ﬁ TAMPERE UNIVERSITY OF TECHNOLOGY

PETRI HAUTAMAKI
IMPROVING WEB APPLICATION SCALABILITY WITH ADVANCED

CACHING TECHNIQUES

Master’s Thesis

Examiner: Adjunct Professor Ossi
Nyké&nen

Examiner and topic approved

by the Council of the Faculty of Com-
puting and Electrical Engineering
on 5th November 2014

TIVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

HAUTAMAKI, PETRI: Internet-sovellusten skaalautuvuuden parantaminen kehit-
tyneita valimuistitustekniikkoja hyédyntamalla

Diplomityd, 56 sivua, 9 liitesivua

Marraskuu 2014

P&aaine: Hypermedia

Tarkastajat: Dosentti Ossi Nykanen

Avainsanat: taustajarjestelma, Internet-sovellus, skaalautuvuus, vertikaalinen skaalau-
tuminen, horisontaalinen skaalautuminen, valimuisti, Edge Side Includes, Grails

Tamén diplomityon pddasiallinena tarkoituksena oli tutkia ja valita parhaat tavat Internet-
sovellusten skaalautuvuuden parantamiseksi erityisesti korkeiden litkennepiikkien aikana.
Sovellusten skaalautuvuuden konkreettisimmaksi mittariksi valittiin sovelluksen maksi-
maalinen ldpisyottokyky.

Yleisten Internet-sovellusten tehokkuussuositusten perusteella lupaavimpana ratkaisuna
lapisyottokyvyn parantamiseen ndhtiin vilimuistin kdyton tehostaminen. Tdmén poh-
jalta todelliseen sovellukseen implementoitiin kaksi kehittynyttid valimuistitustekniikkaa:
sisdltdosasten vilimuistittaminen Edge Side Includes (ESI) -merkkauskieltd hyodyntimalla
sekd kayttdgjaryhmékohtaisten HTTP-vastausten vilimuistittaminen Servlet-suodattimen
avulla.

Edge Side Includes -tuen implementoinnin jidlkeen sovelluksen etusivun maksimaalisen
lapisyottokyvyn mitattiin olevan noin kolminkertainen alkuperdiseen verrattuna. Vaikka
tama katsottiin jo hyviksi parannukseksi, vaikutti etusivun rungon renderdiminen olevan
tdssd vaiheessa niin raskasta, ettd se turhaan rajoitti ESI-ratkaisun todellista potentiaalia.

Rungon render6éimistehokkuuden parantamiseksi sovelluksen ympérille luotiin Servlet-
suodatin, jonka avulla etusivun eri versioita valimuistitettiin parin sekunnin ajan. Ratkaisun
ansiosta sovelluksen prosessointitarve viheni merkittidvasti erityisesti korkeiden liitken-
nepiikkien aikana, jonka seurauksena etusivun ldpisyottokyvyksi saatiin nyt noin kym-
menkertainen arvo alkuperdiseen verrattuna.

Edellisten liséksi sovelluksen maksimaalinen kokonaisldpisyottokyky mitattiin ajamalla
realistista korkean litkenteen piikkid kuvaava simulaatio seki optimoimattomalle ettd op-
timoidulle sovellukselle. Mittausten perusteella optimoitu sovellus suoriutui simulaatiosta
noin 2.3 kertaa alkuperiistd paremmin.

Diplomity&projekti voidaan katsoa kokonaisuudessaan onnistuneeksi, sillid sen ansiosta
alkuperiisen sovelluksen skaalautuvuutta saatiin parannettua merkittavisti. Lisdksi pro-
jektin aikana l6ydettiin monia jatkokehitysajatuksia skaalautuvuuden parantamiseksi en-

tisestdin tulevaisuudessa.

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

HAUTAMAKI, PETRI: Improving web application scalability with advanced caching
techniques

Master of Science Thesis, 56 pages, 9 Appendix pages

November 2014

Major: Hypermedia

Examiner: Adjunct Professor Ossi Nykanen

Keywords: back end, web application, scalability, vertical scaling, horizontal scal-
ing, cache, Edge Side Includes, Grails

The main purpose of this thesis was to research and select the most usable ways of im-
proving web application scalability especially during high traffic peaks. The most con-
crete meter for the application scalability was defined to be the maximum throughput of
the application.

From the general web application performance guidelines, caching was seen as the
most promising solution for improving the maximum throughput of the application. Be-
cause of this, a couple of advanced caching techniques were implemented into a real life
application: caching of content fragments with Edge Side Includes (ESI) markup lan-
guage and caching of user group specific HTTP responses with a Servlet filter.

After implementing the Edge Side Includes support into the application, the maximum
throughput of the application front page was measured to be roughly 3 times the original.
Though this was considered to be a good improvement, it seemed clear that the render-
ing process of the front page response skeleton was unnecessarily heavy at this point,
therefore limiting the true potential of the ESI solution.

In order to improve the performance of the response skeleton rendering process, a
Servlet filter was configured to cache the different response skeletons to a local cache for
two seconds, thus reducing the need for processing in the application especially during
high traffic peaks. With this improvement, the maximum throughput of the application
front page now reached approximately tenfold value compared to the original version.

In addition, the maximum total throughput of the application was measured under a
realistic simulation of a high traffic peak before and after the optimization steps. As a
result, the optimized application seemed to perform approximately 2.3 times better than
the original.

In the end, the thesis project can be considered successful due to the noticeable im-
provement in the application scalability. Furthermore, various additional improvement
possibilities were discovered during the project, which could help to improve the applica-

tion scalability even more in the future.

III

PREFACE

This thesis was written for the company Conmio Oy in order to find usable ways of im-
proving the scalability of the company’s web applications. The thesis project was started
originally in the beginning of June 2013, yet the final topic was found later during January
2014, when a concrete issue in a real life web application scalability was encountered.
The thesis examiner, Adjunct Professor Ossi Nykinen, and the topic were approved by
the Council of the Faculty of Computing and Electrical Engineering on 5th November
2014.

I want to thank especially the staff of Conmio Oy for providing me a suitable working
gear, environment and guidance during the thesis project. Special thanks to Ville Viskari,
Tatu Dufva, Antero Fagerstedt and Tommi Liittokivi for the great input concerning the re-
search around the thesis. A very special thanks to the CEO of Conmio, Tero Himél4inen,
for allowing the thesis project to happen in the first place.

Additionally, I want to thank my official instructor and examiner Ossi Nykénen from
the Tampere University of Technology for giving me a lot of valuable feedback, especially
concerning the structure of the thesis. Without his feedback, the final product would not
be as coherent as it is now.

Now when the thesis is finally finished, the feeling is relaxed. A long career at school
is about to come to an end while another one at work is just about to begin. Along with
the new career begins also the actual learning process of the new Master of Science.
Especially in the area of Information Technology, where everything advances in lightning
fast speeds, the true professionals can never truly rest if they want to stay as the masters
of their game.

What comes to the results of the thesis, there is some anticipation in the air. Despite the
most realistic load tests and simulations available, the final load test will always happen
in the actual production environment by the actual end users. At the time of writing, a
few new second screen applications are already out and optimized with the techniques
explained in this thesis. However, the anticipated high traffic peak is still yet to come.

Tampere, 10th November 2014

Petri Hautamaki

1A%

CONTENTS

I. Introduction e 1
1.1 The purpose of thethesis 1
1.1.1 Researchproblem 1

1.1.2 Researchquestions 2

1.1.3 Researchmethods 2

1.1.4 Scope e 2

1.2 Structure e e e e 3

1.3 Stakeholders 4

1.4 Special markings 4

2. Starting point e e e e e 5

2.1 Internet 5
2.1.1 Beginning 5
212 WorldWideWeb 5
2.1.3 Traditional Web oo 6
214 MobileWeb 6
2.1.5 Responsive Web L 7
2.1.6 Second screen applications
2.177 Scalability

2.2 The basic structure of the Internet 10
2.2.1 From web pages to web applications 10
2.2.2 Client-servermodel, 11
2.2.3 Server-side architectureo 12
2.2.4 Server-side programming 12
2.2.5 Client-side architecture 14
2.2.6 Client-side programming 15
2.277 Multi-tier architecture 16
2.2.8 Conmio web applications 17
2.2.9 Conmio web application architecture 17

2.3 Programming frameworks Lo 18
23.1 Purpose 19
232 Advantages e 19
2.3.3 Disadvantages e e 19

24 Grails e e 20
24.1 Mainfeatures e 20
242 Plugins 21
243 Advantages e 21

244 Disadvantages e e e 22

245 Alternative frameworkso L. 22
2.5 Web application performance 22
2.5.1 Definitiono 23
2.5.2 Performance best practices 23
253 Loadbalancingo 25
2.5.4 Conmio web application performance 25
2.5.5 Measuring the performance 25

. Improving the scalability L. 27
3.1 Caching 27
3.1.1 Theory e 27
3.1.2 Advantages e 27
3.1.3 Disadvantages e 28
3.1.4 Current utilization L Lo 29
3.2 Advanced caching techniques 29
3.2.1 Improvement options 29
3.2.2 Prioritization 30
3.23 Future possibilities Lo 30
33 Varnish L 31
33.1 Functionality 31
332 Advantages e e 31
3.3.3 Disadvantages 32
34 EdgeSideIncludes 33
34.1 Functionality 33
342 Advantages e 34
343 Disadvantages e 34
3.4.4 Edge Side Includes and Varnish 35
3.4.5 Edge Side Includes and Conmio Modules 35
3.5 User group specific HTTP response caching 35
3.5.1 Functionality 36
352 Advantages 36
3.5.3 Disadvantages 37

. Edge Side Includes utilization 38
4.1 Optimization StEPS v v v e e e e e e e e e e e 38
4.2 Performance before optimization 38
4.3 Edge Side Includes optimization 39
4.4 Performance after Edge Side Includes optimization 40
45 Summary e e e e e 42
. Response caching utilization 43

5.1 Background 43

5.2 Optimization StEPS« v v v e e e e e e e 43

5.3 Performance after response cache optimization 44
5.4 Performance in a realistic high traffic simulation 47

5.5 Summary 49

6. Conclusions L 51
6.1 Selected optimization techniques 51
6.1.1 Theoretical findings, 51

6.1.2 The results of the empirical studies 52

6.1.3 Measurement reliability 53

6.1.4 Further improvement possibilities 54

6.2 Thethesisproject e 55
6.2.1 Successfulparts 55

6.2.2 Improvementareas 55
References 57
A. EdgeSideIncludes 62
B. Wireframes 63
C. Response Caching Filter 64
D. Benchmarkresults. 65

VII

TERMS AND DEFINITIONS

AB

AJAX

Apache HTTP server

Apache Tomcat

Application server

Asynchronous

Back end

Bottleneck

Business logic

Caching

Cache

ApacheBench. A single-threaded command line computer

program for measuring the performance of HTTP web servers.

Asynchronous JavaScript And XML. A collection of tech-
niques for making web applications more interactive by al-
lowing the exchange of data fragments through XML or
JSON formats.

A popular web server application.

An open source software implementation of the Java Servlet

and JavaServer Pages technologies.

A program that handles all application related operations
between users and an organization’s back end applications

or databases.

In computer programming, asynchronous events are those
occurring independently of the main program flow. Asyn-
chronous actions are executed in a non-blocking fashion,

allowing the main program flow to continue processing.

The term back end refers to the operations that are per-

formed on the server layer of the web application.

A phenomenon where the performance or capacity of an
entire system is limited by a single or limited number of

components Or resources.

The part of the program that encodes the real world busi-
ness rules that determine how data can be used and modi-
fied.

To utilize a cache by storing data to it or retrieving data

from it.

Cache is generally a component that transparently stores
data so that future requests for the same data can be served
faster. Web cache is a mechanism for the temporary stor-
age (caching) of web documents, such as HTML pages and
images, for reducing bandwidth usage, server load and per-

ceived lag on client’s end.

Cache entry

Cache hit

Cache hit ratio

Cache key

Cache miss

CDN

Client

Client-side

Conmio Cache

Conmio Devices

Conmio Modules

Conmio Oy

Dedicated server

VIII

An item in a cache.

If the requested information is found from the cache, it is

called a cache hit.

The percentage of all cache hits out of all requests is called

the cache hit ratio.

An unique value that is used for searching a particular cache

entry from the cache.

If the requested information is not found from the cache, it

is called a cache miss.

Content Delivery Network. A large system of servers dis-
tributed across the Internet designed to improve content

availability and service performance.

A client is a piece of computer hardware or software that
accesses a service made available by a server, which may
or may not be located on another computer.

The term client-side refers to the operations that are per-
formed on the client of client-server relationship in com-

puter networking.

A Conmio-specific Grails plugin that allows caching of var-
ious kind of data, like Groovy and Java objects or markup

fragments.

A Conmio-specific Grails plugin that offers an unified way
of retrieving information about the current end device with

some additional features.

A Conmio-specific Grails plugin that allows the modular-
ization of a specific markup fragment and the required logic

for composing that markup in the first place.

A software company that specializes to mobile web appli-

cations. The thesis is written for this particular company.

A single computer in a network reserved for serving the

needs of the network.

Domain model

Domain object

Edge device

Edge-level

Ehcache

End device

ESI

ESI processor

Expensive processing

Framework

Front end

Grails

IX

[lustrates a meaningful conceptual class in the problem do-
main. Represents a real world concept instead of software
components. For example, in the news domain an Article

could be one of the domain classes.
An instance of a domain model class.

A device that provides entry point into enterprise or ser-
vice provider network. Examples include routers, routing

switches and multiplexers.

The term edge-level refers to the operations performed on
the level of edge devices. Usually this means the middle-

ware layer of the web application.

An open source, standards-based cache for boosting perfor-

mance, offloading database and simplifying scalability.

A source or destination device in a networked system. For
example, an user’s mobile phone is an end device, and so is

a SEerver.

Edge Side Includes. A markup language developed espe-
cially for caching and assembling dynamic Web content on
edge-level.

A software capable of processing the complete response out

of a response skeleton and content fragments.

If processing is defined to be expensive, it requires a lot of
system resources, like memory and CPU-time, in order to
achieve the desired result.

An abstraction in which software providing generic func-
tionality is selectively modified by additional user-written
code, thus providing application-specific code and increas-

ing productivity.

The term front end refers to the operations that are per-

formed on the client layer of the web application.

A web application framework built on top of Java Virtual
Machine.

Groovy

Horizontal scaling

HTTP

IP

Java EE

JMeter

JSON

JVM

Load balancer

Middleware layer

Multi-tier

Origin server

X

An agile and dynamic programming language for the Java
Virtual Machine.

The process of adjusting a system’s resources according to
load by increasing or decreasing the number of processing

units.

HyperText Transfer Protocol. An application protocol for
distributed, collaborative hypermedia information systems.

Internet Protocol. The main communications protocol in
the Internet protocol suite for relaying datagrams across

network boundaries.

Java Platform, Enterprise Edition. Oracle’s enterprise Java

computing platform.

An application by Apache Software Foundation designed
to load and stress test functional behavior and measure per-

formance of a web application.

JavaScript Object Notation. A simple open standard for-
mat for transferring data between computers. Despite the
name, JSON is independent from JavaScript. JSON is an
alternative to XML for example in AJAX.

Java Virtual Machine. An abstract computing machine for

Java platform.

A software that distributes workload across multiple com-
puting resources, such as computers, network links, central

processing units or disk drives.

In a multi-tier network architecture, middleware layer ne-

gotiates the transactions between client and server layers.

In network architecture, multi-tier architecture refers to a
system that contains more than two layers of abstraction.
For example, a client-server network is multi-tier if there is

some kind of middleware between the client and the server.

The server machine running the web application back end

code, thus being the origin of the actual application content.

Proxy server

Request

Response

Response caching

Response skeleton

Scalability

Scaling

Second screen

Server

Server-side

XI

A server that acts as an intermediary for requests from clients

requesting resources from servers.

In HTTP paradigm, clients send request messages to servers
when they are in need of some specific data. The request
can correspond to one of several methods, of which the

most common ones are GET and POST.

In HTTP paradigm, servers respond to client requests by
sending a response message to the requesting client. The
response contains status code that describes the successful-
ness of the request as well as the actual response content.

A specific technique for caching HTTP responses contain-
ing any format of markup language, including HTML, XML,
JSON or ESI elements.

An intermediate version of a response that does not yet con-
tain all required information. For example, the response re-
turned to ESI processor is a response skeleton, if it requires
assembling of content fragments before the complete re-

sponse can be formed and returned to the client.

The ability of a system to adjust its resources based on the

current load.

The process of adjusting a system’s resources according to

load. Scaling can be either vertical or horizontal.

The term second screen refers usually to a mobile device
that is used alongside a television show in order to enhance
the viewing experience by allowing interaction with the show
somehow. Possible interactions include voting a particular
participant of the show, answering to a poll or chatting with

other watchers of the show.

