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There has been an explosive growth in the number of devices connected to the Inter-
net during the past few years. These connected devices have already outnumbered
the world’s population and are expected to grow at the same or even higher rate in
the future. There are some studies showing estimates of as high as 50 billion con-
nected devices by the year 2020. This phenomenon of connecting physical objects to
the Internet where they can intercommunicate as well as provide contextually aware
data to the users is termed as Internet of Things.

Internet of Things although providing many useful applications and services to the
users brings with itself a few challenges as well. The novelty presented by the
Internet of Things is not the functionalities or the services provided by the smart
objects but the sheer number of these smart objects. This gigantic amount of devices
and the traffic they generate presents a lot of challenges especially related to the
management of these objects and as well as how to adopt and utilize the generated
data efficiently.

In order to address these problems and to provide a platform through which the users
can easily recreate such IoT scenarios, investigate communication between devices
and networks, execute services and monitor application level behavior, a solution
was developed as part of this thesis. The developed platform works on top of an
internationally distributed testbed called PlanetLab .

The developed system allows the users to define and emulate IoT devices and net-
work interfaces. The interfaces can be defined based on bandwidth availability, time
delay and packet loss ratio experienced over the interface. The system automati-
cally generates the appropriate commands for emulating the configured devices and
reverts back to the users with details on how to utilize the emulated device. It also
provides support for associating tags with the available nodes and devices, which
can be used to perform lookups and form organized viewpoints in the system.
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1. INTRODUCTION

The number of Internet connected devices had already outnumbered the world’s
human population in 2012 exceeding the figure of 8.7 billion connected devices [36].
This number has continued to grow over the years and already by 2014 has exceeded
16 billion devices [34]. With this number already being forecasted to be much higher
in the next coming year, studies are showing that by the year 2020 the number of
connected devices would significantly overshadow the current number and would
reach a figure ranging from 40 to 50 billion connected devices [25][24].

These connected devices are composed of both smart devices as well as the resource
constrained devices such as sensors and actuators. These devices in addition to
common network connectivity interfaces such as Wi-Fi, Cellular connection and
Ethernet also possess a variety of low power wireless communication technologies
such as BLE (Bluetooth Low Energy) and Zigbee.

This large diversity of connected nodes and their connectivity interfaces impacts
the types of service interactions and network communications, in both client-server
as well as peer to peer configurations. Smart devices such as phones and tablets
nowadays posses hardware that allows multiple radio technologies to co-exist, which
gives raise to the possibility of multipath communication. Gateway nodes can enable
network traffic generated by a device from one kind of communication technology
to easily access and traverse into another kind.

Wireless sensors as per se might sometimes not posses direct connectivity to the
Internet but they can reach the Internet usually by utilizing multi-hop relays where
one of the end nodes acts as a gateway and forwards the traffic to the Internet. Apart
from the kind of radio technology used, there is also great variation in bandwidth
characteristics and latency experienced over these links. The reliability of these links
is also variable and might sometimes vary even among the same family of links.

The existence of these diverse nodes and interfaces plays an important role in form-
ing the current architecture of the Internet and gives rise to many challenges when
studying or experimenting with network communications over the current or future
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Internet architecture. Problems such as measuring traffic flows among disparate
types of networks, and studying traffic characteristics of pairwise node-based in-
teractions are not trivial. The management of these devices and nodes, as well as
performing lookups and discovering devices are challenging problems to counter es-
pecially given the scale of deployment of these nodes and networks. Services and
application-level behavior also are influenced by these devices and network architec-
tures and need to adapt accordingly.

In order to address such problems and allow investigation to occur, from device to the
network, or to subsequently execute services and monitor application level behavior,
a platform was created as part of this work, which provided scalable distributed
node emulation architecture and possibility to emulate network interactions based
on device-level interface characteristics and network conditions. This platform was
developed atop an international distributed testbed called PlanetLab.

While creating the platform, the primary aim of the work was to provide a platform
for testing that allows the emulation of devices providing insights into the use and
behavior of smart devices as well as resource constrained nodes in the Internet of
Things. The work aimed to provide network heterogeneity, flexibility, scalability
and allow remote node management.

The rest of the thesis is structured as follows. Chapter 2 provides an introduction
to testbeds and Internet of Things and discusses some background work related to
PlanetLab. Chapter 3 presents the architecture and design of the developed platform
and Chapter 4 provides the implementation details of the developed system. Chapter
5 discusses the measurement results taken for verification and the future work that
can be carried out. Chapter 6 concludes the thesis with a brief summary of the
work.
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2. BACKGROUND

This chapter caters towards providing a brief overview of the platforms and concepts
that are most relevant to the work carried out as part of this thesis. It gives an
introduction to the concepts of IoT and Testbeds. PlanetLab system on top of
which the work was carried out is also introduced along with the common usage
scenarios. A small overview on how to use the PlanetLab system is also provided as
part of this chapter.

2.1 Introduction to IoT

The Internet of Things or IoT when put simply is the connection of physical things to
Internet, which makes it possible to share data and control physical objects or access
services from a distance. The IoT concept builds up on smaller blocks commonly
referred to as smart devices or smart objects. These are basically just embedded de-
vices that possess connectivity to the Internet. The concept of IoT has been around
for a long while, first popularized with the introduction of RFID (Radio-frequency
Identification).It introduced some sort of intelligence to simple identification tags
found on everyday objects allowing their identification to be decoded from a dis-
tance. By introducing more intelligence to the ID tags, the tagged items become
smart items or objects. The concept of Internet of Things is not in introduction of
a disruptive technology, but in the pervasive deployment of smart objects [30].

The novelties present in the world of IoT are not related to the functionality these
smart objects offer or even the communication technologies available on these de-
vices. The real novelty that the IoT presents is the share deployment scale of these
devices, the number of connected devices keeps increasing with each year and already
has exceeded the number of human population on the world. Due to these large-
scale deployments, new challenges and problems arise in dealing with management
of these nodes and maintaining the connectivity among these devices.

The main problems that are faced in the field of IoT are authenticity and identifi-
cation of the smart objects, automated management and self organizing networks
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without any fixed topology. Diagnostic and maintenance required by the smart de-
vices after deployment present new challenges as well as context awareness among
the devices and application-level behavior of services utilizing the smart objects.

The nature of IoT also raises a lot of privacy concerns as gigantic amounts of data
is generated by these smart devices which can range from just weather or traffic
conditions to very personal details about an individual’s behaviors and habits. The
data needs to be anonymized or encrypted, depending on the kind of service that
is going to be utilizing this data and as well as fine grained control needs to be
provided to the users owning these smart object so they can control exactly when
and how a service or application can access this data.

2.2 What is a Testbed?

Testbed can be defined as a platform designed for carrying out testing and experi-
mentation in a specific field or for a specific purpose. Most of the testbeds focus on
one or more very closely related scientific areas and provide a general architecture
which would be suitable for the applications or services in that particular domain
for which the testbed was designed for. Testbeds focus on providing resources to the
testers and researchers, which are reusable in a sense they can easily be configured
or changed for other experiments and would be too cumbersome, time consuming
or expensive to be setup for individual projects and experiments.

Testbeds in the world of computer science focus on providing computing resources
to the users, which can be easily managed from a single control point and adjusted
to change the topology in which it is organized or increase and decrease computing
power depending on the nature of experiment. In light of the work carried out for
this thesis project, the testbeds providing features and functionalities for research
in the field of network communication were of particular interest and some of the
most related testbeds are introduced briefly.

The MagNets project [29] is aimed at deploying a next generation wireless access
network testbed infrastructure. The testbed is based in city of Berlin and through
this testbed, heterogeneous devices possessed by the students in the university are
allowed free access to an operator supported network.

The Pan-European Laboratory testbed [38] provides a resource federation frame-
work, which allows multi-domain testbeds. These testbeds provide a heterogeneous
cross layer infrastructure for broad testing and experimentation. The SmartSan-
tander [35] project deals with providing a city-wide test facility for experimentation
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of architectures and enabling services and applications for the IoT. It is a platform
that provides for large-scale experimentation in real life conditions.

There are some testbeds available as well that target specific radio communication
technologies and once such example is a unified testbed platform developed to em-
ulate LTE over wired Ethernet [23]. It can be used to examine the key aspects of a
LTE System in real-time, including real-time uplink and downlink scheduling, qual-
ity of service parameters and Android [1] end-user applications. The Distributed
Network Emulator (DNEmu) [37] provides facilities for investigating how realistic
network experiment can be performed involving globally distributed physical nodes
under heterogeneous environments.

