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Maarobottien autonominen operointi ja tehokas reitinsuunnittelu vaatii informaa-
tiota ympäröivästä alueesta. Informaatiota on helppoa hankkia robotin lähiympä-
ristöstä mutta suurempien alueiden kartoitus on haastavaa.

Tämän työn tarkoitus oli rakentaa laitteisto, jolla voidaan tuottaa pistepilvi tyyp-
pistä dataa ilmasta käsin. Työssä keskityttiin alueisiin, joissa ei ole selkeitä piirteitä,
kuten hiekkakenttiin ja metsiin. Stereonäkö on paljon tutkittu alue mutta monet ny-
kyisistä menetelmistä eivät toimi suuriresoluutioisella datalla tai hyödyntävät vain
osan saatavilla olevasta informaatiosta.

Stereokamerat rakennettiin kahdesta digitaalikamerasta. Kamerat kiinnitettiin
hexakopterin pohjaan. Kameroiden välinen etäisyys pidettiin pienenä, jotta kame-
rat saatiin sovitettua kopteriin kyytiin. Tästä johtuen stereonäön tarkkuus kärsii
pidemmillä etäisyyksillä.

Työssä kehitetty algoritmi perustuu korrelaatiopohjaiseen hakuun, jolla etsitään
kuvista vastaavat alueet. Laitteistolla saatiin hyviä tuloksia alle 5m etäisyyksiltä.
Kohtalaista dataa onnistuttiin saamaan vielä 30 − 40m korkeudesta. Suurimmat
virheet aiheutuivat kameroiden epätarkasta laukaisusta.

Työ tarjoaa hyvän pohjan järjestelmän jatkokehitykselle. Suurin osa työssä koh-
datuista ongelmista on ratkaistavissa laitteistovalinnoilla.
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ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Automation Science and Engineering
Joonas Melin : Surface reconstruction using high resolution stereo vision in
a micro air vehicle
Master of Science Thesis, 63 pages, 0 Appendix pages
April 2014
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Examiner: Risto Ritala
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The autonomous operation of an unmanned ground vehicle requires map infor-
mation to be able to plan its route efficiently. It is possible to obtain information
from the vicinity of the machine but ground based machinery is not ideal for quickly
mapping large areas of unknown terrain.

The aim of this thesis is to make a proof of concept implementation of an aerial
system that provides point cloud data to be used for mapping areas. The focus is
in areas which do not have many distinctive features, such as dirt fields or forest.
Stereo vision is not a new concept but many of the existing methods cannot process
high resolution data or are utilizing a small part of the available information.

Stereo cameras are constructed from two consumer grade digital cameras which
are mounted below the hexacopter. Cameras are placed close to each other because
of the payload and size constrains, this makes the stereo camera more compact but
reduces the accuracy of the stereo vision.

The algorithm developed in this thesis uses correlation based block matching to
determine the corresponding features from the stereo pair. The algorithm is able to
find details from low feature surfaces when the altitude is below 5m. Useful data
can be obtained from altitudes up to 30 − 40m. The largest errors are caused by
the consumer grade cameras having inaccurate triggering.

This thesis serves as a good starting point for developing more efficient hardware
and software for small aerial vehicles. Many of the problems encountered in this
thesis can be mitigated with different hardware.
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1. INTRODUCTION

The objective of this thesis was to measure terrain with a stereo camera being carried
aboard a multirotor aerial vehicle. This is a small part of a larger project in which
the ultimate goal is to provide autonomous capabilities to mobile machines. This
Chapter provides the background information on methods of getting the terrain
information and how this information can be acquired. Justification is given as to
why stereo cameras and multirotors were chosen for this thesis.

After the introduction, there will be a short review of stereo vision. Theory is
discussed on such a level that when combined with the implementation Chapter
and the source material, implementing all the algorithms of this thesis should be
possible.

The implementation Chapter will describe the workflow that is required for the ac-
tual process of searching the 3D-point cloud of terrain. The algorithms and software
has been developed for this thesis, but references are made when similar implemen-
tations are found in the existing literature.

1.1 Unmanned Aerial Vehicles (UAV)

Recent advancements on MEMS-sensor technology have brought down the prizes
for small and lightweight gyro and accelerometer sensors. These have fueled the
development of small and lightweight micro air vehicles (MAV). Term MAV refers
here mainly to multirotor helicopters, but MAV in general are a much larger group
of vehicle types that are generally lightweight and able to move in the air. MAV is
a subgroup of UAV vehicles. MAVs differ from UAV mainly by their low weight and
relatively small payload capabilities.

In this thesis, we are using MAV to transport the needed payload to the desired
position. This work does not study the autonomous capabilities of the MAV’s.
MAV used in this work is a part of a larger project where the goal is to provide
supporting information for route planning and decision making on ground based
machines. This thesis also presents how the MAV is constructed and what kind of
software is running onboard. The goal is not to provide a full documentation but to
give a general idea of the system as a whole.
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1.1.1 Multirotors

Multirotors are a relatively new type of MAV that uses multiple motors with fixed
pitch propellers. The definition of a multirotor is very loose as anything that is
flying and has more than two propellers can be considered multirotor. Traditionally,
multirotors are distinguished by their rigidly mounted motors with fixed pitch, but
several exceptions to both of these criteria exist.

Advantages on using multirotors are their mobility, fault tolerance and versatile
structure. Their mobility is good as they can control their speed freely in all direc-
tions. However, they are not suited for high speed applications since their maximum
speed is limited to roughly 80km/h. Multirotor’s body structure is highly advanta-
geous for mounting measurement and computation hardware, because of the space
available in the middle of the body. Large and oddly shaped payload can be fitted
easily because all the moving parts are on the edges of the multirotor. The only
moving parts on the multirotor are the motors and propellers and if the copter has
4 or more motors with enough lift, the multirotor can survive losing one motor. In
case of a quadcopter with four motors, losing one motor means that the copter needs
to abandon yaw control, but landing safely is still possible even without the yaw
control. In case of a hexacopter with six motors, losing one motor will mean that
there is less thrust, but it can still be flown as normal.

Weak points on multirotors are their high reliance on software stabilization. This
means that software bugs can cause serious issues in flight, compared with winged
planes that will keep on gliding if there is a momentary glitch in the software.

Figure 1.1: Hierarchy of control provided to a pilot by the multirotor. The Lowest level of
the control is the rate control which feeds inputs straight to the MAV’s rotational rate PID
controller. Higher control levels rely on the lower level controllers. A fully autonomous
control is not supported on available autopilots up to this date as it would require complex
path finding algorithms on top of knowledge of the surrounding environment.

Multirotors are usually flown by a pilot operating a remote controller on the
ground. In principle multirotors are operated by controlling their attitude and
thrust. Levels of control are illustrated on Figure 1.1. The way that the pilot
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interacts with the multirotor is defined by the onboard software. The Lowest level
of the control is rate control, which will bypass the attitude controllers and the pilot
inputs are interpreted as inputs to the attitude rate controller. Giving input directly
to the rate controllers enable the pilot to freely control the attitude of the copter
and the software will not limit the attitude to a safe range.

One step up from rate control is attitude control. This means that the pilot
inputs are interpreted as the desired attitude. Attitude inputs are input to higher
level controllers which will in turn feed lower level rate controllers. Usually, attitude
control modes restrict the angles to + − 45deg as this ensures that the multirotor
will produce enough lift to maintain its altitude. When speeds are kept low, the
attitude inputs translate to acceleration inputs. Tilting the multirotor will induce
acceleration in a direction of the tilt.

The next control level is speed control, which will rely on a GPS onboard to
estimate speed and position. The pilot inputs are interpreted as speed commands.
Software will control the attitude to reach these speed goals. Flight controller soft-
ware supports mixing the speed, rate and attitude controls, e.g. having attitude
control on roll and pitch axis, speed control on height and rate control on the yaw
axis.

The Highest level of the control is the waypoint control, where the multirotor gets
only waypoints from the pilot, and the multirotor will autonomously fly through
these waypoints. It is common for waypoints to have time and speed goals. Even
though this type of flight mode does not require constant input from the pilot, it is
not yet completely autonomous. A fully autonomous vehicle would need to have the
capability of building a map of its environment and planning its route through this
constructed map, avoiding obstacles that are detected. There is a lot of research to
make this feasible, but these systems usually work under very limited circumstances,
for example relying on a ready-made map in a limited area, or systems that only
work indoors on a fairly controlled environment.

Different control levels are based on the lower level controllers. For example, when
the pilot controls speed, the speed controller gets the set point from the pilot input,
which the speed controller converts to an attitude goal for the attitude controller.
The attitude controller then translates the given attitude goal as an input to the
rate controller.

All the control levels are accessible from software with serial communication.
The platform chosen for this thesis is open source so it is possible to modify the
controllers to suit specific tasks.
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1.1.2 Other types of MAV’s

MAV’s are not restricted to being only multirotors. Winged models are capable of
flying planned routes and performing self-stabilizing flight. Winged models allow
substantially longer flight times compared with multirotors and they can move with
a high speed. These qualities are due to the use of a static wing surface which
will generate lift by maintaining adequate airspeed as opposed to multirotor which
requires constant power to their propellers to maintain sufficient airflow over the lift
generating surface. Wings also provide reliability as it is usually possible to land
the plane safely even without the motors. The downside of static wings is that the
winged model needs to be moving constantly to maintain sufficient lift, as opposed
to the multirotor which can hover stationary in the air. Winged models also need
large wingspans to carry payload. Even though they are more efficient at carrying
the payloads, they are not as versatile.

Performance of the traditional helicopters with main and tail rotor falls between
multirotors and airplanes as they are more efficient than multirotors but not nearly
as efficient as airplanes. Helicopters can also hover and have roughly the same
speed limitations as multirotors. The better efficiency of the helicopter is due to
a single large propeller with a variable pitch for generating lift. Variable pitch
enables the helicopter to use technique called autorotation; in the case of a motor
failure, the main rotor pitch angle can be set at negative value to convert height
into rotation speed for the rotor. This slows down the fall. When the helicopter
is close to the ground, the pitch can be set at a positive value and momentarily
the helicopter has enough lift to slow down the fall, minimizing damages to the
helicopter. The downside of using a helicopter is its complexity, vibrations and large
rotating mass. Complexity is caused by the mechanism that is used in controlling
the main rotor blade angles to direct the thrust to only part of the main rotor,
which requires many push rods and bearings. Failures in these parts are usually
critical for the operation. Vibrations are an issue in some applications, such as
photography: as these vibrations are on low frequency they are harder to filter out
mechanically. Large rotating masses on the main rotor make helicopters hazardous
to their environment.

