. [14]

Kuva 4.2: Arduino Mega with the WiFi Shield attached.

WiFi Shield enables networking capabilities on an Arduino board and can connect

to wireless networks using 802.11b and 802.11g wireless speci�cations. The WiFi

Shield has Atmel's ATMega 32UC3 microcontroller, which supports TCP and UDP

connection and additionally, provides secure connection using WEP or WPA2. [14]



4. Arduino platform 25

Arduino provides a library that has all the necessary classes to scan available

networks, connecting to a network and to establish a connection to a server and

exchange data with it. Using of WiFi Shield is rather straightforward:

• scanNetworks() looks for networks around and returns their SSIDs,

• begin(ssid, pass) is used for connecting to certain network,

• disconnect() disconnects from the current network,

• connect(URL, port makes TCP connection to an URL or IP,

• connected() used to check if the client is connected,

• available() turns boolean-value indicating if there is data available to read,

• write(data) writes data to the server the client is connected to.

Besides WiFi Shield, Arduino can be connected to the Internet using Ethernet

Shield.

4.4 Bluetooth Module

The SDP concept presumes that devices are locally aware of each other. At the

current moment Bluetooth technology is used for sensing other, nearby devices.

The Bluetooth module used in the project was RN-42 manufactured by Roving

Networks. The module is compatible with Bluetooth standards 2.1, 2.0, 1.2 and 1.1,

therefore it was quali�ed enough for the purpose as the module is discoverable and

is capable of scanning other devices [15]. The module is rather energy e�cient as

it consumes only 26 µA while idling (still staying discoverable) and 30 mA while

transmitting data. Low power consumption can be very important issue since em-

bedded systems used for the SDP are not necessarily stationed and therefore they

are usually powered by a battery [15].

The actual Bluetooth module is soldered onto a PCB board that o�ers voltage

regulators and connectors for example. The schema can be seen in Figure 4.3. The

module communicates through serial connection and therefore it needs its trans-

mit and receive pins attached to the other device's corresponding pins. In this case

Arduino Mega o�ers hardware serial port on pins 0-1, 14-15, 16-17 and 18-19. Ty-

pically for Arduino boards, the amount of hardware serial ports is very limited and

it might be the case that hardware serial is not available. To avoid this problem, it

is possible to communicate with the module through software serial, which means

that hardware connection is being emulated by software. This was also tested but

resulted in having more unstable and slower connection.
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Kuva 4.3: Schema of Bluetooth module and Arduino Mega hooked up.

In the schema (Figure 4.3), the Bluetooth module is powered through Arduino

but to reduce the load on the board, external power source could be useful. CTS

(Clear To Send) and RTS (Request To Send) pins are normally used for hardware

�ow control but they were not needed so they were short circuited to avoid any noise

that could be interpret as a signal.
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5. SOCIAL DEVICES CLIENT FOR ARDUINO

In this chapter an implementation of the Social Devices Platform -client for the Ar-

duino platform is introduced. The chapter is divided followingly: Section 5.1 discus-

ses about general design methods and how the client is implemented to be as easy

as possible to use in developer's point of view. The actual implementation is shown

in Section 5.2. In the later part of the chapter an implementation of TalkingDevice

interface and how the client can be utilized in practice are shown in Section 5.3.

Future work is presented in Section 5.4 and the chapter is summarized in Section

5.5.

5.1 General design paradigms

One of the �rst design decisions was considering whether to use an operating system

or not. An operating system would have allowed, for example, using of tasks that

would suit well with the Social Devices architecture: typical scenario would include,

for instance, an Orchestrator, a Proximity and State modules that have their own

speci�c task and they run parallel. Additionally, if the device is involved in an action,

the execution of the code related to the implementation of an interface would have

to be handled as well. Executing parallel code led to a problem: will the performance

be enough? For example, in the case of capability TalkingDevice (see Section 5.3),

users expect nearly instant response and slow execution hinders the user experience.

Keeping mind that the coordination of the devices is cloud-based that adds latency

in itself, therefore the execution of the device needed to be as fast as possible. This

resulted in making the execution sequential rather than parallel, so the need of an

operating system became obsolete. Additionally, RAM is a valuable resource in an

embedded system and considering an operating system always utilizes some of the

RAM, it was deciced to implement the system without an operating system.