The term server refers either to a particular application,
program or software module that is capable of performing
computing upon request or to the hardware platform that

runs one or more of the previous.

The term server-side refers to the operations that are per-
formed on the server of client-server relationship in com-

puter networking.

Servlet

Servlet container

Servlet filter

SPA

TCP

TCP/1P

Throughput

Traffic

TTL

Two-tier

Varnish

XII

A Java programming language class used to extend the ca-
pabilities of a server.

The component of a web server that interacts with Java
Servlets, meaning the actual application. It is responsible
for managing the lifecycle of Servlets, mapping URLs to
corresponding Servlets and ensuring that the URL requester

has the correct access rights.

A Servlet filter is an object that can intercept HT TP requests
targeted at web application.

Single-page application. A web application that fits on a
single page with the goal of providing a more fluid user
experience by updating the view dynamically without re-

quiring an entire page reload after the initial response.

Transmission Control Protocol. One of the core protocols
of the Internet protocol suite. Provides reliable, ordered
and error-checked delivery of a stream of octets between
programs running on computers connected through a net-

work.

Provides end-to-end connectivity specifying how data should
be packetized, addressed, transmitted, routed and received
at the destination through a network.

In the scope of this thesis, the throughput value of a web ap-
plication refers to the application’s ability to serve requests

per time unit.

In computer networking, traffic describes the flow of data
through the network.

Time to live. A parameter for limiting the lifespan or life-

time of data in a computer, network or cache.

In network architecture, two-tier architecture refers to a
system that contains two layers of abstraction. For exam-
ple, a pure client-server network contains just client and

server layers.

An HTTP accelerator designed especially for content-heavy

dynamic web applications.

VCL

Vertical scaling

Web application

Web application framework

‘Web server

XML

XIII

Varnish Configuration Language. A small domain-specific
language designed to be used for defining request handling
and document caching policies in the Varnish HTTP accel-

erator.

The process of adjusting a system’s resources according to
load by increasing or decreasing the performance of a sin-

gle processing unit.

The most advanced version of a Web service. Can con-
tain dynamically tailored representation of hypertext data

for each user.

A software framework designed to support the development
of dynamic web sites, web applications, web services and

web resources.

The term web server can refer to either the hardware or
the software that delivers web content that can be accessed
through the Internet. Its primary function is to store, pro-

cess and deliver web pages to clients.

Extensible Markup Language. A markup language that de-
fines a set of rules for encoding documents in a format that

is both human-readable and machine-readable.

1. INTRODUCTION

1.1 The purpose of the thesis

The main purpose of this thesis is to research and find the most usable ways of improving
web application scalability especially during high traffic peaks, thus making the appli-
cations more reliable under varying traffic conditions. In practice, these improvements
would remove the need for extra monitoring concerning the anticipation of the next high
traffic peak, which can be difficult especially when multiple similar applications are on-
line simultaneously. Furthermore, these improvements would remove the need for manual
scaling of the resources, which is a dull, repetitive task and costs unnecessary time, money
and resources for the company.

1.1.1 Research problem

All web application logic, whether executed server-side, client-side or somewhere in-
between, has a certain upper limit for performance, which is dependent of the hardware
and software executing it. Since the company has a long history with mobile web ap-
plications, it is assumed that both server-side and client-side logic are already relatively
well optimized by utilizing basic caching mechanisms, suitable response headers, image
sprites and well-structured code overall. Therefore, the possible performance improve-
ment achieved through this kind of basic optimization is little to none, which is not enough
for the current purpose.

After the server-side logic execution performance has been optimized close to the max-
imum, the only ways to further improve the performance of the web application is to
somehow increase the processing power of the servers or decrease the amount of required
processing work per server. The traditional solutions have been the setting up of addi-
tional servers with a load balancer in front of them, investing to more powerful hardware
for the current servers or some kind of combination of the previous two. As the goal is to
avoid all of these options, other solutions are explored.

It 1s worth noting, that the problematic performance bottleneck in this kind of high
traffic situation is the server, not the client. Therefore, this thesis will not pay much
attention to the client-side logic optimization, although some of the server work could be
moved client-side in order to lessen the workload of the servers. However, to really utilize

this approach, the whole application architecture should be especially designed for this in

1. Introduction 2

the first place, which is not the case with already existing applications.
1.1.2 Research questions

In order to find the most usable ways of improving the web application scalability with-
out increasing the number or processing capacity of the servers, answers to the following
questions are sought: What are all the options for lessening the workload of an origin
server? Which of these options are currently utilized and at what rate? How could the sit-
uation be improved? What are the actual steps for making the improvements in practice?

How does the application perform in each of these stages?

1.1.3 Research methods

In order to find the most thorough answers to the previous questions, a few specific re-
search methods are utilized. First of all, the current status and utilization rate of different
solutions to the scalability problem are discussed with the senior systems personnel of the
company, as well as their suggestions for possible improvements. Secondly, the theory
behind the systems personnel suggestions is studied alongside other closely related tech-
nology variants. Based on the studies, the most suitable improvement options for current
needs are listed and put in order of execution. Before and after each concrete step of
improvements, the performance of the application is measured.

The main goal of the thesis project is to improve the applications’ scalability during
high traffic peaks, thus making them more reliable under varying traffic conditions. This
can be achieved by increasing the applications’ ability to serve requests per time unit as
much as possible. In other words, the goal is to increase the maximum throughput of the
application.

The maximum throughput is measured first separately for the application front page,
because it is the performance bottleneck of the original application. In addition to this, a
more advanced simulation of a realistic high traffic peak situation is created in order to

measure the maximum total throughput of the whole application.

1.1.4 Scope

The thesis is split into three major parts: the theoretical study, the empirical study and the
analysis of the previous two. The theoretical study is conducted under the guidance of the
company’s senior systems personnel, as they have a lot of knowledge about the specific
area of web application server performance and can point the study in the right direction
from the beginning. As a result of the theoretical study, an ordered list of concrete applica-
tion performance improvement steps is created alongside specific performance measuring

criteria, in order to help during the empirical study.

1. Introduction 3

The empirical study consists of a real life web application, in which the servers’ ability
to serve requests has been inadequate in the past during high traffic peaks, and the actual
process of implementing the suggested performance improvements into it. In addition,
the performance of the application is measured with appropriate tools at every step on the
way, in order to keep track of the progression.

In the analysis part, the results from both studies are reviewed and analyzed. The
advantages and disadvantages of the final optimized server application are compared to
those of the alternative solutions, in order to understand the actual usability of the used
approach. Additionally, the success of the thesis project is evaluated by determining if the
desired performance improvement was reached or not and how thorough answers were

found to the research questions set in the beginning.

1.2 Structure

The first chapter describes the actual research problem as well as the research questions
and methods for answering them. Furthermore, it describes the structure, scope and spe-
cial markings of the thesis.

The second chapter describes the basic principles of the Internet as a system: what is
the relevant history behind it, how it is structured today and how it generally works on
a higher level. A more thorough description about the part of the Internet that is closely
linked to the specific research problem is presented. Furthermore, the current status of
the Conmio web application pipeline all the way from the back end servers to the browser
clients is introduced, containing the selected technologies, company conventions and the
advantages and disadvantages of the current approaches. In addition, the web application
performance is defined alongside common performance guidelines and measuring criteria.

The third chapter dives deeper into the actual solutions for the scalability issue; espe-
cially into the theory of caching and advanced caching techniques. It describes a few of
the most promising caching techniques, Edge Side Includes, user group specific HTTP
response caching and general HTTP response caching, in more detail.

The fourth chapter describes the implementation process of the Edge Side Includes
technique into the application, as well as the performance improvements achieved with it.
In the end of the chapter, the results are briefly analyzed to be good yet inadequate for the
current purpose.

The fifth chapter describes the implementation process of the user specific HTTP re-
sponse caching technique into the application as a further improvement alongside Edge
Side Includes. The performance is measured with ApacheBench and additionally also
with JMeter under a realistic high traffic peak simulation. Results of the measurements
are briefly analyzed to be better than with plain Edge Side Includes solution, thus making
this the number one improvement solution.

The sixth and final chapter of the thesis contains conclusions of all the findings made

1. Introduction 4

during both theoretical and empirical studies conducted in the project. Further improve-
ment suggestions are described and the reliability of the performance measurements is
analyzed. Finally, the successfulness of the whole thesis project is reviewed and ana-

lyzed.

1.3 Stakeholders

In addition to the student and the school Tampere University of Technology (TUT), there
is a third stakeholder in the thesis project: the company Conmio Oy, to whom the thesis
is written for. The company has some special responsibilities regarding the thesis project
and it will also benefit from the research conducted during the project.

The thesis is written for the company Conmio Oy in order to gain knowledge about the
usability of Edge Side Includes markup language and other possible application scalabil-
ity improvement solutions to be utilized in the company’s future projects. The company
is responsible for providing the student a suitable working gear and environment as well
as separately agreed amount of time per week to be used for the progression of the thesis.

1.4 Special markings

Important terms that are explained also in the Terms and definitions table are written in
bold when they appear in the text. Other important terms are written in ifalics in order to

emphasize the special meaning of these terms.

2. STARTING POINT

2.1 Internet

In the developed countries of today, it is pretty common for people to have access to the
Internet. In Finland, for example, the great majority of people have either used the Internet
themselves or, at the very least, have heard about it. In these countries, the presence of
the Internet can actually be so overwhelming that it is easy to forget how relatively new

thing it is in the first place.
2.1.1 Beginning

The story of the Internet started back in the 1960s when an idea of using computers as
a source for research and development in scientific and military areas was gaining pop-
ularity among researchers. This gave birth to the first version of the Internet, a system
called ARPAnet, which first came online in 1966. It was named according to the Ad-
vanced Research Projects Agency (ARPA), which was also monitoring the usage of their
new creation. As planned, in the beginning ARPAnet was mainly used for academic and
scientific research purposes by the scientists and engineers of America’s four main uni-
versities. [1]

During the second half of the 1970s, personal computers (PC) started to become more
common, which had an effect on the development of the Internet. Programs like E-mail
and Usenet became important tools of communication among individuals all over the
world, leading to a situation where ARPAnet was no longer directed only towards scien-
tists and engineers. Instead, it gained popularity also among common people especially
because it consisted of systems that could be used independently for communication and
information exchange. After a few successful decades, ARPAnet was shut down in 1990

in order to be replaced with its successor, the Internet. [1]

2.1.2 World Wide Web

One of the most important inventions of the Internet, especially in the scope of this thesis,
is the World Wide Web (WWW), which is nowadays commonly referred as Web. It was
invented and developed in the beginning of 1990s and released in 1991 by Tim Berners
Lee with assistance from Robert Caillau. Lee’s original idea was to have a fairly simple

yet powerful enough Internet system, which would allow linking data together across

2. Starting point 6

computers and networks. Lee designed the first web pages and used a web browser he
had written himself, called WorldWideWeb, to view them. [1]

The real explosion in the popularity of the Internet came few years later when the
first graphical web browser Mosaic was released in 1993 by the National Center for Su-
percomputer Applications (NCSA). As a consequence, web pages written in HyperText
Markup Language (HTML) started to appear in the Web. Mosaic created a standard that
was later mimicked by the more commonly known browsers Netscape Navigator in 1994
and Internet Explorer in 1995. All in all, the World Wide Web is the main reason the In-
ternet became popular with everyone, as it is the part of the Internet the users can actually

see. [1]
2.1.3 Traditional Web

The most common way of using the Internet has traditionally been the personal computer;
it is the way it all started back in 1991. The first web pages contained mostly just pure text
content. As the technology advanced, additional elements, like images, videos and audio,
could gradually be added to the mix, thus allowing a richer user-experience. Despite
these advancements in technology, the experience itself remained on the same platform
for a long time.

Today, practically every web page consists of some version of HyperText Markup Lan-
guage that binds different multimedia elements together with the help of closely related
technologies like server-side programming language Java, client-side programming lan-
guage JavaScript and output formatting language Cascading Style Sheets (CSS). [1]

While a lot of the Internet usage still happens through traditional personal computers,
there is a big shift going on in the way people use the Web today. Rapid advancements
in wireless technologies combined with a plethora of different mobile devices including
smartphones, phablets, tablets, hybrids and laptops are changing the nature of the Inter-
net. It is no longer enough to have a web site that looks nice on a desktop computer web
browser; mobile web browsers have to be capable of showing the same content appropri-

ately scaled for the available screen size. [2]

2.1.4 Mobile Web

The first software counted as a mobile web browser was the PocketWeb for the Apple
Newton Personal Digital Assistant (PDA) created in The Telecooperation Office (TECO)
in 1994. The first deployment of a so called microbrowser on a mobile phone happened in
1997, when Unwired Planet put their UP Browser on AT&T handsets to allow user access
to Handheld Device Markup Language (HDML) content. [3; 4]

The critical step in mobile Web technology happened also during 1997, as an U.S. net-

work operator Omnipoint was planning to release the first mobile Web service. They did

2. Starting point 7

not, however, have any idea of how to actually achieve that, since there was no existing
standard wireless Internet technology for mobile devices available at the moment. There-
fore, an open competition for creating one was opened by Omnipoint. The competition
received subscriptions from the four major companies of the time: Nokia, Ericsson, Mo-
torola and Unwired Planet. While all proposed technology variants had their advantages,
they all had also the big disadvantage of being proprietary solutions, which was not ac-
cepted by Omnipoint. In order to solve the problem, the four bidders got together and
trashed out a standard. The result was the Wireless Application Protocol (WAP), which
was especially designed to overcome the problems of the slow and unstable Internet con-
nection; something the wireless technology inexorably was at the time. [5]

The first mobile phone containing WAP browser for Internet access was Nokia 7110,
which was released in 1999. Though the browsing experience with the phone was still a
far cry from the desktop counterpart, this was the first time a mobile phone could be used
to view Internet content, namely Wireless Markup Language (WML), which was based
on HDML and became the standard format for WAP pages. WML pages were usually
stripped down versions of corresponding HTML pages and had to be separately created
each time. Despite the downsides, WML remained the standard way of presenting mobile
Web content for the first half decade of the 21st century. [6; 7]

Since the release of the first WAP browser in 1999, mobile web browser technology has
always differed from the desktop counterpart. Although the Wireless Markup Language
used in WAP is quite similar to the HyperText Markup Language used in WWW, they
are still two different standards. In addition to this and the obvious mobile device limi-
tations, like smaller screen size and slower data connection, much of the difference has
become from the usage of the less advanced technology variants in all mobile client-side
technologies, including simplified version of JavaScript, called WMLScript, and CSS,
namely Wireless CSS (WCSS). [7; 8]

2.1.5 Responsive Web

During the last five years, both microprocessor and mobile data connection technologies
have taken huge leaps in advancement, which has lead to a great increase in the mobile
device processing power and overall user experience; the mobile phones of today are like
small computers.

In addition to the hardware, mobile web browsers have also advanced towards the desk-
top counterparts and are actually using mostly the same standards already. This means
that WWW has largely replaced WAP and made it almost useless especially in the more
developed countries. Furthermore, a vast array of end devices between mobile phone and
personal computer has arisen, which means almost unlimited number of different screen
size-feature set -combinations. Instead of creating a separate version of a web site for

each possible variant, responsive design is aiming to create one universal version of the

2. Starting point 8

site; one that will adjust the content according to the available screen size and resolution
as well as other available features. [9]

Since responsive design aims to make it possible to create the web site once and then
browse it with all end devices, it is pretty likely that it is the way of the future in all
web design, although most of the time neither the technology nor the media companies
are quite there yet. However, as making a web site as responsive as possible has many
advantages, it definitely affects to the implementation already today.

2.1.6 Second screen applications

The advancement of the web technologies have improved the Web experience in many
ways over the years by making it more accessible, interactive, functional and pretty. In
addition to these, some totally new ways of utilizing the Web have been enabled by the
new end devices. These include web applications that are utilizing the geologation infor-
mation available via GPS in most modern smartphones, device orientation and movement
data available via integrated gyroscope and just the bare mobility of the device.

One recently emerged group of web applications utilizing one or more of the previous
possibilities is the so-called second screen applications. The basic idea of these applica-
tions lies in the nature of the mobile devices, as they are often used also while watching
television; hence the name second screen. The usual purpose is to allow some kind of
interaction with a specific television show in one way or another. Popular ways of inter-
acting include answering to a poll, voting a certain participant and chatting with other

watchers of the show for example via integrated Twitter channel.