1.2 Stereo vision with high resolution

Stereo vision is based on using two images that are taken in known geometric relation
to each other and having an overlapping image area. It is not mandatory to use two
different cameras as long as the transformation of the camera between the images
is known. The difference in the optics of the cameras is compensated by camera
calibration. However, it is common to have two identical cameras with a fixed
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distance between them in order to make calibration and calculation easier. Stereo
vision algorithm extracts distance information from the image pair.

Two images are required for the distance information. Distance calculation from a
single image is possible with previous knowledge about the scene, for example some
target of known size. Distance to a feature can be calculated from the images when
it occurs in both images. The difference of the feature placement in two images is
called disparity, which has the units of pixels. Disparity is then used to calculate
the distance when the geometry of the cameras is known.

The original idea for this thesis was to test if high resolution can be useful in
stereo vision. One of the main problems in traditional stereo vision is the difficulty
in finding matching features. Large and high contrast features are needed. When
using higher resolution, the feature size can be smaller and contrasts also smaller
since window sizes can be larger in pixels. This leads to more information about the
corresponding areas. Differences between 12 MP and 0.3 MP resolution images are
illustrated in Figure 1.2 where the same image has been downsampled to 0.3 MP
resolution for comparison. It is good to note that the full resolution image is real
data imaged from onboard multirotor with no stabilization, so there is also notable
blurring from multirotor movement.

Higher resolution also provides a wider variety of methods for image analysis, such
as texture analysis or marker based localization. In short, the higher resolution will
open many more development paths compared with low resolution stereo cameras.
The downside is the drastically increased computation times, since the amount of
data is considerably larger when there are more pixels on the images. Computation
time can be considered as O(n) where n is the amount of pixels.
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Figure 1.2: Top,left: original image. Top, right: original image downsampled to VGA
resolution. Bottom, left: a detail of the original image. Bottom, right: a detail of the
downsampled image. Detail images show that there are still distinct features found on the
full 12 MP image where VGA resolution does not provide much of any information. 12
MP image shown is affected by the movement of the MAV and low quality lenses.
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1.3 Other depth perception methods

This Chapter discusses briefly other methods of depth perception and reasons why
they are not used in this thesis. This is not an exhaustive list but ought to provide
the general idea of the working principle of each sensor type and their advantages
and disadvantages.

1.3.1 Laser scanners

Laser scanners or laser range finders work with the time of flight principle in which
a laser pulse is transmitted and received as a narrow beam, and the phase difference
between the transmitted and reflected beam is then converted to distance. To scan
several points, rotating mirrors and multiple lasers can be utilized to get data similar
to a depth image.

Laser scanners are generally highly accurate with distance uncertainties of roughly
few millimeters even at long distances. Laser-scanners are not used in this thesis
because they are expensive and usually too heavy to be carried on the MAV used
in this thesis.

1.3.2 Time of flight

Time of flight (TOF) cameras are another possibility for depth perception. TOF
cameras have similar operation principle as the laser range finders as they detect
the phase differences between the transmitted and received light, but instead of a
single measurement point the TOF cameras utilize 2D array, so the resulting depth
image is captured at once, without rotating or moving elements.

At the time of this writing there has been a push to get cheaper and more
lightweight units. However, these have a very limited range and are mainly de-
signed for indoor use.

1.3.3 Structured light

Structured light sensors e.g Microsoft Kinect, are a type of depth perception sensor.
Structured light sensors work by projecting some known pattern on to the surface
and then using camera to find the known points from the pattern. Surface shape
will result on disparity between the pattern detected by the camera and the known
original pattern. Distance is calculated similarly to stereo vision. These sensors can
be considered as a kind of assisted stereo camera where the sensor itself will create
texture on the surface.

Structured light sensors have very attractive properties: lightweight and a low
price, but the downside is that their optimal measurement range is limited, e.g. in
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case of Kinect to roughly four meters, and operation on sunlight is not possible. On
the other hand, these sensors can detect distance on surfaces that have no texture,
such as uniformly colored walls or floors.

1.4 Why is distance information useful?

Distance information is essential for representing real world structures in three di-
mensions. Once the sensor pose is known in global orientation, the distance infor-
mation can be translated to the real world coordinates. 3D-point information is
called point cloud data, which can then be used to represent map information of the
area. This is useful for visualization purposes and essential for autonomous robot
operations, since avoiding obstacles and planning routes is not possible without
information about the surroundings.

Point cloud data imaged from air is even more essential as MAV can cover large
areas quickly with little concern for obstacles compared with rovers on the ground
which only see a small portion of their surroundings and need to react to new
information constantly. In case of obstructing terrain such as walls or hills, higher
vantage point aids in mapping the area efficiently. Autonomous operation for land
based vehicle without information about the surroundings is very challenging, as
route is planned with high uncertainty.

1.5 Objectives of this thesis

The objective of this thesis is to study the possibilities of low cost and high resolution
stereo vision onboard an MAV. This objective is part of a larger project where the
goal is to get autonomous capabilities for ground based vehicles. This concept is
illustrated on Figure 1.3 where the MAV is providing information for the ground
based vehicle to assist route planning.

The system built in this thesis is for testing the concept with consumer grade
cameras in a small and lightweight configuration. This is a proof of concept, not a
real time system that can be used for control and route planning.

To achieve the goals in this thesis, the MAV was modified. A large part of this
thesis focuses on what is needed to make the stereo vision functional on a MAV.
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Figure 1.3: Long term objective for the MAV to provide supporting information to assist
the operation of larger autonomous machines.

1.6 Structure of this thesis

Chapter 2 of this thesis discusses the theory of stereo vision. Sections 2.1-2.1.1
describes how cameras work and how to model and calibrate them. Section 2.3
illustrates the general idea of stereo vision: The method for calculating 3D-points
out of the disparity image is presented here.

Chapter 3 describes the implementation of the algorithms and the construction
of the MAV and stereo camera. Chapter 3 presents algorithms in the order that
that they are used when extracting the point cloud from the images. It begins by
presenting the hardware used in this thesis, which is followed by the description of
the software running onboard the MAV. From Section 3.3 onwards the focus is on
the software running offline.

The key results of the point clouds and disparity images are presented in Chapter
4. Sections on this Chapter are divided according to the different data sets. Re-
sults are further discussed on Chapter 5 which analyses error sources, and possible
methods of mitigating their effects.

The system built in this thesis is for testing the concept with consumer grade
cameras in a small and lightweight configuration. This is a proof of concept, not a
real time system that can be used for control and route planning.

To achieve the goals in this thesis, the MAV was modified. A large part of this
thesis focuses on what is needed to make the stereo vision functional on a MAV.
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2. IMAGING FOR DEPTH PERCEPTION

The goal of this Chapter is to provide some background to how stereo matching is
done and how different parameters are related to each other. The references in this
section provide in-depth explanation of the concepts.

First we will begin by explaining how cameras operate and what kind of errors
they can cause. This is important as the operation of the camera is the foundation
for all the algorithms. We will shortly discuss how and why to calibrate cameras.
Lastly we provide the idea of the epipolar geometry which defines how we can map
features seen on images sensor to a real world position.

2.1 How cameras work

Camera is an old innovation and the basic principles have remained the same for
a long time. This section describes how cameras are modeled for computational
methods as simple devices. At the beginning, we discuss how the photons are
captured by modern cameras and how we perceive colors with a camera.

This does not serve as a guide to cameras, since that topic would require a book
of its own, but this Chapter will merely discuss the most widely adopted conventions
to provide enough background information about the basic operation principles of
cameras.

2.1.1 Sensors

Basic function of digital image sensor is detecting photons. The amount of photons
that have hit the pixel is converted to an analog signal which combined with the
signals from all the other pixels is converted to a digital representation of the image.

Image sensors can be thought of as an array of photon detecting cells. This
leads us to the concept of resolution, which describes how many pixels there are in
the image area. Sensor resolution and optics used determine the minimum size of
targets that can be seen with the camera. Physical width of sensors typically range
from few millimeters to 35mm, this results on typical pixel size of less than ten µm
wide. The middle point of the sensor defines the principal point of the camera. It is
common to use a coordinate system where the principal point of the camera is seen
as the point (0, 0).

To detect colors, there needs to be a way of separating photons with different



2. Imaging for depth perception 11

wavelengths. The common method of doing this is by placing filters on top of
the pixels, see Figure 2.1. Sensors on most of the consumer cameras contain some
configuration of Bayer filter. The important part in Figure 2.1 is that it has two
green filters but only one filter for red and blue. The order of the filters is commonly
different between sensor models and more exotic sensors may have radically different
patterns as well.

The important part to note in Figure 2.1 is that to get the full resolution color
image, the missing color values need to be interpolated, as for example red and blue
pixels have information only of every other pixel, this means that three out of four
pixels for this color need to be interpolated from the close by pixels.

G

G

R

B

Figure 2.1: The construction of camera sensors Bayer filter. Each square represents the
actual pixel located on the sensor.

The downside of using filters in front of pixels is that the photons that do not
match the filter wavelength, are discarded. This results in lower efficiency, mean-
ing that longer shutter times need to be used to achieve similar brightness levels
compared to monochrome sensors without Bayer filter.

2.1.2 Image noise

Image noise consist of several components that are combined to the resulting image.
Resulting intensity pn,m(t) at pixel n,m is composed of components described in
the Equation 2.1.Here the number of photons hitting the pixel is described as vp(t)
and the efficiency of the reading is presented as q. The analog noise va(t) describes
the offset caused by the analog to digital conversion when reading from the sensor.
Fixed pattern noise that is a constant error on the pixel brightness is described as
vf ;n,m. Term t denotes the dependency to time, meaning that the results will change
as a function of t.
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pn,m(t) = v(t)pq + v(t)a + vf ;n,m (2.1)

The reason why the variation to the amount of photons hitting the sensor can
also be thought as a noise source is that images taken from identical scene will have
different amount of photons hitting the sensor because of the discrete nature of the
light. This phenomenon can be modeled as Poisson distribution [1]. The efficiency
q is used to model the fact that not every photon hitting the sensor produces a
response.

