

ANTON MAKLAKOV

DESIGN AND IMPLEMENTATION OF INFORMATION
WAREHOUSE FOR MANUFACTURING FACILITY SUPPORTING
HOLISTIC ENERGY MANAGEMENT

Master of Science Thesis

Examiner: Prof Jose L. Martinez Lastra

Examiner and topic approved by the

Faculty Council of the Faculty of

Engineering Sciences

on 4 December 2013.

 II

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Machine Automation

MAKLAKOV, ANTON: Design and Implementation of Information Warehouse for

Manufacturing Facility Supporting Holistic Energy Management

Master of Science Thesis, 68 pages, 3 Appendix pages

March 2014

Major subject: Factory Automation

Examiner: Professor Jose L. Martinez Lastra

Supervisor: Anna Florea

Keywords: Energy Management, Energy Efficiency, Information Warehouse, Big Data,

NoSQL, Cassandra, Service Oriented Architecture, Complex Event Processing,

Manufacturing

Energy management is one of the most critical tasks, which needs to be performed

in manufacturing facility, since manufacturing consumes 1/3 of world’s energy. Same

time, manufacturing facilities are equipped with large amounts of field devices, which

generate vast amounts of information every second. With such a huge amount of real-

time data, which has a potential to provide insight information for energy management

needs, capturing, storing and processing of it becomes a challenge. In this thesis an

information warehouse system supporting holistic energy management is designed and

implemented. The main goal is to provide a system, which can capture, store and

provide information relevant for energy management purposes in manufacturing

facility.

The thesis consists of three main parts. In the first part current and most relevant for

energy management concepts and technologies, including Big Data, NoSQL, Service

Oriented Architecture and Complex Event Processing, are explored, analyzed and

compared. In the second part an architectural design of information warehouse is

presented. During this step a set of tools and technologies is selected for

implementation. In a third part, an information warehouse system is implemented and

tested in a manufacturing line test-bed.

Implemented information warehouse is based on multi-layered architectural pattern,

where layers are communicating with each other via services. The most important

advantage of this modular architecture is an ability to use implemented solution in any

manufacturing facility, as modules can be easily reconfigured in order to adjust to

different context. The designed information warehouse system was tested for a

manufacturing line located in premises of Tampere University of Technology. The

results of this thesis demonstrate that the developed information warehouse system is

capable of collection, processing and providing access to crucial for energy

management information.

 III

PREFACE

It is very hard to believe, that my student life journey comes to its end. I have left

my home country 2.5 years ago to study in Tampere University of Technology, and I

can confidently say that it has been the most valuable experience of my life so far.

First of all, I would like to thank Professor Jose L.M. Lastra and all personnel of

FAST Laboratory for providing interesting, broad and challenging courses. Also, I am

very thankful to Prof. Lastra for selecting me to be admitted to the Machine Automation

Degree program in the first place, and having faith in me throughout the whole studies.

Secondly, I would like to express my gratitude to my supervisor Anna for guiding

me through the process of writing thesis, offering help and advices. Without her

valuable feedback and deep understanding of thesis writing process, this thesis work

wouldn’t be the way it is now.

Thirdly, I am very thankful for my parents and my family for the huge support and

love that they always share with me.

Fourthly, I am very grateful to my friends, who have always been ready to offer

their full support, and with whom I could always share my thoughts and feelings:

Ahmed, Mahmud, Ville, Juha, Zoran, Sohail. Also, I am thankful to my friends, who

have not been physically with me here, but still could provide a mental support:

Sebastien and Ilya.

Finally, and most importantly, I would like to thank my fiancée Rebekka for the

incredible support, patience, carefulness and love. Thank you for sharing the best and

the hardest moments with me, and being always close and ready to help in any situation.

Tampere, March 19
th

, 2013

Anton Maklakov

 IV

CONTENTS

List of Figures .. vi

List of Tables ... viii

List of Listings ... ix

Acronyms.. x

1. Introduction ... 1

1.1. Background .. 1

1.2. Problem Definition ... 3

1.2.1. Justification for the work .. 3

1.2.2. Problem statement .. 3

1.3. Work description .. 3

1.3.1. Objectives ... 4

1.3.2. Methodology .. 4

1.3.3. Assumptions and limitations ... 6

1.4. Thesis outline ... 6

2. Theoretical Background ... 7

2.1. Energy Management ... 7

2.1.1. Key Performance Indicators .. 9

2.1.2. State of the art in energy management 11

2.2. Big Data ... 13

2.2.1. Big Data technologies overview .. 15

2.3. Database management systems ... 15

2.3.1. NoSQL ... 16

2.3.2. MongoDB ... 17

2.3.3. Cassandra ... 19

2.3.4. Comparison of MongoDB and Cassandra 22

2.3.5. State of the art in NoSQL databases .. 23

2.4. Service Oriented Architecture ... 24

2.4.1. SOAP Web Services ... 26

2.4.2. REST web services ... 27

2.4.3. SOA in manufacturing .. 27

2.5. Complex Event Processing ... 28

3. Methodology ... 30

3.1. System Architecture ... 30

3.2. Tools and Frameworks ... 32

3.2.1. Event Hub ... 32

3.2.2. Cassandra ... 32

3.2.3. Esper .. 32

3.2.4. Kundera .. 32

 V

3.2.5. Spring Framework .. 33

3.2.6. Pedestal .. 33

3.2.7. Node.js ... 34

3.2.8. Apache Service Mix.. 34

4. Implementation .. 35

4.1. Overall system architecture .. 35

4.2. Database data model definition ... 36

4.3. Energy Key Performance Indicators ... 36

4.4. Application development .. 37

4.4.1. Implementation of data endpoint ... 37

4.4.2. Implementation of data processing .. 37

4.4.3. Development of Data Access Layer .. 38

4.4.4. Development of API ... 40

4.4.5. Development of KPI definition interface 42

4.4.6. Web application configuration .. 43

4.5. Development of OSGi module .. 44

5. Results ... 45

5.1. Implementation test-bed ... 45

5.1.1. Manufacturing line events ... 46

5.1.2. Energy Meter data model .. 47

5.1.3. Equipment Change State and Conveyor Notification data

 models .. 48

5.1.4. KPI data model ... 49

5.2. Application integration ... 50

5.3. Web services .. 51

5.3.1. Historical data ... 51

5.3.2. KPI data .. 52

5.3.3. Full energy data .. 53

5.3.4. Full robot data... 53

5.3.5. Full conveyor data .. 54

5.3.6. Chart data ... 54

5.4. Integration to OSGi .. 55

5.5. Tests ... 55

5.5.1. Data capturing and storage .. 55

5.5.2. Performance benchmarking... 57

6. Conclusions ... 60

6.1. Implementation conclusions ... 60

6.2. Future work .. 61

References .. 62

APPENDIX 1 – AVAILABLE NOSQL DATABASES .. 69

APPENDIX 2 – CASSANDRA DATA MODELS .. 70

 VI

LIST OF FIGURES

Figure 1: Energy factors identification flow (adopted from [14]) 9

Figure 2: Workflow for Energy Efficiency management (adopted from [18]) 11

Figure 3: SCTRUCTese Integrated efficiency management tool (adopted from[18])

 ... 12

Figure 4: Unified energy management system workflow 12

Figure 5: 6 Vs of Big Data... 13

Figure 6: Data growth estimation (adopted from [29]) ... 14

Figure 7: Replication in MongoDB (adopted from [45]) .. 18

Figure 8: Cassandra table structure example .. 20

Figure 9: Cassandra’s data storage organization (adopted from [47]) 20

Figure 10: Cassandra’s write operation in cluster (adopted from [47]) 21

Figure 11: Cassandra’s read operation in cluster (adopted from [47]) 21

Figure 12: Comparison of NoSQL and SQL query performance (adopted from [48])

 ... 23

Figure 13: Key-value pairs for storing data (adopted from [49]) 24

Figure 14: Interaction between components of SOA (adopted from [54]) 25

Figure 15: Serialization of XML messages (adapted from [60]) 27

Figure 16: Main concepts of event processing (adopted from [70]) 29

Figure 17: Layered architecture of designed system... 31

Figure 18: Spring Framework’s concept (adapted from [74]) 33

Figure 19: Application overall architecture .. 35

Figure 20: Message delivery to application .. 37

Figure 21: CEP engine workflow .. 38

Figure 22: Web Service workflow ... 41

Figure 23: REST Web Service workflow ... 42

Figure 24: KPI definition interface .. 43

Figure 25: Application configuration with Spring .. 44

Figure 26: FAST manufacturing line ... 45

Figure 27: Data model of Energy Meter table .. 48

Figure 28: Full energy data response ... 53

Figure 29: Full robot data response .. 54

Figure 30: Full conveyor data response ... 54

Figure 31: Chart data response .. 55

Figure 32: Historical power data for robot phase of cell 3 56

Figure 33: Historical power data for conveyor phase of cell 3 56

 VII

Figure 34: Data model of Robot Equipment Change State table 70

Figure 35: Data model of Conveyor Notification table... 71

Figure 36: Data model of KPI table ... 71

 VIII

LIST OF TABLES

Table 1: Energy Efficiency introduction drivers (adapted from [12]) 8

Table 2: Main aspects of energy efficiency in manufacturing (adapted from [12]) ... 8

Table 3: Energy Performance Indicators classification... 9

Table 4: Energy KPIs .. 10

Table 5: Temporal classification of energy KPIs ... 10

Table 6: Description of Big Data attributes .. 14

Table 7: Three types of Big Data ... 15

Table 8: NoSQL databases classification ... 17

Table 9: Comparison of MongoDB and Cassandra .. 22

Table 10: Characteristics of SOA (adapted from [56]) ... 25

Table 11: SOAP envelope contents ... 26

Table 12: Advantages and disadvantages of SOAP Web Services 26

Table 13: Advantages and disadvantages of REST Web Services 27

Table 14: Classification of CEP applications ... 29

Table 15: Annotations in Kundera (adapted from [73]) .. 33

Table 17: Developed Web Services ... 51

Table 18: Data storage result ... 55

Table 19: Consequent writes ... 58

Table 20: Concurrent writes .. 59

Table 21: Concurrent reads.. 59

 IX

LIST OF LISTINGS

Listing 1: Document structure ... 18

Listing 2: General energy message structure .. 36

Listing 3: Database connection configuration file .. 39

Listing 4: JPQL query example ... 39

Listing 5: Definition of data access request and response 40

Listing 6: Energy Meter XML message example ... 46

Listing 7: Equipment Change State XML message .. 46

Listing 8: Notification Message XML message ... 47

Listing 9: Database configuration file persistence.xml ... 50

Listing 10: Historical Data request .. 52

Listing 11: Creation of energy_meter table for testing in CQL utility 57

Listing 12: Creation of energy_meter table for testing in MySQL 58

 X

ACRONYMS

IT Information Technology

IoT Internet of Things

NoSQL Not Only SQL

BI Business Intelligence

EDW Enterprise Data Warehouse

RDBMS Relational Database Management System

SQL Structured Query Language

KPI Key Performance Indicator

API Application Programming Interface

CEP Complex Event Processing

WS Web Service

OSGi Open Services Gateway Initiative

ESB Enterprise Service Bus

EnMS Energy Management System

QoS Quality of Service

ACID Atomicity, Consistency, Isolation, and Durability

CAP Consistency Availiablity Partition

DBMS Database Management System

CQL Cassandra Query Language

SOA Service Oriented Architecture

WSDL Web Service Description Language

UDDI Universal Description, Discovery and Integration

XML eXtended Markup Language

XSD XML Schema Definition

SOAP Simple Object Access Protocol

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

URI Unique Resource Identificator

JSON JavaScript Object Notation

EPL Event Processing Language

POJO Plain Old Java Object

JPA Java Persistence API

JPQL Java Persistence Query Language

DAO Data Access Object

IoC Inversion of Control

 XI

CRUD Create, Update and Delete

JAR Java Archive

HMI Human-Machine Interface

RMS Root Mean Square

CAMX Computer Aided Manufacturing using XML

LAN Local Area Network

 1

1. INTRODUCTION

Manufacturing has been a driving force for the growth of world economy for the last

three centuries. Technical developments in manufacturing industry do not only affect

growth of productivity and innovations, but also face a need to reduce energy

consumption and carbon footprint [1]. Nowadays, manufacturing organizations

consume one third of the world’s energy. Due to this fact, authorities have realized the

need to invest into improvement of energy management solutions.

According to report “Intelligent Manufacturing: targeting better energy efficiency”

[2], the most common way to reduce the energy consumption in factories is installation

of energy efficient lighting, conditioning and heating systems. However, the future of

efficient energy consumption lies in an area of software development. It can be

explained by the fact, that monitoring and control of energy consumption is crucial for

effective energy management. It can only be achieved by development of software

applications, which could collect all energy related information from the facility and

analyze it. Therefore, advanced methods of processing and managing of energy data

carry huge opportunities for improving the energy management in manufacturing

facilities.

1.1. Background

Starting from the beginning of 21
st
 century the amount of digital data started to

increase rapidly as Web Technologies have been developing. The term Big Data

emerged by the middle of 2000s when the major IT companies, including Google,

Yahoo! and Amazon had to find solutions to deal with enormous amount of Web data

arriving at very high speed [3]. According to reports world-wide, almost 90% of world’s

data has been generated in the past 2 years, and it is predicted that by the year 2025 the

amount of data in the Internet will surpass the brain capacity of whole planet’s

population [4].

Such a dramatic growth of digital data is directly connected with the effect of

phenomena called “Internet of Things” (IoT), which is nowadays one of the most

important enablers of modern industrial development [5]. Appearance on global market

of cheap and affordable storage systems, sensors and various communication devices

has also led to the dramatic increase of digital data [6].

The concept of Big Data includes size of data and technologies needed to

effectively process it and present its structure. Emergence of Big Data has resulted in a

shift from traditional relational data management approaches to constantly developing

 2

new data management strategies with NoSQL (Not Only SQL) platforms at their core.

With these data management strategies it becomes possible to transform information

from different independent sources (human-sourced, process-mediated and machine-

generated information) into extensive resource of business information. In other words,

Big Data management systems allow to get rid of different informational contexts and

provide a universal information sphere, where every aspect of physical world and every

event occurred in it can be captured and recorded [3]. The most important values

brought by Big Data to a business include transparency of data for interested parties,

deep level of detail for all available information, possibilities to perform advanced

analytics, and opportunity to develop innovative and efficient services [7].