2.1.7 Scalability

Figure 2.1: Vertical scaling by adding hardware resources on to existing servers. [10]

2. Starting point 9

Figure 2.2: Horizontal scaling by increasing the number of servers. [10]

The popularity of the Internet has been growing almost exponentially since the release of
the first graphical browser in 1993. This is due to the improvements in technology and
availability of the Internet all over the world, in which mobile devices and mobile Internet
connections have arguably been an important factor. [11]

The growth in the popularity of the Internet equals to more clients to be served, which
then increases the load of the servers, leading to the need of increasing the performance
of a single server or deploying more servers in turn. This means that the service is being
scaled either vertically (vertical scaling, Figure 2.1) or horizontally (horizontal scaling,
Figure 2.2). While both of these options are reasonable up to a certain point, things
become unnecessarily difficult especially in cases where the server load differs greatly
over time. In other words, there is an issue in the server scalability, which describes the
system’s ability to adjust its resources according to the current load. [10; 12]

A good example of this kind of situation has become tangible along with the second
screen applications, as they are often tied to the air time of a certain TV show. Whereas
the load of the web servers may be minimal for the major part of the week, it grows
exponentially during the time the show is on, which usually means one to two hours per
week. Even more challenging is the situation where during the show there is a shorter
time frame to do some specific activity, for example to vote a certain participant in a poll.
This may lead to a situation, in which a great number of watchers access the application
during the same 5 minute time frame, causing an HTTP request overload on the servers
and inability to serve all clients. To the users this is shown as either unnecessary long
loading times or total page not found responses. In other words, the application is broken

from the user’s point of view, which is never the desired outcome.

2. Starting point 10

2.2 The basic structure of the Internet

Although the history of the Internet itself is still fairly short, it has the nature of connect-
ing together various protocols, machines and technologies, many of them having prior
existence elsewhere. When even the tiniest advancements in these individual areas of the
Internet are combined, the overall advancement of the Internet as a system has become
very rapid. Because of these reasons, much of the Internet-related technology is not very
well standardized and also the existing standards are frequently updated. This can be
clearly seen for example with the constant emergence of new programming languages
and frameworks. [13]

However, some specific areas of the Internet are in turn pretty strictly standardized.
One of these areas is the basic structure of the Internet. The original idea of the Internet
being a distributed system that links together computers and networks strongly affected
to the creation and selection of protocols it was built on top of, as they once thoroughly
fulfilled the needs of what the Internet originally was; a worldwide network of clients
and servers, in which one of the former would request a static document from one of the
latter, which would then comply and return the requested document as a response. The
core protocols for handling these requests include the protocol for transferring hypertext
data, called HyperText Transfer Protocol (HTTP), as well as protocols for handling the
data transferring in more general level, namely Transmission Control Protocol (TCP)
and Internet Protocol (IP), commonly working collectively as TCP/IP. [14]

Although much has changed after the birth of the Internet in 1990, these core mechan-
ics have largely maintained their position as the basic building blocks of the Internet. On
one hand, they have allowed the Internet to grow and evolve over the years to the current
state, but on the other hand, they have also presented restrictions and challenges that the

web developers have somehow had to bypass. [14]

2.2.1 From web pages to web applications

Internet originally consisted of separate static hypertext documents that each represented
one web page. These pages could be cross-referenced through hypertext links and users
could navigate between them, but the pages would not necessarily have anything in com-
mon; no similar theme or look. This kind of separate web pages are quite rare in modern
Internet. [14] However, it should be noted that the definition of the term has since ex-
tended to mean all non-embedded resources obtained from a single URI using HTTP.
[15]

The more advanced version of a web service is called a web site, which is also probably
the most common term for the end user when talking about an Internet service. A web site
contains a set of connected web pages, each of them corresponding to a common theme

and look. Usually a web site contains also a more refined navigation system located for

2. Starting point 11

example in the top part of every page as a navigation bar. The biggest limitation of pure
web site approach is that the individual pages have to be static, yet this is also the biggest
advantage of this approach, as the site then contains only the minimal amount of code and
functionality. For some purposes a set of static pages is still enough, which makes it a
considerable option even today. [14]

The most advanced version of a web service is called a web application. It can look
similar to a common web site in many ways, but the difference is that the pages are no
longer just static content. Instead, the page content can be dynamically tailored for each
user within each request-response interaction. This usually requires that the application
state information for each user is stored somewhere between requests and is available
when rendering the response. [14] Web application is also the term used in this thesis to
describe the kind of web service a second screen application represents.

The great majority of today’s web sites are actually web applications, as it allows a
richer user-experience and customized content, which are things most are striving for. At
a technical level this means that some kind of data processing has to happen at some point
between the initiation of the original request and the displaying of the final response page
to the user. When this happens inside a pure client-server model, it means the required
processing can be done either server-side or client-side, yet most of the time it happens
partly on both ends. [14]

2.2.2 Client-server model

A pure client-server network is a two-tier software architecture, which is currently the
most commonly utilized form of distributed network computing. In the beginning, it was
only necessary for the servers to run a server program that would listen to connections
from clients, and when one appeared, the server should find and return the requested
resource to the calling client. These interactions were separate from each other, with no
state information saved between requests. [16]

The server has classically been responsible for most of the processing tasks of a request-
response interaction. However, as the time has gone by, many new ways of utilizing the
Internet have emerged, and the core mechanisms of Internet have not always totally sat-
isfied the needs of these new applications. Therefore, various new mechanisms have
been invented to extend the core Internet functionality. These include the mechanism
for requesting only a fragment of a document from the server, called Asynchronous
JavaScript And XML (AJAX), as well as mechanism for storing the state information
between requests, which is usually achieved with session variables, cookies, databases or
combination of the previous. Moreover, client-side processing has become more common
and even the dominant way of doing processing in many cases, which has had an effect

on the overall architecture of these applications. [16]

2. Starting point 12

2.2.3 Server-side architecture

The term server can refer to a particular application, program or software module that is
capable of performing computing upon request. It can also refer to the hardware platform
or appliance that runs one or more of the previous. Considering the client-server model,
the basic principle has classically been that the servers can advertise their services to the
clients, but the servers do not send any data to the clients without a request. [16]

On a more technical level, a server usually refers to a set of software components that
work seamlessly together in order to provide suitable services to the requesting clients.
In web application world, this usually means that a physical server runs a web server
software, which is connected at least to an application server software with potential
connections to other kind of server software, including database servers, file servers and
mail servers. The web server is usually the initial recipient of clients’ requests, which
then interprets and forwards the requests to the corresponding server programs, usually to
the application server. An example server configuration is illustrated in the Figure 2.3

It is worth noting that each of these server programs can run either in the same physical
server, each of them may have their own physical servers or the configuration can be
something in-between; the final configuration is decided based on the requirements of a
particular web application. However, as server hardware optimization is not really the
topic of this thesis, only minimal amount of attention is paid to the server hardware while

the software will get more thorough inspection. [17]

4 4

HTTP ' Jolt SQL BMS

Browser Web Server Application
Server

Figure 2.3: An example of a server configuration where all different server programs reside on
separate machines. [18]

2.2.4 Server-side programming

Regardless of the selected server configuration settings, there is a variety of scripting
languages that can be utilized when creating the desired server-side functionality for a
web application. According to W3Techs statistics, currently the most popular server-side
scripting languages are PHP, ASP.NET and Java. [19]

2. Starting point 13

PHP originally stood for Personal Home Page (Tools), but is now said to be a "recur-
sive acronym" for Hypertext Preprocessor. [20] Whatever the case, the name already im-
plies for what PHP was originally designed for: creation of dynamic web content. When
the original purpose is considered alongside the easy learnability, flexibility and cross-
platform support of PHP, it is no real surprise that currently 82% of all web applications
are powered with it. [19; 20]

However, while the flexibility of a programming language is clearly beneficial, it can
also be one of its greatest downsides. This is the case with PHP, as the code written with
it can easily turn into spaghetti if no clear programming conventions are followed. PHP
is also less efficient and scalable than some of its counterparts. [21; 22]

ASP.NET is not actually a language of its own but a web framework from Microsoft for
building web sites, applications and services based on the popular .NET Framework tech-
nology. The goal of ASP.NET is to make web programming easy and similar to normal
application development, for example by allowing developers to use any programming
language supported by the .NET Framework when writing server-side code. [23]

While being a reasonable choice for many companies by offering a variety of tools
and support, ASP.NET has the downside of being a commercial product by Microsoft.
Therefore, companies using ASP.NET are tied to Microsoft in many ways: ASP.NET is
designed to run on Windows platform, which means Windows servers have to be used,
programming has to be done usually with Visual Studio and additional licensing costs
have to be paid to Microsoft with each new server and load balancer. [24]

Java is an object-oriented programming language originally designed for stand-alone
application development, but quickly expanding also into other areas of development;
most importantly web development. The main goal of Java is to make it possible to write
the code once and run it everywhere. To make this happen, Java programs are usually first
compiled into Java bytecode and then run in Java Virtual Machine (JVM), thus making
the code platform-independent. [25]

To the date, Java has become one of the most popular programming languages with
great community support, documentation and compatibility with different platforms. With
the additional features of Java EE platform, like Servlets and JavaServer Pages (JSP),
the development of dynamic web applications has been abstracted into Java classes, thus
making web application development well-structured and standardized. Moreover, as
server-side functionality built on Java tends to be more efficient and scalable than that of
its counterparts, it is commonly the preferred technology especially in high traffic web
sites and applications. [26; 27]

Though being a good choice in many ways, Java is not without its shortcomings. Com-
pared to PHP, for example, Java is considerably more difficult to approach for inexperi-
enced developers, which can make it an overkill especially if the project is relatively

small. The application development process itself is also much heavier with pure Java,

2. Starting point 14

as the code has to be constantly compiled and deployed in order to see the results of
the changes, which inevitably slows the development process down. However, many of
these problems are addressed in multiple Java-based programming frameworks that are
available today. [28]

2.2.5 Client-side architecture

Visual Paradigm Community Edition [not for commercial use

Client Server

Traditional web application

[
!
" |
L: Initial reqguest I

P
1.1: (expensive) processing
{ 1.2: response as HTML
2: second request
P
2.1: (expensive) processing
2.2: response as HTML
.{ ________________________
3: page reload
T T
| |
i Single-page application i
I I
I I
I 4: Initial reguest I
h 4.1: (expensive) processing
{ 4.2: response as HTML
5: second request
P
5.1: minimal processing
5.2: response as JSOM
.{ ________________________
B: (expensive) processing

Figure 2.4: The difference between traditional and single-page applications.

The term client refers to the requesting party of a request-response interaction. Inside the
client-server model, the client is nowadays most often a web browser, though it can be also
any other program sending requests to servers through a data connection. Historically, the
client-side architecture has advanced from terminals to thick clients, from there to thin

2. Starting point 15

clients and finally to a special breed of clients, web browser clients. [29]

Terminals aside, the term thick client refers to the first desktop systems of the 1980s
that were equipped with keyboards, mouses and software applications. These systems
could do various things client-side, including data validation, graphical processing and
even some of the business logic processing, but they had very limited amount of process-
ing power. [29]

The natural progression was that most of the processing tasks were pushed to the
servers, as they possessed much more processing power than the client systems. This
resulted in thin clients that were designed to be lightweight applications only capable of
doing the simplest processing tasks, like input validation, while leaving the more compli-
cated business logic processing tasks for the servers. [29]

Along with the birth of the Internet came also the web browsers, that have since become
the standard type of client software applications. Web browsers standardized the HTTP
protocol and various related things, like the markup language for web documents, namely
HTML. [29]

In the beginning, web browsers were much like thin clients, performing only simple
text and image processing tasks client-side. However, as the client-side technology con-
tinues to evolve, increasing amount of more advanced processing tasks can be done client-
side nowadays. This is the current trend in web application development; in a way, the
development is going backwards, as thin clients are becoming thick clients again. How-
ever, this time the client-side hardware is much more powerful, and has usually access to
various kind of additional data, like user’s location. [30]

Web applications that do most of their processing client-side are called single-page ap-
plications (SPA). The most important difference between a traditional and a single-page
application is that in the latter, a full page load is required only once when opening the
application, while the following view updates are done asynchronously through AJAX. In
practice, this means more complex logic is required on client’s end, as the responses have
to be parsed and interpreted before the desired HTML can be viewed to the user. The
difference is illustrated in the Figure 2.4. [31]

2.2.6 Client-side programming

The movement towards client-side driven processing inevitably increases also the amount
of required client-side code. The most common client-side programming language cur-
rently by far is JavaScript, which is used by 87,8% of all web sites, and the percentage is
continuously increasing [19]. Other languages, like Flash and Java were previously used
in client-side scripting, but their popularity has been decreasing, as JavaScript has become
the standard language of client-side programming. [19]

Despite the supreme popularity of JavaScript, the language itself is quite far from

supremacy. As a programming language, JavaScript definitely has many good features,

2. Starting point 16

like simplicity and object prototypes, even though it was originally written in just 10 days.
However, the most obvious disadvantage of JavaScript is that the developer cannot con-
trol the client’s runtime environment, as it depends on the browser. In addition to this, the
language itself may behave inconsistently in some situations due to the inconsistencies in
the language specifications. [32]

Though selecting the client-side programming language is easy, selecting the most suit-
able front end frameworks and libraries can be a bit more daunting task. For a long time,
it has been common that client-side scripting has been done either with pure JavaScript
or with the help of some popular JavaScript library, like jQuery. However, when complex
enough functionality has to be created client-side, like with single-page applications, us-
ing only a single library can lead to messy code. To address this issue, a number of front
end frameworks have been created.

While reducing the server workload is the purpose of this thesis, and though it can
be achieved to some extent by moving the work client-side, it is not the most optimal
solution. For one, the front end technologies have not yet standardized, as can be seen
from the sheer number of frameworks and libraries solving the same problems. [19]
Secondly, though mobile web browsers have advanced a great deal over the last few years,
they are still behind desktop counterparts in some areas, which means not everything will
work in a mobile web browser. Third, practice has shown that the development process of
single-page applications is slower than that of more server-oriented applications. This is
understandable, as client-side processing functionality should be tested in theory with all
supported end devices, while the same functionality done server-side has to be tested only
once. Finally, switching to a single-page application design would not solve the problems
with existing applications without heavy rewriting of the code and architecture.

2.2.7 Multi-tier architecture

Even though most of today’s distributed networking systems are based on client-server
model, which in its purest form is a two-tier network, many real life systems are actually
multi-tier networks, meaning that between the client and server lies some kind of mid-
dleware layer negotiating the transactions between the two. In practice this means that
instead of the web traffic going straight from the client to the server and vice versa, it
goes through one or more proxy servers on the way. These proxy servers can be used
for various purposes, like content caching, content aggregation or load balancing. The
difference between 2-tier and 3-tier architectures is illustrated in the Figure 2.5. [16]
From the developer’s point of view, it does not usually matter whether there is mid-
dleware layer in the play or not, as long as everything is configured properly. However,
from the client’s perspective, conveniently configured middleware with suitable features
can offer tremendous boosts in perceived application performance. This is also the key

for achieving the desired performance boost that is the main goal of this thesis.

2. Starting point 17

1

2-tier architecture 3-tier architecture

il

|IIIIIII|]“|
N1

u
Server -:-i =
layer or = =
data tier = !
E-mail Print File Database Application
server server server server server server

Middleware layer
or logic tier

Client layer
or presentation [
tier A

Figure 2.5: The difference between 2-tier and 3-tier architectures. [16]

2.2.8 Conmio web applications

Since its birth in 2002, Conmio has always been a software company focusing mainly
on the development of highly usable mobile web sites and applications. As the time has
gone by, the interactivity and the need for customized content in applications have become
more important factors, which have had an effect on the architecture of the applications.
From the end user’s point of view, web applications created by Conmio have usually
been offering value especially for the news- and sports-hungry users on the go. However,
many other types of applications have also been created during the years, including search,

chat and most recently second screen applications.

2.2.9 Conmio web application architecture

Conmio web application architecture is based on proven open standards as much as possi-
ble. Most of the applications are built on top of Java Virtual Machine (JVM) with Apache
HTTP server working as a web server and Apache Tomcat working as a servlet con-
tainer, which is kind of an application server for the Java platform containing the actual

2. Starting point 18

application. In addition to these, load balancers and other proxy servers, like Varnish
and Content Delivery Networks (CDN) have been utilized especially in the architecture
of the more popular web applications of the company. An example of a Conmio web
application architecture is illustrated in the Figure 2.6.

Visual Paradigm Community Edition [not for commercial use

Server layer

origin server 1 origin server 2
<<components> E' <<component>> E <<components> E' <<component>> E
Tomcat — Application Tomcat — Application
| |
[[
<<COomponents> E <<COmMponents> E
Apache Apache
1 1
<<Components E' <<component>> E <<Components> E' <<Component>> E
Varnish — Cache Varnish — Cache

/

load balancer

<<COomponents > E
ELB

Middleware layer

\CDN

<<COmMponents E
external server(s)

dynamic|content static|content

__| user's machine
Client layer e @

Figure 2.6: Example of a Conmio web application architecture.

From the developer’s perpective, a classical Conmio web application is a working com-
promise between familiar standards, like Java, Tomcat and JavaScript, and state of the art
technology, including HTMLS, LESS and Node.js. In addition to these, Conmio has used
the Grails framework as the heart of most of the applications during the last few years.
Even though newer frameworks have emerged, Grails still seems to offer the best overall
productivity in most of the cases, especially if the project is relatively large.

