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Työssä tutkitaan uutta, ultralyhyiden laserpulssien mittaamiseen soveltuvaa mene-

telmää, jossa pulssin muoto ja vaihe voidaan rekonstruoida mittausjäljestä ohjelmal-

lisesti. Vaikka ensimmäiset taajudenkolmentamista hyödyntävällä, interferometri-

sella, taajuuserotteisella optisella näytteistämismenetelmällä (engl. third-harmonic

interferometric frequency-resolved optical gating) tehdyt mittaukset on julkaistu,

niiden täysipainoinen hyödyntäminen ei ole ollut mahdollista, sillä menetelmälle

soveltuvaa, pulssin rekonstruoivaa ohjelmistoa ei ole ollut saatavilla. Ensimmäinen

tällainen ohjelmisto esitellään tässä työssä. Ohjelma kykenee määrittämään mi-

tatun laserpulssin täydellisesti, sillä sekä sähkökentän verhokäyrä että vaihe rekons-

truoidaan iteratiivisesti. Pulssinrekonstruointiohjelmiston esittelyn lisäksi työssä

tutkitaan mittausmenetelmän fysiikkaa yleisellä tasolla, ja johdetaan mittausjäljen

rakennetta havainnollistava yhtälö.

Ohjelmiston avulla analysoidaan kaksi saksalaisessa Max Born instituutissa suoritet-

tua mittausta, joissa femtosekuntiluokan laserpulssi kulkee joko puhtaasta titaani-

dioksidista tai piidioksidista koostuvan ohutkalvon lävitse. Mittausjälkien erilaisia

modulaatiokomponentteja hyödyntämällä suoritetaan kuusi simulaatiota, joiden a-

vulla rekonstruoidaan kolme pulssimuotoa kustakin näytteestä. Näiden välitulok-

sien avulla kootaan edelleen kutakin mittausta vastaavat varsinaiset, täydellisesti

määritetyt pulssit. Titaanidioksidikalvon läpäisseen laserpulssin pituudeksi mää-

ritetään 15,7 fs, kun piidioksidinäyttettä vastaavaksi pulssipituudeksi saadaan vain

10,1 fs. Mittausjärjestelmän komponenttien dispersiivisistä ominaisuuksista saadaan

tietoa tutkimalla rakennettujen pulssien kokemaa ryhmäviivedispersiota. Tämä on

ensimmäinen kerta, kun menetelmällä tuotetusta mittausjäljestä on rekonstruoitu

pulssi.

Rekonstruoitujen laserpulssien kestoissa havaittu ero johtuu ohutkalvonäytteiden
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erilaisista epälineaarisista optisista vasteista. Siinä missä laserpulssin indusoima

epälineaarinen polarisaatio syntyy ja katoaa piidioksidinäytteessä miltei välittömästi

pulssin sähkökentän voimakkuutta mukaillen, on titaanidioksidikalvon polarisaati-

olla äärellinen elinaika – titaanidioksidikalvo pysyy hetken aikaa polarisoituna laser-

pulssin jo poistuttua materiaalista. Tämän vuorovaikutuksen tarkkaa mekanismia

ei tunneta, mutta sen elinaika voidaan määrittää rekonstruoitujen pulssien avulla.

Konvoloimalla piidioksidinäytteelle rekonstruoitu pulssi ja aikavakiolla 6,5 fs so-

vitettu yksipuoleinen eksponentiaalifunktio, saadaan uusi pulssimuoto, joka vastaa

lähes täydellisesti titaanidioksidikalvolle rekonstruoitua pulssia. Määritetty aika-

vakio kuvaa titaanidioksidinäytteen eksponentiaalisesti vaimenevan epälineaarisen

polarisaation elinaikaa.

Pohjimmaiset syyt sille, miksi vain titaanidioksidikalvossa havaitaan äärellinen pola-

risaation elinaika, löytyvät näytteiden ominaisuuksia tarkastelemalla. Ensimmäinen

osatekijä on se, että epälineaarisen vuorovaikutuksen voimakkuutta kuvaava suure,

kolmannen asteen suskeptibiliteetti, on titaanidioksidikalvolla monikymmenkertai-

nen piidioksidikalvoon nähden. Toinen vaikuttava tekijä on näytemateriaalien ener-

gia-aukkojen leveyksien suuri ero. Laserpulssin sisältämät lähi-infrapuna-alueen

sekä näkyvän valon fotonit ovat riittävän energisiä vuorovaikuttamaan titaanidioksi-

dinäytteen kanssa monifotoniabsorption turvin, kun taas piidioksidinäytteen absorp-

tio on materiaalin leveän energia-aukon vuoksi olematonta. Näiden ominaisuuksien

vuoksi titaanidioksidikalvon vuorovaikutus laserpulssin kanssa on voimakkaampaa,

mikä aikaansaa voimakkaammaan polarisaation. On mahdollista, että epälineaari-

sen prosessin elinaika on kytköksissä väliaineen suskeptibiliteetin voimakkuuteen.

Epälineaarisen polarisaation ultralyhyt elinaika on nopeimpia muotolukitetulla ti-

taanisafiirilaserilla mitattuja luonnonilmiöitä. Esitelty pulssinrekonstruointiohjel-

misto mahdollistaa tämän ilmiön perusteellisemman tutkimuksen, ja voi lisätä epä-

lineaarisen optiikan tietämystä. Lisätutkimus voi johtaa titaanisafiirilaserin ul-

tralyhyiden pulssien tuottamisessakin hyödynnettävän optisen Kerr-ilmiön elinajan

selvittämiseen.
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ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Science and Engineering
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Master of Science Thesis, 89 pages, 32 Appendix pages

November 2013

Major: Advanced Engineering Physics

Examiners: Prof. Günter Steinmeyer, Dr. Lasse Orsila
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The recently introduced characterization technique of third-harmonic interferomet-

ric frequency-resolved optical gating for ultrashort laser pulses is investigated. The

first pulse retrieval software for this complete characterization technique is presented

and used to conduct pulse retrievals for the first time. In addition, the physics of

this measurement technique is studied, and a simple equation describing the trace

is derived.

The subjects for the retrieval procedure are the measured traces for femtosecond

laser pulses that have been guided through a thin film sample of either pure tita-

nium dioxide or pure silicon dioxide. These experiments were conducted in the Max

Born Institute of Berlin, Germany in 2012. Different combinations of modulational

components of the interferometric trace are used in the simulations to produce three

pulses for each of the two samples. The retrieved pulses are combined to produce

two representative pulses for the thin films, completely describing the electric field

envelope and the phase of the measured laser pulses. Full width at half maximum

pulse widths of 10.1 fs and 15.7 fs are measured for the pulses of silicon- and tita-

nium dioxide samples, respectively. The retrieved pulses are further examined by

analyzing their spectral phases and the experienced group delay dispersion.

The significant difference observed in the pulse durations for the two samples is

attributed to multiphoton absorption processes in the titanium dioxide thin film,

although the exact mechanism of the noninstantaneous third-order polarization re-

mains unclear. The intensity envelopes of the reconstructed pulses are harnessed

to study the lifetime of this process using a deconvolution strategy. By convolving

the pulse for silicon dioxide with a one-sided exponential decay function with a time

constant of 6.5 fs, a third pulse is produced, perfectly replicating the retrieved pulse

shape for the titanium dioxide sample.

This is one of the fastest phenomena ever measured with a Ti:sapphire laser. The
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measurement software presented in this work facilitates additional research on the

subject, understanding of which could increase our knowledge of nonlinear optics.

More light can be shed on the lifetime of the Kerr nonlinearity, a mechanism of

elementary nature in the production of ultrashort pulses with the Ti:sapphire laser.
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k Wave number

k0 Vacuum wave number

χ(1) Linear electric susceptibility

χ(3) Third-order electric susceptibility

χ
(3)
ijkl Third-order electric susceptibility tensor

χ(n) nth-order electric susceptibility

D Degeneracy factor, power division factor

I Optical field intensity

n Refractive index

n0 Linear refractive index

n2 Nonlinear refractive index

E Complex spectral amplitude of the electric field

Ẽ Complex temporal amplitude of the electric field

E+ One-sided spectrum of the complex electric field

E Complex electric field strength

φ Phase

φmod Phase of second harmonic modulation in ISHIFROG

vg Group velocity

T Retarded time coordinate, time constant of exponential decay

λ Wavelength

λ0 Carrier wavelength
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Symbols (continued)

∆τ Delay step

Ω Delay-frequency

g(t − τ) Gate function

S Spectrogram, signal function

Esig Signal field

Êsig Fourier transform of signal field

IFROG FROG intensity

Imeas

FROG
Measured FROG intensity

I
(k)
FROG FROG intensity of the kth iteration

ISHFROG Second-harmonic generation FROG intensity
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IFM-FROG Fundamental modulation FROG intensity

ITHIFROG Third-harmonic generation interferometric FROG intensity

E(k) Electric field of the kth iteration
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Z Functional distance

µ Minimizing factor

α Minimizing factor for FROG error

G FROG error

f Frequency
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T0 Carrier period

R Response function

γ Line width

Γ Spectral line width

~ Planck constant divided by 2π

Lc Coherence length

Eg Band gap

t Time
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tf Fall time

hk kth sample for discrete Fourier transform
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Symbols (continued)

Hn nth sample in the Fourier domain

ν Frequency

νc Central frequency

ϕ(ωL)′′ Group delay dispersion

φ2 Total group delay dispersion

β2 Group velocity dispersion

(f ∗ g)(t) Convolution of functions f(t) and g(t)

ISiO2
THIFROG intensity for silica thin film

ITiO2 THIFROG intensity for titania thin film

Program Parameters

The parameters for running the main function of the pulse retrieval software are

listed below.

pathD Location of the D file containing the preprocessed trace

pathP Location of the P file containing the parameters of pre-

processed trace

savePath Path for the output files

scenario Name of the sample included in output filenames

tag Additional identifier included in output filenames

delayRange Length of the delay axis

frequencyResolution Number of frequency samples in the main trace

optimizationPoints Number of points in optimization

bands Sub-traces used in optimization

weights Weights for the different sub-traces’ FROG errors

optimize Optimization on/off



1. INTRODUCTION

Ever since the first demonstration of mode-locking in the 1960’s [1, 2], there has

been a continuous race towards ever shorter pulses, reaching ever higher intensities,

broader spectra and finer time resolutions. The logic is simple: the shorter the

pulse, the shorter is the event it can be used to resolve. With the early progresses

in generation of short pulses with techniques such as Q-switching [3] and mode-

locking with their many variants [4,5], it became quickly more and more difficult to

characterize the laser pulses with optoelectronic methods. Early optical characteri-

zation methods included the autocorrelator [6], only capable of roughly estimating

the width of a pulse. When pulse durations were already reaching tens of femtosec-

onds [7], characterization methods finally took a giant leap when frequency-resolved

optical gating (FROG) was developed in the early 1990’s [8]. Not only was the

technique able to temporally resolve the electric field amplitude of the pulse with

unprecedented precision, but the phase could also be reconstructed, giving vital in-

formation about the chirp of the pulse, and the experienced group delay dispersion.

As both amplitude and phase can be retrieved, FROG is a complete characterization

method capable of defining the electric field profile and spectrum of a pulse. In-built

self-consistency checks offer reliability and the possibility to detect flaws in the ex-

perimental setup just by inspecting the measured data. There are also limitations

of FROG, of course. Depending on the particular variant, the temporal direction

of the pulse might not be unambiguously defined, and physical constraints of the

geometry might induce limitations to the accuracy of the measurement. FROG is

also computationally intensive, making real-time acquisition of a pulse difficult.

Since the nineties, many FROG variants based on different nonlinearities have been

introduced [9–11]. All these FROG variants rely on non-collinear interaction and

avoid interference effects. Therefore, they are not applicable in a tight-focusing

geometry. In 2006, a method was introduced that overcomes this problem and

actually makes good use of the interferometric term, i.e., interferometric FROG or

IFROG [12].

While FROG techniques are targeted at retrieving pulse shapes of laser pulses, it was

recognized quickly that IFROG also holds an enormous potential as a spectroscopic
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tool [13], enabling to temporally resolve the temporal response of nonlinear optical

processes on a few-femtosecond time scale.

Recently, a novel variant of IFROG based on third-harmonic generation was intro-

duced [14], denominated as the third-harmonic interferometric frequency-resolved

optical gating (THIFROG). Indications are that this technique can resolve extremely

fast processes down to the single-cycle response time. Resolving such processes is

considered the holy grail in this 50 year race towards resolving ever faster processes

in nature. Comparison THIFROG measurements using silica and titania revealed a

marked difference that is indicative of a few-femtosecond response time of titania.

However, there is a major problem with THIFROG. Other than for any of all the

above-cited FROG variants, there simply exists no description of a suitable retrieval

software for this novel variant. In fact, THIFROG can be considered completely

uncharted territory, despite of more than 20 years of publication on various FROG

methods. The goal of this thesis is therefore to develop a suitable method that allows

interpretation of measured THIFROG traces. This requires a thorough analysis

of the structure of the THIFROG trace and a suitable approach for the retrieval

software. Once the software was developed and tested, it was applied to measured

THIFROG traces from the Max Born Institute in Berlin, Germany. The ultimate

task was the interpretation of the apparent differences between the silica and the

titania traces, ultimately yielding a 6.5 fs response time of the titania material. This

response is among the fastest processes that was ever measured with spectroscopic

methods in the visible/near-infrared spectral region.

In relation to this work, a conference paper was submitted for the XVIIIth Internatio-

nal Conference on Ultrafast Phenomena in Lausanne, Switzerland [15], and a poster

presentation was given at the Physics Days 2012 in Joensuu, Finland [16].



2. FUNDAMENTALS OF OPTICS

In this chapter the theoretical framework for analysing and understanding the rel-

evant phenomena behind creation, behaviour, and most importantly measurement

and characterization of laser pulses are introduced. The first and second sections

cover the basic theory for light and its propagation. Nonlinear light-matter interac-

tion is discussed in the third section while the fourth and final section illuminates

the properties and creation of ultrashort pulses.

2.1 Maxwell’s Equations

The propagation of optical fields is governed by the Maxwell equations for electro-

magnetic phenomena, originally published in 1861 [17], here in their time-dependent,

differential form and in SI units [18],

∇ · D̃ = ρf (2.1a)

∇ · B̃ = 0 (2.1b)

∇ × Ẽ = −∂B̃

∂t
(2.1c)

∇ × H̃ = J̃ +
∂D̃

∂t
, (2.1d)

where Ẽ and H̃ are the electric and the magnetic field vectors, respectively. The

sources for the electromagnetic field are represented by the total current density J̃

and the free charge density ρf . Here the tilde symbol (̃ ) is used to stress the fact

that the quantity at hand oscillates rapidly in time. The electric and the magnetic

flux densities D̃ and B̃, respectively, arise as the corresponding Ẽ and H̃ fields

propagate inside a medium inducing a polarization P̃ and a magnetization M̃ of the

material. This interaction is described by the constitutive relations,

D̃ = ǫ0Ẽ + P̃ (2.2a)

H̃ =
B̃

µ0
− M̃ , (2.2b)
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where ǫ0 and µ0 are the electric permittivity and the magnetic permeability, re-

spectively, in vacuum. In the power series picture, polarization P̃ has the general

form [19]

P̃ = ǫ0

∞
∑

n=1

χ(n) ∗ Ẽn, (2.3)

where χ(n) is the nth order susceptibility, a tensor of the order (n+1), and the ∗ sym-

bol is used to denote convolution. Terms of the order n ≥ 2 are referred to as

nonlinear polarization, as their dependence on the electric field is nonlinear, while

the term n = 1 is the linear polarization. The fundamental origin of nonlinear po-

larization lies in the anharmonic motion of bound electrons in response to intense

optical fields.

The first of Maxwell’s four equations is Gauss’s law, Equation 2.1a, describing the

relationship between electric field flux and their source, the electric charge [20].

Second is Gauss’s law for magnetism, which states that the magnetic flux through

any closed surface is exactly zero. This statement is equal to saying that unlike

for electric fields, there are no sources or sinks of magnetic field, i.e., no magnetic

charge (a magnetic monopole) exists. The third equation is Faraday’s induction law,

which says that a changing magnetic field will induce an electric field. The fourth

and final equation is the Ampere’s law, restated by Maxwell to include the electric

displacement ∂D̃/∂t. This law states that a magnetic field can be created by current

and by electric field changing in time. Likewise, an electric field is created by a time-

dependent magnetic field. Maxwell’s addition to the law was of special importance

because it allows the existence of freely propagating electromagnetic waves. As

will be shown in the following section, wave equations with the propagation speed

v =
√

1/(ǫ0 µ0) can be derived from Maxwell’s equations. Using the values for ǫ0 and

µ0 already known at the time, Maxwell concluded this speed to be v ≈ 3 · 108 m/s.

Previously, in 1851, Fizeau had experimentally determined the speed of light to be

315 000 km/s [21]. Such a remarkable agreement with experiment led Maxwell to

the conclusion that light is electromagnetic radiation [22].

2.2 Propagation of Light

In the realm of optics, one is typically1 interested in the solutions of Maxwell’s

equations in a nonmagnetic medium (M̃ = 0 ⇒ B̃ = µ0H̃) with no free charges

(ρf = 0) or free currents (J̃ = 0). The medium in which the light propagates

1These conditions are, however, not always valid. For example, three-photon absorption (3PA)
causes electrons to rise from the valence band of a dielectric to the conduction band, so that there
are free charges present and ρf 6= 0. This is likely to be the case with the titania measurements,
presented in Section 4.2. For the sake of simplicity, the formulation here ignores this fact.
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is, however, allowed to be nonlinear in nature as the relationship between D̃ and

Ẽ described by Equation 2.2a includes polarization P̃, which in general exhibits a

nonlinear dependency on Ẽ. Dielectrics such as glass or air are examples of such a

material. With these assumptions, a wave equation of the most general kind can be

deduced by taking the curl of Equation 2.1c and using Equation 2.1d along with the

constitutive relations 2.2a and 2.2b:

∇ × ∇ × Ẽ +
1

c2
0

∂2Ẽ

∂t2
= −µ0

∂2P̃

∂t2
. (2.4)

Here c0 is the speed of light in vacuum, defined as

c0 ≡
√

1/(ǫ0 µ0) . (2.5)

This speed is equal to exactly 299,792,458 m/s, as the SI unit of metre is defined as

the distance that light travels in vacuum in 1/299,792,458 seconds [23]. By using

an identity from vector calculus, the first term on the left hand side of the wave

equation 2.4 can be written as

∇ × ∇ × Ẽ ≡ ∇
(

∇ · Ẽ
)

− ∇2Ẽ. (2.6)

The first term on the right hand side of the latter equation can be shown to be

vanishingly small in most cases of interest and in particular when the slowly-varying

envelope approximation (SVEA) is valid [19]. The criteria for validity of the SVEA is

that the frequency bandwidth ∆ω, centered around the carrier frequency ω0, of the

optical field must be narrow, i.e., ∆ω
ω0

≪ 1. In the time domain this approximation

states that the envelope A of the electric field does not significantly change in the

duration of an optical cycle of the carrier frequency:

∣

∣

∣

∣

∣

∂A
∂z

∣

∣

∣

∣

∣

≪ |k(ω0)A| or

∣

∣

∣

∣

∣

∂A
∂t

∣

∣

∣

∣

∣

≪ |ω0A| , (2.7)

where k is the wave number. By ignoring higher-order derivatives on the grounds

of these inequalities [18], SVEA allows the simplification of many wave equations.

For Equation 2.6 this means that ∇
(

∇ · Ẽ
)

≈ 0. With this approximation we have

∇ × ∇ × Ẽ = −∇2Ẽ, so now the wave equation 2.4 becomes

∇2Ẽ − 1

c2
0

∂2Ẽ

∂t2
= µ0

∂2P̃

∂t2
. (2.8)

This wave equation can be further refined by splitting the polarization into a linear
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and a nonlinear part according to Equation 2.3,

P̃ = P̃L + P̃NL = ǫ0χ(1) ∗ Ẽ + P̃NL , (2.9)

where P̃L depends linearly on the electric field Ẽ. Insertion to Equation 2.8 gives

∇2Ẽ − 1

c2
0

∂2Ẽ

∂t2
= µ0

∂2P̃L

∂t2
+ µ0

∂2P̃NL

∂t2
. (2.10)

In a similar manner, the electric displacement D̃ can be broken in two,

D̃ = D̃L + P̃NL , (2.11)

where the linear electric displacement is defined as

D̃L = ǫ0Ẽ + P̃L . (2.12)

With Equation 2.12 and the identity 2.5, the second time derivatives of Ẽ and P̃L

present in Equation 2.10 can be combined as

1

c2
0

∂2Ẽ

∂t2
+ µ0

∂2P̃L

∂t2
= µ0

∂2D̃L

∂t2
. (2.13)

With these quantities, the wave equation 2.10 may now be written as

∇2Ẽ − µ0
∂2D̃L

∂t2
= µ0

∂2P̃NL

∂t2
. (2.14)

For illustrative purposes, a lossless, dispersionless, isotropic medium is considered.