In manufacturing facilities sensors, actuators and controllers are generating vast

amounts of real-time data, covering all processes and operations on-going on the factory

floor, and which needs to be collected, processed, stored and analyzed in order to have

improved process control and decision making.

This problem can be solved with the help of Big Data solutions based on

technologies, which emerged in the past couple years, mainly built on open-source

project of Apache called Hadoop, which is intended for reliable and scalable distributed

computing [8]. Google has also invested a lot of resources in development of

MapReduce technology for parallel processing of large data sets. Moreover, new

technologies arise in the IT community, which are intended for the Big Data handling,

including advanced Business Intelligence (BI), cloud computing, complex event

processing and NoSQL databases [9]. NoSQL systems allow eliminating a need to have

a fixed structure of the data and making it possible to scale out databases when the

amount of data grows. In other words, NoSQL databases are capable of storing all

incoming unstructured data independently and can be flexibly extended with the

increase of data flow. Also, complex event processing enables to extract valuable

information from the data on a real-time as data enters the system, based on complex

patterns and conditions.

However, it is very important to understand that adopting Big Data to the

manufacturing facility information system requires huge changes in infrastructure and

data handling principles. Traditional Enterprise Data Warehouse (EDW) systems, which

are currently widely used, are based on Relation Database Management Systems

(RDBMS) with Structured Query Language (SQL) databases at its heart. Traditional

EDW requires having a strongly defined structure for the data, where all categories of

data are connected and related with each other. But traditional EDW is not ready to face

a vast flow of unstructured incoming data, and it is not possible to scale relational

databases. Another factor, making traditional approach ineffective for processing large

amounts of data, is transactional nature of RDBMS, where database operations are

optimized for processing information which needs to be always consistent. Same time,

data arriving from smart meters, sensors, actuators and controllers is a real-time log

data, which is sent from devices often every second, needs to be stored, processed and

always be available to be requested. Given to these factors, the latest developments in a

 3

warehousing allow neglecting these problems by shifting to NoSQL infrastructures,

where data is collected, organized and analyzed [10]

1.2. Problem Definition

1.2.1. Justification for the work

According to report “Big Data Comes of Age” [3] the access to Big Data in

manufacturing is mainly intended for business analysts, business executives and IT

analysts. This means that usage of Big Data in manufacturing organizations is focused

on the enterprise level functions, where responsible parties are directly interested in

improving production rates, quality control and incomes, while area of energy

management is not considered as a use case of Big Data handling. Moreover,

manufacturing industry can be classified as a late adopter of Big Data technologies,

meaning that, comparing to other industries, like media, finance and leisure, is Big Data

solutions are now being only investigated and planned to be implemented.

Given to the fact, that software development and data processing is a key for

improved energy efficiency in factories, facing Big Data is an important step needed to

be made. Big Data handling carries huge opportunities for getting valuable insights into

energy consumption information, which, with Big Data technologies implemented, can

make a big and real change.

1.2.2. Problem statement

It is important to realize the need of shifting to modern warehouse system, intended

to make use of the Big Data, in manufacturing facilities. Same time it is crucial to

understand that Big Data helps to gain useful information and gives a ground not only

for a better production planning, decision making, but also enables improved

monitoring of energy consumption trends. The main question that needs to be answered

is:

 How information relevant for energy management purposes can be captured,

stored and made transparent in manufacturing facility?

1.3. Work description

The main purpose of this thesis work is to create an infrastructure of information

warehouse, capable of turning large amounts of data, coming from factory shop floor

devices, into valuable information, which allows detecting energy trends and improving

energy consumption patterns. The warehouse infrastructure will consist of a data

acquisition, complex event processing and database management system and services

providing access to all the available data to anyone who might need it. The variety of

 4

different parties, interested in the data, should be taken into consideration, in order to

develop universal and flexible methods for providing the data.

1.3.1. Objectives

1. Develop modular system, which allows to decrease energy consumption and

carbon emissions in manufacturing facilities and provides tools for efficient

energy management

2. Design and implement an information warehouse system capable of capturing

and storing energy related information in manufacturing facility

3. Demonstrate applicability and effectiveness of NoSQL database management

system in manufacturing domain

4. Make energy efficiency information available for interested parties

1.3.2. Methodology

The declared objectives will be achieved in two main steps. First, a review of

academic literature will be conducted, in order to analyze existing solutions for energy

management and relevant technologies. Based on technologies discussed in review, an

infrastructure for information warehouse will be designed and implemented. These two

steps can be divided into several sub-steps, which are described below.

Theoretical review

In order to achieve objectives of the thesis, the most relevant concepts and

technologies need to be selected. The research about existing technologies and already

existing solutions will be held in order to analyze their applicability for manufacturing

domain and most relevant technologies will be selected for implementation.

Methodology for architectural design

In order to complete an implementation, first overall architecture will be defined.

The architecture will follow principles of layered pattern. The main elements of the

information warehouse system are as following: Devices, Application for Data

Processing and Presenting, Database Management System. Devices in the

manufacturing system represent all sensors, energy meters and controllers, which

generate a real-time energy data that needs to be processed by the application.

Interactions between the elements will be described, in order to present the flows of

information.

 5

Database management system deployment

In this step a database management system, which will provide a possibility to

physically store the manufacturing facility data needs to be selected. Based on a

technologies review, the most appropriate database will be selected for implementation.

In order to provide ability for proper functioning of database, a data model will be also

designed.

Application development

Application will be responsible for providing of interface between the

manufacturing system and the database, allowing all incoming data to be stored,

analyzing the data in real-time in order to generate useful and meaningful information in

form of Key Performance Indicators (KPI) for energy management. Also, application

will provide a set of Web Services, which will be used as an Application Programming

Interface (API) to retrieve all required data by responsible personnel. The following

steps are required in order to fulfill requirements for the application.

 Implementation of data endpoint

In order to deliver data from the facility inside of the application, a

communication link between devices and application server will be set by

creating an endpoint inside of the application, which can subscribe to the all

available data in the manufacturing facility

 Implementation of KPI computation

When data is continuously delivered to the application, it becomes available for

processing and analysis. Complex Event Processing (CEP) engine is the central

element of the application. By using even processing rules, the engine is capable

of processing the incoming data and calculating KPIs on-the-fly. CEP engine

will be configured in order to correctly handle incoming messages, and rules

will be defined.

 Development of Data Access layer

Data Access layer is a communication layer between the application and the

database. It maps data inside of the application to the data model of database,

thus providing easy and flexible way to save and retrieve data from the database.

 Development of API

API is intended to provide an access to the data for all interested parties. API

will be implemented in form of Web Services (WS), which allow accessing the

data by different applications, built in any possible programming language.

 Development of KPI definition interface

User interface is needed when personnel, responsible for energy management,

wants to add new or edit current KPIs and rules for their calculation in the

application.

 6

 Integration to OSGi infrastructure

Proposed solution will be also integrated to Enterprise Service Bus (ESB)

messaging system, where it will be accessible inside for other components of

enterprise infrastructure.

1.3.3. Assumptions and limitations

This thesis work has a set of assumptions and limitations that had an effect on a

design and development of information warehouse system.

1) The main use case of the work is energy management, therefore energy related

information is prioritized comparing to the rest of information available inside of

manufacturing facility

2) Structure of raw data is predefined in controllers of manufacturing facility;

therefore it might vary in different vendors. In this work only messages, which

are generated by controllers of implementation test-bed, are considered

3) In order to achieve the best result from implementation of proposed solution, at

least 3-4 database servers are required. However, only one server was available

at the time when this thesis work was done.

1.4. Thesis outline

This thesis is structured as follows: Chapter 2 presents a review of literature

containing technologies and concepts relevant for the thesis work. In Chapter 3 a

methodology approach for implementation of the thesis and used tools and frameworks

will be presented. In Chapter 4 implementation of the thesis is presented in details.

Chapter 5 describes the implementation of proposed solution and presents the results.

Chapter 6 provides a final conclusion of the thesis work.

 7

2. THEORETICAL BACKGROUND

This chapter provides literature and technology review. Current solutions of

information warehouses architecture and energy management in manufacturing domain

are analyzed. Chapter 2.1 focuses on Energy Management concepts, principles and

already existing solutions. Chapter 2.2 provides description of Big Data and overview of

relevant technologies. Database management system technologies are reviewed in

details with focus on NoSQL in Chapter 2.3. Also, two most advanced NoSQL

databases are analyzed and compared in this chapter. Chapter 2.4 is focused on Service

Oriented Architecture and Web Services. Chapter 2.5 provides a review of main

concepts of Complex Event Processing.

2.1. Energy Management

Energy Management can be defined as a set of measures, which are designed and

implemented with a purpose of minimizing of energy consumption. Energy

Management System (EnMS) is concerned with capturing of energy data in order to

provide a basis for decisions regarding energy efficiency [11].

Manufacturing industry consumes 1/3 of world’s energy and emits 1/3 of carbon

dioxide. European Commission has set a target of reducing yearly consumption by 20%

by 2020 [12]. This means that energy management becomes one of the most crucial

tasks in manufacturing and requires a lot of attention. There are examples of companies

in a process industry, which had to reduce or stop their production, when electricity

prices were high [13]. K.Bunse et al. in their research [12] list 3 most important drivers

for introduction of energy efficiency improvements in manufacturing companies (Table

1).

 8

Table 1: Energy Efficiency introduction drivers (adapted from [12])

Driver Comment

Rising energy prices Prices for oil, gas and other fossil fuels are

continuously rising, therefore resulting in

need to reduce consumption, especially in

energy-intensive manufacturing industries

New environment regulations concerning

CO2 emissions

Companies have to reduce energy

consumption, which consequently results

in reduction of carbon dioxide emissions,

in order to be able to face challenges and

costs resulting from CO2 regulations

Shift of customer’s preferences to green

and efficient products

Energy efficiency in manufacturing has a

considerable effect on company’s

competitiveness, as end users treat energy

efficiency in usage of product as one of

the most important criteria in a purchasing

decisions

In other words, energy efficiency has a huge impact not only on the environmental

situation in the world, but also on the economic development and social role of

individual manufacturing companies and industry as a whole. Therefore, main aspects

of energy efficiency in manufacturing can be defined, which are presented on a Table 2.

Table 2: Main aspects of energy efficiency in manufacturing (adapted from

[12])

Economic aspects Environmental aspects Social aspects

Energy costs CO2 emissions Energy-awareness of

customers and workforce

Resource costs Resource scarcity Ensure resource and energy

security for future

generations

Cost internationalization Other emissions Interaction with political

and company stakeholders

Risk of future liability cost Image in society

Resource productivity

According to [14] in order to improve energy efficiency, personnel responsible for

energy management needs to follow a cycle “Plan, Do, Check and Action”, where the

first step includes identifying key energy performance indicators, adhering to rules that

affect management systems, highlighting energy benchmarks, setting energy targets and

designing an efficient energy management platform. Identification of energy factors

 9

gives a comprehensive picture of the energy consumption in facility and possible way to

improve resources management (Figure 1).

Figure 1: Energy factors identification flow (adopted from [14])

Moreover, “planning” step includes data acquisition [11], or in other words

collection and provision of energy information, forming a basis for energy efficient

decisions and actions. Measuring and controlling of energy consumption in

manufacturing facilities is the first step towards energy efficient manufacturing [12].

Energy data in manufacturing industry should be collected on all discrete levels in a

facility with a time intervals ranging from milliseconds to years. However, energy

monitoring and controlling is not enough to provide efficient energy management, as

holistic approach to energy efficiency is needed, meaning that data from all levels of

factory floor and factory building must be correlated and evaluated [15].

2.1.1. Key Performance Indicators

KPI allows getting a relevant for improvement of energy management information

out of raw data, coming from devices in a manufacturing facility. These indicators

usually show the amount of benefit derived from particular energy use and can be

compared with both internal and external targets. Table 3 demonstrates a classification

of energy performance indicators, described in research of [15].

Table 3: Energy Performance Indicators classification

Indicators of inefficiencies in facility’s energy usage (consumption profiles)

Indicators used to catalyze energy efficiency improvements and tracking of changes

Indicators projecting energy usage onto monetary values

Indicators intended for improvement of input, output and measurement points

understanding

 10

 A lot of research work has been conducted in the area of energy KPI definition and

analysis. Table 4 summarizes energy KPIs that have been defined and analyzed in

literature [12, 15, 16].

Table 4: Energy KPIs

Key Performance

Indicator

Description

Unit Energy Consumption Energy consumption to produce one unit of economic

output (product)

Specific Energy

Consumption

Total energy consumption in facility with value-added

and non-value-added operations

Process Energy

Consumption

Energy consumption for process

Significant Energy User

Consumption

Energy Consumption of most energy-demanding

production units in facility

Energy Consumption Per

Product

Total energy consumption of producing one product by

facility

Power Consumption Single or average power used by process

Energy Cost Projection of consumed energy onto monetary value

Specific Energy Cost Energy cost per one product

Energy Losses Energy consumption of non-value-added operations

Energy Efficiency Percentage of energy input to process against output of

energy

Final Energy Efficiency

Improvement

Energy savings per year

Furthermore, temporal resolution of KPIs is an important characteristic, enabling

holistic energy management, which can provide long-term, medium-term and short-term

trends of energy consumption (Table 5) [17].

Table 5: Temporal classification of energy KPIs

Time resolution Comments

Year Long-term energy consumption trends

Month Allows to detect seasonal variations

Week Medium-term trends. Helps to identify baseline energy

demand

Day Identifies energy consumption variations during days if week

Hour Identifies daily trends and behavior of energy consumption,

allows to optimize production schedule

 11

2.1.2. State of the art in energy management

Problem of energy management in industrial and manufacturing domain has been

addressed in many research works in past years. Common structure and concepts can be

noticed in energy management systems proposed in various sources. Particularly, the

most fundamental functionality of energy management system is collection and storing

of data from field level devices. Workflow of energy management system for chemical

manufacturing, designed by Drumm et al. in [18], consists of two steps – Energy

Efficiency Check and Energy Efficiency Management (Figure 2), where at the first step

all energy-related data, containing information about total energy consumption and

energy costs, is collected, analyzed and stored in database. Vikhorev et al. in [15] also

implements a real-time data acquisition as core functionality of energy management

framework. Same time in [19] data collection step is only performed after energy

profiles, energy indicators and relevant devices are identified and selected.