2.3 Programming frameworks

A programming framework is a set of source code or libraries that provide functionality
common to a whole class of applications.

2. Starting point 19

2.3.1 Purpose

The main purpose of a programming framework is to provide specialized tools for appli-
cation developers for reducing the need of writing repetitive code, thus allowing them to
focus more on the business logic itself. Compared to libraries that usually provide one
specialized functionality, frameworks provide a broader range of functionalities that all
are used by certain type of applications. [33]

The most relevant example of a programming framework in the scope of this the-
sis is a web application framework. Web application frameworks provide specialized
functionality concerning common web application feature requirements, like user session
management, templating, security and data storage. [33]

Different frameworks offer different degree of flexibility versus features, which makes
certain frameworks more suitable to certain projects than others. It is often left to the
developer to choose which framework to use in which project, but the choice can be

based also on company’s conventions or other leading forces. [33]

2.3.2 Advantages

Using a programming framework in a project offers various advantages, provided that
the selected framework is suitable for the current project. Like web applications, many
application types usually have a lot of common functionality underneath, even though the
look and feel of an application can be totally different from another. Therefore, creating
the same core functionality all over again would make the development of applications
repetitive in the long run, which is why frameworks encapsulate a lot of these otherwise
repetitive tasks into features that make things easier for the developers. This leads to
greater developer productivity and happiness, better-formed and more standardized code
as well as generally more robust, error-free and secure applications. [33]

Frameworks usually provide also tools for splitting the code into reusable modules, of-
ten called plugins. This makes it easier to split development tasks for those who program
the framework, meaning the plugins, and those who program the final application. More-
over, frameworks usually direct developers to follow a certain design pattern and related
best practices, which unifies the development process even more. [33]

2.3.3 Disadvantages

While using a suitable programming framework in a project definitely offers many ad-
vantages, those usually come with a price. The most common downside of using a pro-
gramming framework is the downgrading of the application performance. This is usually
caused by the generalized code, that has to make additional checks for different scenarios

in order to determine the correct path of action in each situation. [33]

2. Starting point 20

Moreover, the learning curve of using a programming framework efficiently can be
relatively high, which means a fair amount of studying and learning for each developer.
Therefore, using the same framework repeatedly is usually more efficient than switching
it on a project by project basis. [33]

Even though frameworks usually make applications more secure, occasionally there
can be bugs in the framework code itself, which can create a security threat for each
application using the particular framework. However, this kind of situation is pretty rare
and usually swiftly patched. [33]

2.4 Grails

Grails is a web application framework that has been used as a heart of most of the Conmio

web applications in the last few years.

2.4.1 Main features

Grails is an Open Source, full-stack web application framework built on top of Java Vir-
tual Machine (JVM). The main features of Grails include the utilization of Groovy pro-
gramming language, Convention over Configuration (CoC) paradigm, Spring framework,
Hibernate framework and Sitemesh framework. [34]

Groovy claims to be an agile and dynamic programming language for the Java Virtual
Machine, building on top of Java strengths but with additional power features inspired by
other programming languages, like Python, Ruby and Smalltalk. This means that most
of the valid Java code is also valid Groovy, and classes written with one of the languages
can be used interchangeably. [35]

Utilization of Convention over Configuration paradigm basically means providing rea-
sonable default configuration values for the project. This way the developer only has to
configure the unconventional aspects of the application, which greatly reduces the amount
of work in most cases. [36]

Spring framework is a popular Inversion of Control (IoC) container for the Java plat-
form. It is designed to help with the infrastructure of a Java web application, by providing
many useful features to help with things like handling object lifecycles of specific objects
and injecting functionality to other classes through dependency injection. [37]

Hibernate is an Object-Relational Mapping (ORM) library for Java platform. It pro-
vides a framework for mapping an object-oriented domain model to a traditional re-
lational database. The Grails implementation of this is called Grails Object-Relational
Mapping (GORM). [38]

Sitemesh is a lightweight layout and decoration framework for Java web applications.

It allows a clean separation of content from the presentation. [38]

2. Starting point 21

2.4.2 Plugins

Plugins are Grails standard for creating reusable functionality to be used in various projects.
The Grails community has created a plethora of publicly available plugins to help with
many standard features, like sending e-mail from the server. In addition to that, there are
many Conmio-specific plugins available for all the company projects, helping with things
like content retrieving and caching. A few specific plugins created by Conmio, especially
in the scope of this thesis, are related to device recognition, content caching and content
modularization. The first one is called Conmio Devices, the second Conmio Cache and
the third Conmio Modules.

Conmio Devices has a long history at Conmio, as device recognition played a major
role especially in the past when implementing web applications, as the capabilities of end
devices differed more from each other than today. The main purpose of the plugin is to
offer an unified way of retrieving information about the current end device with some
additional features, like enabling device grouping based on certain criteria.

Conmio Cache has also a fairly long history at Conmio. The plugin’s main purpose
is to easily allow the caching of Groovy and Java objects as well as markup fragments,
which greatly reduces the amount of required back end processing when the expensive
processing results are retrieved from cache instead of executing the same processing tasks
all over again with each request.

Conmio Modules is a bit more recent creation of the company. It was created to allow
the modularization of a specific markup fragment and the required logic for composing
that markup in the first place. Examples of these modules include menus, news listings

and social discussion feeds.

2.4.3 Advantages

The main goal of Grails has always been to drastically simplify enterprise Java web devel-
opment. This is achieved through diminishing the amount of required configuration and
by utilizing other well-known technologies already familiar to many Java web developers,
such as Spring and Hibernate. Furthermore, Groovy is built on top of Java, which makes
it easier for the Java developers to start writing Groovy code, since almost all valid Java
is also valid Groovy. [38]

From the developer’s point of view, writing Groovy instead of Java is often a pleasur-
able experience, since it makes things more flexible, but only if the developer wants so.
The additional features Groovy provides makes it possible to achieve similar functionality
with considerably smaller amount of code than with pure Java. [39]

As stated before, Grails has been used as the heart of many Conmio projects in the
last few years. Therefore, the employees of the company have gained a lot of knowledge

and experience regarding the usage of Grails, which has further enhanced the developer

2. Starting point 22

productivity in projects utilizing Grails.
2.4.4 Disadvantages

Like with most of the programming frameworks, the biggest downside in using Grails
is the deterioration in the application performance. According to TechEmpower web
application framework performance comparison statistics, Grails is positioned around the
middle of all frameworks in terms of performance. [40]

Even though Grails utilizes Convention over Configuration paradigm, it is still built
on top of Java and Spring, which equals to a pretty large infrastructure. In some smaller
projects this kind of infrastructure can be too much and the project would benefit from

using a lighter framework.

2.4.5 Alternative frameworks

In addition to Grails, there are a lot of alternative web application frameworks available,
of which some of the most interesting ones lately have been Node.js and Angular.js.

Node.js is actually a software platform for scalable server-side and networking appli-
cations, meaning it is directed towards the back end of the web application development.
It supports things like HTTP and socket communication, which allows it to work as a web
server without additional server software, like Apache HTTP server. Node.js applications
are written in JavaScript. [41]

Angular.js is designed to help especially with the front end programming of single-
page applications. It works by replacing special attributes on the site with specified func-
tionality. Like Node.js, Angular.js is based on JavaScript. [42]

Both of these frameworks have a lot of good features that could make them useful in
many projects. However, out of these two only Node.js could actually be considered as
a replacement for Grails, since it is directed towards the back end of the applications. In
fact, Node.js has already been used in some of the smaller projects of Conmio, but they
have proven that neither the framework nor the company conventions are ready yet for
switching totally from Grails to Node.js. Part of this is because of the inferior features
of Node.js compared to Java, like logging and security, and the other part is the amount
of knowledge about each framework inside the company. All in all, Grails still seems to
offer the best value for most of the Conmio projects, and therefore it stays as the number

one choice in the company projects, at least for now.

2.5 Web application performance

Over the last decade, the complexity of web applications has increased dramatically.
While the applications’ features themselves are more complex than ever before, also the

number of requests to be fulfilled is constantly increasing.

2. Starting point 23

Rule Number Description
1 Make fewer HTTP requests
2 Use a content delivery network
3 Add an Expires header
4 Compress components with Gzip
5 Put CSS at the top
6 Move JavaScript to the bottom
7 Avoid CSS expressions
8 Make JavaScript and CSS external
9 Reduce DNS lookups
10 Minify JavaScript
11 Avoid redirects
12 Remove duplicate scripts
13 Turn off ETags
14 Make AJAX cacheable and small

Figure 2.7: Rules for faster front end performance by Steve Souders. [43]

2.5.1 Definition

The web application performance can mean the efficiency of many aspects of an applica-
tion. In the scope of this thesis, the most relevant aspect of a web application performance
is the maximum throughput of the application, meaning the maximum number of requests

per time unit the application is able to serve.

2.5.2 Performance best practices

Even though the aim of this thesis is to improve the back end performance of a web
application, from the end user’s point of view, the effect is verifiable on front end side,
meaning the client. Therefore, it should be first made sure that the front end is not the
performance bottleneck.

In 2007, the chief of performance at Yahoo!, Steve Souders, created a set of 14 rules for
faster front end performance. Those rules have since become widely accepted standard
performance guidelines in all web development of today. The rules can be seen in the

2. Starting point 24

Figure 2.7 [43]

Based on these guidelines, a set of general best practices for improving web application
performance has been formed. These best practices are based on compression, caching,
minifying and bundling of static files, HTML optimization, image optimization, ETags
and Content Delivery Networks. [44]

Compression is an algorithm that is used to remove unwanted redundancy from a file
in order to reduce the size of the file. Compression can be applied to almost any kind of
files returned via HTTP, thus making the amount of transferred data considerably smaller
that it would otherwise be. [44]

Caching on its most basic level means HTTP caching, in which specific headers are
added to the HTTP responses, telling to the browser that the particular content does not
have to be reloaded from the server with every request. Instead, the version found from the
browser cache can be used until the specified expiration time has been reached, leading to
fewer HTTP requests and smaller amounts of data to be transferred. [44]

Minifying and bundling of static files are on par with the compression, since the pur-
pose of minification is to remove unnecessary characters and spaces especially from the
JavaScript files while maintaining the original functionality. Bundling means combining
multiple JavaScript and CSS files into one of each kind, again leading to fewer HTTP
requests. [44]

HTML optimization basically means the correct positioning of CSS and JavaScript
files on a web page, removal of duplicate scripts and utilization of HTMLS optimization
features when possible, all leading to more optimal rendering pipeline. [44]

Images are a huge part of today’s web applications, meaning that reducing the size
of image files can lead to tremendously smaller data amounts to be transferred. Image
compression can be either lossless or lossy, former being less efficient but not affecting
to the quality of the original image and latter being more effective but resulting to worse
quality result image. [44]

ETags are headers containing unique strings, that can be used to validate the contents of
a browser cache. This might seem like an useful feature, but like the Sounders’ guidelines
suggest, these tags should not be used but removed completely instead. The reason for
this is that most modern web applications are behind a load balancer, meaning that each
request could be served by a different server, which would lead to cache misses for iden-
tical content, because each server would generate a different ETag for the same content.
Instead of making the number of HTTP requests smaller, this would actually increase the
number of requests, which is not the desired outcome. [44]

Content Delivery Networks are a collection of servers located around the world, that
contain a clone of a web application’s static files. This way, all of the requests do not have
to go all the way to the origin server but they can be served from the CDN servers instead.

In addition to lessening the number of requests coming to the origin servers, the CDN

2. Starting point 25

servers are usually much closer to the client geographically, leading to faster response
times, therefore improving the performance of the application. [44]

2.5.3 Load balancing

After utilizing the previous best practices for better web application performance in order
to achieve the best possible vertical scalability for an application, the performance can be
further improved through horizontal scaling. This means increasing the number of origin
servers and placing a load balancer in front of them. In practice this means a proxy server
configured to receive all incoming requests, forwarding them to one of the origin servers
for processing based on certain logic and then returning the response back to the calling
client. [45]

In theory, every added origin server could multiply the maximum throughput value
of the web application by the corresponding value of a single origin server. In practice,
however, this is usually not happening and every added server will increase the maximum
throughput value less than the previous server. This is often due to the lack of centralized
caching system and the required calculations for all forwarding operations. [45] In addi-
tion to increasing the application performance, using a load balancer is also an useful way
to increase the application stability, since in case of an origin server breakdown, there are
still other servers able to serve the client.

2.5.4 Conmio web application performance

At Conmio, all of the previously described web application performance best practices
have been utilized at least to some extent. There are many Grails features or plugins,
created either by the Grails community or by the company, that are taking care of com-
pressing, minifying and bundling of the CSS and JavaScript files, placing them at suitable
locations on a page, adding suitable cache headers to the responses, compressing and
caching the images and other content as well as utilization of Content Delivery Networks
for serving static content. [38] In addition to these, load balancers are utilized in most of

the applications by usually balancing the load between 2 to 8 origin servers.

2.5.5 Measuring the performance

In order to make comparisons with web applications utilizing different degree of optimiza-
tion techniques, it is crucial to be able to measure the performance of those applications
somehow. As defined before, the most important meter of performance in the scope of
this thesis is the application’s maximum throughput value.

ApacheBench is a single-threaded command line tool originally designed for measur-
ing the performance of an Apache HTTP server, though being generic enough for testing

the performance of any web server. Like Apache HTTP server itself, the tool is open

2. Starting point 26

source, comes bundled with the standard Apache source distribution and is capable of
measuring just what is required; the number of served requests per second per page. This
makes it an ideal tool for measuring the web application throughput performance in the
scope of this thesis. [46]

JMeter is another load testing tool by Apache Software Foundation. It is more ad-
vanced than ApacheBench, enabling the creation of more realistic simulations concerning
the origin server traffic, thus allowing the measurement of the maximum total throughput
of the whole application. [47]

In order to achieve the most reliable results, a certain measurement configuration is set
up. To a computer containing hardware similar to the actual server machines, meaning
4 gigabytes of RAM and CPU with two cores, is installed nothing but CentOS, Java,
Apache Tomcat, Apache HTTP server and Varnish. The computer is then configured to
act as a dedicated server for the measurements. In theory, the student’s computer should
act as the client, but as the network connection speed could become the performance
bottleneck in this setting, the ApacheBench instance is also run on the same machine,
thus revealing the actual maximum throughput of the application more accurately. This
way, the only things affecting to the application performance are the usage of Varnish and
the application itself. However, JMeter is a more complex application written in Java,
which makes it sensible to run it from the student’s computer, so that it will not cause any
additional load to the test machine.

The first few sets of benchmark results are dismissed with every particular measure-
ment configuration in order to allow the normalization of the results, since both the Java
Virtual Machine and the caches need some time to warm-up before they perform in the
optimal level. The throughput values presented in this thesis have the margin error of 5%,

meaning the actual value is somewhere in the margin of the measured value + 5%.

27

3. IMPROVING THE SCALABILITY

3.1 Caching

Out of the web application performance best practices described in the previous chapter,
the most useful method in the scope of this thesis seems to be caching. This is due to
the almost endless possibilities of using caches at different levels of the web application

pipeline.
3.1.1 Theory

The term cache comes originally from French and means, literally, fo store. In data
computing, caching means storing of recently formed computer information for future
reference, which may or may not be used again. Caching is useful only when the cost of
storing the information is less than computing the same information again. This means
it is especially useful to store information that is accessed frequently and the computing
process of that information is expensive in terms of resources like processing power and
time. [48]

The cache usefulness can be measured in terms of cache hits and misses. The requested
information is searched from the cache based on the cache key, which is an unique value
that can be linked to only one cache entry. Whenever the requested information is found
from the cache, it is called a cache hit. Similarly, when the requested information cannot
be found from the cache, it is called a cache miss. The percentage of all hits out of all
requests is called the cache hit ratio. The performance improvement a cache provides is
based on the difference between the service time of a cache hit and miss; the higher the
cache hit ratio and the bigger the service time difference between a cache hit and miss,

the bigger the performance improvement the cache provides. [48]
3.1.2 Advantages

There are three key advantages in caching: it makes web pages load faster, it reduces
wide area bandwidth usage and it reduces the load placed on the origin servers. [48]
From the end user’s point of view, the biggest advantage of caching is the increase in the
web application performance, meaning faster loading web pages. Distribution of dynamic
content from an origin server usually requires more or less data computation based on

certain criteria, until the resulting response can be send to the requesting client. If there are

3. Improving the scalability 28

a lot of similar clients requesting the same content, it would be useful to cache the result
of the computation instead of doing it all over again with every request. This way, the
processing power can be used to something else, which can greatly improve the maximum
throughput of the application. [48]

From the application developer’s point of view, the biggest advantage of caching is the
reduced load on the origin servers. As explained before, program code written with the
help of a framework is not necessarily the most optimized code possible, which means it
lacks in performance. When the results of the important computations are cached, it does
not really matter whether computing them takes 5 or 50 milliseconds, which makes the
performance difference almost meaningless and permits the usage of the selected frame-
work. [48]

Properly done caching offers tremendous advantages to an application and to the com-
pany. It saves time, money, bandwidth and processing power while increasing perfor-
mance and stability of the application at the same time. None of the world’s most popular
modern web sites would work with the efficiency and stability they currently do if they
did not utilize caching. Some could even say that caching is critical for making the whole
Web usable at all. [48]

3.1.3 Disadvantages

Although caching is one of the most important building blocks of the modern Internet, it
has also its downsides. First of all, cached information is always older than information
retrieved or computed upon request. This can be controlled to some extent for example by
defining time to live (TTL) parameters for cached items, but every once in a while users
can still receive information that is out of date for one reason or another. It depends on
the application how harmful this kind of situation is. In real-time applications even small
delays in content freshness can seriously harm the intended functionality, which equals to
bad user experience.

