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All fields of industry are constantly seeking ways to improve their efficiency. This is 

now especially true for power systems as they are facing one of the biggest challenges 

yet – how to cope with constantly increasing demands for electricity distribution with 

ageing power grid. Utilization of the big data mining in power systems presents one 

possible way to improve cost-efficiency and achieve higher level of reliability even with 

the ageing infrastructure. The target of this thesis is to research and develop ways to get 

additional information out of the currently mostly ignored disturbance recordings and 

history of process data. 

 The complexity of big data mining poses a great challenge for system 

developers. Power systems are among the best systems to get-started with big data 

mining solutions as they consist mainly of structured and semi-structured databases with 

vast amounts of information. The different naming conventions used in different 

systems along with great variety of different protocols hinders the easy comparison of 

information obtained from separate systems.  

 This thesis begins with the study of current naming conventions used in the 

power systems. Two standards, the COMTRADE and the IEC 61850, that define the 

organizing of data are looked into. This information is used to create a novel naming 

convention for future use within big data mining applications. The naming convention is 

chosen so that it supports the needs of current and future needs as well. The creation of 

a reliably structured central database is one of the key elements of practical data mining 

solution. 

 A system concept called Smart System Analyser developed for big data mining 

in power systems is presented next. It consists of relational SQL historian database and 

a novel calculation engine built around currently existing proven products. System 

components are described in detail and their operation explained.  

 The practical parts of this thesis is about the testing of this novel system first in 

simulated environment and then with actual power distribution company data. Even the 

early stages of the pilot testing show the potential for future development and benefit 

from power system data mining. An application is made for protection operation time 

calculation using the presented novel system. It is ran with data obtained from 

disturbance recordings and the results are visualized in a web interface 
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Teollisuudelle ominaista on jatkuva pyrkimys prosessien tehostamiseen. Ilmiö 

koskee erityisesti sähkönjakelujärjestelmiä, sillä jatkuvasti kasvava sähkönkulutus 

yhdistettynä vanhenevaan sähköverkkoon aiheuttaa valtavan haasteen tulevaisuudessa. 

Big Data sovellusten hyödyntäminen tarjoaa erään mahdollisuuden tehokkuuden ja 

korkeamman käyttövarmuuden saavuttamiseksi nykyverkoilla. Tämän diplomityön 

tavoitteena on tutkia miten tiedonlouhintaa hyödyntämällä saataisiin lisäarvoa tällä 

hetkellä pääasiassa sivuutettavasta häiriötallenne- ja prosessihistoriadatasta. 

 Big Datan monimuotoisuudesta aiheutuu merkittävä haaste 

järjestelmäkehittäjille. Sähkönjakelujärjestelmät ovat yksi parhaista sovelluskohteista 

tiedonlouhinnalle, sillä suuria datamääriä säilövät tietojärjestelmät perustuvat pääasiassa 

jäsenneltyihin tietokantoihin. Erilaiset nimeämiskäytännöt ja eri aikakausin protokollat 

tekevät kuitenkin mahdottomaksi suoran yksinkertaisen vertailun tietokantatallenteiden 

välillä. 

 Tämä diplomityö alkaa perehtymisellä nykyään sähkönjakelujärjestelmissä 

vallitseviin nimeämiskäytäntöihin. Nimeämiskäytäntöjä tutkitaan sekä häiriötallenne 

COMTRADE-standardin että sähkönjakeluautomaatio-standardin IEC61850 osalta. 

Tätä kirjallisuustutkimuksesta saatua tietoa käytetään uuden nimeämiskäytännön 

määrittelemiseen. Määrittelyssä on tehty valintoja jotka tukevat nykyisiä ja 

tulevaisuuden vaatimuksia tiedonlouhintasovelluksille. Ennakoitavissa olevaan 

nimeämiskäytäntöön perustuvan keskitetyn tietokannan luominen on avainasemassa, 

kun lähdetään kehittämään käytännössä toimivia tiedonlouhinta ratkaisuja. 

 Seuraavaksi esitellään Smart System Analyzer konsepti 

sähkönjakelujärjestelmien tiedonlouhintaan.  Konseptin mukainen järjestelmä perustuu 

SQL-historiatietokannan sekä uudenlaisen laskentaympräristön käyttöön. Järjestelmä 

hyödyntää jo olemassa olevia ratkaisuja mahdollisimman tehokkaasti. Sen osat sekä 

niiden toiminta esitellään työssä yksityiskohtaisesti. 

 Työn käytännön osuus koostuu järjestelmätestauksesta sekä simuloidussa 

ympäristössä että käytännön sähkönjakelujärjestelmässä. Sähkönjakelujärjestelmässä 

toteutettava pilottiprojekti osoittaa jo alkuvaiheessa konseptin luomat tulevaisuuden 

mahdollisuudet. Työn puitteissa kehitettiin ohjelma suojausaikojen laskentaan 

häiriötallennedataa käyttäen, jonka tulokset esitettiin web-käyttöliittymässä. 
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ABBREVIATIONS
 

 

API 
 

Application Programming Interface. API specifies how 

software components should interact with each other. 

CBM 
 

Condition Based Maintenance. Maintenance strategy where 

components are serviced when need arises. 

COMTRADE 
 

Common format for Transient Data Exchange for power 

systems. File format for storing oscillography and status data 

related to transient power system disturbances. 

DAS 
 

Distribution Automation System. System consisting of all the 

remote-controlled devices at the substation level. 

DMS 
 

Distribution Management System. User interface systems 

providing operators grid status information. 

EMS 
 

Energy Management System. System of computer-aided tools 

used by operators of electric utility grids to monitor, control, 

and optimize the performance of the generation and/or 

transmission system. 

GIS 
 

Geographic Information System. Computer system designed 

to capture, store, manipulate, analyze, manage, and present all 

types of geographical data. 

GPRS 
 

General Packet Radio Service. Packet oriented mobile data 

service on the 2G and 3G cellular communication systems. 

GPS  

Global Positioning System. Space-based satellite navigation 

system that provides location and time information in all 

weather conditions, anywhere on or near the Earth where there 

is an unobstructed line of sight to four or more GPS satellites. 

HSPA 
 

High Speed Packet Access. Mobile telephony protocol that 

extends and improves the performance of existing 3
rd

 

generation mobile telecommunication networks. 

IED 
 

Intelligent Electrical Device. Microprocessor-based 

controllers of power system equipment 

LTE 
 

Long Term Evolution. Standard for wireless communication 

of high-speed data for mobile phones and data terminals. 

OPC 
 

Open Platform Communications. The standard specifies the 

communication of real-time plant data between control 

devices from different manufacturers. 

RBM 
 

Reliability Based Maintenance. Maintenance strategy where 

components are serviced according to their condition and 

criticality for grid operation. 

RTDB 
 

Real Time Database. The SQL database which is intended to 

store historical information. 
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SCADA 
 

Supervisory Control and Data Acquisition. System to provide 

control of remote equipment in power systems. 

SGEM 
 

Smart Grids and Energy Markets. Finnish project aimed to 

speed up the development of international smart grid 

solutions. 

SQL 
 

Structured Query Language. Special-purpose programming 

language designed for managing data held in a relational 

database management system (RDBMS). 

SSA 
 

Smart System Analyzer. Name of the concept of performing 

automated big data related analysis based on substation 

measurement data. 

TBM 
 

Time Based Maintenance. Maintenance strategy where 

components are serviced periodically. 

UHF 
 

Ultra High Frequency. Range of electromagnetic waves 

between 300 MHz and 3 GHz. 

VHF 
 

Very High Frequency. Range of radio frequency 

electromagnetic waves from 30 MHz to 300 MHz. 
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1 INTRODUCTION 

In this chapter the target objectives of this thesis with some background are 

described. After reading through the chapter the reader should have an overall picture of 

the problems in which this thesis aims to answer.  

1.1 Background 

Our current society has been built around the concept of constant economic growth. 

As result it has been steadily growing since 19
th

 century, the early days of 

industrialization. This ideology has had the greatest impact on industry as its level often 

defines the pace of economic growth. To meet the demands for greater growth the 

industry has constantly streamlined and improved their processes. This is especially true 

for electricity distribution and generation because electricity has been our main method 

of transferring and consuming energy. Long gone are the days when simple analog 

relays were an improvement over the previous technologies. As we entered the 

information age the affordable personal computer became the main way of improving 

efficiency. Now that the use of PC has become widespread and matured as technology 

the solutions are becoming increasingly complex. To improve them poses even greater 

challenge as it requires considerable amount of research, development and risk taking. 

To maintain the growth, new ways of improving efficiency are constantly looked into of 

which the automated analyzing of huge data masses is currently deemed most promising 

– the dawn of big data mining is coming. 

 

1.2 Objectives 

The main objective of this thesis is to study and test different ways to use the data 

gathered from distribution network more effectively. The scope of this thesis is limited 

to examining ways to benefit more from process data and disturbance recordings. The 

similar topic was looked into in 2008 by Jaakko Yliaho in his Masters thesis 

Disturbance Recording Files Analyzing in Historian Database which gives a general 

view on how the information within disturbance recordings could be used (Yliaho, 

2008). The added value of this information is sought from automated analyzing of data 

masses using a novel system developed at the ABB. The system consists of 

MicroSCADA Historian as a real time relational database and an external calculation 

environment. The goal is to develop, test and evaluate the system capable of gathering, 

storing, automatically analyzing the network data and visualizing the findings in an easy 
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to read form in an actual electricity distribution network. The practical work of this 

thesis was designing, programming and testing an algorithm for automated protection 

time calculation based on the data obtained from fault recordings. In addition to this a 

novel naming convention was developed for use in future databases which utilize these 

automatic analyzing functions.  

1.3 Structure 

The chapter 2 addresses the state of today’s electricity distribution environment. 

Current power system is reviewed and the expectations for it are listed. Its basic 

architecture and conventions of controlling it through substation automation systems is 

presented. This chapter is intended to give a baseline and motivation for which this 

thesis is all about. Some thoughts are given into why uninterrupted electricity 

distribution is so important in today’s world and how the future looks from the smart 

grid perspective. When the need is established the chapter 3 moves closer into solution 

by giving a thorough introduction into one of the biggest phenomena affecting the 

automation systems – the big data mining. In this chapter big data is given a basic 

definition and some ways how to benefit from it. At the end of the Chapter 3 a scenario 

of how a future electricity distribution company might harness the big data to its benefit 

is presented. The chapter 4 deals with the biggest problem the big data analyzing 

systems have to deal with, which is the diversity of the data. In this chapter baselines for 

using already widely accepted standards as ways to structure and standardize gathered 

data are discussed. The chapter 4 describes the disturbance recording and standard 

defining its form as well as a novel naming convention developed specifically for 

automatic analyzing algorithms which bases heavily on the already widely adopted 

IEC61850 standard. In the chapter 5 the smart system analyzer concept is presented as a 

possible solution for big data mining in power system applications. The system 

components are introduced and their functions explained. At the end of this chapter a 

simple proof of concept testing is done in a simulated environment. The 6
th

 and last 

major chapter of this thesis covers a practical pilot testing of the system in an actual 

electricity distribution system. Few analyzing cases are presented with the solutions for 

solving them. Finally a possible way to visualize the results is presented. 
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2 ELECTRICITY DISTRIBUTION SYSTEM 

The Physical architecture of today's distribution networks is mainly radial, 

branching out in a tree like structure. Only in cities there exists multiple routes for 

power supply. In rural areas there are also some interconnections between parts of the 

network to help reliability issues but most of the consumers at these areas are supplied 

by only one route of network. In the case of a fault or an on-going maintenance on this 

connection, all customers supplied by this part of the network experience an 

interruption. The Figure 2-1 shows principle of current electric power architecture. 

 

 

Figure 2-1 Current electricity distribution network architecture. (Lukszo, et al., 2010) 

 

Power is produced in large centralized power plants often remote from load centers. 

Along an interconnection between source of electric power and a load, there are 

multiple crucial network components such as transformers, breakers and power lines. 

The actual status data out of these components is gathered by relays and metering 

devices.   

2.1 Our dependancy on electricity 

Our society is well past the point where electricity was just nice luxury to have. Of 

all the essential resources the electricity is the one on which a functioning of society 

relies the most and it is used almost everywhere and by everyone. Our lives are dictated 

by the constant availability of electricity. Water pumps are driven by electric motors, 
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the majority of heating systems require at least some electrical power to operate and 

shops rely on electricity to preserve and even sell their goods. Many of the modern day 

jobs require the use of computer, which are run by electricity and the list goes on. The 

long disruptions of electric supply are disastrous for the current economies. All this 

places enormous requirements for the reliability of the electricity distribution systems. 

In the western countries the increasing reliability of these systems has caused many to 

take continuous electric supply for granted. The breakdowns of the electricity systems 

are usually minor and inflict only temporary discomfort for the users, but as recent 

events have shown, major blackouts can happen. 

During autumn of 2003 there were 2 major breakdowns. First happened in the North 

America and as result approximately 50 million people were left without electricity. It 

took four days to restore the power. During this blackout it is estimated that USA's 

economy took a hit of between US$4 and US$10 billion. The second happened in Italy 

where a similar blackout left over 55 million people without power for only 3 hours but 

it still cost four lives (Lukszo, et al., 2010). In winter 2011 Cyclone Patrick (Tapani) hit 

the Scandinavia and caused widespread blackouts. Households which relied in electric 

heating had to survive without any heat source. Loss of power on large scale caused also 

GSM network to blackout after few hours when the reserve batteries died 

(Energiateollisuus Ry, 2012). The poor network resiliency is especially problem in the 

US where ageing network is trying to cope with extreme weather phenomena such as 

hurricanes and major storms. An inflation-adjusted estimated of US18$ and US33$ 

billion dollar costs to US economy have been caused by severe weathers. (US 

Department of Energy Facilities, 2013) 

As these examples clearly show the reliability of the electricity distribution system 

is something to focus on. While completely avoiding major blackouts may require 

major refurbishments of the electricity distribution systems, still even minor 

improvements have direct economic impact and ultimately can be the matter of life and 

death. 