In contrast to an ideal solution where updating proximity info, connection to the

server and possible execution of an action happen parallel, the current implementa-

tion behaves as follows (Figure 5.1). After booting, the device is initialized and it

connects to a network and possibly initializes any attached peripherals. Initializa-

tion is followed by registering the device to the server side and at the same time

the device publishes its interfaces. At this point proximity data is gathered via the

Proximity plug-in and state values are updated by the State plug-in. Next, the client
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starts to listen to the Orchestrator and keeps listening until it receives a request to

start executing an action. After the execution, the cycle starts over by updating

proximity and state values to the server. Noteworthy is that the Bluetooth modu-

le autonomously runs parallel during the cycle and broadcasts its identi�er so the

device stays discoverable continually.

Kuva 5.1: Flow of execution.

One of the purposes of this thesis was to provide an easy-to-use client from a de-

veloper's point of view. Ideally this means that a developer would import the Social

Device client and just include a module of a capability he or she has developed and

start using the client with the new interface installed without any additional con�-

guring. As there is no abstraction level to hide the hardware speci�cs, it makes that

in reality con�guring is more complicated than that: the core functionality of the

client is platform independent (atleast for Arduino) but, for example, every di�e-

rent Bluetooth module used for querying nearby devices and transmitting your own

MAC-address requires speci�c, hardware dependent code. Same goes for networking:

connecting to a network and keeping the connection to the server depends on the

hardware used. Additionally, it gets more complicated when adding new capabili-

ties: capabilities usually utilize some of the general IO-ports and keeping track of

the used ports gets harder the more peripherals are attached. Usable IO-ports also

vary between Arduino boards so same con�guration might not work for each board.

To simplify the con�guring process, additional Con�gurations.h header �le was

used. An example of such header �le is shown in Listing 5.1. For example, developer
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instantly sees what ports are already used and can check if the selected ports meet

the board requirements. Additionally, a developer can disable or enable an interface

easily: in the example con�g header, commenting out the line #de�ne TALKING-

DEVICE would leave out the implementation from the build in case it is not needed.

Listing 5.1: Con�gurations.h

#ifndef CONFIGS_h

#define CONFIGS_h

#define BLUETOOTHMODULE

#ifde f BLUETOOTHMODULE

#de f i n e PORTRX 8

#de f i n e PORTTX 9

#endif

#define WIFISHIELD

//#de f i n e ETHERNETSHIELD

#define TALKINGDEVICE

#ifde f TALKINGDEVICE

#de f i n e BEAKPORT 2

#de f i n e LEFTWINGPORT 3

#de f i n e RIGHTWINGPORT 4

#define DEVICENAME " akse l i@ardu ino "

#define ORCHESTRATORADDRESS " s o c i a l . c s . tut . f i : 8000 "

#endif

#endif

Additionally developer can modify this �le if, e.g., the address of the server chan-

ges or developer wants to change other attributes. This approach simpli�es the work

needed by the developer as there is no need to edit the actual programming code

�les.

5.2 Client architecture and implementation

The client architecture loosely follows the architecture seen in Figure 2.3. In contrast

to the plug-in architecture, the separate modules can not be considered as plug-ins

as they are tightly coupled with each other and can not be removed from the build.

Arduino platform provides the necessary tools to implement the program either

in C or in C++. The most intuitive approach was to implement the needed modules

as classes and therefore the program is written in C++. Figure 5.2 includes the

class diagram. The client architecture is divided into �ve classes: Client, Initializer,

Orchestrator, Proximity and State.
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Kuva 5.2: The client architecture.

The following subsections introduce the classes and describe how they meet the

general requirements set to SDP Clients. Additionally, discuss about challenges and

problems is presented as well.

5.2.1 Client class

The Client class basically works as component that o�ers an entry point for the

whole Social Devices client. It also makes sure that the execution �ow follows the

design and, for instance, the Client class veri�es that all the initializations are done

before making the connection to the server.

This class also o�ers an opportunity for a developer to put his or her own capa-

bilities in use. The function MethodCallReceived(eventargs e) receives information

about the methods to be executed. The parameter holds knowledge about method's

name and which capability is in question. A developer can add functionality by just

adding an if -block to match his own capability. The code that implements a capa-

bility can be included in the if -block or developer could instantiate an object for

example. A developer needs make sure his code can recover from an error by itself

as there is no operating system and threads or other mechanisms to monitor if the

developer's application crashes for example. An example how to add an interface is

shown in Section 5.3.