Figure 2: Workflow for Energy Efficiency management (adopted from [18])

The second important functionality of reviewed energy management systems

includes static [19] and dynamic [15, 18] analysis of collected data with a purpose of

obtaining KPIs, charts and metrics, which need to be monitored and compared with

energy efficiency targets. The most wide-spread approach for real-time calculation of

KPIs uses complex event processing on a stream of events incoming from devices, as it

is described in [15].

The final step provides users of energy management system with feedback in a

form of continuous monitoring of energy KPIs, decision support dashboards and

visualization, in order to optimize energy consumption and improve energy efficiency.

In [18] a reporting tool is implemented, which presents relevant energy consumption

and energy processes together with monitoring, which can be scaled to different time

resolution starting from daily to annual. Architecture of the proposed software tool is

illustrated on a Figure 3.

 12

Figure 3: SCTRUCTese Integrated efficiency management tool (adopted from

[18])

According to these fundamental steps, universal model of energy management

system can be created, as illustrated on a Figure 4.

Data Collection KPI calculation
Online monitoring,

reporting and visualization

Figure 4: Unified energy management system workflow

However, with a broad amount of sources of data in manufacturing facilities,

processing and monitoring of energy-related information faces a problem of common

link and integration between all available systems. May et al. in [17], as part of

European project PLANTCockpit, addresses a problem of integration of information

from various vendors inside of manufacturing systems for building an enhanced energy

management system. Cannata et al. in [20] discusses benefits of cross-layer architecture

for energy efficiency, as it allows performing context-aware control and decoupling

business processes.

Energy management in manufacturing has been a target of many research works in

the past few years, which all share similar architectural approach, concerned with

utilizing of energy data by collecting and transforming it to valuable KPIs.

 13

2.2. Big Data

As it was stated in section 2.1, energy-related information from manufacturing

facility is required for improvement of energy efficiency. Also, it was discussed in

Introduction that amount of information coming from various devices on factory shop

floor is very large, and often is referred as Big Data.

There are many different interpretations and definitions of Big Data available in

literature. In [9] Big Data is defined as

“Data sets that grow very large or fast, so that they are difficult to handle using

traditional technology”,

In TechAmerica Foundation’s report [21] more specific definition is offered:

“Big Data is a term describing large volumes of high velocity, complex and variable

data, which requires advanced techniques and technologies to enable the capture,

storage, distribution, management and analysis of information”.

Big DataVariety

Velocity

Veracity

Value Variability

Volume

Figure 5: 6 Vs of Big Data

Big Data is traditionally characterized with 3 “V-words” : variety, velocity and

volume [10, 21, 22], and even more characteristics are being introduced: veracity [23],

[24, 25], value [10, 25], variability [26, 27] (Figure 5). Summary of these attributes is

presented on a Table 6.

 14

Table 6: Description of Big Data attributes

Attribute Description

Volume Represents amount of data. Approximately 2.5 Zettabytes

(1ZB=10
21

bytes=1000 Exabyte=1 billion terabytes [28]) of data were

generated world-wide in 2012. Figure 6 shows estimation of data growth

until 2020.

Velocity Speed and frequency, with which data is being produced, changed and

received. Velocity results in latency - a delay between a moment when

data is created or saved and a moment when it is available.

Variety Represents incredible amount of information of different types

(structured, semi-structured, unstructured), coming from various sources.

Results in a crucial requirement for database management systems and

data warehouses to be able to dynamically adapt to various changing data

formats by being capable of scaling

Veracity Describes a level of reliability and trustworthy of an incoming data.

Value Identifies which value data carries and how this value can be extracted for

further analysis.

Variability Assumes that data flow is inconsistent and may have varying semantics.

Figure 6: Data growth estimation (adopted from [29])

In order to better understand the nature of Big Data, it is important to thoroughly

classify its sources and their relations. As defined in [3] sources of Big Data can be

divided into 3 groups: human-sources, process-mediated and machine-generated data,

which are described in Table 7.

 15

Table 7: Three types of Big Data

Type of data Description

Human-sourced Subjective expression of human’s experience. It is a biggest

source of unstructured data that is often unreliable, thus cannot

be a basis for critical decisions in business

Process-mediated Traditional highly structured data from business and enterprise

organizations. Characterized by transactions, relationships and

well-defined contexts

Machine-generated Structured data from smart devices, generated with a very high

frequency, so that traditional relational database management

systems become inappropriate for handling of it

The use of Big Data was first implemented by media corporations, which were

innovators in sphere of Big Data. However, the importance of Big Data handling was

realized by organizations from finance and industrial spheres, which became early

adopters of the new technologies, followed by major implementations in utilities

infrastructures and public services. Manufacturing organizations belong to the wave of

latest organizations, which started to use Big Data [3].

2.2.1. Big Data technologies overview

Various technologies intended for benefiting from Big Data are collected in [7],

including could computing, NoSQL databases, distributed systems, MapReduce and

complex event processing. Cloud computing, which is becoming wide-spread, is

defined in [30] as “Set of network enabled services, providing scalable, QoS

guaranteed, normally personalized, inexpensive computing infrastructure on demand,

which could be accessed in a simple and pervasive way.” Cloud computing allows to

perform effective and scalable data analytics as cloud services provide organizations

with already configured data management infrastructure [31]. The major providers of

cloud computing are Amazon [32] and Google [33]. Apache Hadoop Distributed File

System with its implementation of MapReduce framework, which enables parallel

processing of huge amounts data, has already became a standard for Big Data

processing [31].

2.3. Database management systems

The main goal of this thesis work is an implementation of information warehouse

for the manufacturing facility; therefore an issue of data storage is a cornerstone of the

work. For the long time RDBMS were dominating in an area of data storage solutions.

RDBMS are based on ACID (Atomicity, Consistency, Isolation, and Durability)

 16

concept, which guarantees that database transactions are processed reliably. Traditional

databases have fixed table structures, where complex queries with joins can be used to

fetch data from multiple tables in database [34]. One of the limitations of relational

databases is lack of capability to scale in response to changing requirements [31]. This

limitation includes inability to have a flexible data model, capable of processing

heterogeneous and unstructured data [35], and complexity of horizontal scaling as the

amount of data grows.

2.3.1. NoSQL

NoSQL databases have emerged in the beginning of 2000s as an opposition to

traditional relational SQL databases, and currently are widely used in use cases when

relational databases cannot handle huge amounts of data. NoSQL databases eliminate

one of the biggest drawbacks of relational databases – inability to scale horizontally

within the growth of demands and data quantities [31]. The first developments of

distributed NoSQL databases have been conducted within Google (BigTable [36]) and

Amazon (Dynamo [37]), where developers managed to provide distributed databases

with high availability, applicability, scalability and performance. After that various

open-source databases were developed by big web companies, including LinkedIn,

Facebook and Twitter.

In book “Principles of Distributed Database Systems” [38] distributed database is

defined as “collection of multiple, logically interrelated databases distributed over a

computer network”. Distributed database is often referred as a cluster of nodes, where

individual node is a server running separate independent database instance. A CAP

theorem, defined by Eric Brewer, says that distributed computer system cannot provide

simultaneously the following 3 guarantees and have acceptable latency [39, 40]:

 Consistency (all nodes see same data at same time)

 Availability (every request receives a response)

 Partition tolerance (system can operate despite of failure of its part),

but it is possible to provide only 2 of them at once.

Therefore, it means that it is possible to create distributed database, which will be

consistent and available, consistent and partition tolerant or available and partition

tolerant. Thus, it is very important to understand the consequences of each of the

guarantee. Having partition tolerance as an essential requirement for distributed system

to operate, database can provide also either availability or consistency. According to the

requirements for applications working with data, data should be transparent and always

available, and thus availability should be preferred. However, while it is impossible to

provide a consistency for distributed system, it is possible to provide eventual

consistency [41]. Eventual consistency guarantees that in a sufficiently long time period

when no changes were made to data in database, it is expected that all nodes will have

an updated data, thus they will be consistent [42].

 17

NoSQL DBMS are generally classified in literature to 4 types, according to their

data modelling principles, which are described in details in [43] and summarized in

Table 8.

Table 8: NoSQL databases classification

Type of database Description

Key-value This database is hash table containing columns of key-value pairs,

where value can have a nested structure. Suitable for web

applications, where unique user IDs and sessions need to be saved

and requested.

Document Data is saved as document objects, which can have very

complicated and nested structure, and no data model definition

needed. Perfect fit for applications, where event logs or data for

analytics needs to be stored.

Column-family Data is stored as rows, which are identified by row key,

containing columns with data relevant to the key. Very effective

for event logging and content management application.

Graph Stores entities and relationships between them in form of graph. It

can be used to follow and trace bidirectional connections between

entities. Main area of application is social networking and

location-based services.

The online rating of DBMS [44] shows that the most wide-spread NoSQL databases

at the moment when this thesis was written are MongoDB and Cassandra (the list of all

available databases is presented in Appendix 1). Their architecture and main

characteristics will be discussed next.

2.3.2. MongoDB

Documentation of MongoDB is available online [45], but it is important to discuss

the basic architectural principles. MongoDB represents a document store class of

databases, meaning that it stores data in types, corresponding to native data types of

various programming languages, where no structure of data needs to be defined.

MongoDB provides high availability by using replication using master-slave

architecture, and can be horizontally scaled using sharding.

Replication

In MongoDB replication is achieved according to the principle of master-slave

architecture, where master database receives all write operations and sends data set to

secondary (slave) databases in order to provide data redundancy. The concept of

replication is depicted on a Figure 7.

 18

Figure 7: Replication in MongoDB (adopted from [45])

However, while failure of slave node in master-slave architecture doesn’t have any

considerable impact on the overall system’s performance, a failure of master node

always has a serious effect on a performance of whole system [46].

Data model

Data in MongoDB doesn’t need to have a defined schema, unlike in SQL databases,

due to the fact that it is saved as documents composed of fields and value pairs like in

example on Listing 1.

 {

cell_id:1,

phase: “A”,

timestamp: 1389349483,

energy: 23.1,

power: 10

 }

Listing 1: Document structure

Documents are stored in collections and inside of single collection documents can

have any structure. This approach provides high flexibility for data storage and retrieval.

Storing data

Data is stored in memory-mapped files, which are placed directly by operating

system in memory, meaning that they are mapped to a region of virtual memory. This

allows treating contents of data files as if they are stored in memory, thus data access is

very fast and efficient.

 19

Queries

Queries in MongoDB are performed on a collection of documents and can contain

various search criteria and conditions. The syntax is different from traditional SQL

syntax and can be expressed as following:

db.EnergyMeter.find({cell_id:1,phase:“A”,power:{$lt20}}).sort({

timestamp:1})

In a query above all documents with specified cell, phase and power conditions will

be returned sorted in order of ascending timestamp.

2.3.3. Cassandra

Cassandra’s documentation is available online [47] and has a very comprehensive

description of architecture. Cassandra has been designed with a possibility to handle

large amount of data inside of a cluster of nodes without a single point of failure

(partition tolerance). In order to provide partition tolerance, instead of traditional

master-slave architecture, Cassandra implements peer-to-peer distributed architecture,

where every peer, representing a single node in cluster, is exchanging information

across the cluster every second and stores own share of data. Peer-to-peer

communication is achieved by using protocol called Gossip, which allows nodes to

exchange information about themselves and other nodes every second with up to 3

nodes in cluster. It also allows nodes to learn about the structure of cluster. Due to this

Cassandra can be scaled horizontally by adding new nodes to cluster.

Replication

Replication of data in Cassandra can be flexibly configured, using configuration

parameter called Replication Factor. For instance, if replication factor is 3, a piece of

saved data will be saved on 3 nodes. It allows person who is responsible for database

management to choose required and relevant behavior of database depending on the

requirements to data availability and size of database cluster.

Data model

Cassandra is different from MongoDB, and rest of NoSQL databases, due to the fact

that it needs to have a data model to be defined. What is more, in contrast to all other

databases, data model in Cassandra needs to be designed based on query model, in other

words, basic query use cases have to be determined first [42].

Cassandra uses CQL (Cassandra Query Language), which is an analogue to SQL,

for defining data structures. Cassandra has keyspaces (usually one per application), and

each keyspace has tables with defined columns and relevant data types. Data structure in

tables resembles of SQL data structure, however a big difference is that Cassandra is a

distributed database and data is denormalized.

 20

Every table in Cassandra needs to have a compound primary key that includes

partition key, which defines on which nodes data is stored, and one or more additional

clustering keys, which are responsible for clustering and sorting of data. This approach

allows performing very fast querying of data. Example of a Cassandra table having

compound key, which consists of cell_id (partition key), phase and timestamp

(clustering keys) is presented on a Figure 8.

Cell_id Phase Timestamp Energy Power Temperature … Humidity

1 A 1389349483 23.1 10 30 … 0

1 B 1389339483 24 10 30 … 0

2 A 1389320483 30.5 10 31 … 0

Figure 8: Cassandra table structure example

Storing data

Data storage is organized in a following way: each primary key has an own hash

value; every node is responsible for a data based on hash values, thus data associated

with each primary key is saved on a relevant node. The data inside of node is distributed

to virtual nodes, holding large amount of small partition (hash values) ranges. This

principle is presented on a Figure 9.

Figure 9: Cassandra’s data storage organization (adopted from [47])

Client requests

Cassandra has a very efficient approach for client requests handling that provide one

of the most important benefits – very fast data reads and writes. When a client connects

to cluster to read or write data, the node that client connected to acts as a coordinator

for the user operation. The task of coordinator is to find nodes that are needed to fulfil

user’s operation. For write operations coordinator sends request to all nodes, which

belong to partition range of written key, and waits for response from number of replicas

specified by Consistency level parameter, which defines the amount of nodes that have

to respond with success acknowledgment to coordinator, in order to consider write to be

successful. This sequence is demonstrated on a Figure 10.