2.2 Distribution automation 

The regulation of the energy markets has caused electric power utilities to run their 

businesses as efficiently as possible. In particular, the owners of the power distribution 

networks are being required to improve areas of the network with substandard 

reliability. The owners are also being required to maximize the use and the life of their 

network assets by constant monitoring and maintenance. Power quality is also an 

important issue which is being monitored by authorities. Network control and 

automation systems have enabled network owners to adapt and succeed in the 

constantly evolving field of power distribution. (Automation In Power Distribution 

System: Present Status, 2012) 
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The distribution automation can be considered as an umbrella term for the 

combination of distribution management system and distribution automation 

system.  

The DMS focuses on the control room, where it provides the operator the status of 

the network being controlled. It manages all of the functions needed to properly control 

and manage the network on regular basis. The DMS works through an organized 

network model database and it must have access to all supporting IT infrastructure.  

The DAS consists of all of the remote-controlled primary devices at the substation 

and feeder levels, the local automation devices, and the communications infrastructure 

(Northcote-Green, et al., 2007). The following Figure 2-2 demonstrates a typical layout 

of a DAS. 

 

Protection 

relay

Auxiliary 

voltage

Tap 

changer
Measurement

Communication

hub

Protection 

relay

Disturbance 

recorder

Reactive 

power 

controller

Remote terminal 

unit

To network control 

Center (NCC)

 

Figure 2-2 Principle layout of a distribution automation system located in a substation. 

The primary devices directly connected to the processes such as circuit breakers are 

managed by relays while the transformers and compensators are managed by 

specialized controllers. The relays measure and conduct protective functions within the 

substation while being in connection to the control center through substation 

communication systems. Another major part of the distribution automation is on-the-fly 

adjustment of the substation equipment which is not directly involved into protection 

scheme. As an example the distribution system’s voltage levels are maintained by 

moving the primary transformer’s tap changer. An equally important task is to maintain 

a reasonable balance between real and reactive power flow. This power factor 

correction is done by controlling large capacitor banks. 

In addition to protection and adjustment systems there are devices on the substations 

which measure power and energy flow and analyze the quality of the power system 
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quantities. These measurements are crucial when trading within the electricity market. 

A distribution system owner is also responsible to provide electric energy with 

sufficient quality and through metering it can be verified. If analysis shows the quality 

being subpar then it can be corrected before it leads to bigger issues.  

2.2.1 Relays in current distribution networks 

The network automation units such as relays and specialized metering devises are 

responsible for gathering and sending data from individual network components which 

is then used to determine the network state. The safe and reliable operation of today's 

electricity distribution networks rely heavily on this data. 

Numerical or intelligent electrical devices (IED) are able to communicate and send 

metering data through built-in communication interface. When a fault occurs the relay 

produces a time stamped alarm which is transmitted to the control center into the DMS. 

Additionally many modern relays perform secondary tasks such as power quality and 

network analyzing functions. While these relays form the backbone of the network relay 

protection there are still some older electromechanical relays in use. Older relays are 

very limited devices and as such they possess no extra features outside their specific 

function. The operating life of a substation automation device is usually tens of years 

and as a result there are still considerable amount of these older protection relays in use.   

 

2.2.2 Communication 

The communication link has played a critical role in the real time operation of the 

power system since the dawn of the substation automation systems as early as 1930’s. It 

provides a remote access to substation automation devices enabling centralized 

operation of electricity distribution network. While some systems are local and don't 

require communication, generally at least information about the state of the device is 

sent to the network control center First distribution automation systems were installed in 

the 1960’s. Early systems were able to provide status and control for a few points via 

telephone-switching based systems. As technology shifted into digital era the 

bandwidths of communication systems rose rapidly and ever greater variety of remote 

links became commercially available. 

In distribution automation, the communication systems have been used for wide 

variety of applications for decades. The lifetime of systems is very long compared to 

normal IT infrastructure. In some cases, the systems installed in the 1970s are still in 

use today. The nature of DAS is that it undergoes a constant improvement cycle. To 

meet the constantly increasing requirements of the quality of the service, new systems 

are being developed and installed along the older systems. This often has the side-effect 

that many different media is being used to transmit signals ranging from copper circuits, 

radio, microwave, optical fibers and satellite communication. In addition the history 

weighs heavily on the communication scheme as often the communication protocols 
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must extend, replace, support or include existing media and embed them into general 

communication architecture. (Northcote-Green, et al., 2007) 

Different advantages and drawbacks are encountered among the different 

communication options available. The best communication option is usually determined 

by the application in question, as it depends on many different situation specific factors.  

The variety of different communication options DA has to deal with is illustrated in 

the Figure 2-3. 
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GPRS
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Copper 

wire

UHF
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Figure 2-3 Different communication options available for substation automation 

remote control. (Northcote-Green, et al., 2007) 

The communication can be done with either wired or wireless solutions. Systems 

relying on wires has been considered more robust, safe and reliable. Wireless solutions 

have usually been used in remote areas with only few devices where wiring would have 

been too expensive.  

2.3 Maintenance strategies 

Many of the current power grid components are coming to the end of their estimated 

life span. While the electric grid has been ageing the demand for electricity has 

constantly increased. All this has placed the maintaining of grid components and 

maintenance strategies in the spotlight in electric companies. The main focus of the 

maintenance is to avoid interruptions in power supply and to minimize the total costs 

(investments, interruptions, usage and the maintenance) of the network. The 

maintenance can be divided into two main categories: corrective and preventative 

maintenance. All of the major maintenance strategies used in today’s industry are 

presented in Figure 2-4  (Lakervi, et al., 2008) 
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Maintenance strategy

Preventative 

Maintenance

Corrective 

Maintenance

Condition based 

maintenance

Time based 

maintenance

Scheduled
continuous or 

on request
Deferred Immediate

Before fault is detected After fault has been detected

 

Figure 2-4 Different maintenance strategies. (Lakervi, et al., 2008) 

 

Only a few decades ago the corrective maintenance as only strategy was feasible 

way to keep the grid in working condition and is still being used in cases where 

occurring faults cause only minor harm. Maintaining major grid components and whole 

systems this way is not practical anymore. Trend is to be able to predict and prevent 

upcoming component failures thus ensuring continuous operation. (Cadick, 1999) 

 

2.3.1 Corrective maintenance 

Corrective maintenance aims to repair the grid components after they have been 

damaged, meaning that the fault and an interruption has already occurred in the 

network. This of course cannot be used as main maintenance method today because it 

would lead to too frequent power outages. It is however used in some situations where 

preventative maintenance would be either too expensive or impossible due to the nature 

of the possible fault in the component. For example one cannot fully protect overhead 

power lines from trees falling on the and in these cases corrective maintenance is used. 

This is why corrective maintenance will always be part of the maintenance management 

because it is impossible to predict all upcoming failures. (Lakervi, et al., 2008) 

   

2.3.2 Preventative maintenance 

The importance of diagnostics and preventative condition management is getting 

higher in all areas of the electric power industry. The quality requirements for electricity 

and official oversight is steering the electric companies to minimize the amount of 

interruptions in power generation, transmission and distribution.  The reliability of the 

power grid must be ensured but on the other hand the companies want to cut down on 

unnecessary maintenance work and focus it only where it is most needed.  
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The aim of the preventative maintenance is to detect defects in the grid components 

before they cause actual problems and fix them. This can be done by a simple time 

based maintenance (TBM) strategy where every component has a scheduled 

maintenance and it is done when it is due. This however leads to unnecessary servicing 

of some fully working components and is considered waste of resources. While time 

based maintenance achieves the goal of preventative maintenance, more advanced 

strategies have been developed, namely condition based maintenance (CBM). In CBM 

the actual condition of the component is diagnosed and the decision of servicing is done 

when need arises. The maintenance is performed after one or more indicators show that 

equipment is going to fail or that equipment performance is deteriorating. The 

Condition based maintenance is a good balance between efficient use of resources and 

maintaining components. The downside is that CBM method needs that condition 

information which in some cases might be impossible to get or getting it requires some 

expensive measuring devices to be installed. Therefore it can't be used in every 

situation. 

The reliability based maintenance (RBM) strategy is used to determine the best way 

to maintain individual components on the grid. The idea of RBM is to assess the fault 

probability of individual component and to optimize the maintenance based on how 

critical the fault would be if one were to happen and how costly maintaining the 

component is. This can be seen in the Figure 2-5.  

 

 

Figure 2-5 Reliability based maintenance strategy. (Lakervi, et al., 2008) 

In RBM strategy every component is evaluated on how critical the component is for 

the grid and what is its actual condition. For example if components failure would lead 

to a minor problem in the grid the corrective maintenance becomes very feasible 

strategy. On the other hand the component might be crucial for the grid and in these 

cases its condition could be closely monitored via periodical inspections or continuous 
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measurements. All of the more advanced maintenance strategies rely on the quality of 

the condition monitoring. (Lakervi, et al., 2008) 

2.3.3 Condition monitoring 

The Condition monitoring provides data on components state which is then used to 

determine the need for servicing. Ideally there would be comprehensive and accurate 

data of all the components in the system. (Aro, et al., 2003) The current level of 

technology would allow us to install devices which provide continuous condition 

information on every single component of the system, including the power lines. This 

would however cost so much that savings through maintenance optimization would 

never pay back the investment in measuring devices. Therefore in reality it is impossible 

to get the condition information from all of the grid components.  

In practice the condition data is gathered by hand through periodical inspections of the 

network and for some of the most critical components by integrated measuring devices. 

However the advancements in the fields of computing power and information 

technology might present us a third option. The partial goal of this thesis is to look into 

the possibility of using already present process data, disturbance records and easily 

obtainable online data to make assessments on the grid components condition and state. 

This can be done only by storing historical data and developing data mining algorithms 

which provide us some additional information of the networks state. The following 

chapters will go into more detail of this manner of approach. 

 

2.4 On the way to the Smart Grids 

For more than 100 years, the basic structure of the electrical power grid has 

remained the same. Practical experiences have shown that the hierarchical, mostly 

manually controlled grid of the 20th Century is not suited for the needs of the modern 

world.  Electric power distribution systems will be going through a profound changes 

driven by number of needs. There is the need for environmentally sustainable 

distributed energy resources and general energy conservation. Aging infrastructure sets 

demands for better grid reliability while at the same time there is the need for improved 

operational efficiencies. The changes required are significant for the electricity 

distribution systems, but can be achieved by adding automation to already existing 

systems and thus creating the “smarter electric grid”. The smart grid will be a modern 

electric power grid infrastructure for enhanced efficiency and reliability through 

automated control, high power converters and modern communications infrastructure 

sensing and metering technologies. The Figure 2-6 presents one possible structure of a 

smart grid system. 
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Figure 2-6 Future vision of smart grids and possibilities it creates for network 

management. 

It's safe to say that these needs and changes present the power industry with the 

biggest challenge it has ever faced. However the changes will not happen overnight, but 

instead "naturally" as the ageing grid is being renewed.  

There are three main types of on-going industry changes. The first is an 

organizational change. The electric supply has become competitive so that customers 

are now free to choose providers where it is cheapest. This has the diminishing effect 

for the role of the regional grid operator and opens up the market for competition and 

development. 

The second driver of changes has been the question of the evident environmental 

issues and sustainable energy sources. Strive for cleaner renewable energy will lead 

eventually to decentralized generation. 

The third driver being technological advancements like small scale distributed 

generation becoming cost-effective. The development of sensing and actuation 

technologies enable private customers respond to system conditions and prices of 

electricity making decentralized generation viable. Also improvements in distributed 

switching technologies for both transmission and distributions systems are driving the 

change. All this technology generates huge amounts of raw data which needs to be 

processed. This presents challenges for future information and communication 

technologies. For systems to work correctly all this data has to be managed and 

important bits to be found. The development of data mining becomes crucial.   
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3 BIG DATA 

Big data is one of the most interesting and influential phenomena of today's world. 

Together with cloud services, such as storage and computing, it will play a major role in 

the upcoming revolution of the IT infrastructure and data handling. Mastering the big 

data processing could potentially lead to major cost savings with a minor additional 

investment into actual processes.  

3.1 What is Big Data 

There is no one comprehensive definition for Big Data as it varies depending who is 

describing it and in which context. However at general level almost every definition of 

big data concept boils down to huge and increasing data masses and the process of 

analyzing that data. 

Already the Internet provides an easy access to varying databases and cost effective 

way to connect devices over long distances. These internet databases are created from 

the huge amount of data published by common internet users. In addition to this, 

technical development has led to an increased metering and sensor data to be gathered. 

Weather stations, surveillance cameras, smart phone sensors, routers and other systems 

like these are just example of how much and how diverse data is available. All of this 

data has naturally some kind of application already, but most of it is left unexploited and 

therefore most of the valuable information contained within it is lost. 

All in all the big data concept tries to answer how to process increasing amounts of 

greatly varying data. It must cover how to transfer, store, combine if needed, versatilely 

analyze and most of all utilize all the data on hand. Instead of giving tools to make real 

time analysis and decision making the big data concept aims to help proactive planning, 

which is based on gathering, combining and innovative mathematical analysis of the 

history data that has been gathered over a period of time. (Salo, 2013), (Hurwitz, et al., 

2013) 

3.2 Three V's to define the Big Data 

The big data as a concept is relatively new trend and it is still constantly evolving. 