The program uses several constant string values like device name or HTTP body

and normally such values are stored in the RAM. However, in order to save RAM,

every constant string value is forced to load into the program memory instead of
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the data memory. This is done in the Client class by using various keywords that

are de�ned in a special library:

prog_uchar variableName [ ] PROGMEM = {"Example s t r i n g . " } ,

where prog_uchar indicates that the variable's (variableName, in this case) data-

type is an unsigned char. The keyword PROGMEM can only be used with certain

datatypes and its sole purpose is to tell the compiler to put the variable into program

memory instead of data memory. The logic behind all this is to save data memory

as Arduino boards have typically more (atleast 16 times) program memory space.

In the example variable, transferring the variable into program memory would save

15+1 bytes, which does not sound much but is almost one percent of Arduino Uno's

RAM for example. Considering that this program has dozens of similar constant

strings, this sort of approach was very e�ective way to save data memory.

5.2.2 Initializer class

Embedded systems usually involve many peripherals and it is hardly ever a case

where processor acts alone. Like in this project, there are many devices attached

that each one has its unique way of con�guring and initialising. This class' main

purpose was to o�er a single place where the devices get initialised and con�gured.

First of all, sometimes it matters when and in what order the devices get initialised

and by putting them in the same place reduces possible misbehaviours. Secondly,

gathering all the initialisations to the same place in the code helps the developer to

add new devices as it is rather explicit where he or she has to modify the code to

get the device working.

The class interface can be seen in the Figure 5.2 that shows the class diagram. To

keep it as simple as possible for the class' user, using the class is very straightforward:

I n i t i a l i z e r . I n i t i a l i z e ( )

does all the necessary initialisations. The implementation part takes care of all the

above mentioned requirements so users do not have to worry about anything. The

actual initializations are done in the private functions of the class, which are then

called in the function Initialize() in the right order.

Device-speci�c initializers depend heavily on used ports for example. In the cur-

rent implementation, constants, like port numbers, are not relayed as function para-

meters but they can be found from Con�gs.h-header �le that was introduced before.

5.2.3 Orchestrator class

This section introduces the implementation of the Orchestrator class. The imple-

mentation aims at ful�lling all the requirements set for an SDP Client, that can be

reviewed in Subection 2.4.2.
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As Orchestrator class' main task was to communicate with the server, it was

intuitive to derive the class from the class that implemented the communication

protocol. In this project, the underlying communication protocols were HTTP and

SocketIO and therefore two implementations exist.

The version that was built on HTTP used a library by Adrian McEwen that

implemented the protocol in question [16]. SocketIO version was based on Bill Roy's

library of SocketIO protocol [17]. In both cases, Orchestrator class o�ers the same

interface to work with but the underlying components are di�erent.

Before making a connection to the Orchestrator, the Orchestrator class assumes

that the Arduino is already con�gured properly. After registering the device, Orc-

hestrator keeps monitoring the connection and if it receives information e.g. about

methods, that information is passed to the Client class where it can be handled. Ad-

ditionally, Orchestrator o�ers interfaces to pass information, return values or excep-

tions from the current actions to the server side. Orchestrator also makes sure that

the connection does not die while there is not any communication for a while by

sending heartbeats.

According to the Socket.IO protocol, the messages between client and the server

consist of JSON messages. Normally handling JSON messages is rather stress free

but when it comes to embedded systems, used libraries need a little more atten-

tion. Due to fragmentation (discussed more deeply in the Section 5.5), at one point

dynamic memory allocations needed to be removed and therefore traditional JSON

libraries could not be used. In the �nal version, Benoit Blanchon's JSON parser [19]

for Arduino that did not rely on malloc(), was used.

5.2.4 Proximity class

As stated before, Proximity class keeps track of surrounding devices by using Blue-

tooth. When a device is in discoverable mode it transmits the following information:

• Device name.

• Device class.

• List of services.

• Technical information (e.g. MAC-address).

We are interested in devices' names and Bluetooth MAC-address that are used for

identifying users and their devices respectively in an action for instance.

To keep it as simple as possible, Proximity class o�ers only one method to use.