A very relative testbed available through OneLab [26] provides a platform with
physical wireless and mobile devices. This testbed is especially targeted towards
Internet of Things and offers both fixed and mobile nodes. The mobile nodes can
be controlled through robots and model trains. The environment these nodes are
present in can also be controlled and ranges from rooms wrapped in faraday cages to
isolate away from normal radio interference to normal office building environment.

The most relevant testbed for the work carried out in this thesis was found to be
PlanetLab [11] as it offered a versatile choice of physical hosts around the globe and
the sheer number of nodes available made it an automatic choice for this work. As
the work carried out for this thesis demanded a platform that could handle emulated
nodes from tens of hundred to tens of thousand, PlanetLab appeared to be the most
suitable choice. PlanetLab is described in more detail in the section 2.3.

2.3 Introduction to PlanetLab

PlanetLab is a geographically distributed collection of computers that serves as a
testbed for aiding research and development activities especially in the field of com-
puter networking and distributed systems research. It is a platform for researching,
developing and deploying planetary scale services and experiments over a highly
distributed and heterogeneous environment [13].

It is a system that allows for easy deployment of services or a distributed applications
over a large amount of physical nodes distributed globally. It provides means for
easily monitoring the results and managing the connection between the active nodes.
These nodes are all connected to the Internet and are managed centrally by the
PlanetLab servers monitored by the PlanetLab administration body.

At the time of writing PlanetLab has about 1317 physical nodes spread around the
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globe in approximately 630 sites [11]. There are more than 1000 different experi-
ments that are being run over the overlay network that the PlanetLab provides for
testing and researching activities. A spread of the PlanetLab nodes over a world
map to highlight the geographical dispersion of the nodes is represented in Figure
2.1.

Figure 2.1 An illustration indicating the global dispersion of PlanetLab nodes [11].

The universities and research institutes around the world host most of the PlanetLab
nodes and are managed by a community of researchers. By hosting a small num-
ber of nodes, an organization or research body can become part of the PlanetLab
consortium and gain access to a share of resources across the network of PlanetLab
nodes [31]. The size of the share depends upon the amount of nodes hosted by the
organization and the membership level in the consortium.

All of the PlanetLab nodes run a custom version of Fedora [4], which is a Linux
based operating system and the operating system running on the nodes itself is
called MyPLC [7]. MyPLC operating system includes mechanisms for controlling
system configurations on the node, remotely distributing software updates and a set
of management tools. It also provides methods for monitoring the status of nodes
and system activity to prevent illegal usage of the available resources. There are
some mechanisms available as well for managing user accounts and distributing the
keys associated with the accounts for allowing remote access to the nodes on which
the software is installed.

MyPLC along with being available on the PlanetLab nodes is also distributed as a
software package available to all members. This enables the users to even install it
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on local nodes and have a private PlanetLab like testbed available for running their
experiments. The advantage being, the users will have access to full set of resources
available on each node without having to share with other ongoing experiments.
The custom version of PlanetLab is especially beneficial for experiments that re-
quire special architecture on the node or an uninterrupted access to large amount
of resources while still being able to leverage the distributed nature of PlanetLab
architecture.

The main feature offered by the MyPLC software is the ability to dynamically create
and destroy VMs (virtual machines) on the remote nodes and to achieve this in a
distributed fashion. The distribution here refers to the individual virtual machines
being deployed and controlled on all the nodes that are part of the project. MyPLC
allows the creation and management of the virtual machines through a single control
point and the ability to control the complete set of virtual machines as a single
compounded entity. MyPLC employs the use of VMMs (Virtual Machine Monitor)
for monitoring and controlling the VMs on each node.

Each virtual machine running on a node is allocated a share of that node’s resources
and a single node could have several virtual machines running simultaneously. This
allows the users of PlanetLab to have simultaneous access to all the available nodes
and execute their services and applications in complete isolation from each other.
This isolation is not only based on how the physical resources of a node are accessed
by the VMs but also on the network communication of the VMs which remain totally
independent of other VMs[32] although the node has just one IP (Internet Protocol)
address through which it can be reached.

The collection of virtual machines running on each node that is part of the user’s
project is treated as a single compounded entity in PlanetLab and is termed as a
Slice. According to the design principles of PlanetLab, this collection of VMs is
a global abstraction and neither the VMM nor the PlanetLab nodes and the node
manager running on the nodes are aware of this global abstraction. These entities in
turn just deal with creation and management of single virtual machines in order to
keep these tasks as simple as possible [32]. The slice abstraction and management
are handled by special slice creation services available only to the PlanetLab central
servers thus simplifying the logic of creating slices and keeping it manageable by
keeping the control plane at single point in the network.
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2.4 PlanetLab Usage Scenarios

PlanetLab has been designed to address a wide range of problems faced in the
field of research activities related to computer networks and communication over
the existing Internet architecture. In this section a summary is presented on some
sample use case scenarios for utilizing PlanetLab and also some of the scenarios
albeit possible with PlanetLab but are not allowed or encouraged to be executed
over the PlanetLab testbed.

PlanetLab presents an excellent facility and infrastructure for running and experi-
menting with widely distributed services. These service could be related to telecom-
munication networks, networked applications, real-time process control applications,
distributed rendering services or parallel computing.

All the experiments dealing with any sort of communication can easily benefit from
the globally dispersed resources available through PlanetLab. Studies dealing with
wireless sensor networks, routing algorithms or even P2P (peer to peer) oriented
application are the best suited to leverage the capabilities provided by PlanetLab.

Networked applications are also highly suited to run over PlanetLab, as the nature
of these applications demands an architecture very close to the one provided by
PlanetLab. Some examples of such networked application include distributed DBMS
(database management systems), large scale multiplayer online games, networked file
systems such as CIFS (Common Internet File System) [2] and globally distributed
information processing systems such as banking and airline reservation systems.

Some other use case scenarios suited for experimentation over PlanetLab include
applications that deal with real time process controlling such as Air traffic control
systems or industrial control systems that are dependent on communication between
a wide array of sensors. The biggest challenge faced by these applications is that the
core functionality of the system should remain always intact and responsive even
if some of the sensors are unresponsive or unreachable. This kind of scenario is
easily reproducible over PlanetLab where one of the nodes could act as the central
controller and the remaining nodes could be configured to take the role of the sensors.
The availability of the nodes acting as sensors could be easily toggled using the
controls exposed by the PlanetLab allowing researchers to easily reproduce and
monitor the behavior of the applications in a controlled environment.

PlanetLab not only allows the users to easily reproduce different topologies and
scenarios for monitoring the behavior of networked applications but also provides
an environment for actual testing and deployment, which is very close to real Internet
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behavior. As all the PlanetLab nodes are connected to the Internet and posses no
means of directly communicating with each other without using the Internet, they
are as unpredictable as any other connected node over the Internet. However, they
cannot mimic the unpredictability of Internet nodes entirely as most of these nodes
are hosted by the universities and research centers around the world which tend to
have very reliable connectivity to the internet with an uplink and downlink capacity
at the very high end as compared to an average connected node. The downtimes of
these nodes are also very minimal when compared to an average connected node of
Internet as the organizations hosting the PlanetLab nodes often have backup power
generators and back up network connectivity links.

Although there are some applications that are well suited to be run over PlanetLab,
they are not allowed or encouraged to utilize the resources offered by the PlanetLab
platform. One of the first examples of such use case is to utilize PlanetLab as a
distributed supercomputer. Although PlanetLab nodes collectively can offer a huge
amount of computing resources when grouped together, the purpose of these node is
not to offer raw computing power. The primary purpose of PlanetLab is to provide
a platform for experimenting and deploying services and applications that require
an architecture with a lot of nodes involved and present a big barrier to researchers
dealing with such experiments.

PlanetLab is not a simulation platform and does not provide any simulation tools on
its nodes. The nodes are actual physical machines and are connected to each other
only by the means of Internet and do not provide any kind of simulated connection
between them. PlanetLab should also not be used as a grid computer,which although
a possibility, is not the purpose of the platform. However, research or experimenta-
tion related to studying the connectivity between grid computing nodes, trying out
new methods and testing novel theories on how this communication is carried out
would be a very suitable topic to utilize the resources offered by PlanetLab.

One last thing to keep in mind when utilizing PlanetLab is that its not an Internet
emulator and as detailed before uses physical nodes and connections. Another thing
to keep in mind is that although PlanetLab offers a distribution of heterogeneous
nodes around the globe, its not a complete representative of the Internet and does
not represent or encompass the complete architecture of current Internet.