In this thesis, the camera calibration process addresses the removal of the fixed
pattern noise from the images as this is the simplest noise type to detect and com-
pensate. Fixed pattern noise can be detected by observing multiple images and
calculating changes in the pixel values. As fixed pattern noise is produced by pixels
that are not producing the same results as other pixels, they can be detected either
by different signal levels or lack of variance on the values between images in case
the pixel does not react to input at all.

2.1.3 Modeling of cameras

Cameras are usually complex systems consisting of several lens elements and aper-
ture. The simplified model of a real camera system of this kind is described in Figure
2.2. However, this model can usually be simplified as a simple model of a camera
that consists of a pinhole and a sensor. This kind of simplification is described in
Figure 2.3.

The simplified pinhole camera is a geometrical model of the camera where the
optical center is at distance equal to focal length from the sensor plane [2, p. 35].
This model is often enough to describe any calibrated camera.
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Figure 2.2: Illustrating the elements present in a real camera. The lens will distort the
incoming rays. This is done to compensate for the large aperture. Aperture is used to
control the amount of light coming in and the width of the area in focus.

Figure 2.3: Simplified camera model where the light is assumed to arrive through one focal
point, which is infinitely small. This causes the objects in front of the pinhole to be drawn
upside down on the sensor plane. The optical axis goes through the focal point to the
middle of the sensor plane.

2.2 Coordinate systems and camera calibration

Camera calibration is essential for many algorithms. The main goal in camera
calibration is to ensure that features on the image are not distorted. If an image of
a square box for example is taken, the calibration ensures that all the sides are planar
and at correct angle relative to each other. Camera calibration corrects typical errors
such as barrel distortion on images. Systematic errors caused by optics or sensor
can be compensated with camera calibration but random errors like analog sensor
noise cannot be corrected with calibration.

Image and camera coordinates are presented in Figure 2.4. Image coordinates are
defined in pixels and have their origin at the principal point. Camera coordinates
have their origin at the focal point, with the Z-axis pointing away from the sensor
plane. Camera coordinates are usually defined in meters. The direction of the axes
depends on the author but the convention presented in Figure 2.4 is the convention
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used in this thesis.

Ysens

Xsens

Zcam

Sensor plane

Principal point
T Ycam

Xcam

Figure 2.4: Presenting the image and camera coordinates. Coordinates Xsens and Ysens
represent the image coordinates while Xcam and Ycam define the camera coordinates. Z-
axis points away from the sensor plane on both cases. Origin for the camera coordinates
is located at the focal point which is at the location of the pinhole in the simple camera
model.

Matrix operations for coordinates, are best described in the homogenous coordi-
nate system. The idea is that when we need to apply a 3x3 rotation matrix to the

2D points, X =
[
x y

]T
we can add an additional coordinate. This way we end

up with the form X =
[
x y 1

]T
or in more general form X =

[
wx wy w

]T
.

Geometrically this means that a point in Cartesian coordinates is presented as a
line in homogenous coordinates. In practice, this makes operations like affine trans-
formations and projections easier.

To get real world coordinates based on the image coordinates Xsens we need
rotation, translation and calibration parameters of the camera. When the simplest
pinhole camera model is considered, the parameters can be arranged as a matrix
K seen on 2.2 [3, p. 157]: The matrix K is called camera calibration matrix, f
describes the focal length of the camera. px and py terms are the principal points
of the sensor, which is assumed to be the origin of the sensor coordinate frame [3,
p. 155]. Generally the principal point is located roughly at the center of the sensor.
The term s is a skew parameter which is usually zero for most of the normal cameras
[3, p. 157]

K =

f s px

0 f py

0 0 1

 (2.2)

3D camera frame coordinates Xcam can be coverted to 2D sensor coordinates
Xsens using equation 2.3 [3, p. 155]. The vector Xcam has the form

[
X Y Z 1

]T
.

This is used to describe coordinates on the real world coordinates where the Z-axis
points away from the sensor plane, see Figure 2.4. Consequently, the vector Xsens
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has the form
[
X Y 1

]T
which defines coordinates on the sensor plane. Equation

2.3 relies on the fact that there is no rotation or translation.

Xsens = K
[
I|0

]
Xcam (2.3)

The next step is to take into account that the camera has rotation R and transla-
tion T. This can be written in a form of an Equation 2.4 where R is a 3X3 rotation
matrix and T is the camera center [3, p. 156].

Xcam =

[
R −RT
0 1

]
Xglob (2.4)

When we combine the Equation 2.4 with the Equation 2.3 we get the form 2.5
which maps the global world coordinates to the sensor plane [3, p. 155]. This takes
into account all the parameters of the simple pinhole camera model in addition to
camera rotation and translation.

Xsens = KR
[
I| −T

]
Xglob (2.5)

To take into account the distortions caused by the lens, the radial distortion
is often the largest source of error. Radial distortion makes straight lines appear
curved on the image. Radial distortion can be corrected by fitting a polynomial
to the curvature of the image, this way the original image can be corrected by
interpolating the new values for the changed coordinates. Often it is better to do
calculations on the original image and correct for the results with the polynomial,
this way the whole image does not need to go through the correction.

2.3 Epipolar geometry

The Figure 2.5 describes a case of unrectified stereo image with two image planes
which both see the 3D-point U. The point U is projected onto image planes as
a 2D-point x and x

′ . The epipolar points e and e
′ are points where the baseline

intersects the image plane. The plane which is formed from the camera centers and
the point U is called the epipolar plane. Camera centers T and T

′ are physically
located at the focal point of the lens. For convenience, they are drawn here behind
the image planes so that the image is not upside down.

Epipolar geometry can be thought as a way to visualize geometry between image
planes. This enables us to find the 3D-location of a 2D-point visible on both image
planes assuming that the epipolar geometry between the image planes is known and
there is a non zero baseline (line from one camera center T to the other cameras
center T′) between image planes. The problem with a single camera is that points
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Baseline

T T’e

e’

x
x’

U

Epipolar line for x

P

Image plane

l’

Figure 2.5: Epipolar geometry between two image planes that both are registering point U
at 2D points x and x

′ . The epipolar plane P is a plane that is defined by camera centers
T, T′ and 3D-point U. Epipolar points e and e

′ are created when the P intersects with
the image planes.

on the image plane correspond to lines in the 3D world. When we add another
image taken with a non zero baseline, we can constrain the depth axis and two lines
in the 3D coordinates become a point.

The line from T to U is projected on the other image as a line l′ which is called
the epipolar line [3, p. 240]. This is very convenient for searching the corresponding
point from the other stereo image, as the search can be limited to the epipolar line
l
′ and there is no need to search the whole image. The search algorithms can be
simplified by rectifying both images so that the epipolar lines are horizontal on both
images, this way the search is limited to a horizontal direction.

The epipolar geometry defines the fundamental matrix F seen on the Equations
2.6 and 2.7. The geometric meaning of a fundamental matrix is that it describes
point x on the image plane as a line l′ on the other image plane [3, p. 242]. This
makes it possible to search for the corresponding point on the line l′ for the point
x, the point x′ is one possible match for the point x. This relation is described on
equation 2.6 [3, p. 243].

Fx = l
′

(2.6)

F = [e
′
]×Hπ (2.7)

The fundamental matrix F is composed from terms described on equation 2.7
where the Hπ represents the homography that describes the translation from points
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x to point x
′ . To describe the translation with a homography matrix, we need to

define an arbitrary plane π, see Figure 2.6. The plane π passes through the point U
but does not pass through either of the camera centers. The existence of plane π is
not required for the F to exist. The plane π is used there only as a mean to define
the relation between two points.[3, p. 242-243]

e

e’

x
x’

U

Epipolar line for x

π

l’

Figure 2.6: The fundamental matrix F describes the transformation from point x to the
line l′ . This is presented on equations 2.6 and 2.7. The plane π is used to describe the
homography that maps the point x to the point x′ .

dt =
∑√

(T−T′)2 (2.8)

z =
dtf

d
(2.9)

In a special case where the camera planes are parallel, the depth coordinate z
can be solved with equations presented in 2.9 [2, p. 175]. The baseline dt presented
on equation 2.8 is the distance between the camera centers, when this information
is combined with the focal length f and disparity d we can calculate the metric
depth. The disparity is defined as the distance of the matched features in pixels
along the epipolar line. This equation is the basis for converting the pixel units of
the disparity to the real world units.
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3. IMPLEMENTATION

This Chapter illustrates all the details of the implementation. This includes the
description of the hardware used for capturing the data. First the construction of
the stereo camera rig is outlined and other hardware of the MAV is presented. The
construction of the Inertial Measurement Unit, IMU, is described. The system and
measurement models used for estimating the attitude with the Kalman filter are
shortly described.

After the hardware, the software and algorithms for calculating the surface esti-
mate are described. The entire analysis is described in Figure 3.1. The phases on
the activity diagram point loosely to sections on this chapter.

Load images PCA transformationRemoving bad pixels Stereo rectification

Searching the disparityConvert disparity to camera frame coordinates

Rotate and displace camera frame coordinates to global frame Output pointcloud data

Figure 3.1: This describes the process of point-cloud calculation from loading the images
to outputting the point-cloud. Steps on this diagram are discussed more in the following
sections.

Most of the software and hardware discussed in this chapter have been written
specifically for this purpose. Most of the development was done on MATLAB. The
original idea was to use a ready-made toolbox for stereo calculation, but it quickly
became obvious that readily available solutions, such as Peter Corke’s robotics tool-
box [4], could not process our data due to memory constraints. Preexisting tools
have been used when possible. Camera calibration was done with algorithms from
Bouquet’s toolbox for MATLAB [5]. Software running inside the MAV has been
developed with Python on top of the Robot Operating System (ROS).
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3.1 Hardware

This section describes the hardware used in this thesis.The Kalman filter responsible
for fusing the IMU data is described on this section. The implementation of the
actual Kalman filter is not explained, only the models for standard extended Kalman
filter equations.

Most of the hardware is consumer electronics modified to meet the requirements
of this thesis. The following sections will briefly discuss the performance and lim-
itations of this hardware. Hardware has been built with a low budget. Better
performance could be achieved in many parts by using specialized hardware made
for the task.