Inquiry() executes an inquiry to scan around devices and passes the information

including the devices' MAC-addresses and their names to the server. Worth mentio-

ning is that the method call is synchronous meaning that the execution continues
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after the method has �nished its own execution. In practice this can lead to problems

as scanning the devices is relatively slow operation (2-10 seconds) and during this

the system does not respond to action triggers for example. The SDP does not neces-

sarily require continuous scanning of the devices so in the current implementation

scanning is done only once after the boot up.

Each Bluetooth module needs to handled di�erently so the current version of

Proximity class supports only Roving Network's RN-42 -Bluetooth module. The

following pseudocode is used in the implementation:

1. Set up communication. This step is required for the communication between

the module and Arduino. In order for serial communication to work, both

devices need to be con�gured properly. Con�guring involves setting baud rates

to match and informing both devices that parity bit is not used.

2. Put the module in command mode. During this step, speci�c strings are

sent that will put the module in a mode where it accepts commands

3. Execute scan. The Bluetooth module starts scanning nearby devices.

4. Read and parse the scan results. If the scanning is successful, the module

responds with a result and the result is parsed in step 4.

5. Send results to server. Finally, the values including devices' MAC-addresses

and names are passed to the function that sends the information to the server.

Noteworthy is that the communication needed special attention: �rst the serial

communication was done programmatically but it had poor results as communica-

tion was slow and some times data got corrupted. Even though hardware serial was

used, data corruption still happened randomly for unknown reason. This was hand-

led by sending commands until the command was processed successfully. Another

issue was related to timings since the module could handle only one command at a

time so consecutive commands needed to be delayed by certain duration.

5.2.5 State class

State class' purpose is to keep states up to date. Additionally, it provides interfaces

to check what states the device currently has and o�ers methods to change them. An

example interface to handle device's state concerning silent mode is the following:

• bool isSilent()

• void setSilent(bool)

• void updateStates()
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The method isSilent() is used to check if the device is set to silent mode or not,

setSilent(bool) sets the device into a desired mode and updateStates() updates all of

the states to the server side. One option would have been updating state changes

to the server side every time device changes its state but it was considered better

way to update all of the states at once at certain point of the execution �ow. The

argument for this is that it is better to include as much information as possible into

a single data transmission to improve the responsiveness of the device.

5.3 TalkingDevice interface

This section introduces an implementation of TalkingDevice interface. This section

also aims to clarify how the client is utilized in practice.

In Figure 5.3 is shown the set-up that was used for demonstrating a device with

TalkingDevice-capabilities. Set-up consists of Arduino board, parrot and loudspeaker

system. Parrot consists of six servomotors that are used for controlling its beak,

wings, torso and head. Loudspeakers are used for producing speech.

Above described system can be used, for instance, in an action that requires

TalkingDevice-capabilities. The parrot can speak and while speaking, it moves its

beak, wings, torso and head.

Kuva 5.3: Final set-up.

Figure 5.4 presents the schema of the device that was used. For the sake of

simplicity, only one of the six servomotors is drawn on the schema. Servomotors are
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actuators that allow controlling angular position, velocity and acceleration of a shaft

by pulse width modulation [20]. Arduino provides a library to work with servos and

therefore pulse width modulation did not need to be implemented. The usage of the

library was quite straightforward:

• Servo.attach(pin) is used for de�ning certain pin to be used with servomotor.

• Servo.write(angle) writes value to the servo that then changes its shaft's angle

accordingly.

• Servo.detach(pin) detaches the Servo variable from its pin.

Figure 5.4 also shows the circuit of a loudspeaker and its ampli�er along with

low-pass �lter. The transistor works as an ampli�er to make the volume levels a bit

higher. Capacitor is hooked up with a resistor to make a low-pass �lter in order to

improve speech quality by cutting unnecessary high frequencies.

Kuva 5.4: Parrot sketch.

At program code level the implementation for the parrot was done as a class.