2.5 Terminology and Concepts Used in PlanetLab

In this section some of the common terms used when dealing with PlanetLab testbed
are introduced. These terms appear frequently when using PlanetLab or reading the
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documentation and guidelines on utilizing PlanetLab. Its important to understand
these terms and the underlying concepts before starting out with PlanetLab.

Principal Investigator

Principal investigator or more commonly referred to as PI in PlanetLab ecosystem
are the users that are mainly responsible for managing resources, nodes and users at
each site hosting a PlanetLab node. There always needs to be a user with the role
of principal investigator at each PlanetLab site with some larger sites having the
exception of more than one principal investigator. Usually the principal investigator
is someone with an authoritative role within the organization hosting the PlanetLab
node such as a faculty member at an educational institute or a project manager at
a commercial organization.

User

Any one who utilizes PlanetLab for any kind of activity be it developing applications
for PlanetLab or deploying services or conducting experiments over PlanetLab is
considered a User. Principal Investigators could themselves be users as well. Every
user needs to register with PlanetLab central and the membership needs to be
approved by the principal investigator of the site to which the user belongs.

Site

Site is the term used in PlanetLab for referring to any physical location that is
hosting one or more of the PlanetLab nodes. For example as Tampere University
of Technology is a participating entity in PlanetLab and hosts a couple of nodes for
PlanetLab, it is termed as a site in the PlanetLab terminology.

Node

Any physical computer that is a dedicated server running components of the Plan-
etLab service is termed a Node in PlanetLab. Every computer that is part of the
PlanetLab network and is registered to the PlanetLab central servers as a partici-
pating machine is considered a Node in PlanetLab.
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Slice

A global abstraction that combines the set of allocated resources across all the Plan-
etLab nodes assigned to a project is termed as Slice. As explained earlier in section
2.3 each node assigned to the project creates a virtual machine for that particular
project exclusively and this collection of virtual machines can be controlled by the
PlanetLab central servers as a single entity. This entity is called a Slice. These slices
have a finite lifetime to conserve the wasting of resources if the project is no longer
being actively worked upon but the slices can be renewed periodically to keep them
active for as long as required across all the involved nodes.

Sliver

An instance of the slice running on a specific node is termed as Sliver. It is the
smallest level of isolation in PlanetLab for the project or to term it in another way,
a virtual machine running on a specific node assigned to a slice individually would
be referred to as a sliver. It is actually the part of node’s resources that is accessible
to the users for their projects and can be accessed remotely by the users using SSH.

2.6 Getting Started with PlanetLab

There are a number of steps, which the users need to perform before they can start
utilizing the resources offered by PlanetLab. These steps range from understanding
the registration process to creating the project and the slices and finally how to
access the system for executing the experiments. In this section a summary of these
step is provided to simplify the process of getting started with PlanetLab.

2.6.1 Registering with PlanetLab

The first step the users need to perform before utilizing PlanetLab is to register
with the PlanetLab central system. There are three PlanetLab central authorities
to which the users can register with depending upon which central authority the
user’s home site belongs to. The three central authorities of PlanetLab are PL-USA
(PlanetLab USA) [11], PL-EU (PlanetLab Europe) [13] and PL-JP (PlanetLab
Japan).

PlanetLab central authorities all have online portals through which the services of-
fered by each body can be accessed. These central services manage all the resources
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and nodes registered to the body as well as all the users registered with that Plan-
etLab central service. Anyone requiring access to the PlanetLab system must first
register with the appropriate PlanetLab website. After the registration users receive
an email for verification and once its completed the principal investigator receives
the request for approval of the new users. If granted by the principal investigator of
the site, the user’s account is created and they receive an confirmation email with
details about the next steps required in the process. This registration process is
presented as a flowchart diagram in Figure 2.2.

User 
registers on 
the Website 

User receives 
email to verify the 

registration

User verifies 
email address

PI receives 
request to enable 

the user 

Approve ?PI enables the 
account

User receives the 
confirmation 

email

Rejected

Yes

No

Figure 2.2 A flowchart depicting the registration process for an user to gain access to
the PlanetLab system.

2.6.2 Creating and Uploading the SSH Keys

Access to the resources available through PlanetLab is secured by the use of public
key encryption mechanism. Therefore the next step in the process is for the users to
create a public and private key pair and upload it to the PlanetLab central website.

PlanetLab central’s members area exposes an interface through which the public
keys of the users can be uploaded to the system and then the key management
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services of PlanetLab helps propagate the keys to all the nodes that are part of
the user’s slice. PlanetLab uses 1024 bit RSA keys for the authentication process
on the nodes and its required for the users to generate the keys of at least 1024
bit. Although not a restriction it is strongly recommended to use keys with the
added security of passphrases. Key pairs can easily be generated on Unix [18] based
systems by issuing the following command through the command line interface or
on widows systems by using programs such as PuttyGen [14].

[user@host #] sshkeygen -t rsa f /.ssh/id_planetlab

2.6.3 Creating the Slices

Once the users have created their account and uploaded their public keys to the
central server, the next step in the process is to create a slice in PlanetLab that
they would use for conducting their experiments. Only the users with principal
investigator role are allowed to create new slices and the number of slices allowed
per organization depends on the membership level of the organization in PlanetLab.
Therefore the users need to contact the principal investigator of their site if they
require a new slice to be created.

When creating a PlanetLab slice some information needs to be provided to the ad-
ministration body, which describes the nature of experiments that would be executed
on the slice. Some estimated processing power required by the slice and the network
load the slice would generate also needs to be provided at the time of creation. A
summary of the outcome or the expected results that the experiments running over
the slice would achieve should also be provided.

When the slice is ready on the PlanetLab central servers, the PI who created the
slice is informed and then the PI could add users to the slice that belong to his
site. The users receive an invitation to join the slice and upon joining they can start
accessing the slice through PlanetLab central interface.

The slices are automatically cancelled and removed from the PlanetLab servers after
a fix period of time unless they are renewed periodically. Any user who is assigned
to the slice can renew it through the web interface provided by PlanetLab central.
The expiration date is visible in the management interface of the slice and all users
that belong to the slice are sent an email reminder to avoid any accidental removal
of active slices.
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2.6.4 Adding Nodes to the Slice

Once the slice is created, the next step in the process is to add the desired physical
nodes available to the user through PlanetLab. The choice of which nodes to add
to the slice is solely up to the user and PlanetLab does not restrict the users any
how on which nodes to add and the quantity of nodes that can be added to a slice.
The users can select freely from the pool of nodes based on their requirements, for
example a user might choose based on specific physical locations, architecture of the
node or the processing power available on the node.

PlanetLab provides two methods to the users through which the nodes can be added
to slice. First method is to use the slice management tools provided by PlanetLab
central through a web based interface [11]. These interfaces are highly configurable
and the users can choose the kind of information they want to see for each node
through this interface. The information is presented to the user in a tabular format
and the users can then just select the desired nodes and add them to the slice. A
sample of this interface is illustrated in the Figure 2.3.

Figure 2.3 An interface provided by PlanetLab for adding nodes.

Second method for adding nodes is to do it programmatically using the APIs that
are exposed by the PlanetLab known as MyPLCAPI [12]. These APIs are based
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on remote procedural call mechanism that returns an XML (Extensible Markup
Language) [19] file containing the results of the API method call. Most of the
current high level programming languages allow the user to use these mechanisms
and the API could easily be utilized with programming languages such as Java,
Python, PHP, C++ etc. This method is highly beneficial for the users when they
want to dynamically control the amount of nodes or resources available to their
experiments. For example an experiment based on elastic cloud computing could
easily implement the property of adding resources on demand during high load
periods and then scaling down as the load decreases.

After the nodes are added to the slice, the keys of the users who are assigned to the
slice are propagated to the added nodes and they can start accessing the resources
on each node. Depending on the number of nodes that are added to the slice on
average it takes about 2-3 hours for the user’s key to propagate to all the nodes
according to PlanetLab but in practice this time was found to be much higher and
could take up to a day for the keys to be available on all the nodes. The users can
check on which nodes the keys are available through the web interface or API by
querying for the nodes that have the tag ssh_key associated to them.

PlanetLab also provides a tool called Sirius that can be used for reserving the whole
node for the slice for a fixed period of time. It is useful for projects that require a
high amount of processing power or the measurements that might get affected by
external factors such as other slivers on the node causing interference due to CPU
or bandwidth sharing. This tool can give the sliver belonging to the user’s slice, an
increased CPU priority and allocate higher amount of bandwidth for a maximum of
30 minutes period at a time.

