

ARI AALTONEN
PRODUCT-LINE ARCHITECTURE FOR A VISUALIZATION
SYSTEM
Thesis

Tarkastajat: professori Kai Koskimies
 professori Jouni Mattila
Tarkastaja ja aihe hyväksytty
Tieto- ja sähkötekniikan
tiedekuntaneuvoston
kokouksessa 6. huhtikuuta 2011

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
AALTONEN, ARI: Tuoterunkoarkkitehtuuri visualisointi järjestelmälle
Diplomityö, 47 sivua, 4 liitesivua
Huhtikuu 2014
Pääaine: Ohjelmistotuotanto
Tarkastajat: professori Kai Koskimies, professori Jouni Mattila
Avainsanat: Ohjelmistoarkkitehtuuri, tuoterunko, Qt

Ohjelmistoarkkitehtuuri on tärkeä osa kaikkien suurten ja monimutkaisten ohjelmistojen
projekti ohjelmiston kehitysprosessia. Joissakin tapauksissa, samaa
ohjelmistoarkkitehtuuria käytetään toteuttamaan useampia ohjelmistotuotteita käyttäen
niiden yhteisiä komponentteja. Tämä mahdollistaa ja tarvitsee tuoterunkoarkkitehtuurin
(PLA) suunnittelun, jotta kokonaisuus pysyy hallinnassa.

PLA on tuotealusta, joka sisältää monien samaan toimialueeseen kuuluvien
ohjelmistotuotteiden yhtäläiset piirteet. Käytettäessä samoja komponentteja uudelleen
eri tuotteissa ne ovat vakaampia johtuen kattavammasta testauksesta, ja tuotteen
markkinoille valmistuminen nopeutuu. Se tarjoaa variaatiopisteitä, joissa uudet
ominaisuudet voidaan turvallisesti toteuttaa.

Tämä väitöskirja perustuu suunniteltuun 3D-visualisointi ohjelmistoon, joka kasvoi
tuoterungoksi toteutettaessa muutamia sovelluksia, jotka hyödynsivät yhteisiä
komponentteja ja arkkitehtuuria. Kyseinen tuoterunkoarkkitehtuuri on plug-in-malliin
perustuva järjestelmä, joka rakentuu Malli/Näkymä- ja viestinvälityssuunnittelumallin
varaan. Nämä kolme arkkitehtuurista mallia muodostavat yhdessä modulaarisen,
muokattavan ja laajennettavan tuoterunkoarkkitehtuurin.

Tässä työssä kuvataan arkkitehtuuri sekä arkkitehtuuriset variaatiopisteet. Tässä
arkkitehtuurissa on kahdenlaisia variaatiopisteitä, sisäisiä- ja päävariaatiopisteitä.
Sisäiset variaatiopisteet on tarkoitettu kehittäjille, jotka integroivat uusia ominaisuuksia
tuoterunkoon ta luoda uusia sovelluksia. Päävariaatiopisteiden tarkoituksena on
laajentaa sovelluksia, mutta niitä voidaan käyttää myös lisäämään kokonaan uusia
ominaisuuksia sovellukseen. Tuoterunkoarkkitehtuuri tarjoaa myös APIn ja kirjastoja
mahdollistamaan ja helpottamaan uusien laajennuksien toteuttamista.

Tällä tuoterunkoarkkitehtuurilla toteutetut sovellukset toimivat tässä tapauksessa
testitapauksina ja niitä käytetään arvioimaan tuoterunkoarkkitehtuuri. Sovellusten
testaus on osoittanut niiden täyttävän niiltä vaaditut laatuvaatimukset. Nämä
testitapaukset näyttävät tuoterunkoarkkitehtuurin olevan riittävän muunneltava,
laajennettava ja tehokas mahdollistaen sovelluksien toteuttamisen ja niiden
vaatimuksien täyttämisen.

III

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
AALTONEN, ARI: Product-line architecture for a visualization system
Master of Science Thesis, 47 pages, 4 Appendix pages
April 2014
Major: Software engineering
Examiner: professori Kai Koskimies, professori Jouni Mattila
Keywords: software architecture, product line, Qt

Software architecture is an important part of the software development process of any
large and complex software project. In some cases, the same architecture is used to
implement more than one software products using many common components. This
enables and requires the designing of product line architecture (PLA) to keep it all under
control.

PLA provides variation points where new and different features can be safely
implemented. It is a product platform that contains the commonalities of many software
products of the same domain. This way the implementations are more robust as they are
tested more thoroughly and time-to-market is decreased.

This thesis is based on the design of 3D visualization software that grew to a
product line for implementing few applications on the common components and
architecture. The PLA is plug-in based system that has two underlying patterns it is built
on, model/view and message dispatcher. These three architectural patterns are combined
to form a modular, customizable and extensible PLA.

This thesis describes the architecture as well as the architectural variation points.
There are two kinds of variation points, internal and main. The internal variation points
are meant for the developers integrating new features into the product-line or develop
new software products. The main variation points are aimed at extending the
applications, but may also be used to add completely new features to the application.
The PLA also provides APIs and libraries to enable and make it easier to develop new
plug-ins.

In this case, the applications designed using this PLA work as test cases and they are
used to evaluate the PLA. Testing the applications has shown they fulfil the quality
requirements they were given. These test cases show PLA to be modifiable, extensible
and efficient enough making it possible to build the applications and meet their
requirements.

IV

FOREWORDS

I want to thank my colleagues for their support and the examiners of this thesis Kai
Koskimies and Jouni Mattila for their guidance for this work. I also want to thank my
family and friends for their question about the status of this thesis.

Tampere, March 25, 2014

Ari Aaltonen

V

TABLE OF CONTENTS

Tiivistelmä .. ii
Abstract ... iii
Forewords .. iv

Acronyms & definitions .. vii
1. introduction ... 1

2. Overview of Qt ... 4

2.1. Implicit sharing ... 4

2.2. Signals and Slots ... 5

2.3. Event-processing ... 5

2.4. Patterns ... 6

2.4.1. Observer pattern ... 6

2.4.2. Dispatcher pattern ... 7

2.4.3. Pimpl idiom .. 8

2.4.4. Model/View pattern .. 8

3. Requirements .. 11

3.1. Existing system ... 11

3.2. The existing scenegraph structure .. 12

3.3. Need for a new design ... 13

3.3.1. Technology requirements .. 13

3.3.2. Quality requirements .. 14

4. Design ... 16

4.1. Environment .. 16

4.2. Overview of the architecture .. 16

4.3. Product-line architecture viewpoint ... 17

4.4. Plug-in management .. 18

4.5. Visualization ... 19

4.5.1. Scenegraph ... 19

4.6. Module design ... 20

4.6.1. Core module ... 20

4.7. GUI module... 28

4.7.1. API for extending IHA3D GUI ... 28

4.8. Plug-in types ... 32

4.8.1. Plug-in interfacing .. 32

4.8.2. Core type extension component .. 32

4.8.3. GUI type extension component ... 33

4.8.4. Component extending GUI and Core .. 34

4.8.5. Plug-in management interfaces to application 35

VI

5. Applications .. 38

5.1. ITER project .. 38

5.2. Fusenet project .. 38

5.3. Comau visualization .. 39

5.4. Hydraulics simulation course ... 39

6. Application evaluations ... 41

6.1. ITER project evaluation ... 41

6.2. Fusenet evaluation ... 41

6.3. Comau evaluation .. 42

7. Product-line evaluation.. 44

7.1. Modifiability ... 44

7.2. Usability .. 44

7.3. Reusability .. 44

7.4. Extensibility .. 45

8. Conclusions... 46

References .. 48

A.1. Data types .. 50

A.1.1. Values ... 50

A.2. Communication data types ... 51

A.2.1. Message .. 51

A.2.4. Events ... 51

A.2.5. Event definition .. 53

VII

ACRONYMS & DEFINITIONS

API Application Programming Interface
DDS Data Distribution Service for real-time systems
DLL Dynamic Link Library, library file that is loaded as a part of

a program during execution.
GUI Graphical User Interface
GUID Globally Unique Identifier
IHA3D Visualization software developed at Department of

Intelligent Hydraulics and Automation at Tampere
University of Technology.

MFC Microsoft Foundation Class Library is a library that
encapsulates part of Windows API interfaces in to C++
classes.

Model/View Architectural design pattern similar to MVC used in Qt
MVC Model-View-Controller
Ogre Object-oriented Graphics Rendering Engine is used to

render 3D graphics on a window.
Plug-in Dynamically loadable program component that is used to

extend existing software or provide a way of implementing
variability

Qt cross-platform application development framework
SDK Software Development Kit
TCP Transmission Control Protocol
UDP User Datagram Protocol

 1

1. INTRODUCTION
The purpose of this work is to introduce the design of IHA3D PLA and evaluate its
architecture through the three applications developed using it. It is related to
International Thermonuclear Experimental Reactor (ITER) project Intelligent
Hydraulics and Automation (IHA) department of Tampere University of Technology
(TUT) is involved with.