Class provides an interface including one method to use. The method void Par-

rot.say(char* string) accepts char pointer to a string as a parameter and the execu-

tion is done synchronously. Listing 5.2 shows an example how the TalkingDevice-

interface is used.
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Listing 5.2: Client usage.

void onmethod ( Orche s t ra to rC l i en t c l i e n t , char ∗data ) {

i f ( c l i e n t . ge tCurrentCapab i l i ty ( ) == "TalkingDevice " ) {

// Check what method i s in ques t i on and

// check i f the dev i ce i s s e t to s i l e n t mode .

i f ( c l i e n t . getCurrentMethod ( ) == "say" &&

! c l i e n t . g e tS ta t e ( ) . i s S i l e n t ( ) ) {

parrot . say ( c l i e n t . getCurrentArguments ( ) ) ;

c l i e n t . sendResponse ( " t rue " ) ;

}

}

// Other i f−b locks f o r d i f f e r e n t c a p a b i l i t i e s

}

One of the problems we faced was related to the power consumption of the ser-

vomotors. A servo draws relatively great amount of power so in practice, only one

servomotor could be used at a time if powered by an Arduino. To avoid clunky be-

haviour in a movement that included several servomotors, servos were driven one

at a time but only for a very small time period. The best way to deal with such

problem could have been using an external power source for the servomotors.

Producing speech was also problematic: even though active speakers were used,

the sound volume of speech was quite low. When the system was tested with simple

tones with only few frequencies, the volume was just �ne. Problem with speech was

probably due to the fact that the energy to produce sound disperses into multiple

frequencies resulting in low volume. This could be �xed with dedicated text-to-

speech synthesizer for instance.

5.4 Future work

To make the client more compatible with other Arduino boards basically means

that memory consumption should be lowered. At the moment, the client uses va-

rious libraries for, e.g., SocketIO-protocol and JSON parser that consume reasonable

amount of RAM. Investigating these libraries and optimizing their code might be

useful.

Without the existence of true parallel execution, it might be the case that the

client does not respond to server's queries sometimes. For example, when an execu-

tion of an application is ongoing, the client is not able to respond. Queries can always

be resent but this adds unnecessary load for the server side. In practice this is sol-

ved by using an operating system that supports parallel execution and is compatible

with Arduino.

WiFi Shield was pointed out to be hindering the client's response times. Trying
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di�erent network enabling shields could perhaps perform better. Another option

could be optimizing the WiFi Shield's drivers as they are open source.

5.5 Summary

One of the worst problems during development was fragmentation related to dynamic

memory allocation. Fragmentation means that after memory has been allocated and

freed dynamically multiple times, the memory is �lled with di�erent sizes of free or

allocated memory slots [18]. Figure 5.5 gives an example of fragmentation: system

has unallocated space available but it is distributed into three smaller chunks. This

can lead into a situation where free slots can not satisfy the application's demands

anymore. Typically the problem is related to memory allocation routines and there

is not much developer can do to avoid it [18].

Kuva 5.5: Memory fragmentation due to dynamic memory allocation.

Problems occurred when client had run successfully for a 5 to 10 minutes: �rst

the debug messages into terminal got corrupted and then the whole program cras-

hed which resulted in Arduino booting itself. Fragmentation was detected after out-

putting free memory into terminal after certain time intervals. The amount of free

memory decreased in every cycle even though reserved memory slots were freed after

they were used. This was clear indication of memory fragmentation. To solve this,

every dynamic memory allocation was removed from the program code.

Networking, the lag issue aside, worked mostly �awlessly: the client stayed con-

nected for long time periods. Sometimes transmitting data was troublesome as WiFi

Shield stopped responding. This was resolved by delaying data and splitting it into

smaller pieces before sending it to the Wi� Shield.

During the development, the backend implementation was changed as the next

iteration (OrchestratorJS) of the SDP was published. The development started using

the SDP but was changed to OrchestratorJS at one point. The main reason for this
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was the protocol change from HTTP to Websocket (and Socket.IO): this reduced the

response times greatly due to Websocket's technology. Secondly, along with HTTP

came relatively huge overhead since each message between the client and the server

needed to be included in the HTTP request. This meant that with each message,

the mandatory headers need to be sent as well, which could take up to 500 KB. For

embedded systems this may lead to problems as memory is valuable resource like in

this case. Each HTTP request from WiFi Shield had to be read as small chunks and

sometimes this lead to weird behaviour of the system. This was probably caused by

WiFi Shield's bu�er over�ow since Arduino handled reading the messages too slow.
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6. EVALUATION

This chapter's purpose is to evaluate the client. First, Section 6.1 evaluates the

client's performance. Second, the client is evaluated from overall perspective: discus-

sion about how the client meets the set requirements is presented in Section 6.2.