For such a medium it holds that the linear part of electric displacement D̃L is

related to the electric field Ẽ by a dimensionless, scalar material constant ǫ(1), and

the vacuum permittivity ǫ0,

D̃L = ǫ0ǫ(1)Ẽ . (2.15)

Insertion of this relation into the wave equation 2.14 yields

∇2Ẽ − ǫ0ǫ(1)µ0
∂2Ẽ

∂t2
= µ0

∂2P̃NL

∂t2
. (2.16)

By using the identity 2.5 for the vacuum speed of light, Equation 2.16 becomes

∇2Ẽ − ǫ(1)

c2
0

∂2Ẽ

∂t2
=

1

ǫ0c2
0

∂2P̃NL

∂t2
. (2.17)
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This is a wave equation, where the nonlinear polarization induced in the material

acts as a source term for the electric field, i.e., the nonlinear response of a medium

to an optical field generates new electromagnetic radiation. The Fourier transform

of Equation 2.17 gives

− ∇2E =
n2ω2

c2
0

E +
ω2

ǫ0c2
0

PNL , (2.18)

where ω is the angular frequency and n the index of refraction of the medium,

satisfying the condition n2 = ǫ(1). Note that this is now a wave equation in the

frequency domain, a description which can be useful on many occasions. Defining

the vacuum wave number as k0 = ω
c0

and the wave number in a medium as k(ω) =

n(ω)k0—a frequency dependent quantity in a dispersive medium—allows for the

above wave equation to be written as

− ∇2E = k2(ω)E +
k2

0

ǫ0
PNL . (2.19)

Despite the assumptions made, Equation 2.19 is a highly general wave equation able

to explain many an optical phenomena.

In the absence of nonlinear polarization, this equation has solutions of freely prop-

agating waves with the velocity c0/n. Setting PNL = 0 gives

∇2E + k2(ω)E = 0 , (2.20)

which is in fact the ordinary Helmholtz equation.

2.3 Nonlinear Effects

Nonlinear optics, the branch of optics concerned in light-matter interaction of nonlin-

ear nature, can be said to have begun with the first observation of second-harmonic

generation (SHG) [24] shortly after the first laser was introduced in 1960 [25].

Nonlinear optical effects are typically observed where high optical intensities are

involved, as with laser light, or with long propagation distances encountered in fiber-

optic communication, where light is used to transmit information over transatlantic

distances within optical fibers [26].

Nonlinear optical effects are categorized by the order of nonlinear polarization P̃NL

responsible for their existence. The magnitude of second-order, or χ(2) effects such as

second-harmonic generation and sum-frequency generation [27], for example, depend

on the square of the electric field amplitude and the relevant elements of the χ(2)

tensor of the medium. χ(3) nonlinearities are of special interest in this thesis, as
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the lifetime of the nonlinear third-order polarization is studied in Chapter 6, and

because third-harmonic generation (THG) is employed in the pulse characterization

technique described in Chapter 4. The third-order nonlinear polarization P̃(t)(3) is

the term n = 3 of Equation 2.3 and can be written as [18]

P̃(t)(3) = ǫ0

∫

+∞
∫

−∞

∫

χ(3)(t − t1, t − t2, t − t3)
... Ẽ(t1)Ẽ(t2)Ẽ(t3) dt1dt2dt3 . (2.21)

This representation of polarization in the time domain does not illuminate the origin

of various nonlinear effects. A more comprehensive representation in the frequency

domain can be given as [19]

P
(3)
i (ωo + ωn + ωm) = ǫ0D

∑

ijkl

χ
(3)
ijkl(ωo + ωn + ωm; ωo, ωn, ωm)

× Ej(ωo)Ek(ωn)El(ωm) ,

(2.22)

where the frequency dependent susceptibility tensor χ(3) interacts with the three

electric fields oscillating at arbitrary frequencies along any of the three Cartesian

axes x, y, or z, producing polarization P
(3)
i along the axis specified by the index i.

The essential part is that the third-order polarization produced by the three electric

fields produces oscillates—and produces new light—at an angular frequency equal

to the sum of ωo, ωn and ωm. If all the frequencies are identical, ωo = ωn = ωm ≡ ω,

then light at 3ω is created, i.e., third-harmonic generation takes place. In the case

where all three frequencies are unique, light on a fourth frequency is born, an effect

referred to as four-wave mixing (FWM) [28]. As the electric fields are complex,

negative angular frequencies are allowed as well. Setting the three frequencies equal

in magnitude but making one negative while leaving the other two positive yields a

sum of ω+ω−ω = ω. This describes the optical Kerr effect [29], where the refractive

index experienced by an optical field is affected by the field’s own intensity. The

intensity dependent refractive index n obeys the relation [19]

n = n0 + n2 I , (2.23)

where I is the optical intensity of the incident field, n0 is the linear refractive index

and n2 is the second-order nonlinear refractive index, related to the third-order

susceptibility χ(3) by

n2 =
3

4 n2
0 ǫ0 c

· χ(3) . (2.24)

The Kerr effect is responsible for the χ(3) effects of self-phase modulation (SPM) [30]

and self-focusing [31], a phenomena facilitating the generation of ultrashort pulses

through Kerr-lens mode-locking (KLM) [32].
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2.4 Laser Pulses

An introduction to the physics of laser pulses is given here, closely following the

theory section of the excellent thesis of Christian Grebing [33].

Laser pulses, which are essentially compact packets of electromagnetic radiation,

are possible solutions to the wave equations presented earlier in this chapter. A

complete representation of a laser pulse is given by its electric field as a function

of time and space, Ẽ(t, r), or equivalently by its frequency domain counterpart,

E(ω, r). The description of linearly polarized light can be reduced to a scalar form,

E(t, z), with light propagating along the z-direction. Elliptically polarized light can

then be described by considering its individual components separately. The electric

field of laser pulse can also be seen as a superposition of plane waves of different

frequencies with a fixed phase relationship,

Ẽ(t, z) =
1√
2π

+∞
∫

−∞

E(ω, z)e−iωtdω , (2.25)

where E(ω, z) is the complex spectral amplitude of the wave with the frequency ω.

Calligraphic symbols are used here to denote complex quantities. Equation 2.25

is in fact the Fourier transform of the electric field in the frequency domain, i.e.,

F {E(ω, z)} = Ẽ(t, z). Since the electric field Ẽ(t, z) is a physical quantity and

therefore real valued, the properties of the Fourier transform compel the complex

spectral amplitude E(ω, z) to be self-adjoint, i.e., E(ω, z) = E∗(−ω, z). In other

words, all the information of the physical field is contained in either side of the

spectrum! The complex field amplitude Ẽ+(t, z) is obtained by integrating over

positive frequencies

Ẽ+(t, z) =
1√
2π

+∞
∫

0

E(ω, z)e−iωtdω, (2.26)

so that the physical electric field of the pulse can be written as Ẽ(t, z) = 2ℜ
[

Ẽ+(t, z)
]

.

The one-sided spectrum can be defined as

E+(ω, z) =







E , ω ≥ 0

0 , ω < 0 ,
(2.27)

so that it holds that

Ẽ+(t, z) = F

{

E+(ω, z)
}

. (2.28)

In most practical cases, and also in the context of this thesis, the spectral amplitude
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is centered around the carrier frequency ω0 with contributions only within a fre-

quency interval ∆ω, which is small compared to ω0. By substituting ω → ω0 + ∆ω

and using the frequency shift property of the Fourier transform for Equation 2.26,

it is possible to introduce the carrier frequency ω0 also in the time domain

Ẽ+(t, z) = e−iω0t × 1√
2π

+∞
∫

−∞

A(∆ω, z) ei∆ωt d(∆ω)

= A(t, z) e−iω0t

= A(t, z) eiϕ(t,z) e−iω0t . (2.29)

Here A(t, z) is the inverse Fourier transform of the spectrally shifted complex am-

plitude A(∆ω, z) = Ẽ+(ω0 + ∆ω, z). The quantities ϕ(t, z) and A(t, z) describe the

temporal phase and the envelope of the electric field, respectively. This relation is

especially important for the analysis of pulse characterization techniques, and in the

framework of the pulse retrieval software discussed in latter chapters. For future

reference, a simplified notation outside the scope of this section is adopted,

Ẽ(t) = E(t) e−iω0t = A(t) e−i( ω0t+ϕ(t) ) . (2.30)

Here Ẽ(t) is the complex electric field, and E(t) and A(t) are the complex and real

electric field amplitudes, respectively, the former containing the complex phase eiϕ(t).

The spatial dependence has been omitted along with the use of calligraphic symbols

for complex quantities, as both Ẽ(t), E(t) ∈ C while A(t) ∈ R.

By using the slowly-varying envelope approximation, the inequalities in Equation 2.7

allow the wave equation 2.10 to be written in the form of a simplified description

for the spatial evolution of a pulse,

∂

∂z
A(∆ω, z) + i∆k A(∆ω, z) = 0 . (2.31)

The use of SVEA to simplify equations describing pulse evolution, most notably the

nonlinear Schrödinger equation (NLS) [18], makes both the analytical studying and

the numerical simulation of pulse propagation and the phenomena involved possible.

In the context of fiber-mode propagation, NLS can be used to describe SPM, FWM,

SHG and various other nonlinear effects.

SVEA is not explicitly used in the calculations presented in this thesis, as the studied

ultrashort pulses are not narrowbanded as demanded by the approximation, in fact,

they have an extremely wide frequency bandwidth. This is a fact which can be ex-

plained by a fundamental property of the Fourier transform: the more pronounced a
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temporal (spatial) feature is, the more frequencies (spatial-frequencies) are required

to describe it. That is, to generate the shortest pulse, one must generate the broad-

est spectrum [34]. A related quantity is the time-bandwidth product (TBP), which

sets a lower limit to the pulse duration a certain spectrum can support. If the pulse

is considered to be as short as TBP allows it to be, the pulse is said to be transform

limited. The exact value of TBP depends on the shape of the pulse envelope, e.g.,

a Gaussian pulse has a minimum TBP of ≈ 0.441 while a bandwidth-limited hy-

perbolic secant squared (sech2) pulse has a TBP of ≈ 0.315 [35]. These values hold

when both temporal and spectral width are measured using the full width at half

maximum (FWHM) criteria. The shortest pulses must also have a simple shaped

intensity envelope, like sech2, with preferably no satellite structures and a flat phase,

so that there is no frequency chirp present [34]. Chirp is the time dependence of

the instantaneous frequency of a pulse, defined as the negative first time derivative

of the phase ϕ(t) [18]

δω(T ) ≡ −∂ϕ

∂T
, (2.32)

where T is the time coordinate relative to the frame moving at the speed of the

pulse envelope, the group velocity vg ≡ ∂ω/∂k.

Various schemes to generate ultrashort laser pulses have been developed, and gen-

erally the fastest pulses have been created through mode-locking [36]. Mode-locked

lasers can be divided in to active and passive types according to their operation

principle. Active types rely on the periodic modulation of the losses experienced by

optical fields circulating in the laser cavity, or on changing the phase of the round-

trip. As active modulation relies on electronics, the inherent slowness of electronic

drivers limits the possibilities to create pulses less than a picosecond in length.

Passive mode-locking uses light itself to create the suitable cavity conditions. A

slight fluctuation in intensity can cause more losses to some modes than others so

that eventually a single (or a group of) mode prevails and consumes virtually all the

available optical energy for itself. This can be achieved for example with saturable

absorbers such as a semiconductor saturable absorber mirror (SESAM) for bulk

lasers [37], or with erbium doped fiber lasers [38], also sometimes in conjunction

with SESAMs [39]. The most prominent technology is the solid state titanium-

sapphire (Ti:sapphire) laser employing passive Kerr-lens mode-locking, capable of

producing pulses sub-6 fs in the near-infrared region, corresponding to less than two

optical cycles in length, at MHz repetition rates, i.e., the number of pulses emitted

per second is in the millions [40, 41]. In this context the term ultrafast is simply

too slow, as it can be used in context of picosecond pulses as well. Instead, the

attribute few-cycle is used to describe pulses approaching the fundamental limit of

a single optical cycle. By using the infrared pulses created by a Ti:sapphire laser
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to generate high-harmonics, attosecond (10−18 s) pulses in the extreme ultraviolet

(XUV) wavelength range have been demonstrated [42,43]. Recently, the possibility

to create laser pulses in the staggeringly short time scale of zeptosecond (10−21 s),

i.e., less than an attosecond in length, has been discussed [44].

In the following chapter, the focus is moved from creating ultrashort pulses to mea-

suring them. Relevant techniques and related theory are discussed.



3. PULSE CHARACTERIZATION

Ultrashort laser pulses are an essential tool in the exploration of a myriad of elemen-

tary processes in nature [41]. For instance, photosynthesis, vision and protein folding

in biology, molecular vibrations and re-orientations in chemistry, and electron-hole

relaxation in physics are all events that occur on femtosecond time scale [34]. Time

resolution of these events demands for the ability to create and measure light pulses

of even shorter duration. As a bare minimum requirement in ultrafast measure-

ments, the length of the pulse must be known in order to determine the temporal

resolution of an event. In many experiments precise knowledge of the amplitude and

phase profiles of the pulse is of extreme importance, as they can have a significant

effect on the outcome [45]. For example, much greater molecular photodissociation

is observed for a chirped pulse in comparison to an unchirped one [46]. Many ma-

terial characterization techniques rely on measuring the effect of the material on

ultrashort pulses [47–50].

The generation of ultrashort laser pulses requires deep knowledge of the underlying

physical phenomena, the verification of which is accomplished through precise mea-

surements. Furthermore, pulse-distorting effects must be quantified in order to make

further reduction of the pulse duration possible. Today, laser pulses of sub-10 fs du-

ration corresponding to only a few optical cycles can routinely be produced with

mode-locked solid state lasers [51]. Shaped femtosecond pulses, having numerous

applications, e.g., in biomedical imaging [52] and enhancing of laser-electron inter-

action in generation of plasma waves [53], must naturally be verified to be of the

correct form by pulse characterization. Precisely characterized femtosecond pulses

are the foundation of optical frequency metrology [54], and used extensively for time

resolving chemical reactions [55].

As laser pulses are among the shortest events created by man, no other even shorter

event exists that could be used to measure them. Instead, a pulse can be charac-

terized by using the pulse to measure itself. In order to fully characterize a pulse,

its electric field in time ( E(t) ) or equivivalently in frequency domain ( E(ω) ) must

be measured, i.e, both the intensity and the phase of the pulse must be measured

completely in either domain [45]. In this chapter different methods for pulse char-
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acterization are discussed starting from historical predecessors of frequency-resolved

optical gating (FROG) and progressing towards a novel technique dubbed as third-

harmonic interferometric frequency-resolved optical gating (THIFROG), which will

be the subject of chapter 4.

3.1 Optical Autocorrelation

The fastest optoelectronic sensor [51], the streak camera, has a time resolution of

roughly one picosecond, whereas the length of a few-cycle pulse is on the order

of femtoseconds. Since even the fastest measurement devices fall three orders of

magnitude behind in time resolution, the direct measurement of the intensity of

ultrashort pulses as a function of time is impossible.

The autocorrelator, employed in all early pulse characterization methods, surpasses

this limitation by using the pulse to measure itself. Specifically, the pulse is split

into two, one of which is delayed by an adjustable delay τ with respect to the other.

The two pulses then meet in a medium with an instantaneous nonlinear response,

resulting in a delay-dependent temporal overlap of the two pulses, and eventually, a

measurable signal. The nonlinear medium can be, for example, a second-harmonic

generation crystal [45]. The intensity of the generated frequency-doubled light,

proportional to the product of the intensities of the two input pulses, is measured

by a photodetector as a function of the pulse delay. The peak of the signal is located

at zero delay, where there is maximum temporal overlap. At large delays, there is

no temporal overlap and the generated SHG signal is significantly smaller, if not

zero, as is the case with the so called background-free autocorrelation signal,

AC(τ) ∝
+∞
∫

−∞

I(t) I(t − τ) dt , (3.1)

achieved with a noncollinear intensity autocorrelator setup, schematically illustrated

in Figure 3.1. Here, the two pulses cross each other at a finite angle. Clearly,

information of the pulse duration is obtained with an autocorrelation measurement.

The use of a noncollinear setup can, however, result in geometrical smearing of

the beam and eventually in too large of an estimate for the pulse duration [56, 57].

Therefore, for short pulses, a collinear setup avoiding this effect is preferred, yielding

a signal [51]

IAC(τ) ∝
+∞
∫

−∞

∣

∣

∣ [E(t) + E(t − τ)]2
∣

∣

∣

2
dt . (3.2)

In collinear setups the measured signal is composed of several different components,
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Detector

E(t − τ)

E(t)

Esig(t, τ)Variable
delay, τ

Beam
splitter

Pulse to be
measured

SHG
crystal

Figure 3.1: Experimental layout for a background-free intensity autocorrelation (AC)
measurement. The pulse to be measured is split in two, one of which is variably delayed.
The two pulses meet in a second harmonic generation crystal producing a frequency-
doubled field, whose intensity is measured as a function of the delay τ [34].

resulting from the expansion of the above and other similar expressions. These

components interfere with each other, hence the title interferometric intensity auto-

correlation (IAC). The difference of collinear and noncollinear experimental setups

is illustrated in Figure 3.2.

As an additional benefit, the degree of interferometric modulation in an IAC mea-

surement provides additional information about the chirp of a pulse. One disadvan-

tage of a collinear setup is the stronger presence of unwanted residual fundamental

light [58]. An example of an interferometric autocorrelation measurement of a few-

cycle pulse is presented in Figure 3.3.

Unfortunately, autocorrelation does not allow for the unambigious retrieval of the

structure of a pulse without additional knowledge [51]. Assumptions of the pulse

shape can be made, e.g., on the basis of a theoretical description of the mode-locking

process in order to estimate the pulse width. This, however, is not possible in the

sub-10 fs regime, where the complex structures of ultrashort pulses prohibit the use

of simple analytical functions in pulse reconstruction. Moreover, the use of overly

optimistic pulse shapes often results in a too short of an estimate for the pulse

duration [45]. Ambiguity is a serious problem as different pulse shapes of equal

power spectrum may result in nearly identical autocorrelation traces [60].

Decorrelation methods have been developed to retrieve the pulse shape from an auto-

correlation measurement with the help of additional experimental information, such

as the simultaneous measurement of the power spectrum of the laser [51]. Computer

optimization strategies can then be used to find a pulse shape that satisfies both

constraints given by the two measurements. Reliable operation, however, requires
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E(t − τ)
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2E(t)E(t − τ)

SHG
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E2(t)

E2(t − τ)

Detector
(E(t − τ) + E(t))2

SHG
crystalE(t − τ) + E(t)

a)

b)

Figure 3.2: SHG signal from (a) noncollinear (AC) and (b) collinear (IAC) measurement
setups. Collinear configuration produces a more complex signal, which provides additional
means for detection of measurement errors. Figure adapted from Amat-Roldán et al. [59].

data with excellent signal-to-noise ratio, and even then ambiguities are not fully

removed [60].

The phase of the pulse can be retrieved, e.g., with the Gerchberg–Saxton algorithm

(GSA) [61] developed in the seventies. The GSA involves an iterative error-reduction

procedure where the objective is to find a phase profile for the pulse matching

the measurement data in both, the temporal (intensity) and the spectral domain.

Fourier transforms back and forth between the two domains are made, resulting

in convergence from an initial guess for the phase toward the (usually) unique so-

lution [34]. The use of GSA, however, requires that both the spectrum and the

intensity profile of the pulse are known, which not is the case here as autocorrela-

tion does not unambiguously determine the temporal intensity.

The iterative method of temporal information via intensity (TIVI), described by

Rundquist and Peatross in 1998 [62], can be used to estimate the intensity profile

of a pulse through autocorrelation without making spesific assumptions of the pulse

shape. By using TIVI and simultaneously measuring the power spectrum of the laser,

phase retrieval becomes possible with GSA. Unfortunately, yet again, the outcome

suffers from ambiguities [34] arising from both TIVI and GSA, which prohibits the

use of this method in retrieval of complex structures of ultrashort pulses.

Another iterative method is the phase and intensity from correlation and spectrum

only (PICASO) [63]. This technique requires that the spectrum of the pulse is mea-
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Figure 3.3: Interferometric intensity autocorrelation (IAC) measurement of a 6 fs
pulse [51]. The characteristic 1 : 8 ratio between the background and the peak inten-
sities is observed.

sured along with one or more interferometric autocorrelations. Baltuška et al. [41]

have also described a similar technique. Because of the underlying ambiguities in

IAC measurements accompanied with a separate spectrum measurement [60], ulti-

mately neither of these methods can be considered to be a reliable method for pulse

retrieval.

3.2 Complete Characterization Methods

To overcome the aforementioned limitations, several techniques have been devel-

oped, of which perhaps the most widespread [58] are frequency-resolved optical gat-

ing (FROG) [34,45] and spectral phase interferometry for direct electric-field recon-

struction (SPIDER) [64]. The two methods allow for the reconstruction of both

the amplitude and the phase profiles of ultrashort pulses and have their respective

advantages and disadvantages [12].

As an interferometric method, SPIDER is more suited to measure the spectral phase

of a pulse, advantageous in tracking the influence of dispersion in a short pulse,

whereas FROG is better able to resolve the exact satellite structure of a pulse [12].

SPIDER is generally faster, offering acquisition and reconstruction rates of several

tens of hertz, and can be used as an online method to aid in aligning femtosecond

systems. FROG, on the other hand, uses a time consuming optimization strategy for

pulse retrieval, which makes it slower but also more robust. The built-in consistency
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τ

Dispersion OMA

λ

Figure 3.4: Schematic picture of a SPIDER experimental setup. The input pulse on the
left is initially duplicated so that one pulse proceeds to the upper path and the other to
the lower path. In the upper path, the pulse is again duplicated, and one of the replica
pulses is delayed in respect to the other. The pulse propagating in the lower path is
heavily chirped, e.g., with a highly dispersive glass block, so that red frequencies are
shifted to the front of the pulse while blue components are shifted to the back. Sum-
frequency generation takes place where the two paths cross, and the chirped pulse causes
a frequency-shift in the two replica pulses from the upper path. The frequency shift is
different for the two pulses separated by the delay τ because of the chirp in the third
pulse. The spectral interferogram of the up-converted replicas is measured by the optical
multichannel analyzer (OMA), which samples the relative phase delay as a function of
frequency. This information can be used to reconstruct the spectral phase ϕ(ω), and
when combined with an independent amplitude spectrum measurement, the pulse is fully
characterized [51].
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Figure 3.5: Data from (a) FROG and (b) SPIDER measurements of 6 fs pulses nearly
identical to the one that was used in the IAC measurement presented earlier in Figure 3.3
[51].
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checks of FROG allow for detection of experimental flaws such as spectral filtering.

