
LASSE LEHTONEN

TRANSACTION GENERATOR - TOOL FOR NETWORK-ON-

CHIP BENCHMARKING

Master's thesis

Examiners: Prof. Timo D. Hämäläinen

and Dr. Tech. Erno Salminen

Examiners and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 5th March 2014.

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Signal Processing and Communications Engineering

LASSE LEHTONEN: Transaction Generator - Tool for Network-on-Chip

Benchmarking

Master of Science Thesis, 50 pages

7th May 2014

Major: Embedded Systems

Examiners: Prof. Timo D. Hämäläinen and Dr. Tech. Erno Salminen

Keywords: Network-on-Chip, NoC, benchmarking, simulation, Transaction Generator

This thesis focuses on benchmarking on-chip communication networks. Multipro-

cessor System-on-Chips (MP-SoC) utilizing the Network-on-Chip (NoC) paradigm

are becoming more prominent. Required communication capabilities di�er consid-

erably among the diverse set of application categories. A standard and commonly

used benchmarking methodology for networks is needed to ease �nding a suitable

network topology and its con�guration parameters for those applications.

This thesis presents a simulation based tool Transaction Generator (TG) for

evaluating NoCs. TG conforms the Open Core Protocol - International Partnership

(OCP-IP) NoC benchmarking group's proposed methodology. TG relies on abstract

task graphs made after real Multiprocessor System-on-Chip (MP-SoC) applications

or synthetic test cases. TG simulates the workload tasks on Processing Elements

(PEs) and generates the network tra�c accordingly and collects statistics.

TG was initially introduced in 2003 and this thesis presents the current state of

the tool and the modi�cations made. The work for this thesis includes refactoring the

whole program from a TCL and C++ SystemC 1 based code generator to a C++

SystemC 2 based dynamic simulation kernel. In addition to the refactoring, new

features were implemented, such as memory modeling with the Accurate Dynamic

Random Access Memory (DRAM) Model (ADM) package, possibility of simulating

Mobile Computing System Lab (MCSL) NoC Tra�c Patterns workload models and

diversity to modeling the workload.

The current implementation of TG consists of 10k lines of code for the simulator

core, the result of this thesis, and 50k lines of code for the support programs and

example NoC models. Thesis presents 3 example use cases requiring around 100

simulations, which can be executed and analyzed in a work day with the TG.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietoliikenne-elektroniikan koulutusohjelma

LASSE LEHTONEN: Transaction Generator - Tool for Network-on-Chip

Benchmarking

Diplomityö, 50 sivua

7. Toukokuuta 2014

Pääaine: Sulautetut järjestelmät

Tarkastajat: prof. Timo D. Hämäläinen ja TkT Erno Salminen

Avainsanat: piirinsisäinen kytkentäverkko, suorituskykyvertailu, simulointi, NoC

Monen prosessorin järjestelmäpiirit (Multiprocessor System-on-Chip, MP-SoC) käyt-

tävät yhä enenevissä määrin hyväkseen piirinsisäisiä kytkentäverkkoja (Network-

on-Chip, NoC) kommunikaationsa välittämiseen. Järjestelmien vaatiman kommu-

nikaation määrällinen ja laadullinen tarve vaihtelee huomattavasti eri sovelluskat-

egorioiden välillä. Standardi ja yleisesti käytetty metodologia kytkentäverkkojen

vertailuun tarvitaan helpottamaan tarvittavan kytkentäverkkotopologian ja sen kon-

�guraation löytämiseksi eri sovelluksille.

Tässä diplomityössä esitellään simulaatioon perustuva työkalu Transaction Gen-

erator (TG) piirinsisäisten kytkentäverkkojen suorituskykyvertailuun ja analysoin-

tiin. TG noudattaa Open Core Protocol - International Partnership (OCP-IP) NoC

benchmarking group:n määrittelemää metodologiaa. TG perustuu abstraktien sovel-

lusmallien simuloitiin, jotka ovat mallinnettu oikeiden sovellusten tai synteettisten

testikuvioiden perusteella. Sovellusmallit simuloidaan pelkistetyn laitteistomallin

päällä, joka luo työkuorman kytkentäverkolle, josta kerätään statistiikkaa vertailuun.

TG on alunperin esitelty vuonna 2003 ja tässä työssä esitellään sen nykyinen tila

ja työssä lisätyt uudet ominaisuudet. Työn anti kattaa TG:n uudelleenimplemen-

toinnin TCL- ja SystemC 1 -kielisestä lähdekoodin generaattorista C++ SystemC 2

kielillä toteutettuksi dynaamiseksi simulaatiokerneliksi. Työkaluun lisättiin muun-

muassa tuki DRAM muistimalleille, välimuistin mallinnus, tuki Mobile Comput-

ing Systems Lab (MCSL) NoC Tra�c Patterns sovellusmallien simuloimiselle ja

mahdollisuus simuloitavan laskenta- ja tiedonvälityskuorman monipuolisemmalle ku-

vaamiselle.

TG:n nykyinen toteutus koostuu 10 000 lähdekoodirivin kernelistä, joka toteutettiin

tähän työhön, ja 50 000 rivistä lähdekoodia sen apuohjelmille ja esimerkkiverkoille.

Työssä esitellään kolme käyttötapausta ohjelmasta, jotka vaativat noin 100 simu-

laatiota. Nämä simulaatiot kykenee ajamaan ja analysoimaan yhdessä työpäivässä

TG:n avulla.

IV

PREFACE

The work for this M. Sc. thesis was carried out at the Department of Pervasive

Computing at Tampere University of Technology as a part of the NOCBENCH

project funded by Academy of Finland.

I would like to thank Prof. Timo D. Hämäläinen for the opportunity to work on

this project and Dr. Tech. Erno Salminen for the su�ciently long design meetings,

when planning the new features, and elaborate guidance with the thesis. I would

also like to thank Esko Pekkarinen for the help verifying the program during its

development.

I'm grateful for my current co-workers and friends for the healthy competition

that gave me an additional motivation to �nish the thesis, and my family for the

support during the process.

Tampere, 7th May 2014

Lasse Lehtonen

V

CONTENTS

1. Introduction . 1

2. Related Work . 4

2.1 Network-on-Chip . 4

2.2 Design Space Exploration . 5

2.3 Network-on-Chip (NoC) Simulators and Tra�c Generators 6

3. Transaction Generator . 8

3.1 XML Description . 9

3.2 Simulation Results . 11

4. Application Model . 13

4.1 Event . 15

4.2 Task . 16

4.2.1 Trigger . 16

4.2.2 Computation and Communication 19

4.3 Memory Area . 22

4.4 MCSL Tra�c Patterns . 22

4.5 Mapping . 24

5. Processing Element Model . 25

5.1 Scheduling . 26

5.2 Execution Model . 28

5.3 Communication Model . 29

5.4 Cache Model . 30

6. Memory Model . 33

6.1 Accurate DRAM Models . 33

6.2 Memory Areas . 33

7. Network Model . 36

7.1 Custom NoC Integration . 37

7.2 Provided NoC Example Models . 38

8. Summary of TG . 41

8.1 New Features . 41

8.2 Implementation . 41

9. Case Study . 45

9.1 H.264 Application Model . 45

9.2 Di�erence Between NoC Implementations 46

9.3 In�uence of Network Packet Size . 47

9.4 E�ect of PE Mapping . 48

10. Conclusions . 49

References . 51

VI

LIST OF SYMBOLS AND ABBREVIATIONS

fpe Operating frequency of the processing element.

IPC Instructions per cycle.

N (x;µ, σ2) Normal distribution with mean of x or µ, and variance σ2.

t Time.

U(a, b) Uniform distribution between a and b.

ADM Accurate Dynamic Random Access Memory (DRAM) Model

CPU Central Processing Unit

CSV Comma-Separated Values

DMA Direct Memory Access

DRAM Dynamic Random-access Memory

DVB-C Digital Video Broadcasting - Cable

DRAM Dynamic Random Access Memory

DSE Design Space Exploration

FIFO First In, First Out

HDL Hardware Description Language

HNOCS Heterogeneous Network-on-Chip Simulator

IP Intellectual Property

ISS Instruction Set Simulator

KPN Kahn Process Network

LTE Long-Term Evolution

MCSL Mobile Computing System Lab

MoC Model of Computation

VII

MP-SoC Multiprocessor System-on-Chip

NoC Network-on-Chip

OCP-IP Open Core Protocol - International Partnership

PE Processing Element

RTL Register Transfer Level

SoC System-on-Chip

TCL Tool Command Language

TG Transaction Generator

TL Transaction Level

TLM Transaction Level Model

VC Virtual Channel

VHDL Very High Speed Hardware Description Language

XML Extensible Markup Language

1

1. INTRODUCTION

Microchip technology still continues to develop close to Gordon E. Moore's obser-

vations known as Moore's law [30]. He observed that the number of transistors on

integrated circuits doubles approximately every two years. This increase in capacity

allows the creation of increasingly complex designs on a single chip. Nowadays in-

tegrating multiple functions on a single chip is common and such a device is known

as System-on-Chip (SoC).

Continuous development allows the instantiation of multiple processors, memory

elements, interfaces and other functions on a chip, often dubbed as Multiprocessor

System-on-Chip (MP-SoC), to raise the overall computing performance by parallel

computation [15, 47]. These chips are the foundation of many present day's ap-

plications, such as smart phones wich o�er great capability to handle multimedia

applications which weren't possible in the recent past. The Snapdragon S4 processor

[39], for example, is a SoC for mobile applications consisting of a multi-core processor

subsystem based on ARM architecture, a modem subsystem for Long-Term Evolu-

tion (LTE) technology and a multimedia subsystem among other needed hardware,

such as memory.

The rising amount of various internal function blocks and their complex commu-

nicational requirements makes the communication between the blocks more di�cult.

Technologies used on circuit boards, such as point-to-point connections or shared

buses, are not applicable for modern SoCs [4], due to multiple problems that make

the development and veri�cation more demanding [43]. For examle, the di�culty

of synchronization with a single clock source on large designs and the high power

consumption of long wires.

Separating the computation from communication allows them to be handled sep-

arately in the development and veri�cation processes [20]. New communication net-

works and network topologies have been designed and studied. The interconnection

network is commonly called a Network-on-Chip (NoC) [11, 7]. The study on NoCs

still continues as better approaches are needed to suit the vast amount of di�erent

application needs. Figure 1.1 shows a conceptual illustration of a modern homoge-

neous multi-hop network approach for the interconnection of a MP-SoC. Big boxes

represent the functional units and the smaller boxes with a cross the routers in the

network, that make the decisions how to forward the data to its destination. Arrows

1. Introduction 2

CPU 1 CPU 2 RAM

I/O ACC DRAM

CPU 3 CPU 4 FLASH

Figure 1.1: Example of a Multiprocessor System-on-Chip with multiple processors (CPU),
internal memories (RAM, FLASH), an accelerator (ACC) , controller for external memory
(DRAM) and an interface with external hardware (I/O). Each block is connected to a
2-dimensional 3x3 mesh NoC.

between routers mark the communication links that are the physical connections.

This thesis concentrates on a simulation based tool to evaluate and benchmark

NoC implementations. Intention of the tool, Transaction Generator (TG), is to

help choosing most optimal NoC for certain application or application domain by

benchmarking them with common methodology. In practice this means simulation

based Design Space Exploration (DSE), in other words �nding suitable parameters

for the NoCs for di�erent applications.

Initial version of TG was originally created at the Department of Computer Sys-

tems at Tampere University of Technology in early 2000s, see [19] for more details of

the original version. For this thesis TG was completely rewritten to support modern

technologies. The most signi�cant ideas behind the utilized methods are still the

same but the internal structure has been changed to support newer SystemC [45]

implementation and the SystemC Transaction Level Model (TLM) [9] methodologies

instead of the deprecated 1.1 version.