6.1 Performance

Evaluating performance is important as in typical user scenarios in the SD the user

experience is vastly a�ected by, e.g., lag. The section presents results of latency tests

using di�erent connections and discuss about how latency a�ects user experience and

what are the causes for the lag is presented as well. The following tests were done

using OrchestratorJS as the implementation of Social Devices.

Listing 6.1: Action body of lag test.

class LagTestCapabi l i ty {

public :

LagTestCapabi l i ty ( ) ;

// For i n i t i a l i z i n g v a r i a b l e s

void initMeasurement ( ) ; // d e f i n i t i o n omitted

void dummyMethod( int round ) {

// m i l l i s ( ) r e tu rn s the number o f m i l l i s e c ond s s i n c e the

// Arduino board began running

i f ( lastEndTime_ != NULL) {

t imedeltas_ [ i ] = lastEndTime_ − m i l l i s ( ) ;

}

lastEndTime_ = m i l l i s ( ) ;

} ;

void pr i n tRe su l t s ( ) ; // d e f i n i t i o n omitted

private :

unsigned int t imedeltas_ [ 1 5 ] ;

unsigned int lastEndTime_ ;

}

The testing was done somewhat similarly than in [21]. In order to measure lag,

a test interface that calculates time di�erence between two method invocations was

used. In practice, time di�erence between method invocations is heavily in�uenced

by the time of execution of methods and therefore methods used are as simple as

possible.
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Test interface used for lag test is presented in Listing 6.1 as a C++ class. Test

interface consists of method initMeasurement() which initializes the needed variables

and dummyMethod(int round) which calculates time deltas between invocations and

stores them in a table. The method dummyMethod(int round) was invoked 16 times

in a row resulting in 15 time delta values. The method printResults() was used to

print all the values at once through serial port.

Taulukko 6.1: Communication latency between the client and the server using di�erent
connections. In the case of 3G and 4G, the test results include the latency to the router.

∆ti WLAN (ms) 4G (+ WLAN) (ms) 3G (+ WLAN) (ms)

1 2028 2059 2310

2 2031 2055 2285

3 2036 2060 2292

4 2026 2061 2341

5 2034 2056 2311

6 2039 2058 2309

7 2032 2060 2315

8 2029 2058 2286

9 2031 2057 2290

10 2037 2059 2303

11 2027 2062 2295

12 2029 2054 2290

13 2030 2053 2302

14 2031 2058 2289

15 2033 2055 2337

∆t 2032 2058 2304

σ 3.7 2.6 17.4

Results are presented in Table 6.1. In addition to time deltas, average and mean

values are calculated as well. WLAN measurements were done using high quality

Internet connection provided by Finnish University and Research Network (Funet).

In measurements for 3G and 4G, connections were provided by Finnish network

provider Saunalahti. During testing server side components were located in Ireland

on Amazon servers meaning "base latency"was around 70-80 milliseconds.

Latency is roughly around two seconds for each connection type. Latency mainly

consists of time that it takes the Arduino to handle the method invoking and sending

the response. Noteworthy is that the standard deviation of the latencies using WLAN

and 4G is quite low. Latency with 3G on the other hand, is much more unsteady

due to its technology. In comparison to [21] where similar latency test was made,
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a modern mobile phone performed roughly 20 times faster. Interesting observation

was that the standard deviations were clearly higher in [21] than values seen in this

test. One of the reasons might be related to the mobile phone used in [21]: mobile

phone uses OS that supports parallel execution using threads which can result in

nondeterministic behaviour. Arduino in turn, o�ers more deterministic processing.

Miller [22] has categorized system's responsing times followingly from user expe-

rience perspective:

1. 0.1 seconds is about the time limit for having the user feel that the system is

reacting instantaneously.

2. 1.0 second is about the time limit for the user's �ow of thought to stay unin-

terrupted.

3. 10 seconds is about the time limit for keeping the user's attention focused on

the dialogue. For longer delays, users will want to perform other tasks while

waiting on the computer to �nish.