3.1.1 Stereo imaging hardware

This system uses two standard consumer cameras mounted on a sandwiched hon-
eycomb composite plate. This setup is similar to one used in [6] where they are
using small baseline-to-depth ratio. Our stereo rig has a smaller baseline of 219
mm,compared with baseline of 700 mm in [6]. All though in [6] depths from 20m to
100m, whereas here depths range from 10m to 30m. However, it can be concluded
that our system fits into a category of small baseline-to-depth ratio which Warren
et al. do cite as “ metric visual odometry for longer range stereo remains an open
problem in robotics.”[6].

The small baseline-to-depth ratio is due to space and weight constraints, even
tough the MAV is relatively large. Larger baseline could be obtained if cameras
were placed on the arms, but this was not done as cameras under the propeller
downwash are shaken by the air flow and disturb the MAVs efficiency because of
the turbulence caused by them. The camera rig construction is shown in Figure
3.2. Cameras are Canon IXUS 220HS running CHDK firmware to provide software
triggering, raw capturing and scripting capabilities.

Cameras capture their data to their own memory cards as the cameras don’t have
capability to transmit full quality images. As raw data was captured, the storage
time is long compared with storing compressed JPG files. Images are taken once
every 7 seconds, to allow enough time for saving the data and refocusing the image
after each shot.

Software triggering quality was tested with the setup described in Figure 3.4
where multiple image pairs were taken from the LCD screen running a timer, where
the smallest number represent milliseconds. The differences of ten image pairs were
collected and are represented on a histogram at Figure 3.3. It can be seen that the
majority of the images are captured within 100 ms of each other, but some images
might have the difference of as much as 300 ms. This is a problem because there is
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Figure 3.2: Onboard camera rig illustrated. The Baseline described here is 219 mm.
Noteworthy is the camera mounting orientation which results in an increased baseline and
reduced space usage, but affects the shutter sweep direction. The IMU unit consists of
MPU6050 gyro and accelerometer and ARM cortex M4 microcontroller.

no way to know when the images are captured relative to each other.
Cameras triggering at different time create errors as the MAV rarely stays in place

when capturing images: as cameras are triggered at different times, their geometry
in relation to each other is unknown. When the geometry of the cameras is not
known accurately, the calibration procedure becomes invalid. This results in incor-
rect distance calculated from the disparity and baseline. The effect on the baseline
at a modest 0.5m

s
speed and with the 100 ms difference in triggering will result in

up to 50mm error at baseline distance. Movement in a direction perpendicular to
the baseline axis will result on difficulties in image matching as the calibration will
not bring the features to the same horizontal line (this is not considering changes
in the attitude that will affect the result). According to the Equation 2.9 and with
0.219m baseline, focal length of 2269px and disparity of 30px, we get the resulting
distance of 16.6m. When we add the 50mm error caused by linear movement, we
will be using base line of 0.219 + 0.05m, which results on distance of 3.79m. This
gives us an error of 12.8m for triggering difference of 100ms.

The Figure 3.5 presents the relationship between the disparity and distance. Dis-
tances under 10m will cause significant variation on disparity but at 30m distance,
the disparity changes significantly slower. This results on higher sensitivity to errors
when the objects are further away from the camera, as calculated earlier.

Unknown triggering time will also affect the location and orientation estimates
for the images. In the previous example, the 100ms difference from the assumed
triggering time would result on the same 50mm offset error in the location estimate.
This error is negligible in comparison with the accuracy of the GPS position estimate.
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Figure 3.3: Histogram of triggering-time differences measured from 10 image pairs. One
source image pair is presented in Figure 3.4.

Figure 3.4: Measurement setup for the camera triggering difference. Screen is showing
milliseconds. Difference is deduced by deciphering the numbers visible on screen. The
results of this test can be seen in Figure 3.3.

Effects caused by the angular rate of the MAV can be larger. One degree error in
the attitude estimate in the height of 10m will cause 17.5cm offset to the location
estimate.
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Figure 3.5: The relation between the disparity and distance with the parameters of the
stereo rig used in this thesis. Equation for calculating the distance is presented at Equation
2.9. The baseline used was 0.219m, the focal length was 2269px.

3.1.2 Copter hardware

The MAV is built mainly from carbon fiber honeycomb plate and carbon fiber tubing.
The arms and their connections come from a commercial kit but the rest of the
hardware has been cut from carbon fiber plates according to the design made in
collaboration with the Department of Materials Science. The MAV is shown in
Figure 3.6.

Figure 3.6: The MAV used in this thesis.

The motors have been modified to have their shafts reversed to raise their natural
frequency higher to prevent oscillations on the arms as it has been noted that the
particular carbon fiber tubing has its resonant frequency at roughly 200 Hz region,
which coincides with the frequency produced by the imbalanced propellers. This
has been verified by motor testing and Solidworks simulations, which both produced
similar results. Mounting the propellers closer to the arms does solve the resonance
problem. This mounting scheme is presented in Figure 3.7.
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Figure 3.7: Illustrating the reversed motor mount which moves the motor and propeller to
the opposing sides of the mounting plate, decreasing the moment of the force caused by
imbalance propellers.

The hardware inside the MAV is presented in Figure 3.8. Actual processing
hardware consists of the main PC and Arducopter flight controller. Supporting
hardware includes the GPS and RC receiver, with the GPS receiver connected to the
main PC and RC receiver connected to the flight controller. The detail description
of the hardware connections can be seen on the Figure 3.9.

Figure 3.8: Components of the MAV illustrated.

RC receivers operate at 2.4GHz. Their constant transmission prevents reliable
WLAN connections. There are plans to move to a 400 MHz receiver to reduce
interference with the WLAN. However, so far there has not been a need to transmit
large amounts of data to the ground station while flying.

The Arducopter flight controller provides control levels up to waypoint control
(see Figure 1.1). Arducopter is running on an ATmega 2560 microcontroller with
very modest processing power which results in suboptimal waypoint and speed con-
trol algorithms. Actual automated speed or waypoint control requires the main PC
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to take advantage of the MavLink protocol to input commands to the flight con-
troller. It has been tested to input a better location estimate to the flight controller
through serial port emulating a GPS receiver, transmitting NMEA messages. At the
time of the tests, the Arducopter’s NMEA class had errors, which were suspected to
momentarily result on drastically different position estimates being received. This
resulted on MAV navigating in a random direction at high speed.

3.1.3 System layout

The system consists of several processors which each handle their specific tasks. The
main PC coordinates all the sub processes. The layout and communication hierarchy
is presented in Figure 3.9.

Arducopter is basically a modified version of Arduino that is running an ATmega
2560 microcontroller. Arducopter takes care of all the low level flight controls such
as attitude control. Interfacing with Arducopter is possible with MavLink protocol.
MavLink is used to stream sensor data to the main PC. Arducopter’s magnetome-
ter is used for heading information on the IMU. Barometer from the Arducopter
hardware is used for relative height information.

The GPS receiver was Yuan10 with RTKlib open source RTK-GPS software.
RTKlib connects to the receiver through USB emulated serial port. RTKlib uses
the base station receiver data streamed from the laptop on the ground. Base station
data was streamed through a wireless serial port most of the time. WLAN was
tested on early tests and was found unreliable because the RC controller transmits
at the same frequency. RTKlib outputs its solution internally through virtual serial
ports which are used as an input to a node on the Robot Operating System (ROS).
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Figure 3.9: Different parts of the on-board hardware illustrated. The internal structure of
the ROS running inside the MAV is more accurately described in Figure 3.13. The physical
layout of different parts can be seen in Figure 3.8.

3.1.4 Positioning system

Good position information for the MAV is required automating any tasks on the
multirotor. Furthermore, the accuracy of matching image data to the environment
depends on the accuracy of the positioning information.

For this thesis, only GPS position estimate was considered because the accuracy
in the earlier tests conducted in Hellevaara’s thesis [7] deemed GPS accurate enough
for our purposes. As Hellevaara notes in his thesis, the performance of the system
depends on a large number of variables; at best, the accuracy can be 10 cm and at
worst it may be in order of tens of meters. Some attempts were made to resolve
MAVs position based on marker positions from the image but the recorded GPS
positions for the markers were found too inaccurate. The measured positions for
the markers can be seen in Figure 3.11. The GPS performance while airborne is not
necessarily this bad because the accuracy is usually better while in the air as the
reflected GPS signals cause less problems.
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Figure 3.10: Markers found in the image were twisted with an homography to match four of
the measured GPS points. This describes the difference of GPS and image based location
measurement.
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Figure 3.11: Attempted measurements on markers placed on the ground. The positions
of the markers were measured before the flight by keeping the MAV on top of the marker
and averaging the position for roughly 30 sec. The later position estimate is closer to the
truth though significant errors still remain.
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3.1.5 Inertial measurement unit

Orientation of the camera is essential for orienting the images on the 3D-space.
Without the orientation information, it would not be possible to convert distance
information from the local camera coordinate frame to the global world coordinate
frame. Matching different image pairs to each other would be more challenging.

Inertial Measurement Unit (IMU) is composed of an accelerometer, a gyroscope
and sometimes additional sensors such as a barometer and a compass. The purpose
of IMU is to provide sensor data that attitude and acceleration of the unit. The IMU
unit used in this thesis is MPU-6050 chip by Invesense which has the accelerometer
and gyro on the same chip. MPU-6050 has a simple motion fusion algorithm on the
same chip that combines the measurements from accelerometer and gyro sensors to
form attitude and global linear acceleration estimates. However preliminary testing
revealed that movement will affect the attitude estimate considerably as moving the
unit on a flat surface by hand could generate errors as large as 5-10 deg. This error
is caused by the assumption that accelerometer measures the angle by measuring
the gravitational acceleration, which is assumed to be pointing straight down. This
assumption is correct in case where the IMU is stationary. When the IMU unit is
moved, the acceleration from movement will be mixed with gravitational accelera-
tion.

Effects of acceleration on the IMU unit can be compensated by using the gyro
sensors to estimate the attitude. The caveat of using gyros is that they only measure
rotational speed, not the attitude so the speeds need to be integrated to get the
measurement of the attitude. This results on errors on the speed measurements being
integrated, which means that any bias will accumulate over time, corrupting the
results completely. This drifting by integrating errors can be compensated by using
direct measurements of the attitude. Accelerometers measure total acceleration,
which includes the gravitational acceleration. This means that 3D accelerometers
measure the attitude when the IMU is not changing its speed. Accelerometer angle
measurement and the angle produced by integrating gyros need to be combined with
technique called the Extended Kalman Filter (EKF).