Apart from a few exceptions, a FROG reconstruction is effectively unambiguous [51].

Because of the iterative nature of the FROG algorithm, however, it possible that

pulse retrieval fails to converge. This is especially likely when complex pulse shapes

are involved, or when there is a high amount of noise in the measurement data,

e.g., when weak pulses are measured. Example data sets produced by FROG and

SPIDER are illustrated in Figure 3.5.

The selection of a pulse characterization method should always be based on the

requirements and constraints of a specific measurement. Since a special variant of

FROG is being investigated in this thesis, we move to discuss FROG in greater

detail while leaving the SPIDER technique to lesser attention.

3.3 Frequency-Resolved Optical Gating

Introduced in 1993 by R. Trebino and D. J. Kane [8,65], the FROG method involves

the measurement of a spectrogram for a pulse,

S(ω, τ) ∝
∣

∣

∣

∣

∣

∣

+∞
∫

−∞

E(t) g(t − τ) exp(−iωt) dt

∣

∣

∣

∣

∣

∣

2

, (3.3)

where g(t − τ) is some gate function with a variable delay [45]. In FROG, an

optical nonlinearity is used to perform the gating. A trace of a FROG measurement

consists of spectrally resolved autocorrelations for each of the delays τ , i.e., a two-

dimensional array sampled at a (τ, ω) grid is produced [51]. The trace is often

plotted as a rectangular image with colors representing the relative magnitude of

data points, as was illustrated in Figure 3.5a.

Many variants of the FROG technique exist. One of them, employing the second-

harmonic generation nonlinearity, is called the SHFROG and yields a trace of the

form

ISHFROG(ω, τ) ∝
∣

∣

∣

∣

∣

∣

+∞
∫

−∞

E(t) E(t − τ) exp(−iωt) dt

∣

∣

∣

∣

∣

∣

2

. (3.4)

The use of different autocorrelation geometries and nonlinearities for the gating

result in FROG traces of slightly different forms. Other variants include the self-

diffraction FROG [8] and polarization gating FROG [65]. A very general schematic

picture of a FROG setup is presented in Figure 3.6. For implementations of different

FROG variants, see Figures 3.8, 3.10, and 4.1.

Excluding an (irrelevant) absolute phase factor, it is possible to completely deter-



3. Pulse Characterization 20
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λ

Figure 3.6: Schematic picture of a FROG experimental setup. Similarly to Figure 3.4
with SPIDER, the input pulse on the left is duplicated so that one pulse proceeds to the
upper path and the other to the lower path. The replica pulse propagating on the lower
path is subjected to a variable delay τ , exactly as with the autocorrelator in Figure 3.1.
A nonlinear interaction whose intensity depends on τ , e.g., SHG, occurs when the two
pulses meet, and the result is recorded with a spectrometer (OMA) as a function of delay.
An optimization strategy can then be employed to completely characterize the pulse using
this information [51].

mine E(t) from its spectrogram with the aid of inversion algorithms [66]. This,

however, requires knowledge of the gate function, which is, of course, unknown since

the pulse is being used to gate itself. For this reason, the problem is restated as the

two-dimensional phase-retrieval problem.

3.3.1 Trebino’s Approach and the Generalized Projections

Algorithm

One formulation of the problem, described by Trebino et al. [45], involves the use of

a signal field Esig(t, τ). For an SHG autocorrelator, the signal field is E(t) E(t − τ).

The signal field is defined as the Fourier transform of a new quantity Êsig(t, Ω)

with respect to the delay-frequency Ω, which is the conjugate variable of the time

delay τ . The object is then to find Êsig(t, Ω) that will yield the original pulse field

E(t) = Êsig(t, Ω = 0).

Now the SHFROG trace 3.4 is rewritten in terms of Êsig(t, Ω) as

ISHFROG(ω, τ) ∝
∣

∣

∣

∣

∣

∣

+∞
∫

−∞

∫

Êsig(t, Ω) exp(−iωt − iΩτ) dt dΩ

∣

∣

∣

∣

∣

∣

2

. (3.5)

This expression is clearly a two-dimensional Fourier transform of Êsig(t, Ω). One also

finds that the spectrogram measurement yields information solely of the magnitude
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Set of signal fields that satisfy
mathematical constraint, e.g.:
Esig(t, τ) = E(t)E(t − τ)

Set of signal fields that satisfy
the data constraint:
IFROG(ωi, τj) =

∣

∣

∣

∫+∞

−∞
Esig(t, τ) exp(−iωt) dt

∣

∣

∣

2

Initial guess for
Esig(t, τ)

The solution

Figure 3.7: Geometrical interpretation for the generalized projections algorithm, which
finds a solution to a problem iteratively by projecting between the sets of constraints. Here,
the two sets are convex, resulting in convergence, but for non-convex sets, as in FROG,
convergence is not guaranteed. Figure adapted from Trebino et al. [45] and DeLong et

al. [68].

of the signal field, leaving its phase unknown. The 2D phase-retrieval problem is

then to find the phase of the Fourier transform of Êsig(t, Ω), i.e., the phase of the

signal field.

Provided that the mathematical form of Êsig(t, Ω) is known, as is the case with

SHFROG, the problem can be solved with the generalized projections algorithm

(GPA) [67]. The principle of the GPA method is graphically illustrated in Figure 3.7.

The signal field, that is to be found, must satisfy two constraints. The first one is

the data constraint, i.e., the squared magnitude of the 1D Fourier transform of the

signal field must be equal to the measured trace,

IFROG(ωi, τj) =

∣

∣

∣

∣

∣

∣

+∞
∫

−∞

Esig(t, τ) exp(−iωt) dt

∣

∣

∣

∣

∣

∣

2

. (3.6)

The second constraint is the mathematical form of the signal field in terms of the

pulse field E(t). As previously stated, this depends on the exploited nonlinearity

of the measurement. One must then search for a signal field that satisfies both

constraints by making projections from one set of signal fields satisfying one of

the constraints unto another set of signal fields satisfying the other constraint and

vice versa. Provided that the both sets are convex, convergence towards a solution

satisfying both constraints is guaranteed.
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Unfortunately, this is not the case for FROG and hence convergence is uncertain.

Furthermore, not every FROG trace can be expressed in terms of a signal field Esig,

as is the case with the interferometric FROG (IFROG) methods, which will be

discussed in greater detail later on. The projection step of the FROG algorithm

is also difficult to implement in IFROG, rendering this approach useless in such

cases [58].

3.3.2 Stibenz and Steinmeyer’s Approach

A more general algorithm suitable for a wider class of spectrotemporal distributions

is described in a 2006 paper by Stibenz & Steinmeyer [58]. This pulse retrieval algo-

rithm will be referred to as the Stibenz–Steinmeyer algorithm (SSA) in the context

of this thesis. Based on a gradient method often used for local optimization strate-

gies, the SSA can also be seen as a modification of the traditional GPA approach of

Trebino et al. suitable for regular FROG traces.

The goal of the SSA is to iteratively minimize the functional distance

Z =
N
∑

i,j=1

| Imeas

FROG
(∆ωi, τj) − I (n)

FROG
(∆ωi, τj) |2 , (3.7)

where Imeas
FROG

(∆ωi, τj) is the measured FROG trace and I (n)
FROG

(∆ωi, τj) is the trace

calculated for the nth iteration of the electric field E(n)(tk). Such a goal is also

present in the common FROG algorithm with the distinction that in the SSA the

traces are evaluated in frequency-delay domain (ω, τ) rather than in time-delay

domain (t, τ). The next iteration for the electric field, E(n+1)(tk), is found by line

minimization along the gradient of Z. A factor µ, which minimizes Z in the next

iteration must be found according to

Ẽ(n+1) = E(n) + µg , (3.8)

where the g is the gradient of Z and defined via

gk =

(

∂Z

∂ℜ [E(tk)]

)

+ i

(

∂Z

∂ℑ [E(tk)]

)

. (3.9)

3.3.3 FROG Error

The quality of a pulse reconstruction is assessed by calculating the FROG error, G,

of a FROG trace [34,45]. Specifically, it is the rms difference between the measured
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trace IFROG, with the peak value normalized to unity, and the k-th iteration of the

trace, I
(k)
FROG, computed from the reconstructed pulse,

G =

√

√

√

√

√

1

N2

N
∑

i,j=1

∣

∣

∣ IFROG(ωi, τj) − αI
(k)
FROG(ωi, τj)

∣

∣

∣

2
, (3.10)

where α is the real number that minimizes G. Typically, a FROG error of <1%

is achieved in what is consider to be a successful reconstruction of experimental

data. It should be noted that while FROG errors of different FROG variants are

not directly comparable, they still offer a general image of the relative quality of a

pulse reconstruction and act as a measure of experimental error for measured FROG

traces [58].

The normalization constant α is calculated for each of the iteration steps k. Since

the sum in the expression for FROG error in 3.10 is clearly positive, the square root

and the 1/N2 factor can be left out when searching for α. Here the indices i, j and

arguments for FROG intensities have been omitted for the sake of clarity.

arg min
α

G = arg min
α

∑

∣

∣

∣ IFROG − αI(k)
FROG

∣

∣

∣

2

= arg min
α

∑

(

IFROG − αI(k)
FROG

)2

= arg min
α

∑

[

I2
FROG

− 2αIFROGI(k)
FROG

+ α2
(

I(k)
FROG

)2
]

= arg min
α

∑

I2
FROG

− 2α
∑

IFROGI(k)
FROG

+ α2
∑

(

I(k)
FROG

)2

= arg min
α

α2
∑

(

I(k)
FROG

)2 − 2α
∑

IFROGI(k)
FROG . (3.11)

Differentiating the function to be minimized from equation 3.11 with respect to α

yields

2α
∑

(

I(k)
FROG

)2 − 2
∑

IFROG I(k)
FROG = 0 , (3.12)

so that the equation for α is seen to be

α =

∑N
i,j=1 IFROG(ωi, τj) I

(k)
FROG(ωi, τj)

∑N
i,j=1

(

I
(k)
FROG(ωi, τj)

)2 . (3.13)

3.4 Interferometric FROG

While conventional FROG and SPIDER techniques have proven to be excellent tools

in the characterization of pulses in the range of 10–100 fs, the extremely short pulses

of sub-10 fs duration require particular care because of the enormous bandwidths
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Figure 3.8: IFROG setup used by Stibenz and Steinmeyer in their 2005 paper [12]. The
input beam is split in two by the interferometer while a constantly moving stage induces a
variable delay on one of the interferometer arms. The two beams join together when leaving
the interferometer, propagating collinearily to a BBO crystal, where second-harmonic
generation takes place. The frequency doubled beam is guided to an optical multichannel
analyzer (OMA), which essentially divides the input spectrum to several channels, which
in turn are recorded by a fast line-scan CCD camera. The camera is triggered to take
shots at constant delay steps of 225 attoseconds, i.e., 1/12 of the wavelength for 800 nm.
This corresponds to roughly thrice the Nyquist limit of the second-harmonic field. Figure
adapted from Stibenz and Steinmeyer [12].

involved and the complex structures of the pulses [12,58]. Pulse shapes can become

more complex, e.g., due to leading or trailing satellites produced in pulse compres-

sion by supercontinuum generation. This, in turn, leads to complicated spectral

structures, which can pose a problem for both FROG and SPIDER. FROG has an

edge over SPIDER when dealing with complex pulse shapes, as sampling on a large

two-dimensional grid offers some redundancy. In FROG, the frequently employed

noncollinear geometry can distort the measured pulse profile as a finite crossing an-

gle causes a dependance of the zero delay position on the lateral dimension [41]. In

certain cases this can lead to an overestimation of the pulse duration by some 5–10%.

This can be compensated for by the use of special algorithms or by aperturing of the

central part of the beam. Another alternative is to use collinear geometry, which

avoids the problem in the first place. As an example, the IFROG measurement

setup used by Stibenz and Steinmeyer in [12] is illustrated in Figure 3.8.
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Collinear geometry can be implemented in FROG by replacing the background-

free autocorrelation with interferometric autocorrelation. This variant of FROG,

referred to as interferometric FROG (IFROG), was widely avoided because of the

overwhelming amount of data needed. This leads to slow convergence during recon-

struction and possibly even difficulties in meaningful interpretation of the measure-

ment. A trace of second-harmonic IFROG (SHIFROG) measurement, employing

SHG as the nonlinearity, contains modulation at both, the fundamental and the

second-harmonic periods. The Nyquist rate fN , which is the minimum sampling

rate required to measure a signal containing frequency components less or equal to

a frequency fmax without aliasing [69], is defined as

fN = 2 fmax . (3.14)

Thus a pulse with a carrier frequency f0 has a maximum frequency component of

fmax = 2f0 after SHG, setting the Nyquist rate at 4f0 = 1/4T0, i.e., the IFROG

measurement must be executed with a delay step ∆τ of less than a quarter of

an optical cycle. For a 800 nm pulse this translates to a delay step size of less

than 0.67 femtoseconds, so for a delay range of only ±100 fs, 300 spectra must be

measured. The measurement must also be carried out quickly in order to avoid

interferometer drift, or alternatively the interferometer must be actively stabilized,

adding to the complexity of the experiment.

The SHIFROG trace can be written as [59]:

ISHIFROG(ω, τ) ∝
∣

∣

∣

∣

∣

∣

+∞
∫

−∞

(E(t) + E(t − τ) )2 exp(−iωt) dt

∣

∣

∣

∣

∣

∣

2

. (3.15)

Recalling that the complex electric field E(t) can be written as a product of the

complex amplitude E(t) and modulation term at the carrier angular-frequency ω0

E(t) = E(t) eiω0t ,

Equation 3.15 may now be expanded. Fourier analysis of the resulting equation
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leads to the following form [58], where the substitution ∆ω = ω − 2ω0 is used,

ISHIFROG(ω, τ) ∝ |ESH(∆ω)|2 (3.16a)

+ cos [(2ω0 + ∆ω) τ ] |ESH(∆ω)|2 (3.16b)

+ 4 cos

[(

ω0 +
∆ω

2

)

τ

]

×

ℜ
[

ESHFROG(∆ω, τ) E∗

SH(∆ω) exp

(

i
∆ω

2
τ

)]

(3.16c)

+ 2 |ESHFROG(∆ω, τ)|2 . (3.16d)

Here ESH(∆ω) is the second-harmonic field of a pulse

ESH(∆ω) ≡
+∞
∫

−∞

E2(t) exp(−i∆ωt) dt , (3.17)

and ESHFROG(∆ω, τ) is the SHFROG field.

ESHFROG(∆ω, τ) ≡
+∞
∫

−∞

E(t)E(t − τ) exp(−i∆ωt) dt . (3.18)

The first term 3.16a describes the interaction of the pulse with itself and is respon-

sible for the background signal in IAC measurements employing the SHG nonlinear-

ity [59]. The second term 3.16b is the cross term of the two interfering SHG pulses,

containing the information already found in the first term, but it is modulated by

2ω in the delay-frequencies. However, unlike the first term, the second term cannot

be used for pulse retrieval. The interaction of the frequency-doubled E(t)E(t − τ)

field, the only field measured in AC, with the SHG fields of the two individual pulses

is expressed by the third term 3.16c modulated at the fundamental frequency ω0.

The fourth and final term 3.16d gives the ordinary SHFROG signal of Equation 3.4,

as ISHFROG = |ESHFROG|2. The different modulational bands are clearly visible in

Figure 3.9b, which is a Fourier transform of an IFROG trace measured by Stibenz

and Steinmeyer with the setup illustrated in Figure 3.8.

3.4.1 Retrieval from the IFROG Trace

By recognizing that IFROG is essentially a spectrally resolved IAC, integration of the

trace with respect to frequency recovers the autocorrelation similar to that depicted

in Figure 3.3. Thus, the integrity of the measured IFROG trace can be easily verified

during acquisition by confirming that the IAC displays the characteristic 1:8 ratio

between the background level and the zero delay peak. Measurement of the fringes
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(a) An interferometric FROG trace (b) FT of (a) along the delay axis

Figure 3.9: (a) On the left, an interferometric FROG trace measured by Stibenz and
Steinmeyer with the setup that was illustrated in Figure 3.8. (b) On the right, a Fourier
transform of (a) along the delay axis reveals the four different modulational sidebands and
the DC baseband (zero delay-frequency component) of the IFROG trace at equal distances
from each other. The different bands reside on delay frequencies equal to multiples of the
carrier frequency ω0, with the baseband centered on zero delay frequency. The two closest
sidebands on both sides of the baseband correspond to fundamental modulation at ±ω0,
while the two outer sidebands at ±2ω0 correspond to the second-harmonic component [12].

in IAC allows for self calibration of the delay axis, further improving the means to

detect experimental errors during the IFROG measurement.

The different modulational terms (3.16b, 3.16c) and the unmodulated DC part,

i.e, the zero delay-frequency component, (3.16a, 3.16d) can be extracted from the

IFROG trace by means of Fourier filtering. In this procedure the trace is Fourier

transformed with respect to the delay so that the the different components become

clearly visible in the delay-frequency domain. The desired components can then

be identified by their location on the delay-frequency axis and separated by setting

all the other components, along with either one of the two mirror bands of the

relevant modulational component found on equal distances from the origo in both

positive and negative frequencies, as zero and subsequently taking the inverse Fourier

transform back to the delay-time domain.

The unwrapping procedure described by Amat-Roldán et al. [59] used two dimen-

sional Fourier transform instead, reducing the error introduced by the fast Fourier

transform (FFT) algorithm because of assuming periodicity in the applied direc-

tion. The DC part was separated from the trace, and the term 3.16a was removed

by subtracting the background level of the DC part, which can be either measured

or averaged over several samples at the very edges of the delay axis, where the

SHFROG signal is negligible. This leaves only the noncollinear SHFROG trace

3.16d, for which one can use standard retrieval algorithms to reconstruct the pulse.

While Amat-Roldán et al. described how to acquire a standard SHFROG trace
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from IFROG measurements, Stibenz and Steinmeyer [12] went a step further by

recognizing that the different modulational components provide an independent way

to reconstruct the pulse, and that the information they provide can be used as an

additional cross check, especially valuable in the measurement of few-cycle pulses.

Here the pulse reconstruction relies on the retrieval of the phase ϕmod(ω, τ) of the

cosine in 3.16b, i.e., the phase of the SH sidebands. This is only possible if the fringe

structure of the sidebands is intact, which is not always the case. The retrieval of

the noncollinear SHFROG trace is, however, still possible even if the fringes are

smeared.

The phase ϕmod(ω, τ) ≡ (2ω0 + ∆ω)τ can be extracted from the Fourier filtered

SH sideband, arising from 3.16b, by retrieving its phase. One can also use this

modulated SH signal to independently reconstruct the delay τ by identifying the

marker fringes of the SH sidebands in the Fourier domain. Once acquired, ϕmod(ω, τ)

is used to extract the fundamental modulation term 3.16c from the IFROG trace by

erasing all but the fundamental sidebands in the delay-frequency domain, taking an

inverse Fourier transform back to the delay-time domain and multiplying the result

with cos(ϕmod/2). This multiplication eliminates the cosine in 3.16c and leaves only

the ℜ[] expression, dubbed as the fundamental modulation FROG (FM-FROG)

trace by Stibenz and Steinmeyer, which can also be expressed in the form

IFM-FROG ∝ |ESHFROG(∆ω, τ)| |ESHFROG(∆ω, τ = 0)| ×

cos

(

ϕSHFROG(∆ω, τ) − ϕSHFROG(∆ω, τ = 0) +
∆ω

2
τ

)

. (3.19)

Here ESHFROG(∆ω, τ = 0) = ESH(∆ω) and ϕSHFROG(∆ω, τ) and ϕSHFROG(∆ω, τ = 0)

are the phases of the SHFROG and the SH fields, respectively.

The correct sign of the FM-FROG trace, vital to a meaningful interpretation, is

ensured by this phase-sensitive technique. As the real part of the product of two

complex numbers can be negative, the FM-FROG trace can in fact exhibit nega-

tive portions. The cosine term connects the sign of the trace to its phase. For a

transform-limited Gaussian pulse the FM-FROG is almost entirely positive. In the

presence of chirp the phase ϕmod(ω, τ) is noticeably altered, and strong oscillations

in the FM-FROG can arise. Furthermore, satellite pulses can give rise to signifi-

cant negative portions in the trace. With the FM-FROG retrieved from the IFROG

trace, the modified GPA described in Section 3.3.2 can now be used to reconstruct

the pulse. Standard FROG strategies are not applicable here, as the projection step

present in most of these algorithms requires the knowledge of a signal field, which

is difficult to define for the trace in question.
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3.5 FROG for Nonlinearity Lifetime Measurement

The applications for FROG are not limited to pulse characterization. In their Nano

Letters paper of 2010 [13], Anderson et al. describe the use of IFROG to measure

the plasmon dephasing time of a metallic nanostructure.