When compared to Miller's guideline, our system does not respond fast enough to

make end-users feel like the system responds instantaneously. When coordination is

done over cloud service, like in this case, it will be impossible to make the system

react in 0.1 second due to base latency. 1.0 second mark on the other hand, might

be reachable if certain optimizations were done. Last stage, 10 seconds, is ful�lled

rather easily: even if methods used are more complexed and computing intensive,

they will most likely be handled under 10 seconds. Miller does not discuss about how

stable responsive time re�ects to user experience but as we have seen, response times

are rather stable which makes the behaviour more predictable resulting perhaps in

better user experience.

Sources for the latency were investigated as well. It turned out that only minor

part (~150ms) of the latency was caused by the execution of the programming

code itself. It makes sense as the programming code does not include any intensive

calculating and the amount of slow memory operations (RAM) is relatively low.

The only major component for the lag seemed to be related to the WiFi Shield. The

execution of the program code part where the client asks (method WiFi.available(),

see Section 4.3) the WiFi Shield if the server has responded or not, was clearly the

most time consuming. Typically waiting time was around 1.5 seconds, although this

time period includes base latency and the time that it takes the server to handle the

client's response and send a new invocation.
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6.2 Overall evaluation

The SD client is required to communicate with the server. In practice this means

that the client needs to register itself and be able to respond to requests from the

server. As we have seen, our client ful�ls these requirements mostly: the client is able

to register itself and responds to the requests. However, we might face a situation

where the client is processing previous request and can not respond. Additionally,

while scanning nearby devices the client can not respond either but this can be easily

solved as continuous scanning is not necessarily needed.

One of the necessities for a SD client was updating state values to the server

as well. Currently the client is capable of updating and posting its state values. In

reality, the client implementation has a component to update state values to the

server and a developer needs to add his own functionality to add desired states and

keep them updated (internally).

As said, the client is expected to send RSSI values to the server to keep the

proximity graph up to date. In our client implementation we added a functionality

that serves this purpose. However, without proper hardware abstraction layer the

implementation is only compatible with speci�c Bluetooth module.

Finally, we are safe to say that the client can act as Social Devices client or atleast

is a proof of concept.
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7. CONCLUSION

As a part of this Master's Thesis a Social Devices client was developed for Arduino

platform. The client ful�ls the necessary requirements to act as Social Devices client.

The client also functions as a proof of concept for Social Devices. A modest device,

such as Arduino, is capable of functioning as a part of Social Devices and provides

an ideal platform for developers to design certain applications for Social Devices

that are not possible with more traditional devices like mobile phones for example.

In addition, our client was an example how diverse the devices in Social Devices

can be: Social Devices' implementations function as an abstraction layer for all

di�erent devices. As a future work we discussed about improving the performance:

we might face situations where the client can not respond to requests from the

server and this may lead to problems. This could be solved with a thread-supporting

OS. Additionally, performance-wise we concluded that the performance of the client

satis�es the needs of most applications. However, in applications that require real-

time responsiveness, our client does not function fast enough and this might result

in hindered user-experience, for instance.

The secondary purpose was to implement the client a way that a developer can

easily attach his own program code modules that would include the implementations

of functionality that can be used for application in the system. To serve this purpose,

a hardware abstraction layer was implemented. In practice, a developer can edit a

con�guration �le that holds information which interface implementations the build

will include. In addition, the con�guration �le also helps setting up an embedded

system since it is easier to see which resources are currently in use. Finally, adding

own programming code is rather simple as you need include your own if -block in a

certain source �le.

In the literature review part Social Devices concept was introduced. Social De-

vices presents a new kind of sociodigital system where humans and devices both par-

ticipate in. We also presented two implementations for Social Devices and became

familiar with their architecture and components. Both implementations, the Social

Devices Platform and OrchestratorJS, try to �ll the requirements for Social Devices

in practice. For instance, the implementations take care of keeping track of the close-

ness of the devices and �nd a suitable con�guration for devices that are near of each

other. Additionally, the implementations orchestrate operation execution between
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the devices.

During the development of the client we faced many typical challenges regarding

developing software for an embedded system. Rather modest resources, such as RAM

memory, lead to a di�erent set of problems: issues like fragmentation and the lack

of memory had to be taken into account when designing the software. Matters like

these were good examples of challenges that are related to developing software for

embedded systems. Therefore, we can agree that implementing the client provided

valuable insight, which was also one of the thesis' purposes.
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