ITER is a large-scale multinational experiment aiming to prove that fusion is
commercially viable option as an energy source. The aim is to produce 10 times more
energy than keeping up the reaction consumes and to keep the reaction going for 1000
seconds. It’s used for testing materials, developing technology and collecting data for
building the first electricity-producing fusion power plant. The preliminary testing of a
maintenance robot for the reactor is done in Tampere. One of the software requirements
for the project was to develop 3D visualization software.

Data visualization is part of many modern software products. In this case it is used
in the visualization of a robot to view a 3D representation of the real world
environment. The virtual environment can be displayed from different angles and user
can move around in it to get a desired view of the environment. The views can display
additional variables of the state of the robot presenting important information to help in
decision making situations. In some cases there is camera input presenting a real-time
video feed of the robot’s environment. This can be displayed to the user as it is. The
video can also be augmented with visualizations of the data the system produces while
in operation.

Virtual environment provides the user a way to practise the robot operation tasks by
showing effects of the robot control input in the virtual model. This way he can practice
the control operations off-line, familiarizing him on the controlling tasks beforehand.
This helps to prevent human errors on the job. Also it is not always possible for an
operator to be present while using robotic systems because of possibly hazardous
environment. For this reason, it is important to have a visualization system presenting
the robot in the operating environment.

Visualization system may have different requirements depending on the purpose it is
used for. It could be used to construct the 3D environment and the robot, or just to
operate the robot in its environment. These two examples have some common features
and many specialized ones. Also projects can grow and change with time if it’s large
and divided into phases, each phase having some new feature requirements. Thus it is
useful to have a flexible architecture for the system which can be extended and changed
using different plug-ins. The main advantage of using a plug-in system is the
improvement in modularity.

 2

Software architecture design is an important part of software development process.
Software architecture is a top-level description of the structure of the software. It deals
with high-level decisions to maintain system integrity keeping the software in a unified
form. Its purpose is to constrain and guide the development of different software
components. It identifies the software's structural components and defines the interfaces
they offer. The interfaces define the communication between components and specify
their externally visible properties and behavior. Architecture addresses crosscutting
concerns that cannot be made by a developer with a narrow focus of responsibility such
as designing one software component.

Product-line architecture (PLA) is a product platform built with API interfaces and
component libraries. It contains the commonalities of many software products of the
same domain and provides points of planned variability. It has many good properties,
but also some downsides. ([1], p. 157-186)

One of the good properties of PLA is that it can develop higher quality of products
as the same tested code components are reused. The time-to-market is also faster as less
code is needed to implement a new product. Standardization comes as a by-product as
products work the same way. Using PLA lowers labor needs as the architectural design
has already been done, at least the major part of it. From the project management point-
of-view, PLA makes easier project management for single products as same kind of
development process is used in other projects. It also lessens the need for staff re-
education when moving them between projects as the tools and environment stay the
same. ([1], p. 157-186)

The problem with product-line architecture is that it takes a lot of time and resources
to design and implement. Many products need to be implemented using it before the
effort starts paying back. ([1], p. 157-186)

IHA3D PLA was developed from the common components of applications using the
same architecture. There are three applications of IHA3D at the moment.

The first is the reason of the development. It was developed for visualizing the
maintenance robot’s movement and surroundings in the reactor. It was designed to work
as a part of a distributed system controlling and monitoring a service robot in
radioactive fusion reactor conditions. This configuration is meant to be used on a multi-
core Windows computer with high-speed Ethernet connection.

The other application is for educational purposes. It is limited in functionality but
has other redeeming features that fit for gaming and presentation. It was designed to
work on a slow single-core laptop and though it can utilize the internet for content, it is
not required. This configuration works even on a slow single-core Windows computer
with no need for network access.

The third application is a very basic setting that has almost everything stripped
down or automated for easy use. It is used in a course project for teaching simulation of

 3

hydraulics. The application is used to visualize the movement of a boom in response to
the student’s control software running on a separate real-time simulation environment.
This application was further evolved for Comau industrial robot visualization. These
configurations don’t require as much processing power as the first application but use
the Ethernet connection for control commands.

Chapter 2 gives background information on Qt SDK which is used for implementing
the applications. The chapter 3 introduces the existing system and describes the quality
requirements. Chapter 4 describes the architectural design of the software and explains
the most important commonly used interfaces in the API and the software modules.
Chapter 5 describes the implemented applications. Chapter 6 gives the results of the
applications in action. Chapter 7 describes how well the PLA meets the requirements.
Chapter 8 contains the conclusions.

 4

2. OVERVIEW OF QT
This chapter gives a brief overview of Qt SDK and the way things are done using it. Qt
is a full cross-platform development framework providing tools and libraries for
creating applications and user interfaces. It is well documented, has an active
community and is constantly developed. These qualities make Qt an excellent choice for
developing many kinds of applications. [16]

When using an SDK in the development, it is best to follow its coding conventions
and use the patterns it provides. Qt provides too many things to list here, so this chapter
will only include the parts deemed most usable to this work.

First subchapter discusses the use of implicit sharing [2]. Then the concept of
signals and slots is described [3]. Next, the concept of Event Driven architecture is
visited briefly [8] before explaining the idea of event processing [4]. After that we move
on to patterns in general [5]. The first and one of the most commonly used patterns is
the Observer pattern [6]. After that the Dispatcher pattern is discussed [17]. The Pimpl
idiom is explained thoroughly in subchapter 2.4.3 [7] [15]. Next the concept of Event
Driven architecture is visited briefly [8]. At the end the Model-View-Controller pattern
and Model/View pattern are described [9] ([1], p. 142).

2.1. Implicit sharing

Qt uses implicit sharing, atomic reference counting and reentrancy for many of its value
classes to maximize resource usage and minimize copying and CPU usage combined
with ease of usage.

Implicit sharing is another name for a more common term copy-on-write. The
copies all look like different variables, but in reality, they all point to the same data.
Only when user changes its copy of the data, the modified data is copied to a different
place. This delays the possibly CPU-intensive copying, and in most cases, removes need
for it completely. All this is hidden from the user of the data structure by encapsulating
it behind an interface. Instances of the data structure presented by the interface can be
used as normal.

Qt uses atomic reference counting with implicit sharing. Atomic reference counting
is like normal reference counting. It only adds the guarantee that the counting variable
updates are serialized. They are used to keep count of the references to the implicitly
shared data. This makes it possible to use implicit sharing with multiple threads, though
it does not ensure thread-safety on its own.

Qt makes extensive use of reentrant functions. Reentrancy basically means that the
member functions of a class only access the member data of the class. Reentrant classes
are safe to use across threads as long as the function calls are serialized.

 5

2.2. Signals and Slots

Signals and slots are a Qt way of implementing communication between objects. It is
used to pass data and make function calls by implementing the observer pattern. This is
a loosely coupled solution where the signal sender knows nothing about the receiving
object. This is more flexible than generally used function pointers. Function pointers are
not type-safe as there is no way to be sure the parameters are correct. Function pointers
also force strong coupling because the processing object must know what type of
callback function to call.

Qt signals and slots usefulness extends to the multithreaded systems. They behave
as direct function calls if the signal sender and the recipient are in the same thread. If the
sender and recipient are in different threads, the function call (signal) is queued and
executed when the recipient thread has time to process it. Signals and slots are the
recommended way to pass data between different threads as it can be done without
locking the data explicitly.

Meta object compiler (MOC) is used in Qt to generate the necessary boilerplate
code for the signals and slots defined in classes. This makes signals and slots easy to
use. Qt widget and object base classes have many predefined signals and slots, but it is
common to subclass them and add new behavior.

2.3. Event-processing

The main ideas behind Event driven architecture are loose coupling and distribution. It
provides an excellent basis for scalability. It is based on message dispatcher pattern and
requires only implementation changes to make it threaded and thus improving for
example GUI responsiveness.

Qt events are usually a result of a GUI action when the OS sends the application a
message which is translated into Qt event object for handling. Another source of events
is the application itself. Events can be generated for example using timers to execute
actions periodically.

Every thread in Qt that handles events or queued signals runs its own event loop.
This enables easier multithreaded application development as developers don’t need to
worry so much about locking. Any object inheriting from QObject base class can
receive and handle events. The handling is done by re-implementing the needed handler
functions in the subclass. Some events, like key events, can be propagated and are first
sent to the GUI element most likely to handle it. The event is propagated on to a next
element if the event is not handled by that object.

Qt event processing system can be extended with custom events. The new custom
events inherit an abstract QCustomEvent class and implement their own interfaces

 6

which are accessible to the receivers after casting to a right type. These are handled by
the receiving object in its custom event handling function.

2.4. Patterns

Software design pattern is defined as general repeatable solution to a commonly-
occurring problem. They are used to help with coupling and cohesion issues, improve
reuse of code and maintainability and many other problems. Design patterns can be used
on many levels of software design. Higher level pattern are called architectural patterns.
They are larger scope patterns that usually describe the overall structure of an entire
system. The lower level patterns are just called design patterns and they are meant to
solve some local problem concerning a software component or some part of it.