Electron dephasing, which defines the initial interplay of an optical field with the

metal, is one of the fastest processes in metals with a time scale of but a few

femtoseconds. It also governs the temporal evolution of surface plasmon polari-

tons (SPPs)—coherent charge density oscillations of the quasi-free conduction band

electrons of the metal—which may both propagate or be localized. As the electron

dephasing time T2 is proportional to the local field enhancement of metallic nanopar-

ticles, it plays an important role in the functionality of plasmonic nanostructures

and optical antennas. Understanding of the ultrafast dynamics involved provides

valuable insight to theoretical models of electron behaviour in metals.

The extremely short time scale of the phenomena demands for an optical measure-

ment scheme involving ultrashort pulses. Operation in these extreme circumstances

makes signal analysis difficult, and because of this, previous attempts had relied

on several assumptions such as a transform-limited spectral phase of the driving

optical pulse, resulting in inaccuracies of the measured response. The use of FROG,

however, allows for the complete characterization of the optical response function

of a single metal nanostructure without specific assumptions of the resonance effect

involved.

Anderson et al. made two separate second-harmonic IFROG measurements, where

9.5 fs pulses with a center wavelength of 780 nm from a Ti:sapphire oscillator were

focused to a 20 µm spot and subjected first to a 50 µm thick BBO crystal, then a gold

nanotip with a tip radius of roughly 10–20 nm. The latter was chosen as its behaviour

is of great interest in many applications, such as tip-enhanced and tip-scattering

scanning near-field optical microscopy. The two IFROG traces were analyzed with

the Fourier filtering strategy for the DC band, described in Section 3.4.1, after which

commercial FROG pulse retrieval software was used to reconstruct the electric field

E(t) of the original pulse from the BBO measurement, and the plasmon dephasing

induced optical polarization P (t) from the gold nanotip measurement. By assuming

that the SHG response from the BBO crystal is nearly instantaneous, P (t) can be

described by the convolution of E(t) with the response function R(t) of the gold

nanotip

P (t) =

+∞
∫

−∞

R(t − τ)E(t) dτ . (3.20)
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Figure 3.10: Test setup used by Anderson et al. [13]. An IFROG trace of 9.5 fs laser pulses
from a Ti:sapphire oscillator is recorded after the pulses have interacted with one of the
samples. The BBO and metallic tip samples are movable, and used one at a time. An
image of the gold nanotip produced with a scanning electron microscope measurement is
presented in the lower right corner.

The response function may then be determined by applying standard deconvolution

strategies to the reconstructed fields E(t) and P (t).

The application of the procedure described above to the measurement data yielded

a response function with a shape bearing striking resemblance to that of an damped

harmonic oscillator

Rsim(t) = A exp(iωplt − γt/2) , (3.21)

where A is the effective oscillator strength, ωpl the plasmon resonance frequency,

and γt/2 the line width. Numerical fit of the damped harmonic oscillator model to

the measured response function gave a spectral line width of Γ = ~γ = 65 meV,

finally defining the measured plasmon dephasing time of the gold nanotip as T2 =

2~/Γ = 20 ± 5 fs. The experimental error of ±5 fs was based on the FROG errors

of the two IFROG traces. A schematic description of the measurement setup used

by Anderson et al. is shown in Figure 3.10.

A similar strategy can in principle be applied not only for plasmon dynamics, but

also for determining the lifetime of any optical response in a medium, provided that

the laser pulses used are sufficiently short, i.e., roughly in the same time scale as the

nonlinearity. By using a deconvolution approach, it is possible to gain information

of complex processes occurring on time scales even faster than the duration of the

laser pulse. In principle the time resolution is limited only by the signal-to-noise
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ratio of the experiment. The second-harmonic IFROG can be replaced with another

FROG technique, which can, e.g., remove the direction-of-time ambiguity of the

reconstructed pulses. In the following chapter an IFROG technique based on third-

harmonic generation is explored, and in Chapter 6 it is harnessed for estimating the

lifetime of an ultrafast χ(3) nonlinearity in a dielectric medium.



4. THIRD-HARMONIC INTERFEROMETRIC

FROG

Although the FROG geometries based on SHG are the most sensitive and frequently

employed [70], they have a number of weaknesses. Firstly, very thin, fragile, and ex-

pensive noncentrosymmetric crystals must be used in order to assure phase-matching

for the entire spectrum of the pulse. Secondly, they have a limited capability to mea-

sure asymmetric pulses because of the direction-of-time ambiguity.

In contrast, third-order FROG techniques do not suffer from this ambiguity [45,

71]. Instead, their use has been limited by the lack of materials with sufficiently

strong third-order nonlinearities such as the third-harmonic generation (THG). The

weak THG signals generated in materials such as fused silica require that sensitive

detection systems and high energy pulses are used.

For infrared laser wavelengths, surface third-harmonic generation (STHG) from an

air-glass interface has been a standard for third-order characterization of femtosec-

ond pulses with third-harmonic FROG and related techniques [72, 73]. Its many

advantages include an independence of wavelength and bandwidth, relatively high

THG conversion efficiency and strongly reduced phase-matching requirements.

Recently, both organic [70] and inorganic [14] thin films have been found to possess

a strong third-order nonlinearity, enabling the characterization of unamplified, low

energy pulses. Because of the high nonlinearity, extremely thin material layers may

be used, essentially removing all phase-matching constraints normally present in

nonlinear optics. This enables the conversion of broadband spectra without spectral

filtering and temporal broadening through dispersion, making FROG geometries

based on third-order processes particularly suited for the measurement of few-cycle

optical pulses. Such short pulses are especially vulnerable to the aforementioned ef-

fects, which are capable of corrupting the shape and duration of the measured pulse.

In addition to being immune to the direction-of-time ambiguity and the capability

of pulse asymmetry detection, it is also possible to make a distinction between pre-

and post-pulses with techniques exploiting the third-order autocorrelation [74], such
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as FROG.

While previous examples of FROG techniques based on third-order nonlinear ef-

fects used noncollinear geometries, there is no fundamental reason prohibiting the

collinear approach. And so it came to pass that the palette of available FROG

variants was recently augmented with a novel technique employing third-harmonic

generation as the nonlinearity in interferometric FROG.

4.1 The Technique

The first demonstration of the third-harmonic interferometric FROG (THIFROG)

technique was given by Das et al. in 2011 [14], who used it to characterize 15 fs

pulses from a Ti:sapphire oscillator. A commercial pulse retrieval software for THG

FROG was used to analyze the unmodulated DC kernel of the THIFROG trace,

leaving the modulational sidebands unused in the absence of a software capable of

reconstructing a third-order interferometric trace. Such a software will be presented

in this thesis, later on in Chapter 5.

One objective of the paper was to determine the optimal thickness for a TiO2 thin

film with the goal of producing a strong, wide band THG signal. Through third-

order autocorrelation measurements, it was found that the optimal layer width of

180 nm was capable of producing a THG signal up to 26 times stronger than that of

a surface third-harmonic generation (STHG) from a air-glass interface, which was

also studied for comparison. This experimentally determined thickness is close to

the theoretically predicted value of 160 nm, which is the coherence length of the

material in question, given by

LC =
λ

6 (n3 − n1)
(4.1)

for the THG process, approximately confirming the result. The values used here are

n1 = 2.23 for the refractive index of TiO2 at the fundamental wavelength of 800 nm

and n3 = 3.06 for that of the third-harmonic field at 266 nm, calculated using a

formula for the refractive index in the interband region as a function of energy [75]

with the experimental coefficients for the formula measured by Kim [76]. Typically,

nonlinear optical processes exhibit the highest frequency conversion efficiency with

layers as thick as the coherence length. By comparing the THG signals from a thin

film and an air–glass interface, the third-order nonlinearity of the thin film can be

quantified [77]. This method yielded an absolute value of χ(3) = 9.9 · 10−19 m2V−2

for the TiO2 thin film nonlinearity, exceeding the bulk TiO2 nonlinearity of χ(3) =

4.8 ·10−21 m2V−2 for 1064 nm by two orders of magnitude. Although the latter value
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was defined for a different wavelength, the authors argued that the corresponding

value for 800 nm is close to this. The high nonlinearity was attributed to surface

effects, as surface enhancement of third-order nonlinearity have previously been

reported in other materials [78, 79]. The above values for χ(3) were converted from

their reported values in the gaussian system to SI units with the relation [19]

χ(3)(m2 V−2) =
4 π

(3 · 104)2
· χ(3)(esu) . (4.2)

The experiments corroborated the fact that titania thin films are a well suited

medium for obtaining a strong THG signal over the entire bandwidth of a Ti:sapphire

oscillator, and when combined with THIFROG, they offer a viable alternative in the

characterization of ultrashort pulses. In comparison to most of the previously known

third-order pulse characterization techniques, THIFROG measurements from easily

fabricated titania thin films offer a significantly enhanced THG efficiency with a rel-

atively simple experimental setup and little restrictions on the suitable wavelength

region. A schematic description of the measurement setup used by Das et al. is

illustrated in Figure 4.1.

4.2 THIFROG Measurements for Silica and Titania Thin Films

In this thesis a pair of THIFROG measurements for silica (SiO2) and titania (TiO2)

thin films from a similar setup to that described in the previous section is being inves-

tigated. The measurements were conducted in the Max Born Institute for Nonlinear

Optics and Short Pulse Spectroscopy of Berlin, Germany by Das and coworkers in

fall 2011. The measured traces are presented in Figure 4.2. In the next chapter,

these measurements will be analyzed by performing simulations with a custom made

program, with the goal of reconstructing the measured THIFROG traces and the

pulses that conceived them. The originally identical pulses interact differently with

the two samples, and may expand in time during the nonlinear interaction with the

material. The reconstructed pulses are subsequently used to estimate the lifetime

of the third-order optical nonlinearity associated with the titania thin film sample,

as the difference in the durations of the frequency-tripled pulses for the two samples

serves as a measure for the lifetime of the nonlinear response.

This is walking on uncharted territory, as an entire THIFROG trace (Das et al. only

used the baseband for conventional THG pulse retrieval) has never been used for a

pulse retrieval—before now. This also constitutes the world’s first measurement of

the astonishingly short lifetime of a χ(3) nonlinearity in a dielectric.
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Figure 4.1: Experimental setup used by Das et al. for the detection of the THG signal
generated in a titania thin film, and for characterization of the 15 fs pulses with the
energy of 4 nJ and central wavelength of 800 nm produced by a Femtolasers Femtosource
Scientific Ti:sapphire oscillator with a 75.3 MHz repetition rate. An autocorrelation is
produced with the aid of the Michelson interferometer, composed of two mirrors and
a beam splitter (BS) circled on the left. The third-harmonic field is collected by a UV
transmitting microscope objective (MO) and separated from the residual fundamental field
by interference filters (IF). The beam is guided by an optical fiber (OF) into a grating
spectrometer and captured by an electron multiplying charge-coupled device (EMCCD)
providing gain for the measurement. Figure adapted from [14].

While the experimental setup used here follows the layout of Figure 4.1 closely, the

Ti:sapphire oscillator has been upgraded since the 2011 paper [14]. The new device is

a PULSE : ONE BASIC laser system by VENTEON [80], capable of delivering sub-

8 fs, possibly ≈ 6 fs transform limited pulses of 2.5 nJ energy at 80 MHz repetition

rate. Sample spectrum and an intensity envelope provided by the manufacturer

are presented in Figure 4.3 for reference. The hyperbolic secant squared, or sech2,

intensity envelope of the pulse in 4.3b is used as a model for the seed pulse in the

pulse retrieval software discussed in Chapter 5.

The two samples were prepared in Lazer Zentrum Hannover e.V. of Germany by

Dr. Marco Jupé and Prof. Dr. Detlev Ristau with a rugate filter manufacturing

system, where ion-beam sputtering is used to deposit layers of tunable width and

composition of source materials onto a substrate [81]. For these samples, a single

180 nm layer of pure titania and silica were deposited onto their own 1 mm thick

glass substrate of the brand "Suprasil 1 mm standard".



4. Third-Harmonic Interferometric FROG 36

(a)

200 230 260 290 320

200

220

240

260

280

300 (b)

150 190 230 270 310

795 2,306
W

av
el

en
gt

h
(n

m
)

Delay (fs)

Photon Count

Figure 4.2: Experimental data from THIFROG measurements of pulses which have tra-
versed (a) silica and (b) titania thin film samples. The bulk of the intensity distribution
with photon count of > 900 is the actual THIFROG signal, which is found near the 266 nm
wavelength of the third-harmonic field for the pulse centered at roughly 800 nm. The black
trails on either side of the intensity maxima in delay is the background signal, caused by a
single pulse which does not overlap in time with the second pulse. It should be noted that
the zero-point for delay is arbitrary in these measurements, so the fact that the maxima
of the traces are located in different delay coordinates is irrelevant.

(a) Spectrum (b) Intensity envelope

Figure 4.3: Sample spectrum (a) and intensity envelope (b) for a pulse produced by the
VENTEON | PULSE : ONE BASIC laser system employed in the THIFROG measure-
ments for silica and titania thin films. Screen captures from an advertisement [80].
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Because the optical properties and exact crystal structure of these thin films have

not been measured, literary sources are used to estimate the essential quantities.

There are three common polymorphs of titania found in nature: rutile, brookite

and anatase [82]. In addition to these, five synthetic crystal structures have been

discovered. Optical and physical properties of titania thin films are known to vary

widely even for samples prepared with nominally the same deposition techniques [83].

Measurements for the third-order nonlinear susceptibility of both anatase and rutile

titania thin films have yielded absolute values of χ(3) = 9.9 · 10−19 m2V−2 and

χ(3) = 5.9 · 10−19 m2V−2, respectively [84]. As the titania thins film samples in [14]

were reported to have a susceptibility of χ(3) = 9.9 · 10−19 m2V−2, which is exactly

the same as the previous value reported for anatase thin films, and since the samples

presented here have been fabricated in the same manner, it is concluded that the

titania thin film sample at hand is most likely anatase or at least shares similar

optical properties with anatase. The only quantity for the two samples required

in this thesis is the direct band gap. This value is subsequently used to evaluate

multiphoton absorption in the samples. For anatase phase, there have been reported

band gap values of 2.86 to 3.34 eV in the literature [85], with the majority of reported

values for similarly prepared samples found close to 3.2 eV [84]. This value of

Eg = 3.2 eV for the direct band gap is concluded to be representative for the

inspected titania thin film. For the silica sample, the value of Eg = 9 eV is used [86].

4.3 Structure of the THIFROG Trace

With the objective of gaining a deeper understanding of the structure and appear-

ance of a THIFROG trace, an analytical discussion on the formation of trace follows.

To the best of the author’s knowledge, this is the first analytical derivation of a equa-

tion describing the different components of a THIFROG trace ever published.

4.3.1 Derivation

Analogously to Equation 3.15, the THIFROG trace can be written as

ITHIFROG(ω, τ) ∝
∣

∣

∣

∣

∣

∣

+∞
∫

−∞

(E(t) + E(t − τ))3 e−iωt dt

∣

∣

∣

∣

∣

∣

2

. (4.3)

We will now proceed to expand this equation in order to arrive at a decomposition of

ITH
IFROG(ω, τ) similar to what was presented for ISHIFROG(ω, τ) in Equation 3.16. First,
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by recalling that E(t) = E(t) exp(iω0t), the cubic term in 4.3 is expanded

(E(t) + E(t − τ))3 =

[

E(t)eiω0t + E(t − τ) eiω0(t−τ)

]3

=ei3ω0t

[

E(t) + E(t − τ) e−iω0τ

]3

=ei3ω0t

[

E3(t) + 3 E2(t)E(t − τ) e−iω0τ

+ 3 E(t)E2(t − τ) e−i2ω0τ

+ E3(t − τ) e−i3ω0τ

]

. (4.4)

Inserting Equation 4.4 back into Equation 4.3 gives

ITHIFROG(ω, τ) ∝
∣

∣

∣

∣

∣

+∞
∫

−∞

[

E3(t) + 3E2(t)E(t − τ) e−iω0τ

+3 E(t)E2(t − τ) e−i2ω0τ

+E3(t − τ) e−i3ω0τ

]

e−i∆ωtdt

∣

∣

∣

∣

∣

2

, (4.5)

where the substitution ∆ω = ω−3ω0 was made. Writing the integrals of the different

terms in the sum separately yields

ITHIFROG(ω, τ) ∝
∣

∣

∣

∣

∣

+∞
∫

−∞

E3(t)e−i∆ωt dt (4.6a)

+ 3e−iω0τ ·
+∞
∫

−∞

E2(t)E(t − τ) e−i∆ωt dt (4.6b)

+ 3e−i2ω0τ ·
+∞
∫

−∞

E(t)E2(t − τ) e−i∆ωt dt (4.6c)

+ e−i3ω0τ ·
+∞
∫

−∞

E3(t − τ) e−i∆ωt dt

∣

∣

∣

∣

∣

2

. (4.6d)

This equation may be expressed in a more compact way by identifying the four

integrals it contains. The first of the integrals 4.6a is defined as the third-harmonic

field of a single pulse,

ETH(∆ω) ≡
+∞
∫

−∞

E3(t) e−i∆ωt dt . (4.7)

The second integral found in 4.6b is the standard third-harmonic FROG [34] field,
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present also in noncollinear third-harmonic FROG measurements,

ETHFROG(∆ω, τ) ≡
+∞
∫

−∞

E2(t)E(t − τ) e−i∆ωt dt . (4.8)

By using the translation property of the Fourier transform, the fourth integral in

4.6d becomes

+∞
∫

−∞

E3(t − τ)e−i∆ωt dt = e−i∆ωτ

+∞
∫

−∞

E3(t) e−i∆ωt dt

= e−i∆ωτ ETH(∆ω) . (4.9)

Similarily, the third integral in 4.6c can be written as

+∞
∫

−∞

E(t)E2(t − τ) e−i∆ωt dt = e−i∆ωτ

+∞
∫

−∞

E2(t)E(t + τ) e−i∆ωt dt

= e−i∆ωτ ETHFROG(∆ω, −τ) . (4.10)

Assuming that the third-harmonic FROG field is symmetric about the delay τ , that

is, ETHFROG(∆ω, τ) is an even function for τ

ETHFROG(∆ω, −τ) = ETHFROG(∆ω, τ) , ∀ τ , (4.11)

equation 4.6 can now, with the help of Equations 4.7–4.11, be written as

ITHIFROG(ω, τ) ∝
∣

∣

∣

∣

∣

ETH(∆ω)
[

1 + e−i(∆ω+3ω0)τ
]

(4.12a)

+ 3 ETHFROG(∆ω, τ)
[

1 + e−i(∆ω+ω0)τ
]

· e−iω0τ

∣

∣

∣

∣

∣

2

. (4.12b)

This is a squared norm of two complex entities, for which it holds true that

|z1 + z2|2 = (z1 + z2)
∗ · (z1 + z2) = |z1|2 + |z2|2 + 2 ℜ[z∗

1z2] , (4.13)
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where z1, z2 are complex. Applying Equation 4.13 on Equation 4.12 yields

ITHIFROG(ω, τ) ∝ |ETH(∆ω)|2 ×
∣

∣

∣

∣

∣

[

1 + e−i(∆ω+3ω0)τ
]

∣

∣

∣

∣

∣

2

(4.14a)

+ 9 |ETHFROG(∆ω, τ)|2 ×
∣

∣

∣

∣

∣

[

1 + e−i(∆ω+ω0)τ
]

∣

∣

∣

∣

∣

2

(4.14b)

+ 3 · 2ℜ
{

E∗

TH
(∆ω)ETHFROG(∆ω, τ) × (4.14c)

[

1 + ei(∆ω+3ω0)τ
]

× (4.14d)
[

1 + e−i(∆ω+ω0)τ
]

× (4.14e)

e−iω0τ

}

. (4.14f)

Taking a closer look at the third term in the above sum, the three exponential

containing terms of 4.14d, 4.14e and 4.14f inside the ℜ{ } expression are multiplied

[

1 + ei(∆ω+3ω0)τ
]

×
[

1 + e−i(∆ω+ω0)τ
]

× e−iω0τ

=
[

1 + ei2ω0τ + ei(∆ω+3ω0)τ + e−i(∆ω+ω0)τ
]

× e−iω0τ

=e−iω0τ + eiω0τ + ei(∆ω+2ω0)τ + e−i(∆ω+2ω0)τ , (4.15)

and since the sum of a complex number and its complex conjugate is z +z∗ = 2ℜ[z],

we see that the four exponential terms in 4.15 can be written as a sum of two cosines

e−iω0τ + eiω0τ + ei(∆ω+2ω0)τ + e−i(∆ω+2ω0)τ

=2
[

cos(ω0τ) + cos ( (∆ω + 2ω0)τ )
]

, (4.16)

which is a real quantity. Noticing that terms of the form
∣

∣

∣1 + eiφ
∣

∣

∣

2
can be expanded

using Equation 4.13 as

∣

∣

∣1 + eiφ
∣

∣

∣

2
= |1|2 +

∣

∣

∣eiφ
∣

∣

∣

2
+ 2 ℜ[1∗ · eiφ]

= 1 + 1 + 2 cos φ

= 2 (1 + cos φ) , (4.17)

the first two terms in Equation 4.14 can be written anew so that 4.14a becomes

|ETH(∆ω)|2 ×
∣

∣

∣

∣

∣

[

1 + e−i(∆ω+3ω0)τ
]

∣

∣

∣

∣

∣

2

=2 |ETH(∆ω)|2 ×
[

1 + cos ((∆ω + 3ω0)τ)
]

, (4.18)
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and similarily for 4.14b,

9 |ETHFROG(∆ω, τ)|2 ×
∣

∣

∣

∣

∣

[

1 + e−i(∆ω+ω0)τ
]

∣

∣

∣

∣

∣

2

=2 · 9 |ETHFROG(∆ω, τ)|2 ×
[

1 + cos ((∆ω + ω0)τ)
]

. (4.19)

Now, by inserting Equations 4.16, 4.18 and 4.19 into 4.14 we have

ITHIFROG(ω, τ) ∝ 2 · |ETH(∆ω)|2 ×
[

1 + cos ( (∆ω + 3ω0)τ )
]

(4.20a)

+ 2 · 9 |ETHFROG(∆ω, τ)|2 ×
[

1 + cos ( (∆ω + ω0)τ )
]

(4.20b)

+ 2 · 2 · 3 ℜ
[

E∗

TH
(∆ω) ETHFROG(∆ω, τ)

]

× (4.20c)
[

cos(ω0τ) + cos ( (∆ω + 2ω0)τ )
]

, (4.20d)

where the cosines of Equation 4.16 were ejected from the ℜ{} expression as they are

real. Dividing by 2 and rearraging finally yields the dissected form of the original

Equation 4.3,

ITHIFROG(ω, τ) ∝ |ETH(∆ω)|2 + 9 |ETHFROG(∆ω, τ)|2 (4.21a)

+ 6 cos (ω0τ) × ℜ
[

E∗

TH
(∆ω)ETHFROG(∆ω, τ)

]

(4.21b)

+ 9 cos ( (∆ω + ω0)τ ) × |ETHFROG(∆ω, τ)|2 (4.21c)

+ 6 cos ( (∆ω + 2 ω0)τ ) × ℜ
[

E∗

TH
(∆ω)ETHFROG(∆ω, τ)

]

(4.21d)

+ cos ( (∆ω + 3 ω0)τ ) × |ETH(∆ω)|2 . (4.21e)

4.3.2 Interpretation

The unmodulated first two terms in 4.21e are the fundamental third-harmonic field

and the regular third-harmonic FROG trace, respectively, together forming the DC

baseband of the THIFROG trace. The third (b) and fourth terms (c) are both

modulated at the carrier frequency ω0, although only (b) has a modulation which

stays constant at different frequencies of the trace. The terms (c–e) are modulated

at 1, 2, and 3 times ω0, respectively. Because of the presence of the term ∆ω ·τ in the

cosines of (c–e), the modulation frequency of these terms at THIFROG frequencies

above 3 ω0 is increased, while the modulation frequency below it is decreased. As can

be observed from the example THIFROG trace in Figure 4.4a, this gives the fringes

around the center of the trace their skewed appearance, as they experience ever faster

modulation when moving to higher frequencies (lower wavelengths) of the trace.