People are unsure how to best describe it and its main aspects and opportunities. Most 

definitions of big data focus on the size of data in storage. However there are other 

equally important attributes that cannot be overlooked, such as data variety and velocity. 

The union of these three V's (volume, variety and velocity) is presented in the Figure 

3-1. 
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Figure 3-1 Definition of Big Data concept through three Vs theory: Volume, Velocity 

and Variety. 

The volume of the data was a big problem in the early 2000s. The data masses 

started skyrocketing and the storage and CPU technologies were overwhelmed by the 

data flow. Now, a decade later, the IT infrastructure has become increasingly available 

and affordable, which has led to increase in devices able to generate and storage digital 

data. The scalability issues have been overcome even though the data volume has 

exponentially increased. Current estimations of the data generated daily revolve around 

2.3 trillion gigabytes.  The benefits gained from the ability to process large amounts of 

information is the main attraction of big data analytics. Having more data is considered 

to be better than having better models, as even simple mathematical approaches can 

produce excellent results given large amounts of data. Therefore it is obvious that the 

data volume is the main attribute of big data.  

Variety refers to steep increase in data types algorithms need to handle. 

Conventionally we have been used to store and process data from structured sources 

like spreadsheets, databases and lists. Now the data is coming from great variety of 

sources such as e-mails, photos, videos, text-files and audio recordings. The variety of 

this unstructured data poses a serious challenge for actual big data applications. Only on 

rare occasions the data presents itself in a perfectly ordered form and ready for 

processing. Big data mining begins with the extraction of ordered meaning from 

unstructured data for humans or applications processing it further. When moving source 

data to processing application some information is lost as parts of source data is being 

discarded. Potential information loss is another major side-effect that comes from data 

variety. 
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The velocity aspect of big data deals with the pace at which the data flows in from 

sources like production processes, robotic manufacturing machines, measuring devices 

and human interactions with computers. It describes the frequency of data generation or 

the frequency of data delivery. The real time nature of the data means that it has to be 

captured and stored right away and failing to do that leads to its loss. This is not a 

problem on its own, but with big data the volume and variety make it challenging. In 

addition the analytics that go with streaming data have to process and take action in real 

time. (Normandeau, 2013), (Russom, 2011) 

 

3.3 Different ways Big Data can create value 

In the last few decades we have seen a significant increase in productivity and it is 

mainly thanks to widespread adoption of IT infrastructures as means of managing 

processes and businesses. The use of big data applications will be the next significant 

way to further increase productivity. It might even become the key way for companies 

to outperform their rivals. We will look into few ways how a big data can create value. 

It should be noted though that not all sectors of industry can benefit from all of them 

and some sectors are naturally poised for greater gains and that there are of course other 

ways than just these mentioned, but these are some of the most likely to be used in the 

power industry sector.  

Creating transparency: Making the data a company holds and gathers more easily 

accessible between all of the parties who might benefit from it as this can create 

significant value for the company. For example in electricity distribution, integrating 

data from grid control center, weather reports and sub-contractors conducting 

maintenance could significantly cut down interruption times as field crews could work 

more autonomously. 

Innovating new business models, products, and services: Big data enables 

companies to create new products and services. In addition it helps companies to 

understand their customer segment better and through that knowledge to improve their 

ways to improve efficiency and effectiveness, enabling organizations both to do more 

with less and to produce higher-quality products.  

Replacing/supporting human decision making with automated systems: 

Complex analytics can significantly improve decision making by finding valuable 

insights that would otherwise remain hidden. This would help to minimize risks as 

human's limit to handle big quantities of continuous information flows is limited at best. 

This kind of analytics would have applications from common retailers to process 

industry. In some cases such as electric grid control the decisions might not be 

necessarily automated but instead supported by big data technologies and techniques.

  

Discovering unforeseen needs and exposing variability: Organizations can collect 

more accurate and detailed performance data from their processes. Which in turn can be 
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used to assess the natural variability in performance in those processes. Understanding 

the roots of the phenomena better can be profited from by improving overall 

performance of these processes. (Manyika;ym., 2011) 

3.4 Techniques for analyzing Big Data 

The techniques for analyzing big data can be adopted, developed and up-scaled from 

wide variety of techniques in use today to manipulate, analyze and visualize the current 

databases. These techniques combine the knowledge from several fields such as 

statistics, computer science and applied mathematics. This nature of big data analytics 

means that interdisciplinary expertise is required to derive value from big data masses. 

The research is being carried out continuously to develop new techniques to analyze 

new combinations of data. The techniques available are too numerous to go through of 

them all in the scope of this thesis, but the most suitable ones for electric power industry 

are looked into. 

Data mining itself is an integral part of many different big data analyzing methods. 

The aim is to extract patterns from large datasets by combining methods from statistics 

and machine learning with database management.  

Association rule learning is a database management technique for discovering 

meaningful relationships among the variables in large databases. This approach of 

filtering the data is based on making relations between events which seemingly don't 

related to each other. An easily understandable example of this kind of approach would 

be a supermarket customer who after buying product A is likely to buy product B too. 

The similar associations could be adopted into electricity distribution and used to tie 

together events in the network. 

Close relative to Association rule learning is the machine learning. It is a process in 

which algorithms are created so, that they evolve based on the behaviors of empirical 

data. Main focus of machine learning is to enable computer systems to recognize 

complex patterns and make seemingly intelligent decisions based on data on hand. 

Data fusion and data integration presents a set of techniques that combine and 

analyze data from multiple sources to provide additional information. The goal is to 

provide insights that are more accurate or even undetectable if the datasets were 

analyzed one at the time. One example of an application is the metering data collected 

from smart meters combined with the real-time process data from relays to provide 

better perspective on the performance of a complex distributed system. 

Predictive modeling draws from a set of techniques in which mathematical model is 

created to best predict the probability of an outcome. One way to achieve this is to 

choose a suitable model and analyze how the value of the dependent variable changes 

when one or more independent variables is modified. Predictive modeling could be used 

for example to determine which manufacturing parameters have greatest impact on 

customer satisfaction. 
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One of the most crucial tasks of the big data analysis is the visualization of the 

results produced by analyzing techniques. There is a distinct limit at how much of data 

human beings can perceive effectively at one instance. Presenting the information so 

that people can consume it effectively becomes a key factor in successful big data 

analyzing. (Manyika;ym., 2011), (Rajaraman;ym., 2013)  

    

     

3.5 Big Data in next-generation utility systems 

Like on every other field of industry, for electricity distribution the big data presents 

a very powerful way to improve effectiveness. While electrical utilities possess a great 

deal of structured data collected from their network measuring systems they also have to 

deal with unstructured data sources such as maps, photos and utility's history data. 

Turning this data into more useable form for big data mining can be quite a challenge. 

The nature of big data in power systems varies depending where the analyzing is done. 

In the current systems the amount of raw signal data decreases when moving into higher 

levels of the system but at the same time the amount of data sources becomes greater. 

This is illustrated in the Figure 3-2.  
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Figure 3-2 Amount of data sources available at different levels of power system. 

 

It is clear that at every level of operation the big data problem comes into question. 

The future trends of electrical vehicle usage and integrating grid systems increasingly to 

electricity markets mean that utilities have to process an increasing amounts of complex 

events. The dawn of distributed energy resources further complicates the data 

management challenge. However it is clear that a broad variety of data available creates 

opportunities to improve operations and decision-making on many different systems and 

business processes. 
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The Figure 3-3 lists some sources for big data mining in an electric utility company. 

It also illustrates how the findings of big data is continuously used to improve the 

company's operation. Big data from these systems can be used to improve planning for 

outages, predicting equipment failures, responding to weather events and optimizing the 

flow of energy across the network.   
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Figure 3-3 Process how big data can benefit a next-generation utility, and some of the 

big data sources available listed. 

The autumn of 2013 came with two more severe storms than what we are normally 

used to here at northern Europe. Both of them lead to interruptions of which the longest 

ones lasted more than three days. Big data offers electric utilities ways to react more 

efficiently to infrequent events. The analysis of freely accessible weather data can help 

shape utility's response to fast-changing weather conditions. Whereas the history data 

from previous years combined with asset health and network reliability data can be used 

to better prepare for potentially disruptive events. A next generation solution would be 

the use of flyover data from RC-drones to map the fallen trees, downed lines and flood 

areas and more to optimize restoration. Furthermore, decisions that normally required 

multiple skilled workers could be automated. The resulting flood of unstructured data 

from drone usage means that big data techniques must be used. 

The effective handling of big data can be used to produce more accurate forecasts 

about hourly and daily customer-level loads. The analysis of smart meter data combined 

with customer profiling can be used for customer load optimization. Shifting energy 

consumption from peak-hours to lower priced segments of the day would benefit both 

the customers and the distribution company. (Bane, et al., 2013), (Srikanth, 2013) 

The given examples are just few possibilities and many more like them can be found 

with little effort. This thesis revolves mainly around predictive maintenance and how to 
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use the maintenance resources more effectively. Predictive solutions such as asset health 

estimation use real time-analytics to detect potential or developing situations. Real-time 

measurements and operating history can be used to flag assets that are trending toward 

failure so that action can be taken before actual failures. In the practical part of this 

thesis we will look ways how the big data analysis could be used to avoid doing 

unnecessary testing of breakers. In Finland the electric distribution companies are 

required by the Finnish Safety and Chemicals Agency (Tukes) to conduct periodical 

proofing tests to demonstrate that their grid protection is in working order. (Tukes, 

2011) One possible way to use history data is to create automated reports on every 

installed circuit breaker which have had to operate during the three year period.  
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4 DATA UNIFORMITY FOR AUTOMATED 

ANALYZING 

The industry has developed standardization system to help address the 

incompatibility issues caused by vendor specific implementations. Before the universal 

standards were adopted, the customers of substation automation system vendors were 

almost completely dependent on their chosen system provider. It was nearly impossible 

to combine two different systems from two different vendors as their communication 

and operating principles differed too much from each other. At present the international 

standards regarding substation automation are freely accessible so that every system 

developer can benefit from them and make sure that their systems work in unison with 

other supplier's systems and that their systems meet the current requirements. 

From the perspective of big data mining to be able to rely on standardized 

databases can help a lot. The analyzing algorithms could be developed to assess and 

detect the right signals and data structures for higher level of automation during 

commissioning. 

It also makes the using of same data mining applications in different systems more 

efficient by minimizing the additional database and signal engineering required.   

 In this thesis two types of big data sources are used: The real-time process data 

from SCADA system and disturbance recordings from IEDs. The process data is 

covered by IEC 61850 standard while the disturbance recordings are covered by IEEE 

Power & Energy standard C37.111.  

 

4.1 Disturbance recordings  

4.1.1 General 

The concept of disturbance/fault recording is not a new invention. Recording 

devices have existed for many years stating back to the first ink chart recorders. These 

old recorders were analog systems and highly specialized in monitoring one single task. 

Reading and analyzing of the recordings was done manually and thus it was too costly 

to incorporate disturbance recordings into electricity distribution grid protection 

scheme. Modern digital equipment however has the capability to monitor a large 

number of analog and binary signals which can be collected to a centralized location via 

remote communication links. The analog signals such as voltage and currents of the 

transmission lines are used as primary source of data to determine fault type and 
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duration. The digital signals such as circuit breaker position, relay output contacts and 

lockouts are added to recordings to give analysts a better understanding of the event. 

Possibility to add and sync digital inputs with the main events as well as increased 

capabilities of disturbance recording devices and IEDs with disturbance recording 

capability allow more thorough analysis of the power system disturbances. Time 

stamping and time synchronizing of the records is a necessary task of today’s 

disturbance recorders and it is made possible by using GPS clock signal as 

synchronizing value.  

 As automatic analyzing of disturbance recordings is one of the two main goals 

of this thesis, some of the main attributes of the disturbance recordings are discussed in 

this chapter with emphasis on the COMTRADE standard itself. This is done to give the 

reader a better understanding of the information available when using disturbance 

recordings as the main source of measurement data. 

4.1.2 Types of disturbances of interest 

The types of interesting disturbances from the grid protection and analysis 

viewpoint are generally divided into four main categories by the event duration. 

Transients are very short in duration and typically are cleared by the operation of 

protection equipment such as circuit breaker. These events last not more than fractions 

of a second, but they provide a lot of measuring data. The collected data can be used to 

analyze if the protection operated correctly or calculate the fault location. High-speed 

recording is essential to capture the individual samples of the voltage and current 

waveforms with enough resolution to display power system faults and transients. The 

recordings of this type usually consist of only few seconds as it basically covers the 

whole event and it is a way to keep file sizes as small as possible. 

Almost in the same event group as the transient is the short term disturbances. These 

generally include all other time-delayed fault clearing and reclosing events where 

system operation is not affected. Short term events last longer than the transients but are 

usually in the order of few tens of cycles. 

The long term and steady state disturbances consist of events that affect the system 

stability such as power fluctuation, frequency variation and voltage quality problems as 

well as events that do not directly affect the system stability like harmonics produced by 

the loads and the interaction of power system components. These events can be 

analyzed to find the source of the problem. Low-speed recording is used to capture short 

term and long term events. To detect long term and steady state disturbances a 

continuous recording is required which differs these types of analysis from actual fault 

recording analyzing performed using COMTRADE files. (Strang, et al., 2006)  

 



22 

 

4.1.3 Triggering methods 

Disturbance recordings are only captured when fault recorder senses an ongoing 

fault on the line. Recording events may be triggered by changes in measured analog 

values or by the change of external digital input. The triggering from digital inputs is 

usually straightforward as the fault recorder is simply started when binary signal 

changes state. 