 21

Figure 10: Cassandra’s write operation in cluster (adopted from [47])

The Figure 10 demonstrates a situation, when replication factor is configured to be 3

and consistency level ONE. Node number 10 serves as a coordinator for client’s write

request and propagates the data to 3 nodes, responsible for storing it. Node number 7

sends success acknowledgment first, and, according to configured consistency level,

coordinator replies to client with a success message.

In case of read request (Figure 11), coordinator contacts nodes according to

consistency level, by sending request to those nodes, which currently have the fastest

response in cluster. If multiple nodes are queried for data, their responses are compared

in memory, in order to define the most recent version of data, which is then sent back to

client, and at the same time coordinator updates in a background data in other nodes, in

case if they had different data comparing to final response. This principle is

demonstrated on a Figure 11.

Figure 11: Cassandra’s read operation in cluster (adopted from [47])

Client sends a read request to node number 10, which serves as a coordinator, which

directs request to replica nodes 7 and 1 with highest performance rate. When result from

them is received, it is compared to identify which node has the valid information, and

this data (from node 7) is returned to client. Same time coordinator updates data in

nodes 1 and 2 to be same as it was in node number 7.

The concept of client requests is very crucial to understand, because it clearly

demonstrates one of the biggest advantages that Cassandra has over other NoSQL

 22

databases: high availability and replication of data. It is guaranteed that client will get

the latest and truthful information as a response to request. Moreover, even if some of

the nodes are down, data will be still available through the other independent replica

nodes.

Data queries

Queries in Cassandra have several limitations and cannot be as flexible as queries in

MongoDB. Queries are done using CQL with the same syntax as SQL:

SELECT energy, power from EnergyMeter where cell_id=1 and phase=”A”

But queries are restricted in the way that conditions can be set only on a compound

key in order from partition key to last clustering key. Therefore, it would be impossible

to select all data for all cells and phase A. Instead it is possible to select all data for

specific cell and phase for all the time or for specific time range.

2.3.4. Comparison of MongoDB and Cassandra

Table 9 presents the most crucial technical and architectural specifications of both

databases for the purpose of comparing.

Table 9: Comparison of MongoDB and Cassandra

Feature MongoDB Cassandra

Replication Master-slave strategy Independent nodes, sharing

same data

Scaling Vertical scaling and

horizontal scaling

(achieved by sharding)

Horizontal scaling by

adding new nodes to

cluster, no extra

configuration needed

Data model Documents. No data model

definition

Tables with compound

keys. Data model needs to

be defined

Writes Fast, but can be locked in

case of concurrent reads

Fast, constant-time with no

locking

Reads Very fast Very fast

Queries Flexible, allowed on any

attribute inside of

document

Restricted, allowed on

compound key, weak

support of secondary

indexes

 23

The Table 9 demonstrates the main differences between two databases and helps to

make a conclusion that MongoDB is more suitable for cases, when scaling is not critical

issue and incoming data can change within a time. Cassandra is the best fit for situations

when system needs to be ultimately scalable and always available, which is achieved by

putting a restriction of necessity to have a fixed data model. According to comparison

research for sensor applications, conducted in [34], Cassandra is optimal for large

critical applications, while MongoDB is better for small or medium-sized applications.

2.3.5. State of the art in NoSQL databases

There are very few research works and projects that have been done using NoSQL

databases in a manufacturing domain, which also proves the fact, stated in chapter 2.2,

that manufacturing organizations belong to group of late adopters of Big Data.

Thantriwatte and Kepetiyagama in [48] developed NoSQL query processing system

for Wireless ad-hoc and sensor networks and compared them with already implemented

SQL solution. Energy problems can often occur in sensor networks resulting with a

failure of sensor nodes, thus data can be lost and ACID properties cannot be guaranteed.

Based on this, and also due to the fact that NoSQL provides good performance and

scalability, authors decided to implement NoSQL system. They have shown that for

small datasets performance of SQL and NoSQL queries in terms of execution time is

same, but for huge data sets NoSQL is almost twice faster (Figure 12). The main reason

for this difference is a slow processing time of SQL query.

Figure 12: Comparison of NoSQL and SQL query performance (adopted from

[48])

Yamamoto et al. in [49] implemented platform, called Scallops4SC (SCALable

Logging Platform for Smart City), for storing and processing large-scale house data,

where NoSQL database Hbase was used for log data, and MySQL for configuration

data. This platform demonstrates a solution for handling large amount of machine-

generated data (log data, which is collected periodically from different appliances and

sensors in several houses) with NoSQL technology.

 24

The log data is stored as key-value pairs, so that no schema is needed, where key

contains information about date, time, house id, log type and device id (Figure 13).

Figure 13: Key-value pairs for storing data (adopted from [49])

The rest of available research works about NoSQL are mainly concerned with

performance analysis and comparison of different database vendors. Structured

heterogeneous log analysis operations are evaluated for Cassandra, MongoDB,

Membase, Neo4j and OrientDb in [50]; in-memory index structure developed in [51] is

compared with other indexes implemented in NoSQL databases.

2.4. Service Oriented Architecture

As it was discussed in [20], cross-layer architecture can have huge effect on

development of energy management system. Nowadays, Service Oriented Architecture

(SOA) is a de-facto standard for enterprise organizations architectural models.

Thomas Erl gives a general definition of SOA in his book [52] as

“An architectural model that aims to enhance the efficiency, agility and productivity

of an enterprise by positioning services as the primary means through which solution

logics is represented”.

A more specific definition is available in book [53], where SOA is defined as

“Architecture that constitutes a distributed computing environment in which

applications call functionality from other application either locally or remotely over an

internal network of an IP-network in a loosely-coupled way”.

In other words, SOA approach allows dividing system functionality into various

independent services, which are capable of communicating with each other at any time.

SOA has 3 components, as described in [54]: consumer, service and service broker.

Services provide functions to consumers, which are defined in WSDL (Web Service

Description Language) [55], and consumer is a software application which uses service

through the defined service interface. Service broker is used for providing a registry of

existing and known services, based on UDDI (Universal Description, Discovery and

Integration) protocol, so that consumers can easily get required for them services. The

interaction between these 3 components is presented on a Figure 14.

 25

Figure 14: Interaction between components of SOA (adopted from [54])

The main characteristics of SOA, which are frequently mentioned in literature are

collected in [56] and presented in a Table 10.

Table 10: Characteristics of SOA (adapted from [56])

Characteristic Comment

Autonomy Services are independent and structurally decoupled

Interoperability Provision of interface describing available services and

interaction patterns

Platform independence Services are described with standard eXtended Markup

Language (XML) and WSDL formats, which are universal

and can be processed by any operating system, computer

architecture, programming language or technology

Encapsulation Services hide unnecessary details of their functionalities by

exposing a user defined interface

Availability and

Discovery

Services can be published for private or public use, and can

be found in relevant registries

The most important benefit of SOA adoption in manufacturing is possibility to

create a distributed system with loosely-coupled discrete components, which can be

recomposed, reconstructed and reused to create new applications [57].

The core of SOA is Web Services, which give an opportunity for easier deployment

of distributed system, as they can be accessed and invoked through Internet and can be

used at any time [53]. W3C [58] defines Web Service as:

“A software system, designed to support interoperable machine-to-machine

interaction over network. Other systems interact with Web Service in a manner

prescribed by its description using SOAP messages, typically conveyed using HTTP and

XML serialization in conjunction with other Web-related standards.”

 26

Web Services are built upon several standards and protocols: WSDL, XML, XSD

(XML Schema Definition), SOAP (Simple Object Access Protocol), UDDI and HTTP

(Hypertext Transfer Protocol) [53]. There are two types of Web Services [59]:

1. SOAP Web Services

2. Representational State Transfer (REST) services

2.4.1. SOAP Web Services

SOAP Web Services are based on SOAP protocol, which defines message

architecture and format using XML language. SOAP messages have top element

Envelope, which contains of two elements: header and body, described in Table 11.

Table 11: SOAP envelope contents

Element Contents

Header

Message-layer infrastructure information used

for routing, security and configuration of

transactions, security and reliability.

Body Payload of message

With the help of SOAP engines, clients, who consume WS, can marshal and

unmarshal (translating application’s native language to and from SOAP protocol [60])

SOAP message to perform further required processing of data. Table 12 presents

advantages and disadvantages of using SOAP Web Services [61].

Table 12: Advantages and disadvantages of SOAP Web Services

Advantages Disadvantages

Protocol transparency and independence Possibility of abstraction leakage

Service interface provides abstraction

from communication and implementation

protocols

Can be hard to define correct data model,

that will support interoperability

Supports asynchronous services

Process of marshalling and unmarshalling (or, serialization and deserialization) is

crucial for understanding of implementation abstraction concept. They are performed on

a server-side of each service, when SOAP request or response is received, in order to

translate XML message to native language objects. This process is presented on a

Figure 15.

 27

Service A Serialization HTTP Deserialization Service B

Service BService A Deserialization HTTP Serialization

Java
code

Request

SOAP
(XML)

Request Request Request

SOAP
(XML)

.NET
code

.NET
code

SOAP
(XML)

SOAP
(XML)

Java
code

Response Response Response Response

Figure 15: Serialization of XML messages (adapted from [60])

2.4.2. REST web services

REST Web Services are designed to have a tighter integration with HTTP protocol,

and are more lightweight comparing to SOAP WS [59]. RESTful WS provide for

clients a set of resources, which are identified with an URI (Uniform Resource

Identifier) and can be accessed through Internet. Resources are manipulated using

typical HTTP operations PUT, GET, POST and DELETE, responsible for creating new

resources, retrieving current state of resources, transferring new states to resources

(updating) and removing resource, respectively. Usually, JSON (JavaScript Object

Notation) is a preferred format for messages in REST, as it is lightweight and has

optimal performance. Table 13 presents advantages and disadvantages of REST services

[61].

Table 13: Advantages and disadvantages of REST Web Services

Advantages Disadvantages

Simple and lightweight Connections might be blocked by firewalls

Built with minimal effort Can be hard to define correct data model

that will support interoperability

Discovered through Web

Can be scaled using caching, clustering

and load balancing

2.4.3. SOA in manufacturing

A lot of research has been conducted for development of SOA in manufacturing in

the last few years. The main focus of researches is directed towards design of layer

architecture in enterprise and integration of applications from different levels of

architecture. Adoption of SOA and Web Services allows achieving loose coupling,

where services can be easily reconfigured and flexibly combined like it is shown in [62]

and [63]. Cucinotta et al. in [64] use SOA to fulfill need for development and

 28

deployment of new hardware and software solutions supporting real-time systems, in

order to satisfy increasing demand for efficiency of manufacturing. They move further

by proposing an infrastructure with Plug & Play services, which hide complexity of

used devices, and allows having reconfigurable manufacturing system.

Enterprise Service Bus is another technology that comes together with SOA, which

is responsible for orchestration, integration and management of services at the runtime.

It is based on OSGi framework, which implements SOA concepts for dynamic

discovery of components, developed in Java, in order to create real-time, reconfigurable

and dynamic application. The main functional principles of OSGi framework are

described in deeper details in [79]. Functionalities and design approach of ESB are

described in [65], and [62] has it in a core of proposed architecture. Chen et al. in [66]

developed an architecture that uses several service buses at the same time in order to

have a smoother integration between services of collaborative manufacturing system.

It can be clearly seen that SOA proves to be an efficient architectural approach,

which is actively adopted by enterprises in manufacturing and industry.

2.5. Complex Event Processing

As it was already mentioned in Section 2.1.2, the second important step in energy

management system is calculation of KPIs, which is usually completed with help of

Complex Event Processing.

CEP has become one of the most common and useful tools for processing big

amounts of data in a real-time. Generally, CEP could be described as a set of tools and

techniques, intended for analyzing and handling real-time data in distributed

information systems [16]. The main application areas for CEP include business process

management and automation, finance, network and application monitoring and sensor

network applications [67]. CEP has been heavily used in many projects, where real-time

data management is a crucial requirement, for instance in sensor networks [68], for

RFID data processing [69], as well as for energy efficient asset management in

manufacturing facility [16].

A classification of event processing applications is proposed in [70] with 5

categories, described in a Table 14.

 29

Table 14: Classification of CEP applications

Application Description

Observation Monitoring of systems and producing alerts in case

of error or exceptional behavior

Information dissemination Granulazing of information for a delivery to specific

interested party

Dynamic operational behavior Reacting to incoming events by providing fast,

reliable and efficient decisions

Active diagnostics Finding common attributes of problem and diagnose

its reasons

Predictive processing Prediction and prevention of undesired events

The operational principle of CEP is presented on Figure 16. Event producers are

devices, which generate real-time events, streaming this data to an engine of CEP,

where processing of the data is performed. Processed data then moves upstream to event

consumers – applications and database management systems that use the data.

Figure 16: Main concepts of event processing (adopted from [70])

Complex event detection is performed in 4 steps, as described in [71]:

1. Primitive events are extracted from large data

2. Events are correlated or aggregated according to specific rules to create a new

business event

3. Primitive and composite events are processed to extract their relationships

4. Response is sent to subscribers

Finally, CEP is used as an effective tool for processing large amounts of incoming

data with a various complex structures according to complex rules.

 30

3. METHODOLOGY

Required technologies for implementation of information warehouse and

architectural approach are described in this section.

3.1. System Architecture

Layered architecture is used for development of an information warehouse system.

In this architecture application consists of various layers, where each layer provides

certain services for higher level without knowing specifics of a lower layer.

According to layered architecture principles, designed system’s architecture

consists of 6 layers:

 Physical layer, which is represented by all factory shop floor devices

 Network layer, which is responsible for routing data from devices to the

application server. Event hub first receives incoming devices data and forwards

it to subscribers as SOAP message. Application has an endpoint, which is

responsible for receiving messages from event hub and sending them to be

processed by application.

 Application layer performs data aggregation and processing by means of CEP

engine

 Data layer, where data from application layer is stored in a database cluster

 Service layer provides various services for accessing data by users

 User Access layer represents all users, application and interfaces which use

application services for energy management.

The described architecture is presented on Figure 17. Technologies and tools used

to implement functionalities of components in each layer are described next.