Since the first and the last terms are the only terms without a factor of 6 or 9, it is

expected that these coincidentally only terms including the plain THG intensity are
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Figure 4.4: THIFROG trace (a) and its Fourier transform along the delay axis (b), where
the different delay components are clearly visible as separate bands. Sidebands at ± ω0

correspond to the fundamental modulation component of the trace, i.e., the FM-band,
while sidebands at ±2 ω0 and ±3 ω0 correspond to the higher harmonic sub-traces.

left in the shadow of the stronger terms, all of which contain the THFROG electric

field. As the fundamental modulation consists of two terms, (b) and (c) with factors

of 6 and 9, respectively, it is though to be the strongest as the 2 ω0 modulated term

has only a factor 6 and 3 ω0 has none. This finding is also supported by inspecting

Figure 4.4b, the Fourier transform of a THIFROG trace in the delay-frequency

space, where the first two sidebands corresponding to modulation at the fundamental

frequency are the strongest, and subsequent sidebands are always weaker than the

one before. As predicted by the equation 4.21, exactly three pairs of sidebands are

found, as can be observed in the figure.

4.3.3 Evaluation

The formulation of Equation 4.21 relies on two assumptions. Firstly, the two pulses

must have identical amplitude profiles, that is, the pulses have identical electric

fields at zero delay

Eundelayed(t) = Edelayed(t − τ) , τ = 0 . (4.22)

This is assumed in the formulation of all the traditional FROG traces described

by Trebino [34]. Such an assumption, however, does not hold if the power of the

incident beam is not equally divided unto the two interferometer arms, e.g., because

the beam splitter might not have a perfect 50/50 division ratio, or even worse,

the ratio might not be the same for the entire frequency bandwidth of the pulse

resulting in distortions. As this fact is not considered a problem in the formulation

of other analytical FROG equations, there is no reason why this should be a matter

of concern with THIFROG either. The second assumption stated in Equation 4.11,
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however, is not always justified, as THG FROG traces are generally not perfectly

symmetric with respect to delay [9,45]. The use of Equation 4.21 to separate different

components of the trace is therefore unjustified in the general case, and instead

the untreated Equation 4.3 must be used for pulse retrieval. Nevertheless, the

dissected form of Equation 4.21 is a valuable tool in understanding the structure of a

THIFROG trace. It clearly states the presence of a DC-term and modulational terms

at three distinct frequencies, responsible for the fringe structure seen in THIFROG

traces, the skewness of the fringes, and the decreasing magnitude of sidebands with

increasing modulation frequency.



5. PULSE RETRIEVAL SOFTWARE

In this chapter the Reconstruction program—a pulse retrieval software constructed

and designed specifically for the purposes of this thesis—is discussed. Implemented

on MATLAB, the program consists of over twenty functions, revolving around the

main function dubbed as Reconstruction. The source code is provided in its

entirety in Appendix A. The different aspects and key features of the program are

divided into the following sections. The general strategy for pulse reconstruction 5.1,

computation of the trace 5.2, use of Fourier filtering to obtain the sub-traces 5.3, and

the simplex algorithm used in the optimization 5.4 are discussed. Afterwards, the

actual use of the program is outlined in Section 5.5, and discussed more thoroughly

in Sections 5.6 and 5.7.

5.1 Strategy for Pulse Reconstruction

In its core, the Reconstruction program seeks a pulse whose THIFROG trace best

matches the experimental data provided to the program. Beginning with a seed

pulse, the amplitude and the phase of the pulse is iteratively adjusted at a precon-

figured number of data points to produce a better fitting trace.

In practice the program uses a built-in MATLAB function fminsearch to optimize

the pulse. This function is an implementation of the Nelder–Mead simplex algorithm,

which will be discussed in detail in Subsection 5.4.2. The fminsearch function tries

to minimize the FROG error (see Equation 3.10), which is calculated from the

current iteration of the pulse by following a procedure described in the flowchart of

Figure 5.1. The traces per se are not used to calculate the FROG error, which is

instead composed of the weighed sum of the errors of the different delay-frequency

bands of the traces, which are discussed in Section 5.3. The user may decide which

bands to use and how to weigh them.

Once the FROG error has diminished to a certain level, the algorithm terminates.

In practice, however, this might never happen if the local minimum the algorithm

is converging toward is simply too far off from the optimal solution, making it

impossible to decrease the error beyond a certain degree. Another possibility is that
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Start with an initial guess for pulse

Calculate trace from pulse Break trace into delay-frequency components

Compare to data and calculate FROG-errorNew iteration for pulse

Are stopping criteria met?

No

Terminate

Yes!

Figure 5.1: Flowchart for the pulse reconstruction strategy followed in the program. First,
the program creates a complex-valued seed pulse based on the user provided parameters.
The trace of the seed pulse is computed with a procedure further described in Section 5.2.
The trace is broken into its selected delay-frequency components, or sub-traces, by Fourier
filtering discussed in Section 5.3. The measure for the goodness of the fit is a weighed
sum of the FROG errors of the sub-traces in comparison to the measurement data. Each
of the FROG errors are calculated as is described in Subsection 3.3.3. The program
uses a simplex algorithm, the subject of Subsection 5.4.2, to minimize the weighed error
by adjusting the pulse so that the trace it produces better fits the measurement data.
The algorithm will converge towards a local minimum of the FROG error and produce a
possible solution—the reconstructed pulse—for the inverse problem at hand.

the convergence speed stagnates so severely that it would take an impractical amount

of computation time to reach the desired magnitude of error. For these reasons, the

algorithm will terminate after a preconfigured time has elapsed. For the simulations

presented in Chapter 6 this time limit was 24 hours. It should be noted that speed

was not a priority when the program was designed, as the goal is to successfully

reconstruct the traces as accurately as possible. Since only a few simulations were

needed, it is perfectly reasonable to allow a full day for each simulation to finish.
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5.2 A Pulse and its Trace

The THIFROG trace of a laser pulse is measured by recording the third-harmonic

field generated by the pulse and its copy with a spectrometer, so that the replica

pulse is variably delayed in respect to the original. The result is a two dimen-

sional, frequency versus delay image—a spectrogram. This measurement can be

readily simulated. The procedure for computing the trace of a pulse is illustrated in

Figure 5.2, and will be discussed in detail next.

5.2.1 Computation of a Trace

Beginning with the complex-valued seed pulse sampled at twice the frequency of

the delay step, but with half the length in time than that of the delay axis, two

matrices are formed. The first matrix is for the undelayed pulse. The delay axis

τ for the matrices ranges from τ = −γ to τ = +γ, where γ is the length of the

time axis for the pulse. The delay axis is identical to the one of the measured trace,

after it has been prepared for the program. The time axis is 3 γ long, or thrice the

length of the pulse. The reason for this becomes obvious when the second matrix

is introduced. The undelayed pulse is copied onto each delay coordinate with zero

padding of length γ on both sides, producing the first matrix depicted in Figure 5.2b.

The second matrix of Figure 5.2c is for the delayed pulse. On the two extremes

of delay, the pulse is delayed by an amount equal to its length in time so that on

the left side at τ = −γ, the delayed pulse actually precedes the undelayed pulse in

time exactly enough so that the two pulses do not overlap in time at all. At the

center of the delay axis lies the zero delay point τ = 0, where the two pulses are

perfectly aligned. On the right at τ = +γ the delayed pulse is lagging right behind

the original pulse.

Each complex element of the first matrix is added to the corresponding element of

the second matrix, and each element of the resulting sum matrix is raised to the

third power. This represents the physical third-harmonic generation process, where

the cube of the electric field produces light at new frequencies. The resulting matrix

in Figure 5.2d is the trace of the two pulses in time-delay (t, τ) space. The more

familiar frequency-delay (ν, τ) picture is formed by taking the Fourier transform

of the sum matrix along the time axis, yielding the simulated THIFROG trace of

Figure 5.2e. This entire procedure is essentially a discretization of Equation 4.3.

If the delay axis were any longer (or the pulse any shorter), no new, relevant infor-

mation would be obtained. The THIFROG trace on larger delays would look
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Figure 5.2: Schematic presentation, explaining how the trace of a pulse is calculated in
the program. The pulse (a) is used to generate two zero-padded matrices: (b) one with
no delay imposed upon the pulse and (c) a second with a variable delay. The respective

matrices M (1) and M (2) are inserted into the equation Itδ = (M
(1)
tδ + D · M

(2)
tδ )3, where D

is the division factor of the beam splitter, to produce (d) the trace ITHIFROG(t, δ). Fourier
transform along the time axis yields (e) the THIFROG trace in the frequency domain. All
of the plotted quantities are absolutes of the complex-valued quantities.

exactly the same as on current the edges at τ = ±γ, as the two pulses would not

overlap in time at all, producing a third-harmonic signal of twice the third-harmonic

signal of a single pulse, regardless of how large the delay would be. Any shorter

delay axis (or a longer pulse) and the trace would not be fully computed, as part of

the trace produced by overlapping pulses would reside in larger delays than fit the

picture. The choice for the maximum pulse length (γ) of half the delay axis length

(2γ) is therefore optimal.

During the reconstruction, a new pulse is formed several times in every iteration by

adjusting the pulse of the previous iteration at preconfigured number of optimiza-
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tion points. Typically there are less of these points than there are time samples of

the pulse. Therefore, the pulse to be adjusted has to be sampled at the optimization

points before altering any values. This is achieved by linear interpolation of ampli-

tude and phase of the pulse. The interpolated values are altered by the optimization

algorithm, after which the pulse is again sampled at the original time axis by linear

interpolation. The complex-valued equivalent of the pulse is computed, and only

after this is the trace of the adjusted pulse computed to determine, whether it is a

better fit than the trace produced by the previous pulse. Should this be the case,

the new pulse takes the place of the previous pulse, and a new iteration cycle begins.

5.2.2 The Seed Pulse

The very first pulse, referred to as the seed pulse, is formed by using the following

formula to produce a bell like shape for the amplitude profile of the pulse,

A(t) =
2

exp(t/tf) + exp(−t/tr)
, (5.1)

where tr and tf the rise and the fall times, respectively. The rise and fall times (from

10% to 90% intensity and vice versa) for a particular THIFROG trace are estimated

by the user with the assistance of the program, as is explained in Subsection 5.6.

Essentially, Equation 5.1 is a hyperbolic secant shaped amplitude profile, making the

intensity profile sech2 shaped, with asymmetric rise and fall times. This corresponds

to the assumed shape of the pulses produced by the VENTEON laser system —

used in the experimental setup for the THIFROG traces analyzed in Chapter 6—

as was presented in Figure 4.3b, with the added possibility for asymmetry. Such

asymmetry can be induced in the pulse when it interacts with the samples, so

allowing the software to start with an asymmetric seed pulse can lead to a faster

initial convergence and decrease overall computation time. To reduce the presence

of often irrelevant intensity distribution near the edges of the time range for the

simulated pulse, a Blackman window function [87] is used to force the electric field

amplitude of the pulse to zero at the very edges. A flat phase of π radians is used.

Another alternative would be to use random noise for the phase, but the flat phase

proved to be a more reliable option during testing. The fact that the phase level

is set at π radians instead of zero is because the optimization algorithm functions

more reliably when working with finite numbers instead of values close to zero. The

pulse in Figure 5.2a is formed in this manner with equal rise and fall times and a

flat phase.
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5.2.3 Pulse Representations

Although the figures produced by the program always present the pulse by its inten-

sity and phase profiles, and the optimization is accomplished by modifying the am-

plitude and phase instead of the complex electric field, the pulse is always converted

into complex form in order to compute its THIFROG trace. This is accomplished

simply by using Equation 2.30, i.e.,

Ẽ(t) = A(t)e−i( ω0t+ϕ(t) ) .

In order to go back to the amplitude and phase representation from the complex

field Ẽ(t), the amplitude is obtained by

A(t) =

√

∣

∣

∣Ẽ(t)
∣

∣

∣

2
, (5.2)

and the phase by using a built-in MATLAB function phase.

There is no fundamental reason why the optimization could not be realized by

adjusting the real and imaginary parts of the complex electric field Ẽ(t) instead of

the amplitude A(t) and phase ϕ(t). This choice was simply a matter of convenience

in the programming, and of personal preference, as the author finds the amplitude

and phase representation of the physical pulse to be the more intuitive one out of

the two options.

5.3 Fourier filtering

An essential role in the pulse reconstruction sequence is played by the method of

Fourier filtering. In general, the filtering procedure involves a transform to the

spectral domain of a quantity, applying a desired filtering function to mitigate the

presence of certain frequency components, and finally an inverse Fourier transform

back to the temporal domain. Fourier filtering is used extensively in the fields of

digital image processing [88] and signal processing [89]. Typical uses include removal

of high frequency noise from a signal through low-pass filtering, image sharpening or

compression, or isolation of a certain frequency band through band-pass filtering to

study it without the interfering presence of other frequency components. The last

of the examples is applied also in this thesis.
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5.3.1 Fourier Filtering in Pulse Retrieval

The reconstruction program uses Fourier filtering to extract different delay-frequency

bands or sub-traces from both the measured THIFROG trace as well as the simu-

lated trace, so that these sub-traces may be compared and used as a measure for the

goodness of the fit. The reason for this is that because the fringes of the THIFROG

trace are quite narrow, less than a femtosecond wide, it can be difficult to match

the positions of the calculated and measured traces along the delay-axis so that the

fringes of the two traces would overlap correctly from the very start of the recon-

struction. Should this positioning fail, the algorithm might not be able to correct

this delay shift, making convergence to a possible solution impossible. The DC-

baseband or simply baseband (zero delay-frequency component) of a trace, however,

does not contain any fringes, so a slight offset in delay can eventually be corrected

by slowly adjusting the pulse so that the basebands of the two traces match. One

could optionally use the fundamental modulation or the higher harmonic sidebands,

i.e., the delay-frequency components of the trace that are modulated at the carrier

frequency ω0 or at 2ω0 for the fitting procedure. The program allows for the use of

any combination of the sub-traces excluding the third-harmonic sideband modulated

at 3ω0, which should not contain any useful information for the pulse retrieval.

The optimization of the pulse is a computationally intensive process, largely due to

the fact that after each adjustment of the phase and the amplitude of the pulse,

the trace has to be calculated first (which already involves one Fourier transform),

its bands have to be extracted (2 transforms for each band, one forward and one

inverse) and only then can the error of the fit be calculated to establish whether the

adjustments were for better or for worse. When both the baseband and the FM-

band are used in the reconstruction, each iteration of the pulse requires 5 Fourier

transforms. The first transform to compute the trace is executed with the well

established fast Fourier transform (FFT) algorithm [90], which is a computationally

very effective method for the task. Unfortunately, FFT in MATLAB computes

the discrete Fourier transform (DFT) for all the frequency samples in the range

−ωmax . . . + ωmax, where ωmax is the maximum frequency, dictated by the number

of points the FFT is evaluated at. In the sub-band extraction this information

is not required, as the approximate location of the sought after band in the delay-

frequency domain is well established to be a multiple of the carrier frequency ω0. The

data corresponding to the second-harmonic sideband, for example, resides within

small stretches around the delay-frequencies +2 ω0 and −2 ω0. Furthermore, the

Fourier transform has the property that for real valued data, the transform is self-

adjoint [91], i.e., the data in the negative frequencies equals to the complex conjugate

of the corresponding positive frequencies. Since the trace is real valued measurement
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data, its transform at the negative frequencies can in fact be derived from the

signal at the positive frequencies. This information is, however, useless for our

purposes—except for the baseband computation, where half of the band resides in

negative frequencies and is obtained from the positive half using the self-adjoint

property. Otherwise the computation of the baseband follows the same principle as

the harmonic sub-band extraction described next.

5.3.2 The Filtering Procedure

In order to extract a harmonic band, it is sufficient to calculate the Fourier transform

for the positive frequencies in the vicinity of the appropriate multiple of ω0. This

is accomplished by using a custom build function, which is essentially a variation of

the standard DFT formula [91],

Hn =
N−1
∑

k=0

hke2πikn/N . (5.3)

The equation above maps N complex variables, hk, from the original domain to N

complex variables, Hn, in the Fourier domain. k and n are indices for the samples

in their respective domains. The indices n for the samples Hn corresponding to

the relevant frequencies can be calculated, and k takes all the values from 0 to

N − 1, where N is the number of delay samples. The fact that the FT is always

calculated for the same frequencies, makes the job much easier. The exponential

term of Equation 5.3 needs to be calculated only once for each sub-band, whereas

the built-in FFT function would do this every single time. The only variable which

varies on each iteration of the reconstruction is the the trace data hk, so the program

multiplies the new hk with the already known exponential terms and computes the

sum of these to obtain Hn. Note that this function only performs the DFT for the

strip of data at a single frequency, so the function has to be run for each frequency

sample separately.

No filtering of the transformed data is required as only relevant frequencies were

transformed. Instead, an inverse DFT is executed, following a similar formula to

the forward DFT of Equation 5.3,

hk =
1

N

N−1
∑

n=0

Hne−2πikn/N . (5.4)

The exponential term in the above equation is identical to that of the previous

equation aside for the minus sign, and again it is necessary to calculate this term

only once for each sub-band. After applying the inverse DFT, the sub-band has
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Figure 5.3: Fourier filtering of the baseband. The trace (a) is Fourier transformed along
the delay axis to produce (b) the trace in delay-frequency domain, where the different
delay components are clearly visible as separate bands. Sidebands at ± ω0 correspond to
the fundamental modulation component of the trace, i.e., the FM-band, while sidebands
at ±2 ω0 and ±3 ω0 correspond to the higher harmonic sub-traces. In order to preserve
only the DC baseband, all but the band around zero delay-frequency are removed (c).
Taking an inverse Fourier transform back to delay space yields the baseband (d). The
THIFROG trace in (a) is a close-up of actual experimental data for the silica thin film
after some initial processing, seen in Figure 6.1c with a different color map.

been extracted. The procedure of Fourier filtering the baseband from a trace is

demonstrated in Figure 5.3. FFT is still used for the calculation of the trace, because

all the positive frequencies beginning from 0 are used, negating the gain for using

the custom built DFT function as one of its main advantages is the selection of

only a handful of frequencies. The built-in FFT function is also much more simple

to implement. The decision to use it made the already quite complex program a

bit tidier, and encountering programming errors a slightly less likely event during

development.

5.4 Optimization

Optimization is the act of minimizing or maximizing a function. These two are

trivially connected as min[f(x)] = −max[f(x)], so only minimizing is referred to

from here on. Different kinds of functions, or different kinds of problems, have their

own peculiarities, and a poor choice of algorithm can mean that the problem stays

unsolved. There is a plethora of optimization algorithms available. Each of them

have their strengths and weaknesses, and some are better suited to a particular

problem than others. The reasons why Nelder–Mead simplex algorithm was chosen

for the problem at hand, the pulse retrieval, is discussed next.
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5.4.1 Choice of Algorithm

Optimization algorithms can be categorized by a few qualities [91]. First one is

the scope, or whether the algorithm is equipped to search for a local, or a global

minimum. Second is the use of derivatives, i.e., whether the algorithm requires their

computation or not. Third are the constraints, whether the algorithm makes use of

a priori limits for the function or its form, e.g., a variable to be optimized might be

required to be positive. Fourth is whether the function is linear or not. Fifth is the

dimension, are the variables scalar, or are they vectors? One factor is also the use

of memory: if the algorithm requires a lot of memory with many variables, its use

may be effectively prohibited for problems with large amount of variables. Speed of

convergence is always wanted, but it is not essential for every problem.