Also many additions were implemented, such as mixed language simulation ca-

pability, namely with Hardware Description Languages (HDLs) Very High Speed

Hardware Description Language (VHDL) and (System)Verilog, inclusion of Accurate

Dynamic Random Access Memory (DRAM) Model (ADM) package [44] for detailed

memory simulations, possibility of simulating MCSL NoC Tra�c Patterns [26] work-

load models, enhanced workload modeling, and more precise measurements during

simulations.

The resulting program of this thesis has been used, on its various development

1. Introduction 3

stages, in the PhD thesis of E. Salminen [40], in the author's bachelor thesis [23]

and the resulting conference paper [25], and in the bachelor thesis of E. Pekkarinen

[36] and the resulting conference paper [37].

Thesis is structured as follows. Chapter 2 introduces work related to this thesis,

chapter 3 presents the TG generally. Chapters 4 through 8 explains the current im-

plementation details. Chapter 9 demonstrates example use cases and lastly chapter

10 presents the conclusions.

4

2. RELATED WORK

This chapter presents an introduction to Network-on-Chips (NoCs) and Design

Space Exploration (DSE) and NoC simulators and tra�c generators related to this

thesis.

2.1 Network-on-Chip

NoC is a communication infrastructure for a single integrated circuit based on mod-

ular design. The Network-on-Chip paradigm emerged to replace the design-speci�c

communication wiring with a general network to pass data from module to module.

Instead of connecting the communicating parties with direct wires, a packet based

multi-hop network has been proposed [12]. Multi-hop based networks bring many

bene�ts to the chip design, such as reducing the cross-talk and power dissipation,

and allowing the communication wires to be shared between multiple participants.

Modern NoC consists of network interfaces that connect the various Intellectual

Property (IP) blocks, the functional units, to the network, routers that switch the

data stream according to a decided routing convention and links that connects the

routers together and thus creating the network topology [7].

Multiple di�erent topologies have been designed to implement a NoC , such as a

mesh, ring and a tree shown in �gure 2.1. Usually the choice between them is not

obvious to get the best balance between power consumption, operation e�ciency,

physical area, and other important design aspects.

Figure 2.1: Example of di�erent NoC topologies. From left to right: mesh, ring and tree.
Image depicts only the routers and the links between them. Functional elements connected
to the routers are omitted.

NoC designs often allow multiple ways to customize them, such as to modify the

depth of bu�ers, to adjust routing priorities etc. Moreover, di�erent applications

2. Related Work 5

can be mapped to the hardware in many ways, especially in case of heterogeneous

Multiprocessor System-on-Chip. This means deciding for example which processors

execute which tasks and how the memory is mapped for these tasks. To �nd a

e�cient enough combination for the application's requirements many variations must

be tested [13, 42].

2.2 Design Space Exploration

Simulating various mapping combinations to �nd a suitable solution is called Design

Space Exploration (DSE) [43]. DSE is usually done automatically following the

diagram in �gure 2.2. Functionality is mapped to the hardware architecture and then

simulated gathering various performance, resource usage, power consumption, and

other metrics that are required to measure its goodness. The metrics are evaluated

to see if the con�guration meets the requirements for production.

Di�erent heuristic algorithms are used to modify the con�guration, for example

by changing applications mappings to processors or connecting the hardware IP

blocks di�erently to the NoC.

Architecture

Mapping

Application/
Workload

Performance

analysis

Results

Figure 2.2: Common Design Space Exploration work�ow [13]. Continuous arrows mark the
order of the main work�ow and dashed arrows the optional recursive paths when iterating
the design.

The three important aspects of DSE are its accuracy, exploration speed and the

amount of work the modeling requires. To gain better exploration speed, it is often

required to reduce the timing accuracy, for example by moving from Register Trans-

fer Level (RTL) modeling to Transaction Level Model (TLM). Exploration speed

can be increased also by reducing the functional accuracy, for example by moving

2. Related Work 6

from functionally accurate application models to abstract workload models. At the

beginning of the application's development more inaccurate models are suitable to

coarse-grain elimination of the unsuitable design space. Later more precise models

are needed to verify the design choice which often leads to slower exploration speed.

Multiple DSE frameworks have been created for studying and comparing NoCs

such as MESH [10], Metropolis [3] and Artemis [38]. MESH [10] is a tool for high-

level performance modeling and it is based on layered frequency interleaving. It

models the system using a sequencing of logical and physical events. Logical events,

in other words the software functionalities, are created from a coarse-grain data set

that has been gathered from accurate Instruction Set Simulator (ISS) simulations

and interleaved to resources, the computational units, in data-depended manner in

faster simulations.

Metropolis is an environment for complex electronic-system design providing sup-

port for simulation, formal analysis and hardware synthesis. A metamodel language

is used to de�ne the network for example for modeling functionality, architecture

and mapping which then can be simulated and veri�ed with tools compatible with

the Metropolis environment.

A SystemC based simulation system presented in [21] captures the functional-

ity, timing and interfaces separately allowing co-simulation of multiple abstraction

levels. Initial cosimulation of an already existing system is used in [22] to provide

abstract traces. Unlike many simulators which use the traces for simulation based

performance analysis, [22] uses traces for static analysis of the network performance.

Kahn Process Networks (KPNs) [18] are often used method for describing applica-

tions especially for multimedia and other applications that are oriented on streaming

the data. They are a Model of Computation (MoC) where applications are modelled

as executable processes connected by point-to-point connections separating the com-

putation and communication. Transaction Generator also uses an extended KPN as

its MoC.

For example, Artemis project [38] provides a Sesame framework for system level

DSE for MP-SoC applications using the KPN MoC taking similar approach as

Transaction Generator (TG). Simulation environment is divided to application

model, mapping layer and architecture model according to the Y-chart approach

shown in �gure 2.2.

2.3 NoC Simulators and Tra�c Generators

Multiple NoC simulators and tra�c generators exist to aid the analysis of the NoCs.

This section brie�y introduces a portion of the open-source implementations avail-

able.

2. Related Work 7

Noxim [32] is a SystemC NoC simulator developed at the University of Catania.

It evaluates the throughput, delay and power consumption of the 2D mesh

network, which can be customized, for example, by size, bu�er depth and

routing algorithm, for various customizable tra�c patterns.

Booksim [16] is a cycle-accurate interconnection simulator intitially introduced

with the book Principles and Practices of Interconnection Networks [11] and

it is implemented in C++. Booksim o�ers multiple NoC topologies, various

routing algorithms and allows the user to customize the router architecture.

It supports synthetic patterns and previously generated traces for tra�c gen-

eration and can be integrated with the GEM5 [6] system simulator.

HNOCS (Heterogeneous Network-on-Chip Simulator) [5] is a C++ simulator based

on OMNet++ [46] for heterogeneous networks. It supports arbitrary topolo-

gies with synchronous, synchronous virtual output queue or asynchronous

routers. Tra�c can be generated from source to either deterministic or random

destinations. Data is sent at randomly distributed or trace �le based intervals.

HNOCS provides statistical measurements collected by the source, sink and

Virtual Channels (VCs) at the network.

TOPAZ [1] is a C++ interconnection network simulator for chip multiprocessors

and supercomputers. It supplies multiple network topologies with various

con�gurable router designs. User can, for example, choose from di�erent �ow

control mechanisms, multicast options, number of virtual channels and pipeline

and delay details. Tra�c can be generated based on multiple synthetic tra�c

patterns, such as random, tornado and bit-reversal or from traces.

ATLAS [27] is a NoC generation and evaluation framework written in Java. Frame-

work consists of a NoC generator, tra�c generator, and performance and power

evaluation. Network can be generated as Very High Speed Hardware Descrip-

tion Language (VHDL) based on con�guring parameters, such as the dimen-

sion, bu�er depth, �ow control, number of VCs and routing algorithm. Tra�c

is generated based on synthetic tra�c patters.

8

3. TRANSACTION GENERATOR

Transaction Generator (TG) is an open-source network tra�c generator and bench-

marking tool for evaluation and architecture exploration of split-transaction NoCs.

Original version of TG has been implemented already in early 2000s [19]. It has

also been described in [14, 40] and [41], while the latter two already include some

contributions of this thesis. Figure 3.1 illustrates the general idea behind TG's MoC

and implementation.

Transaction Generator

A B

C D

E F

I II III IV

PE 1 PE 2 PE 3 MEM 1

CACHE DMA

Network Model

Legend

Task

Group

Hardware Element

Event

Task communication

Mapping/Grouping

Application
· Process network
· Separation of

communication and
computation

Mapping
· Defines where tasks are

executed

Platform
· Defines processing

elements and memories
· Highly abstracted

Interconnection
· Cycle-accurate synthesizeable

description or high-level model

Figure 3.1: Conceptual view of Transaction Generator adapted from [41]. Simulation
model is divided into four main parts. Application model de�nes the behavior of the
workload. Mapping assigns tasks to groups and binds them to a particular PE. PEs
model the di�erences between various processors, accelerators and memories. Lastly the
communication architecture models the details of the interconnection between the PEs.

3. Transaction Generator 9

TG's current version has been implemented as a part of NOCBENCH project

[31], funded by Academy of Finland [2]. The program has been adopted by Open

Core Protocol - International Partnership (OCP-IP) Network-on-Chip benchmark-

ing workgroup and is available for download from [33] and [31]. TG is implemented

with C++ and SystemC 2 language [45] on a Transaction Level (TL) with a highly

abstracted MoC. The MoC allows the workload to be described in variable level of

details from simple KPN-style compute-and-�re processes to detailed probabilistic

or deterministic descriptions of the computational and communicational behavior.

Transaction Generator includes the Accurate Dynamic Random Access Mem-

ory (DRAM) Model (ADM) package [44] for clock cycle accurate memory models

for more elaborate simulations. TG is distributed with workload models gathered

from literature [37], workload models from MCSL Benchmark Suite[26] and NoC

models including synthesizable VHDL, cycle-accurate SystemC and TLM SystemC

implementations.

3.1 XML Description

Transaction Generator generates the workload for the NoC based on a description

written in Extensible Markup Language (XML) language. This allows the descrip-

tion to be easily generated by program or modi�ed by hand. The Simulation model

of is devided into four main parts:

Application model characterises the workload by de�ning the relationship between

computation, communication, and the dependencies for each task.

Mapping allows grouping of tasks and assigning them to the PEs and other re-

sources. It creates a layer of indirection between the application and platform

models.

Platform model de�nes the properties of resources and their connection to the

NoC.

Network model is separated from the previous to allow the users to easily integrate

their own NoC models to TG.

Clear separation between application model and harware platform model allows

easily to modify one of the components separately to quantify their e�ect on the per-

formance measurements. Separation between communicational and computational

requirements enables the workload to describe more accurate behavior depending on

which type of processing element the application is mapped and thus executed on.

Application model can be used to enforce correct dependencies between communi-

cating tasks to create realistic workload from a real program or to create a synthetic

probabilistic tra�c patterns.

3. Transaction Generator 10

Figure 3.2 presents a simpli�ed view of the XML source code used to describe

the di�erent models.

<system >

<application >
<task_graph >

<task id="A"> ... </task>
...
<task id="F"> ... </task>

</task_graph >
</application >

<mapping >
<resource name="PE2" id="0">

<group id="II">
<task id="A"/>

</group>
</resource >

</mapping >

<platform >
<resource_list >

<resource id="0" name="PE2" frequency="150" type="RISC" .../>
</resource_list >

</platform >

<constraints >
<noc class="MESH" type="2x2" frequency="200"/>
<sim_resolution time="1.0" unit="fs"/>
<sim_length time="100" unit="ms"/>
<cost_function func="..."/>

</constraints >

</system >

Figure 3.2: Model description in pseudo-XML showing the separation of di�erent modeling
layers for TG.

In �gure 3.2 application's workload model de�nes tasks from A to F that are used

to create the computational workload for PEs and the communicational patterns

between tasks. Mapping section binds task A to be run on processing element PE2

and platform section de�nes the simulation parameters for PE2 such as the operating

frequency and its type.