2.4.1. Observer pattern

Observer pattern defines one-to-many dependency between objects allowing a Subject
object to notify registered Observer objects of changes in its state. Observer patterns can
be implemented in two ways, push or pull types. In pull type implementation, the
Subject only notifies the observing objects of a change, which in turn get the new data
from the Subject if necessary. In push type implementation, the Subject sends the
changed data to the observing objects. The push type implementation compromises
reuse as the same code has to be modified to send other data in different places. The pull
implementation on the other hand is less efficient as it requires observers to call the
Subjects getter-functions to get the changed data in addition to the added delay in
informing observers of the change.

Figure 2.1. Observer pattern [6]

This pattern is in central role in Dispatcher pattern and Event-processing
architecture, MVC and Model/View architectures.

 7

2.4.2. Dispatcher pattern

The Dispatcher is a convenient pattern when the component interfaces are not all known
beforehand. The component specialties don’t have to be known. This gives more
freedom for component designers.

The data structures that are transmitted between the component and the Dispatcher
don’t have to be defined. Communicating components all have a common interface they
implement. This interface is registered to the Dispatcher module using the interface it
provides. In some cases, the components can register to receive only certain kinds of
messages concerning their interests.

Figure 2.2. Dispatcher pattern

The message handling interfaces don’t have to be changed if a developer defines a
new kind of message. The only true requirements are that the new messages follow the
interface and structure defined for them and they can be distinguished from the other
messages. The Dispatcher and the components can work in parallel though it naturally
requires the component developer to take this in to account.

This pattern is central to the Event-processing architecture.

 8

2.4.3. Pimpl idiom

Figure 2.3. Pimpl idiom

Pimpl idiom is sometimes called opaque pointer or handle classes. Its main purpose is to
provide source code compatibility hiding all the operating system specific functionality.
It is used to hide data structures and class implementations from the users of the class
interface. Other reason is to reduce dependencies between classes thus reducing compile
time of the software. It also allows the implementation to be changed without the need
to recompile every component using it. The implementation part could also be changed
during the program’s execution. Qt uses Pimpl idiom almost everywhere for the above
reasons.

This pattern provides additional value for SDKs. Especially for SDKs like Qt that
are intended to work on multiple operating systems. Using Pimpl to hide the
implementation keeps the interfaces simple. This way they can be easily made to
provide binary code compatibility. The binary interfaces are the same for every version
of Windows. The same is true for every version of Linux.

Pimpl idiom is implemented by providing a class implementing the needed interface
but without the actual implementation. In addition to the public functions, the class
definition displays the forward definition for the class containing all class functionality.
It is not necessary for the class containing the functionality to know the class providing
the interface.

2.4.4. Model/View pattern

Model/View architecture is an adaptation of the Model-View-Controller architectural
pattern (MVC). The main ideas behind MVC are code reusability and separation of
concerns. Figure 2.4 shows a diagram of MVC architecture.

 9

Figure 2.4. Simplified diagram of the MVC architectural pattern

The pattern isolates the application logic from the user input and view presentation.
The model encapsulates the domain-specific data of the application. It also contains the
domain-specific functionality operates on the model data.

The views render the model onto the screen for interaction. Multiple views can
present the same model data in different ways, e.g. 3D graphics view and a view of
scenegraph object properties. The user interacts with the user interface causing an event
that is sent to a controller handling the view’s events.

The controller receives the user input and calls suitable model operations to handle
the input. When the model changes its state, it notifies its associated views so they can
refresh themselves. All views listening for this type of model data change query the
model for updated data. After this the views refresh themselves.

Model/view architecture is the result of combining the view and controller objects in
the Model-View-Controller architecture. The resulting architecture is a simpler
framework that still keeps the data storage separated from the way it is presented to the
user. In the same way as in the MVC architecture, Model/view architecture allows the
usage of a model in multiple views and the implementation of new views without the
need to change the underlying data structures.

To provide a more flexible handling of user input, Qt introduces a concept of a
delegate to the architecture. Delegates are used to customize the way data is displayed
and edited in views. The views own the delegates. Figure 2.5 shows a diagram of the
model/view architecture as it is used in Qt.

 10

Figure 2.5. The way Qt uses model/view architecture

Qt uses the model/view architecture mainly to provide different kinds of list, table
and tree views. In some cases the models can be linked to dialogs allowing a more
usable interface. The different parts of the architecture communicate with each other
using the signals and slots.

 11

3. REQUIREMENTS
This chapter describes the requirements of IHA3D. Subchapters 3.1 and 3.2 discuss

the main points of functional requirements along with the description of the existing
system. The new system and its technical and quality requirements are described in
Subchapter 3.3.

3.1. Existing system

IHA3D is a flexible and versatile visualization environment for robot simulation. It has
a built-in editor which allows the user to create virtual robot models by loading mesh
data files and combining them in the desired order. It makes possible for the user to
configure the robot characteristics for the task. The software also allows for creation of
complex robot structures such as closed structures for cylinder simulation. Created robot
models and the 3D environment can be saved and loaded for later use.

IHA3D makes it possible to visualize a created robot in real-time from multiple
viewpoints simultaneously. This gives the user a good overview of the environment the
robot is in. The robot’s characteristics and other interesting values can be shown on the
screen at all times. Examples of these are the robot parts position, orientation and joint
values. The Figure 3.1 shows an example of the IHA3D application GUI.

Figure 3.1. IHA3D with three windows viewing the scene

 12

IHA3D has more features besides allowing the user to create virtual robot models.
Created robot models can be controlled by several means. Firstly, IHA3D can connect
to a remote server and the virtual robot can be controlled using outside data. The robot
can receive joint values of a real robot, showing its position and orientation in the
virtual environment. In addition to receiving data, IHA3D can also send important
model information via outgoing network connections. Secondly, IHA3D provides the
capability to control the virtual robot locally by various control mechanisms. One of the
most useful of the local control mechanisms are the haptic devices. They provide
control in three dimensions and allow the user to feel the virtual objects. The control
mechanisms system of IHA3D provides interfaces for extending the application with
additional control mechanism modules.

IHA3D also incorporates fast collision warning and detection algorithms. These
algorithms allow the user to observe when virtual robot is about to collide or is
colliding. This information can of course be selected to be shown on the screen but it
can also be sent to a target computer by using outgoing network connections.

3.2. The existing scenegraph structure

Scenegraph is a data structure used to hold the object data of the virtual environment in
a logical order. It consists of nodes connected in a graph structure. A node may have
many children but often only a single parent. The effects applied to the parent node
affect the child nodes. A good example of this is translation of a scenegraph node with
many children.

The scenegraph of the existing IHA3D version was based on the Chai3D
visualization library. The scenegraph objects were derived from the classes Chai3D uses
in its scenegraph. This binds the data content of the model tightly to the GUI. Figure 3.2
presents a simplified diagram of a structure of the old scenegraph.

Figure 3.2. Treelike structure of the 3D world

 13

3.3. Need for a new design

The design of the existing IHA3D was sound, but as the system evolved, difficulties
crept in. This in turn caused the need for a new version. The scenegraph was too tightly
bound to the Chai3D rendering engine. The model was locked when the rendering
process was running. This slowed the update of model data and other functionality using
the data was put on hold.

The class structure became too tightly coupled. The GUI had dependencies to the
model classes. Changes to the code had widespread effects and new features needed
more work. This also affected the compilation time, which was about ten minutes, for
the application.

The plug-in system worked well on the previous IHA3D, but most parts of the
application were not designed with extensions in mind. There was a working extension
interface for control mechanisms and inverse kinematics, but other features needed to be
designed and structured anew for extensions to work well.

3.3.1. Technology requirements

Redesign of the application was needed to loosen the tight coupling of different
modules. The redesign also presented the opportunity to design the application with a
system wide support for extensions. This decision greatly affected the architectural
design as it meant that new features should be modular to make modification easier.

As the previous version of IHA3D was built using MFC classes, it was strongly
dependent on MFC on more aspects than the GUI, e.g. file handling. MFC seems to be
difficult to learn and makes unordinary things difficult to implement. In addition, MFC
is an outdated technology that is no longer improved and rarely used. To fix this
problem, it was decided to use Qt as the basis for the application GUI.

There are several features that spoke for the use of Qt in the design. It is more
intuitive than MFC in its class structure and usability. It has easily implementable
network functionality. There is a large community and many tutorials and examples
assisting in difficult situations. Qt is also a cross-platform SDK. This makes it possible
to port the new IHA3D to other platforms with minimal effort if needed.

The Chai3D rendering engine had also become outdated. It evolved too slowly and
bugs were slow to be fixed. The application also needed to provide an augmented reality
view of the simulated robot and its environment which seemed to be unsupported in that
version of Chai3D. These issues prompted the changing of the rendering engine.

 14

3.3.2. Quality requirements

This chapter explains the chosen quality requirements for the software. These
requirements were mined from the requirements of the previous system and from the
properties that needed to be improved.