 31

Devices

Event Hub

HTTP

Jetty Endpoint

HTTP SOAP

Physical Layer

Network Layer

CEP ENGINE

XML

TOMCAT

Application Layer

Spring container

DAO

Data Layer

Cassandra Cluster

Service Layer

SOAP Services

Spring WS

RESTful Services

PedestalDAO Cassaforte

SOAP JSON

User Access Layer

KPI
Definition
Interface

Web
Applications

Third Party
Applications

Dashboards

Figure 17: Layered architecture of designed system

 32

3.2. Tools and Frameworks

For the implementation of functionalities of each layer an open-source tools and

frameworks were selected.

3.2.1. Event Hub

Event Hub is a Java application, which subscribes for messages from all available

devices and routes them to other applications, acting as a gate through which all data is

passed. Event Hub is running as Apache Camel Jetty HTTP endpoint, which consumes

and produces HTTP requests, forwarding messages to other registered HTTP endpoints.

3.2.2. Cassandra

As it was discussed in the technology review, a NoSQL DBMS will be used in this

thesis work for storing the data. However, it is important to make a choice from the two

considered major database solutions, Cassandra and MongoDB, which will be the most

beneficial. The selection is done based on a requirement to have a data available all the

time, and to be able to scale with the increasing demands. According to it, as it was

discussed in chapter 2, Cassandra is the best fit. Having only well-structured data

coming from the devices in manufacturing facility, it is possible to focus on data

availability and provide interfaces for fast and efficient access to data. For the

implementation a version 1.2.10 is used.

3.2.3. Esper

Esper engine is using SQL-like syntax for making queries on data; however, instead

of querying static data from database, it stores queries and allows incoming real-time

data to run through queries, thus triggering data analysis when it matches configured

conditions [72]. With the help of query language of Esper, Event Processing Language

(EPL), it is possible to derive and aggregate information from event streams, perform

filtering, pattern matching and to group the data into various views, based on time

window or event stream size. Events in Esper can be represented by Plain Old Java

Objects (POJO), Java Maps, Object arrays and XML, which gives a flexibility of

configuration for any specific case. The latest available version (4.9) at the time, when

thesis was written, is used in implementation.

3.2.4. Kundera

Kundera is an open-source object-datastore mapping library, developed by Impetus

[73], and intended for cross-datastore usage (in the moment of writing of thesis supports

Cassandra, Hbase, MongoDB, Neo4J and relational databases). Kundera is based on

JPA 2.0 (Java Persistence API) and allows usage of JPQL (Java Persistence Query

Language) for fetching data from database. Kundera provides a very high abstraction

 33

from database technologies, where switching between different databases can be done

by changing one configuration file. Data Access layer uses Entities, also called Data

Access Objects (DAO), which are POJOs containing specific annotations, in order to

map data inside of them to database tables. The mapping rules for annotations and

database data structures are presented in Table 15. The version 2.9 of Kundera is used in

implementation.

Table 15: Annotations in Kundera (adapted from [73])

Annotation Cassandra

@Table CQL Table

@Column Column

@Embeddable,@EmbeddedId Compound Key

3.2.5. Spring Framework

Spring framework is a platform intended for development of enterprise software.

The main concept of Spring is based on container and component model (Figure 18) and

Inversion of Control (IoC) – all objects (transactions, database access, web

applications), which in terms of Spring are called beans, are built on top of container,

which can inject dependencies needed for applications in order to configure and

integrate infrastructure [74]. Main advantages of using Spring include simplicity, which

is achieved by usage of lightweight POJOs, testability and loose coupling, achieved

through dependency injections, of applications [75].

Spring Container

Dependency

Component

Figure 18: Spring Framework’s concept (adapted from [74])

Spring is configured to manage specific beans in an application context with help of

XML configuration files. In this thesis Spring will be used for configuration of

application server, injection of Entity Managers, which are needed for DAO, and

provision of SOAP Web Services. Version 3.2 of Spring Framework is used in this

thesis.

3.2.6. Pedestal

Pedestal is a web application framework and used for development of REST web

services, which are written in a functional language Clojure [76]. Clojure, being a LISP

 34

programming language, allows performing fast operations over large sets of data, as it is

presented in form of collections. For database access a Cassaforte library is used [77]. A

version 0.0.1 of Pedestal is used in implementation.

3.2.7. Node.js

KPI definition user interface is developed with an open-source framework for

JavaScript server-side programming called Node.js [78]. Node.js uses event-driven

model for handling user requests, therefore providing possibility to create efficient real-

time and concurrent web applications. For the implementation a version 0.9.12 is used.

3.2.8. Apache Service Mix

Apache Service Mix [79] is an open source ESB, which encompasses SOA and

OSGi functionalities. Service Mix uses messages in order to communicate and exchange

information between bundles, thus providing modularity for SOA. Bundles can be

flexibly combined for composing various complex services, updated, reconfigured and

reloaded during the runtime of application. The version 4.5.3 of Service Mix is used in

this thesis.

 35

4. IMPLEMENTATION

4.1. Overall system architecture

Proposed system contains of 3 components: controllers installed in manufacturing

line, application server and database server. Application server contains an application,

which received data, processes it, stores to database and provides services to access it.

Database server is used for storing all generated raw data and calculated KPIs.

The real-time data from the manufacturing facility arrives to the application server

on the available HTTP endpoint, implemented with Jetty. Upon the arrival to the

endpoint, data is directed to CEP engine, implemented with Esper, where data is

processed according to defined EPL rules. All processed data from CEP engine (raw

data and KPIs) is then saved to the Cassandra database, deployed on Linux server with

Ubuntu operating system, through Data Access Layer. Application server has SOAP

Web Services published on the Internet, which provides interfaces for accessing data by

users. The overall system architecture is presented on a Figure 19.

Database
Cassandra

Linux Server

Sensors
Actuators

Controllers

Application Server (Tomcat).
Windows

Data Endpoint
(Jetty)

Real-time data

CEP (Esper)

Data to store

KPIs

Data query

Data response

Data Access
Layer

(Kundera)

Spring Web Services
(SOAP)

Personnel,
Users,

Applications

Data request Data response

Figure 19: Application overall architecture

In next sections each components in the architecture is describe in more details.

 36

4.2. Database data model definition

Based on existing types of messages in manufacturing facility, data model for

Cassandra database can be designed. As it was mentioned in literature review, query

model needs to be taken into consideration in order to design a sufficient and efficient

data model. The basic concept for definition of query model requires distinguishing of

all energy consumers, in order to provide an opportunity to analyze information in an

atomic way by separate consumer or whole manufacturing line. Distinct element of the

manufacturing line is cell, therefore users might need information about specific cell or

set of cells. According to this, general energy message in manufacturing facility can

contain information about energy values for a single cell, as it is illustrated on Listing 2.

<SampleEnergyMessage cellID="cell_1"

dateTime="2014-01-03T13:26:41"

watt="0.26" ="65.81" watthr="1255" var="-62.84"

vrms="-1217”/>

Listing 2: General energy message structure

Allegedly, the possible queries for energy message data from database are:

 Select watt values for last day in cell_1

 Select all energy values in cell_1 for a specified time range

 Select watthr values for whole manufacturing facility for last day

These use cases demonstrate that in all queries data is identified by cell id and is

sorted according to timestamp. Therefore, cell name can be defined as a partition key,

and timestamp as a clustering key. This data model will allow performing fast queries

for a single cell or set of cells.

4.3. Energy Key Performance Indicators

Energy KPIs need to be calculated in order to give a valuable feedback for personal

responsible for energy management. These KPIs can be divided into 2 groups, based on

user needs:

1. Real-time KPIs

2. On-request KPIs

The first type of KPI is always calculated for a specific period of time in a real-

time. These KPIs have to be stored in a database and be always available for users.

They can be calculated by means of CEP engine. For instance, hourly energy

consumption of robot cell can be calculated in a real-time as the time period is always

fixed.

 37

The second type of KPIs is calculated only when user needs it and doesn’t need to

be stored. For example, user needs to know an energy consumption of robot cell for

flexible periods of time – for one day, one week or one month, which he or she can

freely choose. In this case it makes sense to calculate the KPI by accessing directly

historical data from the database. In order to calculate these KPIs, a calculation logics is

added to Web Services.

4.4. Application development

4.4.1. Implementation of data endpoint

In order to receive a data from the manufacturing facility, a starting point inside of

application server is created, which acts as a gateway for stream of incoming data.

Every message from Event Hub is sent over HTTP as POST message and it is

consumed by endpoint, where input message is transformed to XML Node format and

then redirected to CEP engine. In case of success, server responds with HTTP 200 – a

standard response for successful HTTP request. If error occurs when sending event to

Esper engine, server will respond with HTTP 500 Internal Server Error. The case of

successful message delivery is illustrated on Figure 20.

Jetty Endpoint CEP EngineEvent Hub

HTTP POST

XML message

HTTP STATUS 200

Convert to XML node

Send XML node event

Figure 20: Message delivery to application

4.4.2. Implementation of data processing

From the endpoint data is delivered to Esper CEP engine, where it is processed and

prepared for storing.

In order to make CEP engine aware of incoming messages, a configuration file

esper.cfg.xml is used. This file configures Esper by defining types of existing messages.

If incoming XML message is not predefined, an exception will be thrown by Esper

engine, stating that the message is not configured.

 38

Figure 21 illustrates the workflow of CEP engine. When XML event enters the

engine, it matches the message to relevant rules. If the rule is satisfied, subscriber is

triggered, which is responsible for processing of the data by getting relevant information

from the message and passing it to data access layer. If XML event doesn’t satisfy the

rule, it is sent to memory of engine, where all messages for specific rule are aggregated

until the rule is satisfied.

CEP EngineXML event Enters

EPL rules

Matches

if Rule satisfied?

YesSubscriber

Activates

Data access layer Passes data

Database

Persists

Memory

No

Aggregates event

Figure 21: CEP engine workflow

CEP engine has two main functionalities:

 Parsing of the incoming messages

It is achieved by having an EPL rule, which selects all attributes of message

every time new message arrives, with subscriber receiving Java objects

containing values of attributes

 Calculation of KPIs

KPIs are calculated in a real-time according to existing EPL rules

4.4.3. Development of Data Access Layer

Data access layer is an intermediate layer between application logics and database.

It provides a loose coupling for fetching data from database, by offering an interface

with methods that are responsible for database queries, and separating it from

application logics.

An XML configuration file persistence.xml is used for specifying database

connection details, which is placed under /META-INF folder. The file is demonstrated

on a Listing 3. It contains desired name of persistence unit (database cluster), list of

mapped to database tables Java classes and connection-specific parameters. Any amount

of persistence units can be added to the file. Java classes (called Entities), intended for

 39

mapping to database tables, have @Entity annotation, which has a property referencing

to relevant persistence unit.

<persistence-unit name="persistenceUnit">

<class>com.model.MessageModel</class>

<class>com.model.MessageModelKey</class>

<properties>

<property name="kundera.nodes" value="localhost"/>

<property name="kundera.port" value="9160" />

<property name="kundera.keyspace" value="name" />

<property name="kundera.dialect" value="cassandra" />

<property name="kundera.client.lookup.class"

value="com.impetus.client.cassandra.thrift.ThriftClientFact

ory" />

<property name="kundera.cache.provider.class"

value="com.impetus.kundera.cache.ehcache.EhCacheProvider"/>

</properties>

</persistence-unit>

Listing 3: Database connection configuration file

Physical connection to database is made with an instance of EntityManager, which

provides functionality to perform CRUD (Create, Update and Delete) operations on a

database. An independent EntityManager is obtained for every single request from an

EntityManagerFactory. EntityManagerFactory and EntityManager interfaces are

available as a part of JPA 2.0. EntityManagerFactory is a heavyweight object, therefore

it is instantiated only once during application start and is stored inside of Spring

Container, so that EntityManager can be easily created at any time. EntityManager is

injected into objects with @PersistenceContext annotation.

Queries for data access are performed with JPQL, which is wrapped by Kundera.

The example of query formulation is illustrated on a Listing 4. This query selects some

specific data, which is mapped to database with EnergyData entity, and limits search to

particular cell and time range.

String query = “SELECT e.data from EnergyData e

where e.key.cellId = :cellId

and e.key.timestamp > :timeStart

and e.key.timestamp < :timeEnd”

Listing 4: JPQL query example

Query is using named parameters (“:cellId”,”:timeStart”,”:timeEnd”) in order to

provide a flexibility in accessing the data. These parameters are further evaluated

according to specific user request. After all, Query object is created, to which textual

representation of query and named parameters are passed. Data can be fetched from

database by calling a getResultList method of Query object.

 40

4.4.4. Development of API

SOAP Web Services

API based on SOAP is implemented with Spring Web Services, provides various

methods for accessing data in the database. Spring Web Service is a contract-first

service, which means that XML schema needs to be created before development of

service logics in Java. The schema contains description of methods used to access data,

consisting of request and response messages, as it is illustrated in example on Listing 5.

<xs:element name=”DataRequest”

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”cellId” type=”xs:int” />

 <xs:element name=”timeStart” type=”xs:long” />

 <xs:element name=”timeEnd” type=”xs:long” />

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name=”DataResponse”

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”cellId” type=”xs:int” />

 <xs:element name=”value” type=”xs:float” />

 <xs:element name=”timestamp” type=”xs:long” />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Listing 5: Definition of data access request and response

Based on this schema and configuration file, which defines host of Web Service,

JAXB mapping classes for serialization and deserialization of incoming XML requests,

Spring automatically generates WSDL file, which becomes available for clients. The

next step after contract definition is development of Java Web Service endpoints, which

are mapped to relevant requests in WSDL with help of annotations, where request

processing is performed. Further, endpoint makes a query to database through data

access layer, prepares response message and sends data back to client. The whole cycle

of operations and interaction between layers of application from SOAP request to SOAP

response is depicted on a Figure 22.

 41

Third Party Application JAXB marshaller DAO Cassandra

SOAP request

Binding to JAXB class

WS endpoint

JAXB class

Request object

Data request

Query

Query result

Map to POJO

List of POJOs

Data response

Process response

Final data

JAXB response object

Binding to SOAP

SOAP message

SOAP response

Figure 22: Web Service workflow

REST Web Services

RESTful API is developed with web application framework Pedestal for Clojure.

Service is deployed with the help of build automation tool Leiningen. API provides

flexible methods for reading historical data from the database. These services are

intended for web applications, which need to present historical data by creating graphs

and charts or analyzing the data.