Analog triggers operate either directly from measured values or by calculated analog 

channels which can be tripped by any combination of triggers such as change in signal 

magnitude, harmonic content of the signal, rate-of-change of the signal or protection 

function. The signal magnitude trigger covers most of the disturbance recorder 

operations recorded from electricity distribution network as it observes if the measured 

signal either exceeds or falls below the set-point. A typical application of magnitude 

trigger is over current event of the current channel. The rate-of-change trigger works 

like the magnitude by observing if the signal rate-of-change differs from the threshold 

values. This kind of triggering is useful for example when analyzing the long term 

variations in power system frequency. The harmonic trigger activates when the 

harmonic content of the channel is out of threshold values for a specified time delay. 

(Strang, et al., 2006) 

 

4.1.4 COMTRADE format 

The rapid development of digital devices for fault and transient data recording and 

testing generated the need for standard format for the exchange of data. The 

COMTRADE standard defines a common format for files containing transient 

waveforms such as disturbance recordings and simulated event data collected from 

power systems or power system models. Its main goal is to provide an easily 

interpretable form for use in data exchange needed for systems operating with the 

interchange of various types of fault, test and simulation data. The standard does not 

define any means to compress or encode the data as it just covers the files stored in 

physical media such as hard drives. (Ryan, et al., 2005) 

 

4.1.4.1 COMTRADE files 

Each COMTRADE record consists of up to four files associated with it. The 

complete set is made up from header file (.HDR), configuration file (.CFG), the 

measurement data file (.DAT) and information file (.INF) of which the configuration 

and data files are only required while header and information files are optional.  

The header file is meant to be read by a human user and it has no predefined form. 

The creator of the file can include any information and in any order he desires. The 

header file is meant to be used as an introduction file which would give the analyst more 

background information about the event recorded. The format gives some examples as 
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what the header file might contain: The description of the power system prior to 

disturbance, length of the faulted line or parameters of the system behind the nodes 

where the data was recorded, etc. The header file is not intended to be manipulated by 

the application program. 

The configuration file is defined to be an ASCII text file which has to be in format 

defined by the COMTRADE standard. The file is readable by using any word 

processing program. This file is needed for a human or computer program to 

successfully read and interpret the values recorded into the data file so it must be 

included in every set of recording data. All the required data of the configuration file is 

listed in Table 4-1. 

 

Table 4-1 Setting parameters a COMTRADE configuration file is required to include. 

Station name, identification of the recording device, 

and COMTRADE Standard revision year. 

Number and type of channels 

Channel names, units, and conversion factors 

Line frequency 

Sample rate(s) and number of samples at each rate 

Date and time of first data point 

Date and time of trigger point 

Data file type 

Time Stamp Multiplication Factor 

  

The following is an example of a partial configuration file taken from an actual 

REF615 protection relay currently in use in a substation.  

 

REF615,192.168.50.32,1999 

73,9A,64D 

1,IL1,A,,A,0.3125,0,0,-32767,32767,80,1,P 

2,IL2,B,,A,0.3125,0,0,32767,32767,80,1,P 

3,IL3,C,,A,0.3125,0,0,-32767,32767,80,1,P 

… 

… 

64,Unused BI,,,0 

50 

1 

1600,8 

30/09/2013,15:26:39.807106 

30/09/2013,15:26:40.807106 

BINARY 
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The configuration file tells that the recording is named after the relay REF615 which 

identifier is its IP address and that the COMTRADE standard revision is dated to 1999 - 

the older version. The second row summarizes that total of 73 measurement channels 

were used out of which 9 were analog and 64 digital. The configuration parameters of 

individual channels are listed next ending in the 64th binary channel. These parameters 

are described in the Figure 4-1. The last part of the configuration file lists the line 

frequency, sampling rate, time stamps for the first data value in the data file and for the 

time of the trigger point respectively. The final row describes the data file type which 

must be either ASCII or BINARY. 

 

1,IL1,A,,A,0.3125,0,0,-32767,32767,80,1,P

Channel Number

Channel Identifier

Channel Unit

Channel scaling

Channel minimum/

maximum values

Current/voltage transformer 

ratios (Primary/secondary)

 

 

Figure 4-1 One of the configuration (.CFG) file rows in a fault recording following 

according to COMTRADE standard. 

The Data file (.DAT) contains the recorded event data in either ASCII or BINARY 

form and conforms to the format defined in the configuration file. The data file is 

divided into rows and columns. One row contains one sample of every recorded channel 

and the number of the rows varies with the length of the recording. Each row is made up 

of the sample number, time stamp, and data values for each analog and digital channel. 

An example of data file row is presented in Figure 4-2. 

 

2,625,61,-22,-42,0,-208,78,138,2,3,0,0,0,0,0

Channel Number

Timestamp

Analog channel 

samples at current 

timestamp

Binary channel samples at 

current timestamp

 
Figure 4-2 One of the data (.DAT) file rows in a fault recording following according to 

COMTRADE standard. 

 

While the disturbance recordings can be read by using a text-editor, provided the 

files are in ASCII format, it is very hard to make a lot of sense of them simply by 
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reading the instantaneous values row by row. The manual analysis of the recordings is 

made a lot easier using a program that is designed to interpret and visualize the 

recording signals. The contents of a real substation recording are plotted in Figure 4-3 

using COMTRADE viewer WaveWin.  

  

 

Figure 4-3 Example of how fault recording looks in WaveWin COMTRADE viewer. 

The viewer plots all the recorded signals and some additional ones such as residual 

voltage and current which are purely calculated values. 

The information file is one of the two optional files defined in the standard. As such 

it is meant to store additional information of the event recorded in the .DAT files, which 

could enable enhanced manipulation and analysis of the data. Data in the .INF file is in 

a computer-readable format consisting of public and private entries following 

formatting defined by the standard. Public entries contain information in a form that is 

meant to be able to be used by equipment or software made by more than one 

manufacturer. In contrast the private section is defined to contain manufacturer-specific 

information in a format of vendor’s own choosing. In most cases this private 

information can only be used with a specific vendor’s software or hardware. The 

information file can however contain multiple private sections allowing private 

implementations from multiple vendors in a single file. (Ryan, et al., 2005) 

 

4.2 Developing naming convention for historian 
database variables 

The naming of data points becomes a focus point in a wide area system which is 

intended to combine different data sources into a single data storage. If collected data is 

to be comparable between each other, then the data point names must be unique as well 

as recognizable. The proposed naming is used in the practical parts of this thesis and 
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concerns every data source added to the Historian database. Consistent naming of IEDs 

and their data channels is essential to aid post fault analysis, providing an easy method 

for identifying what channel information is relevant for particular operation. The 

naming proposition draws heavily from already well-established standards IEC 61850 

and IEC81346.    

 

4.2.1 The signal naming concept of IEC 61850 

Among the existing automation standards the IEC 61850 is unique because instead 

of just specifying how the bytes should be transmitted on the wire it provides a 

comprehensive model describing how power system devices should organize data. As a 

result the data is organized consistently across all types and brands of devices. (ABB, 

2014) 

The IEC61850 states that in the case of hierarchically structured objects of the 

substation or process structure, both name and description attributes for each object 

contain only that part which identifies the object within this level of the hierarchy. This 

means that full path name of a mapped process object is a concatenation of all name 

parts of higher hierarchy levels up to this level. The uniqueness of full names is ensured 

by using syntax conventions as specified in another IEC standard the IEC81346-1. In 

addition to the mandatory use of IEC 81346-1 standard for name syntax the 61850 

standard recommends the use of whole 81346 series for derivation of functional and 

IED product names as technical keys. The only allowed separator between SCL names 

is the dot (.).  

The IEC 61850 device model begins with a physical device which can be described 

as the device that connects to the network and is typically defined by its network 

address. The physical device contains the logical devices (LD) whose amount is not 

fixed. The logical device divides into logical nodes (LN) as each LD can consist of 

multiple LNs. An LN is a container for data and associated services that are logically 

linked to a specific process function. The name of the logical node tells what kind of 

signal is in question and into what kind of context the node refers to. For example there 

are logical nodes for metering and measuring whose names begin with letter “M”. The 

standard name of the logical node for measurement unit for 3-phase current is IMMXU 

and the postfix numbering is used to delineate between multiple measurements at the 

same level. Each logical node contains one or more elements of Data related to the 

practical function of the device the logical node is representing and is defined in the 

IEC61850-7-3 part of the standard. This means the data variables available vary 

between different logical nodes. 

According to IEC 61850-7-2, signal identifications are built from the following 

parts: 

 

1) User defined part identifying the logical device LD in the process (LDName). 
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2) (Function-related) Part to distinguish several LNs of the same class within the 

same IED/LD (LN-Prefix) 

3) The standardized LN class name and the LN instance number, which 

distinguishes several LNs of the same class and prefix within the same IED/LD 

4) Signal identification inside a LN consisting of data and attribute name as defined 

in IEC 61850-7-3 and IEC 61850-7-4 

LDName

LN Prefix

LNName

LN Class LN Instance no

DataName DataAttributeName

Configurable

Defined in IEC 

61850-7-4

Defined in IEC 

61850-7-3

Part 1 Part 2 Part 3 Part 4  
Figure 4-4 Elements of the signal identification as defined in IEC 61850-7-2. 

(IEC61850, 2009) 

  

 

The LN name is formed in combination of parts 2 and 3 in the Figure 4-4 which 

makes the different LN instances effectively distinguishable within the same logical 

device of an IED. The LN class forms the body of the signal name giving it the main 

description as what kind of signal is the one in question and what kind of properties 

does it have. LN prefix is used to classify different parts of the LN classes into 

functional groups such as supervisory control (C), Protection (P) and sensors (S). The 

instance number is added in a case where two or more of the same instances of same LN 

name would be formed otherwise.  

The DataTypeTemplates definition section of the SCL and the standardized names 

are defined in IEC61850-7-3 while the IEC61850-7-4 defines possible values for name 

paerts 3 and 4 in Figure 4-4. The name parts 1 and 2 of the Figure 4-4 have several 

options on how to form them and of which the standard directly mentions two of the 

most important ones. 

In the product related naming the LN prefix, class and instance number attributes 

are fixed by the vendor of the device as can be seen in the Figure 4-5. In product related 

naming the project engineer is left free to choose the best name for IED and therefore 

IED names vary depending who has made the configuration. This makes interpreting 

the signal properties harder as it presents randomness to the naming scheme. IEC61850 

however offers another option for naming called function-related naming which is 

more suitable to the needs of the system being built. 
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LDName

LN Prefix

LNName

LN Class LN Instance no

Predefined by IED

IED Section:

Attribute Name of element

IED

IED Section:

Attribute Inst of element

LDevice

IED Section

Attribute Inst of element LN

 

Figure 4-5 Elements of the signal name using product naming. (IEC61850, 2009) 

 

In function-related naming the idea is to name IED and logical device according to 

its function as illustrated in the Figure 4-6. The IED name is created by assembling a 

complete name from sub parts such as voltage level of the installed IED, bay 

identification and IED’s function within the bay. This concept automatically guarantees 

uniqueness of the IED’s name within the substation. There is no specification for 

standardized naming of voltage levels, bays or power system devices in the IEC61850 

but the standard directly refers to IEC 81346 for naming of different levels and objects 

within the substation. The major drawback of a naming convention such as this is its 

bulkiness when applied to a complex substation. For example let’s assume we have a 

substation with 110kv voltage level (E1) which has a bay (Q1) and IED named SB1. In 

the IED there are multiple logical devices (LDx) which hold the signals for circuit 

breaker operation. The complete name tag would be the concatenation of these and 

would produce tag of E1Q1SB1LD1CSXWI.pos.stVal. (IEC61850, 2009) 

 

LDName

LN Prefix

LNName

LN Class LN Instance no

Substation Section:

Attribute Name of element substation and

Of element VoltageLevel and

Of element Bay

Substation section:

Attribute Name of element

Equipment

And of element SubEquipment
 

Figure 4-6 Possible elements of the signal name using functional naming. (IEC61850, 

2009) 
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The data structure definition according to the IEC 61850 of a circuit breaker is 

illustrated in the Figure 4-7 with an example of a fully constructed name of the signal. 

 

 

Figure 4-7 Signal naming logic of IEC61850-7-2 standard. 

     

The naming scenario in Figure 4-7 represents a typical substation relay 

configuration scheme where one IED consists of multiple LNs. The circuit breaker is 

modeled here as an SXCBR1 logical node. The XCBR is defined in the standard as a 

logical node for a switch with circuit breaking capacity. The prefix “S” comes from LN 

prefix table and stands for sensors. The logical node contains variety of data such as 

Health for telling the external equipment health, NamePlt for external equipment name 

plate information, OpCnt for operations counter and BlkOpn/Cls for beaker open/close 

command blocking.  The path highlighted shows how signal is mapped for circuit 

breaker position status. (ABB, 2013b) It is clear that the use of naming convention of 

the IEC61850 standard as a base for database variable naming has various benefits. The 

multi-layer hierarchical nature of the signal naming is enough to cover majority of 

naming scenarios. In addition as the signal’s qualities can directly be read from its 

name, the mapping of correct variables into analyzing functions can be automated 

which naturally decreases work load when commissioning the system. One advantage 

that cannot be overlooked is also the already wide spread usage of IEC61850 standard 

as process database organization convention. This means that algorithms crated 
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following its conventions are easily portable into new systems and therefore the system 

under development has already a larger market sector. 

4.2.2 Need for novel naming convention 

 

While configuring an IED, the user has to come up with and enter a number of 

electronic designations that uniquely identify the IED and each channel within it. 