In addition to the application, mapping and platform sections, which are used

to model the �xed hardware and software aspects of the simulation, the constraints

section allows the user to de�ne the metrics to measure and other settings for individ-

ual simulation runs such as the NoC con�guration parameters and the simulation's

length.

Transaction Generator's XML input allows describing the workload on a very

abstract level or with high details and can be easily generated from other workload

model descriptions. In addition to the native XML description Transaction Gener-

ator also parses and generates tra�c from MCSL Benchmark Suite's [26] .rtp and

.stp �le formats.

3. Transaction Generator 11

3.2 Simulation Results

TG gathers various information during the simulation at con�gurable intervals and

provides summaries of the whole simulation. Information is saved in Comma-

Separated Values (CSV) format. Table 3.1 lists the information TG gathers from

the simulation. Application category reports the information from the application

model and processing element the state of the platform model. Token category

de�nes the information of communication as de�ned in the application model and

packet the information of the smaller data packets the tokens must be split for the

network model. Summary provides the results for the whole simulation.

Table 3.1: Summary of statistics TG gathers from the simulation. Snapshot measurements
store the information at even intervals during the simulation. Delta measurements report
the information averaged or accumulated between the snapshots. Trace measurements are
saved at the time they happen and summary provides the measurements from the whole
duration of the simulation.

Category Style Logged Information

Application Snapshot Current time, task name, current state, total
times triggered, total amount of bytes sent, cur-
rent receive bu�er usage.

Processing Element Delta Current time, PE name, current state, PE
utilization, received bytes, sent bytes, receive
bu�er usage, transfer bu�er usage, idle cycles,
busy cycles, cycles spent reading, cycles spent
sending, cycles spent waiting reception, cycles
spent waiting to transfer, and cycles spent for
intra-PE communication.

Token Trace Token identi�er, time when sent, time when
received, latency (in absolute time and in re-
ceiver's cycles), bytes, number of packets it
was split, sender task, receiver task, sender re-
source, receiver resource, source port, destina-
tion port, and type of the transfer.

Packet Trace Reception time, token identi�er it is part of,
size, source port, destination port, and type of
the transfer.

Summary Summary Cost function results, PE statistics, memory
statistics, task statistics, and event statistics.

In addition to the log data mentioned in table 3.1, TG can evaluate simple

cost function equations consisting of constants, four basic mathematical operators

(x+*/), parenthesis, and various variables from the simulation. Variables include

information, such as average utilization of the processing elements, trigger counts

3. Transaction Generator 12

and times, and latency of the communication between tasks.

TG can also connect to Execution Monitor [17], which is a program for real-time

monitoring the execution of a System-on-Chip (SoC). Execution Monitor, shown in

Figure 3.3, can be used to view the simulation's PE usage and application model

statistics during the simulation and afterwards from a recorded trace �le.

Figure 3.3: Illustration of Execution Monitor [17].

13

4. APPLICATION MODEL

Transaction Generator's application model can be presented as a set of graphs with

unidirectional edges. Vertices on the graph present the computational and commu-

nication workload and edges mark the communicational dependencies. Depending

on the modeled application there may be anything from a single unidirectional graph

to multiple disjoint circular graphs.

Figure 4.1 gives an example of the visualized task graph. Example models the

task graph for the channel equalizer application presented in [29]. Example has 3

events, shown as black dots, that are used to start the application by inserting data

tokens during the simulation either once, multiple times, or periodically. Named

circles represent tasks describing the computational elements of the application, for

example adc, load and norm. Edges on the graph represent the data �ow with the

sizes of data tokens in byte sent from task to task in the direction of the arrow.

adc load norm fir

absx avg cu cf

log lvl absy rad

9 19 14

198019162

2

2

2

16 19 19

19

19

19 19 9

Figure 4.1: Visualized task graph of a channel equalizer application presented in [29]. Small
�lled dots correspond to TG's events, larger circles with names represent the tasks, and
the edges the communicational dependencies and size of the transmissions.

TG's modeling methodology allows to describe the data dependencies needed to

trigger the depended tasks, the computational characteristics and communication's

destinations and magnitudes in both deterministic and probabilistic ways. All of

the workload models may also depend on the task's internal execution history, for

example on how many times it has been executed, and the amount of data the task

4. Application Model 14

received. The application model's description consists of:

Events which are used to model the external inputs to the system or the internal

timing events to trigger the task graph execution.

Tasks which model the computation and it's relation to the communication with

other tasks and memory elements. Computation time depends on the task's

internal operation counts and the properties of the PE it's mapped on.

Memory areas that represent the contiguous data memory regions that tasks use

from memory elements external to their own PE.

Port connections that bind the tasks together and mark where the tasks are send-

ing data. There may be multiple connections between two tasks to di�erenti-

ate between data streams which require di�erent response from the recipient.

Separate connection information also allows to redirect transmission without

needing to modify the individual task descriptions.

Figure 4.2 shows an example of an application description for TG.

<application >

<task_graph >

<event_list >

<event name="input1" id="0"/>
.
.

</event_list >

<task name="A" id="0" class="general">
.
.

</task>

<task name="B" id="1" class="general">
.
.

</task>

<mem_area name="mem_a" id="10" size="16386" class="general">
.
.

</mem_area >

<port_connection src="6" dst="202"/>
.
.

<port_connection src="103" dst="204"/>

</task_graph >

</application >

Figure 4.2: Example of an application description for TG.

Example of the possible successive tags inside a application tag, presented in

�gure 4.2, describes a task graph containing events, tasks, memory areas, and port

4. Application Model 15

connections. Elements are contained in a task graph tag, which is just for clarity by

grouping tags that are related to each other, as there might be multiple task graphs

in a one application model description.

Next sections explain the details in Transaction generator's application model.

More details about how to describe them in XML can be found from the Transaction

Generator's technical documentation [24].

4.1 Event

Events are the stimuli to the application model. At least one event is required to

trigger and start the execution of the application model in the �rst place. Events

do not describe any speci�c physical entity in the simulation model but can be used

to model a behavior that is not part of TG MoC. Events may, for example, be used

to model some external input to the system, such as the raw signal from a Digital

Video Broadcasting - Cable (DVB-C) connection to a task graph modeling a set-top

box, or an internal timer for tasks that generate data at certain intervals.

Events can be used to trigger multiple unconnected tasks, for example, to create

synthetic tra�c patterns, such as the commonly used uniform distribution or bit

complement patterns. Events don't utilize network model for sending their payload

and their payload doesn't take any time to receive for the task models, even though

otherwise they behave similarly to a token send by other task. Event behavior is

described with following parameters.

Destination is the outgoing port index for connecting it to tasks.

Data amount de�nes how many bytes are sent to the receiving tasks.

Frequency describes how often does the event send data.

O�set is the time from the beginning of the simulation when this event is evaluated

for the �rst time.

Evaluation count de�nes how many times event happens in the simulation which

can be a discrete amount or inde�nitely.

Probability de�nes the chance for event to send data when the event is evaluated.

Example XML description in �gure 4.3 de�nes two events for the system named

input1 and timer1. Event input1 is only executed once and it will happen at time

0.03 seconds after the beginning of the simulation. On the other hand event named

timer1 will be executed every 0.02 seconds starting from when the simulation has

progressed 0.1 seconds.

4. Application Model 16

<event_list >

<event id="0" out_port_id="1" name="input1" count="1"
amount="1" offset="0.03" prob="1"/>

<event id="1" out_port_id="2" name="timer1"
amount="1" offset="0.1" period="0.02" prob="1"/>

</event_list >

t
0.03 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

ID 0 ID 1 ID 1 ID 1 ID 1 ID 1 ID 1 ID 1 ID 1 ID 1 ID 1 ID 1

Figure 4.3: Example of describing two events. Event named input1 is executed once at
0.03 seconds from the beginning of the simulation. Event timer1 is executed repeatedly
every 0.02 seconds starting from 0.1 seconds.

4.2 Task

Tasks are the most important part of the application model. Their descriptions

contain the information needed to create the communicational and computational

workload to mimic real applications or to generate synthetic models with either

deterministic or probabilistic behaviors for the network load.

Description lists the unidirectional input and output ports used for communi-

cation with other tasks and memory models and the triggering conditions which

describe the behavior after task has received tokens to either one or multiple input

ports. The input and output ports are connected together through port connections.

Port connections are one of TG's ways to handle separation between task models.

Port connection section of the XML source description for TG allows all of task

communication to be redirected without modifying the description of the sender

task or the receiving task descriptions. Each of the port identi�cation number

de�ned for the tasks and events must be used only in one port connection.

Figure 4.4 shows an example description and illustration of a task graph with

three tasks and how their input and output ports are connected together with port

connections.

4.2.1 Trigger

Task's response to received data packets or tokens is controlled by one or multiple

triggering conditions. A data token reception may activate multiple triggers. Ac-

tivated triggers are processed to create a list of computation and communication

orders for the task to execute.

There are two kind of dependency handling for triggers receiving data tokens

from multiple sources. OR-type trigger's condition is satis�ed when it receives a

4. Application Model 17

<task_graph >

<task name="task1" ...>

<out_port id="1"/>
<out_port id="2"/>

<trigger > .. </trigger >
.
.

</task>

<task name="task2" ...>

<in_port id="3"/>
<out_port id="4"/>

<trigger > .. </trigger >
.
.

</task>

<task name="task3" ...>

<in_port id="5"/>
<in_port id="6"/>

<trigger > .. </trigger >
<trigger > .. </trigger >

.

.
</task>

<port_connection src="1" dst="3"/>
<port_connection src="2" dst="5"/>
<port_connection src="4" dst="6"/>

</task_graph >

task1
1

2

task2
task3

3 4 6

5

Figure 4.4: Example of a description of a task graph with three tasks and their port
connections. Numbered squares on the tasks present the input and output ports and their
identi�ers used for port connections.

data packet to one of its input ports and AND-type trigger's condition is satis�ed

only when all of its input ports have received a data token. This allows more diverse

options for modeling the task's behavior than is possible with only traditional KPN

models. This, for example, allows creating tasks that only execute after receiving

all the needed information from multiple sources or immediately after receiving a

token regardless of the sender.

All triggers may also depend on the execution history of the task. This allows

the task's behavior to chance over time for the same input ports which is necessary

for more detailed application models. The behavior can even be di�erent for every

time a task is executed allowing the model to be used for storing a trace gathered

from real system simulations. Figure 4.5 shows an example of a task's trigger.

Example in �gure 4.5 depicts a trigger that is executed after it has received a

data token to both its input ports as it's a AND-type trigger. Each trigger keeps a

4. Application Model 18

<trigger dependence_type="and">

<in_port id="5"/>
<in_port id="6"/>

<exec_count >
.
.

</exec_count >

<exec_count max="0">
.
.

</exec_count >

<exec_count mod_phase="0" mod_period="2">
.
.

</exec_count >

<exec_count max="8">
.
.

</exec_count >

</trigger >

Figure 4.5: Example of a trigger description.

internal count of the times it has been triggered during the simulation. Execution

count tags are used to de�ne the behavior of the task with regard to its execution

history, that is the trigger's counter. Execution counts can be de�ned to limit their

execution to happen only once in the trigger's execution history, multiple times or

to happen periodically. They are de�ned with following parameters:

mod_period de�nes a limit for the current execution count. When the trigger's

count reaches this limit it is reset back to zero. This acts as a modulus for

the trigger's count allowing the modeling of periodically executed statements.

If this parameter is omitted the trigger's counter will not be reset during the

simulation and will re�ect the actual amount of how many times the trigger

has been �red during simulation.

mod_phase is used to limit the execution of the current execution count to only

when the trigger's count is a certain number. If mod_period is de�ned the

current execution count is executed periodically. If it is not de�ned then the

execution count is only executed once during the simulation.

min limits the execution to only those times when the trigger's execution counter

is at least a certain value.

max similarly limits the execution to a certain range of trigger's execution counter's

range by de�ning the maximum value it can have to execute the current exe-

cution count.

4. Application Model 19

For example the execution counts shown in the example of �gure 4.5 de�ne four

di�erent behaviors.