Secondly, many web application providers want to know exactly how their sites are
used: which pages are most and least popular, who visits on what pages and when does
this happen. Depending on the analyzing tools, some of these events may be hard to track
in case the requested content is cached and the original request does not necessarily even
reach the origin servers at all. [48]

Third, depending on how customized content the web application contains, caching
can be utilized at different rates. A page customized specifically for Mary cannot be
cached and returned to Jim, especially if it contains any personal data. In general, the
more customized content an application contains, the less caching can be utilized. [48]

Finally, caching can also lead to problems with the legislation, since the cache can
contain sensitive data, which should not be saved anywhere but on the origin servers.

This kind of situation may limit the utilization of caching or even disallow it totally. [48]

3. Improving the scalability 29

3.1.4 Current utilization

At Conmio, caching is already utilized on many levels, thanks to the Conmio Cache plu-
gin. Most of the Conmio web applications contain domain objects like sections, articles
and images. These objects are usually created by parsing and interpreting the contents
of one or more Extensible Markup Language (XML) or JavaScript Object Notation
(JSON) feeds, that are provided by the customer. These processes are relatively expen-
sive to the applications, and therefore every reasonably designed web application caches
the results of these computations, that are the domain objects. This caching principle
alone gives tremendous performance boost to the applications, because customer feeds
can sometimes be slow to respond and also the amount of data to be processed may be
large.

Conmio Cache has also a nice feature of being able to asynchronously update the
contents of a cache after it has been once populated but the objects have expired. In
these cases, the requesting client will receive the values from the cache immediately, after
which the application updates the expired objects asynchronously and the next request
will receive the updated objects. This makes it possible to always have immediately
responding web application, as the expensive computations are mostly done behind the
scenes. The downside in this is the occasional out of date response returned to the client
because of sparse usage of the application.

In addition to caching of domain objects, other things can be cached too. Conmio
Images plugin works together with the Cache plugin and caches the results of image
manipulation processes. Conmio Cache has also the ability to cache fragments of HTML
or other markup language, which further diminishes the need for repeated processing of

the same content.

3.2 Advanced caching techniques

Following the general best practices of web application performance, it is clear that
caching in its many forms is the option that has the most to offer for the Conmio web
applications. However, it is important to understand all the possible ways of utilizing
caching, recognize the trade-offs in each of these solutions and pick the most effective

ones to be harnessed in a real application.

3.2.1 Improvement options

After discussing with the senior systems personnel of the company, at least 3 different
potential caching improvement options were found: caching of general HTTP responses,
caching of user group specific HTTP responses and caching of HTTP response fragments

with Edge Side Includes markup language.

3. Improving the scalability 30

Out of these three, the caching of general HTTP responses is by far the most effective
solution, since practically all requests would then lead to cache hits, unless the cache
contents had expired or were not populated in the first place. However, this solution
would require the same content to be returned to all clients, which would mean either
non-customized content or heavy parsing of the returned content client-side, as in single-
page applications.

The second way is to cache HTTP responses based on user groups or individual users.
In this case, the content returned to different users could be customized to a degree. How-
ever, the more customized the content would be the less cache hits would occur, which
would decrease the cache efficiency.

The utilization of Edge Side Includes markup language is the most fine-grained caching
solution out of the three. With Edge Side Includes, individual page content fragments can
be cached for separately specified lengths of time and the final HTTP responses are com-
posed at edge-level, in the current case meaning usually an HTTP accelerator called Var-
nish. The obvious downside in this is the requirement for the HTTP accelerator software

and the additional composing logic, which may be duplicated in the actual application.

3.2.2 Prioritization

Since the application in question is returning more or less customized content to the re-
questing clients, general HTTP responses cannot be cached without moving a lot of the
parsing logic client-side, which would require a lot of work and fundamental changes to
the application architecture. The only general responses that can be cached are the few
AJAX requests these applications make, and they have already been cached with Var-
nish. On the other hand, in addition to being a fairly simple markup language, Edge Side
Includes can be utilized alongside the other caching solutions, which makes it the most
promising solution out of the three. In this case, the caching of user group specific HTTP
responses seems to be somewhere in the middle in terms of usability and effectiveness,
making it the second most promising solution.

3.2.3 Future possibilities

In the future web applications of the company, that have not yet any existing architecture
design, the general HTTP response caching method can be utilized more effectively. This
can be achieved by returning the majority of the content in JSON format and making
the application single-page. It should be noted though, that the development process of
single-page applications is much slower than with the traditional approach. However,
utilization of a suitable framework may even out the situation.

Furthermore, multiple cloud computing services, like Google App Engine [49], are

already offering automatic scaling of the resources for the applications deployed on their

3. Improving the scalability 31

platform. This way, the responsibilities concerning the server configurations and applica-
tion scalability would be externalized outside the company, in theory removing the need
of monitoring for high traffic peaks altogether. In practice though, this would also re-
move the control over monitoring and logging, therefore complicating multiple things,
like tracking down bugs. Furthermore, it is unlikely that the automatic resource scaling
would react fast enough in case of an unexpected high traffic peak, therefore diminishing
the usability of this approach. Because of these reasons, utilizing cloud computing at this
scale is inconvenient for the time being and cannot be considered as a real alternative in

the current situation.

3.3 Varnish

Varnish is a web application accelerator also known as HTTP accelerator or caching
HTTP reverse proxy. It can be installed in front of any server that communicates through
HTTP and configured to cache the contents. Regardless of the architecture, retrieving the
content from Varnish cache is usually at least 300 times faster than from the application.
[50]

3.3.1 Functionality

Being a caching HTTP reverse proxy means that the requests from clients go through the
Varnish before reaching the origin server, if reaching it at all. Varnish tries to answer to
the requesting client from the cache first, and only if that cannot be done, is the request
forwarded to the origin server, whose response is then cached and delivered to the client.
The following requests to the same resource can be answered from the cache, provided
that the content was cacheable and the cached version has not expired. An example of
this scenario is illustrated in the Figure 3.1 [50]

By default, Varnish uses the Cache-Control header received alongside the origin server
response to decide whether the content can be cached or not. There are a few conditions
where Varnish will not cache, the most common one being a response containing cookies,
which indicates user specific response. The default caching behaviour can be modified
using policies written in Varnish Configuration Language (VCL). It should be noted
that Varnish is a software that does not require its own physical server to be utilized
efficiently. [50]

3.3.2 Advantages

The single most obvious advantage of utilizing Varnish in front of a web application server
is the tremendous performance improvement it is able to offer. All requests that can be
answered from the cache will be returned to the clients faster and without the need of any

processing from the application. This way, Varnish improves the perceived performance

3. Improving the scalability 32

Visual Paradigm Community Edition [not for commercial use

Client Varnish Cache Origin server

I
I
1. GET /feed/content |
L

1.1: GET /feed/content

1.2: content not found for key /feed/content

1.3: GET /feed/content

1.3.1: (expensive} processing

1.3.2: return cacheable content

1.4: cache content with key /feed/content

1.5: return content

2: GET /feed/content

2.1: GET ffeed/content

2.2: return content for key (feed/content

2.3: return content

Figure 3.1: Varnish functionality.

experienced client-side while allowing the origin servers to use their resources elsewhere,
thus increasing the maximum throughput of the application. [50]

Varnish also allows the configuration of caching behaviour through the Varnish Con-
figuration Language, which makes it possible to create customized caching settings for
each application, if necessary. This makes it possible to make caching more efficient, for
example by grouping certain end user devices and allowing them to be cached with the
same key. [50]

3.3.3 Disadvantages

The utilization of Varnish requires additional software and configuration, and in some
cases also additional hardware. All this adds especially configuration and testing related
work to the project, since the configuration settings have to be thoroughly tested in order
to prevent caching errors between different clients. Especially the cache key generation
functionality is very important, as it should take all relevant factors into consideration in
terms of varying content.

On a practical level, many web application developers do not necessarily have a deep
knowledge about Varnish or Varnish Configuration Language. Similarly, the systems
personnel having knowledge about VCL do not necessarily have thorough understanding

about the application. Without good communication, this may lead into a problematic

3. Improving the scalability 33

situation, that can recur every time a new application is about to be launched. In addition
to this, from the maintenance point of view, it would be best to have certain default VCL
settings used in all applications instead of customizing them separately each time, which

reduces the possibilities for customized caching logic.
3.4 Edge Side Includes

Edge Side Includes (ESI) is an XML-based markup language designed for assembling
resources in HTTP clients. Unlike some other in-markup languages, Edge Side Includes
is designed to leverage tools like caches in order to improve the perceived performance
while reducing the processing overhead on the origin server at the same time. It does
this by allowing dynamic content assembly at the edge of the network, which can mean
for example the client’s browser, Content Delivery Network or an HTTP accelerator right

next to the origin server. [51]
3.4.1 Functionality

The current and original Edge Side Includes markup language specification version 1.0
was introduced in 2001. It contains four major features: inclusion, variable support,
conditional processing and exception and error handling. Out of these four, the most
important feature in the scope of this thesis by far is the inclusion, which is described
accurately while the other three are left with minimal attention. [51]

With the inclusion feature, the ESI processor can compose the final HTTP responses
by assembling the included content, which is fetched from the network with separate
requests. An include element should contain the full source URL with all the required
query parameters for making a request that will return the fragment of HTML or other
markup language, that should be used to replace the corresponding inclusion element in

the final response. [51] Figure 3.2 contains a couple of examples of inclusion elements.

<gsiinclude sre="http./fexample.com/1.html" alt="hitp.//bak.example.com/2.html" onerror="continua"/>

<esi:include src="http./fexample.com/ search?query=5(QUERY_STRING{query}}"/=

Figure 3.2: ESI inclusion element examples. [51]

In a nutshell, Edge Side Includes works like the following: When an HTTP request
goes through ESI capable middleware to the origin server, additional headers are added to
the request in order to make it possible for the origin server to recognize the ESI capabil-
ity. In this case, the origin server will replace the actual content fragments with ESI inclu-
sion elements in places where ESI functionality is to be utilized. The response skeleton
then returns from the origin server to the ESI processor. At this point, the ESI proces-

sor assembles the final response by either including the actual HTML content fragments

3. Improving the scalability 34

from the cache or by making additional requests to the origin server through the source
URLs defined in inclusion elements and then caching the results for future requests. The
functionality of the Edge Side Includes is illustrated in the Figure A.1.

The other three features of ESI, variable support, conditional processing and exception
and error handling, are features that can be used to enhance the inclusion feature. For ex-
ample, additional logic can be written for the ESI processor in order to customize content
or provide reasonable alternative responses in case one or more of the origin responses
fail. However, the aim is to keep the ESI processor logic as simple as possible, which

means the absence of any optional features. [51]

3.4.2 Advantages

The biggest advantage of ESI utilization is the ability to considerably reduce the workload
on the origin servers without moving it client-side. The more ESI inclusions are utilized
on a web page, the less work the origin servers have, which frees up resources for serving
more clients.

Compared to some other caching techniques, ESI inclusion fragments have their own
metadata, which can contain information about things like cache expiration time and alter-
native source URL. This makes it possible to adjust the caching times of different content
fragments based on their updating frequency. For example, a markup fragment contain-
ing the menu of the application updates rarely, thus allowing caching time of multiple
hours, whereas social discussion messages may be cached only for five seconds or so.
This makes the caching almost invisible to the client, as the appropriate content seems to
be updating in real-time despite the caching. [51]

Although the fine-grained markup fragment caching described here is possible also in
the application with the help of Conmio Cache plugin, the difference here is that the ESI
cache is faster and it does not put any load on the application. Furthermore, if the ESI
processor is running on a different physical server, it does not put any load on the whole

origin server.

3.4.3 Disadvantages

First of all, utilization of ESI requires additional software that understands the ESI lan-
guage, namely ESI processor. In addition, the software has to be configured in order to
work properly alongside other existing server software, like Apache HTTP server and
Apache Tomcat.

Secondly, if additional features besides inclusion are utilized, the logic part of ESI
processor may become complex and duplicated with the logic inside the application. This

makes it hard to maintain and reuse in other projects.

3. Improving the scalability 35

Third, it should be precisely defined which features of a client are affecting to the con-
tent of an ESI fragment, so that all those features are included in the cache key, preventing
caching of varying content with the same key but still keeping the cache hit ratio as high

as possible. This obviously adds some development and testing work to the project.

3.4.4 Edge Side Includes and Varnish

Varnish can be used to cache many kind of content ranging from full HTTP responses
to small content fragments. To help with fragment caching, Varnish implements a small
subset of ESI features, namely inclusion and removal elements. Therefore, Varnish can
do ESI processing, provided that only the supported elements are used in the markup.
[50] This is enough for the current purpose.

3.4.5 Edge Side Includes and Conmio Modules

Conmio Modules plugin was originally designed to encapsulate the logic and markup of
a content markup fragment. These fragments can present elements like headers, footers,
menus and news listings. The goal was to allow easy adding, moving and removing of
individual content elements on a web page.

When considered alongside Edge Side Includes, Conmio Modules seems to map well
with the ideology: both techniques are designed to produce a specific markup fragment in
one way or another. Therefore, support for ESI was added to the Conmio Modules plugin
by implementing a sniffer that checks whether the current request has come through an
ESI capable middleware. If yes, the module will not execute its normal functionality but
instead produce a suitable ESI inclusion tag, which can be used to fetch the actual content
of the module. This way, the processing of the module content has to be done only when
the ESI cache does not have fresh enough version of the requested content fragment.

To the developer, the switch to ESI modules is extremely simple: instead of calling the
module module, it can be called esiModule instead, which activates the ESI functionality
of the plugin. In addition to this, ESI modules work like regular modules in cases where
ESI processor is not present in the application pipeline, thus allowing the full functionality

of the modules either way.

3.5 User group specific HTTP response caching

In short, user group specific HTTP response caching means caching of HTTP responses,
whether they contain HTML, XML, JSON or whatever other markup language. Although
this could be done in Varnish, there are some big advantages when doing it in the origin

server instead.

3. Improving the scalability 36

Jisual Paradigm Community Edition _rL-(for commercial use

Origin server

Tomcat Response Serviet Filter Response Application
cache
T

} 1: GET /frontpage I

+———

|
|
o

1.1: get variables for frontpage cache key

1.1.2: variables for frontpage cache key :‘ L.L.1: minimal processing

L.2: GET /frontpage+variables

1.3: no content for key GET /frontpage+variables

L.4: GET /frontpage

1.4.2: response for GET /frontpage :‘ 1.4.1: expensive processing

L.5: cache response for key GET jfrontpage+variables

1.6: response for GET /frontpage

2: GET /frontpage

2.1: get variables for frontpage cache key

2.1.1: minimal
2.1.2: variables for frontpage cache key :‘ minimal processing

2.2: GET /frontpage +variables

2.3: response for key GET /frontpage-+variables

2.4: response for GET ffrontpage

Figure 3.3: A servlet filter response cache functionality.

3.5.1 Functionality

In practice, caching of user group specific HTTP responses in a Java-based web applica-
tion is convenient to do with a Java Servlet filter implementation. A Servlet filter is able
to dynamically intercept requests and responses and transform or use the information con-
tained in them. In this case, the filter can be used to decide whether a certain request can
be answered from the cache instead of rendering the response in the actual application. A

sequence diagram of the response cache functionality is illustrated in the Figure 3.3. [52]

3.5.2 Advantages

The obvious advantage of caching user group specific HTTP responses in the first place
is the improvement in perceived performance while decreasing the processing workload
on the server. Compared to doing the response caching in Varnish, doing it in a Servlet
filter allows access to functions of the application, which can therefore be utilized when
generating the cache key, thus determining the user groups for each cache entry. When
done like this, the key generation logic can be written in Java or Groovy by the application
developer without deep knowledge about the filter functionality or Varnish Configuration
Language. This also makes it easier to keep the majority of the caching logic as close to

the application as possible and allows the utilization of default VCL settings in Varnish.