As this thesis is not focused on Kalman Filtering, we will only present models
required to the implement EKF. The more in depth explanation of the equations
and their proofs can be found in e.g. [8, p. 178].

The direction and orientation of the local and global reference frame can be seen
in Figure 3.12. This describes the rotation and movement conventions used in this
thesis. The same rules apply to the local and global frame, where X-axis is pointing
to the north at the global frame and in the local frame the nose of the multirotor is
in line with X-axis. The angles αβ and γ correspond to multirotors roll, pitch and
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yaw movements in the local frame. These angles are so called Euler angles which
describe the orientation of an object by rotations around three axes. The order of
rotation affects the resulting orientation so care must be taken to adopt consistent
rotation order convention.

X

Y

Z

α

β

γ

Figure 3.12: The local IMU frame described. Axes point in the direction of positive
movement and rotation direction is for positive rotation. The multirotors nose is pointing
in the direction of X axis, which points to the north on the global frame.

R = RαRβRγ (3.1)

R =

 cos(β) cos(γ) − cos(β) sin(γ) sin(β)

cos(α) sin(γ) + cos(γ) sin(α) sin(β) cos(α) cos(γ)− sin(α) sin(β) sin(γ) − cos(β) sin(α)

sin(α) sin(γ)− cos(α) cos(γ) sin(β) cos(γ) sin(α) + cos(α) sin(β) sin(γ) cos(α) cos(β)

 (3.2)

When describing the rotations with a rotation matrix R, the rotation order is
defined by Equation 3.1. The resulting rotation matrix is given by Equation 3.2.

The state vector fk in EKF is described on Equation 3.3. This consists of global
frame Euler angles defined on 3.12 and global frame angle rates described in Figure
3.12. The prediction of the next state is presented on Equation 3.5 where the
matrix P described in Equation 3.4 is used to integrate the angle rate measurements
to produce the next state estimate fk+1. The term ∆t is the time between the
measurements, which is measured by the IMU separately for each measurement.
The Equations for the prediction step come from traditional linear Kalman Filter
since the prediction step is linear, so linearization steps are not necessary.

fk =
[
α β γ ∆α ∆β ∆γ

]
(3.3)
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P =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

∆t 0 0 1 0 0

0 ∆t 0 0 1 0

0 0 ∆t 0 0 1


(3.4)

fk+1 = fkP (3.5)

Equation 3.6 describes how the accelerations are represented inside the EKF
equation. The measurement model Hacc which is used to convert the global frame
acceleration a to correspond to local frame values measured by the IMU unit is
described in Equation 3.7. The acceleration used in this case is a =

[
0 0 9.81

]
.

This assumption works as long as the accelerations caused by the movement are
relatively short and have zero mean. This works because accelerometers have high
uncertainty given at the covariance model matrices, which means that they are used
to correct the slow attitude drifting caused by the integration of gyro error.

a =
[
ax ay az

]
(3.6)

Hacc = aR (3.7)

Similar equations are presented for the local frame gyro values g where Equation
3.8 describes the order of the measured gyro rotations. Gyro measurement model
Hgyro is presented in Equation 3.9 which describes how the global frame gyro values
in the state are translated to the local frame with the measurements.

g =
[
∆α ∆β ∆γ

]
(3.8)

Hgyro = gR (3.9)

The Jacobian matrices for the update step are calculated by taking partial deriva-
tives from the models presented at Equations 3.7 and 3.9. Jacobian matrices perform
linearization of the measurement model at the estimated state.

3.2 Robot Operating System

ROS is running in the main PC and handles of all the higher level functions such as
motion fusion, sensor logging and image triggering. ROS is an open source package
that provides features, such as multithreading sensor communication and support
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for generalized inter-process communication. ROS works by creating a framework
where different programs can communicate with each other. Therefore, different
parts of the program can be programmed with different programming languages
such as Python or C++ and they communicate with each other through subscribing
and publishing to ROS topics which operate as couriers between ROS nodes. Nodes
and topics are the main elements of ROS. Nodes are the actual program code,
executed on their own threads, and they can receive data through subscribing to a
topic. Nodes can output data by publishing a topic. Topics have their own definition
of what data they store, so that they usually have information about the time of
the message and possibly the coordinate frame which the data is from.

ROS nodes and topics that are in the MAV are described in Figure 3.13. This con-
figuration consists of data input and processing nodes. Data is inputted to Kalman
Filter running at “/motionFusion” -node through “/localAccGyro” and “/mavSen-
sors” -node. “/localAccGyro” -node is reading the data from the IMU unit. IMU
data consists of acceleration and gyro values, which are coming through serial port
on a raw sensor format. “/localAccGyro” node then converts this data to metric val-
ues. At this point, there is only bias subtracted from gyros which will be calibrated
at the beginning of the node. Accelerometer bias is compensated at “/motionFusion”
node. After metric conversion, “/localAccGyro’ node publishes the information on
“/copter/ImuLocal” topic. The “/mavSensors” -node feeds compass and barometer
altitude data from Arducopter connected through serial port using Mavlink protocol
to “/motionFusion” node. Measurements come at roughly 0.5Hz to avoid overload-
ing the Microcontroller.

The process of triggering the cameras is described in Figure 3.14. This describes
the operation of the script running on the ROS that triggers the image capturing
when requirements for reliably capturing images are met. The script will capture the
“/copter/stereoGrab” topic which has information regarding the camera orientation
and position and the quality of these estimates. This information is written to the
disk by the “/imgInfoWrite” node after the “/imgGrabber” node has broadcast the
“/copter/stereoGrab” message. The message will be broadcast at the time of the
triggering and after a set delay when the images are expected to be taken; this way
it is possible to compensate for the triggering delay in post processing if a better
estimate for the camera triggering delay is obtained.
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Figure 3.13: Topics published on ROS are listed inside the box labeled copter. Nodes
that use and publish topics are listed on the ovals outside. “/motionFusion” -node is
running the Kalman Filter which gets the sensor data from IMU unit at “/localAccGyro”.
“/mavSensors” node is receiving information from the Arducopter hardware and feeding it
for the“ /motionFusion” through “/tf” node.
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Trigger stereo pair wait 50ms

Save images to Sd-cardSave metadata

Wait until cameras are ready

[GPS and gyro rate OK]

[Gyro rate too high]

[GPS too inaccurate]

Figure 3.14: Cameras are triggered on the ROS with the algorithm described on this figure.
Metadata includes data taken from the ROS topics at the moment of the capture. Most
important data stored is the camera orientation and position estimates.
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3.3 Camera calibration

This section details the methods used for correcting the errors in camera sensors and
optics. Calibration is essential because the algorithm for calculating the disparity
assumes that there is no fixed pattern noise on the images and the epipolar lines are
assumed to be horizontal.

Camera calibration was done with planar checkerboards. Two calibration meth-
ods were tested. The First method used a laser etched aluminum board with 16x16
grid of 16 mm checkers see Figure 3.15. The Second method used a large paper sheet
with 90x90 grid of 10 mm checkers, see Figure 3.16. The Larger board was used
to get accurate calibration with fewer calibration images as there are more points
on one image and they cover a larger area of the sensor. In addition, the calibra-
tion images can be taken further away so the cameras will be closer to the distance
in actual measurements measurements. This is important because the focusing of
the cameras affects their focal length, which is assumed to be known in distance
calculations. The actual camera calibration was done with the Bouquet’s camera
calibration toolbox [5].

Figure 3.15: The small calibration plate etched on aluminum plate with the laser.
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Figure 3.16: The Large calibration grid printed on a paper.

3.3.1 Removing faulty pixels

Faulty pixels are caused by manufacturing defects on the image sensors. Errors ap-
pear like salt and pepper noise, but they remain constant between images. This type
of noise is called fixed pattern noise. These errors can be seen in Figure 3.17. It is
important to note the difference between a fixed pattern noise and random noise as
fixed pattern noise can be removed with a minimal loss of information but random
noise cannot. Random noise depends on the temperature and lighting conditions
and varies from image to image. Fixed pattern noise in the compressed images is
corrected by the software provided by the camera manufacturer. However, we are
using the raw sensor data from the camera and consequently have to compensate
for these errors. Faulty pixels are especially harmful in our case when using corre-
lation for finding corresponding areas on the images and when converting images to
monochrome.

The faulty pixels were found by taking several images of a white wall on different
orientations. In this way, the images can be stitched together to calculate gains for
individual pixels. Reasoning behind this was that stitching several images together
results on an average white image, where the differences in brightness are caused by
the systematic errors of the sensors and optics.

Figure 3.18 shows that faulty pixels are not the only systematic errors affecting
pixel brightness in the camera. Other errors in pixel brightness are caused by the
optics. In this thesis, these errors are separated so that faulty pixels are detected
by gain for the pixel exceeding the threshold. When faulty pixels are detected, the
values on those pixels are replaced by taking average of the surrounding pixels. This
operation is done separately for each color channel since the errors are not identical
to red, green and blue channels. Remaining errors on pixel gain caused by optics
and sensor variation are compensated with the gain matrix.

Gain matrix Gc calculation is presented in Equation 3.10 where Gc is the NxM
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Faulty pixels on the raw image
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Figure 3.17: Faulty pixels presented on a cropped raw image. Color channels have different
errors. Some of the pixels are not completely faulty, resulting in incorrect gain.
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Figure 3.18: Mean calculated from all the calibration images. Systematic errors are clearly
visible. A larger image set would reduce the amount of residual features from the original
images.

gain matrix for each color and iM is the median value from the stitched mean image.
Im is the N times M image matrix where each value is the mean from all the images.
Median is used as the mid color value since mean value would be skewed by the
faulty pixel values.

Gc =
iM
Im

(3.10)

The resulting gain corrected image I2 is presented in Equation 3.11 where the
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original uncorrected image I1 is multiplied by the gain correction matrix Gc. The
notation I(i, j) indicates the matrix entry i, j.