First execution count is always executed, by not de�ning any restricting param-

eter for it. Second execution count is only executed on the �rst time the trigger

is �red. Third execution count de�nes operations for the task that are executed

every other time the trigger �res. Lastly the fourth one de�nes a execution count

for operations to be executed only during the eight �rst times the trigger has been

triggered.

4.2.2 Computation and Communication

Once trigger's execution condition has been satis�ed it's list of computation and

communication statements are evaluated. To calculate the amount of clock cycles

to execute or the the amount of bytes to send to or read from other tasks or mem-

ories Transaction Generator's XML input format allows the use of polynomial and

distributional equations. These equations may be static or depend on the amount

of bytes received. Three choices are available. Polynomial equation 4.1 depends on

the amount of received data x except for the constant term a0.

anx
n · · · a2x2 + a1x+ a0 (4.1)

First choice of distributions is the uniform distribution 4.2. This is the only

one that doesn't depend on the amount of incoming data but provides a uniform

random amount which is useful when only the range of amount is known but cannot

be related to the execution history or the amount of data received.

U(a, b) (4.2)

Second option for distributional amount is the normal or Gaussian distribution.

The mean parameter can be either a constant µ or the amount of bytes received x

and the variance or standard deviation parameter σ2 is constant.

N (x;µ, σ2) (4.3)

All of the equations can be combined to calculate the �nal amount of instructions

to execute or the bytes to send or read. Each of the computation and communication

statements are also dependent on a probability to be executed. If the probability

is less than 1.0 (100%) the behavior of that part of task becomes stochastic. The

probability is checked every time the trigger is evaluated. This allows for example

to model a behavior where task's execution from time to time takes a branch which

needs more calculation than other branches. Figure 4.6 illustrates the insides of exe-

4. Application Model 20

cution count tags de�ning how the amounts of computational and communacational

are described.

<exec_count >

<op_count >

<int_ops >
<polynomial >

<param value="20" exp="0"/>
<param value="1" exp="1"/>

</polynomial >
</int_ops >

<float_ops >
<distribution >

<normal mean="100" standard_deviantion="15"/>
</distribution >

</float_ops >

<mem_ops >
<distribution >

<uniform min="30" max="60"/>
</distribution >

</mem_ops >

</op_count >

</exec_count >

Figure 4.6: Example of a workload calculation for amounts of integer, �oating point and
memory operations to perform.

As seen in the example XML description of �gure 4.6 the computation statements

are divided in three groups which allow to di�erentiate between integer, �oating

point and memory operation instructions. The example de�nes a 20 plus the amount

of bytes received integer operations, �oating-point operations randomly selected

from uniform distribution with mean of 100 and standard deviation of 15, and

memory operations randomly selected between 30 and 60 to be executed. The

actual amount of clock cycles are then calculated based on the charasteristics of the

PE the task is running on.

Communication statements are divided in two groups - send statements and read

statements. Send statements are used to send data packets to other tasks or to

write to memory models. Read statements are only used to fetching data from the

ADM memory models. All communication statements are attached with output

port information that directs the packet to correct recipient and a probability of

taking place. Figure 4.7 presents the tags used to send data tokens between tasks

and to write and read data from the memory models.

In the example shown in the �gure 4.7 the �rst send tag presents normal send of

100 bytes from a task to another. Sends from one task to another are de�ned with

following parameters:

out_id which refers to the corresponding output port listed at the beginning of a

4. Application Model 21

<exec_count >

<send out_id="0" prob="0.5">

<byte_amount >
<polynomial >

<param value="100" exp="0"/>
</polynomial >

</byte_amount >

</send>

<send out_id="1" prob="1">

<byte_amount >
<polynomial >

<param value="200" exp="0"/>
</polynomial >

</byte_amount >

<burst_length >
<distribution >

<uniform min="4" max="16"/>
</distribution >

</burst_length >

</send>

<read out_id="2" resp_id="3" prob="1">

<byte_amount >
<polynomial >

<param value="32" exp="0"/>
</polynomial >

</byte_amount >

<burst_length >
<distribution >

<uniform min="4" max="16"/>
</distribution >

</burst_length >

</read>

</exec_count >

Figure 4.7: Example of a workload calculation for amounts of data to send or read.

trigger description.

prob that de�nes the probability of this send taking place when the trigger has

been �red.

byte_amount that de�nes the amount of bytes sent with the same equations as

for the execution amounts.

The latter send tag and the read tag in the �gure 4.7 show the syntax for a write

of 200 bytes to memory and a read of 32 bytes from a memory model. Those tags

can additionally also contain a

burst_length tag that is used to de�ne the amount of bytes that are written to

or read from consecutive memory addresses. For example, a bigger 1024-byte

write to the memory can be split to multiple smaller 32-byte bursts, that might

4. Application Model 22

not be written consecutive addresses a�ecting the timings of the DRAM and

thus performance.

The burst length can also be expressed as a random number. It will be generated

only once for the current evaluation of the read or sent statement and generated

again at the next time the trigger containing the send �res. All of the bursts of a

single read or send token are written to or read from a random memory address that

might for example trigger a row change in a DRAM model and thus a�ecting the

completion time of the operation.

Read tags need also an additional response identi�cation attribute to specify the

target port for the token sent by the memory element as the read response. This

information is described in the task reading to reduce the number of ports needed

in the memory model. Memory models thus can use a single output port to send

their read responses to multiple targets.

4.3 Memory Area

Memory areas, a new feature of TG implemented for this thesis, model the con-

tiguous regions of data memory that resides outside of the task's PE that is using

it. Memory areas are modelled separately to allow mapping them easily to di�erent

memory elements. Like memory elements, memory areas are only used when using

the ADM to model the memories. Each memory area is de�ned by the following set

of attributes:

Size describes the amount of bytes needed for this memory area.

Input ports that determine the incoming connections for memory writes and read

requests.

Output ports to act as a source port for the responses corresponding to read

requests.

Figure 4.8 shows a example of a memory area de�nition.

4.4 MCSL Tra�c Patterns

TG, in addition to its own XML description, can also execute and convert Mobile

Computing System Lab (MCSL) NoC Tra�c Patterns workload models [26]. This

feature was implemented for this thesis. The tra�c patters include multiple mod-

els based on real applications, such as Reed-Solomon code encoder, H.264 video

decoder and random sparse matrix solver for electronic circuit simulations. Tra�c

patterns have been mapped for mesh, torus and fat-tree NoCs of various sizes. The

applications have both recorded and statistical model descriptions.

4. Application Model 23

<task_graph >

<mem_area name="mem_area1" id="1" size="1024" class="general">

<in_port id="2"/>
<in_port id="4"/>
<out_port id="7"/>

</mem_area >

</task_graph >

Figure 4.8: Example of a 1024-byte memory area de�nition that has two input port and
an output port.

Example in �gure 4.9 shows the format for a recorded application model recorded

from a real H.264 video decoder application. Example is mapped to 16 PEs, has 51

tasks connected by 71 edges containing 10 iterations of the original application.

1 16 51 71 10
0 0 0 1 3 6 10 15 21 28 36 44 4343 4744 4385 4802 4286 4214 ...
1 0 2 4 7 11 16 22 29 37 45 52 2865 2460 2438 2521 2369 2591 ...
.
.
.
49 10 4 8 12 16 20 24 28 32 36 38 3530 3736 3360 3589 3212 3533 ...
50 11 2 5 8 11 14 17 20 23 26 29 2258 2687 2359 2435 2681 2628 ...

0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 220 217 206 ...
1 1 2 0 0 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 210 216 206 ...
.
.
.

Figure 4.9: Snippets from MCSL recorded tra�c pattern �le. The task execution infor-
mation after the �rst line contains 22 parameters in this case (task id, PE id, 10 sequence
numbers for the scheduler, 10 execution times). For example, task 1 is mapped to PE0
and executes 2865 operations when it is run the �rst time. Similarly, the communication
edge 1 goes from task 1 to task 2 and speci�es 210 bytes to be sent on the �rst time, 216
on the second and so on.

After the �rst line that describes the general task and PE information the �le

format lists a task execution information and after that the task communication

information. Execution information lists the tasks, their mapping to PE, a list

of sequence numbers for the sequence scheduler, and lastly the recorded execution

times. The task communication information lists the source and destination task

identi�cation and the message sizes.

TG parses the statistical and recorded formats internally converting them to its

native format, which can be simulated as it is or exported to a �le.

4. Application Model 24

4.5 Mapping

TG has a separate mapping section to allow the separation of the application model

from the resources of the platform model. It de�nes on which PE the tasks are

executed and the memory where memory areas are placed. Tasks can be placed

within software platforms and grouped together, which might a�ect their communi-

cation costs. Figure 4.10 shows an example task and memory area mapping to the

resources.

<mapping >

<resource name="cpu0" id="0" contents="mutable">
<sw_platform position="movable" id="0" contents="mutable">

<group position="movable" id="0" contents="mutable"
name="group0">

<task position="movable" id="0" name="Task0"/>
<task position="movable" id="1" name="Task1"/>
<task position="movable" id="2" name="Task2"/>

</group>
<group position="movable" id="1" contents="immutable"

name="group1">

<task position="immovable" id="3" name="Task3"/>

</group>
</sw_platform >

</resource >

<resource name="Memory1" id="1" contents="immutable">

<mem_area position="immovable" id="4" name="MemoryArea4"/>

</resource >

.

.

.

</mapping >

Figure 4.10: Example of the mapping section gluing application model to the resources on
the platform model.

In addition to de�ning the placement of tasks and memory areas for TG, descrip-

tion also provides mapping constraint information for external DSE tools. Resources,

that are the PEs and memories, contain a contents tag which describes whether

their mapping is allowed to be modi�ed by the DSE tool at all. Software platforms

and groups have contents and position tags. Tag contents again describes is

mapping their contents allowed and the position tag de�nes is the whole group or

software platform allowed to be remapped as a whole. The position tag for tasks

and memory areas de�ne whether it can be remapped by the DSE tool.

25

5. PROCESSING ELEMENT MODEL

Processing Element models are used to model processors, hardware accelerators,

simple memories and other such hardware resources where application tasks can be

mapped to. Model is highly abstracted to gain better performance during simula-

tions. Processing Element are characterized by simple parameters for performance

and physical aspects. These de�nitions are separated to a di�erent XML �le, called

PE library, containing only descriptions of possible PE types. All PE's have follow-

ing parameters to de�ne them:

Type divides PE into groups such as general purpose processors, memories and

di�erent hardware accelerators.

Frequency bounds limit the operating frequency of this type of PEs.

Direct Memory Access (DMA) controller de�nes whether or not the PE can

handle communication and computation at the same time.

Communication overhead stating the timing modi�ers relating to communica-

tion transactions.

Computation performance list the performance factors for integer, �oating point

and memory instructions.

Area that is used in DSE optimizations to estimate the cost of the platform in

mm2 or kilogates.

Power consumption for power consumption estimations in DSE optimizations.

Type parameter distinguishes what kind of applications the PE can execute for

automatic mapping processes during DSE. For example it can allow for a given

application to map tasks representing mathematical functions to accelerator models

or general purpose processor models while denying other tasks from being mapped

to accelerator that couldn't execute them in the real world.

Operating frequency, inclusion of a DMA controller, computational characteris-

tics and communicational overheads a�ect the computational and communication

operating speeds of the PE to allow simple and e�ective method for modeling real

IPs.

5. Processing Element Model 26

Area and power consumption are used to estimate the cost of the systems in

relation to other simulation results during DSE. For example a powerful IP with

high energy consumption may achieve lower total power consumption due to shorter

execution time when compared to a slower low-power IP.

In the main XML �le containing the description of the platform to be simulated

the resources modeling instantiated PEs are de�ned with the following attributes.

Frequency de�nes the operating frequency of the PE in MHz.

Type refers to an entry in the PE library containing the generic attributes for the

PE.