3. Improving the scalability 37

3.5.3 Disadvantages

This technique has the usual downsides of caching in general: the content is not as fresh as
it could be, additional logic has to be written for the cache key generation and the whole
caching functionality has to be thoroughly tested with multiple end devices. However,
the downsides in this technique seem to be scarce compared to some of the other caching

techniques.

38

4. EDGE SIDE INCLUDES UTILIZATION

4.1 Optimization steps

After the addition of ESI support into the Conmio Modules plugin, it is clearly the most
practical way to utilize ESI in Conmio web applications. In practice, utilization of ESI
requires three steps: extraction of suitable content fragments into modules using Conmio
Modules plugin, extraction of all necessary information regarding the variation of the
module content into explicit variables and configuration of Varnish HTTP accelerator in
front of the application origin servers.

The first two steps are left to the application developers, while the third step is mainly
directed towards the systems personnel. However, the VCL settings for Varnish should
be made in co-operation between the systems personnel and the application developers
in order to ensure the proper functionality of the application. This is essential especially
if achieving the proper functionality requires customized logic for Varnish. However, a
default VCL configuration settings file was created by the systems personnel to be uti-
lized in all projects whenever possible, thus reducing the need for customization between

different projects. These default settings are utilized also in the current application.

4.2 Performance before optimization

Concurrency Level: 58

Time taken for tests: 170.011 seconds

Complete reguests: leeea

Failed requests:]

Write errors: 8

Total transferred: 421360000 bytes

HTML transferred: 418740000 bytes

Requests per second: 58.82 [#/sec] (mean)

Time per request: 850.856 [ms] (mean)

Time per request: 17.081 [ms] (mean, across all concurrent reguests)
Transfer rate: 2420.34 [Kbytes/sec] received

Figure 4.1: The maximum throughput of the web application front page through Apache HTTP
server before optimization.

The first thing to do is to measure the starting level of the web application performance

before any optimization has taken place. In order to achieve the most reliable as well as

4. Edge Side Includes utilization 39

practical results, the front page of a real life web application is used in all performance
measurements that follow. Luckily, the same optimized application can be used to mea-
sure all the different levels of optimization, as the ESI functionality of Conmio Modules
can be switched off, causing them to work like regular modules, which is performance-
wise very closely the same as if Conmio Modules were not utilized at all.

The maximum throughput of the non-optimized web application front page is mea-
sured through Apache HTTP server using ApacheBench and dedicated server as described
in the chapter 2. Special attention is paid to the Requests per second value. The bench-
mark results of the fifth test run are visible in the Figure 4.1.

According to the general Conmio web application performance guidelines, the value
of 80 requests per second per page is considered to be good enough for most applications.
The testing machine seems to be a bit less powerful than the actual server machines,
since it 1s able to serve approximately 59 requests per second compared to the value
of roughly 80 requests per second of the actual server machines. However, the maximum
throughput improvement factor can be untangled with the test machine despite the inferior
performance.

It should be noted that Varnish was actually already utilized in the application at this
point for caching the general AJAX responses. Therefore, the front page should have
been fetched through Varnish rather than through Apache HTTP server. However, the
maximum throughput value for the front page seemed to be practically the same whether
the Varnish was utilized or not, thus making the difference in measurement configuration

meaningless at this point.
4.3 Edge Side Includes optimization

A wireframe illustration of the web application front page structure before splitting it
into modules can be seen in the left side of the Figure B.1. By inspecting the front page
structure more thoroughly, it becomes clear that the structure can be split into separate
modules in multiple ways. On the first try, 10 visible logical modules can be found: splash
screen, top ad, header with top menu, poll, external, vote, news listing, social discussion,
bottom ad and footer. In addition to these, there are a few additional modules containing
required but non-visible information, like analytics and meta-information. For clarity’s
sake, these non-visible modules and splash screen module are left out of the illustrations.

When delving deeper into the logic of different modules, and remembering the fact
that the more content is inside ESI modules, the less work is left for the application, it
seems reasonable to merge a couple of modules together. After the merging, basically all
front page content is inside ESI modules. The front page now consists of 8 visible logical
modules: top ad, header with top menu, poll, external, vote, news listing with social
discussion, bottom ad and footer. The final separation of the visible content modules can

be seen in the middle of the Figure B.1.

4. Edge Side Includes utilization 40

The total count of the front page modules at this point is 13, which means there are
5 modules not visible in the illustrations. For now, it is sufficient to say that these non-
visible modules do not contain anything that would have a major effect on the application
performance. Nevertheless, it is important to acknowledge the total number of the mod-

ules on the front page.

4.4 Performance after Edge Side Includes optimization

Concurrency Level: 30

Time taken for tests: 64.554 seconds

Complete requests: 16060

Failed requests: 3]

Write errors: 4]

Total transferred: 423797101 bytes

HTML transferred: 420926240 bytes

Requests per second: 154.91 [#/sec] (mean)

Time per request: 322.771 [ms] (mean)

Time per request: 6.455 [ms] (mean, across all concurrent reguests)
Transfer rate: 6411.11 [Kbytes/sec] received

Figure 4.2: The maximum throughput of the ESI optimized web application front page through
Varnish.

When comparing the origin server responses for the application front page depending on
whether the complete response or just the response skeleton is being rendered, a tremen-
dous difference in the amount of data can be identified; the complete response size is
8661 bytes while the response skeleton size is only 807 bytes. In other words, the re-
sponse skeleton is less than 1/10th of the complete response size.

It is safe to assume that rendering the response skeleton puts much less load on the
application than rendering the complete response, since almost all actual content is inside
ESI modules. However, this is not the whole truth since the contents of the ESI modules
have to be also rendered every time their cached versions expire. How often this happens
depends on the module. The time to live values used for different modules can be seen in
the right side of the Figure B.1.

It seems there are three modules containing dynamic content: poll, vote and news
listing with discussion. The TTL values of these modules are 5, 15 and 5 seconds, so
they are rendered fairly often compared to the other modules of the front page. However,
from the application performance perspective, even modules with TTL value of 5 seconds
need rendering quite rarely, which makes the rendering processes of these modules almost
meaningless in the scope of this thesis.

The maximum throughput of the EST optimized web application front page is measured
through Varnish with previous module TTL values. The benchmark results of the fifth test

run can be seen in the Figure 4.2.

4. Edge Side Includes utilization 41

A clear improvement in the Requests per second value can be seen, as the new value
is roughly 3 times the original. Additionally, the maximum throughput of the front page

response skeleton is measured through Apache HTTP server and the results are illustrated

in the Figure 4.3.
Concurrency Level: 10!
Time taken for tests: 51.881 seconds
Complete requests: 18688
Failed requests: 8
Write errors: 1]
Total transferred: 35110088 bytes
HTML transferred: 30810008 bytes
Requests per second: 195.77 [#/sec] (mean)
Time per request: 255.406 [ms] (mean)
Time per request: 5.188 [ms] (mean, across all concurrent requests)
Transfer rate: 671.23 [Kbytes/sec] received

Figure 4.3: The maximum throughput of the web application front page skeleton through Apache
HTTP server.

It seems that despite almost all front page content is now inside ESI modules and the
response skeleton is very simple, the rendering process of the skeleton is still fairly heavy.

This is probably due to Grails’ core features, like utilization of Sitemesh layouts.

Concurrency Level: 58

Time taken for tests: 18.197 seconds

Complete requests: 18668

Failed requests:]

Write errors:]

Total transferred: 3573570 bytes

HTML transferred: 1641640 bytes

Reguests per second: 980.65 [#/sec] (mean)

Time per reguest: 58.987 [ms] (mean)

Time per request: 1.020 [ms] (mean, across all concurrent requests)
Transfer rate: 342.23 [Kbytes/sec] received

Figure 4.4: The maximum throughput of the web application updated poll results JSON through
Apache HTTP server.

In order to illustrate the power of caching general JSON responses in Varnish compared
to caching of HTML fragments with ESI, the maximum throughput of updated poll results
JSON responses is measured first through Apache HTTP server and then through Varnish
in a similar manner than before. The results for Apache HTTP server are visible in the
Figure 4.4 while the results for Varnish can be seen in the Figure 4.5.

Even the Requests per second value measured through Apache HTTP server is very
high, but the addition of Varnish pushes the value through the roof. Over 6000 requests

4. Edge Side Includes utilization 42

Concurrency Level: 50

Time taken for tests: 1.661 seconds

Complete requests: 10000

Failed requests:]

Write errors: 3]

Total transferred: 4398539 bytes

HTML transferred: 1647708 bytes

Requests per second: 6019.01 [#/sec] (mean)

Time per reqguest: 8.307 [ms] (mean)

Time per reguest: @.166 [ms] (mean, across all concurrent requests)
Transfer rate: 2580.73 [Kbytes/sec] received

Figure 4.5: The maximum throughput of the web application updated poll results JSON through
Varnish.

served in a second is a huge value for the test machine, and should be sufficient for almost
anything.

It seems clear that rendering and caching of general JSON responses is the most effi-
cient way to provide responses from the application. It should be noted though, that the
response under inspection is fairly simple piece of JSON, and the performance probably

decreases a bit when rendering more complex responses.

4.5 Summary

Using ESI optimized version of the application is clearly beneficial to the application per-
formance. However, it seems that in the current solution the front page skeleton rendering
performance is preventing the ESI solution from reaching its full potential. This is due to
the fact that the front page skeleton is rendered on the origin server with every request,
even though the actual content fragments are cached in Varnish.

A way to improve the situation would be to cache also the page skeleton in addition
to the content fragments. This could be done in Varnish, but it would require customized
VCL configurations, which would probably lead to duplicated logic between Varnish and
the application itself. As these are things to be avoided, another solutions are explored.

The rendering process of general JSON responses seems to be so fast even without any
additional caching, that it would not easily become the performance bottleneck in this
case. The addition of Varnish in front improves the performance even further, making it

practically impossible to become the bottleneck in any case.

43

5. RESPONSE CACHING UTILIZATION

5.1 Background

In addition to Varnish, the response skeleton can be cached also elsewhere. One viable
option in this case is the origin server, which can utilize a Servlet filter implementation
wrapped around the application in order to determine whether a certain request can be

answered from the cache instead of passing the request to the actual application.

5.2 Optimization steps

<7xml version="1.9" encoding="UTF-8"7>
<web-app version="Z.5"
! metadata-complete="true"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://waw.w3.org/2001/XML5chema-instance”
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<display-nome>/@grails.project. key@</display-name>

<filter>
<filter-name>responseCachingFilter</filter-name>
<filter-class>com.conmio.ResponseCachingFilter</filter-class>
<init-params
<param-name>cacheName</param-name>
<param-value>responseCache</param-value>
</init-param>
</filter>

<filter-mapping>
<filter-name>responseCachingFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatchers>
</filter-mapping>

</web-app>

Figure 5.1: Required web.xml configuration settings for the response cache.

Like with the ESI modules, the utilization of response caching requires three steps: ex-
traction of all necessary information regarding the variation of the page content into ex-
plicit variables, creation of a Servlet filter implementation with suitable key calculation
functionality and configuration of a cache for the responses.

The first step is easy after the utilization of ESI modules, since all relevant variables
have already been extracted and are available for calculating the cache key. The second
step is also pretty easy, since there already is at least one almost suitable Servlet filter
implementation, called SimplePageCachingFilter [53], for the Ehcache [54]. Only the

5. Response caching utilization 44

functions for calculating the cache key and selecting which URLs to cache need to be
overridden in order to achieve the desired functionality. The required code for these over-
rides can be seen in the Figure C.1.

The third step is closely related to the second step, as the cache for SimplePage-
CachingFilter can easily be configured with web.xml and ehcache.xml configuration files
placed inside the Grails project. The relevant code for these files can be seen in the Figures
5.1 and 5.2.

<ehcache>
<diskStore path="java.io.tmpdir"/>

<defaultCache
maxElementsInMemory="1@"
eternal="false"
timeToldleSeconds="5"
timeToliveSeconds="1@"
overtlowToDisk="true"

f=

<cache name="responseCache”
maxElements InMemory="100@"
eternal="false"
timeToldleSeconds="2"
timeToliveSeconds="2"
overflowToDisk="false">
</caches

</ehcache>

Figure 5.2: Required ehcache.xml configuration settings for the response cache.

As can be seen from the ehcache.xml, the response cache time to live value is only
2 seconds and the efernal configuration option is set to false, which means a response
received from the cache can never be more than 2 seconds old. During the low traffic
window, the cache is pretty meaningless because it is mostly empty and cache hits are
rare. However, when the high traffic peak arrives, cache hits become more frequent and
the application has to render a certain kind of page skeleton only once in every 2 seconds
instead of doing it 700 times per second. This greatly reduces the need for repetitive
processing on the origin servers, and thus improves the application scalability.

5.3 Performance after response cache optimization

After configuring the ResponseCachingFilter to filter requests directed towards the front
page of the application along with the actual cache settings, it is safe to assume a tremen-
dous performance improvement is possible due to the major decrease in the front page
response skeleton processing frequency during a high traffic peak.

The maximum throughput of the response cache optimized web application front page

response skeleton with previously defined cache settings is measured through Apache

5. Response caching utilization 45

Concurrency Level: 50

Time taken for tests: 7.133 seconds

Complete requests: leeea

Failed requests: 8

Write errors:]

Total transferred: 34877530 bytes

HTML transferred: 30825485 bytes

Requests per second: 1401.95 [#/sec] (mean)

Time per request: 35.665 [ms] (mean)

Time per request: @.713 [ms] (mean, across all concurrent requests)
Transfer rate: 4775.06 [Kbytes/sec] received

Figure 5.3: The maximum throughput of the response cache optimized web application front page
response skeleton through Apache HTTP server.

HTTP server. The benchmark results of the fifth test run can be seen in the Figure 5.3.

As assumed, the front page response skeleton rendering performance seems to have
improved tremendously, as the Requests per second value is now roughly 9 times higher
than previously. With this improvement in place, the performance bottleneck have been
moved elsewhere, as the skeleton rendering performance is now sufficient for the required
performance level.

Next, the maximum throughput of the ESI and response cache optimized web applica-
tion front page is measured through Varnish. The benchmark results of the fifth test run

are illustrated in the Figure 5.4

Concurrency Level: 50

Time taken for tests: 17.245 seconds

Complete requests: leees

Failed reguests: 8

Write errors: 3]

Total transferred: 423966991 bytes

HTML transferred: 421343360 bytes

Requests per second: 579.88 [#/sec] (mean)

Time per request: 86.225 [ms] (mean)

Time per request: 1.724 [ms] (mean, across all concurrent requests)
Transfer rate: 24088.78 [Kbytes/sec] received

Figure 5.4: The maximum throughput of the ESI and response cache optimized web application
front page through Varnish.

The Requests per second value is now almost 10 times higher than in the beginning.
However, at the same time, the value is much lower than that of rendering just the response
skeleton. It might be that the aggregation of the final response in Varnish actually requires
so much processing power that it becomes the performance bottleneck in this case.

In order to see what happens to the performance if the ESI modules are not utilized but
the front page is still fetched through Varnish from the response cache optimized origin

5. Response caching utilization 46

server, the performance is measured with ApacheBench as before. The benchmark results
of the fifth test run for this configuration are illustrated in the Figure 5.5.

Concurrency Level: 50

Time taken for tests: 17.398 seconds

Complete requests: leees

Failed requests: 8

Write errors:]

Total transferred: 422419148 bytes

HTML transferred: 419341862 bytes

Requests per second: 574.78 [#/sec] (mean)

Time per request: 86.990 [ms] (mean)

Time per request: 1.748 [ms] (mean, across all concurrent requests)
Transfer rate: 23718.75 [Kbytes/sec] received

Figure 5.5: The maximum throughput of the response cache optimized web application front page
through Varnish.

It seems that the perceived rendering performance through Varnish is approximately
the same whether the ESI modules are utilized or not. However, the utilization of Re-
sponseCachingFilter seems to have a big effect on the application performance in both
cases. In fact, it is so big that it can make the utilization of Varnish unnecessary. There-
fore, one more test set is run by requesting the complete front page through Apache HTTP
server from the response cache optimized web application. The benchmark results of the

fifth test run with this configuration can been seen in the Figure 5.6.

Concurrency Level: 28

Time taken for tests: 14.264 seconds

Complete requests: 1la6e8

Failed reguests: 8

Write errors: 3]

Total transferred: 421444980 bytes

HTML transferred: 419873146 bytes

Requests per second: 7081.07 [#/sec] (mean)

Time per reqguest: 71.328 [ms] (mean)

Time per reqguest: 1.426 [ms] (mean, across all concurrent requests)
Transfer rate: 28853.66 [Kbytes/sec] received

Figure 5.6: The maximum throughput of the response cache optimized web application front page
through Apache HTTP server.

The performance has improved a bit compared to the previous configurations, but the
difference is not radical. However, it seems that Varnish is actually just slowing things
down in this case, due to the CPU processing power required for composing the final
response.