Current standards try to steer users in right direction by demanding mandatory 

information fields to be filled for every data point. However in many cases they are 

described as unformatted fields and it is therefore up to the user to compose and specify 

these fields without any given standardized practice. Such fields may include IED 

names, install locations, phase identifiers, voltage classes, etc. Users and utilities are 

often forced to develop their own naming conventions which best suit their own needs 

without the thought of greater picture. This in addition to the historical weight of the 

constant and fast paced evolution of substation automation equipment explains why we 

have so many different types of naming conventions in circulation today. 

The above mentioned information fields are essential for successful fault and 

disturbance analysis as well as any attempt to make more sophisticated automatic 

analyzing of grid events. For example without accurate and informative names it is 

impossible for an automated application to associate voltage and current phases together 

in order to calculate fault location or a missing phase. 

Currently the use of disturbance/fault recordings is mainly done by hand by the 

transmission grid owner. The recordings are downloaded on site from the IEDs and then 

manually analyzed. After some major blackouts there have been a growing interest of 

automatic analyzing of the events. This is especially beneficial if the event includes the 

tripping of many grid components. The more widely the standardized naming 

convention spreads the more comprehensive analyzing can be done on events that have 

impact on wide area. Current GPS time synchronization enables users to combine 

triggered data from multiple IEDs into one single record and give a wider perspective of 

an event. As electricity distribution systems are becoming more complex due to 

implementation of distributed power generation the need for a wide area view of events 

is becoming greater. 

Nowadays we have literally thousands of analog and digital signals available to us 

from a single IED and means to gather and store them all. Constantly growing numbers 

of signals to be mapped has raised the costs of signal engineering while at the same time 

the hardware has gotten cheaper. Because of this the laborious task of signal 

configuration and documentation has become the major cost component of the 

substation automation projects. One of the key tasks in the development of an 

automated analyzing system is to try to minimize the signal engineering needed while 

applying analyzing functions to the customers network components. Cutting down this 

manual task is only achieved through relying on higher level of automation in signal 
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mapping phase, which in turn can only work if the data is in some prefixed form such as 

the signal naming convention introduced next. 

 

4.2.3 Proposed unique naming convention 

Theoretically an IED can compose of one channel or, as more commonly, can 

contain multiple channels. The naming convention described next attempts to identify 

the fields required to uniquely name an installed IED and all of its possible analog and 

digital channels. The idea of nametag proposed is to start describing the data point 

location from larger scale and ending in specific signal name. The naming is based on 

standards IEC61850 and IEC81346. The format is composed of a sequence of fields 

using the comma “.” character as the delimiter between consecutive fields: 

 

Country.Vendor.StationID.VoltageLevel.Bay.Device/Relay.SignalName 

 

Country information is pretty self-explanatory and names the country where the 

signal is originating.  

 Vendor information names the company who owns the signal source such as 

substation and its equipment. 

StationID is the identification of the substation where the signal is originating 

from. For example a fictive substation called Herwood could have StationID “HER”, 

which would instantly tell the user from which geographical area the signal has been 

measured. 

VoltageLevel and BayName are the identifications inside the substation. The 

different feeder bays have unique names within the station to distinguish them from 

each other. In addition to this the different voltage levels are separated as some of the 

calculation functions can only be performed on certain voltage levels. These tags can be 

separate or merged into one. An effective way to achieve this is to use single letter 

expression of voltage level combined with the running numbering for consecutive bays. 

Some commonly used voltage level expressions are listed in the Table 4-2. 

 

Table 4-2 Some of the most commonly used voltage levels in distribution networks and 

their corresponding letter expressions. (IEC81346, 2009) 

Letter 

expression 

Voltage level 

E 110 kV 

J 20 kV 

K 10 kV 

M 1 kV 
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RelayType/DeviceName is used to describe the grid asset being monitored. This 

describes the physical device where the measurement signal was received. If the 

physical device in question is the relay which for example measures currents and 

voltages on a feeder line then it should be listed. On the other hand if the relay operates 

a circuit breaker or earthing switch then the breaker/switch should be named. 

 SignalName is used to describe and uniquely identify the signal the relay has 

measured. IEC61850 includes already a widely accepted way of naming substation 

automation related signals and it is intended to be used here without changes. 

SignalName is built from IEC61850 standardized names of the Logical Node, functional 

constraint, Data and Attribute fields like discussed in the chapter 4.2.1. 

 The practical use of the signal name depends on the level in which the database 

holding the signal information is located. It should be established that not all of the 

name tag parts are required on every level of operation. The analyzing can be done at 

the substation level at lowest where only the information from voltage level on is 

relevant. In the future there might be some interests in going even greater scale by 

taking a step further and combining the data from different electricity distribution 

companies as a vast database to address large scale faults and phenomena. This is where 

the “larger scale” parts of the name tag become essential.  
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5 SMART SYSTEM ANALYSER  

This chapter gives a detailed description of the system components used for smart 

system analyzer concept. All of the parts are reviewed individually and after that they 

are brought together to form the automatic analyzing suite. At the end of this chapter a 

proof of concept testing is done by linking a SCADA system with the SSA. Using 

simulated signals from SCADA some simple calculations are done with the 

visualization of the results to test the concept in a controlled environment.  

5.1 System overview 

The traditional model of substation automation is based around IEDs which handle 

the protection and control of the substation assets on the bay level. This means that 

IEDs primarily operate according to the data gathered from its own bay and perform 

tasks in that bay only. A system that has access to all of the bays of the substation 

simultaneously has a distinct advantage over this presently dominating model. When an 

event occurs on some of the feeders it can benefit greatly from the measurement data 

gathered from adjacent bays and gain a greater view of the incident. This is what the 

smart analyzing concept aims for. The reason why systems like this haven’t been used 

more widely before is the lack of a system wide bus-based communication protocols 

such as IEC 61850. In a system with bus-based communication all the data is available 

to all devices connected to it. It should be noted that even without communication bus 

there is normally a data concentrator device that has access to every signal in the 

substation, but mapping signals from that node into station computer is very labor 

intensive. The other major obstacle in utilizing station wide functions has been the 

computing power available. When moving into bigger scale the memory and capacity of 

the processors have been the limiting factor.  

This kind of analyzing is mainly intended for non-critical situations, where the 

results are not needed in a hurry. Some examples of what kind of functions could be 

performed at the station level are fault prediction through component lifespan and 

ongoing event analysis, power quality monitoring and statistics collection. If a 

substation were equipped with a station computer performing these tasks some of the 

overlapping functions from relays could be switched off and their CPU capacity 

released for critical functions which concern safe operation of the network. Computer 

running the substation wide analysis is not in any way critical to the safe operation of 

the network so it can be upgraded regularly without risk of interruptions to the 

electricity supply. In contrast if the functions were performed in traditional way in the 

IEDs the upgrade process would always require proofing tests which take up several 
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hours per IED and naturally cause significant costs. New updated functions could be 

tested and adopted easily which would lead to better analyzing results and constantly 

developing system. 

The system divides into three logical entities each having its own area of 

responsibility. The database act as a centralized databank for all data regardless of its 

origin and as the core of the system where raw data is being fetched and the results of 

the analysis are stored. It must be able to handle data from different sources 

simultaneously, some of which is real-time and some periodic in nature. The database 

used in this concept is a historian database, which enables storing the data long times 

reliably. The second part is analyzing itself and it is done in a novel external calculation 

engine. The calculation engine never stores data more than what is needed to complete 

the task at hand and afterwards results are saved into the historian database. The third 

part of the system makes the results readable for human users. It is widget based web 

user interface which can be linked into the database variables and makes reading the 

results easier through graphs, reworked tables and various graphical presentations. 

5.2 System components 

5.2.1 Real time database (RTDB) 

The RTDB Real Time Database is a relational database that is designed and 

optimized for industrial process information management and history recording. It is of 

a modular design with stress on high performance and reliability. Main function of 

RTDB is its database capabilities, but along with it comes modules which enable 

implementation of full process maintaining solutions like tools to implement the 

business logic to handle and refine database data. However in Smart System Analyzer 

concept only the database functions and those supporting it are used, while the actual 

calculation is done externally. The RTDBs responsibilities are storing and managing the 

process data and engineering configurations as well as providing means for data 

acquisition and exchange with other applications such as the calculation engine and the 

web UI for visualization. (ABB, 2009) 

 

5.2.1.1 RTDB architecture 

The RTDB is built on data abstraction interface called VtrinLib based on Microsoft 

.NET technology. It is used in various functions to support the modular structure of the 

RTDB which can be seen in the Figure 5-1. The abstraction converts the data structures 

from various data sources into unified object model, thus simplifying their use 

internally. According to the manual, the Data Abstraction Interface is extendable 

semantic free way of publishing data object for visualization, reporting, upper level 

public interfaces, development tools, applications and external systems. 
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Figure 5-1 RTDB architecture with its different layers illustrated. 

The data abstraction hides the actual internal data storage, i.e. History, OPC, or 

other data source, and the client-server model provides remote access to them. It makes 

accessing multiple data sources from one application possible and even integration of 

external databases into the main RTDB. 

 The user authentication is also managed by abstraction layer. This allows for 

different user classes with different privileges into the database information. In big data 

applications this is crucial as vendor specific systems are things of the past and 3
rd

 party 

developers should be supported by giving them access to the same raw data. However 

the processed information might be something with limited access.  

 The Data Abstraction Interface enables also the implementation of system level 

connectivity and configuration exchange. For example with MicroSCADA the linking 

of process data into RTDB is simplified as variables are created automatically with 

intended RTDB side variable naming achieved by SCIL script definitions.  

5.2.1.2 History recording 

The RTDB stores process data as samples in database variables. These variables can 

be of the data type double (floating point), 64-bit integer, binary or string (text). The 

variable only accepts new values from matching data type. The measurements from 

primary process are recorder by pairing a sample value of the measurement with 

corresponding timestamp and this pair is then saved into the variable. The resolution of 

the timestamp is supported up to the accuracy 100ns which is considerably higher than 

the resolution available from measurement devices in the substation. 
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 The history table of a variable can consist either of one or several RTDB core 

tables. The end user however always sees the tables as one. This allows general 

optimization of the database as older values with lower importance can be compressed 

to save storage space. On the other hand the current values can be stored in a table that 

is optimized for fast recording. The length of the latest history table, the length of the 

compressed tables and other compression related settings are defined independently for 

each history table.  

5.2.1.3 Database interfaces 

To connect the database into systems providing data the RTDB has couple of 

supported options: 

 OPC DA/HDA/AE and UA clients for data acquisition from control systems into 

the database 

 OPC DA/HDA servers to provide access to real-time, history and aggregated 

history data. 

 OPC UA server to provide standard platform independent interface to the data 

available in the Data Abstraction Interface. 

 Data Abstraction Interface VtrinLib. 

 JavaScript API for web browsers to enable platform independent user interfaces. 

 Web socket server API to the Data Abstraction Interface. 

 Direct interfaces to the data storages such as direct SQL queries/commands. 

 

The access for 3
rd

 party systems is mainly provided with the use of OPC interfaces. 

The OPC stands for Open Platform Communications and is a standard from 1996 with 

name revised in 2011. It specifies the communication of real-time process data between 

devices to better the interoperability of different manufacturers’ solutions. The OPC 

design is such that after the OPC server is configured for a particular hardware the 

clients with same configuration can access all the data the server is sending. The OPC 

Data Access (DA) is a subpart of the OPC standards and is focused on dealing with the 

real-time data while the Historical Data Access (HDA) deals with the handling of 

history data. Events and alarms are handled with the OPC EA standard. The JavaScript 

and Web socket server interfaces are related to the visualization and are more closely 

examined in the later parts of this chapter. 

   

5.2.2 Calculation engine 

The calculation engine developed is a solution for running non real-time 

applications on a PC computer working with data from station level or higher. As 

another substation automation building block running internal logic it is intended to 

supplement existing systems. The calculation environment focuses on functions which 

don’t need to guarantee short response time i.e. are not time critical. This is what differs 
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it from existing IED applications. Additionally this novel environment is intended to 

utilize historical data instead of live data.  

 Architecturally the calculation engine is extensive environment meaning it is 

built so that it allows adding new functionalities through addition of pluggable 

components without the need of rebuilding the whole environment.  3
rd

 party 

application development is made possible but a security mechanism for prohibiting this 

can also be used if solution requires. The environment reuses as many existing 

components as possible and currently it draws from existing relay configuration tool 

PCM600 and RTDB for historical data storage. This allows for faster development and 

makes end user experience resemble as much as possible other environments for 

definition and execution of substation applications. The calculation environment is 

configured using a model where logic and data flow is graphically composed from 

function blocks which can be bundled into function block libraries. 

 

5.2.2.1 Architecture overview 

The main component of the calculation environment is the server which is a 

Windows service running continuously on a PC computer. It is not an actual server per-

se but a kind of “application server” hosting user-definable applications processing data 

from RTDB running on the same computer. While calculation engine is primarily fed 

with data from RTDB it can also access OPC servers directly for special purposes. An 

overall view of the architecture is presented in the Figure 5-2. 
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Figure 5-2 Calculation environment architecture with its major components named. 
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The execution engine of the calculation environment is responsible for running the 

applications intended for data analyzing. Its task is to keep track of application status, 

triggering and running etc. The applications are created and customized using PCM 600 

relay configuration tool.  

In addition to applications the environment hosts also various services which 

provide some specific functionalities such as debug logging and COMTRADE import 

service, which imports disturbance recordings into the RTDB whenever new file is 

detected in the file system. The data input and output from the applications is handled 

by a service called Streams Service. Along with it comes interfaces accessing any 

external data from application point of view. Whatever has been collected to RTDB via 

OPC is visible to the applications. The AFL services provide ways to run functionalities 

developed for ABB IEDs in the calculation environment. 