RX bu�er size speci�es the maximum size of bytes allocated for received tokens

that have not been consumed by the task models. Received tokens are consid-

ered consumed when their receiving task has read them from in input bu�er

either by task itself using up PE's processing time or by the DMA unit. After

having been consumed the equivalent amount of tokens size is freed from the

RX bu�er. If the receive bu�er becomes full it stalls the reading from network

model causing congestion.

TX bu�er size de�nes the size of the bu�er for outgoing tokens for the PE. If

the transmission bu�er ever becomes full it will stall the execution of sending

tokens and thus stalls the progression of tasks.

Packet size determines the maximum size of a packet going to the NoC model

as many interconnection networks can't handle unbounded streams of data.

This removes the need to change the token sizes in the application workload

model to suit the network model. If the task de�nes a token to be sent that is

bigger than the maximum packet size, the token will be automatically split into

multiple smaller packets. These original tokens are automatically recombined

from the smaller packets at the receiving PE or memory model.

Scheduler parameter is used to select a scheduling algorithm for the PE to use

when selecting the next task to be executed.

Figure 5.1 shows an example of a processing element description de�ning a PE.

The resource described in the example of �gure 5.1 de�nes a PE that models a

Central Processing Unit (CPU) of generic type that operates at 80 MHz frequency.

5.1 Scheduling

PE's scheduling policy decides the order of execution of tasks. TG supports First

In, First Out (FIFO), �xed priority and sequence scheduling schemes. Sequence

5. Processing Element Model 27

<platform >

<resource id="0" name="PE2" frequency="80" type="RISC_CPU"
rx_buffer_size="262144" tx_buffer_size="1024"
packet_size="16" scheduler="fifo">

<cache>

<i_miss line_size="64" mem_area_id="2">
.
.

</i_miss >

<d_miss line_size="64" mem_area_id="3">
.
.

</d_miss >

</cache>

</resource >

</platform >

Figure 5.1: Example of a processing element de�nition.

scheduling allows designer to use a predetermined order of task execution where the

PE is forced to wait the data tokens for next task even though there would be other

tasks ready for execution.

Application's state in TG is represented as a state machine shown in �gure 5.2.

All tasks start from WAIT state.

WAIT

RUN

READY

FREE

a

b

cd

e

f

Figure 5.2: Possible states for application model.

Possible state transitions are:

a) Task has previously executed a READ statement and was waiting for a reply

from external memory when the reply arrives.

b) Task receives all data tokens to ful�ll trigger's condition and moves to READY

pool waiting for scheduling.

c) Scheduling algorithm chooses the task for execution.

5. Processing Element Model 28

d) Task still has trigger's to execute but the scheduling algorithm places the task

to READY pool.

e) Task has executed its trigger and has no more pending triggers.

f) Task has executed its last trigger and is no longer depended on any data during

simulation.

5.2 Execution Model

When task's trigger has ful�lled its dependencies by receiving enough data tokens

and the scheduling algorithm changes it to RUN state the simulation engine cal-

culates a list of operations to perform based on the incoming data token sizes and

probabilities listed in trigger's XML description. Simulation engine then calculates

the data dependent and random amounts and starts to execute the list in order.

Execution speed in time is de�ned by the operating frequency of the PE, the type

of the PE and the availability of a DMA controller. Each type of PE is characterized

by how many cycles it takes to execute an instruction in 3 classes of operations,

namely integer, �oating-point and memory operations. Integer operations are used

for the basic instructions that are executed mostly in constant time. Floating-point

operations are separated as not all processors have dedicated hardware for them

and have to use software emulation which might be signi�cantly slower. Memory

operations are meant to describe accesses to local memories not connected through

the NoC as these might again depend greatly on the PE they are executed on.

This separation allows to create the application models independent of processor

type. For example, �gure 5.3 illustrates a situation between cpu A with a dedicated

�oating-point unit and cpu B without it.

Integer

Integer

Floating-point

Floating-point

Memory

Memory

t

CPU A

CPU B

Figure 5.3: Figure illustrates the execution time taken on two di�erent PE model when
simulating the same task that includes integer, �oating-point and memory operations. In
the example the only di�erence between CPU A and CPU B is that the CPU B models a
processing unit without a dedicated �oating-point unit.

Each time task's simulation comes to an execution statements it calculates the

required cycles needed to execute all consecutive statements:

5. Processing Element Model 29

Ncycles,i,pe =
Nint,i

IPCint,pe

+
Nfloat,i

IPCfloat,pe

+
Nmem,i

IPCmem,pe

, (5.1)

where N,i are the integer, �oating-point and memory operations calculated for

task i and IPC ,pe are the PE's instructions per second factors for the same oper-

ations. With PE's operating frequency fpe the time to execute these operations is

calculated as follows:

ti,pe =
Ncycles,i,pe

fpe
. (5.2)

TG can model hardware resources operating at di�erent operating frequencies

in a simple manner, which in the real world devices creates many di�culties to

synchronize with di�erent clock frequency domains.

5.3 Communication Model

In TG's MoC task may send or read data tokens at any point of its execution. This

makes it di�erent than KPN model where tasks �rst consume time for computation

and then sends data tokens and are �nished. TG's model allows executions, sends

and reads to be interleaved in any desired way.

One parameter that a�ects the PE's performance is the inclusion of a DMA device.

In the PE model if it doesn't include a DMA unit it has to stop the computation

while it is sending or receiving data from the network. If the PE has a DMA unit

it can continue computation while sending. With the PE model with a DMA unit

the reception also doesn't take any time provided that the data being read has been

received by the PE. Without a DMA unit the reading of a data token also takes

time from the PE.

Figure 5.4 illustrates the a�ect on execution time of the di�erence between having

a DMA unit on the model and not having one.

Integer

Integer

Integer

t

CPU A

CPU B

Read Send Integer

IntegerRead

Send

Integer

DMA

Figure 5.4: Example of how the inclusion of a DMA a�ects the processing time. The same
program is executed on two similar PEs but the CPU B has an additional DMA unit.

In the example of �gure 5.4 the same program having integer operations and read

5. Processing Element Model 30

and write operations is executed on two similarly powerful PEs. The only di�erence

is that the CPU B has an additional DMA unit. The DMA unit doesn't a�ect the

read operation in the example as the task can't continue its execution before the

token read has arrived. On the other hand the send operation doesn't block the

execution of the later operation and is happening in parallel with the computation.

The other parameters a�ecting the time communication takes are the PE's com-

munication overhead properties. In the mapping tasks can be assigned to a separate

groups and the tasks can reside on di�erent PEs. The communication can be mod-

eled to take di�erent amounts of time depending whether the communicating tasks

reside in the same group or not on the same PE or on di�erent PEs. The overheads

can be de�ned to be constant delay for each transaction or depend on the amount

of data being sent. Figure 5.5 presents an identical send operation being executed

on three di�erent PEs.

t

CPU A

CPU B Send

CPU C Send

Send

OH

OH

0 4020 60 80 100 120 140 160 180 200 220 240 260 280

Figure 5.5: Example of how the communication overheads a�ect the time communication
takes. Blocks named OH represent the overhead and Send blocks mark the time for the
actual data takes time to be transferred.

In the example shown in �gure 5.5 the CPU A doesn't have any overheads de�ned

for the transaction it needs. It sends 70 words and executes 1 word/cycle. The PE

CPU B has a constant 20 cycle initialization overhead for every send operation and

executes 1 word/cycle. The PE CPU C in addition to the constant 60 cycle overhead

also executes the sends three times slower than the other two, taking 60 + (3*70)

= 270 cycles.

5.4 Cache Model

Transaction Generator has a simple model for describing cache misses for both the

instruction and data memory. Cache model was implemented for this thesis. Only

cache read fails are modeled as cache write misses don't have as signi�cant impact

on the execution. Cache misses occur when data requested by the application is not

in the cache and they are a property of particular piece of code. In TG cache is

simpli�ed to be a property of the PE and doesn't vary between tasks on the same

5. Processing Element Model 31

PE. The model allows to de�ne cache miss rates for both the instruction and data

memory.

Miss rates are speci�ed using the same equations as with the computation and

communication amounts. Result from the equations is interpreted as a clock cycle

count to the next cache miss. The cycle count is reduced when the PE model

is executing computation and not during reads or writes. When the cycle count

reduces to zero the PE model will halt the execution and issue a memory read to

the associated memory area. Execution is continued after the read request has been

ful�lled. Figure 5.6 shows an example of the XML description for cache misses.

<platform >

<resource id="0" name="PE2" frequency="80" type="RISC_CPU"
rx_buffer_size="262144" tx_buffer_size="1024"
packet_size="16">

<cache>

<i_miss line_size="64" mem_area_id="2">
<distribution >

<uniform min="1000" max="2000"/>
</distribution >

</i_miss >

<d_miss line_size="64" mem_area_id="3">
<distribution >

<normal mean="200" standard_deviation="30"/>
</distribution >

</d_miss >

</cache>

</resource >

</platform >

t

CPU0 Int_op D miss Int_op I miss Int_op

0 4020 60 80 100 120 140 160 180 200 220 240 260 280

Figure 5.6: Example of a cache de�nition for processing element. Distributions used in
the de�nition randomly chooses the amount of clock cycles to the next cache miss. That
amount is generated again every time cache miss occurs. Timeline shows a task executing
160 integer operations on a PE cpu0. The execution is stalled for 30 cycles due to data
cache miss and 40 cycles for instruction cache miss, and thus taking 230 cycles to complete.

Tags i_cache and d_cache de�ne the cycle count between cache misses for in-

struction and data memories with three properties.

Line size de�nes the amount of bytes read from the memory every time the corre-

sponding cache miss occurs.

Memory area links the cache miss to be read from a certain memory region.

5. Processing Element Model 32

Distribution is used to randomly select the number of execution cycles to the next

cache miss.

Cache miss de�nitions don't need port de�nitions as they are de�ned only for

the PE and the port information is only needed to de�ne task and trigger speci�c

sources and destinations.

33

6. MEMORY MODEL

TG's memory model consists of DRAM models and memory areas mapped to them.

The DRAM memories for the Transaction Generator are modeled with the help of

Accurate DRAM Model (ADM) package [44], which have been integrated to TG as

a part of this thesis.

6.1 Accurate DRAM Models

ADM is a SystemC package implemented with OCP-IP TLM sockets that models dy-

namic random-access memories accurately on transaction level. ADM is developed

by Royal Institute of Technology (KTH) with OCP-IP's Network on Chip Bench-

marking working group. Package models the important aspects of DRAMs that

greatly a�ects the memory access times, such as data rates, refresh rates and delays

between accesses. Figure 6.1 shows an example of a DDR1 memory con�guration.

256MB X8 DDR1 DRAM , JEDEC DDR RAM at 200 MHz

clockPeriod i:5 # IO clock period
dataRate i:1 # DRAM data rate , 1 = "DDR1"
refreshPeriod i:7600 # DRAM refresh period
refreshDuration i:120 # DRAM refresh duration
addressBusWidth i:25 # bit width of the address bus
bankAddressWidth i:2 # bit width of bank address
rowAddressWidth i:13 # bit width of row address
columnAddressWidth i:10 # bit width of column address
dataWidth i:4 # DRAM IO width
burstLength i:4 # DRAM Minimum burst length
tHopRow i:55 # Delay caused by row hops
tRCD i:15 # Delay , Activate to RD/WR
tCAS i:10 # Delay , Read to first response
tDQSS i:10 # Delay , Write to first data registered
tWTR i:10 # Delay , Read to last write registered

Figure 6.1: Example of a ADM memory con�guration �le for a 256MB X8 DDR1 memory.

Con�guration �le describes, for example, the clock cycle period (5 ns = 200 MHz),

various address widths in bits, the duration of refresh and the rate it occurs (120 ns

long refresh every 7600 ns), and several timing parameters.

6.2 Memory Areas

TG's memory model is divided into memory areas that model the contiguous mem-

ory regions. They represent the data and instruction memory regions accessed by the

6. Memory Model 34

tasks and PEs. Figure 6.2 visualizes memory address space divided to two DRAM

memories and three memory areas mapped to those.