Clojure application is running as a separate server application, receiving HTTP

requests. For every request a mapping logic is defined, stating which function needs to

be executed when request arrives. The function is responsible for handling of request by

creation of relevant query to the database, processing the response from database to

correspond to required response format, and returns JSON object back to the client. The

whole workflow sequence is presented on a Figure 23.

 42

Third Party Application Routing Handler Data Access Function DatabaseMapped Function

JSON request
Request

parameters
Request

parameters

Query

List of data

List of data

Manipulations
on data

Response List

JSON response

Figure 23: REST Web Service workflow

The processing stage can be performed very fast even on the very large data set,

because the data is presented in form of a collection, which can be easily manipulated

with Clojure.

4.4.5. Development of KPI definition interface

Due to the fact that CEP is one of the core functionalities of the information

warehouse system, access to event processing rules for responsible personal needs to be

transparent. KPI definition interface is created to satisfy this requirement. The interface

is developed with JavaScript and HTML5.

The interface, presented on Figure 24, consists of 3 areas:

1. Rule creation

User can add new rule and give it a name for identification purposes

2. Rule selection, display and editing

User can navigate through already existing rules and select them for editing or

deleting

3. Message references

This area provides a reference to existing messages in the facility

 43

Figure 24: KPI definition interface

The interface is intended for a personal, which is familiar with EPL rules syntax.

4.4.6. Web application configuration

All modules described previously are initialized with spring configuration file

web.xml, which is responsible for initialization of context configuration files and Web

Service mappings. There are two context configuration files:

 Application context

responsible for initialization of CEP engine, HTTP endpoint and Entity Manager

Factory

 Spring-ws-servlet

responsible for initialization of Spring Web Service

Figure 25 demonstrates the configuration and initialization process of the

application.

 44

Web application config
file XML

Application context
XML file

CEP Engine

HTTP endpoint Entity Manager Factory

Application server

Reads

Initializes

Configures

Initilizes
Configures

Web Service config
XML file

Initializes

JAXB bindings

Configures

Annotation mappings

Configures

WSDLPublishes

Exception Resolving

Configures

WS endpoint

InitializesWS mappingConfigures

EPL rules

Event subscribers

Initializes

Sets

Figure 25: Application configuration with Spring

After configuration is completed, the application is ready to receive and process

incoming data and Web Service requests.

4.5. Development of OSGi module

Application also needs to be made accessible inside of OSGi infrastructure. In order

to complete the integration, a module responsible for access to Cassandra database

needs to be created. This module can be used for generation of services, which can be

used by other OSGi modules to access data from the database. However, the major

challenge faced during this step was inability of Kundera library to run in OSGi

environment. This is explained by the fact that Kundera is based on Thread context

class loading, meaning that its context can’t be loaded to OSGi thread, from where it

could be accessible by other modules.

This problem was solved by creation of a new module, called kunderaLibrary,

which exports all dependencies required by Kundera, and creates new methods to access

the interface of Kundera library. The module contains all Java Archive (JAR) files,

which are referenced by Kundera, resulting in a very heavy weight of the final module

(34MB). In a bigger application heavy-weight module can reduce performance of the

system, but this was the only possible solution to integrate Kundera library to OSGi

environment.

 45

5. RESULTS

5.1. Implementation test-bed

Designed approach system was implemented for a manufacturing line located in

premises of FAST Laboratory in Tampere University of Technology. The line is

composed of 12 cells, equipped with robots and conveyors (Figure 26), which is capable

of performing simulation of mobile phone manufacturing by drawing parts of phone on

a paper.

Figure 26: FAST manufacturing line

The line is equipped with S1000 controllers and E10 energy analyzers. S1000

controller is a programmable Smart Remote Terminal Unit device, designed to operate

in industrial environment and compliant with all industrial signal types and levels,

which provides web-based Human-Machine Interface (HMI) and Web Services

integration. E10 is an additional module for S1000, which analyzes 3-phase electrical

power consumption [80]. The following parameters are analyzed in E10:

 Root mean square (RMS) voltage

 RMS current

 Active, reactive and apparent power

 Active, reactive and apparent energy

 46

5.1.1. Manufacturing line events

There are 3 types of events generated in a factory floor: energy message, equipment

change state message and notification message.

Energy Meter message contains energy consumption related information of each

cell, divided by 3 energy phases – A (robot), B (controller) and C (conveyor), as it is

presented in example of message on Listing 6.

<EnergyMeter xmlns="http://www.tut.fi/fast/energymeter"

xmlns:s12="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

AIRMS="0.26" AVA="65.81" AVAHR="1255" AVAR="-62.84" AVARHR="-1217"

AVRMS="242.33" AWATT="-6.90" AWATTHR="-128" BIRMS="0.31"

BVA="77.71" BVAHR="1486" BVAR="-66.81" BVARHR="-1298"

BVRMS="239.99"

BWATT="5.48" BWATTHR="111" CIRMS="0.26" CVA="63.80" CVAHR="1222"

CVAR="-61.06" CVARHR="-1184" CVRMS="240.92" CWATT="-9.90"

CWATTHR="-190" LINEFREQ="50.06" cellID="12"

dateTime="2000-01-02T21:24:16.490"

eventId="0" eventName="scan_energy_measure" src="energyMeter"/>

Listing 6: Energy Meter XML message example

Equipment Change State message carries data about status of robot inside of each

cell, specifying current and previous CAMX (Computer Aided Manufacturing using

XML) states, as well as all relevant information, which is presented on a Listing 7.

<EquipmentChangeState xmlns="http://www.tut.fi/fast/robot"

xmlns:s12="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

cellID="6" condition="NORMAL" currentState="READY-IDLE-BLOCKED"

dateTime="2000-01-04T00:18:41.970" eventID="xx"

eventName="ItemWorkComplete"

palletID="13" previousState="READY-PROCESSING-EXECUTING"

recipeNum="7"

src="robot" toolID="1" transID="2"/>

Listing 7: Equipment Change State XML message

 47

Notification message contains status of conveyor and relevant to it information for

each of the cells (Listing 8).

<NotificationMessage

xmlns="http://www.pe.tut.fi/fast/wsdl/ConveyorService"

xmlns:s12="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

cellID="5" dateTime="2000-01-03T23:49:41.STOPPED" eventID="75"

eventName="palDeparture" fromZoneID="4" opResult="NA"

palletID="13" src="conveyor" toZoneID="5" transID="NA"/>

Listing 8: Notification Message XML message

5.1.2. Energy Meter data model

According to message structure, described in previous section, contents of Energy

Meter message can be divided into phase-specific energy consumption data and

common cell data. The potential query use cases are presented below:

 Get active energy power data for robot in cell number 1 during previous day

 Get energy consumption for conveyors in each cell during last week

 Get specific energy parameters of all phases in several cells during specific time

range

From these use cases a conclusion can be made that data can be identified distinctly

by cell number, energy phase and time. These three parameters define a compound key,

where cell id is a partition key, energy phase and timestamp are clustering keys.

According to this data model, energy data will be stored on different nodes of cluster

based on a hash value of cell id, and will be clustered in accordance to energy phase and

will be sorted by timestamp. Figure 27 illustrates the data model in an understandable

way and shows the way data is clustered.

 48

CELL ID

ENERGY PHASE A

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

ENERGY PHASE B

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

ENERGY PHASE C

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

timestamp
eventId

eventName
src

linefreq
irms
va

vahr
var

varhr
vrms
watt

watthr

Figure 27: Data model of Energy Meter table

5.1.3. Equipment Change State and Conveyor Notification data models

As it was described earlier, equipment change state messages contain relevant

information about status of robot in each cell. This information is tightly connected with

energy efficiency, thus needs also to be stored and available for requests.

Potential query use cases look like as following:

 Get amount of occurrences of “READY-PROCESSING-EXECUTING” state in

cell number 1 during last hour

 Get timestamps of events when robot was blocked in cell number 3

 49

According to presented use cases and structure of XML message, it can be

determined that equipment change state data can be uniquely identified by combination

of cell id, event name and timestamp.

Conveyor Notification message also carries information that might be relevant for

analysis of energy efficiency of manufacturing line. The query and data models are

similar to Equipment Change State message. Illustrations of Equipment Change State

and Conveyor Notification tables are available in Appendix 2.

5.1.4. KPI data model

KPI data is also needs to be stored in a database with predefined data model.

However, in contrast to described earlier tables for data coming from devices, a single

data model needs to be defined for any type of KPI. This approach will result in a

possibility to focus in the future on development of KPIs without requirements for

creating new data structure for each newly introduced KPI.

All information in a context of KPI can be divided into 3 types with following

contents:

 KPI definition

o KPI name

o Cell ID (or consumer/scope)

o Timestamp

 Actual value of KPI

o Numerical value

 Metadata

o Pallet ID

o CAMX State

o Product

o Any other relevant information

According to these types of data, query use cases can be defined:

 Get values of energy consumption KPI for cell number one for last month

 Get values of energy consumption KPI for whole manufacturing line for

specified time period

 Get value of energy consumption KPI and its metadata of specific cell for

specified time period

The data model of KPI table thus should have a compound key, consisting of KPI

name as partition key, cell ID and timestamp as clustering keys. Moreover, KPI

metadata can include any relevant for particular KPI information, thus data model needs

to support a flexible addition of KPI metadata parameters. This can be achieved with

help of collections support realized in Cassandra, so that metadata column can be

 50

defined as map containing key-value pairs of text variables. Key-value pairs can be

added when needed for specific KPI and can always be fetched, when requesting the

data. The data model illustration is available in Appendix 2.

5.2. Application integration

In order to complete the thesis work, the application has been integrated to the

FASTory production line. Cassandra database has been deployed to Linux server, which

has accessible public IP. Cassandra has also been configured to be bounded to the

public IP of the server.

The application has been running on a Windows machine connected to Local Area

Network (LAN) of the production line, so that messages from Event Hub could be

redirected to the application.

Application has been configured to access the deployed database, and all used

entities for mapping of data has been added, as it is illustrated on a Listing 9.

<persistence-unit name="fastoryDatastore_pu">

<provider>com.impetus.kundera.KunderaPersistence</provider>

<class>tut.fi.dpe.fast.datastore.model.EquipmentChangeState</class>

<class>tut.fi.dpe.fast.datastore.model.EquipmentChangeStatekey</class>

<class>tut.fi.dpe.fast.datastore.model.EnergyMeter</class>

<class>tut.fi.dpe.fast.datastore.model.EnergyMeterKey</class>

<class>tut.fi.dpe.fast.datastore.model.QualityInspectionShort</class>

<class>tut.fi.dpe.fast.datastore.model.QualityInspectionShortKey</class>

<class>tut.fi.dpe.fast.datastore.model.ThlValue</class>

<class>tut.fi.dpe.fast.datastore.model.ThlValueKey</class>

<class>tut.fi.dpe.fast.datastore.model.ConveyorNotification</class>

<class>tut.fi.dpe.fast.datastore.model.ConveyorNotificationKey</class>

<class>tut.fi.dpe.fast.datastore.model.SilentPowerUnit</class>

<class>tut.fi.dpe.fast.datastore.model.SilentPowerUnitKey</class>

<class>tut.fi.dpe.fast.datastore.model.FastoryKpi</class>

<class>tut.fi.dpe.fast.datastore.model.FastoryKpiKey</class>

<exclude-unlisted-classes>true</exclude-unlisted-classes>

<properties>

<property name="kundera.nodes" value="localhost"/>

<property name="kundera.port" value="9160" />

<property name="kundera.keyspace" value="FastoryDatastore" />

<property name="kundera.dialect" value="cassandra" />

<property name="kundera.client.lookup.class"

value="com.impetus.client.cassandra.thrift.ThriftClientFactory" />

<property name="kundera.cache.provider.class"

value="com.impetus.kundera.cache.ehcache.EhCacheProvider" />

property name="kundera.ddl.auto.prepare" value="update" />

</properties>

</persistence-unit>

Listing 9: Database configuration file persistence.xml

Http endpoint inside of the application has also been configured to listen to

incoming HTTP POST requests on the IP address of local machine. This address was

also added to configuration of routes inside of the Event Hub.

 51

5.3. Web services

In order to make stored in database data transparent and available for relevant

personal, Web services for data access have been developed. All created services are

summarized in a Table 16.

Table 16: Developed Web Services

Name Functionality Type

Historical Data Returns requested historical data SOAP

KPI Data Returns requested KPI data SOAP

Full Energy Data Returns historical data of energy meter message REST

Full Robot Data Returns historical data of robot equipment change

state message

REST

Full Conveyor

Data

Returns historical data of conveyor notification

message

REST

Chart data Returns historical energy data, which can be used

for plotting charts and graphs

REST

5.3.1. Historical data

This service is used to access any available historical energy data in a various

combinations. Inputs of the service include:

 List of cells

 List of phases

 List of energy parameters

 List of time ranges

In other words, this service allows user to form as flexible and detailed request for

any amount of cells, energy phases, energy parameters and time ranges, as it is required

by user. The example of the request message is illustrated on a Listing 10.

Response message, generated by this service, has very complex structure, which,

however, can be easily parsed by a client’s side application.

 52

<HistoricalDataRequest>

 <cellsList>

 <cell>1</cell>

 <cell>2</cell>

 <cell>3</cell>

 </cellsList>

 <phasesList>

 <phase>A</phase>

 <phase>B</phase>

 </phasesList>

 <parametersList>

 <parameter>wattz</parameter>

 <parameter>watthr</parameter>

 </parametersList>

 <timeRangesList>

 <timeRange id=”1”>

 <timeStart>13768770040000</timeStart>

 <timeEnd>13768770080000</timeEnd>

 </timeRange>

 </timeRangesList>

</HistoricalDataRequest>

Listing 10: Historical Data request

5.3.2. KPI data

This service is intended for giving access to all available KPIs stored in the

database. The input information to the service includes:

 KPI name

 Cell ID

 Time range

With KPI data service is possible to get values of particular KPI for specific cell

during some period of time. The response of the service contains the list of KpiData

objects, where each of them includes:

 KPI name

 Cell ID

 KPI value

 Timestamp

 Element containing list of metadata variables

 53

5.3.3. Full energy data

This RESTful service is also used to access energy related information stored in the

database. The input of the service include following information:

 List of cells

 List of phases

 Time range

The service is accessed via URI and inputs are added to request as query parameters:

http://localhost:8090/data/fastory/full/energy?cell=3,4&phase=A&tim

estart=1389621600000&timeend=1389632400000

For this input data service returns JSON object containing all energy data for

specified cells and phases inside of time range. The example of a response is presented

on a Figure 28.