The plugins are the final major part of the environment’s architecture. They are 

designed to add flexibility and easing of deployment of the system. A plugin is a self-

contained component that adds features to the environment. Function block libraries, 

services and stream providers are pluggable as an example.  

5.2.2.2 Applications and function blocks 

The main purpose of the calculation engine is of course its capability to provide 

ways to automatically analyze the gathered data from substation into meaningful 

information. This is achieved through running applications under calculation engine that 

process information gathered from primary devices i.e. IEDs. The calculation engine 

allows for multiple applications to be run simultaneously and independently from each 

other. The applications are made using function block logic and thus require very little 

knowledge of actual programming. The calculation engine has a library of generic 

ready-to-use function blocks each performing a simple task and by combining those 

more complex analyzing is made possible. The major advantage of function block logic 

is that it satisfies both the needs of large flexibility requirements concerning the 

applications and at the same time relative ease of use. Figure 5-3 shows an example how 

applications are formed and how blocks’ operation can be tuned by changing its 

parameters. 
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Figure 5-3 Example application made using calculation engine function blocks and 

how blocks’ operation can be affected through setting parameters. 

After an application diagram like in Figure 5-3 is built the execution engine 

calculates a proper running order for all of the blocks. The order is decided so that no 

block can be initiated before all of its inputs are calculated. This effectively prevents 

using feedback loops within same diagram. Application is triggered by blocks with 

triggering capabilities which range from periodic triggering to condition based such as 

RTDB variable value change. When triggered the application is run once through and 

the results are recorded as specified. If solution requires the use of looping logic such as 

iterative calculation, there are blocks that can execute the application again and again 

until the desired conditions are met. Users can add complexity by cascading 

applications so that after one application finishes it triggers another which takes the 

analyzing further. There is no limit in the amount of cascaded applications. If the default 

function block libraries are not enough to achieve some desired logic then users have 

the option of programming additional function blocks using C#. By being pluggable 

objects these new libraries extend the functionalities of the calculation engine while 

making no changes into the core of the calculation engine. This makes 3
rd

 party 

solutions independent from the development of calculation engine itself.  
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5.2.2.3 Data handling 

 

The major challenge that substation wide calculation faces is its mixed nature of 

how the data flows into the database. Only some of the devices in the substation operate 

in real-time while others may have unpredictable delays in their operations. Generally 

the primary devices and their designated IEDs operate in real-time, but the records of 

their signal outputs can still arrive at the history database in random order and at 

random intervals. This can be the result of problems in the communication line or 

TCP/IP protocol’s characteristic of how information is transferred using multiple IP 

packets. These examples are situations where continuous stream of data gets mixed up 

on the way to the RTDB, but some of the measurements are not even intended to be 

recorded continuously. One example of this kind of data is the disturbance recording 

which is saved only during faults and covers only a few seconds.  Same data transfer 

related problems affect the fetching of disturbance recording into the database. To 

combat this problem the internal clock of the system differs from the real-time with an 

assumed safe margin offset which ensures that no data will appear in the input stream 

after the stream has been processed.  

 We have already established that data from substation comes in various forms 

and each data source has its own characteristics which require different approach when 

executing calculations. This is why the data output and input is being handled as 

streams of data instead of direct value transfer. Streams hide the varying nature of 

substation data from end user and provides uniform interface for the streams.  Because 

of this abstraction the person designing the applications has to only concern himself 

with the direction of data transfer – the output or input stream.    

5.2.3 Web user interface for visualization 

Probably the most critical part of big data analysis is the visualization of the results. 

This is the phase where raw and even calculated data becomes information for the end 

user. In this smart system analyzer concept the visualization is intended to be done 

using a newly developed web user-interface platform. It is designed to be independent 

from existing ABB solutions and as such it is possible to connect it to various different 

environments. The platform client is based on HTML5 and Websockets. The support of 

websockets makes greater level of interaction between browser client and server 

possible when handling live content such as streams of process data.  The data access 

from client side browser to the server side data is provided by JavaScript client 

application programming interface (API). This API makes connecting to databases 

possible without the need of actually copying data. Currently it is possible to connect to 

SQL databases and those that support Object Linking and Embedding (OPC). The 

Smart System Analyzer concept uses MicroSCADA Historian as database which is 

accessed through data abstraction layer illustrated in the Figure 5-4. 



41 

 

 
Figure 5-4 The Web UI’s (View) principle of connecting into the RTDB through data 

abstraction layer. 

The visual look of different UIs is made by using Dasboard Editor presented in 

Figure 5-5. The editor provides basic building blocks for UIs through widget library. As 

default the library includes various trend charts, lists, gauges and pie charts. Along with 

the premade objects comes base widgets with examples and tutorials on how to 

implement one’s own solutions. As the default library grows the need for programming 

decreases when creating new UIs. 

 

 

Figure 5-5 Editor for generating and configuring WebUI’s for RTDB. 
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5.3 Proof of concept testing in virtual environment 

In this chapter the system is tested as a whole functioning unit with all pieces put 

together. The case is assumed to be an ideal one with process database completely done 

by the specifications of IEC61850. This doesn’t reflect the typical real life scenarios but 

it makes the database handling a lot simpler. It should be pointed out that this test is 

purely intended to test the system instead of the big data handling principles. The data is 

generated through simulating the process points in SCADA system which are then 

relayed into the Historian database. The raw data is then read and processed in the 

calculation environment after which the results are saved back to the database. The 

system functions just like it would in a real scenario. A simple circuit breaker condition 

monitoring was chosen as the case for study.  

 

5.3.1 Circuit breaker 

Circuit breakers are devices, which are used to open and close electrical circuits. In 

electricity distribution the circuit breakers form the backbone of network protection 

being the only component, which has the ability to disconnect live lines without taking 

damage, which would prevent further operations. Circuit breakers differ from 

conventional switches in their capability to break currents multiple times the nominal 

operation current. The most important task of a circuit breaker is to interrupt fault 

currents caused by short circuits or earth-faults and thus protect rest of the infrastructure 

and its users. In these cases the opening command is usually issued by an IED which 

has detected an anomaly e.g. currents that exceed the safe levels. The disconnecting and 

reconnecting after fault has been cleared should be carried out so that the system 

stability is maintained at all times. The operational requirements of the circuit breakers 

have steadily grown at the same pace as the electricity distribution systems have 

evolved to meet the ever increasing power requirements. The requirements on live tank 

circuit breakers may be as high as 80kA current interrupting capability at 800kV rated 

voltage. The earliest circuit breakers were based around oil and compressed air as the 

insulating medium to extinguish the electric arc. Nowadays SF6 gas operated circuit 

breakers have replaced the traditional methods almost completely at high-voltage 

applications. This is because in general circuit breakers containing SF6 gas are less 

bulky at the same ratings and therefore more economical choices. (Haarla, et al., 2011) 

The Figure 5-6 shows a cross-section of typical SF6 circuit breaker and its components. 

The red line shows the current path under normal operation i.e. when the circuit breaker 

is in closed position. 
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Figure 5-6 Main components of a typical high-voltage SF6 circuit breaker. (ABB, 

2013a) 

 

All kinds of switching devices have two different states of operation – the normal 

and the operational state. Most of the time the switch has to conduct currents with as 

low resistance as possible to minimize the losses. However the switch has to be able to 

turn from conductor into insulator or vice versa at moment’s notice. This change of state 

only takes few tens of milliseconds. The current interrupting sequence is illustrated in 

Figure 5-7. 
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Figure 5-7 SF6 circuit breaker current interruption operation cycle. (ABB, 2013a) 

   

The current interruption sequence begins with the separation of main contacts which 

carry the current through the breaker under normal operation. Separation causes arcs to 

form which in turn start to heat up the gas inside used as insulator medium. The 

pressure increases in the puffer volume because of this. When the contacts move far 

enough from each other a channel for high-pressure gas is opened and it is blown out 

from the puffer volume through the nozzle. The blast cools the arc and eventually 

extinguishes it. It is worth noting that current flow doesn’t stop right after the contact 

surfaces separate because the electric circuit is maintained through the arc. At the very 

moment of separation the contact surfaces partially melt and vaporize which in turn 

creates favorable conditions for arc to form. Because of this chain of events every 

current interruption sequence takes its toll on the circuit breaker. Eventually mechanical 

wear from repeated operations leads to the failing of circuit breaker. (ABB, 2013a) 

  

5.3.2 Circuit breaker maintenance 

The ABB made circuit breakers can have a service life exceeding 30 years and 2000 

or 10 000 mechanical operations depending, which class of circuit breaker is in 

question. This kind of lifespan is achieved if the circuit breaker serviced and maintained 

appropriately. For each circuit breaker type the operating and maintenance instructions 
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define time intervals and activities for three types of maintenance: ocular inspection, 

preventive maintenance and overhaul. The ocular inspections are done normally at 1-2 

year intervals to keep in track with circuit breakers overall condition. This method 

naturally reveals only major problems as internal condition can’t be evaluated. 

Preventative maintenance is either performed after 15-years of service or earlier if the 

breaker reaches maximum permissible electrical wear. Finally after 30 years the circuit 

breaker is taken out of service for a complete overhaul where contact surfaces and other 

parts subjected to mechanical wear are replaced. This major overhaul is expected to add 

another 10 to 15 years of service for circuit breaker depending on the environment 

stresses it is exposed to.  

A circuit breaker’s life cycle costs (LCC) are the sum of the initial cost of acquiring 

the breaker, all the maintenance during lifetime and repair costs after failures in present 

values. Typical LCC calculations for ABB circuit breaker show that the cost of 

maintenance and repair donate only about 1/6
th

 of the whole. As an example the Figure 

5-8 shows how LCC forms for circuit breaker type HPL 420B2. The time span was 

assumed to be 30 years with interest rate of 5%. The overhaul costs after 30 years are 

included in the maintenance portion. (ABB, 2013a) 

 
Figure 5-8  Circuit breaker’s life cycle costs divided into initial purchase, maintenance 

and repair costs. (ABB, 2013a) 

 

There is an ongoing trend of shifting from purely time based maintenance into 

condition based maintenance or a combination of these two. To be able to incorporate 

condition based maintenance one must first get reliable information about the real 

condition of maintainable device. Solutions for on-line condition monitoring of circuit 

breakers have existed for some time now, but they were mostly used in special cases. 

Generally on-line monitoring was applied to either very important circuit breakers or 

whose manual inspection would have been too time consuming and expensive. 

Nowadays however the IEDs have built-in functions for circuit breaker condition 

monitoring. This analysis could be shifted to substation level computer with access to 

all measurement data as well as possibility to link additional information for active 
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analysis of circuit breaker’s condition. System could supervise power supply voltage 

and current, motor circuit, contact travel (giving information about speed, overtravel 

and damping), operating times and speeds, damping time, ambient temperature and 

count of the number of operations to name a few. Some of the mentioned functions can 

be performed with normal setup of the substation and some require additional sensors to 

be installed. 

5.3.3 Application for circuit breaker condition monitoring 

To be able to analyze anything some data points are needed. In this case it is 

assumed that a substation called Herwood with 4 outgoing 110kV bays requires solution 

for circuit breaker condition monitoring. It is also assumed that the fault current 

measurement can be acquired into the SCADA system. In a real scenario this is rare as 

current information is usually gathered only for the steady-state operation of the 

network. However if this system were installed on a substation computer it would have 

access to fault current information through disturbance recordings. These simplification 

are made, because simulating SCADA signals is much easier than creating plausible 

disturbance recordings. 

First task is to determine how to evaluate circuit breaker condition. The 

characteristic electrical weariness curve seen in Figure 5-9 for type LTB 170 D1/B 

circuit breaker can be found from its manual. It represents the maximum permissible 

electrical wear of the device.  

 
Figure 5-9 Maximum permissible electrical wear of a 170D1/B circuit breaker (ABB, 

2013a) 

Graph shows that the electrical wear depends on not just the number of operations, 

but also from interrupted current. Logically interrupting higher short-circuit currents 

result in higher amounts of electrical wear. Simplest way to evaluate circuit breaker 



47 

 

condition would be to count its number of operations, but the graph clearly shows that 

this method could produce misleading results. A more sophisticated method is to take 

into account the interrupted currents by using following equation: 

 

 ∑       (1)  

 

Where: 

n Number of short-circuit operations  

I  Short-circuit current, kA(rms)  

k An exponent in the order of 1.8-2.  

T A total permissible number, specific for each circuit breaker type  

 

Now that the needed measurements are defined the configuring of SCADA database 

can begin. Some database engineering is required to create the process points and to link 

them into the historian database. MicroSCADA acts as SCADA system in this 

simulation while MicroSCADA Historian act as RTDB.  

Nowadays these two products come together and their configuration is streamlined. 

In MicroSCADA user can create logging objects which are used to link process points 

into the historian database. Whenever a process point is linked with logging object a 

variable is automatically created into the RTDB and is named according to user 

specified conventions. These conventions can be configured using simple SCIL scripts 

to suit the needs of different databases. In addition single SCADA system can have 

multiple logging objects and therefore multiple different ways to compose a variable 

name tag to help to merge database sections with different naming conventions. The 

name tag can be created in any way by combining the different attribute fields of a 

single SCADA process point. For example in our case the name tag composes of the 

Object Identifier (OI) and the Item Name (IN) attributes like shown in Figure 5-10. OI 

attribute holds the hierarchical information of the process point’s location divided into 

bay, voltage level and device fields.  IN attribute is used for signal mapping of the 

IEC61850 signals and therefore contains the signal name. To get a name tag like 

described in the chapter 4.2.3 only these two attributes are needed, assuming the system 

is built around the IEC61850 standard. For described calculation purposes the circuit 

breaker state information and a supposed short-circuit current information is only 

needed. 
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-------------- Naming pattern specified with SCIL code --------------

MicroSCADA Database

Historian Database
 

Figure 5-10 Principle how SCADA database variables are linked into the RTDB and 

how their name tags are formed there from SCADA attributes using SCIL definitions. 