I2(i, j) = I1(i, j)Gc(i, j) (3.11)

The whole process is presented in Figure 3.19. The mask was generated by
thresholding the gain matrix for values that were too large to be caused by variations
on pixels. Threshold was set at a gain of 2 for these test images. White-balance is
not corrected here since images used are monochromatic.

This way the stitched image has equal brightness on each pixel and there is ideally
only random noise left in the images. However, in practice sensor noise is dependent
on many factors such as the temperature which makes the gain calibration less
efficient. The sensor may also develop more faulty pixels overtime.
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Original image (cropped)
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Figure 3.19: Different phases of the gain correction presented. Since the calibration image
was used as the input image, the result is a prefect white with no noise. Color errors are
caused by white balance not being corrected deliberately, since the calibration images were
taken under fluorescent light, the slightly yellow tint is the correct representation of the
ambient light.
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3.3.2 Stereo rectification

Stereo rectification was done with algorithms provided by the Bouquet’s toolbox
[5] for MATLAB. Modifications were done to speed up the rectification process.
Normally, the coordinates for the stereo rectification are calculated every time, but
the script was modified to recalculate coordinates only in case where they are not
found stored.

Stereo rectification is not essential for disparity matching, but it was decided to
use it for this thesis as strict real time constrains are not set for the algorithms and
rectifying the images simplifies the disparity calculations as the epipolar lines can
be assumed to be horizontal.

3.4 Converting color image to monochrome

Stereo vision algorithms are usually implemented on monochrome images as this
reduces calculation time. Therefore, RGB data, needs to be interpreted as a single
channel monochrome image. In many cases, a monochrome camera is used to pro-
duce a monochrome image on the source. Traditionally, the RGB image is converted
to monochrome by multiplying different channels with constants and combining the
channels, this results on visually pleasing results and is roughly equivalent to dis-
carding hue and saturation information from the image. The actual constants used
varies between different implementations and sources.

Our approach was windowed PCA over the whole image in order to find optimal
multipliers for each color channel on each window so that local contrast would be
maximized. Comparison of the traditional monochrome conversion and PCA trans-
formation can be seen in Figures 3.20 and 3.21 the latter of which describes the
worst case scenario for the traditional monochrome conversion. The PCA-loadings
normalized to RGB channels can be seen in Figure 3.22.

PCA transform generates artifacts to the images, caused by the windowing. Ar-
tifacts are prominent close to sudden changes on the brightness or color. This
problem has been mitigated by using median filtering on the PCA-loadings. This
solution uses the window size of 3x3 so the resulting coefficients are affected by their
neighboring values in all directions. This will smooth the resulting changes on the
coefficients and reduces the artifacts. An example of these artifacts can be seen in
Figure 3.23 where high contrasts on the indoor scene make the artifacts caused by
windowing of the PCA transform visible.
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Figure 3.20: PCA transformation and traditional monochrome conversion compared on
the marker image. Noteworthy is the different handling of the colored areas and how the
red center of the marker is not bleeding at the edges in the PCA transformed image. Some
slight artifacts caused by the PCA windowing are present in areas where there are large
changes in color.
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Figure 3.21: It is possible to construct an image where traditional monochrome conversion
does not perform well when matching the RGB values to the multipliers used in the con-
version. The resulting image is featureless as PCA transformation produces good results,
this only proves that traditional monochrome conversion might not perform adequately on
special cases.
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Figure 3.22: Illustrating the loadings used in PCA transform. Loadings are normalized on
the RGB channels on the right image. The left image is the resulting monochrome image.

Figure 3.23: Illustrating the artifacts caused by the PCA algorithm when there are sudden
changes in color. These artifacts are less pronounced on natural surfaces.
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3.5 Identification of disparity

The algorithm for finding the disparity between each pixel works iteratively so that
the amount of pixels is kept constant throughout the process. This means that
resolution is dropped significantly for the larger windows. The reasoning is that
the larger windows provide a rough estimate for the disparity by using the large
features on the image. This rough estimate for the disparity is then input to the
next round of the algorithm. Different template sizes and resolutions are illustrated
in Figure 3.24. The algorithm itself is described more in detail in Figure 3.26 where
the main elements of the algorithm are illustrated. The actual block matching is
done with the 2-dimensional cross-correlation. This finds the best horizontal match
of sub-pixel accuracy by fitting a 2nd order polynomial to the point of maximal
correlation.

Figure 3.24: Presenting how different template sizes are implemented. The idea is to vary
the template size, but keep the amount of pixels the same. This means that there is the
same amount of pixels on different template sizes, large templates are used to recognize
the large features and the small windows get more accurate estimates for fine detail.

The algorithm used in this thesis is called block matching. The principle is
described in Figure 3.25 where blocks used for matching are drawn on both images.
The difference in the horizontal position of the original block and the found block
position on the other image is the resulting disparity in pixels. The movement is
assumed to be nearly horizontal since the images are rectified beforehand though
small movement in a vertical direction is assumed to compensate for errors.

The algorithm is similar to one described by Hirschmuller et al. in [9]. The are key
differences are that Hirschmuller et al. use only local standard deviation to enforce
smoothness of the resulting depth estimate whereas this thesis employs multiple
cost functions to describe the match quality, see subsection 3.5.1. Hirschmuller et
al. do not rectify images and use the knowledge of the epipolar geometry to pick the
appropriate search areas. Hirschmuller et al. use similar hierarchical structure to
speed up calculations, however, they only calculate a rough estimate for the depth
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Figure 3.25: Illustrating the actual matching algorithm where the red square represents
the area where the template is taken. Green and blue rectangles represent the search areas
used for searching the template. Cyan square represents the area where the red square was
found on the other image. The difference between red and cyan squares is the disparity
found.
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Calculate disparity for the current windowCalculate uncertainty descriptors for the disparity

Choose template size

Choose the search window width
according to the given uncertainty

Update the best estimate of the disparity

Update the best estimate Use the current best estimate

Reduce template size Increase template size

[Template not full resolution][Template was full resolution]

[2/4 descriptors better and smaller window used]

[3/4 descriptors are better]

[Other conditions dont match]

[Points updated under the threshold][Point update amount over the threshold]

Give initial values for the disparity and uncertainty

Figure 3.26: This activity diagram is describing how the disparity search algorithm works.
The algorithm runs iteratively as long as its needed for the end criterion to be reached.
End criterion in this case is when lower than 30% of the points are updated. The threshold
can be chosen freely but 30% was noted to be a good compromise between accuracy and
run time.

image with one low resolution pass and then constrain the next calculation at the
full resolution with the results from the low resolution stage. In this thesis, this kind
of method was noted to be prone to errors on low texture surfaces. Therefore, the
results from smaller window sizes are preferred if they are indicated to be of better
accuracy compared with the result from the larger window. This means that if the
algorithm manages to find a match at the smallest window size, it will be used as
this results on the best resolution for the depth image. However, in case the match
for the smaller window is not good enough, the preliminary results from the larger
window will be used. Different window sizes used at different levels were presented
on Figure 3.24.



3. Implementation 44

3.5.1 Descriptors for match quality

Descriptors or cost functions quantify how good the current correlation match is.
There are 5 descriptors. First of the descriptors is the maximal correlation, which
describes how well the template matches the found area. This is useful when there
is no repetitive texture and there is enough variance within the template so that
one clear maximal value can be found. However, these conditions are not always
met. This is why more descriptors are needed. Correlation does not have units as
its describes the similarity of the areas. Equation 3.12 is used to convert correlation
c to pixels based descriptor cpx by scaling it with sc and image width iw. The values
of sc was chosen empirically.

cpx = sc(
iw
c
− iw) (3.12)

The next descriptor is the local STD of disparity. Minimizing local STD ensures
that smooth surfaces are preferred over noisy surfaces. This kind of descriptor was
used in the work by Hirchmuller et al. at [9]. Local STD has units in pixels, so the
uncertainty can be converted to distance uncertainty in 3D.

Descriptor for repetitive textures is called multi-peak uncertainty in this thesis
and has the units of pixels. Multi-peak uncertainty describes the longest distance
between the correlation peaks. The purpose of this descriptor is to make sure that
search window does not get too small if there is a good match for repetitive texture
from other descriptors, as for example windows in the building provide very good
correlations with other similar templates, but it is hard to know straight away which
of these is the right window as the correlation can be as high with the correct window
as it is with all the other windows.

The last pixel based uncertainty is called downsampling uncertainty, which is
caused by the reduction of resolution. This is used to ensure that the samples that
have higher resolution are preferred over samples that have had their resolution
reduced. Downsampling uncertainty is calculated by finding how many pixels the
scaled version covers in the original image. This is based on assumption that the
disparity can be calculated with accuracy of one pixel.

In addition to correlation, there is another nonpixel based descriptor that is
calculated together with correlation. This descriptor is called SNR descriptor, as it
is calculated from the height of the peak compared with the standard deviation of
the correlation. The Equation that scales this is shown at 3.13 where npx represents
the SNR descriptor in pixel units and σc is the standard deviation computed from
the whole correlation vector. The term c represents the peak correlation value. Scale
sn was defined empirically. This descriptor is needed because areas with very little
detail might give high correlation values as the areas are similar, but these values
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will be high throughout the whole search window. This descriptor gives less weight
to such results where the correlation peak is not clearly defined. On the other hand,
a case where the correlation peak does not have a high value, but is clearly defined,
will be trusted more. SNR uncertainty is combined with the correlation descriptor
in the end to form only one descriptor.

npx = sn
σc
c
iw (3.13)

These descriptors are saved as a 4 channel image where the 1st channel is the multi
peak uncertainty, 2nd channel is

√
n2
px + c2px. 3 rd image channel is the descriptor for

standard deviation with the neighboring pixels. 4th channel is the downsampling
uncertainty. A simple pessimistic estimate can be obtained by summing up all
the errors together if quick comparison is needed between different results. The
heuristics used in this thesis for deciding what is a better match is described in
Figure 3.26, actual decision heuristics is at the bottom part of the figure.

3.5.2 Disparity to point cloud

The conversion of disparity to 3D coordinates was presented in Chapter 2.3. The
disparity image is on a local coordinate system where Z-axis points away from the
camera. The resolution of the disparity image is relatively low. One image pair
results in roughly 300x300x3 sized matrix of 3D coordinates, then converted to a
point cloud with the size of 90000x3. These coordinates were rotated with the IMU
orientation to global orientation. The last step was to translate the points based on
the GPS position to global coordinates.