[{"cell_id":3,"va":265.489990234375,"timestamp":1389621603955,"eventName":"

scan_energy_measure","vrms":236.0,"irms":1.090000033378601,"src":"energyMeter"

,

"linereq":50.0,"watthr":167.0,"eventId":0,"energy_phase":"A","watt":101.040000

91552734,"vahr":473.0,"varhr":-213.0,"var":-110.86000061035156}]

Figure 28: Full energy data response

5.3.4. Full robot data

This service provides a historical data of equipment state changes of robots. The

input of the service needs to have:

 Cell ID

 Event name

 Time range

Full robot data, similarly to full energy data service, has input parameters in a query

part of HTTP request:

http://localhost:8090/data/fastory/full/robot?cell=3&eventname=Item

WorkComplete×tart=1389617346055&timeend=1390993127191

An example of response produced by this service is presented on a Figure 29.

 54

[{"cell_id":3,"timestamp":1389618874566,"event_name":"ItemWorkComplete","tr

ans_id":"2","src":"robot","eventId":"01","current_state":"READY-IDLE-

BLOCKED","previous_state":"READY-PROCESSING-

EXECUTING","tool_id":1,"condition":"normal","recipe_number":2,"pallet_id":6}]

Figure 29: Full robot data response

5.3.5. Full conveyor data

Similarly to two previously described services, this service provides user with a

historical data, containing information about conveyor statuses. The input to the service

needs to include:

 Cell ID

 Event name

 Time range

The HTTP request for the full conveyor data service contains the input information

as a query part:

http://localhost:8090/data/fastory/full/conveyor?cell=3&eventname=p

alArrival×tart=1389617346055&timeend=1390993127191

An example of the response is illustrated on Figure 30.

[{"cell_id":3,"timestamp":1389618008158,"event_name":"palArrival","from_zon

e_id":1,"trans_id":"5","event_id":2,"src":"conveyor","op_result":"inPosition",

"to_zone_id":4,"pallet_id":2}

Figure 30: Full conveyor data response

5.3.6. Chart data

This service can be used specifically for displaying the historical energy data, for

instance, in form of charts. For the input containing cell id, energy phase, energy

parameter and time range, the service returns an object with timestamp-value pairs, as it

is presented on a Figure 31.

 55

[[1389617205786,102.30999755859375],[1389617206053,102.62999725341797],[138

9617206353,102.45999908447266],[1389617207086,102.45999908447266],[13896172074

21,101.44000244140625]

Figure 31: Chart data response

5.4. Integration to OSGi

The developed information warehouse system was integrated into FASTory OSGi-

based messaging infrastructure. At the moment, when this thesis was written, the

infrastructure was in the development stage. FASTory OSGi infrastructure is running on

Apache Service Mix ESB, and provides functionality of creation of custom function

blocks. Function block is constructed from various available modules. For instance, if

developer wants to create a service, which will be fetching some data from database,

making analysis of data and returning the result to user, he or she will create function

block that encapsulates database module, analysis module and parser module for

response. Such function block can be created by sending XML message to function

block manager module. Inside of function block modules are communicating also by

exchanging XML messages.

Module, responsible for accessing data from Cassandra was created. This module

uses kunderaLibrary, which is presented in Chapter 4.5, as a dependency, so that it can

call all data access methods of Kundera. In the newly created module methods to access

historical energy data were added. Modules were tested in Apache Service Mix, and in

the result response from database was accessible inside of the OSGi environment.

5.5. Tests

In order to validate the applicability of developed information warehouse system, its

functionalities have been test in real-life situations.

5.5.1. Data capturing and storage

Application was tested while the FASTory line was in operation mode, during

which all data generated by controllers have been stored. The line has been running for

2 hours, and the results are presented on a Table 17.

Table 17: Data storage result

Theoretical amount of generated messages

per cell

Amount of rows in database per phase of

cell

1440 1376

 56

Energy message for a single cell is generated every 5 seconds. Therefore, 12

messages are generated in 1 minute and 1440 messages in 2 hours. However, this

number differs from the amount of stored data. This can be explained by failures of the

manufacturing line, when the messages were not generated at all. This period has lasted

for 8 minutes totally during these 2 hours.

Moreover, several times application was running to store simulated data for testing

purposes. During that times all data has been successfully stored to the database.

Figures 32-33 present examples of historical data for different phases of cell number

3. The time periods of 8 minutes, when raw data was not available, are marked with red

frame on the pictures.

Figure 32: Historical power data for robot phase of cell 3

Figure 33: Historical power data for conveyor phase of cell 3

A clear pattern of energy consumption can be seen from the figures above.

 57

5.5.2. Performance benchmarking

In order to compare performance of Cassandra database with a traditional relational

database (MySQL), benchmarking test for writes and reads from databases were made.

Test environment

MySQL database was running on the same Linux server as Cassandra. Table,

intended for storing energy data was created in a test keyspace in Cassandra database, as

it is illustrated on Listing 11.

CREATE TABLE energy_meter (

cell_id int,

energy_phase text,

timestamp bigint,

event_id int,

event_name text,

irms float,

linefreq float,

src text,

va float,

vahr float,

var float,

varhr float,

vrms float,

watt float,

watthr float,

PRIMARY KEY (cell_id, energy_phase, timestamp)

Listing 11: Creation of energy_meter table for testing in CQL utility

Another table, corresponding to this table, was created in MySQL database, as it is

shown on Listing 12. The same structure was chosen in order to be able to compare

performance of databases on the atomic operations level.

 58

CREATE TABLE ’energy_meter’ (

ID bigint(20) AUTO_INCREMENT,

cell_id int(11),

energy_phase varchar(50),

timestamp bigint(20)

event_id int(11),

src varchar(50),

event_name varchar(50),

linefreq float,

irms float,

va float,

vahr float,

var float,

varhr float,

vrms float,

watt float,

watthr float,

PRIMARY KEY (ID))

Listing 12: Creation of energy_meter table for testing in MySQL

Tests included write and read operations. For write tests a special classes were

created, which were generating random data. For read tests a real data was queried. Real

data from Cassandra was copied to the MySQL database for this purpose.

Consequent writes

Firstly, time required to complete a specific amount of consequent writes to

databases was tested. Tests were performed for 10, 100 and 1000 writes. This test

represents a use case, when messages from the factory floor are consequently arriving to

the application. Results of the test are presented on a Table 18.

Table 18: Consequent writes

Number of writes Total time, ms (MySQL) Total time, ms (Cassandra)

10 2106 771

100 12038 9831

1000 271806 140060

From the results we can see that on average performance on consequent writes of

Cassandra database was twice faster, comparing to MySQL.

Concurrent writes

In a second test an average time per write for 10, 100 and 1000 concurrent writes

was measured. This test measures the time needed to save messages under high load of

concurrent connections to database. The results are presented on a Table 19.

 59

Table 19: Concurrent writes

Number of writes Average time, ms (MySQL) Average time, ms (Cassandra)

10 182.9 16.8

100 89.3 12

1000 78 11.5

As we can see from the results, Cassandra’s performance on concurrent writes is

about 8 times faster than MySQL’s performance.

Concurrent reads

In the last test 3000 rows were concurrently red from the databases for 10, 100 and

1000 threads, and average time per read was measured. This test represents a use case,

when user is making a request to database to get a historical data for specific period of

time. The results are presented on a Table 20.

Table 20: Concurrent reads

Number of threads Average time, ms

(MySQL)

Average time, ms (Cassandra)

10 980 1457.7

100 386.9 1262.7

1000 433.6 1441.7

According to the results of this test, MySQL performed 2.5 times faster on a reads,

comparing to Cassandra.

Tests results

Performed tests demonstrate that Cassandra has very fast and efficient writes, what

is very important for the process of storage of captured data. From the other side,

MySQL outperformed Cassandra on reads, which means that Cassandra might have

slower response time for client requests. However, this weak performance can be

explained by the fact that tests were performed on a small amount of data and only one

Cassandra node was used. In future, same tests, but on a cluster of Cassandra databases

should be performed, in order to achieve optimal results.

 60

6. CONCLUSIONS

6.1. Implementation conclusions

Energy management has already become one of the most crucial issues, faced by

manufacturing industry. It has been realized by authorities that amount of energy

consumption and carbon dioxide emissions need to be decreased, especially in

manufacturing facilities. Currently available solutions for energy management are based

on Service Oriented Architecture, which is now a de-facto standard architecture for

development of energy management systems. This architectural approach allows

decoupling application logics by providing various services, which can be combined in

a flexible manner.

Another important aspect of energy management system is a requirement to capture

and store huge amounts of data coming from all possible devices on a factory shop

floor, in order to produce a valuable feedback and basis of energy efficient decisions.

This data is often referred as a Big Data due to its complex structure and huge volume.

Nowadays, energy management systems implemented in manufacturing facilities do not

support Big Data handling. However, according to the estimations that the growth of

amounts of data is going to be exponential in the next several years, Big Data support in

manufacturing facilities needs to be addressed and considered.

In this thesis work an information warehouse system for manufacturing facility has

been designed. The main advantage of designed system is a modular architecture, based

on SOA, which allows the system to be implemented in any manufacturing facility. The

developed information warehouse system is capable of providing the authorities and

personal with meaningful information about the energy consumption of the facility, thus

allowing making decisions leading to the decrease of energy consumption. This system

provides a platform for efficient energy management by offering functionalities,

responsible for capturing and storage of raw data, calculation of Key Performance

Indicators and providing Web Services to access all stored information.

The proposed system has a multi-layered architecture, where each layers is

responsible for a set of specific functions and provides services for the higher layer. The

architecture encapsulates variety of technologies, frameworks and tools developed in

Java, Clojure and JavaScript programming languages.

In order to prove the applicability of the developed system, it was implemented for a

real production line. For the implementation a NoSQL Cassandra database has been

used instead of a traditional relational database, in order to make the solution Big Data-

ready.

 61

Finally, the developed information warehouse system can serve as a foundation for

energy management system in a real facility, where more facility-specific services can

be added and behavior of system can be adjusted to correspond to relevant context. The

developed system is flexible in the way that it is not linked to any specific facility and

can be easily reconfigured.

6.2. Future work

In order to get the optimal performance from Cassandra database for the developed

information warehouse system, more database servers need to be added to cluster.

Besides, further research on applicability of more advanced Big Data technologies need

to be conducted. These technologies include implementation of Hadoop Distributed File

System and MapReduce parallel processing technique and have a great potential for

more efficient and faster processing of big amounts of energy data.

 62

REFERENCES

[1] McKinsey Global Institute, November 2012, “Manufacturing the future: The next

era of global growth and innovation”, 24p

[2] 2013, “Intelligent Manufacturing: targeting better energy efficiency”, A report by

the Economist Intelligence Unit sponsored by ABB

[3] Dr. Barry Devlin, Shawn Rogers & John Myers, 2012 “Big Data Comes of Age”,

EMA and 9sight Consulting Report, 43p

[4] Markus Löffler & Andreas Tschiesner, 2013, “The Internet of Things and the

Future of Manufacturing”, McKinsey&Company

[5] 2013, VTT, Espoo, ”VTT Visions: Productivity Leap with IoT”, 99p

[6] Srinivasa, S., Bhatnagar, V., “Scalable Analytics – Algorithms and Systems”,

2012, Springer, Big Data Analytics, First International Conference, New Delhi, India,

pp. 1-7

[7] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Byers, A.H., “Big data:

The next frontier for innovation, competition, and productivity”, 2011, McKinsey

Global Institute, 156p

[8] Apache Hadoop, available online: http://hadoop.apache.org/ [accessed on

7.3.2014]

[9] March 2012, IDC #233485, Volume 1, Tab: Markets, “Big Data: Global

Overview: Market Analysis”, 30p

[10] Oracle White Paper, June 2013, “Oracle: Big Data for the Enterprise”, 15p

[11] DIN EN 16001: Energy Management Systems In Practice A guide for Companies

and Organizations, 2010, Federal Ministry for the Environment, Nature Conservation

and Nuclear Safety (BMU)

[12] Bunse, K., Vodicka, M., Schönsleben, P., Brulhart, M., Ernst, F. O., "Integrating

energy efficiency performance in production management – gap analysis between

industrial needs and scientific literature”, Journal of Cleaner Production, Vol. 19, No. 6-

7, 25 April 2011, pp. 667-679

 63

[13] Rudberg, M., Waldemarsson, M., Lidestam, H., “Strategic perspectives on energy

management: A case study in process industry”, 2013, Elsevier, Applied Energy, vol.