As a comparison, the maximum throughput of the updated poll results JSON responses
from the response cache optimized application is measured through Apache HTTP server.
The benchmark results of the fifth test run are visible in the Figure 5.7.

5. Response caching utilization 47

Concurrency Level: 58

Time taken for tests: 4.690 seconds

Complete reguests: leeea

Failed requests:]

Write errors:]

Total transferred: 3603960 bytes

HTML transferred: 1671837 bytes

Requests per second: 2132.27 [#/sec] (mean)

Time per request: 23.449 [ms] (mean)

Time per request: B.469 [ms] (mean, across all concurrent reguests)
Transfer rate: 7568.45 [Kbytes/sec] received

Figure 5.7: The maximum throughput of the response cache optimized web application updated
poll results JSON through Apache HTTP server.

It seems that the response cache optimization is not as efficient for the general HTTP
response caching as Varnish, since the maximum throughput value of the response cache
optimized version is only about 1/3rd of the Varnish optimized version. However, the

value of over 2000 served requests per second can still be considered as a good value.
5.4 Performance in a realistic high traffic simulation

Most of the performance measurements so far have focused solely on the maximum
throughput of the web application front page. This is appropriate, since the front page ren-
dering process was the problematic performance bottleneck in the first place. However,
now when the bottleneck has been removed, it would be useful to gain some knowledge
about the actual real life performance improvement achieved during the process.

In order to find out how well the optimized application performs under realistic high
traffic conditions compared to the original version, a more sophisticated load testing tool,
JMeter, is utilized. In order to simulate the server traffic as realistically as possible, the
following specifications are used: There are 50 concurrent desktop users and 100 concur-
rent mobile users on the application front page simultaneously. Each major smartphone
operating system is represented, meaning iOS, Android and Windows Phone devices are
accessing the application. Poll votes are sent for both available options with all end de-
vices. In addition to these, there are 50 concurrent mobile users browsing through all of
the major pages of the application, including news, discussion and poll pages. Generally
speaking, there are the total of 200 concurrent users in the application doing the most
common tasks in very high pace.

First, the original application is deployed on the same test machine as before. The
JMeter is run from the student’s computer, so that it will not cause any additional load
to the test machine. The simulation is run until approximately 15000 requests have been
made. The general information about the fifth test run is illustrated in the Figure D.1.

Probably the most relevant information here is the Throughput value, which is illus-

5. Response caching utilization 48

Latest Sample 1114
Throughput 8,815.62 /minute

Figure 5.8: The maximum total throughput of the non-optimized web application through Varnish.

trated also in the Figure 5.8. It seems to be just shy of 8816 requests per minute, trans-
lating to the value of approximately 147 requests per second. This value represents the
original maximum total throughput of the application, before any of the optimization steps
explained in this thesis were executed.

The value seems to be higher than expected for the non-optimized application. The
explanation is that the AJAX requests have already been optimized by caching them in
Varnish, causing them to be very fast, thus raising the total throughput value of all re-
quests. To further explain the situation, the average response times of different requests
are illustrated in the Figure D.2.

As can be seen, the front page of the application seems to have the longest average
response time, a bit over 3000 milliseconds, with all of the main section pages following
not too far behind. The fastest response time is recorded for the AJAX request for fetching
the updated poll results, with the value of just 68 milliseconds.

Next, the optimized application is deployed on the test machine and the same simula-
tion is run again. It should be noted, that the response cache is now configured to cache
all of the main section pages of the application in addition to the front page. The general
information about the fifth test run is illustrated in the Figure D.3.

Latest Sample 211
Throughput 20,677.242 /minute

Figure 5.9: The maximum total throughput of the optimized web application through Varnish.

As can be seen from the Figure 5.9, the Throughput value seems to be now as high as
20677 requests per minute. This translates to the value of approximately 345 requests per
second, which is about 2.3 times the original value. Furthermore, the average response
times of different requests made to the optimized web application are illustrated in the
Figure D 4.

The response times of different requests have flattened noticeably, as the front page
response time is now only 512 milliseconds compared to the original value of over 3000
milliseconds. In other words, the average response time for the optimized application
front page is only 1/6th of the original. Other main section pages are largely in par with
the front page, although participants page response time is a bit higher with the value of
914 milliseconds. This is due to the fact that the participants page contains a lot of content

that is not inside ESI modules because of certain technical reasons.

5. Response caching utilization 49

Latest Sample 402
Throughput 21,422.503 /minute

Figure 5.10: The maximum total throughput of the optimized web application through Apache
HTTP server.

Finally, the same simulation is run once more, but this time for the response cache
optimized application that caches also the general AJAX responses. In this version, Var-
nish can be totally dismissed, which simplifies the application architecture. The general
information about the fifth test run is illustrated in the Figure D.5

The Throughput value seems to be even higher than before, as can be seen from the Fig-
ure 5.10. The value is approximately 21423 requests per minute, which translates to the
value of approximately 357 requests per second. Compared to the previous configuration,
the value is higher, though the difference is minor. Likewise, the average response times
of different requests made to the response cache optimized application are illustrated in
the Figure D.6.

It seems that the response times for most of the requests have decreased a bit. The
unexpected thing is the fact that also the AJAX requests’ response times have decreased
although Varnish is no longer used for caching them. The explanation to this is unknown
at this point, but it may be caused by things like JVM optimization procedures or the

measuring tool itself.

5.5 Summary

It seems that out of the two advanced caching techniques under inspection, utilization of
response caching seems to be the single more efficient option for increasing the maxi-
mum throughput of the application. This is due to the fact that the response cache seems
to be more efficient especially with the user group specific HTTP responses, which are
constituting most of the current application content. On the other hand, Varnish is more
efficient with the general AJAX responses, but as there are not so many of them in the
current application, the benefit of caching them is minor.

However, the efficiency of the ESI solution could be improved for example by external-
izing the ESI processing from the Varnish to the CDN. This way, the processing power of
the ESI processor would always be sufficient without reducing any power from the origin
servers. The downside in this approach is that the CDN should support ESI processing,
which is not the case with the current CDN provider of the company.

Another possibility for gaining a similar effect would be to move the Varnish on its own
server machine, thus giving it more CPU-time without reducing it from the application.
However, this would also increase the number of servers in use, which was a thing to be

avoided.

5. Response caching utilization 50

Furthermore, the ESI modules themselves could be split differently and different time
to live values could be used on those modules. One especially efficient way could be
to create only one module per page, which would probably lead to better performance
because of the simplicity of the content aggregation process. However, this would hap-
pen with the downside of reducing the usability of many Grails’ core features, includ-
ing Sitemesh layouts and resource rendering tags. In other words, what could be gained
performance-wise would be lost in maintainability and developer happiness, which makes
this an option to be avoided.

When reflecting back to the original goal of the thesis, improving the maximum through-
put of the application as much as possible, it seems that ResponseCachingFilter alone can
do most of the task. However, as the real life web application contains also other pages
than front page, the ESI modules become more useful especially if multiple pages contain
identical modules. Furthermore, if the response aggregation process would be external-
ized to its own server, the efficiency of the ESI solution would increase even more.

When comparing the maximum total throughput performance of the original applica-
tion to the the optimized application in a real environment under realistic traffic, it seems
that the optimized application performs around 2.3 times better regardless of the usage of
Varnish. However, it is impossible to say how close to the truth this result is because the
current performance bottleneck is unknown; it might be the network between the testing
machines or even the JMeter measuring tool itself, for example. All in al, it is undeniable
that a noticeable improvement in the maximum total throughput of the application was

achieved regardless of the selected measurement tool or configuration.

51

6. CONCLUSIONS

6.1 Selected optimization techniques

The different optimization techniques presented in this thesis were based on the standard
front end performance guidelines by Steve Souders. Out of all the possibilities, caching
was seen as the most promising candidate for fulfilling the high performance requirements
of the web application in question. Out of all the caching possibilities, three specific
techniques of advanced caching were identified: caching of general HTTP responses,
caching of user group specific HTTP responses and caching of HTTP response fragments

by utilizing Edge Side Includes markup language.

6.1.1 Theoretical findings

By inspecting the theory behind each of these techniques, Edge Side Includes was selected
to be the first technique to be utilized in the application, as it promised to offer just what
was required: a way to reduce the load of the origin servers without moving the work
client-side but rather doing some of it in the already existing middleware layer. Another
factor supporting this solution was the fact that Varnish, the HTTP accelerator software
capable of doing also ESI processing, was already utilized in front of the application for
caching some of the general AJAX responses. Therefore, not much configuration was
required for neither the hardware nor the software side of the application architecture in
order to implement the support for Edge Side Includes.

The second most useful caching technique for the current application was identified
to be the caching of the user group specific HTTP responses. With this technique, the
logic for composing the customized responses can still reside on the origin servers, but
the frequency for executing it has diminished tremendously. Instead, by calculating the
cache key for each request in the application, which requires only the minimal amount of
processing, many of the requests could be responded from the cache instead of processing
the same response all over again in the application. Furthermore, this technique can be
utilized alongside Edge Side Includes or on its own.

The third technique, caching of general HTTP responses, was immediately identified
as the most efficient way of caching HTTP responses in general. This is due to the fact
that practically every request would lead to a cache hit because the response would be the

same for everyone. Unfortunately, in the current application the utilization possibilities

6. Conclusions 52

of this technique are limited, since the client would require complex logic for parsing the
general responses. However, this technique could be utilized in the few AJAX requests
made by the application. In fact, this was already done before the thesis project even
began, and it is also the original reason for the existence of Varnish in the web application

architecture.

6.1.2 The results of the empirical studies

As planned, the first optimization step was to start utilizing Edge Side Includes markup
language in the application. This required the modularization of the page content using
Conmio Modules plugin, extraction of all information affecting to the module content
into explicit variables and creation of suitable Varnish Configuration Language settings
for the Varnish in front.

After completing these steps and comparing the benchmark results between the origi-
nal application and Edge Side Includes optimized version, it was calculated that the latter
could serve approximately three times the number of requests for the application front
page compared to the former. While this clearly was an improvement in the maximum
throughput of the application, it was less than what was expected. The reason for the
inefficiency was pinpointed later to be the rendering process of the response skeleton in
the application.

Next, the user specific HTTP response caching mechanism was implemented by ex-
tending an existing Java Servlet filter implementation for response caching and overriding
suitable methods from the original implementation. In addition to these, a cache for the
responses was configured. After completing these steps, the maximum throughput of the
front page response skeleton increased to almost tenfold number compared to the original
version.

After removing the performance bottleneck from the skeleton rendering process, the
maximum throughput of the application front page was measured again. The number of
served requests was now around ten times the value of the original application. During
this time, it was also noticed that the utilization of Edge Side Includes is actually pretty
meaningless if the HTTP response caching filter is utilized in the application. This is due
to the fact that in the current server configuration, both the Varnish and the application
itself reside on the same machine. Therefore, the reduced amount of processing work in
the application is actually just moved to the Varnish, which uses the same hardware for
its own processing tasks it has to do before the final response can be sent to the client.

Finally, the maximum total throughput improvement of the application was measured
by simulating a realistic high traffic peak situation for both the original and the optimized
application. It turned out that the optimized application could serve approximately 2.3
times the number of requests compared the original application. Furthermore, the result

was practically the same whether Varnish was utilized in front of the response cache

6. Conclusions 53

optimized application or not.

6.1.3 Measurement reliability

Most of the performance measurements of this thesis were made by utilizing only a simple
command-line tool ApacheBench. In addition to this, the performance of the application
was measured under realistic high traffic conditions with more advanced load testing soft-
ware JMeter. Furthermore, the expected performance changes were estimated by measur-
ing and comparing the sizes of different kind of responses, like complete response and
response skeleton.

ApacheBench gives very close to realistic results only when the requested content is
exactly the same for everyone. In the current application, it basically means only the few
AJAX requests for updating the poll results and Twitter feed. All the other content varies
more or less depending on the client, and the varying client is hard to simulate properly
with ApacheBench.

Taken as an example, the front page of the application consists of four variables that
affect to the content: three of them are boolean values and one is the poll answer value,
which usually has two to five different answer options and no answer at all. Basically this
means that there are 24 to 48 different versions of the front page that should be rendered;
not just the one ApacheBench is requesting.

However, this also means that 48 is the absolute maximum number of times a single
server has to render the front page during the defined cache time to live time, which was
now 2 seconds. This translates to the maximum of 24 rendered front pages in a second. If
this is compared to a high traffic peak situation of 700 requests per second, if they all are
requesting the front page, the required effort from the application is now only 1/30th of the
original. When taken into the account that this is the absolute worst-case scenario, as the
other pages are simpler and have less variables, it is pretty safe to say that ApacheBench
results are close enough to the truth for the current purpose.

Nonetheless, in order to measure the true effect of the previous optimization steps in a
real web application, a more realistic high traffic simulation was created with JMeter and
run for both the original and the optimized application. The result was that the optimized
application performed around 2.3 times better than the original regardless of the usage of
Varnish in front.

The reliability of this particular measurement setting is probably close to the truth,
but as the current performance bottleneck is unknown, nothing can be said for sure. For
example, the internal network of the office could have slowed the response times down
even though both computers were connected to the same network with Ethernet cables.
Furthermore, the JMeter software itself seemed to slow down some time after making
15000 requests to the application, which can also affect to the measurement results. In

addition, JVM is capable of doing its own optimization procedures according to logic

6. Conclusions 54

unknown, thus reducing the comparability of different performance results a bit. Because
of these reasons, the maximum total throughput improvement factor presented here can

only be considered as an approximation of the real value.

6.1.4 Further improvement possibilities

It is undeniable that a noticeable improvement in the maximum throughput of the applica-
tion was achieved during the thesis project regardless of the measurement configuration.
However, there are a few ways the performance could be improved even further, though
they all contain some trade-offs. Generally, more advanced traffic simulations and mea-
suring tools could be utilized in search for the optimal balance between the following
improvement options.

First of all, in order to grant the maximum processing power for the ESI processor,
the content aggregation process could be externalized from the Varnish to the CDN. This
way, the processing power of the ESI processor would always be sufficient without re-
ducing any power from the origin servers. The downside in this approach is that the CDN
should support ESI processing, which is not the case with the current CDN provider of
the company.

A similar effect could be achieved also by moving the Varnish to its own server ma-
chine from the origin server, thus allowing it more CPU-time without reducing it from
the application. However, the total number of the required servers and the response times
between Varnish and Apache HTTP server would probably increase in this case.

Third, the split into ESI modules could be done differently, for example by creating
only one module per page, thus reducing the response aggregation workload in Varnish.
However, this would also diminish the usability of many Grails’ core features, leading to
messier code that is harder to maintain.

Fourth, if the application was turned into a single-page application, the servers could
utilize general HTTP response caching. This way, the performance of the servers would
be pretty much as close to the optimal as possible. However, this would require heavy
rewriting of the current application code, though it could be utilized more easily in future
applications.

Multiple small adjustments to the application could make an impact to the overall per-
formance. These include the utilization of suitable cache headers in meaningful places,
cache time to live value adjustments, resource plugin configuration adjustments and re-
moval of unnecessary AJAX requests. Furthermore, Conmio Modules plugin could be
upgraded to be capable of caching the module contents in Ehcache in a similar fashion
Varnish does with ESI modules. It would further reduce the need for Varnish in the appli-
cation architecture.

Finally, the origin server machines’ hardware could always be upgraded by switching

to more powerful machines with more CPU cores and memory. The obvious downside in

6. Conclusions 55

this is the increase in the server costs.
6.2 The thesis project

The thesis project was officially started in the beginning of June 2013. A few months
went by searching for a suitable topic, and during the fall of 2013, the original topic was
selected to be something about the Data, Context, Interaction (DCI) pattern, which is an
extension to the well-known MVC pattern.

The selected topic was thoroughly studied and an artificial research problem was in-
vented to be solved. However, during January 2014 a concrete issue in a real life second
screen application scalability was encountered and improvement options were explored.
During this time, it seemed sensible to change the original artificial research problem of
the thesis into a concrete real life problem, even though it meant new background studies

because of the new topic.

6.2.1 Successful parts

The change of the topic proved to be a good decision despite the increased workload,
because as a result of the project, two useful solutions to the real life web application
scalability problem were found. Because of the new topic, it was also easier to combine
the actual work and the thesis work together, as both of them supported each other. Fur-
thermore, staying in schedule became easier with the new topic than with the previous
topic.

Generally speaking, the theory and technologies behind the scalability issue were not
very familiar to the student before the thesis project. On one hand this increased the work-
load concerning the project, but on the other hand it also taught much useful information
to the student; he feels more of a professional software engineer now.

When considering the original research questions set in the beginning, the thesis con-
tains pretty thorough answers to each and every one of them, despite the fact that the
performance measurements may contain some degree of error factor because of the rea-

sons mentioned earlier.