The global reference frame is required to compare image pairs with each other.
Visualization was mainly done with the Point Cloud Library as MATLAB’s plotting
functions were found to be inefficient when plotting large amounts of 3D-points.

3.5.3 Parallel computing

The algorithm is well parallelizable. Submitting work to slave clusters is done by
submitting the data over the network. Parallelization in the slave machines was done
using MATLABs “parfor” feature which divides a for loop into parallel threads.

Execution of the program gets divided to different slaves on the disparity calcula-
tion part (“Calculate disparity for the current window” in Figure 3.26). The cluster is
constructed by serializing inputs to disparity calculation and sending them through
TCP/IP. Each slave will get its own subset of rows to calculate from the master
machine. When all the machines are finished with their calculations, they serialize
their results and send them back to the master process, which combines all the rows
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to construct the disparity image. The calculation cluster used in this thesis com-
posed of three slaves, where two were running on the same PC. Two of the slaves
used CPU calculation and one slave utilized the GPU.

GPU was NVIDIAs GTX680 and CPU was Intel i7 3700k. Only calculations
taking more than minute were sent to the cluster. For shorter ones the overheads on
data transmission rendered the cluster inefficient. This resulted in roughly twice the
calculation speed compared with using only CPU. However, an exact figure about
the calculation times cannot be shown because the algorithm stops the calculation
when the results are considered good enough. This means that parameters used for
the calculation and the quality of the data affect the calculation time heavily. On
average, one image pair took roughly 10− 15min to process.
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4. RESULTS

The goal of this thesis was to demonstrate the usefulness of stereo vision for aiding
path planning of other robots. Path planning and navigation mesh generation are
out of the scope of this thesis so the results can only be validated visually. The actual
accuracy of the results can not be verified as there are no reference measurements
of the terrain available.

The data has been collected from several types of scenes. Most of the data was
collected on board the MAV while flying over area which contained dirt field and
road. The field had piles of different types of construction materials, ranging from
small boulders to fine sand. The field also contained buildings and cargo containers.
The area was surrounded by a dense forest. Thus the data sets contain diverse
targets, some with advantageous features for correlation matching and other parts,
such as roofs of the buildings and containers contained regular texture which is
challenging for the algorithm to match. The dirt field was relatively featureless, and
thus served as a good test for the high resolution correlation matching. Hand held
stereo images tested the system’s performance in absence of vibrations and camera
movement. The flexibility of the algorithm was tested with indoor scenes where
assumptions about continuous surfaces is not valid.

Point clouds are rotated to the global orientation with the IMU data. Axes that
are present in the images are representation of the north east down (NED) coordinate
frame. The size of the axes vary between the images; the size is indicated in Figure
caption. Point clouds are filtered to discard information that is considered too
uncertain. Missing areas in the point clouds are caused by this filtering. Images are
cropped to discard the edges of the disparity image where no real data is calculated.
The color axis in the disparity image is scaled so that small noise pixels will be
saturated.

This Chapter is presents results by data sets. Each Section contains a data set
illustrated as figures which contain the image from one of the cameras, the disparity
image and the point cloud. All the images are not shown here as one data set
typically consisted of roughly 100-150 image pairs, where many of the images were
too blurred by the movement. Some data sets are also very similar to one another
and were left out. The results presented here illustrate the most typical problems in
the system and the best possible performance attained. The last section illustrates
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the results from combining several point clouds using the IMU and GPS information.

4.1 Data set 10

Data set 10 was captured while flying above the area in the summer. There was no
movement checking implemented for the camera triggering at the time of this data
set. This resulted in errors with several stereo pairs.

Figures 4.1 to 4.3 illustrate how movement of the MAV combined with the differ-
ent triggering times affect the disparity image and the resulting point cloud. There is
a clear trend in the disparity image. This trend cannot be corrected by rotating the
point cloud according to the IMU data; point cloud in Figure 4.3 has been corrected
with the IMU data but the ground is not level. Problems on the depth estimate are
also indicated in Figure 4.2 which presents the uncertainty for the depth estimate
calculated by the algorithm.

Figure 4.1: Original image and the disparity extracted from a stereo image pair. There is
a trend toward the lower right corner.

Figure 4.2: Accuracy for the depth estimate. Completely black areas in the middle of
the bright areas are caused by data being discarded on areas considered to have highly
uncertain depth estimate.
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Figure 4.3: This is the point cloud extracted from disparity image presented in Figure
4.1. This image is an example of camera movement between images, resulting in incorrect
calibration. Axes are scaled to 1m

Figures 4.4 and 4.5 illustrate the performance of the algorithm on a thick forest
during summer. Most of the treetops can be clearly distinguished from the point
cloud image. However, the ground cannot be seen through the tree branches. Right-
bottom corner of the disparity image and thus the point cloud falls strongly, contrary
to the real terrain. The point cloud generation algorithm determined that the values
for this point cloud were initially too large or too small. The baseline was artificially
modified based on the altitude of the MAV to force the median depth of the depth
image to correspond to MAV’s altitude.

Figure 4.4: Original image and the disparity extracted from the stereo pair. The point
cloud is presented in Figure 4.5.
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Figure 4.5: Axes are scaled to 10m. This is the point cloud extracted from disparity image
presented in Figure 4.4. This image is and good example of thick forest. Some of the trees
are clearly visible on the point cloud.

Slightly different forest image is presented at Figures 4.6 and 4.7. The forest is
less dense and some variation in the forest density can be seen on the point cloud
and disparity images. The lower density of the forest manifests itself as lower height
and smaller disparity. There is a curved slope in the images, not present on the
actual terrain. Like the point cloud in Figure 4.3, This point cloud was also forced
to use different baseline because the distance with the original calculation was out
of range. Altitude of the MAV was used to find new estimate for the baseline.

Figure 4.6: Original image and the disparity extracted from the stereo pair. This image
is from the edge of the forest. The disparity image indicates that there is less dense forest
on the right side of the image. This is not clearly visible on the camera image.
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Figure 4.7: This is the point cloud extracted from disparity image presented in Figure 4.6.
Lower forest density noted on the disparity image is visible on here as well. Axes are scaled
to 10m.

4.2 Data set 12

Data set 12 was recorded later in the fall when simple decision logic was implemented
to prevent images being taken when the position estimate was not good enough or
the angular velocity of the MAV was over the threshold. Algorithm for choosing
the optimal time to trigger is presented more in detail at Figure 3.14. The data
sets chosen here represent typical cases in which the images are not corrupted by
movement.

Figures 4.8 to 4.10 present the performance of the algorithm in ideal conditions
with distinct features and little movement between the images. Reference measure-
ments would be needed to validate the point cloud estimate. Uncertainty of the
depth estimate can be seen in Figure 4.9.

Figure 4.8: Original image and disparity extracted from the stereo pair. The form of the
terrain is clearly visible in the disparity image.
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Figure 4.9: Estimated accuracy for the depth estimate. This represents a case where the
surface estimate is good.

Figure 4.10: Point cloud extracted from disparity image in Figure 4.8. Some of the points
on the lower left edge are missing due to estimate being too inaccurate. Small errors are
also present on the upper right corner where the spike in height is not present in the real
terrain. Axes are scaled to 10m.

Example of ideal performance when taking images at lower altitudes (below 5m)
can be seen in Figures 4.11 and 4.12. It is possible to distinguish some of the larger
rocks from the disparity image and the point cloud.
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Figure 4.11: Original image and the disparity extracted from the stereo pair. Image taken
below 5m. Small details such as rocks are visible in the disparity image.

Figure 4.12: Point cloud extracted from disparity image in Figure 4.11. The ground
estimate is detailed and only a small portion of the points on the lower left and upper right
corners are discarded. Axes are scaled to 1m.

Another forest example taken later in the fall can be seen in Figures 4.13 and
4.14. This stereo pair has been taken close to the edge of the forest. Many of the
trees can be clearly distinguished from the disparity image and the point cloud but
its not possible to distinguish ground level.
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Figure 4.13: Original image and disparity extracted from the stereo pair. Trees are clearly
visible in the disparity image. Shape of the trees can be distinguished.

Figure 4.14: Point cloud extracted from disparity image in Figure 4.13. Overall curvature
of the point cloud is smaller than in the forest images of the data set 10. Axes are scaled
to 10m.

Another example of flat ground can be seen in Figures 4.15 and 4.16. This stereo
pair has been taken from higher altitude (roughly 8m) compared to Figure 4.11.
This results on features seen in the ground being smaller, resulting in more failed
matches between the images.
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Figure 4.15: Original image and disparity extracted from the stereo pair. Noisy disparity
image makes it harder to distinguish real features.

Figure 4.16: Point cloud extracted from disparity image presented in Figure 4.15. Ground
and features are quite visible but point cloud is corrupted by a higher noise compared to
point cloud in Figure 4.12. Axes are scaled to 1m.

4.3 Other tests

Several other data sets were captured on varying conditions. The Purpose of these
tests was to eliminate errors caused by the MAV and to explore how the system
would perform on use cases that it was not initially designed for, like indoor scenes
or cameras pointing parallel to the ground. The stereo camera was held in hand,
so that errors caused by the movement are not as pronounced as in the other tests.
Key results from these data sets are presented on this section.

Stereo pair from an indoor data set can be seen in Figures 4.17 and 4.18. This
image is a good example of the best performance achievable indoors. There are
good unique features in the curtains but the rest of the image is lacking distinctive
features. The disparity image shows that a good estimate is found for the curtains,
and parts of the shelves are also visible. The point cloud in Figure 4.18 shows that
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the curtains are rendered with very little noise, but there are heavy deformations
on walls and the shelves. The computer on the table at the lower left corner of the
image, however, is at the correct location.

Figure 4.17: Original image and disparity extracted from the stereo pair. Curtains are
the only part of the scene with enough features to result in a good estimate. Window is
interesting because some of the features are visible on the surface of the window and some
are reflected from the other side of the room, resulting in noisy surface estimate for the
window.

Figure 4.18: Point cloud extracted from disparity image in Figure 4.17. Point cloud has a
good estimate at the curtains but other parts of the room such as the shelves are deformed
or noisy. Axes are scaled to 10cm.