Once the nodes are added to the slice and the user keys are installed on the selected
nodes, the users can log in to the node by using any SSH [16] client. The only
difference between logging into PlanetLab nodes and other SSH servers is that the
username required for the login process in SSH is actually the name of the slice and
not username of the user. The login command is composed as shown below.

[user@host #] ssh -l slice_name -i user_private_key node_name
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3. SYSTEM ARCHITECTURE AND DESIGN

This chapter is aimed towards describing the architecture and concept of the web-
based system that was built as part of this work to provide a mechanism through
which the end-users can emulate multiple connected devices on top of PlanetLab
and carry out their experiments on these emulated devices.

3.1 System Concept

The developed system enabled the users to define any kind of connected device such
as Smartphones, Tablets, Laptops, Sensors and Actuators etc. and model different
kind of network interfaces these devices may possess. System allowed the users
to model the network interfaces mainly based upon the link reliability, amount of
bandwidth available and possible network latency experienced over the interface
[28].

There was also the possibility for the users to define custom tags and associate these
tags with the defined devices; based on these tags the users can perform lookups in
the system at a later point in time.

The illustration shown in Figure 3.1 explains the underlying concept behind the
system and how the system was envisioned to logically represent the emulated de-
vices and their interconnections. In the Figure 3.1, the cloud represents the overall
PlanetLab testbed and the square blocks represent the physical hosts part of the
PlanetLab. On top of these hosts the system emulates the user-defined devices and
communication links that the user has associated with these devices. The links
maintained between these devices and how they communicate with each other are
governed by the application or experiments that are run atop these emulated devices.

3.2 System Architecture

The system architecture was based on a centrally managed approach, which involves
a management server as the central entity that is used to control all the aspects and
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Emulation Testbed

Emulated 
Devices

Network 
Interfaces
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Hosts

Figure 3.1 An illustration of the system concept showing the emulated devices on top of
PlanetLab hosts.

functionalities provided by the system. The management server also doubled as
a web-server to deliver the user interface through which the user can control and
utilize the system [28].

An overview of the system architecture is presented in Figure 3.2 to illustrate the
below described architecture. It shows all the major components and how these
components are interconnected with each other to form the emulation platform.

The management server allowed the users to define devices and network interfaces
and their characteristics through the user interface. It also generated the configu-
ration commands as per user’s directions and transmited these configurations and
details to the selected PlanetLab hosts. After the commands were executed, it re-
verted back to the user with the emulation devices’ details such as the network
addresses, ports etc. through which the user can access the emulated devices.

The central server was also in charge of maintaining the physical hosts that are part
of the system. It communicated with the PlanetLab central server for obtaining a
list of available physical hosts that were available for use and their details. The user
can select the hosts to be included in the system based on these details presented
by the server.
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Figure 3.2 System Architecture: a design overview showing the main components and
their interconnections that form the emulation platform.

There was also a database present in the system architecture that was developed as
part of this work, which was maintained and utilized by the management server for
maintaining a persistent state of the system.

It allowed storing and retrieving the essential data of the setup such as host infor-
mation, device configurations, network links and their characteristics and the tags
that were associated to these nodes and devices. This also allowed the user to re-
use the already present configuration for devices and network interfaces for future
experiments.
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4. IMPLEMENTATION

This chapter is aimed towards describing the implementation work that was carried
out for building the emulation system. It provides a detailed technical design of the
system, introduces technologies, tools and programming languages used for imple-
mentation, descriptions of application flow for different system actions and finally
the steps required to utilize the system along with the relevant UI screenshots and
database tables.

4.1 Programming Languages and Technologies Used

The main programming language used for implementing the core processes of the
system application was PHP [9] as the solution has been designed to have a web
based user interface. PHP was a natural choice for programming language as it
allows for easier integration of backend system functionality with the user interface
that can easily be accessed using any platform with a web browser available.

This easy integration of the backend functionality with UI was made possible as PHP
at runtime can generate the HTML code required for the web browser to render the
UI, so the user’s actions and interactions with the backend system and the result of
these actions can easily be shown in real-time to the user through a web browser.

The user interface presented to the users was written with a combination of JavaScript
and HTML, which allows the UI to be dynamically served to the user reflecting the
state of the system without requiring the user to constantly refresh the webpage.

The database engine required for maintaining the configurations provided by the
user and the state of the system was based on MySQL [8] database server. The
database stored information such as the list of emulated devices and their avail-
able communication interfaces and as well as the IP Addresses and port numbers
through which the user can access these devices. The language used for creating
and maintaining the database was SQL [15].

The communication between the central server and the database engine was carried
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Figure 4.1 Detailed system design representing the implementation details of the system
and the communication between involved components.

out using AJAX (Asynchronous JavaScript) technology, it allows for asynchronous
communication to be possible between the server and the database. This enables
for the dynamic update of information presented to the user through the web-based
UI.

There was also a small communication module implemented in Python, which
worked in conjunction with the main system application. It was in charge of com-
municating with the PlanetLab central servers to fetch the details of the PlanetLab
nodes that were part of the logged in user’s PlanetLab slice and were available to
the user for running their experiments. The communication between this module
and the PlanetLab central servers was based on XML-RPC (XML based remote
procedure call) [20] mechanism.

4.2 Detailed System Design

A low-level detailed design to elaborate on how the solution was implemented; the
main modules present in each entity involved and the type of communication between
each involved component are presented in Figure 4.1.

The management server formed the core of the developed system, which was used
for controlling all the other entities involved. It constituted mainly of a webserver,
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SSH client, system application and a database server. Web server present in the
management server allowed for the users to interact with the system application
using any general web browser and the database server was used for recording and
maintaining the state of the system. The database server also was utilized for
storing the essential information required by the system application for emulating
the configured devices and also maintaining the information for each emulated device
on how to reach and communicate with the device.

The system application acted as the brain of the management server and it controlled
all the components present in the system and how they interact with each other. It
controlled how the UI was rendered for the user, interpreted user actions, convert
the actions and configurations to commands that can be understood by the remote
PlanetLab nodes, execute remotely the generated commands and manage the results
of these configurations by storing them in the database server in a logical manner
and present these results to the user.

The user’s workstation does not require any special module other than an operating
system that allows a GUI based web browser to be installed. The UI could then
be accessed through the browser allowing users to manage their experiments and
the emulated devices through any of the modern PCs, phones or tablets. The
communication between the user’s workstation and management server happened
over the HTTP connection and is visually represented in Figure 4.2.

The information exchanged between the user workstation and management server
was mainly about the selected host on which the device would be emulated, informa-
tion regarding the emulated device and the characteristics of each network interface
that would be associated with the device. Any associated tagging details to be
used later for lookups and management of the emulated devices was also exchanged.
The management server reverted back to the user with information representing the
current state of the system and confirmation messages based on user’s requests.

The communication at the back-end happened mainly between the management
server and the selected PlanetLab host and as well as between the management
server and the PlanetLab central server. These communications are illustrated in
Figure 4.3.

The information exchanged between the management server and PlanetLab central
server was related to the available physical hosts for the logged in PlanetLab user
where the system application queried for the available nodes and the central server
reverted with a list of available hosts and the details of each host such as the location,
IP address and the architecture of the remote node. The system application used
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Figure 4.2 Communication betwen user workstation and management server.

a Python module that invoked the methods exposed by the PlanetLab API called
PLC API [12]. This communication happened using XML-RPC technology and the
information exchanged is encoded using XML(Extensible Markup Language) and
HTTP is used as the transport protocol.

The SSH [16] client present in the management server was used for forming a secure
connection to remote PlanetLab nodes i.e. the physical hosts on top which the
configured device would be emulated. The information exchanged over the SSH
connection was the configuration commands that were generated by the system
application based on user’s configurations and the confirmation messages once the
requested device was successfully emulated and the details of this device through
which the user could access it.
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Figure 4.3 Back-end communication between the management server, PlanetLab central
server and remote physical hosts

The SSH communication was authenticated by using public key cryptography. The
public keys of the users were uploaded to the PlanetLab central server from where
the uploaded public keys were propagated to all the remote hosts that were part
of the user’s PlanetLab slice. The private keys of the users were stored on the
management server and were used to authenticate the server on user’s behalf with
the concerned remote node to which the public key of the user had already been
propagated.