Performance is an important quality attribute for this kind of software. The
application should have short response times so as to feel “fast enough”. This means
that functions requiring long processing times need to be in a separate thread from the
GUI allowing them to run for several screen refresh cycles. The general response time
was set to 33 ms according to minimum platform requirements of a single-core PC. [18]

The modifiability requirement is about changing the software and the cost of that
change. The modifications may include improvements, adaptations for possible changes
in the environment and corrections for errors or behavior. Many times modifiability is
achieved using component architecture that separates different functionality and keeps
the changes local. [19]

Reusability is an important requirement for productivity in the software industry
[10]. Reusability is the likelihood that a segment of source code, class or software
component can be used again in some other part of the software to implement different
functionality with little or no modification. Reusable code reduces implementation time,
prior testing has most likely removed most of the bugs and usually localizes code
modifications.

Usability is important requirement for all successful applications. It is a many sided
and difficult attribute to define. It can include both programmer and user oriented point
of view, though it is usually thought from a user’s point of view [11]. User expects
software to be easy to learn, satisfying to use and efficient to use on a particular task.
Programmer expects software to be easy to modify, maintain and extend. Usability also
includes the possibility to control the application with many different control devices
like haptic controller or joystick.

Interoperability requirement was selected for the distributed nature of the target
environment [12]. It is the ability of diverse systems to work together. It describes the
capability of different programs to exchange data via a common set of exchange formats
to read and write the same file formats and to use the same protocols. In this case, the
application is implemented with the ability to send and receive a selected set of
commands defined by the environment used to set the position and orientation of a
robot.

Availability requirement was selected because it is expected for the application to
be usable for extended periods of time [13]. Availability is the ratio of the total time a
system is capable of being used during a given interval of time. The system is expected
to stay online at least a day without problems as no-one works on the project at night.

 15

Extensibility is important as not all the functional requirements were known at the
start of the development and more could surface even after the project has ended [14].
Extensibility measures the ability to extend a system and the level of effort required to
implement the extension.

 16

4. DESIGN
First, this chapter explains the environment of the system. Then, the general structure of
the software is explained. After that the architecture is examined from the PLA point of
view ([1], p. 157-186). Next an overall view of the modules implemented in the
executable is given.

4.1. Environment

The software is implemented for a PC platform. The required operating system is
Windows XP or newer. It is designed primarily for use on a multi-core processor
hardware with a modern (year 2004 or newer) graphics card for 3D graphics. Remote
operation control data reception requires a network connection for server access.
Different plug-ins may have additional demands for hardware.

4.2. Overview of the architecture

Figure 4.1 shows the high level structure of a plug-in based system. The application
consists of two larger modules that make use of the smaller ones. One is the Core that
handles model related functionality. The other is the IHA3D_Application that provides
the GUI for the application and integrates the Core with the GUI functionality into one
executable application. The plug-in types are specified more thoroughly in chapter 4.8.

Figure 4.1. The architecture at a high level

 17

The architecture of IHA3D consists of two architectural patterns. The
IHA3D_Application module uses Model/View pattern for providing the GUI.
Model/View architecture pattern is very much like the MVC-pattern, but with minor
changes as described in Chapter 2.4.4. It is used to separate the data storage from the
way the data is presented to the user, but provides a simpler design than the MVC
pattern. This separation of data and view allows multiple kinds of views for the same
data model.

The core is mainly a message dispatcher architecture pattern described in Chapter
2.4.2. In addition, it also provides services of the Core modules shown in Figure 4.1.
These services can be extended via interfaces that the core provides for plug-ins. The
Figure 2.2 shows an example of a message dispatcher pattern.

4.3. Product-line architecture viewpoint

The PLA can be viewed in a layered style to examine its structure in a hierarchical
manner. The model can usually be found from the PLA even when it was not
deliberately built that way. Figure 4.2 displays a layered model of a PLA in a
generalized manner. The figure shows the model has four layers that make the whole.
([1], p. 175)

Figure 4.2. Layered model of PLA

The lowest layer contains the management functionality that hides the general
platform dependent services and resources. It provides interfaces for the rest of the
application to access the hidden functionality. Depending on the platform, these may for
example be communication, process handling or memory management related. In this
case, there are libraries and their APIs containing compatible data types and
functionality. They are meant for easier and more consistent development of plug-ins
and further improvement of the executable. ([1], p. 176)

 18

The architecture layer defines the general architectural style for the software. It
offers attachment points for the application related layers. This PLA’s architecture is
composed of Model/View, Dispatcher and Plug-in architectural patterns. In this PLA,
this layer implements the plug-in management interfaces as the main variation point.
These are discussed more deeply in following chapters. ([1], p. 177)

The domain layer builds upon the general architecture defined in the architecture
layer. It implements the frame for the applications on their specific domain and may
contain additional architectural solutions. In this case, the interfaces some components
provide are considered to be additional, secondary, variation points. New components
and interfaces are added to the design as deemed necessary when evolving the system.
([1], p. 177-178)

The product layer contains all the applications developed using the PLA. This layer
implements the product specific functional requirements for example, GUI interfaces
for user to interact with plug-ins if necessary. ([1], p. 178)

4.4. Plug-in management

Plug-in management software module is a fundamental part of the functionality of an
extendable application. The application uses Qt SDK to implement the plug-in
management system. Qt has two ways of loading a plug-in. One loads Qt defined plug-
ins and the other loads plug-ins implementing low level exported C-style interfaces. The
first interface type is used to add more functionality to the application’s GUI. The
second is used to extend the model data handling of the Core component.

The Core plug-in interface has no dependencies to third-party libraries like Qt or
Boost. This gives the plug-in developer more freedom in the plug-ins’ internal design,
though there are some restrictions. The GUI extending plug-in interface forces the use
of Qt SDK in the plug-in. This choice was made to ease the handling of GUI elements.
All computationally intensive processing should be kept separated from the main thread
handling GUI elements to keep the user interface responsive. This problem is already
solved in the Qt SDK. The signals and slots system of Qt handles the transfer of
computation from processing thread to the GUI thread automatically. This simplifies the
design greatly.

Plug-ins may have different lifetimes, but all of them follow the same lifecycle. The
cycle has five steps that are

 loading,
 initialization,
 execution,
 uninitialization,
 unloading.

 19

First, a DLL file is loaded into the memory to check if it implements at least one of
the accepted plug-in interfaces. If no interface is found the file is unloaded from the
memory. The plug-in’s general data, like its description, name and GUID, are read
when the plug-in interface is loaded and accepted. When the plug-in is loaded into the
application, it can be initialized using the implementation of the plug-in interface.
Initialization instantiates the plug-in’s functionality allowing it to use the interfaces the
application offers for new components. While the plug-in is in execution phase, it can
function as a part of the application. The plug-in is uninitialized when it’s no longer
needed. Uninitialization removes all components the plug-in has added to the
application after which it cannot use any of the services the application offers. The plug-
in remains in memory after the uninitialization and can be initialized again. When the
plug-in is unloaded, it’s removed from the application memory. If it’s needed again, it
must be loaded again for initialization to be possible.

4.5. Visualization

The 3D rendering is separated in to its own extension plug-in. It extends both the core to
get all the scenegraph related events and the GUI to add a rendering window and other
functionality for the user’s convenience. The interaction between the application and the
plug-in is explained in detail in the plug-in management chapters. The visualization
component implements the Dispatcher pattern to receive and handle events from other
parts of the application.

4.5.1. Scenegraph

Previously the scenegraph was strongly tied to the Chai3D implementation and was part
of the rendering process. The scenegraph needed to be separated from the rendering
engine to avoid locking the model as it is rendered. This would speed up the update time
of the model data and have a lesser impact on the frame rate of the rendering engine as
neither thread needs to wait the other so long. Figure 3.2 shows an example of the old
scenegraph.

The scenegraph‘s structure also needed to be changed to implement new features.
The old scenegraph didn’t allow for creation of global parts, like walls, into the virtual
environment. There was a need for calculating the position and orientation of two
objects in the scene in relation to each other.

 20

Figure 4.3. Example scenegraph structure

The old scenegraph was limited in that it enabled only one child object to a parent
coordinate. This limited the device structure. It required more calculation to make a
device with many branches to seem whole. The new scenegraph, shown in Figure 4.3,
was designed so it enabled attaching many objects as children to the same frame
coordinate. These Frames attached in the tree structure constitute the framework of the
devices in the virtual world. The meshes displaying the visible parts of the device are
attached to the same Frame. This allows several different Parts and Frames to move
with their parent.

4.6. Module design

4.6.1. Core module

The Core holds the application’s functionality together. It controls the creation, lifetime
and access of all the software components. Its modules handle the registration of new
components defined in plug-ins that want to have access to the model data. It ensures
the components handling the model are kept up-to-date. All the changes to the model
data pass through the core’s component management module which handles internal
communication of the Core.