Memory Element Model

Accurate DRAM Model

.

.

.

.

.

.

.

.

.

.

.

.

.

Memory:
 area C

0x800

.

.

.

.

0xCFF
0xD00

.

.

0xFFF

Memory Element Model

Accurate DRAM Model

Memory:
 area A

Memory:
 area B

0x000

.

.

.

0x3FF

0x400

.

.

.

0x7FF

Figure 6.2: Example of the contiguous address space divided to two memory models and
the memory areas mapped to them.

When TG's task model generates a send or read transaction to a memory model

it is always assigned to a certain memory area. Both the reads and sends are

de�ned to happen in bursts. The burst size de�nes how many of the bytes being

read or written are on consecutive memory addresses. When a task writes a token,

that is bigger than the burst size, it is split into multiple pieces when it arrives

to the memory model. For each of the pieces a new random address within the

corresponding memory area is generated and thus the writes might, for example,

trigger memory line changes that a�ect the operations execution speed.

Similarly the burst size is de�ned for memory reads. If the read request de�nes

a larger token than the burst size to be read from the memory the memory is read

from multiple random places within the corresponding memory area.

ADM package models only the memories and thus there is a simple wrapper

around the memory to model its network interface that connects it to the NoC

model. Figure 6.3 shows the XML de�nition of a memory model for TG.

The ADM package has its own con�guration �les to describe the details of the

memory being modeled. For TG the memory model is de�ned with following pa-

rameters.

Frequency speci�es the operating frequency of the network interface. It doesn't

need to be related to the speed of the memory itself.

RX bu�er size can be used to limit amount of incoming writes and read requests

that are not yet processed by the memory. It models a simple FIFO queue

between the memory and the network.

6. Memory Model 35

<platform >

<resource id="1" name="DDR1"
frequency="200" class="memory"
rx_buffer_size="512" tx_buffer_size="64"
packet_size="16" request_size="8"
ocp_param="examples/ocpParams"
adm_param="examples/admParams">

</resource >

</platform >

Figure 6.3: Example of a memory de�nition for the platform. Memory has a network
inteface operating at 200 MHz that has 512-byte receive and 64-byte send bu�ers. It sends
the read data in 16-byte packets and the read request needs 8 bytes. The details of the
DRAM model is con�gured in ocpParams and admParams �les.

TX bu�er size similarly limits the amount of data read from the memory that is

not yet sent to the network.

Packet size states the maximum size of a single network data packet that the

network interface can send to the network. If bigger chunks of data are read

from the memory they are automatically split to this size and reconstructed

at the receiving network interface.

Request size describes the size of a read request for the memory. As TG supports

only split-transaction NoC models every time a task issues a read it �rst sends

a read request to the memory model and waits for the memory to send back

the requested data.

36

7. NETWORK MODEL

The Network-on-Chip (NoC) models are not a part of TG itself. TG uses a sim-

ple queue-interface to the NoC models allowing various NoC implementations to

be easily attached to it. The NoC to be used in the simulation is de�ned in the

simulation constraints section and can be easily selected without modifying the ap-

plication or platform models. The tag has three prede�ned attributes class, type

and subtype that are used to select a speci�c NoC implementation to construct for

the simulation, for example a 2x2 mesh implemented with OCP-IP TLM sockets,

as in �gure 7.1. All the other tags inside the de�nition are also parsed by TG and

passed to the constructor. Figure 7.1 shows the NoC description in the XML source

for fh_mesh_2d, one of the example networks provided with TG.

<system >
.
.
<constraints >

.

.
<noc class="fh_mesh_2d" type="ocptlm" subtype="2x2"

pkt_switch_en_g="1"
stfwd_en_g="0"
addr_width_g="32"
packet_length_g="8"
timeout_g="5"
fill_packet_g="0"
len_flit_en_g="1"
oaddr_flit_en_g="0"
fifo_depth_g="4"
noc_freq_g="50000000"
ip_freq_g="50000000"/>

</constraints >

</system >

Figure 7.1: Example of a NoC de�nition used to select fh_mesh_2d, one of the example
interconnection networks, to use in the simulation. The tags after subtype are also passed to
the network constructor to de�ne its implementation-speci�c parameters, such as operating
frequencies, bu�er depths and network interface details.

NoC models to use with TG can be described in C, C++ or SystemC for platform-

independent simulation or in hardware description languages, such as VHDL and

Verilog. For mixed language simulations TG can be compiled and simulated, for

example with Modelsim [28]. Network models can be described in RTL or in higher

abstraction levels, such as TLM, which provide speedup for the simulation time as

TG has also been implemented at TL.

7. Network Model 37

7.1 Custom NoC Integration

Custom NoC models can be added to TG by adding a constructor to TG's NoC

library. The NoC library has a tree of factories that get called in the beginning of

the simulation to select a correct NoC constructor based on the class, type and

subtype attributes. Figure 7.2 depicts TG's NoC Factory structure.

NoC Factory

Mesh Factory Another Factory

OCP-IP TLM Factory OSCI TLM Factory VHDL RTL Factory SystemC RTL Factory

OCP-IP TLM
Socket

Adapter

OCP-IP TLM
NoC Model

OSCI TLM
Socket

Adapter

OSCI TLM
NoC Model

VHDL RTL
NoC Model

SystemC RTL
NoC Model

Figure 7.2: Figure illustrates TG's factory tree. To add a custom NoC to simulate with
TG, user must add a constructor for it to the NoC Factory class.

Figure 7.2 illustrates the selection of the network model for simulation. The top-

most NoC Factory class includes the header �les of all network models and contains

a pointer to each one. Based on the class attribute one of them is constructed with

a NoC Con�guration Interface object that carries the parameters from the XML

source and means for the network model to communicate with TG.

For the user it is enough to modify the general NoC Factory class, but the exam-

ple networks have a deeper tree structure. The Mesh Factory class, for example, has

been divided into multiple smaller factory classes depending on their implementation

language and technology. One of them is instantiated based on the type attribute.

This is to make the recompilation time shorter, if one of the lowest level classes is

modi�ed, and cleaner inclusion of the Hardware Description Language (HDL) net-

work implementations, which can't be compiled for TG without a compiler capable

of mixed-language simulation.

The last layer chooses, based on attribute subtype, the actual network imple-

mentation, such as the 2-by-2 mesh in �gure 7.1. In the example network models

there's for most of them di�erent template based implementation classes, mainly

because SystemC taking port widths as a template parameter preventing them to

be created easily dynamically.

7. Network Model 38

TG has a native simple interface for communicating with RTL models and adapters

to communicate with TLM models, as in the example of �gure 7.2. The adapters im-

plement a conversion of TG native interface to SystemC and OCP-IP TLM sockets.

With the native method network models are connected to TG's PEs and memories

throug a simple queue interface, which is provided for the network model's construc-

tor. The queue interfaces provide the following functionality for the network models

to communicate with TG.

rxPutPacket method to pass the data towards TG as it is received from the net-

work.

rxSpaceLeft method which informs the amount of bytes left in the receive bu�er.

If the bu�er doesn't have enough space for the incoming packet it must not

be passed to the receiver thus stalling the reception.

rxBufSize method returns the total size of the receive bu�er.

rxGetReadEvent method returns SystemC event that is activated every time the

receive bu�er has been read by the platform model. This can be useful for

higher abstraction level models preventing the need to poll the interface.

txPacketAvailable method can be used to poll the resource whether it has a data

packet to send.

txGetPacket method returns the raw data to send through the network as well as

information about the transmission for the network to route it to the receiver.

txGetPacketAvailableEvent method returns a SystemC event that is activated

every time the resource has a data packet to send.

TG uses a similar interface for the PEs and memories from the other of the bu�ers

to model the interface to the NoC. This interface is provided to simplify connecting

the NoC as the bu�er models are more unnecessarily complex for the NoC model

on the TG's side.

7.2 Provided NoC Example Models

TG provides example NoC implementations, such as simple bus, crossbar, ring and

two 2-D meshes. Example networks are released also as a part of Funbase IP library

[34]. TG release packet includes example NoCs described in RTL and TLM, from

which the VHDL versions, with the exception of ase_mes, are described in [40]. The

SystemC version were implemented for the author's bachelor thesis [23] and their

e�ect on speedup with TG presented in [25].

7. Network Model 39

Modeling on higher abstraction levels is bene�cial, simulation speed wise, for TG

as it is also modeled on higher abstraction level. With higher abstraction level mod-

eling many of the implementation details can be left out o�ering faster simulations

with TG. Comparing the SystemC RTL and TLM modeling styles for TG, a 10-

40x speedup in simulation time can be achieved easily without loosing too much

accuracy, as reported in [25].

Figure 7.3 illustrates the di�erence between RTL and TLM models provided with

the package. RTL models are simulated every time some signal changes, that is

about 30 times in the example. In contrast, TLM models are simulated only at the

beginning and the end of transactions, the 4 phases in the example. However, the

exact timing cannot always be determined in TLM leading to estimation errors.

CLK

WRITE

ACK

Wr_DATA

READY

READ

Rd_DATA

MASTER

SLAVE
BEGIN_REQ END_REQ BEGIN_RESP END_RESP

RTL

TLM

Figure 7.3: Conceptual di�erence between communication of RTL and TLM models. While
RTL models describe every signal changes at clock cycle detail, in TLM the communication
is described only annotating the important moments, such as the beginnings and ends of
requests and responses.

Table 7.1 lists the example network-on-chip models that are distributed with TG.

TG's major idea is compare di�erent NoC implementations. Thus, the user is

expected to provide their own NoC implementations. The example NoC models are

provided mainly to o�er examples of how di�erent implementation can be integrated

to TG.

7. Network Model 40

Table 7.1: Table listing the example NoC implementations provided with TG.

Name Language Explanation
Simple Bus SystemC OCP-IP TLM Shared multimaster bus without de-

tailed timing information. It gives an
example of a SystemC OCP-IP TLM
socket based network integration with
TG's socket adapters.

FH Crossbar VHDL A high throughput interconnection.
Impractical for larger systems in real
life, due to large number of long wires,
but for simulation it o�ers a way to
get performance estimations for near-
optimal interconnections.

FH Ring VHDL A simple 1-D multi-hop topology con-
necting resources as a two-way ring.

FH 2-D Mesh VHDL Mesh implementation with
con�guration options, for example to
the packet structure, switching and
bu�ering.

SystemC RTL
SystemC TLM
SystemC OCP-IP TLM

Ase 2-D Mesh VHDL Minimal implementation of the 2-D
mesh topology optimized for small size
and short delays in routing

41

8. SUMMARY OF TG

This chapter provides overview of what was implemented or modi�ed for this thesis

and summary of TG's current implementation package.

8.1 New Features

TG implementation was completely refactored from TCL and SystemC 1 based

code generator to self-contained simulation core with up to date technologies, such

as SystemC 2 TLM and OCP-IP TLM sockets. One major addition was the memory

area models and DRAM memory models implemented with the ADM package.

Support to convert and simulate MCSL NoC Tra�c Patterns was integrated as a

part of TG. Modeling of task workload was diversi�ed by implementing distributions

to calculate the workload, and operations to read from and write to memories. PE

models were enhanced with inclusion of a new scheduling algorithm, cache model

and possibility to have �nite bu�ers for token reception and transfers. Measurements

of the simulation were made more detailed and new measurements were added, such

as measuring token's traverse time from one place to another.

8.2 Implementation

TG is implemented in C++ with the SystemC library handling the notion of time

and concurrency. It uses few libraries from Boost [8], such as Asio to handle TCP

connection to Execution Monitor, Program Options for command line parsing, and

Property Tree for parsing and storing the XML input models.

The implementation is divided into 15 classes, which mainly follow the tag struc-

ture of the input XML model descriptions. Main reason for the current class divi-

sion was to handle parsing the input XML tags in smaller pieces, so that every class

handles only its own information and the sub-tags would be parsed in their own

respective classes. Figure 8.1 presents the class diagram of the current implementa-

tion.