6.2.2 Improvement areas

Although the end results of the thesis can be considered successful, everything did not go
perfectly during the planning process. Because of this, it took a pretty long time to get
the thesis finished, especially when the original starting point of June 2013 is considered.
However, the biggest delaying factor was simply the difficulty of finding an interesting
yet suitable topic for the thesis, not the writing process itself.

The performance measurements of the thesis were made with two different load testing

tools, ApacheBench and JMeter. Despite they gave results, one may always criticize the

6. Conclusions 56

true precision of the results and measurement tools. Especially the noticeable slowing
down of the JMeter simulation makes the validity of the results questionable. However,
in order to utilize more advanced load testing machinery for more accurate results, an
investment of some sort should have been made, which would not have been worth the

money in the scope of this thesis.

57

REFERENCES

(1]

(2]

(3]

(4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

D’souza, J. & D’souza, M. Chapter 9. Internet. In: D’souza, J. & D’souza, M (ed.).
Learn Computers Step by Step. 2006, Pearson Education India. pp. 272.

Arnold, J. & Becker, M. Chapter 8. Designing and Developing Mobile Internet Sites.
In: Arnold, J (ed.). & Becker, M. Mobile Marketing For Dummies. Indianapolis,
Indiana 2010, Wiley Publishing, Inc. pp. 384.

Lauff, M. PocketWeb - WWW Browser for the Apple Newton MessagePad
[WWW]. TECO - Technology for Pervasive Computing. [accessed on 3.4.2014].
Available at: http://www.teco.edu/pocketweb/.

Unwired Planet Makes Internet Micro-Browser for Mobile Phones Avail-
able — Free of License Fees; Every Phone Can Now Be a Smartphone
[WWW]. Gale Group. Business Wire, 27.8.1997, [accessed on 3.4.2014]. Avail-
able at: http://www.thefreelibrary.com/Unwired+Planet+Makes+Internet+Micro-
Browser+for+Mobile+Phones...-a019701561.

Bollen, J. WAP Formation and Philosophy [WWW]. University of San Fran-
cisco, 4.4.2000, [accessed on 2.4.2014]. Available at: http://www.usfca.edu/fac-
staff/morriss/651/spring00/techprojects/wap/toppage1.htm.

Frederick, G. Chapter 1. Introduction to Mobile Web Development. In: Frederick, G
(ed.). Beginning Smartphone Web Development: Building JavaScript, CSS, HTML
and Ajax-based Applications for iPhone, Android, Palm Pre, BlackBerry, Windows
Mobile, and Nokia S60. 2010, Apress. pp. 368.

Mehta, N. Chapter 1. Getting Mobile. In: Mehta, N (ed.). Mobile Web Development.
2008, Packt Publishing. pp. 236.

Bromby, D., Fonte, P., Forta, B., Juncker, R., Lauver, K., Mandel, R. & O’Leary, A.
Chapter 9. Using WMLScript. In: Bromby, D. et al. (ed.). WAP Development with
WML and WMLScript. 2000, Sams. pp. 608.

Peterson, C. Chapter 1. What Is Responsive Design. In: Peterson, C. (ed.). Learning
Responsive Web Design. Early release ed. 2014, O’Reilly Media, Inc. pp. 250.

Enzenhofer, K., Grabner, A., Kopp, M., Pierzchala, S., Reitbauer, A. & Wilson, S.
Application Performance Concepts. In: Enzenhofer, K. et al. (ed.). Java Enterprise

Performance. 2012, Compuware Corporation.

Dodd, A. Chapter 6. The Internet. In: Dodd, A. (ed.). The Essential Guide to
Telecommunications. 5th ed. 2012, Prentice Hall. pp. 600.

REFERENCES 58

[12] Henderson, C. Chapter 9. Scaling Web Applications. In: Henderson, C. (ed.). Build-
ing Scalable Web Sites. 2006, O’Reilly Media, Inc. pp. 352.

[13] Davie, B. & Peterson, L. Computer Networks. Sth ed. 2011, Morgan Kaufmann. 920
p.

[14] Rosen, R. & Shklar, L. Web Application Architecture: Principles, Protocols and
Practices. 2nd ed. 2009, John Wiley & Sons. 440 p.

[15] Web Content Accessibility Guidelines [WWW]. W3C. 11.12.2008, [accessed on
30.9.2014]. Available at: http://www.w3.0rg/TR/WCAG20/#webpagedef.

[16] Sosinsky, B. Chapter 3. Architecture and Design. In: Sosinsky, B. (ed.). Networking
Bible. 2009, John Wiley & Sons. pp. 912.

[17] Shah, S. SOA Server-Side Architecture and Code. In: Shah, S. (ed.). Web 2.0 Secu-
rity: Defending Ajax, RIA, and SOA. 2007, Course Technology PTR. pp. 365.

[18] Server Configuration Options [WWW]. Oracle. [accessed on 5.9.2014].
Available at: http://docs.oracle.com/cd/E38689_01/pt853pbr0/eng/pt/tsvt/
task_ServerConfigurationOptions-4d7ed6.html.

[19] W3Techs - World Wide Web Technology Surveys [WWW]. W3Techs. 2014, [ac-
cessed on 17.5.2014]. Available at: http://w3techs.com/.

[20] Hopkins, C. What is PHP? In: Hopkins, C. (ed.). Jump Start PHP. 2013, SitePoint.
pp- 150.

[21] O’Dell, J. 8 Experts Break Down the Pros and Cons of Coding With
PHP [WWW]. Mashable. 19.11.2010, [accessed on 18.5.2014]. Available at:
http://mashable.com/2010/11/19/pros-cons-php/.

[22] Onodera, T., Suzumura, T., Tatsubori, M., Tozawa, A. & Trent, S. Performance
Comparison of PHP and JSP as Server-Side Scripting Languages. IBM Tokyo Re-
search Laboratory 2008, 19 p.

[23] Datye, V. & Kothari, N. Chapter 1. ASP.NET Overview. In: Datye, V. & Kothari, N.
(ed.). Developing Microsoft®) ASP.NET Server Controls and Components. 2002,
Microsoft Press. pp. 722.

[24] Kohan, B. PHP vs ASP.net Comparison [WWW]. Comentum, 1.8.2010, [ac-
cessed on 19.5.2014]. Available at: http://www.comentum.com/php-vs-asp.net-

comparison.html.

REFERENCES 59

[25] Layka, V. Learn Java for Web Development: Modern Java Web Development. 2014,
Apress. 472 p.

[26] Yegulalp, S. Surprise! Java is fastest for server-side Web apps
[WWW]. InfoWorld, 11.11.2013, J[accessed on 20.5.2014]. Available at:
http://www.infoworld.com/t/java-programming/surprise-java-fastest-server-side-
web-apps-230565.

[27] Clavijo, D. Server-side programming language statistics [WWW]. Blog
Websites Frameworks, 6.3.2013, [accessed on 20.5.2014]. Available at:
http://blog.websitesframeworks.com/2013/03/programming-language-statistics-in-
server-side-161/.

[28] Lowmiller, J. PHP vs Java: Which is the Code for Developing a Bright
Future? [WWW]. Udemy. 6.9.2013, [accessed on 14.7.2014]. Available at:
http://www.udemy.com/blog/php-vs-java/.

[29] Kumar, B., Narayan, P. & Ng, T. Implementing SOA Using J ava™EE. Ann Arbor,
Michigan 2009, Addison-Wesley Professional. 384 p.

[30] Hales, W. Chapter 1. Client-Side Architecture. In: Hales, W. (ed.). HTMLS5 and
JavaScript Web Apps. 2012, O’Reilly Media, Inc. pp. 172.

[31] Wasson, M. Single-Page Applications: Build Modern, Responsive Web Apps
with ASPNET [WWW]. Microsoft. 2013, [accessed on 27.8.2014]. Available at:
http://msdn.microsoft.com/en-us/magazine/dn463786.aspx.

[32] Ragonha, P. JavaScript - the bad parts. In: Ragonha, P. (ed.). Jasmine JavaScript
Testing. 2013, Packt Publishing. pp. 146.

[33] Framework [WWW]. DocForge. 26.11.2013, [accessed on 15.7.2014]. Available at:
http://docforge.com/wiki/Framework.

[34] Grails. GoPivotal, Inc. [accessed on 15.07.2014]. Available at: http://grails.org/.

[35] Groovy [WWW]. [accessed on 15.7.2014]. Available at:
http://groovy.codehaus.org/.

[36] Janssen, C. Convention Over Configuration [WWW].
Techopedia. [accessed on 17.07.2014]. Available at:
http://www.techopedia.com/definition/27478/convention-over-configuration.

[37] Spring Framework [WWW]. GoPivotal, Inc. [accessed on 17.7.2014]. Available at:
http://projects.spring.io/spring-framework/.

REFERENCES 60

[38] Brown, J. & Rocher, G. The Definitive Guide to Grails. 2nd ed. 2009, Apress. 618
p.

[39] Koenig, D. Groovy in Action. 2nd ed. 2011, Manning Publications. 337 p.

[40] Web Framework Benchmarks [WWW]. TechEmpower. 1.5.2014, [accessed on
17.7.2014]. Available at: http://www.techempower.com/benchmarks/.

[41] Node.js [WWW]. Joyent, Inc. [accessed on 17.7.2014]. Available at:
http://nodejs.org/.

[42] Angular]S [WWW]. Google. [accessed on 17.7.2014]. Available at:
https://angularjs.org/.

[43] Hume, D. Part 1. Defining performance. In: Hume, D. (ed.). Fast ASPNET Web-
sites. 2013, Manning Publications. pp. 208.

[44] Hume, D. Part 2. General performance best practices. In: Hume, D. (ed.). Fast
ASP.NET Websites. 2013, Manning Publications. pp. 208.

[45] Membrey, P., Hows, D. & Plugge, E. Practical Load Balancing: Ride the Perfor-
mance Tiger. 2012, Apress. 272 p.

[46] Apache HTTP server benchmarking tool [WWW]. The Apache
Software Foundation. [accessed on 17.7.2014]. Available at:
http://httpd.apache.org/docs/2.2/programs/ab.html.

[47] Apache JMeter [WWW]. Apache Software Foundation. [accessed on 21.9.2014].
Available at: http://jmeter.apache.org/.

[48] Wessels, D. Web Caching. 2001, O’Reilly Media, Inc. 320 p.

[49] Google App Engine [WWW]. Google. [accessed on 10.10.2014]. Available at:
https://cloud.google.com/appengine/.

[50] Varnish Cache [WWW]. Varnish Community. [accessed on 24.7.2014]. Available at:
https://www.varnish-cache.org/.

[51] Nottingham, M. ESI Language Specification 1.0 [WWW]. Akamai Technologies.
W3C, 2001, [accessed on 24.7.2014]. Available at: http://www.w3.org/TR/esi-lang.

[52] Jenkov, J. Servlet Filters [WWW]. [accessed on 18.9.2014]. Available at:

http://tutorials.jenkov.com/java-servlets/servlet-filters.html.

[53] Ehcache: Components and Concepts [WWW]. Ehcache. 2014, [accessed
on 20.10.2014]. Available at: http://ehcache.org/generated/2.9.0/html/ehc-

all/#page/Ehcache_Documentation_Set/co-abt_components_and_concepts.html.

REFERENCES 61

[54] Ehcache [WWW]. Ehcache. 2014, [accessed on 20.10.2014]. Available at:
http://ehcache.org/.

A. EDGE SIDE INCLUDES

Visual Paradigm Community Edition [not for commerc

1: GET /frontpage

ESI
processor

(Varnish)
T

1.11: final HTML response

2: GET /frentpage

2.7: final HTML response

1.1: GET /frontpage

62

Origin

Server

T

|

|
L

1.1.2: HTML response skeleton for ffrontpage

1.2: GET /esiModulel

1.3 no content found for key /esiModulel

1.4: CET fesiModulel

1.4.2: content for/esiModulel

1.5: cache content for key /esiModulel

1.6: CET /esiModule2

1.7: no content found for key /esiModule2

1.8: CET fesiModule2

1.8.2: content for/esiModule?

1.9: cache content for key /esiModule2

1.10: response aggregation

2.1: GET /frontpage

2.1.2: HTML response skeleton for /frontpage

2.2: GET fesiModulel

2.3: content for JesiModulel

2.4: GET /esiModule2

2.5: content for fesiModule2

2.6: response aggregation

1.1.1: minimal processing

1.4.1: (expensive} processing

1.8.1: {expensive} processing

2.1.1: minimal processing

Figure A.1: The functionality of Edge Side Includes with Varnish.

63

B. WIREFRAMES

HEADER HEADER

EXTERNAL EXTERNAL
[C_TTL =240]

NEWS DISCUSSION NEWS DISCUSSION

NEWS LISTING (| NEWS LISTING

OI'\ U
DIQCUSSION DISCUSSION
ML =6

Figure B.1: The wireframe illustration of the application front page, the split into modules and the
time to live values used for the modules.

64

C. RESPONSE CACHING FILTER

lass ResponseCachingFilter extends SimplePageCachingFilter {

def webApplicationContext
4 def esiVariableService
& private static 1 List<5String> shouldBeFilteredPaths = [

10 @Cverride

= public void doInit(FilterConfig filterConfig) {

super.dolInic (filterConfig)

webApplicationContext = WeblipplicationContextUtils.getWebApplicationContext (filterConfig.get3ervlietContext())

esiVariableService = weblipplicationContext.getBean("v

1 @Cverride

=] protected void doFilter(HttpServletRegquest regquest, HttpServletResponse response, FilterChain chain) {
String requestURI = request.getRequestURI ()

= if ({shouldBeFilteredPaths.find{5tring path -> requestURI.startsWith(path)}) {

super.doFilter (request, response, chain)

[N}

[N

B }
= else {
chain.doFilter (request, response)

@override

= protected 3tring calculateKey(HttpServletReguest request) {

BtringBuilder stringBuilder = new StringBuilder()
stringBuilder.append(request.getMethod ()) .append (request.getRequestURI ()) .append(request. getQueryString())
stringBuilder.append(getVariableStringForKey (request))

return stringBuilder.toString()

= private 5tring getVariableStringForEey(HttpServletRequest reguest) {
BtringBuilder stringBuilder = new StringBuilder()

String requestURI = request.getRequestURI()

Map wvariables = esiVariableService.getMenuVariables (request)
wariables.putall (esiVariableService.getFrontPageVariables (request))
= wvariables.each{5tring key, def wvalue ->

stringBuilder.append (
r }
return stringBuilder.to3tring()

Figure C.1: The required code for overriding and extending the SimplePageCachingFilter imple-
mentation in order to cache the application front page responses.

65

D. BENCHMARK RESULTS

uonemag
#2£ST 53|dwes jo oN

sw Q
. Sw 6T0E

LEST

04y |

ajdwes 153187

PITT

w/z9'sT8's Indybm

a1nuy

UEIPAN [A] afesany |~ ®Ea 8] Aeidsig oy sydery

Lle) y\‘

Ay
indyfinoayy |'}. UONEIA:

1¢¢ uepapy
€977 abesa.

Figure D.1: The general results of the original application JMeter simulation measured through
Varnish.

D. Benchmark results 66

Milliseconds
- — " » s .
] = -] =] =] =
o = = = = = = = =

Food/ pollajaxGe.

Tood/social lagax

watiset

keskusteln
-
bl
bl
-
: 1]
H 5
i g
“ &
polliajaxAddPoll 3
=
=

ety

pollisjaxAddPoll

Figure D.2: The average response times of different requests of the original application measured
through Varnish.

67

D. Benchmark results

753 ms | -

Graphs to Display 4\ Data 4\ Average 7\ Median & Deviation ;\. Throughput

0 ms

No of Samples 15164
Deviation 564

Latest Sample 211
Throughput 20,677.242/minute

Average 320
Median 41

Figure D.3: The general results of the optimized application JMeter simulation measured through

Varnish.

D. Benchmark results 68

Milliseconds

Food/ poll/sjaxGe

foodsocial/sjax

pe il agax AddPoll.
watinet
-
e
ko)
2
-
H £
8 7
- 7]
keikustelu g
L -]
-4
ety
pe sl agax AddPoll,

Figure D.4: The average response times of different requests of the optimized application mea-
sured through Varnish.

69

D. Benchmark results

729 ms

0 ms

No of Samples 15130

Deviation

Graphs to Display (¥ Data (¥ Average (¥ Median

,\ Deviation

<_ Throughput

538

Latest Sample 402
Throughput 21,422.503/minute

Average 303
Median 45

Figure D.5: The general results of the optimized application JMeter simulation measured through

Apache HTTP server.

D. Benchmark results 70

Milliseconds
2 g
= = =
' L
Hoedipoll/ajaxGe. ..
Ifeedlsocial /ajax. ..
pollisjaxAddPell...
Juntiset
1
g
%]
3
&
Mkeskustel -
Tkeskustelu =
=
=

anestys

IpollisjaxAddPell...

afemay m

Figure D.6: The average response times of different requests of the optimized application mea-
sured through Apache HTTP server.