Let us go through the different qualities one by one for the case of the pulse retrieval

problem.

1. Global minimum is desired, of course, but this can be extremely difficult to

find. Since an approximate solution can be devised, i.e., the seed pulse can be

formed by evaluating the width of the baseband and the carrier frequency can

also be approximately defined, finding a local minimum should be sufficient.

2. The derivatives cannot be computed for the function used in the pulse retrieval,

i.e., Equation 4.3.

3. The problem is unconstrained. The complex electric field can, in principle,

have any values. However, it is possible to limit the normalized intensity

values to 0 . . . 1, but this was not considered necessary.

4. The function is nonlinear, as the relation between the pulse and the trace,

given by Equation 4.3, is certainly not linear.

5. The problem is multidimensional. There are as many variables as there are

evaluation points for the pulse envelope times two, since both phase and am-

plitude are adjusted. For the simulations of Chapter 6, there were 50 points

where the pulse was evaluated, so there were 100 variables to be optimized.

This is a fairly large quantity.

These qualities narrow down the list of possible choices. Gradient methods cannot

be used as the derivatives are unknown. Instead, a direct search method, where

only the function values are adjusted, is required. Linear programming is not pos-

sible because of the nonlinearity of the function. Monte Carlo method is a global
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method, but due to the complexity of the problem, the use of this method would

result in poor convergence, so that finding a global minimum would be hopeless.

Only two viable options are left: Nelder–Mead and Powell’s method [92]. Both are

local strategies that are also unconstrained, direct search methods suitable for mul-

tidimensional problems. Powell’s method should be faster, but it is more difficult to

implement [91]. The Nelder–Mead, on the other hand, is already implemented on

MATLAB. Because speed is not the main concern here, the simpler but somewhat

slower Nelder–Mead is chosen.

5.4.2 Simplex Algorithm

The MATLAB–function fminsearch is based upon the simplex algorithm described

by Lagarias et. al [93], which is, in turn, an improved version of a famous and widely

used method for nonlinear unconstrained optimization, the Nelder–Mead simplex

algorithm, first published in 1965 [94]. The algorithm, also known as the amoeba

algorithm or the downhill simplex method [91], is used to minimize a scalar–valued

nonlinear function of n real valuables without any knowledge about the derivatives of

the said function. Since the functions that are to be minimized in the context of this

thesis, i.e., the laser pulses, are complex-valued, the pulse is converted in to its phase

and amplitude representation following the procedure described in Subsection 5.2.3,

so that the algorithm only has to deal with real valued data. The Nelder–Mead

algorithm is a direct-search method as only the function values are adjusted in the

course of an iteration cycle of the optimization.

The simplex is a geometrical figure of non-zero volume formed by N + 1 points or

vertices in N -dimensional space. Furthermore, the simplex is the convex hull, i.e.,

the smallest convex set that contains all of the N + 1 vertices. The concept of a

convex hull can be visualized in two dimensions by imagining a rubber band flexed

around all the vertices as tightly as possible, the area enclosed by the rubber band

thus forming the convex hull. A convex set is a set in which any pair of two points

can be connected with a straight line segment so that the line segment itself is also

contained within the set. An example of a nonconvex set could be a crescent shape

or any shape with a hole in it.

Each iteration of the Nelder–Mead algorithm begins with a simplex, the first one

being the initial guess hopefully close to the minimum to be found. The algorithm

then decides which of the five procedures, illustrated in Figure 5.4, is to be used

to obtain a new vertex to replace the vertex with the highest function value, thus

forming a simplex for the next iteration cycle. The simplex adjusts itself to the

"local landscape" in the N-dimensional space by contracting in the neighbourhood
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Figure 5.4: The five possible steps to modify a simplex in an iteration cycle of the Nelder–
Mead algorithm. The original simplex, in this case a triangle, is shown on the left, while
the outcomes of the different operations are on the right along with the original simplex
(dashed line). These operations are: (a) reflection away from the high point, (b) a reflection
and an expansion away from the high point, (c) outside contraction, (d) inside contraction
and (e) shrinking toward the low point (the point with the lowest function value) along
every dimension. The point x̄ =

∑N
i=1 xi/N is the centroid of all vertices excluding the

high point xh, i.e., the point which gives the highest value of the minimizing function, and
xr is the reflection of the high point through x̄. By choosing an appropriate sequence of
these steps a convergence toward a local minimum will result in most cases [91,93].

of a minimum, stretching down along inclined planes and changing direction when

a valley is encountered at an angle.

The Nelder–Mead algorithm does not always converge for general nonconvex func-

tions, such as Equation 4.3, but it has been found to work well in practice and to

provide a rapid initial decrease in function values [93].

5.5 Work Flow

The pulse retrieval software consists of three parts relevant to the user: the function

to prepare the data, the script to run the main function, and the graphical user

interface for controlling the pulse retrieval. The operation of the three is outlined

in the following steps.



5. Pulse Retrieval Software 56

1. Start by running the PrepareData function to prepare experimental data for

the use of the program. This will create two files, labelled with the letters D

and P for data and parameters, respectively. See Section 5.6 for details.

2. Use a script to provide the necessary parameters for the Reconstruction func-

tion, and to start the simulation. The parameters are explained in Subsection 5.7.1.

3. Use the graphical user interface of the main program to monitor and control

the pulse retrieval. This discussed in Subsection 5.7.3.

4. Once the pulse retrieval is terminated, either automatically or by the user, the

data produced by the simulation is saved to a predefined location.

An example of a script for step (2) is provided in the file DataGenerator.m in

Appendix A. This script enables the use of an automated sequence to run several

simulations in succession and saving the produced data in a convenient location,

e.g., in the subfolders of the program. Although the user might wish to observe the

progress of the optimization and possibly decide to terminate the simulation once

convergence begins to stagnate, it can be a good idea to let the simulations run their

course and see the results once everything is finished, as a single simulation might

take quite some time to finish. The simulations presented in the following chapter

had a time limit of 24 hours each, taking all together almost a week to finish!

5.6 Preparations for Experimental Data

Before the measurement data is used for pulse retrieval, one must provide the pro-

gram with important parameters about the data with the custom build

PrepareData function. The function will assist the user in this procedure with

a graphical user interface (GUI). The parameters that need to be defined are: mini-

mum wavelength, maximum wavelength, minimum delay, maximum delay, rise time,

fall time, optical cycle length, delay step size for optimization, power division of the

beam splitter and the coordinates for the point of zero delay and center frequency.

These will be discussed next.

5.6.1 Parameters

The minimum and maximum wavelengths and delays are parameters used in the

original measurement and are provided along the data by the Max Born Institute.

The rise and fall times and the optical cycle length are graphically estimated by the
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user with the aid of the PrepareData function and are used to make an estimate

for the width of the pulse envelope for the seed pulse.

The optical cycle length is deduced from the fringe spacing of the trace as the fringes

are known to be separated by a delay ∆τ = λ0/c. This is simply because there is

a local intensity maximum of the trace whenever the two pulses overlap perfectly,

which occurs periodically after a delay equal to a full optical cycle. As the length

of the optical cycle depends on the wavelength, and the pulses contain a range of

wavelengths, the THIFROG trace is in turn spread over a range of wavelengths

corresponding to the sum of the frequencies of the frequency–tripled photons. Since

only a single value of the optical cycle is used for the initial estimate of the width of

the pulse envelope in the program, the selection the wavelength for which the optical

cycle is deduced represents an ambiguity. The user should select a wavelength close

to the center of the THIFROG as it is the most representative wavelength possible.

This ambiguity, however, is ultimately only a minor concern, as the carrier frequency

is deduced separately, and this value of the optical cycle length is used only for

forming the seed pulse envelope.

In order to determine the location of the zero delay point, i.e., the value of delay that

corresponds to the maximal overlap of the two pulses, and of the central frequency,

from which the carrier frequency used in the slowly varying envelope approximation

is obtained, the user is assisted graphically to Fourier filter the baseband of the

trace. The baseband is extracted for the reason that it can be difficult to estimate

the sought after point from the original, highly modulated trace, where a single

fringe is represented by only a couple of delay coordinates, making the pinpointing

of the peak of a fringe problematic. The unmodulated baseband contains no fringes,

so the intensity maximum can easily be located. The intensity maximum of the

baseband is a good, unambiguous estimate for both the central frequency and the

zero delay and used in all the simulations of this thesis. Still, one has an option to

select any other point as well, should it be necessary.

The user is also asked to select a wavelength range in which the THIFROG trace

resides, so that irrelevant measurement data—wavelength ranges where virtually

no signal is measured—can be excluded. In all of the simulations conducted in this

thesis, the power division of the beam splitter is assumed to be exactly 1 : 1, i.e., the

beam splitter of the interferometer splits the incident optical power perfectly in half

for the entire frequency range of the pulse. This, however, might not always be the

case. It is up to the user to decide whether to adjust the ratio so that the program

gives one of the pulses more power than the other. In practice this is achieved

by multiplying the complex amplitude of the delayed pulse by the power division
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of the beam splitter variable before the resulting THIFROG trace is calculated.

Wavelength dependency of the power division is currently not taken into account.

Including a support for user-provided information of the wavelength dependency of

the power division, possibly independently measured, is a plausible improvement for

the program.

The size of the delay step given by the user can be the same as the actual delay step

of the measurement, which was 0.25 fs for both of the Max Born Institute samples,

but this is not absolutely necessary. For pragmatical reasons, a new delay axis is

constructed so that it contains the previously mentioned "zero delay point", i.e.,

the delay where the two pulses supposedly perfectly overlap, a point which almost

certainly does not coincide with any of the original delay points. Interpolation

is therefore required to fit the data to the new set of delay points. And since

interpolation is carried out in any case, sampling of the data at a slightly different

delay spacing is not very detrimental. Delay step size used in the simulations here

was 0.2 fs, half a femtosecond less than the original sampling time. This value was

found to work well for the simulations, and it was selected as it is a nice even number

quite close to the original value.

5.6.2 Removal of Artefacts

In addition to providing parameters, possible artifacts in the data are removed by

the user with a GUI if deemed necessary. The PrepareData function initiates this

GUI after other parameters have been provided. These artifacts occur as small,

intense spots in the measured trace, often only a single pixel wide. A suitable level

of measured intensity is selected near the artifact, which is "painted over" with the

cursor so that the area becomes flat. These artifacts can appear in any region of

the measurement data and their removal is easily justified if a single intense pixel is

found in a sea of background noise. Occasionally an artifact might reside right next

to or within actual THIFROG signal data. In this case the user has to carefully

consider whether to remove the supposed artifact and risk tampering with an actual

data point of the real signal, or to leave it at its place which will in turn result in high

delay-frequency components of the trace that can interfere with the reconstruction

process. If possible, one should try to choose a measurement with little or no possible

artifacts within the area of the measured signal to avoid ambiguities. This of course

is only possible if several measurements of the same setup were made in the first

place.
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5.6.3 Data and Parameter Files

After these steps have been carried out, the PrepareData function produces two

files, which include the possibly edited THIFROG trace in a form suitable for the

main program, and the necessary parameters. These .mat files share the name of

the original text file containing the measurement data, and are labelled with the

letters D and P (for Data and Parameters), respectfully.

The PrepareData function allows the user to select and process multiple data

files at once. If consecutive data sets are measured with the same parameters, the

user may use the same parameters entered only once for the following datasets. A

previously created P file containing the parameters can also be selected. These

features are included to avoid unnecessary manual inputting of parameters in a

situation where multiple samples with similar properties have been measured, and

no intermediate adjustments to the measurement setup were required, so that all

the samples have identical parameters. It is also possible to use a single parameter

file for multiple samples, but, for the sake of clarity, it is advisable to use a unique

parameter (P) and data (D) file for each sample.

5.7 The Main Program

The core of the software is the Reconstruction function, responsible for further

processing of the data and the actual optimization resulting in the reconstructed

pulse.

5.7.1 Parameters for the Main Program

The Reconstruction function must be provided with several parameters that guide

its behaviour. The first set of parameters specify file paths and identifiers for output

files. Their description and names are provided in Table 5.1. The location of the D

and P files and a path where the results of the reconstruction are to be saved. The

user must also provide a name for the optimization run, in the scenario variable.

Several datasets may be reconstructed in succession, and each must have its own

scenario name. There is also a tag which is included in every file. Typically one can

use the scenario to include identification of the original data or the physical sample

used in the measurement, and the tag to give a name for the simulation run, e.g.,

"testrun1".
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Table 5.1: Parameters defining the location of the relevant files, where to save the data
generated by the software, and identifiers for the output files

Parameter Description

pathD Location of the D file containing the preprocessed trace

pathP Location of the P file containing the parameters of preprocessed trace

savePath Path for the output files

scenario Name of the sample, included in output filenames

tag Additional identifier, included in output filenames

Second set of parameters control the optimization, and must be selected carefully.

These are: delayRange, specifying the portion of the data along the delay axis

to be used, frequencyResolution, which defines the number of distinct frequencies

calculated for the trace (in the frequency range where the original trace resides), and

optimizationPoints, giving the number of points the pulse is evaluated at. Typical

values for these are given in Table 5.2. Additionally, the combination of sub-traces

used in the optimization, and how large their weights are when the total FROG error

defining the goodness of the fit is computed, can be selected with the parameters

bands and weights, respectively. The values for both of these parameters are given

in a vector, where the first element corresponds to the baseband, the second element

to the FM-band, and the third element to the second-harmonic modulation band.

The parameter optimize must be set to 1 for the optimization to start, otherwise

the program only prints figures.

Table 5.2: Typical values for the three parameters that define the delay range and the
resolution of simulation.

Parameter Value Unit Description

delayRange 60 . . . 100 · 10−15 second Specifies the length of the delay axis

frequencyResolution 20 . . . 60 – Number of frequency samples in the main trace

optimizationPoints 20 . . . 60 – Number of points the pulse is adjusted at

bands [1/0; 1/0; 1/0] – Selects the sub-traces used in optimization

weights [0 . . . 1; 0 . . . 1; 0 . . . 1] – Set the weights for the different sub-traces’ FROG errors

optimize 1/0 – Optimization on/off

5.7.2 Before the Simulation Starts

Since computation is carried out in frequencies instead of wavelengths, the measured

data has to be interpolated to fit a new set of frequency and delay axes, where the

former does not share the same spacing as the original wavelength axis. This is

because when the wavelengths, originally sampled at equal intervals, are converted

into frequencies, the spacing between two adjacent frequency points varies and is
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in fact frequency dependent: ∆λ = λ2 − λ1 = c/ν2 − c/ν1 = c∆ν/(ν1ν2), or ∆ν =

∆λ · (ν1ν2/c). An uneven frequency sampling makes life with Fourier transforms

along the frequency space difficult, so the data is interpolated to fit a set of new,

evenly spaced frequencies. As was mentioned earlier in Subsection 5.6, the delay axis

is also engineered to fit the needs of the program, and also requires interpolation

of the data. Interpolation is, however, only carried out once for the measurement

data, simultaneously for the new frequency and delay axes. This is done to prevent

unnecessary loss of data. An internal MATLAB routine is used to perform the two

dimensional interpolation with a cubic spline fitting procedure.

5.7.3 Operation During Simulation

Once the main program is started, a plot of the trace from the original data along

with the calculated trace of the seed pulse appears with the Fourier filtered sub-traces

of DC, fundamental modulation and second–harmonic modulation bands. After this

the actual optimization begins, progress of which can be observed from the MATLAB

command window displaying the weighed FROG error of each iteration and the

corresponding action determined by the Nelder–Mead algorithm. In addition, once

the algorithm has reached its maximum number of iterations set by the user, a

figure with the plots of the original trace, its baseband, the current iteration of

the pulse with its intensity and phase profiles and the subsequent fitted trace with

its baseband is updated. This is the graphical user interface (GUI) of the main

program. A screen capture of the GUI is presented in Figure 5.5.

After the GUI has been updated, the algorithm starts again and runs for the max-

imum number of iterations, unless the user has pressed one of the buttons on the

figure. The Stop button terminates the algorithm loop and the program decides

the simulation is successfully concluded, saving all the data and exits. Pressing the

Change number of iterations button causes a pop up to appear, which prompts the

user to provide a new maximum number of iterations for each algorithm run. The

smaller the number, the more often the user gets a graphical update of the progress

of the reconstruction, but every time this happens, the algorithm is prematurely

terminated. This might slow the reconstruction process, so a large number of iter-

ations, say a few thousand, is preferred if the user is not present to continuously

monitor the progress. It should be stressed that it is impossible to immediately

terminate the algorithm at any point without crashing the program. Only when the

algorithm has reached its maximum iterations (or alternatively reaches a stopping

condition such as a sufficiently small error of 10−8) can the program act and respond

to user input, i.e., the pressing of one of the two buttons in the figure.
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Figure 5.5: Screen capture of the graphical user interface of the Reconstruction program.
The progress of the pulse retrieval can be monitored by comparing the measured trace
and its baseband, displayed on the left hand side column, to the simulated trace and its
baseband, located at the the center column. On the right hand side column, the intensity
and phase envelopes of the seed pulse (blue diamonds) and the simulated pulse (red line)
are presented. Note that this picture was taken at the very start of the simulation, so
the pulse does not differ practically at all from the seed. In the lower left corner are the
two buttons that can be used to either terminate the pulse retrieval (Stop) or change the
number of iterations the algorithm runs before updating the GUI again (Change number
of iterations). The buttons may be pressed at any time, but the program will only respond
when the algorithm has reached its maximum number of iterations and the GUI is to be
updated once more.



6. SIMULATIONS AND RESULTS

Two different datasets were provided by Max Born Institute from the same exper-

imental setup: one for a sample of silica thin film and a second for a sample of

titania thin film, as was presented in Figure 4.2. What is clearly visible in these

pictures—even to the naked eye—is the asymmetry of the titania trace along the

delay axis and, in contrast, the symmetry of the silica trace. The titania trace is

also much wider in the sense that the high intensity center of the trace reaches larger

delays in comparison to the silica trace. These observations imply the presence of

a noninstantaneous response time of the third-order optical nonlinearity in titania.

The situation is similar to that what Anderson et al. faced in their plasmon tip re-

sponse time measurements. By reconstructing the pulses of both, the silica and the

titania samples, it is possible to estimate the lifetime of the nonlinearity in titania

using a convolution strategy.

6.1 Preparations

Before the simulations can be executed, the experimental data must be prepared

for the program following the procedures described in Section 5.6. Several artifacts,

circled in magenta in Figure 6.1, were removed, the background level was adjusted

and the intensity was normalized. Suitable parameters for the optimization sequence

were found by trial and error. These were: delayRange = 80 fs, optimizationPoints =

51 and frequencyResolution = 32. The time limit for each of the six simulations was

24 hours, which was also the realized duration for every simulation, i.e., no other

stopping criteria like sufficiently small FROG error was met before the time limit

was reached.

The intensity maximum of the baseband for the measured trace was used to define

the central frequency νc of the trace. These were νSiO2
c ≈ 1110 THz for silica and

νTiO2
c ≈ 1096 THz for titania, corresponding to carrier wavelength of λSiO2

0 ≈ 810 nm

and λTiO2
0 ≈ 821 nm, respectively. The (angular) carrier frequencies ω0 used by the

program are calculated from the central frequencies with the relation ω0 = 2π · νc/3,

as νc is the third-harmonic frequency, i.e., three times the carrier frequency.
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Figure 6.1: Preparing of the measurement data for the Reconstruction program. On top
are the unaltered THIFROG traces for (a) silica and (b) titania, while the altered traces
for (c) silica and (d) titania are found below. The scale for (a) and (b) is found above
the traces, while the scale for (c) and (d) is located at the bottom of the figure. All the
above pictures are close-ups of the relevant wavelength range containing the THIFROG
signal. Measured data at wavelengths not shown here was discarded. Several artifacts were
removed from the two traces (a) and (b), where the data points to be levelled are circled
in magenta. Background noise was removed, and the zero intensity level was adjusted so
that the background signal on both sides of the principal trace is damped. The effect of
this procedure can be seen by comparing the black portions of the unaltered traces on top,
and the altered traces below. The intensity was normalized to 1 for (c) and (d).
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To avoid confusion, it should be noted that from here on the term "measured trace"

is not used for the measured experimental data per se, but for the experimental data

which has undergone the above mentioned preparations, and the processing of the

main program, i.e., interpolation to fit the tailored delay and frequency axes.

Different combinations of the baseband and the fundamental modulation band were

used in the reconstructions to calculate the FROG error, which serves as the measure

for the goodness of the fit. This means that the program tries to make the sub-bands

used in the reconstruction to match the respective sub-bands of the measured trace

as closely as possible. In total there are six reconstructions: three for both silica

and titania using 1) only baseband, 2) only FM-band, and 3) both baseband and

FM-band, for the simulation. These are referred to as simulations 1, 2 and 3,

respectively, for either of the two samples. For example, simulation 2 for silica refers

to the reconstruction of the silica pulse where the FROG error was calculated from

only the FM-band. The measured trace and its sub-traces are referred to with the

index 0 in the labelling found in the pictures. The results for the simulations are

presented in the following subsections, starting with the reconstructed traces which

are followed by the reconstructed pulses.