The Core provides many services to plug-ins. Figure 4.4 shows the core’s internal
structure and the interfaces it offers to loaded plug-in components. The components also
offer interfaces to plug-ins, but these are described in the components own chapters.

 21

Figure 4.4. Core component’s internal structure

Core’s access point and focus is the ProgramCore component. It is the first
component created in the core and controls the lifetime of the other parts of the core.
Plug-ins can access the ProgramCore through iCorePluginAccessPoint interface and
core other components other interfaces via ProgramCore’s implementation of
iProgramCore interface.

4.6.1.1 Core interfaces
The Core offers interfaces to the rest of the application. One of them is accessible also
for plug-in. The others are used for configuration purposes within the application.
Figure 4.5 below shows the interfaces visible outside of the ProgramCore component.
The description here is not enough to get a good view of the ProgramCore component.
A better understanding of the ProgramCore’s functionality and modification can be
obtained by examining the sequence diagrams detailing the components execution.

Figure 4.5 Externally visible interfaces of the ProgramCore component

 22

The iProgramCore interface is the access point to the ProgramCore component. It
is given to the plug-ins to integrate them as a part of the application. It presents methods
to access other components of the Core. The iProgramCore uses pimpl idiom to hide
changes in the core from other modules in the executable.

The iProgramCore and iProgramCoreConfiguration interfaces are intended for
configuration the application’s functionality. By creating different implementations of
the iProgramCoreImpl interface the program can be used for different purposes. For
example, an operator may need the networking capabilities, but a designer only needs
the model modification capabilities.

The iProgramCoreImpl interface defines the internally needed methods of this
component. It is used to handle the lifetime and execution of the entire Core component.
After start()-method call the core is ready to be used. Calling shutdown()-method in turn
makes the core unsafe to use outside the shutdown process.

The iProgramCoreConfiguration interface defines the actions needed for
configuring the Core. It creates the implementation of iProgramCoreImpl interface
defined by the configuration settings and manages its lifetime.

4.6.1.2 Component management
Component management module in IHA3D provides interfaces for extending the model
handling functionality of the Core. This module is central to implementing the message-
passing pattern. Two interfaces are needed to add new components to the Core. One of
them is presented in the Figure 4.6, which shows interfaces the component management
exposes outside.

This iComponentHandler interface is used to manage the registration of new
components handling the model data. The component is thread safe and can handle
registration and removal of asynchronous core extension components. The interface,
new components need to implement, is shown in Figure 4.7. The
iCommunicationHandler interface is explained better in Chapter 4.6.1.3.

The iComponentHandler interface also provides the possibility to use a registered
component directly by acquiring its interface. This connection demands that the GUID
of the components is known beforehand. Direct contact between components helps
speed up communication between components that are specifically designed to work
together. It should be noted that a component can’t be removed until all acquired
references to it have been released.

 23

Figure 4.6. Exposed interface of the component management

The cComponentHandler class implements the functionality defined in the
interfaces of Figure 4.6. It is used by the functionality of the executable. Functionality
implemented within a plug-in can only use the interface definitions.

Figure 4.7. Interface component management reguires from components handling model data

New components extending the Core’s model handling functionality implement the
iComponent. This interface enables the new component to receive events of model data
changes from the communication handler. It inherits iBasicEntity interface which
provides basic functionality implemented by many objects in the software. It requires
the component to have its own identifiers and description.

 24

The handling of events may be synchronous or asynchronous, but it is advisable to
place computationally intensive processing in a separate thread. This keeps the
communication thread light weight and responsive.

4.6.1.3 Component communication handling
IHA3D defines many events for handling the model data. Their types are identified with
unique GUIDs. Developers can define their own event types as needed and use them in
extension components.

Component management module receives the events and distributes them on to
interested listeners and components. It reveals one interface to the outside which is
presented in Figure 4.8 and it uses three others presented in Figure 4.9 excluding the
iComponent interface shown earlier in Figure 4.7.

Figure 4.8. Interface that the Communication handler component reveals

Component management module implements the iCommunicationHandler interface
to manage. It is prudent to keep the registered components and event passing close to
each other as communication handler must send the events to all components. The
iCommunicationHandler interface handles the event passing to the listening registered
components.

The Figure 4.9 shows the interfaces that are used with events. The iEventGroup and
iMessage interfaces contain the information passed around to all interested handler
implementations. They are described in the Appendix A in more detail.

The iEventListener interface is for light weight single event handling. The listener is
mostly used in component’s internal event handling when parsing an event group. The
iCommunicationHandler provides an interface to register listeners for a system wide
listening.

 25

Figure 4.9. Interfaces the Communication handler uses to pass messages to components

Event handling
Every instance of iComponent interface implements its own event handling. Figure 4.10
shows an event handling sequence where a ComponentA changes the data and informs
other components of the change.

Events are always sent to the CommunicationHandler that will set them to a buffer
to be distributed later. The event distribution operation is usually done asynchronously
and thus allowing the sender to continue its own task. The events are sent to the
registered components by calling the event handling method of the iComponent
interface of each component. The rest of the event handling sequence depends on the
implementation of the component.

Figure 4.10. Example event handling sequence

 26

4.6.1.4 Network management
The network management module manages the network protocols used by the
application. It keeps track of the ports the application uses as they are a limited resource
in any system. The module provides interfaces for registering new protocols and using
them. The networking is implemented so that only the user using provided dialogs or
the implementation of the program executable can authorize network connections using
this module.

The network protocols are based on the commonly used UDP protocol. The UDP
protocol is faster as it has no need to connect to the target server. It also does not require
the sender to wait for the confirmation of successful transmission of the network packet.

Provided interfaces
The Network management module exposes three interfaces outside the module which
are shown in Figure 4.11. Only the iNetworkManager and iUDPPacket interfaces are
relayed to the plug-ins implementing the packet handlers. The cNetworkManager class
implements the main functionality of the module and thus is exposed only to the
implementation of the program executable.

Figure 4.11. Interfaces of the network management module

The iNetworkManager interface is used to manage the registration of new types of
network packet handlers to the system. In itself it has no implementation as it is
designed to cross the DLL boundary safely. It is implemented by the cNetworkManager
class which is the main class in the module. It controls the use of network packet
handlers as it directs all network traffic. The incoming network packets are relayed to

 27

their assigned handlers as soon as they are received. Rest is left up to the plug-in
implementing the packet handler.

The cNetworkManager contains a timer to space the sending of outgoing network
packets. The user sets the interval of time between two consecutive outgoing
transmissions. This is meant to prevent the network from clogging up with excess
packets. Also there rarely is a need to send data at such a rapid pace. The outgoing
network packets are filled just before sending to ensure they contain most resent
information.

Figure 4.11 presents the iUDPPacket interface. It is used to transfer packet data
between the handlers and the cNetworkManager. It provides a way for the handler to set
the data in the packet or just append more after the existing data.

Used interfaces
The network management module uses packet handling implementations provided by
plug-ins. These packet handlers must implement the interfaces presented in the Figure
4.12. Plug-ins implementing network packet handling features have four interfaces to
implement.

Figure 4.12. Interfaces implemented in plug-ins

The network management module uses the iPacketHandlerManager interface is a
factory object used to when creating a new packet handler. Plug-in registers the object
implementing the interface using iNetworkManager interface provided by the
executable. The iPacketHandlerManager provides information as to what type of
packet handlers it can create and other helpful data for identification. Network
management module uses its interface to build a list of available packet handler types.
The iPacketHandlerManager creates and deletes the packet handlers of its type. It

 28

requires the application to inform it when releasing a packet handler when the handler is
no longer needed.

The iUDPPacketHandler interface is the base class for all network packet handlers.
There is one packet handler for each connection. The handler implementation holds the
information as to what the network packet it handles contains. It allows the network
management module to access the handler’s basic information identifying it. It provides
the interface to query if the handler has a dialog for editing the packet content controlled
by this handler. Handler is responsible for displaying the dialog as it has to easily access
the handler’s data and it would be harder across DLL boundary.

There are two types of packet handlers. Network packet handler implements either
iUDPPacketHandlerIn or iUDPPacketHandlerIn interface to gain access to the
network. The iUDPPacketHandlerIn defines a function for interpreting the incoming
data. The handler uses this data to change the scenegraph to correspond with outside
state, or to affect the functionality of the application. The iUDPPacketHandlerOut
defines a function for filling a provided network packet with new data. The network
management module calls this function when it is time to send another packet of the
handler’s type.

4.7. GUI module

The IHA3D_Application module is the main module of IHA3D. It handles the creation
of all other modules in the application. It initializes and manages the GUI and provides
an extendable user interface for the user.

4.7.1. API for extending IHA3D GUI

IHA3D provides an API for extending the application’s GUI. The API consists of two
different parts, the first part being obligatory if the GUI is to be extended. The
obligatory interfaces are covered in section 4.7.1.1. The second part contains optional
interfaces which provide additional extension possibilities. These interfaces are covered
in section 4.6.1.2.