Emulation of the network interfaces for IoT devices was made possible on the Plan-
etLab physical hosts by harnessing the abilities presented by PlanetLab in the form
of a command line bandwidth management tool available on the PlanetLab nodes
that are added to a project’s slice. The tool was based on a very simple but flexible
and powerful tool for testing network protocols and topologies called Dummynet
[21]. Dummynet was a live network emulation tool, which allowed fine grain control
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over the different aspects of controlling the network traffic such as bandwidth man-
agement, latency and quality of the connection. These aspects could be modified
during the run time i.e. dynamically adjusted while the communication was going
on.

Dummynet was originally designed for the FreeBSD [17] operating system but since
than it has been ported to work over many different operating systems. It worked
by intercepting the packets at the network stack of the host operating system and
utilized objects called pipes and rules for controlling the network traffic. Pipes
were simple objects based on queues where the intercepted traffic was placed and
a scheduler based on the configurations controlled how the packets were allowed
to leave the queue. It also provided possibility of using different scheduling policy
algorithms to be applied to each configured pipe object. Dummynet used ipfw (IP-
Firewall) [6] for filtering the traffic on which the configured rules would be applied.
Ipfw was an IP based packet filter, which was available as a kernel module that
could be utilized for filtering the network traffic according to advanced rules set by
the user.

When PlanetLab nodes were added to the slice being used by the project, the
physical resources of the node were not directly allocated to the slice instead a
portion of the resources known in PlanetLab as sliver were allocated to the slice
by allocating a virtualized node to the user’s project which had access only to its
own share of computing resources. Due to design of the PlanetLab testbed, multiple
users could have access to the same physical host and could simultaneously run their
experiments over it which were totally unrelated to each other and could belong to
different projects or slices in PlanetLab.

In order to cater to the simultaneous access of shared resources, security model
of PlanetLab prevented the installation of network emulation tools to be installed
directly on to the physical node added to the slice by the user. Allowing such
network controlling tools to be freely installed would cause undesirable effects and
the operation of the physical host could be affected, causing adverse effects to the
other experiments that might be running on the same physical host [22].

Due to the limitations imposed by the PlanetLab security model, network emula-
tion and bandwidth management was possible on PlanetLab nodes by utilizing a
customized version of dummynet that cannot be modified or replaced by the Plan-
etLab users. It was exposed to individual users instead by a user-space command
line interface to dummynet that let the users emulate networks only for the virtu-
alized node assigned to their slice. This command-line tool was called netconfig [3]
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and it was invoked by the system application remotely with various parameters that
were auto generated based on the configurations provided by the user.

Netconfig could be configured with different roles related to the role the PlanetLab
host played in the project’s slice or kind of experiment it was being configured for.
The three main roles available are summarized in the Table 4.1.

Table 4.1 List of roles available for network emulation using netconfig

Role Explaination

Client This option allowed for the node to emulate links for clients that could be used for
connecting to a server on a known port or address.

Server This option allowed the node to emulate links for servers that could be used
for listening on one or more well-known ports for incoming connections.

Service This option was a combination of the client and server mode,
which allowed the emulated link to function for both clients and servers.

Along with specifying the roles for netconfig, it also allowed for the users to specify
the bandwidth available on the link, time delay that should be applied to the traffic
flowing over the link also the packet loss ratio i.e. the amount of packets that would
be dropped over the link. The usage of netconfig is further explained by using sample
configurations in different roles with different parameters.

A sample configuration command for the netconfig tool in client mode would be
specified as:

[user@host #] netconfig config CLIENT 9434 IN bw 10Mbit/s delay
2ms plr 0.3 OUT bw 1Mbit/s delay 5ms plr 0.1

The above shown command would emulate a link on port 9434 in client mode such
that any incoming network packet to the node with source port set as 9434 would be
throttled to 10Mbit/s bandwidth, face a delay of 2ms and as the packet loss ratio is
set to 0.3, approximately 30% of the packets would be dropped before being passed
on to the higher layer in the network stack. This configuration would also effect
the outgoing network packets with destination port set as 9434 to a bandwidth of
1Mbit/s, a delay of 5ms and about 10% of the packets would dropped before being
passed on to a lower layer in the network stack.

Configuration command example for the netconfig utility in server mode would be
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given as:

[user@host #] netconfig config SERVER 8080 IN bw 120 Mbit/s delay
1ms plr 0.1 OUT bw 90Mbit/s delay 7ms plr 0.2

The command shown above would emulate a network link in server mode at port
number 8080 and any incoming network packets having destination port as 8080
would be subjected to a data rate of 120Mbits/s, a delay of 1 millisecond and packet
loss ratio of 10 percent. Outgoing packets having the source port as 8080 would be
limited to a bandwidth of 90Mbits/s, subjected to a delay of 7ms and about 20% of
such packets would be dropped.

In the emulation system created as part of this work, service mode was chosen to be
the mode used for emulating the network interfaces of IoT devices. It allowed us to
emulate both uplink and downlink for different network interfaces associated with
different port numbers and any application data flowing over those port numbers
would be subjected to the interface configurations setup by the user.

Using service mode, netconfig applies the limitations to all incoming and outgoing
data packets having the destination port or the source port as the one configured
for the link. A sample command for netconfig utilizing the service mode would be
as shown:

[user@host #] netconfig config SERVICE 7183 IN bw 15Mbit/s delay
3ms plr 0.2 OUT bw 7Mbit/s delay 1ms plr 0.1

The command shown above would emulate a network interface in service mode and
data packets having the source port or destination port number as 7183 would be
subjected to the rules specified for the emulated network interface. All incoming
traffic with port number 7183 would be limited to a bandwidth of 15Mbits/s, sub-
jected to a delay of 3 milliseconds and about 20 percent of the packets would be
dropped. Outgoing traffic would be limited to a bandwidth of 7Mbits/s, a delay of
1ms and a packet loss ratio of 0.1.

4.3 System Application Flow

In this section, an overview of the system logic for emulating a device is presented.
The application flow when a request comes in for emulating devices over a selected
host is explained with the help of message sequence diagrams which detail the kind
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Figure 4.4 First part of the message sequence chart for system logic behind device emu-
lation process.

of entities involved during each step and the kind of messages that are exchanged
between these entities.

Before a device could be emulated on the remote host, all the required details about
the device and the characteristics of its network interfaces must have been present in
the system. The first step towards emulating the device was for the user to select the
physical host on which the device would be emulated. Upon receiving the request
from the user the system would then query the database table containing the list of
available hosts and revert back to the user.

After the user had selected the host, the details for the host would be fetched from
the database and also the database would be queried for a list of available devices
that could be emulated on the selected host. The details of the available devices were
presented to the user from which the user then selected the device and the number
of instances of the device to emulate. This formed the first part of the application
logic and is illustrated by the help of a message sequence chart presented in Figure
4.4.

Once the server had received the selected device and the number of instances to be
emulated, it queried the database table containing the device information for the
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Figure 4.5 Second part of the message sequence chart for system logic behind device
emulation process.

details of the device and the network interfaces that were associated with the device.
Upon receiving the network interfaces, system queried the database table containing
details of the network interfaces for the parameters associated with each interface
that was present in the requested device.

For each interface, the system generated a random port number that was not being
used on the remote host already for any other emulated link. Then based on the
generated port number and the associated parameters with the interface, system
generated a configuration command for the netconfig utility that would be executed
on the remote host to emulate the network interface. This part of the process formed
the second part of the system logic and is shown graphically in the form of a message
sequence chart in Figure 4.5.

Once the configuration commands had been generated for all the network interfaces
to be emulated, the system established a SSH connection to the remote host on which
the device would be emulated. Upon successful establishment of the connection,
system executed the generated commands for each of the network interface for the
device to be emulated.
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Figure 4.6 Final part of the message sequence chart for system logic behind device emu-
lation process.

The remote host would then emulate the requested network interface and return the
result as well as the details of the newly emulated interface back to the server. The
system application would then update the database table containing information
regarding the configured interfaces by adding the details of the new interface to the
table.

This process was repeated by the system application in a loop that was executed
for each of the device instance to be emulated and for all of the network interfaces
that were present in the device. Once all the requested device instances had been
successfully emulated the server would terminate the connection to the remote host
and present the user with results of the request along with detailed information for
each network interface of the emulated devices indication how they could be accessed
and utilized by the user.

This process forms the final part of the system application flow behind the device
emulation process and is represented by a message sequence chart between the en-
tities involved in Figure 4.6.
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Figure 4.7 User interface for defining network interfaces in the system.

4.4 System Usage and User Interfaces

The user interacted with the system using a web-based user interface. Using this
interface the user first needed to define the information regarding the devices and
the network connections they may possess before selecting the host on which to
emulate the devices. Defining tags for devices and nodes were also done through
this interface and these tags could be associated to the devices and physical hosts
also through this interface.