104, pp. 487-496

[14] BSR, “Energy Management Handbook”, April 2012, available online:

www.bsr.org/reports/bsr-energy-management-handbook.pdf [accessed on 15.03.2014]

[15] Vikhorev, K., Greenough, R., Brown, N., “An advanced energy management

framework to promote energy awareness”, 2013, Elsevier, Journal of Cleaner

Production, vol. 43, pp. 103-112

[16] Zhang, B., Postelnicu, C., Lastra, J.L.M., "Key Performance Indicators for energy

efficient asset management in a factory automation testbed", 2012, 10th IEEE

International Conference on Industrial Informatics (INDIN), pp.391-396

[17] May, G., Taisch, M., Kelly, D., "Enhanced energy management in manufacturing

through systems integration", 2013, 39th Annual Conference of the IEEE Industrial

Electronics Society IECON, pp.7525-7530

[18] Drumm, C., Busch, J., Dietrich, W., Eickmans, J., Jupke, A., “STRUCTese® –

Energy efficiency management for the process industry”, 2013, Elsevier, Chemical

Engineering and Processing: Process Intensification, vol. 67, pp. 99-110

[19] Marinakis, V., Doukas, H., Karakosta, C., Psarras, J., “An integrated system for

buildings’ energy-efficient automation: Application in the tertiary sector”, 2013,

Elsevier, Applied Energy, vol. 101, pp. 6-14

[20] Cannata, A., Karnouskos, S., Taisch, M., "Energy efficiency driven process

analysis and optimization in discrete manufacturing", 2009, 35th Annual Conference of

IEEE Industrial Electronics IECON '09, pp.4449-4454

[21] TechAmerica Foundation, “Demystifying big data. A Practical Guide To

Transforming The Business of Government”, 3 October 2012, Report, 39p

[22] Sagiroglu, S., Sinanc, D., "Big data: A review", 2013 International Conference

on Collaboration Technologies and Systems (CTS), pp.42-47

[23] Philip Russom, “Big Data Analytics”, 2011, TDWI Best Practices Report

[24] IBM Global Services, “Analytics: The real-world use of big data”, October 2012,

Executive Report

[25] Demchenko, Y., Grosso, P., De Laat, C., Membrey, P., "Addressing big data

issues in Scientific Data Infrastructure", 2013, International Conference

on Collaboration Technologies and Systems (CTS), pp.48-55

 64

[26] Forsyth Communications, “For Big Data Analytics There’s No Such Thing as Too

Big”, March 2012, 20p

[27] Katal, A., Wazid, M., Goudar, R.H., "Big data: Issues, challenges, tools and good

practices," Contemporary Computing (IC3), pp.404-409

[28] Wikipedia, Zettabyte, available online: http://en.wikipedia.org/wiki/Zettabyte

[accessed on 14.3.2014]

[29] A.T Kerney Inc, “Big Data and the Creative Destruction of Today’s Business

Models”, 2013, available online: https://www.atkearney.com/strategic-it/ideas-

insights/article/-/asset_publisher/LCcgOeS4t85g/content/big-data-and-the-creative-

destruction-of-today-s-business-models/10192 [accessed on 14.3.2014]

[30] Wang, L., von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., Fu, C.,

“Cloud Computing: a Perspective Study”, 2010, Springer, New Generation Computing,

vol. 28, issue 2, pp. 137-146

[31] Gupta, R., Gupta H., “Cloud Computing and Big Data Analytics: what is new

from databases perspective?”, 2012, Springer, Big Data Analytics, First International

Conference, BDA 2012, New Delhi, India, pp. 42-61

[32] Amazon EC2, available online: http://aws.amazon.com/ec2/ [accessed on

15.03.2014].

[33] Google Cloud Platform, Compute Engine, available online:

https://cloud.google.com/products/compute-engine/ [accessed on 15.03.2014]

[34] van der Veen, J.S., van der Waaij, B., Meijer, R.J., “Sensor Data Storage

Performance: SQL or NoSQL, Physical or Virtual”, 2012, IEEE 5th International

Conference on Cloud Computing (CLOUD), pp.431-438

[35] Mohan, C., “History Repeats itself: Sensible and NonsenSQL Aspects of the

NoSQL Hoopla”, 2013, Proceedings of the 16th International Conference on Extending

Database Technology, pp. 11-16

[36] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach D. A., Burrows, M.,

Chandra, T., Fikes, A., Gruber R.E., “Bigtable: A Distributed Storage System for

Structured Data”, 2008, ACM Transactions on Computer Systems, vol. 26 issue 2

[37] DeCandia, G., Hastorun D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,

A., Sivasubramanian, S., Vosshall, P., Vogels, W., “Dynamo: amazon’s highly-

available key-value store”, Proceedings of twenty-first ACM SIGOPS symposium on

Operating systems principles, 2007, pp. 205-220

[38] Özsu, M., Valduriez, P., “Principles of Distributed Database Systems”, Springer,

3
rd

 ed., 2011, 860p

 65

[39] Wikipedia, CAP theorem, available online:

http://en.wikipedia.org/wiki/CAP_theorem [accesses on 15.03.2014]

[40] Cassandra Wiki, Architecture Overview, available online:

http://wiki.apache.org/cassandra/ArchitectureOverview [accessed on 15.03.2014]

[41] Redmond, E., Wilson, J. R., “Seven Databases in Seven Weeks: A Guide to

Modern Databases and the NoSQL Movement”, the Pragmatic Bookshelf, 11.05.2012,

354p.

[42] Wang, G., Tang, J., “The NoSQL Principles and Basic Application of Cassandra

Model”, 2012, International Conference on Computer Science & Service System

(CSSS), pp. 1332-1335

[43] Sadalage, P. J., Fowler, M., “NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence”, Addison-Wesley Professional, 2012, 192p

[44] Knowledge Base of Relational and NoSQL Database Management Systems, DB-

engines Ranking, available online: http://db-engines.com/en/ranking [accessed on

15.03.2014]

[45] MongoDB, The Mongo 2.4 Manual, available online:

http://docs.mongodb.org/manual/ [accessed on 15.03.2014]

[46] Huang, S., Cai, L., Liu, Z., Hu, Y., "Non-structure Data Storage Technology: A

Discussion", 2012, IEEE/ACIS 11th International Conference on Computer and

Information Science (ICIS), pp.482-487

[47] DATASTAX Documentation, Apache Cassandra 1.2, Understanding the

architecture, available online:

http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html?pagename=

docs&version=1.2&file=index#cassandra/architecture/architectureTOC.html [accessed

on 15.03.2014]

[48] Thantriwatte, T. A. M. C., Keppetiyagama, C. I., “NoSQL query processing

system for wireless ad-hoc and sensor networks”, 2011, International Conference

on Advances in ICT for Emerging Regions (ICTer), pp. 78-82

[49] Yamamoto, S., Matsumoto, S., Nakamura, M., “Using cloud technologies for

large-scale house data in smart city”, 2012, IEEE 4th International Conference on Cloud

Computing Technology and Science (CloudCom), pp. 141-148

[50] Jayathilake, D., Sooriaarachchi, C., Gunawardena, T., Kulasuriya, B., Dayaratne,

T., "A study into the capabilities of NoSQL databases in handling a highly

heterogeneous tree", 2012, IEEE 6th International Conference on Information and

Automation for Sustainability (ICIAfS), pp.106-111

http://docs.mongodb.org/manual/

 66

[51] Ohene-Kwofie, D., Otoo, E.J., Nimako, G., "O2-Tree: A Fast Memory Resident

Index for NoSQL Data-Store", 2012, IEEE 15th International Conference

on Computational Science and Engineering (CSE), pp.50-57

[52] Erl, T., “SOA Principles of Service Design”, 2007, Prentice Hall, 865p

[53] Wiehler, G., “Mobility, Security and Web Services”, 2004, Publics Corporate

Publishing, Erlangen, 220p

[54] Cohen, F., “Fast SOA: The way to use native XML technology to achieve Service

Oriented Architecture governance, scalability, and performance”, 2007, Morgan

Kaufmann Publishers Inc, 279p

[55] Lastra, J.L.M., Delamer, I.M., “Semantic Web Services in Factory Automation”,

2005, Tampere University of Technology, Institute of Production Engineering, Report

70, 67p

[56] Zhou, H.J., Cao, J.Z., Guo, C.X., Qin, J., “The architecture of intelligent

distribution network based on MAS-SOA", 2010, IEEE Power and Energy Society

General Meeting, pp. 1-6

[57] Li Da Xu, “Enterprise Systems: State-of-the-Art and Future Trends”, 2011, IEEE

Transactions on Industrial Informatics, vol.7, no.4, pp.630-640

[58] W3C, Web Services Architeecture, “What is a Web Service?”, available online:

http://www.w3.org/TR/ws-arch/#whatis [accessed on 15.03.2014]

[59] Laine, M., “RESTful Web Services for the Internet of Things”, 2011, Department

of Media Technology, Aalto University School of Science, 3p.

[60] Shi, X., “Sharing Service Semantics using SOAP-Based and REST Web

Services" 2006, IT Professional, vol. 8, no. 2, pp. 18-24

[61] Pautasso, C., Zimmermann, O., Leymann, F., “RESTful Web Services vs. “Big”

Web Services: Making the Right Architectural Decision”, 2008, Proceedings of the 17th

international conference on World Wide Web, pp. 805-814

[62] Zhu, C., Chai, M., Lu, Y., Guo, Y., "Service Oriented Architecture Design of

Energy Consumption Information System about Petroleum Enterprise", 2013, Fifth

International Conference on Computational and Information Sciences (ICCIS), pp.

1174-1177

[63] Yang, J., Li, J., Deng, X., Xu, K., Zhang, H., “A web services-based approach to

develop a networked information integration service platform for gear enterprise”, 2012,

Springer, Journal of Intelligent Manufacturing, vol. 23, issue 5, pp. 1721-1732

 67

[64] Cucinotta, T., Mancina, A., Anastasi, G.F., Lipari, G., Mangeruca, L., Checcozzo,

R., Rusina, F., “A Real-Time Service-Oriented Architecture for Industrial Automation”,

2009, IEEE Transactions on Industrial Informatics, vol.5, no.3, pp. 267-277

[65] Wu, J., Tao, X., “Research of enterprise application integration based-on ESB",

2010, 2nd International Conference on Advanced Computer Control (ICACC), vol.5,

pp.90-93

[66] Chen, Q., Shen, J., Dong, Y., Dai, J., Xu, W., “Building a Collaborative

Manufacturing System on an Extensible SOA-based Platform”, 2006, 10th International

Conference on Computer Supported Cooperative Work in Design CSCWD '06, pp.1-6

[67] EsperTech, available online http://esper.codehaus.org/ [accessed on 15.03.2014]

[68] Saleh, O., Sattler, K.-U., “Distributed Complex Event Processing in Sensor

Networks”, 2013 IEEE 14th International Conference on Mobile Data Management

(MDM), vol.2, pp.23-26

[69] Wang, G., Jin, G., “Research and Design of RFID Data Processing Model Based

on Complex Event Processing”, 2008, International Conference on Computer Science

and Software Engineering, vol.5, pp.1396-1399

[70] Etzion, O., Niblett, P., “Event Processing in Action”, 2010, Manning Publications

Co, 360p

[71] Wang, Y.H., Cao, K., Zhang, X.M., “Complex event processing over distributed

probabilistic event streams”, 2013, Elsevier, Computers & Mathematics with

Applications, vol. 66, issue 10, pp. 1808-1821.

[72] EsperTech, Esper Reference, available online: http://esper.codehaus.org/esper-

4.10.0/doc/reference/en-US/html/index.html [accessed on 15.03.2014]

[73] GitHub, impetus-opensource/Kundera, available online:

https://github.com/impetus-opensource/Kundera/wiki [accessed on: 15.03.2014]

[74] Lui, M., Gray, M., Chan, A., Long, J., “Pro Spring Integration”, 2011, Apress

Berkley, CA, USA, 641p

[75] Walls, C., “Spring in Action, Third Edition”, 2011, Manning Publications Co,

424p

[76] GitHub, Pedestal repository, available online: https://github.com/pedestal/pedestal

[accessed on 15.03.2014]

[77] GitHub, clojurewerkz/cassaforte repository, available online:

https://github.com/clojurewerkz/cassaforte [accessed on 15.03.2014]

 68

[78] Node.JS, available online: http://nodejs.org [accessed on 15.03.2014]

[79] Higuera-Toledano, M.T., Wellings, A.J., “Distributed, Embedded and Real-Time

Java Systems”, 2012, Springer US, 378p

[80] Inico S1000 User Manual, available online: http://www.inicotech.com/doc/

[accessed on 15.03.2014]

[81] Bean, J., “SOA and Web Services Interface Design. Principles, Techniques, and

Standards”, 2009, Morgan Kaufmann, 384p

 69

APPENDIX 1 – AVAILABLE NOSQL DATABASES

Name Database Model Type

Redis Key-value store

Memcached Key-value store

Riak Key-value store

DynamoDB Key-value store

Ehcache Key-value store

SinpleDB Key-value store

Berkeley DB Key-value store

Hazelcast Key-value store

Coherence Key-value store

Oracle NoSQL Key-value store

Infinispan Key-value store

ZODB Key-value store

GT.M Key-value store

Aerospike Key-value store

LevelDB Key-value store

FoundationDB Key-value store

MongoDB Document store

CouchDB Document store

Couchbase Document store

RavenDB Document store

GemFire Document store

Datameer Document store

Mnesia Document store

Cloudant Document store

RethinkDB Document store

Neo4j Graph database

OrientDB Graph database

Titan Graph database

FlockDB Graph database

Cassandra Column oriented database

Hbase Column oriented database

Accumulo Column oriented database

Hypertable Column oriented database

 70

APPENDIX 2 – CASSANDRA DATA MODELS

CELL ID

ItemWorkComplete

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

EquipmentSetupComplete

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

ItemWorkStart

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

timestamp

condition
currentState

previousState
eventId
palletId

recipeNumber
src

toolId
transId

Figure 34: Data model of Robot Equipment Change State table

 71

CELL ID

palArrival

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

palDeparture

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

timestamp

eventId
fromZoneId

toZoneId
palletId

opResult
src

transId

Figure 35: Data model of Conveyor Notification table

KPI NAME

CELL 1

timestamp

kpiValue
{”metadata” : 1,

”metadata”: ”value”,
”parameter”: ”watt”}

timestamp

kpiValue
{”metadata” : 1,

”duration”: 1239}

timestamp

kpiValue
{”metadata2” : 6

”metadata”: ”value7,”
”parameter”: ”watt”}

timestamp

kpiValue
{”metadata” : 1,

”metadata”: ”value”,
”parameter”: ”watt”}

CELL 2

timestamp

kpiValue
{”metadata” : 1,

”metadata”: ”value”,
”parameter”: ”watt”}

timestamp

kpiValue
{”metadata” : 1,

”duration”: 1239}

timestamp

kpiValue
{”metadata2” : 6

”metadata”: ”value7,”
”parameter”: ”watt”}

timestamp

kpiValue
{”metadata” : 1,

”metadata”: ”value”,
”parameter”: ”watt”}

CELL 3

timestamp

kpiValue
{”metadata” : 1,

”metadata”: ”value”,
”parameter”: ”watt”}

timestamp

kpiValue
{”metadata” : 1,

”duration”: 1239}

timestamp

kpiValue
{”metadata2” : 6

”metadata”: ”value7,”
”parameter”: ”watt”}

timestamp

kpiValue
{”metadata” : 1,

”metadata”: ”value”,
”parameter”: ”watt”}

Figure 36: Data model of KPI table