4.7.1.1 Obligatory interfaces
The purpose of the obligatory interfaces is to provide a common way of accessing the
IHA3D GUI for all GUI extension plug-ins. Figure 4.13 shows a class diagram
depicting these interfaces.

 29

Figure 4.13. The obligatory interfaces for extending IHA3D GUI

The obligatory interfaces consist of four different interfaces (Figure 4.13). The
iGUISystem interface is implemented on the main application side and it will be given
to those plug-ins that want to extend IHA3D GUI. The main purpose of the iGUISystem
is to act as a point for GUI extension plug-ins so that the plug-ins have a common
interface from which they can access various GUI elements. For example iGUISystem
can be used to get access to window handling (WindowSystem), main window menus,
statusbar or toolbar.

WindowSystem is one of the most important and most used possibilities for
extending the IHA3D GUI. It allows registering new window types (e.g. 3D-windows
or Augmented Reality windows). As said, WindowSystem can be accessed using the
getWindowSystem() function in iGUISystem interface. The reason why the function
returns pointer to QObject instead of the iGUIExtensionPlugin interface, is that
WindowSystem has a couple of Qt signals and these cannot be connected to slots
without a pointer to a QObject object. The returned QObject is guaranteed to implement
the iWindowSystem interface. More information and the more detailed description of
the WindowSystem is given in section 4.4.

Second interface shown on the left side in Figure 4.13 is the iGUIExtensionPlugin
interface, which must be implemented by all plug-ins that want to extend IHA3D GUI.
The iGUIExtensionPlugin interface contains functions related to four different areas.
The first functions of the first area allow querying the plug-in properties. The properties
that can be queried are shown in Table 4.1.

 30

Table 4.1: Plug-in properties that can be queried via iGUIExtensionPlugin interface

Property Function Description

Name getPluginName() Gets the plugin name as a QString.

Description getPluginDescription() Gets the plugin description as a QString.

Status getPluginStatus() Gets the plugin status. Possible plugin statuses are
uninitialized, initialized and error condition as given in in
PluginStatus enumeration. When plug-ins are loaded they are
uninitialized. After they have successfully been initialized the
plug-in statuses are updated accordingly. If a plug-in faces a
serious error, it is possible that plug-in may change its status
to error condition.

GUID getPluginGUID() Gets the plug-in GUID. Each plug-in must have an unique
GUID in order to correctly identifiy the plug-in. The GUID must
remain same as long as the plug-in is loaded.

The second area is related to initializing and uninitializing the plug-in. Every plug-in
will be initialized by calling the initialize(iGUISystem*) function before the plug-in will
become operational. The iGUISystem interface is given as a parameter so that plug-ins
can access GUI elements afterwards.

The third area consists of two functions: guiCallbackRequested(), which is a Qt
signal, and handleCallback(). The purpose of these functions is to allow executing the
plug-in code in GUI thread since GUI objects are not allowed to be modified from any
other thread. So whenever plug-in emits the guiCallbackRequested() signal, the GUI
thread will perform a callback using the handleCallback() function. The callback will be
asynchronous.

The fourth area contains only one function: pluginEventOccurred(), which is a Qt
signal. The purpose of this function is to have the plug-ins report their events to
interested parties. Plug-ins are obliged to send these events whenever they occur.

The right side of Figure 4.13 presents the interfaces implemented on the application
side that must be used by a plug-in extending the GUI. IPluginAccessPoint defines
plug-in states and state changes. They are used inform the application of the state
changes of the plug-in. This is done calling the handlePluginEvent function in the
iGUIExtensionAccessPoint interface. This interface is given to the plug-in when it
registers to the system.

4.7.1.2 Optional interfaces, window handling
The IHA3D GUI can further be extended using optional interfaces. The most important
optional interfaces are related to window handling (WindowSystem) by providing a
support for 3rd party window types. Window types, e.g. 3D-window and Augmented

 31

Reality window, provide a way of creating custom windows in IHA3D. Figure 4.14
shows a class diagram of window handling related interfaces.

Figure 4.14. The window system related interfaces that can be used to extend IHA3D GUI

The window handling related interfaces actually contain two interfaces:
iWindowSystem and iWindowType. The iWindowSystem interface is guaranteed to be
implemented on the main application and it can be queried from the iGUISystem
interface (covered in Section 4.7.1.1). The purpose of the iWindowSystem is to handle
custom window types defined and implemented in plug-ins.

The iWindowSystem interface consists of two parts. The first part handles adding
and removing custom window types. The second part lets interested parties know when
a specific window type is added or removed. Each of these functions takes a QObject
pointer as a parameter. The reason for this is that iWindowType interface contains a
couple of Qt signals, which cannot be connected without QObject pointer. The
addWindowType() and removeWindowType() functions therefore will fail if the given
QObject parameters do not actually implement the iWindowType interface. The
windowTypeAdded() and windowTypeRemoved() signals, however, are quaranteed to
pass iWindowType as a parameter.

The window type specific information is capsulated in the iWindowType interface.
The purpose of the interface is to let 3rd party plug-ins register their own window types
to IHA3D. The implementation of the interface is therefore left to the plug-in developer.

The iWindowType interface has three important parts. The first part of the
functionality is to give access to window type properties such as name, description and
enabled status. The enabled status tells whether the window type is currently available
and windows of that type can be created. For example, a window type may restrict the
number of certain windows. In this case, the enabled status can be used to limit window
creation. Additionally each window type must have a unique identifier, which can be
queried using getWindowTypeGUID() function. The window type GUID will be copied
into the given parameter.

 32

The second interface part covers creating new custom windows, which is achieved
using createWindow() function. The function returns a QMdiSubWindow pointer, but in
most cases the created window will be inherited from the QMdiSubWindow instead of
actually being one.

The last part of the interface consists of a couple of Qt signals. Their purpose is to
let interested parties know about changes in the window type.

4.8. Plug-in types

There are two main types of plug-ins in IHA3D. The first is a plug-in extending the
Core and through it gets access to the model data. The second is a plug-in extending the
GUI side of the application adding elements visible to the user. There can also be a
hybrid plug-in implementing both extension interfaces.

4.8.1. Plug-in interfacing

There are two interfaces with which a plug-in can register to IHA3D. Plug-in
implements corePluginInterface interface and is registered to the core. Plug-in
implements a Qt derived iGUIExtensionPlugin interface and is registered to the
application’s GUI side.

IHA3D checks first if a new plug-in implements the Qt plug-in interface. After this
it checks the existence of a component interface for extending the core. If neither
interface is implemented in the DLL, the file is not an accepted plug-in type. Loaded
plug-in gets an interface with which to inform the application of changes in its state and
can access the applications other service interfaces.

4.8.2. Core type extension component

This type of plug-in is used to add new functionality to IHA3D via the Core module.
Core extension plug-ins implement the corePluginInterface interface as a set of
exported C-style functions as to cross the DLL boundary. The plug-in is initialized,
verified and un-initialized using these interface functions. The interface doesn’t force
any dependencies to third-party libraries. This allows for more freedom in the
component design.

The plug-in gets an interface with which to inform the application of the changes in
the plug-in’s state. The plug-in gets access to the Core through the same interface.

The model data handling is extended by registering new components to the core
module. The components are required to implement the iComponent interface, but the
component’s internal implementation is left to the component’s developer to decide.
The component implementations handle their own memory management, releasing the
memory they reserve.

 33

Figure 4.15 shows an example of interfaces between a core extension plug-in and
the application. The necessary interfaces are presented as connected because they exist
for the duration of the extension’s lifetime.

Figure 4.15. Example of the interfaces between the core and its extension component

4.8.3. GUI type extension component

This type of plug-in is used to add functionality to the application’s GUI. Plug-ins
extending the user interface are required to implement the iGUIExtensionPlugin
interface. It has the same functionality as the core extension interface has with one
exception. It gives the plug-in an access to the iGUISystem interface. This enables the
plug-in to add its user elements to the application. The interface forces the plug-in to use
Qt libraries as the application’s GUI is based on it.

Figure 4.16 shows an example of interfaces between a core extension plug-in and
the application. The necessary interfaces are presented as connected because they exist
for the duration of the extension’s lifetime.

 34

Figure 4.16. Interfaces between the application’s GUI and its extension component

4.8.4. Component extending GUI and Core

Figure 4.17 shows a plug-in implementing both extension interfaces.

Figure 4.17. Component extending the Core and IHA3D_Application

 35

This type of plug-in is used to add new functionality to IHA3D via both the Core
and GUI of the application. This type of plug-in implements both the
corePluginInterface interface and some of the Qt derived iGUIExtensionPlugin
interface. This makes it possible for a plug-in to implement its own configuration and
options dialogs for the functionality it adds to the Core.

4.8.5. Plug-in management interfaces to application

The plug-in management component is loosely coupled to the rest of the system. It
exposes only two interfaces to the rest of the application. These are cPluginManager
and cPluginData shown in Figure 4.18.

Figure 4.18. Interfaces exposed to the application.