The series of step the user needed to perform in order to utilize the system are
provided in this section. The graphics representing the UI screens and the database
tables used in these steps are also discussed.

4.4.1 Defining Network Interfaces

The first step the user needed to perform for utilizing the system was to define the
network interfaces and their characteristics. These interfaces would then be available
to the user during the next steps for associating them with the devices.

The system provided a UI for defining the interfaces shown in Figure 4.7. Using
this interface, the user could define the interface type and provide configurations for
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interface_id INT (11) - PK

interface_type VARCHAR(45)
interface_down_bw INT (11)
interface_down_bw_unit VARCHAR (45)
interface_down_delay INT (11)
interface_down_plr FLOAT
interface_up_bw INT (11)
interface_up_bw_unit VARCHAR (45)
interface_up_delay INT (11)
interface_up_plr FLOAT
configuration_data TEXT

Interfaces

Figure 4.8 Database table used by the system for storing information of each network
interface.

both uplink and downlink characteristics of the interface. The user could provide
the bandwidth in numerical digits and select the bandwidth unit from the drop down
menu e.g. bit/s, Kbits/s, Mbits/s etc. It also allowed users to define the time delay
experienced for uplink and downlink in milliseconds and as well as define the packet
loss ratio experienced, by choosing it from the drop down menu. The value for the
packet loss ratio could be defined in the range of 0.0 to 1.0 where a difference of 0.1
corresponded to a drop of approximately 10 percent packets.

Once the user added the interface and its details, the system automatically generated
an identification number for the interface in order to uniquely identify the interface
within the system. The system saved the information about the interface into the
database relation titled Interfaces. This table is shown in Figure 4.8. The table
contained fields for storing the individual parameters provided by the user and also
a field called configuration_data which unified all the parameters provided into
an auto generated configuration command through which the interface could be
emulated when needed. The auto generated interface id acted as the primary key
for this table.

The system also provided an interface containing a concise view for the user that
provided a list of all the network interfaces defined in the system and their configu-
rations. This information was presented to the user in a tabular fashion as shown in
Figure 4.9. The user was also able to navigate to the editing mode for each network
interface for modifying its configuration or to delete the interface from the system
if required.
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Figure 4.9 User interface for providing a list of all defined network interfaces in the
system.

4.4.2 Defining Devices & Associating Interfaces

After the user had defined the required network interfaces, the next step in the
process was to define the actual device and provide the device description and as
well as the information regarding which network interfaces would be available on
the device.

The system provided a simple interface for defining the devices in the system as
shown in Figure 4.10. The user through this interface was able to provide the
device type and an appropriate description for the device detailing any specifics of
the device. The user was also provided a list of all the network interfaces that have
been previously defined in the system, from this list the user could simply drag and
drop the interfaces that would be available on the new device. There was also a
possibility for dynamically searching for the network interfaces, in case there was a
large amount of network interfaces present in the system.

The information regarding all the devices defined in the system was stored in the
database table called Devices. The table is illustrated in the Figure 4.11. This
table contained fields for storing the device information provided by the user and the
device identification number which was automatically generated by the system for
uniquely identifying each defined device in the system. This generated identification
number also served as the primary key for the Devices table.
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Figure 4.10 User interface for defining a new device in the system and associating the
network interfaces to the device.

interface_id INT (11) - PK

interface_type VARCHAR(45)
interface_down_bw INT (11)
interface_down_bw_unit VARCHAR (45)
interface_down_delay INT (11)
interface_down_plr FLOAT
interface_up_bw INT (11)
interface_up_bw_unit VARCHAR (45)
interface_up_delay INT (11)
interface_up_plr FLOAT
configuration_data TEXT

Interfaces

device_id INT (11) - PK
interface_id INT (11) - PK

Interface_Available
device_id INT (11) - PK

device_type VARCHAR(45)
device_description TEXT

Devices

Figure 4.11 Database tables for storing information about devices and their associated
network interfaces.

In Figure 4.11, the table titled Interface_Available used for associating interfaces
with the devices is also presented. It contained only two fields, which were the device
id and the interface id. For each interface present in the device the table contained
a row with the id of that interface and the device id it was assigned to. The system
then just had to query this table with the id of the device to find out all the network
interfaces that the user had defined to be present in the device. The system also
utilized this table for obtaining a list of all devices on which a particular network
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(a) A list of all available devices in the system. (b) Details of a device and the available oper-
ations.

Figure 4.12 User Interface for listing all the defined devices and their details.

interface is present by just querying the table with id of the network interface.

The system application also provided an interface where the user could see a sum-
mary of all the available devices that have been previously defined in the system.
An example of this user interface is represented in the Figure 4.12(a). Using this
interface the user could query for device details which provided a detailed summary
of the device indicating the available interfaces, device description and also any tags
that were associated with the device. This interface is presented in Figure 4.12(b),
using this interface the user was also able to edit or delete the device when not
needed anymore.

4.4.3 Adding and Managing the Physical Nodes

The next step after defining the devices and their network capabilities was to add
the physical nodes on which the devices would be emulated to the system. The user
needed to setup the PlanetLab project slice and his credentials for the PlanetLab
into the system application before adding nodes to the system.

The prerequisite for the users before this step was to create and setup the project
slice in PlanetLab before they could use the emulation system for their experiments.
The creation and setup of PlanetLab slices was performed using the interface exposed
by the PlanetLab through its web-interface.

Once the project slice had been setup, the system was able to fetch the list of
available hosts for the user’s slice that could be used for emulating the IoT devices.
These nodes were presented to the user through the user interface for adding nodes
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as a drop down list. The user was able to select the nodes from this list and as
well as provide custom names for these nodes through the interface. The provided
name by the user was then used to refer to the node throughout the system. This
interface is represented in the Figure 4.13.

Figure 4.13 User interface for adding physical nodes to the system.

The added nodes and their details were stored by the system in the database ta-
ble called Nodes. The system application automatically generated an identification
number for each added node, which was then used internally for uniquely identifying
the particular node. This identification number also served as the primary key for
the database table Nodes.

The table contained fields for storing the node identification number, the name
provided by the user and as well as the IP address of the node through which
the system could contact the node. The IP address was automatically fetched by
the system using its hostname from the PlanetLab central servers. The table is
graphically illustrated in the Figure 4.14.

The system was also able to keep track of all the network interfaces and devices that
had been emulated over the host and if these configurations were currently active.
The system also stored information regarding the date and time at which the device
had been configured over the node. This information was stored in the database
table titled Configurations shown in Figure 4.14.

The system was automatically able to query the remote node about the active con-
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host_id INT (11) - PK

host_name VARCHAR(100)
host_address VARCHAR (100)

Nodes
host_id INT (11) - PK
interface_id INT (11) - PK

configured_date DATETIME
active TINYINT(4)

Configurations

interface_id INT (11) - PK

interface_type VARCHAR(45)
interface_down_bw INT (11)
interface_down_bw_unit VARCHAR (45)
interface_down_delay INT (11)
interface_down_plr FLOAT
interface_up_bw INT (11)
interface_up_bw_unit VARCHAR (45)
interface_up_delay INT (11)
interface_up_plr FLOAT
configuration_data TEXT

Interfaces

Figure 4.14 Database tables for storing information about nodes and their associated
device configurations.

figurations and update the database accordingly. This kind of active tracking of
configurations was necessary as the PlanetLab host according to their security pol-
icy cleared all the configurations related to network emulation automatically every
10 to 12 hours. In order for the user’s emulations to be persistent and to avoid
any adverse affects on the user’s experiments, the system application automatically
renewed the configurations before the PlanetLab nodes cleared them. This func-
tionality was enabled by default unless the user specifically disabled it.

The system application also provided an user interface for listing all the available
nodes that have been previously added as shown in Figure 4.15(a). The user was
also able to query for a detailed summary of each of the nodes. This summary
provided details of the node’s address, the given name, identification key and any
associated tags. The user was also able to see a detailed view of all the devices and
the number of instances of each device that had been emulated on that particular
node. This summary interface is represented in the Figure 4.15(b).

The user was also able to modify the details of the node or edit any associated
configurations through this interface. It provided support for removing or adding
tags to the node and the node could also be deleted from the system once it was no
longer required from this interface.

4.4.4 Emulating and Managing the Devices

Once the devices had been defined and the PlanetLab nodes added to the system,
the next step in the process was to select the node and the device to emulate for the
emulation process to begin. The users had to navigate to the node on which they
wanted to emulate and select the Configure Devices option.