Simple outdoor scenes were also tested with the stereo rig being hand held. Such
a case is presented in Figures 4.19 and 4.20. These figures present the performance
with random textured surfaces like grass and highly repetitive texture seen on the
walls of the building. Artifacts resulting from the camera movement are absent on
these images. The area hidden by the tree on the right side of the image has many
points which seem to form a wall, even though there is no such feature on the real
scene.
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Figure 4.19: Original image and disparity extracted from the stereo pair. Image was taken
by holding the stereo rig in hand, resulting in high quality images with precise calibration.
This can be observed as a smooth disparity estimate.

Figure 4.20: Point cloud extracted from disparity image in Figure 4.19. Problems caused
by the tree branches can be seen clearly on the right side of the image. Axes are scaled to
1m.

Table 4.1 summarizes the uncertainty for the depth images. The estimate was
calculated by first estimating the accuracy of the correlation match in pixels. Pixel
units were then converted to meters by displacing the estimated disparity with
the pixel uncertainty. This resulted in a difference on metric scale. The mean and
median presented in Table 4.1 are calculated from the points that were not discarded
due to very high uncertainty. High mean values are result of small amount of points
having very high uncertainty, this is why median is a better descriptor for the overall
quality of the match. Examples of the original uncertainty estimates were presented
in Figures 4.2 and 4.9.



4. Results 58

Table 4.1: Mean and median values calculated from the uncertainty estimate for the depth
image.

Figure Median [m] Mean [m]
4.19 0.0753 13.7
4.8 0.419 8.08
4.13 2.01 5.35
4.11 0.0418 1.83
4.15 0.174 7.65
4.1 2.03 7.12
4.4 2.38 5.33
4.6 1.53 4.32

4.4 Combining point clouds

Point clouds need to be combined to form a map about a larger area. This is not
straightforward as there will be conflicting information from different point clouds.
In this thesis, the point clouds were combined only based on the IMU and GPS
data, with no consideration for the content of the point cloud. This means that
point clouds are not matched to one another in any ways, which results in a non-
continuous terrain with overlapping areas not matching.

All the point clouds calculated from data set 12 are shown in Figure 4.21. Posi-
tions of the individual point clouds are roughly where they should be, but as seen
in Figures Figures 4.22 and 4.23, there are gaps between point clouds. Some point
clouds fail completely to match and clusters of points do not form smooth and
continuous surfaces.
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Figure 4.21: All the point clouds calculated from the data set 12 presented combined using
GPS location and IMU attitude. Axes on the image are sized 10m.

Figure 4.22 is a section of the Figure 4.21. It is showing how four point clouds
are matching one another. Areas are overlapping but there is clearly offset between
the point clouds. Similar situation can be seen in Figure 4.23 where the road should
be continuous surface, but the point clouds are not connecting. In addition, both
figures have residual points from point clouds that were either misplaced or used
wrong calibration. These residual points are prominent on the left side of the Figure
4.23.
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Figure 4.22: Smaller section of the Figure 4.21. Same area is presented also in Figure 4.10
but without all the other point clouds.

Figure 4.23: Smaller section of the point clouds presented in Figure 4.21. The road visible
should be a continuous surface.
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5. DISCUSSION

Chapter 4 presented the achievements of this study. This required solving several
problems not foreseen when this study was commenced. Some of the problems
remain unsolved and the following sections will discuss these more in detail. The
final section will conclude how the initial objectives were fulfilled and what can be
benefited from this study in the future.

5.1 Results

The objective of this thesis was to explore the possibilities of the high resolution,
small base line to distance stereo vision. The Initial goal was to obtain matching
point clouds and to construct a map of the terrain. This goal was not fully realized.
On the other hand, the potential of the high resolution stereo vision is visible on
the results.

Good performance was achieved for the data set 12. Figures 4.14 and 4.16 rep-
resent the best quality that was achieved on board the MAV. However, many of
the stereo pairs had to be discarded even from data set 12 because of the camera
movement or blurring of the images.

It is important to note that even though we get sub-pixel accuracy for the position
of the maximum correlation, the pixel size is larger for the low resolution images
used at the beginning, thus the estimates done with the large windows are not
accurate to the sub-pixel level at full resolution. This is taken into account at the
estimate for the accuracy of the match. Even at the highest resolution, the sub-pixel
accuracy of the maximal correlation is still not a certain indication of a matching
feature, especially with smaller template sizes. This is why heuristics were used in
this thesis to calculate the uncertainty for the depth estimate.

GPS errors were tested by repeating static measurements, see Figure 3.11. The
estimate of the GPS accuracy is also given by the RTK-lib, but this information
was found to be rather unreliable. The accuracy of the attitude measurement is
estimated within the Kalman Filter in real time during flight. Similar results were
acquired by shaking the unit on a level table and seeing how much variation could
be caused to the attitude.

The algorithms and software architecture developed in this thesis provide a good
basis for moving towards real time applications. The distributed computation de-
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veloped for this thesis can be used to offload computation from the MAV’s processor
to a processing cluster to reach near real time performance even with the current
complex algorithm. This results from the fact that the computation time is lin-
early dependent on the number of machines in the cluster; as long as the amount of
machines stays under the vertical resolution of the images.

5.2 Outstanding problems

All the problems could not be solved during this thesis. Movement of the camera
between the images was apparent especially on the data set 10 where most of the
depth images had a noticeable trend. A good example of this trend is on the point
cloud presented on Figure 4.7 as much of the features can be distinguished from the
background but the ground level is not horizontal.

The non linear nature of the disparity-to-metric conversion makes errors due to
camera movement challenging as the error can often be larger than any actual feature
present on the scene. This was the case with Figure 4.3 where the errors were so
large that no features could be distinguished from the point cloud.

Some of the errors were removed by forcing the depth values to a sane range. One
of the methods used was checking if the median of the distance image had reasonable
values and forcing the median disparity to a safe value by applying a constant offset
to the disparity. The limit used here was 60m. Safe range was determined from
the height given by the IMU. This means that the terrain was assumed to be a flat
plane and the errors were considered only caused by translation. Large errors like
these in Figure 4.7 were left on many of the point clouds, but this solved much of
the issues that manifested from distance estimates close to infinity. However, forcing
the baseline to a safe value only makes the point clouds look better, but does not
fix the actual error.

Matching point clouds proved more challenging than initially thought, see Fig-
ures 4.22 and 4.23. This is caused by localization and IMU attitude estimate errors
causing the point cloud to move to a different position than in reality. MAV lo-
calization errors are generally rather small, in order of a few meters, depending on
conditions. Attitude errors cause offset that increases with distance from the cam-
eras. Attitude errors were estimated to be roughly + − 1Deg. Camera movement
between the stereo images causes the most unpredictable error as it changes in non-
linear manner with distance from the cameras, see Figures 3.5 and 4.12. A rough
estimate for the magnitude of the error can be estimated, but more information
sources are needed to compensate for these errors.
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5.3 Conclusion

Many of the problems described in the section 5.2 can be mitigated with right hard-
ware and algorithm choices. The largest errors caused by the triggering difference
in cameras can be negated with machine vision cameras. Much of the point cloud
matching errors can be solved by matching the stereo image pairs with other image
pairs. This results in information about camera translation and rotation between
the images. The same algorithm can be used to get an estimate for the camera move-
ment between the images although the best solution to camera movement would be
to use cameras with accurate triggering.

To improve the results further, hardware would be needed to compensate for the
movement of the MAV as the benefits of the high resolution are radically reduced by
the motion blur. Blurring can be removed by isolating the cameras from the MAV
body and decoupling the movement of the stereo rig by using a gimbal to keep the
camera orientation separate from the orientation of the MAV. Other possibility is
to use cameras with small triggering delay so that they can be accurately triggered
when the MAV is not moving.

In conclusion, this thesis proved important to highlight areas that are important
for aerial stereo vision. The algorithms developed for disparity computation are also
a good starting point for developing more real time oriented algorithms.



64

BIBLIOGRAPHY

[1] R.A. Boie and I.J. Cox. An analysis of camera noise. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(6):671–674, 1992. ISSN 0162-
8828. doi: http://doi.ieeecomputersociety.org/10.1109/34.141557.

[2] Olivier Faugeras. Three-dimensional computer vision : a geometric viewpoint.
MIT Press, Cambridge, Mass, 1993. ISBN 0-262-06158-9.

[3] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge University Press, Cambridge, UK New York, 2003. ISBN
0-521-54051-8.

[4] Peter I. Corke. Robotics, Vision & Control: Fundamental Algorithms in Matlab.
Springer, 2011. ISBN 978-3-642-20143-1.

[5] J.Y. Bouquet. Camera calibration toolbox for matlab. Available online, 2008.
URL http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.

[6] Michael Warren and Ben Upcroft. High altitude stereo visual odometry. In
Proceedings of Robotics: Science and Systems, Berlin, Germany, June 2013.

[7] Riku Hellevaara. RTK-GPS lentävässä kuvausalustassa ja koordinaattien määrit-
täminen kuvasta. Master’s thesis, Tampere University of Technology, Finland,
2013.

[8] Angus P. Andrews Mohinder S. Grewal. Kalman filtering : theory and practice
using MATLAB. Wiley, New York, 2001. ISBN 0-471-39254-5.

[9] H. Hirschmuller. Stereo processing by semiglobal matching and mutual informa-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):
328–341, 2008. ISSN 0162-8828.

http:// www.vision.caltech.edu/bouguetj/calib_doc/index.html.

	Introduction
	Unmanned Aerial Vehicles (UAV)
	Multirotors
	Other types of MAV's

	Stereo vision with high resolution
	Other depth perception methods
	Laser scanners
	Time of flight
	Structured light

	Why is distance information useful?
	Objectives of this thesis
	Structure of this thesis

	Imaging for depth perception
	How cameras work
	Sensors
	Image noise
	Modeling of cameras

	Coordinate systems and camera calibration
	Epipolar geometry

	Implementation
	Hardware
	Stereo imaging hardware
	Copter hardware
	System layout
	Positioning system
	Inertial measurement unit

	Robot Operating System
	Camera calibration
	Removing faulty pixels
	Stereo rectification

	Converting color image to monochrome
	Identification of disparity
	Descriptors for match quality
	Disparity to point cloud
	Parallel computing


	Results
	Data set 10
	Data set 12
	Other tests
	Combining point clouds

	Discussion
	Results
	Outstanding problems
	Conclusion