6.2 Reconstructed Traces

The measured traces, and the reconstructed traces for the three simulations along

with their respective basebands and FM-bands are illustrated in Figures 6.2 for

silica, and 6.3 for titania. As the simulations used the sub-traces for the fitting

procedure instead of the actual trace, most of the discussion here concentrates to

evaluate how well the simulated sub-traces fit the sub-traces of measured trace.

The high degree of symmetry for the silica trace (Figure 6.2 (T0), upper left corner)

is also evident in its baseband (B0) and FM-band (FM0), where the only significant

difference between the two sides of the sub-traces is found at delays τ ≈ ±15 fs,

while the central part of the measured intensity at τ ≈ −10 . . . 10 fs is almost

perfectly symmetric. Simulation 1 for silica produced a baseband (B1) which is

in good agreement with the measured baseband (B0), but the reconstructed FM-

band (FM1) displays symmetric satellite structures at τ ≈ ±20 fs which are not

present in (FM0). Simulation 2 corrected this flaw in the FM-band, although the

reconstructed sub-trace (FM2) does not display the small asymmetry of (FM0). This

time the baseband (B2) is a less convincing fit for (B0). The overall best agreement

with measurement data was achieved—perhaps unsurprisingly—with simulation 3,

using both sub-traces for the reconstruction. The simulated baseband (B3) is very

similar to the measured one (B0), as is the FM-band (FM3) in comparison to (FM0).
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The trace (T3) itself looks convincing as well, although the original (T0) shows finite

intensity in a broader area. Retrospectively, this could have been avoided by stronger

background deduction for the measured data. Even though the overall agreement for

the sub-traces is excellent, each of the three simulations produced almost perfectly

symmetric traces, and were unable to account for the slight asymmetry in the original

data.

In contrast to the symmetry of the measured silica trace, the measured titania trace

in Figure 6.3 (T0) and its sub-traces (B0) and (FM0) display much greater differ-

ences in intensity between the two sides of the central maximum. This asymmetry

is especially pronounced in the fundamental modulation band (FM0), where signifi-

cant signal is measured at delays τ ≈ −30, −18 fs, while very little intensity is seen

on the corresponding positive delays. Unlike with silica, where the three simula-

tions produced somewhat different results, the titania reconstructions are strikingly

similar to each other. This similarity is also observed in the reconstructed pulses

for titania, presented in the next subsection. As was the case with silica, the recon-

structed traces (T1–3) and their sub-traces (B1–3, FM1–3) for titania are perfectly

symmetric. This results in poor agreement especially in the FM-bands (FM1–3),

where a wedge-like shape has been formed. This is most probably a consequence of

the wing structure of (FM0) at τ ≈ −18 fs. The basebands (B1–3) seem to match

the original sub-trace (B0) somewhat better.

Another noticeable feature for both samples is that the measured traces (T0) in

Figures 6.2 and 6.3 is not perfectly aligned with the zero delay while the recon-

structed traces (T1–3) are. The implication of this fact is that while the sub-traces

are reconstructed with some success, the actual trace is not, at least not without

realignment. The measured traces for both of the samples, however, contain quite

a bit of noise, so even if the traces were perfectly aligned the agreement could not

be perfect, even if the true pulse shape was used to create the simulated trace. The

sub-traces, on the other hand, are filtered from most of the noise, therefore making

their reconstruction a more reliable process.

Even though the sub-traces were in good agreement, this misalignment of the

THIFROG traces suggests that the use of the baseband intensity maximum of the

measured trace as the point of zero delay is not perfectly justified. A better method

for defining the zero delay would align the centres of the two traces more adequately

and therefore reduce the overall FROG error. One such method could be to locate

the center fringe of the measured trace with the intensity maximum of the trace,

as the center fringe is likely to contain this, and fit a polynomial curve over the

fringe. The maximum of the polynomial could then be used as the true location of
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the intensity peak and therefore as the zero delay point. This method should not

be difficult to implement, making it a plausible improvement if the Reconstruction

program is to be developed further. On the other hand, the fact the basebands

are perfectly aligned can be considered to be more important than the alignment

of the actual traces when the success of the reconstruction relies on the agreement

of the basebands. Moreover, one could argue that whether the trace is perfectly

reconstructed or not is not that important when the sub-traces are, if only a rough

estimate for the pulse envelope or width is sought. The above described method

for improving the alignment of the trace could also be applied for the baseband

alignment, which currently works by simply picking the data point with the highest

intensity. The fitting of a parabolic function over the baseband peak would help to

pinpoint the location of the actual maximum, not just that the data point nearest

to it.

Judging by the reconstructed silica traces in Figure 6.2, the most reliable com-

bination of sub-traces for the reconstruction is using both, the baseband and the

FM-band. The use of the remaining two harmonic bands modulated at frequen-

cies 2ω0 and 3ω0 was not investigated, but their use could potentially produce even

more reliable results. Although speed was not a priority when the program was

being coded, faster convergence could be achieved by using different weights for

the FROG errors of the sub-traces, and by experimenting with the precision of the

simulation to find a suitable balance between speed and resolution.

To summarize, the reconstruction succeeded reasonably well. Simulated sub-traces

for silica were in good agreement with the measurement data, as was the titania

sub-traces—aside from the asymmetry. The reconstructed traces were almost per-

fectly symmetric for reasons unknown. One possibility that the beam splitter power

division ratio is not a perfect 1 : 1, even though this was assumed in these simula-

tions. This would affect the symmetry of the trace in ways the program could not

have accounted for with the settings used. Moreover, it is possible that selecting a

wider delay range, and perhaps a more complex seed pulse might eventually result

in a better fitting, asymmetric trace.
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Figure 6.2: Measured and reconstructed traces and their sub-traces for silica. The left
hand row contains the THIFROG traces, labelled with T. A zero in the label stands for
the measurement data, and numbers 1, 2 and 3 are used to denote reconstructions using 1)
baseband, 2) FM-band, and 3) both baseband and FM-band, respectively. The middle row
is for the basebands, labelled with B, and on the right hand row are the FM-bands, labelled
with FM, of the respective traces on their left. For example, (T0) is the measured trace
for silica and (B0) is its baseband, and (FM1) is the FM-band of the reconstructed trace
(T1), where the FROG error of the baseband was used as the measure for the goodness
of the fit. These images are close-ups of the data, the full computation range for these
simulations being frequency ν = 0 . . . 2000 THz and delay τ = −40 . . . 40 fs.
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Figure 6.3: Measured and reconstructed traces and their sub-traces for titania. The traces
and sub-traces are ordered, displayed and labelled in the same manner as the silica traces
in Figure 6.2. Note that a wider range of delays (δ = −35 . . . 35 fs) is displayed here in
comparison to what was displayed with the silica traces (δ = −30 . . . 30 fs). Therefore,
the noticeably wider traces and sub-traces of titania are in fact even wider in comparison
to those of silica than they appear here. This translates to a substantially wider pulse
envelope for titania, as is evident in Figures 6.4 and 6.6.
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6.3 Reconstructed Pulses

The reconstructed pulse intensities and phases for the silica and titania simulations

are illustrated in Figure 6.4. Pulses (a–c) are from the silica simulations 1–3, re-

spectively, and pulses (e–g) are likewise for the titania simulations 1–3, respectively.

Each of these six reconstructed pulses display a pronounced central peak in the in-

tensity, followed by a trail of residual intensity on one side and a sharp drop on the

other side. The smaller the intensity gets, the more fluctuations in both intensity

and phase is observed. The phases are seen to be curved one way or the other

around the centers of the intensity peaks and evolve quite steadily in regions where

significant intensity is present. The phase behaviour becomes erratic in regions of

high intensity oscillations, and phase shifts for over 2π are observed, e.g., in (f) at

t ≈ 17 fs. Only the phase in the peak intensity region is considered to bear any

physical significance, and the large phase shifts are regarded as irrelevant. Likewise,

the highly fluctuating intensities are credited to random noise in the simulations,

and only the general trend of the intensity, and the peak itself are considered to

contain meaningful information.

6.3.1 Composite Pulses

Since the three simulations for each of the samples aim to reproduce the same pulse,

the three reconstructed pulses are used to assemble a single, representative pulse for

the sample, henceforth referred to as the composite pulse. The procedure used to

combine the reconstructed pulses is described next.

Because the reconstructed traces were symmetric in respect to delay, it is impossible

to state which side of the reconstructed pulse represents the front and which side

the back of the physical pulse. Physically, it makes more sense that the trail follows

the pulse and not the other way around, as such a trail behind a pulse can be caused

by noninstantaneous response of the medium. It is therefore convenient to agree to

a convention, that the time axis is normally oriented in the sense that given two

events taking place at t1 and t2 > t1, the event at t1 happens before the event at

t2. The ramifications of this is that the negative time coordinates should represent

the sharply rising front of the pulse, and the intensity trail following the pulse must

reside in the positive time coordinates. Thus some of the reconstructed pulses must

be reversed in time before they are used to make the composite pulses. The time-

reversal operation is executed for the silica pulse of Figure 6.4b, and for all three

of the titania pulses (e–g). After the time axes of the pulses agree to the same

convention, the approximate centers of the three peaks for each sample are aligned
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to t = 0. Once the peaks coincide, the mean of the intensities and the phases of the

three pulses are taken. The resulting single pulse for each sample is then smoothed

by averaging each intensity and phase sample in its neighbourhood, after which the

intensity is once again centered to t = 0, and normalized to 1. These steps yield the

composite pulses, shown in Figure 6.4 for silica (d) and titania (h).

6.3.2 Group Delay Dispersion Analysis

To study the retrieved pulses further, the two composite pulses were Fourier trans-

formed to the spectral domain, where the spectral phases ϕ(ω) were used to calculate

the group delay dispersion (GDD) for both silica and titania. These are presented

in Figure 6.5. GDD or second-order dispersion ϕ(ωL)′′ is defined as the second

derivative of the spectral phase evaluated at the center angular frequency ωL of the

laser [95]

ϕ(ωL)′′ ≡ ∂2ϕ

∂ω2

∣

∣

∣

∣

∣

ωL

. (6.1)

By calculating the weighted integral

φ2 =

+∞
∫

−∞

ϕ(ω)′′ I(ω) dω

+∞
∫

−∞

I(ω) dω
, (6.2)

an estimate for the total group delay dispersion φ2 experienced by the pulse is

obtained. These values were φSiO2
2 = −3.9 fs2 for silica, and φTiO2

2 = −14.1 fs2 for

titania, indicating the presence of anomalous dispersion, i.e., ϕ(ωL)′′ < 0. This

is indicative of a slight overcompensation of GDD effects by chirped mirrors [96]

used in the experimental setup. Chirped mirrors can only compensate dispersion in

steps of about 30–60 fs2, making the calculated values for φSiO2
2 and φTiO2

2 small in

comparison.

Negative GDD is, however, unexpected as the setup was carefully constructed to

negate the normal dispersion, i.e., ϕ(ωL)′′ > 0, caused by the beam splitter of the

Michelson interferometer, and to avoid overcompensation. Another viable option

that must be considered is that the MATLAB function for FFT uses a different

sign convention than was expected during programming. A change of sign in the

exponential of the Fourier transform F (ω) =
+∞
∫

−∞

f(t) exp(−iωt) dt would reverse the

phase, leading to normal dispersion in our case, thus making the results sensible.

Assuming that the above calculated GDD values were correct in magnitude but

erroneous in sign, the corresponding thickness of silica in the setup would be 110 µm,
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Figure 6.4: Reconstructed pulse intensities (blue line) and phases (dashed green line) for
silica (a–c), and titania (e–g). The three reconstructed pulses for each sample were aligned
and averaged to build composite pulses for silica (d) and titania (h). Pulses (b) for silica
and (e–g) for titania were also subjected to time-reversal so that the intensity "trail" would
be located behind the pulse, i.e., on positive time coordinates. Note that the time-reversal
operation inverts the phase. This is evident if one compares the silica pulse (b) to the other
two pulses (a) and (c), where the curvature of the phase in the vicinity of the intensity
peak in (b) is opposite to the phase curvatures of the other two pulses. The composite
pulses (d) and (h) were also smoothed by averaging each sample in its neighbourhood.
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Figure 6.5: Top row: spectral intensities (blue line) and phases (green dashed line) for
the composite pulses of (a) silica and (b) titania, presented in Figure 6.4 (d) and (h),
respectively. Bottom row: Group delay dispersion (red line) of the same pulses for (c)
silica and (d) titania. The frequency axes represent the difference in frequency from the
carrier angular frequency ω0. The apparent roundness of the curves is a consequence of
the finite resolution of the simulations.

as silica has a group velocity dispersion (GVD) of β2 = +36 fs2/mm at 800 nm. The

GVD β2 is related to the GDD ϕ(ωL)′′ by ϕ(ωL)′′ = β2L, where L is the length of

the medium. The GVD was calculated from the relation [18]

β2 ≈ − λ3

2πc2

d2n(λ)

dλ2
, (6.3)

where the wavelength dependent refractive index n(λ) was obtained from the Sellmeier

dispersion equation for silica [97]. The 110 µm corresponding thickness is a very

small figure and the pulse surely traverses more silica in the experimental setup,

as even the glass substrate is 1 mm thick. This simply shows the effectiveness of

dispersion compensation in the setup.
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The FWHM pulse durations of the composite pulses (d) and (h) in Figure 6.4 are

10.1 fs for silica and 15.7 fs for titania. As the laser system was specified to deliver

sub-8 fs pulses, these values indicate temporal broadening of the pulses. The one

and a half time pulse length of titania in comparison to the silica pulse cannot be

attributed to the measured GDD alone. This substantial difference between the two

samples suggests the presence of a finite lifetime nonlinear effect in titania.

6.4 Lifetime of χ(3) Nonlinearity in Titania Thin Film

In order to estimate the lifetime of the nonlinear polarization induced by a laser

pulse passing through the titania thin film, a simple deconvolution method is used

to simulate material response of the highly nonlinear titania in comparison to the

less reactive silica sample. By assuming that the third-order polarization of silica is

a near instantaneous process, the reconstructed composite pulse for silica may be

used as a neutral reference for the signal function S(t) in the convolution

(S ∗ R)(t) ≡
+∞
∫

−∞

S(t)R(t − τ) dτ = H(t) . (6.4)

Here R(t) is the response function representing the titania thin film’s response to

the presence of electric field of the pulse S(t), and H(t) is the pulse after interacting

with titania, i.e., the reconstructed composite pulse for titania. In essence, the

convolution (S ∗R)(t) represents the smearing effect the noninstantaneous nonlinear

polarization in titania imposes to the third-harmonic field it creates. Ideally, R(t)

could be obtained from the two composite pulses through numerical deconvolution,

but this method is extremely sensitive to noise, and might give nonsensical results

even in the absence of noise [91]. Instead, the nonlinear polarization is assumed to

decay exponentially, so the response function may be defined as

R(t) =











e−t/T if t ≥ 0

0 if t < 0
, (6.5)

where T is the time constant for the decay, i.e., the lifetime of the polarization.

Replacing the signal function S(t) in Equation 6.4 with the intensity of the composite

silica pulse ISiO2(t), the convolution (R ∗ ISiO2)(t) is calculated and adjusted by

tuning the time constant T and a time shift s for the outcome of the convolution

(H(t) → H(t − s) ) with the goal of reproducing the composite pulse for titania

ITiO2(t) as closely as possible. The best agreement was achieved with the values

T = 6.5 fs and s = −4.8 fs. The results are presented in Figure 6.6.
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Figure 6.6: Estimation of the lifetime of the Kerr nonlinearity. The intensities of the
composite pulses for both silica (green line) and titania (blue line) are shown alongside
the response function (red line) in (a). The chosen response function is an exponential
decay function with the time constant T . The convolution (R ∗ ISiO2)(t) is calculated and
compared to ITiO2(t). The time constant T is adjusted and the resulting convolution is
shifted in time to better match the retrieved pulse intensity for titania. The best agreement
was obtained with the time constant T = 6.5 fs, the resulting convolution (dashed red line)
is shown with ITiO2(t) (blue line) in (b).

The convolution is in good agreement with the bulk of the titania pulse intensity,

but in the range t = 15 . . . 25 fs the intensity rises abruptly and the convolution

is unable to account for this behaviour. This rise of intensity is due the averaged

intensities of the three recovered pulses using different sub-traces for the reconstruc-

tion. As is evident from Figure 6.4e–g, all three pulses exhibited heavy oscillation of

intensity in this region, which is attributed to random noise—present in regions of

declining intensity such as the edges of the pulse—and is unlikely to bear any phys-

ical significance. For this reason the apparently poor agreement of the convolution

and the reconstructed pulse around t = 20 fs is considered to be irrelevant, and the

overall agreement to be excellent.



7. SUMMARY, DISCUSSION AND CONCLUSION

In this final chapter, a summary for the topics covered in this work is given. After

discussing the topics, the concluding remarks are made.

7.1 Summary

A novel pulse retrieval software for the recently introduced THIFROG technique

was presented, and used to successfully conduct the first ever pulse retrieval for a

THIFROG trace. The retrieved pulses were harnessed to study an ultrafast nonlin-

ear polarization process in a pure titania thin film. The astonishingly short lifetime

of the χ(3) nonlinearity in a dielectric was measured for the first time in history.

The fundamental theory for optics, along with a summary of nonlinear effects, and

an introduction to laser pulses was given in the second chapter. After listing several

technologies for creating ultrashort pulses, the discussion moved to pulse character-

ization in Chapter 3. Starting from the autocorrelator, several competing charac-

terization techniques were introduced. The most attention was given to frequency-

resolved optical gating and its many variants. The properties and theory of this

complete characterization method were discussed in detail, while gradual progres-

sion towards the FROG variant, which gave its name for the title of this thesis, was

made.

The recently introduced characterization technique for ultrashort laser pulses, third-

harmonic interferometric FROG, was presented in Chapter 4. An analytical study

on the structure of the THIFROG trace was carried out, and an equation explic-

itly stating the modulational components of the trace was derived and discussed.

Measured THIFROG traces for a pair of thin film samples, one of pure silica and

the second of pure titania, were presented.

A pulse retrieval software designed specifically for THIFROG was constructed, pre-

sented and discussed in detail in Chapter 5. The software, the first of its kind, was

used to analyze the traces of the silica and titania thin films. Three independent

retrievals were successfully executed on both of the samples, and the reconstructed
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pulses were used to compile a pair of representative pulses, presented in Chapter 6.

To investigate these composite pulses further, their group delay dispersion was cal-

culated and discussed. The reconstructed pulses were subsequently used to evaluate

the lifetime of the nonlinear polarization observed in titania using a deconvolution

strategy. The noninstantaneous response of titania was simulated by subjecting the

reconstructed pulse for silica to an exponential decay function with the goal of repli-

cating the titania pulse as closely as possible. A time constant of 6.5 fs for the decay

was measured, and found to produce excellent agreement with the data.

7.2 Discussion

The exact mechanism behind the finite lifetime of the nonlinearity in titania is

unknown. The main reason for the different responses between titania and silica can,

however, be attributed to the large difference in the band gaps of the two media. In

order to excite valence band electrons to the conduction band, photons of less than

140 nm in wavelength are required to overcome the roughly 9 eV band gap in silica,

while approximately 390 nm photons are energetic enough to be absorbed by the

3.2 eV band gap of the titania thin film. While the photons emitted by the laser are

in the range of 650–950 nm (see Figure 4.3a) and alone too weak to excite electrons

in either medium, three-photon absorption and even two-photon absorption can still

take place in titania. Both effects have recently been observed in bulk titania for

wavelengths around 800 nm [98]. Silica, on the other hand, is far from resonance

and should experience negligible absorption. Once electrons are excited to higher

states, recombination of carriers and emission of photons will follow. This alone can

cause an observable effect as the newly created photons will reach the detector after

some delay, since the recombination process is not instantaneous. It is possible that

the measured lifetime is simply indicative of this two- and three-photon absorption

induced recombination process, but without further evidence this remains but a

speculative remark.

It is a well known fact that the presence of free carriers alters the nonlinear re-

fractive index of an optical medium, as predicted by the Drude model [19, 99].

Recently, remarkably efficient generation of THz radiation has been achieved by

focusing Ti:sapphire pulses at the fundamental and second-harmonic frequencies

into a gaseous medium, such as ambient air [100–102]. The intense radiation forms

a plasma, which interacts nonlinearly with the laser pulses to create THz radia-

tion through the χ(3) process of four-wave mixing rectification, according to Xie et

al. [102]. It has been suggested, that the efficiency of the process is caused by an

enhancement of hyperpolarizability due to the plasma [100]. This was confirmed
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with the observation of greatly enhanced χ(3) susceptibility in a plasma formed in

air by Xie et al. It is very likely that the free carriers present in the titania thin

film alter its optical properties in a similar manner to what has been observed in

plasmas—the two are very similar, after all, as plasma consists of almost free elec-

trons amidst positive ions. An increase of χ(3) susceptibility due to the free carriers

created by two- and three-photon absorption in the titania sample would explain the

observed asymmetry in the measured THIFROG trace. This is because the front of

the pulse would experience the unaltered χ(3) of titania while creating free carriers in

its wake, so that the rest of the pulse would experience an enhanced χ(3) due to the

free carriers already present. Since THG is directly proportional to χ(3), the latter

part of the pulse would create a more intense THG signal, so that the central part of

the THIFROG trace would display higher intensities on larger delays—exactly what

is observed for titania. The only discrepancy here is that the satellite structure of

intensity in the titania trace is found at smaller delays, i.e., if the above explanation

is true, the response is observed before the pulse enters the medium! This violates

causality and is simply impossible.