 

The Figure 5-11 represents flow of data within the application. Total of four RTDB 

data points are needed for this type of condition monitoring. Two of which are actual 

measured data streams from SCADA system and two are used to store results in 

between the calculations as calculation engine is not intended for data storage but 

temporarily during analysis. 
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Figure 5-11 Dataflow diagram of the application for circuit breaker monitoring.  
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Now that the database is in working order and named properly the application itself 

needs to be designed with PCM 600. There are four main parts that need to be 

addressed: triggering, inputs, calculation and outputs.  Triggering is done with 

“waitForSignal” block which triggers the calculation after every change in the circuit 

breaker position. This means that calculation is triggered not only after every circuit 

breaker opening but at closings too. The signals indicating circuit breakers current 

position and its cumulative amount of openings are linked with a custom block called 

“CBoperationsCounter”. The block detects if the breaker opened or closed at current 

trigger. With every opening the operations count value is increased by one and stored to 

the database with current time. After this the “ElectricalWearAnalysis” block reads the 

signal value of short-circuit current and calculates the electrical wear caused using eq. 1. 

The result is then added to the current electrical wear read from the RTDB and new 

value is saved into the database. The function block design of the application is shown 

in the Figure 5-12. 

 

 
Figure 5-12 Circuit breaker condition monitoring application design with function 

blocks.  

 

Application is then made active and some 800 circuit breaker openings and closings 

are simulated from SCADA with random short-circuit currents ranging from 1kA to 

10kA. The Figure 5-13 shows the cumulative electrical wear and the count of openings 

plotted in a same graph. The Historian supports adding warning and alarming limits to 

database variables through newly added “Rule Engine”. With Rule Engine it is possible 

to create conventions, rules, according which information is displayed. If warnings and 

alarms were set correctly the user would get an advance notification when a circuit 

breaker is nearing its overhaul. 
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Figure 5-13 Simulated results of circuit breaker operations count (orange) and 

corresponding cumulative electrical wear (yellow). 

 

This simple case demonstration proofs that the system functions as intended when 

brought together. In addition it shows clearly the potential value of data mining 

applications in power systems. These systems are usually operated by a handful of 

people with limited time to go through historical statistics. There is no doubt that a 

human operator could reveal the same results as automated analyzing does, but it takes 

dedication. Because of this, even simple applications can create results which lead to 

cost savings. Similar studies using historian database has been made by Mikko Söyrinki 

in his Master thesis Transformer Condition Monitoring in SQL Database. (Söyrinki, 

2008) 
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6 PILOTING THE SMART SYSTEM ANALYZER 

6.1 Distribution network of Elenia Ltd and the pilot 
project 

The Elenia Ltd. is a Finnish electricity distribution company operating from 

Tampere. Elenia supplies electricity for over 410 000 customers covering over 100 

municipalities with a network spanning from Tavastia to Ostrobothnia. This network 

covers over 50 000 km
2 

and is illustrated in the Figure 6-1. (Elenia Ltd., 2014) From the 

point of big data the Elenia has approximately 140 primary substations with an average 

of 8 feeders per substation. In additions to this some 5000 remotely controllable 

disconnectors and 170 main power transformers. To approximate the total amount of 

processable data we can assume that there are around 5 to 10 data points per 

disconnector and few tens of data points per feeder. This leads to a total amount of 

100 000 data points if the analyzing functions would be applied to every substation in 

the network.  

 
Figure 6-1 Elenia Ltd. area of operations illustrated with darker blue color on the map 

of Finland. 
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The Elenia has agreed to participate in a joint project testing the analyzing concept 

described in the chapter 5. The pilot is run under the Finnish Smart Grids and Energy 

Markets (SGEM) project. The main goal of the SGEM is to speed up the development 

of smart grid related solutions which can be demonstrated in practical environments. 

The pilot is planned to run in three distinct phases with increasingly demanding goals 

after each completed phase. The first phase is to test and demo the system with offline 

disturbance recording data provided by Elenia. The main goal of this phase is to iron out 

the bugs in the system and develop a few working functions for analyzing disturbance 

recordings automatically. After all parties are satisfied that the basic functionalities are 

working, the system is then installed into the Elenia’s servers and run on real-time data 

from one substation. The final step will be increasing the coverage of the system into 

multiple substations. The incremental nature of the pilot was chosen to lessen the 

challenges of big data related problems and to get the project underway as fast as 

possible. 
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There are three different Master’s thesis workers involved with the Elenia pilot. This 

one concentrates on the single feeder solutions with the goal of developing working 

algorithms for automated analysis of the events. Ville Jokela’s work is to develop 

scripts and tools on how to apply working functions into greater amounts of 

feeders/bays. With 100 000 data points in Elenia’s network it is clear that the mapping 

can’t be done by hand.  Third Master’s thesis worker Tuan Vu has the responsibility of 

developing the ways for visualization of the results through Web User-Interface. The 

system principle intended for Elenia’s pilot case is shown in the  
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Figure 6-2 System overview diagram used in the Elenia pilot case when analyzing is 

performed at the control center level. 

 

The goal is to gather data primarily from SCADA system and disturbance 

recordings with additional configuration data, which is essential for some analyzing 

functions, read directly from file system. Elenia has already a system in place which 

fetches disturbance recordings from relays whenever a new recording is made. This 

recording is then saved in an orderly manner in which the directory path represents the 

equipment model of the Elenia’s network hierarchy. When importing the disturbance 

recordings, the directory paths can be used as means to sort out where the recordings are 

originating at.  
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Possibility of replicating the data from Elenia pilot to the ABB file server is also 

looked into as it would give an enormous source of testing data for prototyping 

purposes. The ABB Clionet service could be an ideal solution for this as it is already an 

implemented service. The present Clionet is data-sharing and backup service primarily 

intended for secure keeping of technical documentation of protection relays throughout 

their lifespan. Access can be granted through web-interface so that maintenance staff 

has always access to up-to-date information. Naturally some of the big data mining 

results could be linked to the existing Clionet services and used to support the 

maintenance procedures.  

6.2 Fault Location Analysis 

The fault location calculation is not a new invention in the power systems and grid 

management. Many relays today perform fault location analysis based on the short-

circuit currents and line segment impedances which are obtained from the relay setting 

parameters. The fault-current, fault-impedance and the calculated fault distance is then 

sent to the DMS system for The main objective of fault location calculation is to 

achieve fast, selective and reliable operation for faults on a protected line section. 

Besides this the information is of great importance when operators are trying to 

determine where to send the repair crews. Accurate results decrease greatly the 

downtime of the protected lines.  

 

6.2.1 Calculating the Fault Location 

The calculation of fault location in relays provides impedance-based fault location 

as result. The fault location can be calculated with relatively high accuracy from short-

circuits and even earth faults. However earth faults have some limitations when 

calculation is applied to isolated networks. The calculation is based on the fundamental 

frequency component of the fault current and phase voltage phasors. The calculation is 

done in two steps. First the type of the fault is detected because it rules which kind of 

mathematical solution is required to get the correct result. Identification of the faulty 

phase is based on combined impedance and current criteria. There exists three different 

fault types which require different method for calculation: single-phase earth faults, 

phase-to-phase short circuit faults and three phase short circuit faults. 

As soon as a fault condition is recognized the fault distance calculation starts with 

the correct one of the seven impedance measuring elements modeled as fault loops. The 

one used for three-phase short-circuit is presented in Figure 6-3.  
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Figure 6-3 the substitute circuit for three phase short-circuit calculation.  

The fault loops are parameterized with the positive and zero sequence impedance 

settings as an initial data. The short-circuit calculations require only the positive 

sequence impedances. The impedance values can be obtained from the datasheets, but 

they are only good for certain tower configurations. To correct the values the values are 

adjusted according to the actual install configuration of the power lines. 

The inherent result of the fault distance calculation is the ohmic fault loop 

impedance value: 

  

                               (2)  

 

Depending on the fault type the composition of terms       ,        and        is 

different.  

The accuracy of the fault location calculation is affected by steady-state asymmetry 

of the system. In reality, power systems are never totally symmetrical, which produces 

errors if assumed so. To mitigate the effect of steady-state asymmetry the calculation 

uses delta quantities instead of relying on the actual values. The delta quantities describe 

the change in the measured quantities caused by the fault: 

 

                     (3)  

 

To be able to calculate the change in quantities the pre fault values must be sampled 

before the fault condition occurs. Another major source of error for correct distance 

calculation is the current caused by the load which is made even worse with higher fault 

resistance values. The delta quantities can be used to compensate for the effect of the 

loading. There are other factors that have serious impact on the accuracy of the results. 

The most problematic being the fault resistance. Basically the smaller the fault 

resistance the more accurate the calculation gets. This is why earth-faults are the most 

problematic as in some cases the fault resistance can be quite high. Also the saturation 

of the current or voltage transformers at some harmonics deteriorates the fault distance 

estimate. (ABB, 2012) 
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6.2.2 Benefits of FLOC analysis done at higher than bay level 

As already mentioned, the fault location calculation is currently performed mostly in 

relays and results sent back to the control center of the network. The information is then 

linked with the distribution management system which can pinpoint the possible fault 

locations from the map. This makes sending repair crews more effective as there exists 

a good estimate where the repair crew should start the search. 

Up until now the calculation of fault location of earth-faults has been impossible in 

networks that are separated from ground potential. The majority of Finnish 20kV 

networks are built like this. However recent developments have made possible the fault 

location calculation in these kind of networks and more advanced algorithms are being 

developed to allow for calculation in compensated networks. To be able to benefit from 

these new developments requires updating the software in the relays, which in turn leads 

to mandatory proofing tests to that relay and its primary devices. It goes without saying 

that taking out feeders for overhaul just for software updates is not feasible and surely 

not financially arguable. However if the calculation were done centrally at substation 

computer the upgrading wouldn’t affect the normal operation of the network. The owner 

would benefit from all the developments with as fast pace as possible. As the algorithms 

evolve to handle more complex situations the processing power requirements increase 

too. If the relays are expected to last for several decades in the network the processors in 

them will be severely outdated at some point compared to the day’s standards. Updating 

the one centralized substation computer is an easier option compared to updating all of 

the substation IEDs 

Another major advantage of FLOC calculation performed at higher levels than at the 

IEDs is the wider perspective it allows for. When fault occurs the fault location 

accuracy can be improved by combining data from various sources. For instance if 

network contains measurement units at secondary substations the calculation can benefit 

from their measurements. Additionally integration with DMS could provide always up-

to-date network topology settings which are needed for accurate results. Another 

example of combining data sources is the use of lightning locator services, which are 

already openly available online. As one of the most common cause for faults are the 

lightning strikes to and near the transmission lines, it would be very beneficial to be able 

to rule these faults out as recognized to be caused by thunder storms. This is because it 

would give the operators instant knowledge that the occurred faults were indeed of 

passing nature and not part of some major issues building up. In addition recognizing 

the faults helps when making analysis based on historical data. 

The mentioned methods are all based on calculations with real-time data, but one of 

the major differences between station level computing is its ability to gather and store 

history of the events. Fault location results can be of value if used to predict upcoming 

faults. Performing the location calculation not just for permanent faults but also for 

passing faults could reveal incidents that would otherwise be overlooked. One example 

of this is a tree barely hugging a transmission line. It would produce frequent 



57 

 

disconnects fixed by autoreclosures until it eventually falls down on the line severing 

the cables completely. Such a case is demonstrated in the Figure 6-4. If the fault 

location would be calculated from each of these disconnects preceding the actual fault a 

pattern emerges, which can be used to give an early warning for users. If the repair crew 

is send before the tree falls completely down the repair costs would be considerably 

lower. Vesa Hälvä established in his master’s thesis commissioned by Elenia that a need 

for a system analyzing repetitive reclosings exists. (Hälvä, 2013) 

 

 

Figure 6-4 Earth-fault distance calculation results of one feeder/bay. The fault distance 

is on the y-axis and the event occurrence time on x-axis. 

The green bars represent the moment when an earth-fault is detected in the system. 

It is always followed by another bar either yellow or red. Yellow bars indicate that the 

fault passed after reclosing of the circuit breaker and the red represents faults that were 

not corrected by such action. It can be seen that before each permanent fault there are 

passing faults which originate at approximately the same distance as the permanent fault 

was eventually calculated. Slight variation of the distance is to be expected as earth-

fault calculation accuracy is affected by other events as discussed in the chapter 6.2.1. 

 

6.3 Network protection operation time analysis 

6.3.1 Protection functions within an IED 

Modern IEDs contain a great variety of different protection functions designed to 

detect and react to various different unwanted situations. The amount of protection 

functions IED has can vary from only a few to several tens. In this chapter only the most 

commonly used feeder protection functions are presented while there exist many more. 

The majority of feeder protection functions deal with over currents caused by short-
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circuits or earth faults as these are the biggest threats for the safe operation of the 

electrical grid. There are also functions that monitor over- and under-voltage situations. 

Overcurrent protection deals with currents that exceed the levels of safe operation. 

These are usually caused by a short circuit on the power transmission line. Most 

common causes for short-circuit faults are caused by lightning strikes on the lines, 

mechanical failures of the system or ice and snow building up on the cables. Modern 

IEDs offer multiple options for overcurrent protection which can be divided into two 

categories according to their way of operation: directional and non-directional. Non-

directional functions simply monitor the current magnitude while the directional 

functions also calculate the direction of the current flow. 