Con�guration class parses the constraints from the model description and holds

the general information of the simulation, such as the simulation's length

and time resolution, and the mapping information, for example which task

is mapped where.

8. Summary of TG 42

Configuration

Amount CostFunction

Event

Buffer BufferInterface

Resource

ProcessingElement MemoryModel

ResourceUser

Task MemoryArea

Trigger

TcpServer Measure

Figure 8.1: Class diagram of TG's current implementation showing only the main relation-
ships between classes.

Amount class parses the polynomials and distributions de�ned, for example, for

the computation operations and communication's byte amounts. During the

simulation this class allows the evaluation of the polynomial and distributions

as de�ned in the model description.

CostFunction class parses the cost functions and implements a simple calculator

to evaluate them at the end of simulations. With the cost functions the user

can, for example, compare the various NoC implementations and the e�ect of

its con�guration parameters.

Event class parses the event descriptions and implements a SystemC thread to �re

the events during the simulation.

Bu�er class implements the PE's internal memory model and the communication

interface between the TG's resource models and the network model.

Bu�erInterface class de�nes the interface that is exposed to the network model

from the Bu�er classes.

Measure class implements SystemC threads to handle the measurements gathered

during the simulation and the communication with Execution Monitor.

Resource class acts as a base class for the MemoryModel and ProcessingElement.

It parses the information that is common between them, such as operating

frequency, bu�er sizes, and packet size.

MemArea class parses the information related to memory areas.

8. Summary of TG 43

MemoryModel class parses the information related to memory elements and han-

dles the communication with the ADM DRAM models.

ProcessingElement class parses the information related to PEs and implements

features, such as cache miss models, task scheduling algorithms, the execution

of tasks and their communication. It is the most important class implementing

majority of TG's MoC.

ResourceUser class is a base class for Task and MemArea classes handling the

parsing of their common information, such as identi�cation numbers, and input

and output ports.

Task class parses the general task information from the task tags and implements

task model's internal state machine.

Trigger class parses the trigger tags and handles the list of operations to execute

after being �red.

TcpServer class constructs a TCP server for communication with Execution Mon-

itor.

TG package includes both example and tutorial application models, application

models described in [37], and the MCSL NoC Tra�c Patters [26]. In addition to

TG simulation core with the ADM package [44], it comes with SystemC and VHDL

NoC models and the Execution Monitor [17]. Table 8.1 lists the current source code

size of TG.

Table 8.1: Table showing the size of the TG codebase. Application models include the
application workload models, examples and tutorials provided with TG. C++ �les are
divided to TG simulation core, the ADM package and NoC models imlemented in SystemC.
Package also provides VHDL NoC implementations and the Execution Monitor program.

Language Part Files Comment Lines Code Lines

XML Application models 95 1 303 22 618

C++

TG core 42 2 517 7 532
ADM 12 352 1 332
NoC models 75 3 707 12 054
Total 129 6 576 20 918

VHDL NoC models 53 2 883 10 541
Java Execution Monitor 59 4 166 9 436

Implementation process of the new version of Transaction Generator was car-

ried out without many complications. One complication arose with the SystemC

library's choice of implementing wire's width information as a template parameter.

8. Summary of TG 44

Templates in C++ require the information to be known at compilation time, thus

defeating the TG's idea of dynamic construction of the models without needing a

recompilation. At the moment this issue has not been solved for the instantiation

of the example RTL network models. TG doesn't use internally any templates for

the parts that depend on the application model and thus doesn't need recompilation

between simulations.

Another complication was caused by the Modelsim and its compiler for SystemC.

The compiler couldn't handle, at least at the time when the refactoring of TG

started, many nice-to-have C++ features, such as smart pointers, leading to a more

C-like implementation of TG and the small compilation di�erences when compiled

to Modelsim and native program. For example, with the Modelsim the TCP server

is not included in the compilation and the command line parameters are parsed

di�erently.

45

9. CASE STUDY

This chapter provides examples of TG used to examine MCSL's H.264 video decoder

application model for 720p resolution. Application model is �rst simulated with two

di�erent NoCs of 2-D mesh topology. Then the application simulated with the

faster NoC with varying packet sizes. Lastly the e�ect of PE mapping to the NoC

is examined. The NoC's chosen for the example simulations are fh_mesh_2d and

ase_mesh. The point of this chapter is to show few examples of the NoC analysis

that can easily be carried out in a single work day.

9.1 H.264 Application Model

The MCSL NoC Tra�c Patter application model for H.264 video decoder with 720p

resolution recorded tra�c pattern [26] is used in these examples. Figure 9.1 shows

a snippet of the application model. The MCSL application model is converted to

TG's native format to allow easier modi�cation of the simulation parameters, such

as the used NoC model, packet sizes for the NoC, and NoC operating frequency.

Application model consists of 50 tasks with 73 communication connections running

on 11 PEs. PEs are mapped to 4x4 2-D mesh NoC leaving 4 of the possible PE

or other resource connections empty. Application sends around 200-byte packets

between the tasks and the operation counts are in the range of 2000-4000 per trigger.

Figure 9.1: A part of the H.264 application model [26]. Circles with letters correspond to
tasks and edges to the communication with weights as the size of transferred data.

9. Case Study 46

In the experiments the PEs are operating at a constant frequency while the NoC

frequency is varied in a range of 10-20% of the PE frequency. E�ect of four network

packet sizes and three mappings are examined.

9.2 Di�erence Between NoC Implementations

First set of simulations show the di�erence in execution time of the application

between fh_mesh_2d and ase_mesh NoC models. The application is simulated 20

times to get more realistic average execution time, for example by avoiding the ef-

fect of empty network at the beginning of simulation. The network models used

in this example are both using the same network interface implementation, which

handles, for example the clock domain crossing with asynchronous FIFOs. Di�er-

ence in the application's execution time is thus caused only by the router and link

implementation divergence.

Both of the NoCs are using �xed XY routing for at maximum of 16-byte network

packets. Both use wormhole switching and �xed arbitration when selecting the next

packet to transfer. The main di�erence between the NoCs a�ecting the speed in

clock cycles is that the fh_mesh_2d has a FIFO bu�ers on every link and uses 1 or 2

clock cycles between network packets to switch the next packet while the ase_mesh

NoC has no extra bu�ering on links and is capable of switching packets to links

without any idle clock cycles between the packets. Figure 9.2 shows the simulation

results for both NoCs. Results are normalized to the faster NoC simulated with

the slowest operation frequency. Application's execution speed is measured from

the moment all of the tasks have been executed 20 times, as is the case in all the

simulation results shown in this chapter.

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

ase_mesh

fh_mesh

NoC Frequency [normalized]

E
xe

cu
tio

n
 S

p
e

e
d

 [n
o

rm
a

liz
e

d
]

Figure 9.2: Simulation speed comparison between fh_mesh_2d and ase_mesh as a function
of NoC frequency. Speed is normalized to the application's execution time with ase_mesh

on it's slowest operating frequency in the simulation. Frequencies are increased up to two
times faster frequency.

9. Case Study 47

From the simulation results presented in �gure 9.2 a clear performance di�erence

(around 1.45x) can be seen between the NoCs. Even though the throughput is

equivalent for the networks, the shorter latency of ase_mesh leads to signi�cant

speedup for the application. Result of doubling the NoC operation frequency was

about 1.4x. Also the nonlinear relationship for the increase of the NoC's operating

frequency can be seen. Even a slight di�erence in the operating frequency can cause

the tra�c congestion to build up di�erently especially for the FIFO-less ase_mesh

and cause noticeable slowdown even when the operation frequency is increased.

9.3 In�uence of Network Packet Size

Individual network parameter con�guration can make a great di�erence for the per-

formance of the application. NoC ase_mesh is selected to more precise examination

for the application, as it was signi�cantly faster in the previous measurements. The

ase_mesh implementation is realized with minimal features and its behavior can't

be con�gured. Nevertheless, it can behave quite di�erently based on the size of the

packets sent through it, even if the size of the actual payload is the same. Figure 9.2

shows the simulation results for di�erent network packet sizes as a function of NoC

operating frequency.

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

16 bytes
24 bytes
8 bytes
Unlimited

NoC Frequency [normalized]

E
xe

cu
tio

n
 S

p
e

e
d

 [n
o

rm
a

liz
e

d
]

Figure 9.3: Application's execution speed for various network packet sizes as a function of
NoC operating frequency.

The NoC implementation doesn't impose any restrictions on the network packet

size. Every packet is pre�xed with a one word network address �eld followed by the

payload. The network packet can't be split on its way in the network and if it is

long it reserves the links for a long time.

As seen in �gure 9.3 packet size a�ects the performance of the application sig-

ni�cantly when using the ase_mesh. The unlimited packet size results in about

200-byte packets being sent through the network blocking the links for long periods

9. Case Study 48

for one packet and leading to slower execution. Smaller packet size increases the

communication overhead as every packet needs its own network header, which, for

example leads to 33% tra�c increase for the 8-byte packets. For smaller NoC op-

eration frequencies the 24-byte packet is faster but the speedup to 16-byte packets

gets smaller as the frequency is increased.

9.4 E�ect of PE Mapping

How the application is mapped to the PEs and the PEs to the NoC can a�ect the

application's performance signi�cantly. Mapping has been discussed thoroughly, for

example in [35]. Possible mapping variations grow exponentially for the amount of

processing elements and the tasks. This leads to the impracticality of evaluating all

of them and in this example only few variations is shown as an example. Figure 9.4

reports the e�ect on application's execution speed by simple mapping variations of

rotating the original PE mapping by 90 and 180 degrees. This a�ects the execution

speed especially when using the ase_mesh NoC as it has �xed routing and arbitration

schemes.

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Original

90 deg

180 deg

NoC Frequency [normalized]

E
xe

cu
tio

n
 S

p
e

e
d

 [n
o

rm
a

liz
e

d
]

Figure 9.4: Application's execution speed for di�erent PE mappings to the NoC as a
function of NoC operating frequency. Original depicts the results for the mapping the
application model comes with and 90 deg and 180 deg the result for the original mapping
rotated by 90 and 180 degrees respectively.

Mapping has consequences on many aspects of the application, such as PE utiliza-

tion, communication latencies, and congestion on the network, that can be monitored

with TG.

49

10. CONCLUSIONS

Transaction Generator was re-implemented with up-to-date technologies with the

C++ programming language using SystemC version 2 library to handle the notion

of time and concurrency needed for describing hardware. Additional libraries for the

implementation used were the OCP-IP TLM kit to support OCP-IP TLM sockets

and Boost to help with trivial tasks, such as XML parsing.

Memory models were added with the help of the DRAM models from the ADM

package. Inclusion of DRAM models allowed the implementation of reading and

writing operations for the tasks, and the simple cache miss model for the processing

elements. Support to simulate and convert the MCSL NoC Tra�c Patterns appli-

cation models were added bringing the supported application model set a healthy

addition.

Three example simulation cases were evaluated for the H.264 video decoder ap-

plication model providing information of the e�ect of the di�erence between two

di�erent NoC implementations, the network packet size, and di�erent PE mappings

to the network. The results, showing a di�erence of around 0.6-1.45x speedup for

the application execution speed, provide an example of ∼100 simulations that can

be easily executed and analyzed within a work day with TG.

Also a detailed description of the current state of the simulation models of Trans-

action Generator was provided. The result of this thesis, consisting of around 10

000 lines of code for the simulator's core, has been used in research, for example in

[40, 25] and [37], and is currently available from Accellera [45]. The objective for

this thesis has been achieved. Table 10.1 shows a summary of TG.

For future work, Transaction Generator's simulation logging should be expanded

and re�ned with more details to allow the user to analyze easier the actual reasons

why something behaves like it does in the simulations. For example, �nding the root

cause of the bottlenecks and the reason for unexpected or surprising results could

be made better. For example, the slow-downs in the example simulations, when the

operating frequency was increased, can be explained in general but the actual tasks

causing it are harder to �nd.