The cPluginData class is used to store information of a loaded plug-in. There is one
for each loaded plug-in interface. Whenever another part of the application requires
information of a plug-in, it is given cPluginData object. This prevents rest of the
application from having direct knowledge of the plug-ins. The interface offers the
possibility to get information of a plug-in, but doesn’t give a way to change it. It also
allows other parts of the application to receive notifications of state changes in the plug-
in.

The main interface of the component is the cPluginManager. It hides the
management of the user interface dialog allowing others only to show it to the user.
Plug-in management interfaces to the plug-in side allow it only a limited access to the
plug-in management module.

There are three interfaces shown to the plug-ins which interface with application.
These are iGUIExtensionAccessPoint, iCoreExtensionAccessPoint interfaces and
through these the iPluginAccessPoint interface. These are shown in Figure 4.19.

 36

The iPluginAccessPoint interface shown in the Figure 4.19 is inherited by all plug-
in accesspoint classes. It defines state and event enumerations for plug-ins and void
handlePluginEvent(PluginEvent) method that handles plug-in events. The parameter
for the method is the event that happened in the plug-in.

Figure 4.19. Interfaces exposed to plug-ins

The specialized interfaces iCoreExtensionAccessPoint and
iGUIExtensionAccessPoint, also define their own methods that allow the plug-ins
access the application functionality. The iCorePluginHandler has also an
implementation for the iProgramCore* getProgramCore() method which allows the
plug-in access to the core system functionality. The iGUIPluginHandler has its own
variant of the function, iGUISystem* getGUISystem() method, which allows the plug-
in access to the GUI system functionality.

The PluginStatus enumeration defines values for the plug-in’s state. The states are
 PS_INITIALIZED,
 PS_INITIALIZING,
 PS_UNINITIALIZED,
 PS_UNINITIALIZING and
 PS_ERROR.

 37

Plug-ins are required to inform the application of state changes in them. For this
reason there are PluginEvent values that go with the PluginStatus values. The
PluginEvent values are

 PE_LOADED,
 PE_INITIALIZATION_SUCCEEDED,
 PE_INITIALIZATION_FAILED,
 PE_UNINITIALIZING,
 PE_UNINITIALIZED,
 PE_UNLOADED and
 PE_ERROR_OCCURED.

 38

5. APPLICATIONS

5.1. ITER project

The ITER project was the main reason for designing and implementing IHA3D
visualization software. It is part of a distributed ITER service robot monitoring and
control system. IHA3D is used to visualize the robot in the reactor, initialize haptic
control and receive control data from it and communicate with various parts of the
system.

Figure 5.1. ITER application with some editing dialogs

At first, this application was meant to communicate with the other systems using
UDP and TCP packets only. Later, this changed when a more advanced and reliable
communication method, DDS, was taken as part of the project. The aim was to test its
usefulness in the project environment and for other uses.

5.2. Fusenet project

The Fusenet application of IHA3D is intended mainly as a tool for teaching under
graduate students about the ITER fusion test reactor currently being constructed in
Europe. It can be used to present virtual tours of the ITER reactor and display
information of the reactor and other fusion related topics. It offers an option to
interactively explore the reactor if the virtual tours are not of interest.

 39

Figure 5.2. ITER virtual tour running on IHA3D

5.3. Comau visualization

The Comau application of IHA3D is intended to be used in a different project as a way
to plan and visualize movement of an industry robot. This enables the testing of control
systems even when the robot is not in use. It uses Ethernet connection to receive
commands from the control system.

5.4. Hydraulics simulation course

This application is the most basic of them all. It is installed on a computer simply by
copying and it is ready to run and receive control information.

The course application of IHA3D was designed to be used on a course visualizing
hydraulics control system’s output. The control system runs on a real-time LabView
computer simulating a hydraulic many cylinder boom. It calculates joint values and
sends them over an Ethernet connection to the computer running IHA3D. The
application shows the boom orientation in the 3D scene.

 40

Figure 5.3. Course application with one 3D view opened

Odd about this application is that despite its apparent simple structure, it still seems
to require more computational power from the computer that the Fusenet version.

 41

6. APPLICATION EVALUATIONS
The presented evaluation results don’t duplicate data associated with many of the
projects. The results are mostly marked with the project they are most notably
associated with. For this reason, the results may seem unfinished.

6.1. ITER project evaluation

This is the first software product of this product-line. It was used as a basis for all the
other product applications thus providing the base for the product-line architecture.

 Performance:
o Response time to human interface interaction is within 33 ms. This is fast

enough for the human eye.
o Throughput of the events should be more efficient as event buffers easily

began to increase in size under slightly heavier loads on single-core
machines. This is not a problem on a quad-core environment it is meant
to run on, but the test revealed a bottleneck in the design.

 Modifiability: Modifying the software by changing the code is costly if the new
functionality crosses threads.

 Interoperability: Once the network settings are correct, the software is a well
functioning part of the whole distributed system. Especially the DDS-
communication works very well for haptics control and for receiving other
commands.

 Availability: The software is stable. It has no memory leaks which would limit
its uptime. It was tested to run continuously for a week without problems.

 Extensibility: The software is extensible via plug-ins, but in some cases they
require also something new to the existing code. This seems to indicate that the
interfaces are not final as yet.

6.2. Fusenet evaluation

This software application is different from the rest as it is the only one in public
distribution. It has many game-like properties like playing audio files, but it also
features a web browser for information display. The information content is adaptable by
the Fusenet foundation.

 Performance:
o Response time to human interface interaction is within 33 ms. This is

considered fast enough for the human eye.

 42

o Throughput of the events was fast in this application due to small
redesigns in the visualization component. This shows that the
inefficiencies can be solved with component-level redesign and evolving
the product-line architecture.

o Graphics rendering and model loading times were under a load test in
this project as the size of the complete model was huge. The program
was responsive even on single-core machine.

 Modifiability: This is mainly a variation of visualization plug-in. Much of the
functionality is the same as in the ITER application.

 Reusability: This application required a lot more new code, some for the core
but most using a plug-in. Half of the code in this project is new.

 Interoperability: The information content of this product can be help in an
internet server and updated as a web page. This property improves the usability
and maintainability of the product considerably.

6.3. Comau evaluation

This software application has only a little reduced functionality as the user knows what
he is doing. Its reusability was high as all functionality already existed. The only thing
needed was to remove unnecessary components and build the robot model. This
application can be seen as a test for extending the architecture with more advanced
networking.

 Performance: The DDS communication seems to be more efficiently
implemented than normal networking as there are no problems with neither
networked nor rendering performance.

 Interoperability: The DDS communication is used to receive joint angle
information from the control system for industry robot simulation. This is
working well.

 Usability: After unzipping and setting the DDS system environment variables
the product is ready for use. It is only automated to load the robot model at
startup to lessen repetitive work.

 Extensibility: The DDS communication capability is added via plug-in. The used
DDS implementation requires system environment variables so it is not feasible
to include it to the product-line functionality.

6.3.1.1 Hydraulics simulation course evaluation
This application had very little special requirements. Its reusability was high as all
functionality already existed. It was required only to remove unnecessary components
and to build the visual model. For availability requirement it is enough for the program

 43

to run for a day without crashing. Curiously, this was the application that seemed to
require computing power the most.

 Performance: Through put of the events should be more efficient as event
buffers easily began to increase in size when events were received via network
faster than 20 ms/msg on dual-core machine.

 Reusability: Reuse of existing code was high as only minor fine-tuning was
needed after the model was built.

 Interoperability: Ethernet network is used to relay joint values for the boom
every 20 ms.

 Usability: After unzipping the product is ready for use. It is highly automated so
students don’t need to do any work unrelated to the project work. The user
interface is simplified and only core functionality is left.

 44

7. PRODUCT-LINE EVALUATION
This architecture was not originally supposed to be a product-line even if it did have
some properties supporting it. This introduced its own challenges. The API and other
supporting libraries were designed from the start to help design and implement new
extensions for the system. Later, there became the need to implement slightly different
applications of the software, and this lead to the unnoticeable drift to product-line
architecture. These applications are used as scenarios to evaluate the architecture. They
imply that the existing functionalities should be refactored to evolve more coherent
product-line architecture.

7.1. Modifiability

Adding new functionality that crosses threads seems to be costly. This could be
improved by refactoring some of the existing plug-in functionality into the product-line
and possibly moving them to the main thread. Some of the important functionality has
been placed in two main plug-ins when it either should be in a more specialized plug-in
or part of the core executable.

The rendering engine could be included to the product-line as a component library
with slightly evolved interface. This would also improve the efficiency of the different
applications, increase modifiability and would still allow the rendering engine to be
changed if necessary.

7.2. Usability

The common libraries for the API usage are at the moment in one file. This is restrictive
as it forces the extensions to include a lot of unnecessary functionality that may in some
cases limit them by introducing unwanted dependencies. The common libraries should
be broken into smaller libraries for more targeted usage.

The large plug-ins also add to the programmer’s work load as some changes have to
be made in 2 different components. This can be fixed by incorporating the scenegraph
to the executable and centralizing the functionality by integrating it to the PLA.