Another major source of overcurrents is earth-fault. Earth-fault is caused when 

phase conductor gets in contact with earth potential either directly or through other part 

of the system. This usually happens as a result of a failure in the insulation or as an after 

effect of some other type of fault. IEDs have functions for detecting these types of faults 

just like with the short-circuit situations. The nature of the earth fault makes it harder to 

detect than the short circuit induced overcurrents. The earthing resistance is in some 

cases so high that it is impossible to make a distinction between a fully working and a 

faulty system just by current measurement. Because of this the earth-fault detection 

relies on residual current measurement which should be zero or close to zero in a 

balanced load situation. The earth fault disturbs this balance and causes residual current 

to rise. In many cases it is difficult to achieve selective earth-fault protection based on 

the magnitude of residual current only. To obtain a selective earth-fault protection 

scheme, it is also necessary to take the direction of the residual current into account. 

Detecting earth-faults in isolated neutral, resistance earthed or reactance earthed 

systems is impossible by using the conventional method of measuring only the residual 

current. In isolated neutral systems the earth-fault current can only form electrical short-

circuit through the line capacitances of transmission lines. This leads to 

undistinguishable low fault currents which are hard to detect. To detect faults in these 

kinds of systems the used method is to measure the rise of system neutral voltage, the 

residual voltage, which tends to rise during earth-faults. 

A more specialized case of earth-fault is the intermittent earth-fault encountered 

especially in compensated network with underground cables. As the current trend is to 

use underground cabling when building new transmission lines there is a growing need 

for this type of protection. Intermittent earth fault is caused by cable insulation 

deterioration which causes it to lose its insulation qualities. Eventually cable insulation 

fails to withstand the voltage difference between phase-to-earth and the fault is initiated. 

The intermittent earth-fault differs from ordinary earth-fault the nature of the fault 

current. During intermittent earth-faults the fault extinguishes itself when the current 

drops zero as illustrated in Figure 6-5. This causes very short transients in residual 

current and residual voltage waveforms which can be picked up by IED logic. There are 

several factors which affect the magnitude and frequency of these transients such as 
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fault resistance and the time at which the fault occurred in respect the voltage’s 

waveform. (ABB, 2012), (Haarla, et al., 2011) 

 

Figure 6-5 Typical intermittent earth-fault characteristics. (ABB, 2012) 

  

6.3.2 Calculating the operation time 

First thing is to define what the operation time of protection is from IED’s 

perspective. The sequence of events happening internally within an IED during fault is 

shown in Figure 6-6. 
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Figure 6-6 IED’s internal signals in an overcurrent protection event.   
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The relay records the current signal which exceeds the allowed limit. This leads to 

internal start of protection functions which are designed to counter the fault in question. 

As the start signal rises the internal clock also starts to run. IED stays in dormant mode 

until enough time has passed from the point of start and switches into operate mode. 

The correct amount of time is determined from the configured settings which are set so 

that the protection as whole works selectively and reliably. If the fault is cleared during 

the start phase the IED returns back to normal state where all the protection function are 

dormant. However if a protection function gets to the operation mode the IED sends 

signal to the circuit breaker to open and the line segment managed by the IED is 

disconnected from the rest of the network. If protection was designed and configured 

right the fault is cleared from the system. The protection operation time is the time 

between the start signal going active and circuit breaker being registered as opened.  

Now that the goal is clear the focus can be shifted into real world application, which 

is seldom that straightforward. After getting the disturbance recording into the 

calculation environment the first thing is to read through the binary channel signals and 

check if the circuit breaker open signal has gone active at any point. If it hasn’t and no 

protection start signals are detected either then there is no need for further calculations 

as current recording contains no fault event. In other case the analyzing can begin. 

Analyzing starts from the circuit breaker opening time calculation. This is achieved by 

finding the last moment from the recording where circuit breaker opened, and the fault 

perceived, and the moment before that when the circuit breaker was last registered as 

closed. The circuit breaker state is marked with double binary, which is stored into the 

fault recording as two separate binary channels. The circuit breaker operate time is 

calculated as time between points A and B shown in the Figure 6-7. 

1

0

1

0

CBPosOpen

CBPosClose

BA

Figure 6-7 Signals indicating circuit breaker state and its operate time marked between 

points A and B. 

 

There are some faulty situations to consider when calculating the circuit breaker 

opening time. The algorithm can detect if the open and close signals overlap which is 

physically impossible as this would mean that the breaker is open and closed at the 

same time. This can be the result of either circuit breaker micro-switch malfunction or 

internal IED fault. In any case it is recorded to the result log.  
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In a real case multiple protection functions are activated instead of just one like 

presented in the example Figure 6-8. The next task is to pick right one of them because 

only one got to the operate stage causing the circuit breaker to open. The simplest 

method to achieve this is simply by finding the operate signal first which there should 

be only one. After the correct protection function is found and its start signal time of 

origin detected the application can calculate the total time needed for protection to 

operate 
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Figure 6-8 Events recorded by an actual IED during earth-fault with multiple functions 

active of which directional earth fault protection operated. Yellow lines indicate 

protection START-signals and red line indicates OPERATE-signal. 

The next thing is to compare the calculated operate time against the setting values 

specified for the protection function in question. If the time exceeds set values the 

analyzing result is tagged as an alarm or warning depending on the overshoot. Finally a 

record is made into the RTDB table, which can be then linked onto the user interface for 

visualization purposes.  

6.3.3 Benefits of the protection operation time analysis 

The main motivation behind this kind of analysis is the ability to supervise if the 

protection is working as intended. Currently the information about the protection 

operation time is obtained only after mandatory proofing tests or by manual analysis of 

disturbance recordings. To be able to detect defects in protection operation as soon as 

they emerge is extremely beneficial as failing protection can have very serious 

consequences. The worst case would be a loss of life, but majority of cases damages 

would be limited to unnecessary disconnections of correctly working lines.  

Reading the signals necessary to determine protection operation time yields also 

information of circuit breaker’s operation time. This can be used to evaluate the cause 

of failing to meet the protection time limits set for the IED. Which in turn gives 

operators an advance warning of circuit breaker’s condition deterioration. Using simple 

open/close signals measured by micro switch located at the main axle of circuit breaker 

only gives information about the breaker as a whole unit. If circuit breaker operate time 

would be calculated from the current signals instead of the state signal the calculation 

would get the performance results of every phase contacts individually. Adding this to 
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already existing analysis wouldn’t need much further development as all the 

information necessary is already read into the calculation environment. 

With history database comes always the option of detecting long term changes in 

operation. Following the operation times of a circuit breaker over an extended period of 

time could reveal problems causing the circuit breaker operation time grow steadily. It 

is not enough to simply monitor the operation times of circuit breaker as there are other 

things affecting the performance such as the ambient temperature which in part justifies 

the use of a system like presented in this thesis. All this analysis about the circuit 

breaker operation can add value to the primary circuit breaker condition monitoring 

described in the chapter 5.3.3. 

The protection operation time analysis detects which of the relays internal protection 

functions lead to the disconnection. This is valuable information when combined with 

results of other analysis and information obtained later. The fault location calculation 

for example can detect the type of fault and by comparing the results of these both 

analysis it is possible to evaluate if the correct protection function operated. The IED 

configuration can be revised if discrepancies are found and the protection of the 

network would be improved.   

  

6.4 User interface for visualization of results 

The importance of proper visualization of the results has been mentioned a several 

times already and it can’t be stressed enough. Even the most sophisticated big data 

mining applications are close to being useless if the important results can’t be 

highlighted. Tables and lists are seldom the best option when dealing with masses of 

information. Information flow generated by current systems is so high that users 

become easily overwhelmed. An event list of process automation system is a great 

example of this, as it is flooded with entries when something goes wrong in the system. 

It is a great tool in making decision in real-time, but for a historical presentation of 

system’s state it becomes unreadable as events tend to pile in. 

The user-interface done for this pilot project consists of a main view showing the 

state of the whole distribution network and substation level views for showing more 

detailed information. An example of how the main view could look like is shown in 

Figure 6-9. 
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Figure 6-9 Proposed main view of the web user-interface for Elenia pilot.  

 

The main view divides into three main sections. The map being the most visible one, 

the equipment model tree on the right side of the view and an Alarm log on the right 

bottom side of the view. The map is intended to give a quick overview of the system 

state at all times. It is made freely zoomable to suit the needs of different sizes of 

systems. Another distinctive feature of map view is the use of status symbols tied to 

every substation. These are represented by traffic lights. The green light indicates that 

everything is performing as it should, the yellow sign is reserved for warnings and the 

red is for alarms. It is intended that warnings are given from situations where an event is 

detected which is not considered as an obvious fault e.g. condition monitoring analysis 

has found a pattern emerging with circuit breaker operation. The red is on the other 

hand for clear faults which need immediate action. An example of an alarm could be the 

protection operation failure. Another way of browsing through alarms is the use of 

Alarm Log, which lists all active alarms detected in the system. The equipment model is 

used to navigate within the system. It lists all the substations divided into voltage levels 

and finally corresponding bays. The user can jump to any substation by clicking the 

substation name from the equipment model list. This would produce a detailed view of 

the substation like shown in Figure 6-10. 
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Figure 6-10 Detailed view of the substation events and analysis reports. 

When user opens the substation view he is firstly presented with two logs for alarms 

and warnings. These both hold the active alarms currently in that substation with 

filtering and search functions to find specific item if log has multiple entries or when 

going through log histories. Below the logs is a clear presentation of substation diagram 

used for structuring information. Every bay can have its own presentations e.g. alarm 

and warning symbols lit up if there are any concerning that bay. By clicking the bay 

symbol (or warning/alarm log entry concerning the bay) the user gets into more detailed 

view of the bay. On the right upper corner a more detailed map view of the substation 

and its surroundings is presented. With future systems it could show the network 

topology linked from DMS for example. To the right of the map is real-time weather 

information of the area where the substation is located. The weather data is streamed 

directly from the weather forecast company Ilmatieteenlaitos. Below the map some 

general information can be displayed. In the Figure 6-10 a model of stacked bar graph is 

shown presenting the results of protection operation time calculation. Another way of 

showing the results could be the use of a pie chart which would show the total number 

of operations within substation with every segment showing the ratio of each operated 

protection type. The page can be made to look whatever suits the needs of the end-user 

the best. In any case the goal is to be able to give some kind of general picture what is 

happening at the substation with detailed information hidden until user specifically 

wants to see it. A prototype of how the detailed bay information view could look like is 

shown in Figure 6-11. 
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Figure 6-11 Detailed view of the substation bay and analysis reports concerning it. 

The bay information view gives user a more detailed view of individual bays of the 

substation. The page contains the results whatever analyzing functions are run on the 

substation in question. Some examples could be future adaptation of power quality 

calculation, which would be best presented as graphs to see how they develop. The 

results of fault location history is also presented here with some probability estimates 

for predicted reoccurring fault. From every fault location calculation the original fault 

recording is stored in the RTDB and can be displayed for manual verification. The 

protection log would list all the protection events with their operation time margins 

from the set time limit.  
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7 CONCLUSIONS 

This thesis began by examining the current situation and practices of today’s power 

systems. The grid itself is ageing while at the same time requirements for its reliability 

are getting higher. It was established that electric grid resiliency is something that has 

serious impacts on our everyday life and even economy. During these times of recession 

every new way of improving efficiency and productivity is always welcome. A new 

trend of big data was presented as an option to achieve this. It is clear that this analyzing 

of huge data masses will eventually spread to all fields of industry and might even be 

main way of companies to outperform their rivals. 

The field of substation automation systems has always been about the efficient 

handling of big databases. Therefore developing big data related analyzing for power 

systems is only a logical step to take if the aim is to increase productivity.  

 The main goal of this thesis was to give a closer look into a novel system 

proposed for automatic analyzing of substation data. This system would generate 

another automation level at the substation between the current IEDs and the network 

control center. The system has centralized historian database and a novel calculation 

environment for conducting data mining. This system is built around already proven 

products such as MicroSCADA Historian and PCM 600 relay configuration tool. All 

this makes development and configuration of the system easier and more familiar for 

project engineers. Even though the system is still under development, it shows great 

promise. Basic functionalities are in place and new are being implemented. Elenia’s 

pilot testing revealed that the proposed system can be used successfully to analyze 

actual network data. However as the product development and the testing is still 

underway, it is clear that to get a fully working product, there is still work to be done.  

The major benefits this kind of system is its increased view of the substation events 

as it is not limited to one bay only, instead it has access to every data source within the 

substation. This gives it a distinct edge over current network analysis done at the IED 

level. Additionally it would ease off the work load of current IEDs by taking some of 

the non-time-critical functions to handle. While being non-integral part of the protection 

scheme, the system can be taken off-line at any moment for upgrading and tinkering. 

Because of this the system would be always up-to-date and running the latest analyzing 

functions.  

The proposed system also opens up new possibilities for conducting power system 

analysis as its database is designed to record and manage history data. This makes 

statistical analysis possible with chance to reveal slowly developing events. When 

analyzing functions are upgraded it is also possible to run them with old already 
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analyzed data to get even more accurate results and to make results comparable with 

newer entries. 

  An intriguing possibility to speed up the development of big data analytics would 

be a model where analyzing functions would be given freely for customer and as return 

service the developer of those functions would get access to the raw data. This would 

provide an enormous resource for further research and development. 

Finally some ways to visualize the results of the analysis were looked into. It was 

stressed that finding the right ways for visualization is one of the most critical parts of 

successful data mining solutions.  
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