The Configure Devices interface provided the users with a drop down list of all the
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(a) A list of all available nodes in the system. (b) Detailed summary of a node and it’s avail-
able operations.

Figure 4.15 User Interface for listing all the added nodes and their details.

available devices from which the user could select the device to emulate. The next
step was to enter the number of instances of the device the user wanted to emulate
and click on the configure button for the emulation process to begin. This interface
is represented in Figure 4.16.

Figure 4.16 User interface for emulating the defined devices over PlanetLab nodes.

During the device emulation process, the system would automatically find the un-
used port numbers that could be used on the node for emulation and augment them
to the configuration commands fetched from different database tables. After the
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commands were ready, the system would execute these remotely on the selected
PlanetLab node and add this information to the database upon confirmation from
the remote nodes.

The database tables used for storing the information about emulated devices are
illustrated in the Figure 4.17. Each instance of the emulated device was stored
as an entry into the database table entitled Device_Instances which mapped the
device instance to the node on which it was emulated and the type of device the
instance referred to by storing the id of the node and the id of the device. Each
device instance was also assigned an automatically generated identification key for
identifying it within the system logic. This identification key was also stored in the
same table and acted as the primary key for the table Device_Instances.

host_id INT (11) - PK

host_name VARCHAR(100)
host_address VARCHAR (100)

Nodes

interface_id INT (11) - PK

interface_type VARCHAR(45)
interface_down_bw INT (11)
interface_down_bw_unit VARCHAR (45)
interface_down_delay INT (11)
interface_down_plr FLOAT
interface_up_bw INT (11)
interface_up_bw_unit VARCHAR (45)
interface_up_delay INT (11)
interface_up_plr FLOAT
configuration_data TEXT

Interfaces

instance_id INT (11) - PK

host_id INT (11)
device_id INT (11) 

Device_Instances

instance_id INT (11) - PK
interface_id INT (11) - PK

port_no INT (11)
config_data TEXT

Instance_Interfaces

device_id INT (11) - PK

device_type VARCHAR(45)
device_description TEXT

Devices

Figure 4.17 Database tables for storing information about emulated device instances and
their associated configurations.

The system also maintained a table entitled Instance_Interfaces represented in the
Figure 4.17. This table was used for storing information about each instance of the
interfaces that were associated with the device instance being emulated. This table
maintained the association between the interface instance and the device instance
by storing the identification key of the network interface and the identification key
of the device instance.



4.4. System Usage and User Interfaces 39

These keys were combined together to form the primary key of Instance_Interfaces
table in which each entry corresponded to an emulated interface in the system and
the combined keys could be used for uniquely identifying each interface. The table
also contained a field for storing the port number of each interface i.e. the port
number at which the emulated interface was available for communicating.

The field called config_data was used for storing the complete command that could
be used for emulating the interface. This command was used in the scenario where
the system application needed to refresh the configurations of the interface, if it was
removed by the PlanetLab host before the user had explicitly asked to delete the
device instance.

A summary of all the devices emulated in the system was made available to the users
through an interface shown in Figure 4.18. The interface provided the users with
a list of configured devices on each node. It also showed the amount of emulated
instances of the device and the real-time status of the device, which indicated if the
device was ready for communication, or not.

Figure 4.18 User interface for showing the list of all emulated devices in the system.

The users were able to query the details of each device by clicking the Detail button.
It provided users a view with the details of the emulated device and the available
interfaces on the emulated device. Each emulated interface was presented in a tabu-
lar manner indicating the details of the interface. This user interface is represented
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in the Figure 4.19.

Figure 4.19 User interface for showing a detailed summary of an emulated device in the
system.

The user was provided with the port numbers and the IP address of each interface
and the status of the network interface indicating if the interface was online and
ready for use. Using this information the user could utilize the interfaces of the
device by configuring the application or experiment to use the address and port
number corresponding to the interface for network communication. Any traffic then
sent to or from this address was subjected to the configured network parameters of
the interface.

4.4.5 Adding Tagging Information to Devices and Hosts

The system allowed the users to add tagging details to the defined devices and the
added PlanetLab hosts. Using these tags the devices and the nodes could be grouped
together according to their related properties and characterisitics. These groupings
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(a) User interface for defining new tags in the system.

(b) A summary of all the defined device tags. (c) A summary of all the defined node tags.

Figure 4.20 User Interfaces for adding & listing all the defined tags and their descrip-
tions.

were useful for the users when performing lookups especially in the case when there
was a large amount of devices and hosts defined through the system.

The system application provided users with the option for utilizing two types of
tags. Node Tags were defined for the PlanetLab nodes and could be associated to
the nodes that had been added. Similarly the Device Tags were defined for the
devices and they could be associated to the devices that had been already created.

Users were first required to add the tags and their associated descriptions to the
system through the provided interfaces. The user interface for adding tags to the
system is shown in Figure 4.20(a). Users were also provided with interfaces that
listed and summarized all the available tags in the system. Example user interface
showing a list of all defined devices tags in the system is presented in Figure 4.20(b)
and the interface listing all the available node tags is shown in Figure 4.20(c). From
these summary views, the users were able to view the details of each tag in the
system and access the edit mode for these tags. In the edit mode the users were
able to modify the details of the defined tag or delete the tag from the database
when it was no longer required.



4.4. System Usage and User Interfaces 42

(a) User interface for associating tags to the
devices.

(b) User interface for associating tags to the
nodes.

Figure 4.21 User Interfaces for associating device tags and node tags.

Once the tags were defined, the users could then associate these tags to the devices
and hosts. Tags could be associated to the devices and hosts using the interface that
listed the details of the devices and nodes as shown in Figure 4.12(b) and Figure
4.15(b). Users were presented with an intuitive interface for adding the tags by
providing all the available tags in the system as a list from which the users could
just drag and drop the required tags to assign them to a particular device or node.
An example of the user interface for adding the tags to a device is shown in Figure
4.21(a) and an example of the user interface for adding node tags is represented
in Figure 4.21(b). Search functionality was also provided to the user through this
interface, which allowed the users to dynamically search for the required tags in case
of a large amount of tags defined in the system.

Tags added to the system were stored in the database for persistent storage. When
the users added tags, they were automatically assigned an identification key for
unique identification of these tags in the system application logic. The device tags
were stored in the database relation entitled Device_Tags. This table contained
information about the user space naming of the tag and as well as the system
generated id which also served as the primary key for the table. Description of each
device tag was also stored in the same table. A graphical representation of the table
is presented in the Figure 4.22(a).

The information about the node tags was stored in a separate database table called
Node_Tags which similar to the table for device tags stored information regarding
the given title of the tag and as well as its description. The system generated
devicetag_id served as the primary key for the table and an illustration of the table
is presented in the Figure 4.22(b).
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device_id INT (11) - PK

device_type VARCHAR(45)
device_description TEXT

Devices

devicetag_id INT (11) - PK

devicetag_name VARCHAR(100)
devicetag_description TEXT

Device_Tags

device_id INT (11) - PK
devicetag_id (11) - PK

DeviceTags_Association

(a) Database tables for storing information about device tags and their associations.

host_id INT (11) - PK

host_name VARCHAR(100)
host_address VARCHAR (100)

Nodes

nodetag_id INT (11) - PK

nodetag_name VARCHAR(100)
nodetag_description TEXT

Node_Tags

host_id INT (11) - PK
nodetag_id (11) - PK

NodeTags_Association

(b) Database tables for storing information about node tags and their associations.

Figure 4.22 Database tables for storing information about tags and their associations in
the system.

In the system logic, the associations of tags to the nodes and devices were handled
by the database tables called NodeTags_Association and DeviceTags_Association
respectively. These tables maintained the associations by storing the node or device
id and the tag id in the same row as shown in Figures 4.22(a) & 4.22(b).

These tables were also utilized by the system to resolve user’s search queries based
on tags. If the user queried for example a list of all devices that had a particular
tag associated to it, the system would first look up the id for the tag in question
and then query the association table for all the rows that contained that tag id
which would allow the system to easily find the identification keys of all the devices
associated with the tag. Using these keys the system was then able to return the
details of each associated device back to the user.