7.3. Reusability

The software has an API and helpful libraries to make it easier to develop different
extensions. There are also skeleton projects containing what is needed to compile a
working plug-in to get the development started quickly. Rest of the functionality needs
only to be added within a plug-in to get a usable application.

 45

7.4. Extensibility

Much of the functionality can be extended. Some of the changes may require
modifications and additions to the existing codebase, but they have not so far been a
problem. The event handling extends as needed. The core system does not need to know
what type of events it relays as the components handle it.

 46

8. CONCLUSIONS
The main point of this thesis was on the quality requirements which were mainly
satisfied. Of course, there is always room for improvement.

When designing the application, the performance requirement based on the
assumption that there are always at least 4 processor cores available in the hardware is a
bad one. The application needs to run efficiently even on older, less powerful,
computers as was shown in Fusenet project. During that project, the application was
tested on a very slow, single-core, computer. The test showed IHA3D to be flexible and
efficient enough to be usable even on older computers. The problem on slow computers
is that they have a very limited number of updates, events, the system can handle before
becoming unusable. This limit is around 90 events per second as changing the thread
context is a slow process. This is efficient enough, but it can be improved by refactoring
the software in the future.

The availability requirement was tested while the ITER application was running
constantly for a week in the test environment of a quad-core PC. The long running test
didn’t reveal any noticeable memory leaks that could endanger the applications stability.
One encountered problem seemed to be in repeated starting and stopping of DDS-
communication plug-in. This also required the DDS core to be restarted occasionally,
but it is not a major bug.

While developing the different applications of the PLA, the modifiability and
extensibility requirements were tested extensively. All the applications are somehow
different from each other and have brought something new to the design. The extensions
seem to integrate as part of the program without too much difficulty once a stable
framework has been achieved. In some cases the modifications took a lot more effort
than in others. This implies the need to refactor parts of the design in the future.

The reusability requirement was considered when developing the architecture. Many
of the components and extensions share the same kind of structures and code sections
with no or minor changes. This was further improved by creating an API and a library
file for developers to make use of and hopefully shorten the development time.

The application can be considered to be interoperable. It implements TCP/UDP
network management component that can be extended with protocols based on these.
The communication capabilities of the application were further improved in the ITER
project by implementing a DDS-communication plug-in for more advanced data transfer
protocol.

Usability of the new application could be improved in the future. There are some
features the existing IHA3D application has that are still missing in this newer
application. On the other hand, this newer application is easier to develop as it is

 47

implemented using third party frameworks and libraries that will be in active
development for many years to come. From the user’s point of view, some features
could be automated while others should be improved in the future.

All in all, the architecture seems to work. The applications do what they are meant
to do and the architecture enables them to be further developed and improved as more
features are required.

 48

REFERENCES

[1] Koskimies, K., Mikkonen, T. Ohjelmistoarkkitehtuurit. Helsinki,

Talentum 2005.
[2] Implicit Sharing [WWW] [accessed on 24.10.2013]. Available at:

http://qt-project.org/doc/qt-4.8/implicit-sharing.html
[3] Signals & Slots [WWW] [accessed on 24.10.2013]. Available at:

http://doc-snapshot.qt-project.org/4.8/signalsandslots.html
[4] The Event System [WWW] [accessed on 24.10.2013]. Available at:

http://qt-project.org/doc/qt-4.8/eventsandfilters.html
[5] Software Design Pattern [WWW] [accessed on 24.10.2013]. Available

at: http://en.wikipedia.org/wiki/Software_design_pattern
[6] Observer pattern [WWW] [accessed on 24.10.2013]. Available at:

http://en.wikipedia.org/wiki/Observer_pattern
[7] Using Qt and Symbian together (Figure 6: PIMPL Class Overview)

[WWW] [accessed on 24.10.2013]. Available at:
http://www.developer.nokia.com/Community/Wiki/Using_
Qt_and_Symbian_C%2B%2B_Together

[8] Event driven architecture [WWW] [accessed on 24.10.2013]. Available
at: http://en.wikipedia.org/wiki/Event-driven_architecture

[9] Model/View Programming [WWW] [accessed on 24.10.2013]. Available
at: http://qt-project.org/doc/qt-4.8/model-view-programming.html

[10] Reusability [WWW] [accessed on 24.10.2013]. Available at:
https://en.wikipedia.org/wiki/Reusability

[11] Usability [WWW] [accessed on 24.10.2013]. Available at:
https://en.wikipedia.org/wiki/Usability

[12] Interoperability [WWW] [accessed on 24.10.2013]. Available at:
https://en.wikipedia.org/wiki/Interoperability,

[13] Availability [WWW] [accessed on 24.10.2013]. Available at:
https://en.wikipedia.org/wiki/Availability

[14] Extensibility [WWW] [accessed on 24.10.2013]. Available at:
https://en.wikipedia.org/wiki/Extensibility

[15] Opaque pointer [WWW] [accessed on 24.10.2013]. Available at:
http://en.wikipedia.org/wiki/Opaque_pointer

[16] Qt [WWW] [accessed on 16.02.2014], Available at:
http://qt-project.org/resources/getting_started

[17] Dispatcher pattern [WWW] [accessed on 16.02.2014], Available at:
 http://msdn.microsoft.com/en-us/magazine/cc301357.aspx
[18] Performance [WWW] [accessed on 16.02.2014], Available at:

 49

 http://msdn.microsoft.com/en-us/library/ee658094.aspx
[19] Modifiability [WWW] [accessed on 16.02.2014], Available at:

http://sa.inceptum.eu/tool/modifiability

 50

APPENDIX 1 API DEFINITIONS
This chapter describes the functionality implemented for common use and the interfaces
needed in most projects. The application provides an API to help plug-in developers in
their task.

A.1. Data types

API interfaces include some implementations of data types to help in graphics
computation and passing data over the API boundary. Math data types implemented are
quaternion, 3D vector and 3x3 matrix. The math types can’t pass over the API
boundary. The API includes implementations of events, requests and values to pass the
information between components.

A.1.1. Values

Values transmitted with events are stored and conveyed by objects implementing iValue
and iValueGroup interfaces. The implementations of these interfaces should be included
in every component using events. The Figure 8.1 shows the class structure of value
classes and interfaces in the API.

Figure 8.1. Value class structure

 51

Value and valueGroup both have an interface class and an implementation class.
The interface classes are meant to be accessed beyond API boundaries. For this reason,
they show only functionality that is needed to access the data beyond an API boundary.
Implementation classes define an object’s data and implement the methods for changing
an object’s data content. The value and valueGroup classes offer the option of copying
the data from another object and this way bypassing the restrictions of API boundaries.
A cValue object stores one value and its type. The type is enumerated ValueType type
defined in the iValue interface. A cValueGroup object can store an arbitrary number of
cValues.

A.2. Communication data types

Events store their parameters in the cMessage class type objects. It carries the data in its
cValueGroup type member variable. This relationship is shown in both Error!
Reference source not found. and Figure 8.2.

A.2.1. Message

As the Error! Reference source not found. shows, a message consists of iMessage
interface and its implementation cMessage. The iMessage defines an interface that can
cross the API boundary and is used to access and copy the data. The cMessage
implements the functionality to change the message’s data content. Message contains
one cValueGroup type member variable to store the message parameters. Message
contains variables identifying it uniquely and identifying its type.

A.2.4. Events

Events are created and sent as cEventGroups. Events are a way to inform all interested
listeners that either the program state or model state has changed. Events are sent to the
core using the iCommunicationHandler interface.

 52

Figure 8.2. Event class structure

The cEventGroup implements the iRequestGroup interface to iterate through the data it
contains. In addition it provides methods to add new data to the request. The object can
contain several cMessage objects each one acting as a single event in the group. The
instances of cMessage object act as value storage for the event’s parameters.

 53

A.2.5. Event definition

Here is an example definition of an event:

/*! \brief Event informing of a created object.
 \param iBasicEntity::identifier id of object.
 \param GUID The GUID of the object (if any).
 \param iBasicEntity::identifier The id of parent
object.
 \param GUID The GUID of the object type.
 \param cString The name of the object.
 \param cString The description of the object.
*/

const cGUID OBJECT_CREATED(0x8d07271b, 0x489a, 0x4d3a, 0x93, 0xd6, 0x49,
0x86, 0xb6, 0xa1, 0xce, 0xf);
#define EVENT_VERSION_OBJECT_CREATED 1

When a plug-in brings custom events to the system, they are defined in a header file
that is included in every component that uses the new events. There may also be some
configuration file defining events that all interested plug-ins can load and parse. This is
left to the developer to decide.

The events must have a GUID identifying them uniquely when sent as a reply to a
request in the system. It also defines a version number for the event. This is useful to
recognize incompatibilities in plug-in development.

An event may have a number of values attached to it carrying the necessary data for
event handling. The event system restricts the value types used in the events to those
enumerated in iValue interface. They are the most often used data types so as to avoid
causing problems during plug-in development.