More thorough analysis of the application models would also bene�t the user, for

example to make more obvious selecting the models that would be better applicable

for a certain application the user is benchmarking the NoC for. Also, even though

10. Conclusions 50

out of the TG's scope, the user would bene�t from having a possibility of simulating

workload models generated automatically from existing legacy code.

Table 10.1: Table of the TG features.

Category Details

Purpose NoC/MP-SoC simulation and analysis.
Model style Workload model for NoC.
Application model KPN based or MCSL tra�c pattern.
Supported NoC styles From RTL to more abstract (TLM).
Supported NoC descriptions SystemC, VHDL, Verilog...
Provided test cases 10 (native) + 8 (MCSL).
Provided example NoCs 5.

Language C++ with SystemC.
Needed libraries OCP-IP TLM Kit, Boost.
Code lines ∼10k (core).
License LGPL.
Available NoCBench [31], OCP-IP [33], Accellera [45].

51

REFERENCES

[1] P. Abad, P. Prieto, L. G. Menezo, A. Colazo, V. Puente, J.-A. Gregorio, TOPAZ:

An Open-Source Interconnection Network Simulator for Chip Multiprocessors

and Supercomputers, Sixth IEEE/ACM International Symposium on Network

on Chip (NoCS), Pages 99- 106, May 2012.

[2] Academy of Finland, Academy of Finland, http://www.aka.fi/en-GB/A/, Ref-

erenced 19.4.2014.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and A.

Sangiovanni-Vincentelli, Metropolis: an integrated electronic system design en-

vironment, Computer, Volume 36, Number 4, Pages 45- 52, 2003.

[4] L. Benini, G. De Micheli Networks on chips: a new SoC paradigm, Computer,

Volume 35, Number 1, Pages 70- 78, January 2002.

[5] Y. Ben-Itzhak, E. Zahavi, I. Cidon, A. Kolodny, HNOCS: Modular open-source

simulator for Heterogeneous NoCs, International Conference on Embedded Com-

puter Systems (SAMOS), Pages 51- 57, July 2012.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.

Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Waish, M. D. Hill, D. A. Wood, The GEM5 Simulator, SIGARCH Computer

Architecture News, Volume 39, Number 2, May 2011.

[7] T. Bjerregaard and A. Mahadevan, A survey of research and practices of

Network-on-chip, Journal ACM Comput. Surv., Volume 38, Issue 1, ISSN 0360-

0300, ACM, New York, NY, USA, June 2006.

[8] Boost, Boost C++ Libraries, http://boost.org, Referenced 6.5.2014.

[9] L. Cai, D. Gajski, Transaction Level Modeling: An Overview, International Con-

ference on HW/SW Codesign and System Synthesis (CODES-ISSS), Pages 19-

24, October 2003.

[10] A.S. Cassidy, J.M. Paul and D.E. Thomas, Layered, multi-threaded, high-level

performance design, Design, Automation and Test in Europe Conference and

Exhibition, Pages 954- 959, 2003.

[11] W. Dally, and B. Towles, Principles and Practices of Interconnection Networks,

Morgan Kaufmann Publishers Inc., ISBN 0122007514, January 2004.

[12] W. J. Dally, B Towles, Route packets, not wires: on-chip interconnection net-

works, Design Automation Conference (DAC), Pages 684- 689, 2001.

http://www.aka.fi/en-GB/A/
http://boost.org

REFERENCES 52

[13] M. Gries, Methods for Evaluating and Covering the Design Space during Early

Design Development, Integration, the VLSI Journal, Volume 38, Pages 131- 183,

2003

[14] K. Holma, M. Setälä, E. Salminen, M. Hännikäinen and T. D. Hämäläinen,

Evaluating the Model Accuracy in Automated Design Space Exploration, Mi-

croprosessors & Microsystems: Special Issue in Dependability and Testing of

Modern Digital Systems, Volume 32, Issue 5-6, Pages 321- 329, April 2008.

[15] A. Jerraya and W. Wolf,Multiprocessor Systems-on-Chips (Systems on Silicon),

Morgan Kaufmann Edition 1, ISBN 012385251X, October 2004.

[16] N. Jiang, D. U. Becker, G. Michelogiannakis, B. Towles, D. E. Shaw, J. Kim,

W. J. Dally, A detailed and �exible cycle-accurate Network-on-Chip simulator,

IEEE International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), Pages 86- 96, April 2013.

[17] K. Holma, T. Arpinen, E. Salminen, M. Hännikäinen, T. D. Hämäläinen,

Real-time execution monitoring on multi-processor system-on-chip, International

Symposium on System-on-Chip (SOC), Pages 1- 6, November 2008.

[18] G. Kahn, Natural Semantics, Proceedings of the Symposium on Theoretical

Aspects of Computer Science (STACS), Springer-Verlag, Lecture Notes in Com-

puter Science, Volume 247, Pages 22-39, 1987.

[19] T. Kangas, J. Riihimaki, E. Salminen, K. Kuusilinna, T. D. Hämäläinen, Us-

ing a communication generator in SoC architecture exploration, International

Symposium on System-on-Chip, Pages 105- 108, November 2003.

[20] K. Keutzer, A. R. Newton, J. M. Rabaey, A. Sangiovanni-Vincentelli, System-

level Design: Orthogonalization of Concerns and Platform-based Design, Trans.

Comp.-Aided Des Integ. Cir. Sys., Volume 19, Number 12, Pages 1523- 1543,

November 2006.

[21] T. Kogel, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, D. Bussaglia and M.

Ariyamparambath, Virtual architecture mapping: A SystemC based methodology

for architectural exploration of system-on-chip designs, Proc. of the Int. workshop

on Systems, Architectures, Modeling and Simulation (SAMOS), Pages 138- 148,

2003.

[22] K. Lahiri, A. Raghunathan, and S. Dey, System-level performance analysis for

designing on-chip communication architectures, IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, Volume 20, Number 6, Pages 768-

783, 2001.

REFERENCES 53

[23] L. Lehtonen, Mikropiirinsisäisten kytkentäverkkojen mallintaminen SystemC-

kielellä, Bachelor Thesis, Tampere Univesity of Technology, 22 pages, 2012.

[24] L. Lehtonen, E. Pekkarinen. Transaction Generator Technical, http://www.

tkt.cs.tut.fi/research/nocbench/data/sctg2_technical.pdf, Retrieved

12.1.2012.

[25] L. Lehtonen, E. Salminen and T. D. Hämäläinen, Analysis of Modeling Styles on

Network-on-Chip Simulation, Norchip Conference, Tampere, Finland, November

2010.

[26] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast and Z. Wang,

A NoC Tra�c Suite Based on Real Applications, 2011 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), Pages 66- 71, ISSN 2159-3469, July 2011.

[27] A. Mello, A. Amory, N. Calazans, F. Moraes, ATLAS - A NoC Genration and

Evaluation Framework, Design, Automation & Test in Europe DATE, 2011.

[28] Mentor Graphics,Modelsim, http://www.mentor.com/products/fpga/model,

Referenced 22.4.2014.

[29] A. Moonen, M. Bekooij, R. van den Berg and J. van Meerbergen, Evaluation of

the throughput computed with a dataow model - A case study, Eindhoven Univer-

sity of Technology, Department of Electrical Engineering, Electronic Systems,

ISSN 1574-9517, 2007.

[30] G.E. Moore, Cramming More Components Onto Integrated Circuits Proceed-

ings of the IEEE, Volume 86, Number 1, Pages 82- 85, ISSN 0018-9219, January

1998.

[31] NOCBENCH Project, Standardization of Benchmarking Methodology for

Network-on-Chip, http://www.tkt.cs.tut.fi/research/nocbench, Refer-

enced 19.4.2014.

[32] Noxim, University of Catania, Noxim, http://www.noxim.org, Referenced

18.4.2014.

[33] OCP-IP, Open Core Protocol - International Partnership, http//www.ocpip.

org, Referenced 12.1.2012.

[34] OpenCores, Funbase IP library, http://opencores.org/project,funbase_

ip_library, Referenced 23.4.2014.

http://www.tkt.cs.tut.fi/research/nocbench/data/sctg2_technical.pdf
http://www.tkt.cs.tut.fi/research/nocbench/data/sctg2_technical.pdf
http://www.mentor.com/products/fpga/model
http://www.tkt.cs.tut.fi/research/nocbench
http://www.noxim.org
http//www.ocpip.org
http//www.ocpip.org
http://opencores.org/project,funbase_ip_library
http://opencores.org/project,funbase_ip_library

REFERENCES 54

[35] H. Orsila, Optimizing Algorithms for Task Graph Mapping on Multiprocessor

System on Chip, PhD Thesis, Tampere University of Technology, Publication

972, 199 pages, 2011.

[36] E. Pekkarinen, Moniprosessorisovellusten mallintaminen, Bachelor Thesis,

Tampere University of Technology, 26 pages, 2011.

[37] E. Pekkarinen, L. Lehtonen, E. Salminen, T. D. Hämäläinen, A Set of Traf-

�c Models for Network-on-Chip Benchmarking International Symposium on

System-on-Chip, Pages 78- 81, October 2011.

[38] A.D. Pimentel, L.O. Hertzbetger, P. Lieverse, P. van der Wolf and E.E. Depret-

tere, Exploring embedded-systems architectures with Artemis, Computer, Volume

34, Number 11, Pages 57- 63, ISSN 0018-9162, November 2001.

[39] Qualcomm, Snapdragon S4 Processors: System on Chip Solutions for a New

Mobile Age, Qualcomm white paper, October 2011, https://developer.

qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf, Retrieved

18 April 2014.

[40] E. Salminen, On Design and Comparison of On-Chip Networks, PhD Thesis,

Tampere University of Technology, Publication 872, 230 pages, 2010.

[41] E. Salminen, C. Grecu, T. D. Hämäläinen and A. Ivanov, Application modeling

and hardware description for network-on-chip benchmarking, Computers Digital

Techniques, IET, Volume 3, Number 5, Pages 539- 550, September 2009.

[42] E. Salminen, A. Kulmala and T. D. Hämäläinen, Survey of Network-

on-chip Proposals, OCP-IP, http://www.ocpip.org/uploads/documents/

OCP-IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf, Retrieved

22.1.2012.

[43] A. Sangiovanni-Vincentelli, Quo Vadis, SLD? Reasoning About the Trends and

Challenges of System Level Design, Proceedings of the IEEE, Volume 95, Number

3, Pages 467- 506, ISSN 0018-9219, March 2007.

[44] K. Srinivasan, E. Salminen, A memory Subsystem Model for Evaluating

Network-on-Chip Performance, OCP-IP white paper, September 2010.

[45] SystemC, Open SystemC Initiative, OSCI, http://www.accellera.org/home,

Referenced 12.1.2012.

[46] A. Varga et al., The OMNet++ discrete event simulation system, European

Simulation Multiconference (ESM), Pages 319- 324, June 2001.

https://developer.qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf
https://developer.qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf
http://www.ocpip.org/uploads/documents/OCP-IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf
http://www.ocpip.org/uploads/documents/OCP-IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf
http://www.accellera.org/home

REFERENCES 55

[47] W. Wolf, A. Jerraya and G. Martin, Multiprocessor System-on-Chip (MPSoC)

Technology IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, ISSN 0278-0070, Volume 27, Number 10, Pages 1701- 1713,

October 2008.

	Introduction
	Related Work
	Network-on-Chip
	Design Space Exploration
	NoC Simulators and Traffic Generators

	Transaction Generator
	XML Description
	Simulation Results

	Application Model
	Event
	Task
	Trigger
	Computation and Communication

	Memory Area
	MCSL Traffic Patterns
	Mapping

	Processing Element Model
	Scheduling
	Execution Model
	Communication Model
	Cache Model

	Memory Model
	Accurate DRAM Models
	Memory Areas

	Network Model
	Custom NoC Integration
	Provided NoC Example Models

	Summary of TG
	New Features
	Implementation

	Case Study
	H.264 Application Model
	Difference Between NoC Implementations
	Influence of Network Packet Size
	Effect of PE Mapping

	Conclusions
	References