Figure 4.23 User interface for providing the search functionality based on associated
tags.
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A search interface was provided to the users for performing lookups in the system
based on tags. System provided searching functionality based on device tags, node
tags and search based on available network interfaces in the device. The interface
allowed users to select the type of tag they want to search with and based on users
selection a list of all tags of that type was provided to the user in the form of a drop
down menu. The user then could just select the tag of interest from this list and the
system would dynamically return the results of the search back to the user in the
same interface. An example of the search interface is presented in the Figure 4.23.
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5. RESULTS AND FUTURE WORK

This chapter sheds light on the results that were achieved as part of this work.
It provides a set of measurements that were taken using the emulated nodes to
verify the emulated devices were conforming to the configured parameters. A brief
discussion regarding the feasibility of the approach and future work to enhance the
system is also provided. Finally a concise summary of the work completed over the
course of this thesis is presented in the conclusion section.

5.1 Verification and Results

This section provides a summary of the verification process and the measurements
taken while utilizing the emulated devices with various configuration parameters.
The first thing to be verified was that the system was generating correct configu-
ration commands based on user’s input and these commands were in accordance to
the guidelines provided by the PlanetLab’s netconfig utility. Secondly, it needed to
be verified if the management system was establishing the connection to the chosen
PlanetLab host and executing the configuration commands successfully. Final veri-
fication step was to observe the traffic flowing through the network interfaces of the
emulated devices, and verify that it was conforming to the parameters provided for
the interface it was utilizing.

In order to verify that the generated commands by the system application were
conforming to valid netconfig utility commands, a regular expression matching tool
provided as part of the PHP language called preg_match [10] was utilized. The
system was provided with a regular expression that was designed for checking the
validity of the generated string. After generating every new command the system
would use the preg_match method and test the generated string against the regular
expression and only in the case it passed the test, it would store the command in
database and move forward with the next steps.

Second step in the verification process for checking that correct commands were
being successfully executed over the selected host was carried out manually. After
the system responded with confirmation regarding the status of emulated device, a
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remote SSH connection was manually established and the command for showing the
set rules and pipes provided by netconfig was used to compare the configured rules
to the parameters provided by the user. This step was repeated for several kinds
of devices over various different nodes to make sure the system application always
configures the correct parameters and only then shows a confirmation message to the
user. The commands used for listing all the pipes and configured rules in netconfig
are shown below.

[user@host :] netconfig show -all rules
[user@host :] netconfig show -all pipes

After the previous verifications were completed, the final part to verify that all the
traffic flowing through these emulated interfaces conformed to the parameters set
forth by the user, a network measurement tool was used. This network measurement
tool was called Iperf [5] and it was capable of observing traffic in both client and as
well as the server mode. It allowed to create TCP [27] and UDP [33] stream between
two specified hosts and provided with throughput measurements for the underlying
connection.

Figure 5.1 Meausrements showing the observed bitrate for outgoing traffic over the em-
ulated interface.

For testing purposes a test device was created in the system, which had a single
network interface associated. This interface was configured to have an uplink band-
width of 5 Mbit/s and a downlink bandwidth of 5 Mbit/s as well. This device was
deployed over a PlanetLab node and Iperf was installed on this node. The bandwidth
was measured for the traffic flowing through the port number which was associated
with emulated interface to verify if it was conforming to the configured parameters.

Figure 5.1 shows the measurements observed for the outgoing traffic and Figure
5.2 shows the measurements observed for the incoming traffic. It can be seen from
these figures that the bandwidth observed on the interface was the same as the one
that it was configured for by the system application.

The next step in the verification process was to verify if the time delay setup on the
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Figure 5.2 Meausrements showing the observed bitrate for incoming traffic over the
emulated interface.

network interface was correctly being applied. In order to verify it, a time delay of
50ms was added to the configuration parameters of the interface. Once the system
application had successfully shown the confirmation, the network measurements
were taken again. The results of these measurements are presented in Figure 5.3.
It can be seen from the observed results that the time delay on the traffic flowing over
the network interface was indeed being applied and this resulted in lower bandwidth
being observed.

Figure 5.3 Meausrements showing the observed bitrate for traffic over the emulated in-
terface with a forced time delay.

The final step in the process was to verify that the packet loss ratio configured on
the network interface was being followed. In order to verify it, a packet loss ratio of
0.1 was setup on the network interface i.e. approximately 10% of the packets would
be randomly dropped on the interface. After configuring the interface and upon
receiving the confirmation from the system application, a new set of measurements
were taken to observe the effects of the packet loss ratio. The results obtained from
the measurement are provided in the Figure 5.4. It can be seen from the results that
the packet loss ratio indeed resulted in the packets being dropped on the interface,
which caused a drop in the observed bandwidth.

As observed from the set of measurements that were taken, the emulated devices
and their interfaces were being correctly setup on the target nodes and the traffic
flowing on the emulated interfaces was conforming to the settings provided by the
user.
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Figure 5.4 Meausrements showing the observed bitrate for traffic over the emulated in-
terface with a packet loss ratio of 0.1.

5.2 Future Work

The solution developed as part of this work enabled the users to successfully issue
commands to the PlanetLab nodes and model the emulated devices along with their
interface and link characteristics. This kind of emulation was especially useful in the
scenarios involving pairwise interactions but the solution would prove much more
useful in the case where other aspects of the IoT devices could be emulated as well.

Modeling characteristics such as different execution or processor speeds would be
highly beneficial. It would allow the users to conduct experiments and study the IoT
related problems from the point of view of having constrained processing resources
as well. Similarly different processor architectures could be emulated as well which
would allow the emulated devices to exhibit a behavior very close to the physical
devices. Finally storage requirement emulation along with the processor architecture
and processing speeds would allow the emulated devices to depict very closely the
nature of physical connected devices from many different aspects.

This kind of emulation still remains a big challenge to achieve with the current
resources and tools available through PlanetLab. The physical machines available
through PlanetLab are highly homogeneous both in terms of the hardware available
and the operating system running atop these nodes. All of the nodes typically
run on x86-based architecture. However it is highly possible that in the future,
other projects or even PlanetLab might take on this channel and provide mean for
emulating other hardware characteristics as well.

Emulating these characteristics would have an adverse effect on startup and config-
uration times, as PlanetLab hosts would not know in advance the kind of devices
they are supposed to instantiate until the actual configuration command would be
executed by the management server. In such case, it can be envisioned that an
additional component might become a necessity for transferring binary images of
devices to the physical hosts for emulating these devices.
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One other area identified that can be improved in the future is related to architec-
ture of the developed solution. The current architecture was aimed towards provid-
ing a single realm of control. It provided means of managing the emulated nodes
through a centralized management server and the information about emulated de-
vices and their interfaces was stored in a single database. This class of architecture
is well suited for scenarios where the management is controlled by a single organiza-
tion. Some example scenarios where this approach can be beneficial are small grid
operator, nation-wide traffic management system and as well as smart city based
management systems.

Another way to approach the architecture would be to decentralize the management
and enable distributed management and node configurations by using a protocol
driven approach. Currently the configuration commands were being issued using
SSH protocol as blocking operations. This could be changed towards having well
defined request and response messages for the instantiation and management of the
emulated devices. It would imply having a management interface at each node ca-
pable of receiving the incoming messages and able to reply with messages containing
various types of information about the emulated devices. While this strategy would
help in distributing the management and avoiding the usage of blocking calls, it
would give rise to finding solutions for managing the access control and as well as
the transport layer security.
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6. CONCLUSION

The main outcome of this work has been the development of a distributed platform
that allowed the users to emulate network-enabled devices along with their inter-
faces atop the PlanetLab hosts. The emulated devices could posses multiple links of
varying characteristics to simulate fixed, wireless and virtual interfaces found com-
monly in mobile devices such as smartphones, laptops and tablets. These actively
interconnected nodes are expected to be utilized for modeling future scenarios and
behavior of devices and sensors in a city or even countrywide configurations.

The developed system also provided means for remote configuration of these devices
in a scalable manner and also provided tools for remotely managing the deployed
devices. It also had the option for associating tags with the emulated devices and
physical hosts of the PlanetLab for categorizing them. These tags could then be
used later for performing lookups and retrieving the information for a particular set
of nodes and devices forming organized viewpoints of the system.

The study undertaken to accomplish the development of this solution also provided
a good overview of how different testbeds are created and how they can be utilized
in novel ways to experiment and study various problem related to the field of com-
puter networking and Internet of Things. The study also enabled to gain a deep
understanding of the PlanetLab testbed and the various methods on how it can be
utilized.

The results achieved through utilizing the developed system suggests that the ap-
proach undertaken for designing the system is highly feasible for modeling device
heterogeneity ranging from very simple sensors and actuators to much more powerful
devices. It proves to be also very suitable for modeling the interface heterogeneity
commonly found in connected devices nowadays. It allows us to model the wireless
network characterisitics to customize link reliability, channel throughput and as well
as the bandwidth availability.
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