The experimental data was provided along with screen captures of the measurement

software, and the delay and wavelength axis information for the simulations was ob-

tained from these. It was apparent from the pictures, that the THIFROG trace was

upside down—the fringes were skewed in the wrong direction, and the trace center

was nowhere near the third-harmonic frequency of the laser. This was eventually

corrected by turning the wavelength axis around. It is impossible to say whether

the same mistake was made with the delay axis just by inspecting the screen cap-

tures. If so, the asymmetric shape of the titania trace would be turned around so

that the satellite structure originally observed on negative delays in the simulations

would be shifted to the positive delays instead. This solves the problem of causality

above. The reconstructed pulses would be turned around as well, justifying the time-

reversal operation executed for all of the reconstructed titania pulses even further.

As the silica trace was quite symmetric with respect to delay, the effect of reversing

the delay axis would in this case be of little consequence. These facts considered, it

is concluded that the delay axis was almost certainly falsely calibrated at Max Born

Institute.

The pulse retrieval software was able to reconstruct the silica trace well, but the

asymmetry observed in the titania trace was not reproduced. For reasons unknown,

all six of the retrievals produced almost perfectly symmetric traces. The informa-

tion that was obtained from the simulations was nevertheless perfectly sufficient for

their ultimate purpose, that was the χ(3) nonlinearity lifetime measurement. The in-

ability of the Reconstruction program to reproduce the asymmetry of the measured
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THIFROG traces constitutes further investigation into the matter. One possibility

would be to measure the spectral response of the beam splitter. If the device dis-

plays an imperfect power division ratio at certain wavelengths, this would have an

effect in the trace that the Reconstruction program cannot account for. If the ratio

is uniformly unbalanced for the entire spectrum, the power division factor of the

program can be adjusted. By measuring the power division ratio as a function of

wavelength, this information could be taken into account by slightly modifying the

software.

The next experimental direction for the lifetime measurements would be to fabri-

cate new thin film samples with a variable mix of titania and silica instead of using

samples consisting of only a single substance. A composite thin film would allow the

effective band gap of the sample to be tuned. This can be accomplished with the ru-

gate technique that was already used for the samples presented here. Measurement

of THIFROG traces, and a subsequent pulse retrieval with the Reconstruction pro-

gram for a set of samples with a transition from silica to titania in composition would

provide an insight to the band gap dependency of the nonlinearity lifetime. This

knowledge could be used to narrow down the list of possible mechanisms behind the

finite lifetime.

Several advances were made in this work. The first pulse retrieval software for

THIFROG was introduced, and the first reconstructions for THIFROG traces were

executed with success. The finite lifetime of the χ(3) nonlinearity in a dielectric was

conducted for the first time. In conclusion, the goals laid out for this thesis were met,

and several contributions to the fields of pulse characterization and nonlinear optics

were made. Regardless of origin, a process with a time scale in the femtoseconds is

surely one of the fastest ever measured. It is now up to theoreticians to summon an

explanation for this phenomena.

7.3 Conclusion

Pulse characterization is a timely topic in ultrafast laser physics. Despite of the

various methods that have already been demonstrated, there is still room for im-

provement, in particular when it comes to pulses in the few-cycle regime, i.e., pulses

that encompass less than 10 femtoseconds in their full width at half maximum.

The main task of this thesis was the interpretation of third-harmonic interferometric

FROG traces. This method constitutes a newly demonstrated collinear variant of

FROG that has not been discussed much in literature. In particular, there is no

method available to reconstruct the underlying pulse shape that gave rise to the
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measured THIFROG trace.

To this end, this thesis first analyzed the physics behind this particular pulse charac-

terization method and decomposed the trace into a set of four sub-traces. Moreover,

a retrieval software was developed that allows retrieval of the underlying pulse shape

in these measurements. The software allows for a high degree of flexibility and en-

ables reconstructions from various sub-traces or combinations thereof.

This software was tested on a set of measured THIFROG traces from the Max Born

Institute. One half of these samples was measured with SiO2 as the medium, the

other with TiO2. Retrieving the former yielded a nearly symmetric pulse shape with

10.1 fs pulse duration whereas the latter resulted in asymmetric shape with 15.7 fs.

This marked difference with identical pulses but different nonlinear media could

be perfectly explained by convolving the retrieved SiO2 pulse with a single-sided

exponential of 6.5 fs time constant.

While these results clearly indicate a substantial lifetime of TiO2 in this specific res-

onant excitation condition, this process is among the fastest processes ever recorded

with an 800 nm Ti:sapphire laser. It also appears that this method can be pushed

to significantly shorter response times down to about one half of the laser duration

itself, i.e., to the single-optical cycle regime. One possible scenario for doing so is

the slow detuning of the resonance condition, e.g., by gradually changing the com-

position of TiO2 layers into Ti1−xSixO2 by the method of rugate layers. Another one

would certainly be a variation of the center wavelength of the few-cycle excitation

pulse. In either way, it appears highly interesting to explore the dynamics in the

transition from non-resonant to resonant excitation.

The developed software will hopefully prove a valuable tool to further investigate

this scenario. Further investigations may shed new light on the borders of our under-

standing of nonlinear optics. Finally, implications on the lifetime of the Kerr effect

lie at hand, promising an understanding on how fast the Kerr lensing mechanism in

Ti:sapphire lasers really is.
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A. SOURCE CODE FOR PULSE RETRIEVAL

SOFTWARE

The MATLAB source code for the pulse retrieval software is presented in its entirety

here. The software comprises 21 files, organized in sections in alphabetical order. In

addition, a sample script for running the program is presented before the functions.

A.1 Sample script: DataGenerator.m

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % DataGenerator.m

3 %

4 % User operated script for the Reconstruction program, whic h reconstructs a

5 % pulse from THIFROG trace.

6 %

7 % Date: 2013 −10−08

8 % Created by: Janne Hyyti

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 %% Get the path for current directory.

11 % MAKE SURE YOUR CURRENT FOLDER IS THE LOCATION OF THE PROGRAM!!!

12 programPath = pwd;

13 programPath = [programPath '\' ];

14

15 %% PREPARE DATA

16 % Run this for the data to prepare it for the main program. Only necessary

17 % to do once for each trace. After that you can use the files cre ated for

18 % the actual reconstruction.

19 % run([programPath 'PrepareData.m'])

20

21 %% RECONSTRUCTION

22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 % Settings for cropping the trace to a suitable size.

24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 frequencyResolution = 32;

26 delayRange = 70e −15;

27

28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 % Settings for optimization.

30 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31 optimize = 1; % set to 0 to just print figures and no optimization.

32 bands = [1 0 0]; % [baseband, fundamental, second harmonic]

33 weights = [1 0 0]; % [baseband, fundamental, second harmonic]

34 optimizationPoints = 51;

35 iterationsPerCycle = 30;

36

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 % Parameters for automated handling...

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40
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41 % Enter the filenames of the prepared data files without the ' _D' or '_P'

42 % suffixes.

43 filenames = { 'FROG_traceSTHGback −1000ms0gain' , ...

44 'FROG_traceTiO2THGback −500ms0gainLong' };

45

46 % Enter a name for the scenarios, as many as there are filename s. These are

47 % included in the filenames of the computed and saved data.

48 scenario = { 'SiO_2' , 'TiO_2' };

49 % scenario = filenames;

50

51 % Location of the source data, prepared by the PrepareData fu nction.

52 pathData = [programPath 'SourceData\' ];

53 pathD = strcat(pathData, filenames, '_D.mat' );

54 pathP = strcat(pathData, filenames, '_P.mat' );

55

56 % Location for the saved output files.

57 saveFolderPath = [programPath 'SaveFolder\' ];

58 savePath = strcat(saveFolderPath, filenames, '\' );

59

60 % Loop to do reconstruction for each of the files.

61 for ii = 1:numel(scenario)

62 % Tag to be included in every file produced by this run.

63 tag = 'run1' ;

64

65 % Create the save folder.

66 mkdir(saveFolderPath, filenames{ii})

67

68 % Reconstruct the pulse.

69 [~, ...

70 ~, ~, ~, ...

71 ~, ~] = ...

72 ReconstructionV13(optimize, ...

73 frequencyResolution, delayRange, ...

74 bands, weights, optimizationPoints, ...

75 scenario{ii}, ...

76 pathD{ii}, pathP{ii}, ...

77 savePath{ii}, ...

78 tag, iterationsPerCycle);

79

80 close all

81 end

A.2 ComplexPulse.m

1 % Gives the complex form pulse from amplitude and phase infor mation.

2 function pulse = ComplexPulse(t, omega0, amplitude,phi)

3 pulse = amplitude . * exp(1i * (omega0 * t + phi) );

4 end

A.3 ExtractBandsFast.m

1 % Extract the desired bands.

2 function [baseband, harm1, harm2] = ExtractBandsFast ...

3 (trace, ...

4 frequency_indices, ...

5 sineData2, cosineData2, ...

6 sineData3, cosineData3, ...

7 bands)

8

9 % Format output variables.

10 baseband = 0;
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11 harm1 = 0;

12 harm2 = 0;

13

14 % Extract selected bands.

15 if bands(1)

16 baseband = ExtractBasebandFast(trace, ...

17 frequency_indices, ...

18 sineData2{1}, cosineData2{1}, ...

19 sineData3{1}, cosineData3{1});

20 end

21 if bands(2)

22 harm1 = ExtractHarmonicFast(trace, ...

23 frequency_indices, ...

24 sineData2{2}, cosineData2{2}, ...

25 sineData3{2}, cosineData3{2});

26 end

27 if bands(3)

28 harm2 = ExtractHarmonicFast(trace, ...

29 frequency_indices, ...

30 sineData2{3}, cosineData2{3}, ...

31 sineData3{3}, cosineData3{3});

32 end

33 end

A.4 ExtractBasebandFast.m

1 % Fast extraction of baseband from a trace.

2 function output = ExtractBasebandFast(trace1, ...

3 frequencyIndices, ...

4 sineData2, cosineData2, ...

5 sineData3, cosineData3)

6 % Fourier transform to delay −frequency space. Only the frequencies

7 % corresponding to the baseband are included −−> no other filtering

8 % required!!!

9

10 % Calculate only positive frequencies (and zero freq). This is defined by

11 % the 'n' vector in cosineData creation; n = 0:n_max. We're tr ansforming

12 % real valued data, so the transform should be symmetric in th e Fourier

13 % domain, i.e. negative frequencies are equal to conjugate p ositive

14 % frequencies.

15 F1 = arrayfun(@(frequencyIndex) ...

16 FourierDelayAxis(trace1(frequencyIndex,:), ...

17 sineData2, cosineData2), ...

18 frequencyIndices.', 'UniformOutput' , false);

19 F1 = cell2mat(F1);

20

21 % Use the positive frequencies to append the transform with t he negative

22 % frequencies.

23 F1 = [conj(fliplr(F1(:,2: end ))) F1];

24

25 % Transform back.

26 IF1 = arrayfun(@(frequencyIndex) ...

27 FourierDelayAxis(F1(frequencyIndex,:), ...

28 sineData3, cosineData3), ...

29 frequencyIndices.', 'UniformOutput' , false);

30 IF1 = abs(cell2mat(IF1));

31 output = IF1/max(max(IF1));

32 end
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A.5 ExtractHarmonicFast.m

1 % Fast extraction of first harmonic band from a trace.

2 function output = ExtractHarmonicFast(trace1, ...

3 frequencyIndices, ...

4 sineData2, cosineData2, ...

5 sineData3, cosineData3)

6 % Fourier transform to delay −frequency space. Only the frequencies

7 % corresponding to the harmonic band are included −−> no other filtering

8 % required!!!

9

10 % Calculate only positive frequencies. This is defined by th e 'n' vector in

11 % cosineData creation; n = n_min:n_max.

12 F1 = arrayfun(@(frequencyIndex) ...

13 FourierDelayAxis(trace1(frequencyIndex,:), ...

14 sineData2, cosineData2), ...

15 frequencyIndices.', 'UniformOutput' , false);

16 F1 = cell2mat(F1);

17

18 % Append the transform with the negative frequencies (only z eros).

19 F1 = [zeros(size(F1)) F1];

20

21 % Transform back.

22 IF1 = arrayfun(@(frequencyIndex) ...

23 FourierDelayAxis(F1(frequencyIndex,:), ...

24 sineData3, cosineData3), ...

25 frequencyIndices.', 'UniformOutput' , false);

26 IF1 = abs(cell2mat(IF1));

27 output = IF1/max(max(IF1));

28 end

A.6 ExtractPhase.m

1 % Get the phase of a pulse.

2 function phi = ExtractPhase(t, omega0, pulse)

3 phi = phase(pulse. * exp( −1i * omega0* t));

4 end

A.7 FourierDelayAxis.m

1 % Custom Fourier transform along the delay axis.

2 function output = FourierDelayAxis(data,sineData, cosineData)

3 output = dot(repmat(data.',1,size(sineData,2)),cosine Data,1) ...

4 + 1i * dot(repmat(data.',1,size(sineData,2)),sineData,1);

A.8 NormFunction.m

1 % Norm function for optimization.

2 function error = NormFunction(pulseAmpPhi, ...

3 delays, pulseDelays, sparseDelays, ...

4 baseOriginal, harm1Original, harm2Original, ...

5 division, frequencyIndicesD, ...

6 sineData2, cosineData2, ...

7 sineData3, cosineData3, ...

8 integerDelays, omega0, ...

9 NF, frequencyIndicesF, ...

10 bands, weights)

11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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12 % Compute the trace resulting from the pulse given as a parame ter.

13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14

15 % Interpolate the XX optimized values to match the time spaci ng of the

16 % pulse.

17 amplitude = interp1(sparseDelays, pulseAmpPhi(1,:), pul seDelays);

18 phi = interp1(sparseDelays, pulseAmpPhi(2,:), pulseDela ys);

19

20 % Alternatively , use cubic spline interpolation.

21 % amplitude = interp1(sparseDelays, pulseAmpPhi(1,:), pu lseDelays, 'spline');

22 % phi = interp1(sparseDelays, pulseAmpPhi(2,:), pulseDel ays, 'spline');

23

24 % Convert the pulse into complex form.

25 pulse = ComplexPulse(pulseDelays, omega0, amplitude, phi );

26

27 % Calculate the normalized trace.

28 traceFit = TraceFun(pulse, delays, division, ...

29 integerDelays, ...

30 NF, frequencyIndicesF);

31

32 % Calculate error from different bands.

33 error = 0;

34 if bands(1)

35 baseFit = ExtractBasebandFast(traceFit, ...

36 frequencyIndicesD, ...

37 sineData2{1}, cosineData2{1}, ...

38 sineData3{1}, cosineData3{1});

39 error = error + ...

40 weights(1) * TraceErrorFunction(baseOriginal, baseFit);

41 end

42 if bands(2)

43 harm1Fit = ExtractHarmonicFast(traceFit, ...

44 frequencyIndicesD, ...

45 sineData2{2}, cosineData2{2}, ...

46 sineData3{2}, cosineData3{2});

47 error = error + ...

48 weights(2) * TraceErrorFunction(harm1Original, harm1Fit);

49 end

50 if bands(3)

51 harm2Fit = ExtractHarmonicFast(traceFit, ...

52 frequencyIndicesD, ...

53 sineData2{3}, cosineData2{3}, ...

54 sineData3{3}, cosineData3{3});

55 error = error + ...

56 weights(3) * TraceErrorFunction(harm2Original, harm2Fit);

57 end

58 end

A.9 ObtainParameters.m

1 % Prompts the user to provide the necessary parameters for th e measured

2 % trace. Saves the parameters to a "P −file".

3 function saveName = ObtainParameters(fileNameData,pathNameData ,pathNameSave)

4

5 c = 299792458; % Speed of light.

6

7 wavelengthMin = inputdlg( 'Minimum wavelength of measurement data in nm' );

8 wavelengthMax = inputdlg( 'Maximum wavelength of measurement data in nm' );

9 wavelengthMin = str2double(wavelengthMin);

10 wavelengthMax = str2double(wavelengthMax);

11

12 delayMin = inputdlg( 'Minimum time delay of measurement data in fs' );

13 delayMax = inputdlg( 'Maximum time delay of measurement data in fs' );

14 delayMin = str2double(delayMin);
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15 delayMax = str2double(delayMax);

16

17 division = inputdlg( 'Power division of beam splitter' , '' ,1,{ '1' });

18 division = str2double(division);

19

20 data = load([pathNameData fileNameData]);

21 data = rot90(data);

22

23 NoOfWavelengthPoints = size(data,1);

24 NoOfDelayPoints = size(data,2);

25 delays = linspace(delayMin,delayMax,NoOfDelayPoints);

26 wavelengths = linspace(wavelengthMin,wavelengthMax, ...

27 NoOfWavelengthPoints);

28

29 h1 = figure;

30 s = get(0, 'ScreenSize' );

31 set(h1, 'Position' , [0 0 s(3) s(4)])

32 contourf(delays,wavelengths,data,50, 'linestyle' , 'none' );

33 xlabel( 'Delay [fs]' )

34 ylabel( 'Wavelength [nm]' )

35 title( 'Your data' )

36 rise = inputdlg( 'How many cycles roughly is the rise time?' , ...

37 '' ,1,{ '3' });

38 fall = inputdlg( 'How many cycles roughly is the fall time?' , ...

39 '' ,1,{ '3' });

40

41 hDlg = helpdlg( 'Select a point for the LOWEST wavelength with meaningful da ta' );

42 waitfor(hDlg);

43 [~,w1] = ginput(1);

44 hDlg = helpdlg( 'Select a point for the HIGHEST wavelength with meaningful d ata' );

45 waitfor(hDlg);

46 [~,w2] = ginput(1);

47 fMin = floor(c/(w2 * 1e−9));

48 fMax = ceil(c/(w1 * 1e−9));

49

50

51 hDlg = helpdlg([ 'Choose a point at one crest, then another ' ...

52 'one on the FIFTH crest from the first one TO THE RIGHT.' ] ...

53 , 'Define the duration of one cycle' );

54 waitfor(hDlg);

55

56 hold on

57 [d1,w1] = ginput(1);

58 plot(d1,w1, 'gx' , 'markersize' ,40)

59 [d2,~] = ginput(1);

60 tCycle = (d2 * 1e−15 − d1* 1e−15)/5;

61 close(h1);

62 clear d1 w1 d2 h1

63

64 rise = str2double(rise) * tCycle;

65 fall = str2double(fall) * tCycle;

66

67 deltaDelay = inputdlg([ 'Delay step in fs to be used.' ...

68 'Should be around 1/10 of cycle.' ], '' ,1,{ '0.2' });

69 deltaDelay = str2double(deltaDelay) * 1e−15;

70 deltaPulse = deltaDelay / 2;

71

72 saveName = [pathNameSave, '\' , fileNameData(1: end−4), '_P.mat' ];

73 save(saveName, 'wavelengthMin' , 'wavelengthMax' , ...

74 'delayMin' , 'delayMax' , ...

75 'division' , 'tCycle' , 'rise' , 'fall' , ...

76 'fMin' , 'fMax' , 'deltaDelay' , 'deltaPulse' )
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A.10 PeakFunction.m

1 % Find the first local maximum position of a vector. Used in

2 % ExtractBaseband function.

3 function peakPosition = PeakFunction(index,F, bound)

4 [~, peakPosition] = ...

5 findpeaks(abs(F(index, bound: end )), 'MINPEAKDISTANCE' , ...

6 15, 'NPEAKS' , 1);

7 if isempty(peakPosition)

8 peakPosition = 0;

9 end

10 peakPosition = peakPosition + bound − 1;

11 end

A.11 PrepareData.m

1 % Prepares measurement data to be used with the Reconstructi on function for

2 % pulse retrieval. Once this function has finished, "D" and " P" files for

3 % all the datasets prepared here are saved on HDD. Calls the

4 % ObtainParameters, RemoveArtefacts and ProcessDataInit ial functions.

5 function PrepareData

6

7 ii = 1;

8 more = 1;

9 while more

10 [filenameData{ii},pathData{ii}] = uigetfile( '.txt' , 'Select a text file containing the data' );

11 ii = ii + 1;

12 selection = questdlg( 'Do you want to select another dataset to prepare?' , ...

13 '' , ...

14 'Yes' , 'No' , 'No' );

15 switch selection

16 case 'No'

17 more = 0;

18 end

19 end

20

21 numberOfFiles = size(filenameData,2);

22

23 % Select a folder to save edited data and setting files into

24 pathSave = uigetdir( '' , 'Select a folder to save edited data and setting files into.' );

25

26 previous = '' ;

27

28 for ii = 1:numberOfFiles

29

30 % Obtain parameters for the current dataset

31 loopOK = 0;

32 while ~loopOK

33 selection = MFquestdlg([0.5 0.3], [ 'Parameters for the data in ' filenameData{ii}], ...

34 '' , ...

35 'Enter new' , 'Use existing file' , 'Use previous' , 'Use previous' );

36

37 switch selection

38 case 'Enter new'

39 saveName = ObtainParameters(filenameData{ii},pathData {ii},pathSave);

40 previous = saveName;

41 load(previous);

42 loopOK = 1;

43 case 'Use existing file'

44 [filenameSettings,pathSettings, ~] = ...

45 uigetfile( '.mat' , 'Select settings file' );

46 load([pathSettings, filenameSettings])

47 saveName = [pathSave, '\' , filenameData{ii}(1: end−4), '_P.mat' ];
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48 save(saveName, 'wavelengthMin' , 'wavelengthMax' , ...

49 'delayMin' , 'delayMax' , ...

50 'division' , 'tCycle' , 'rise' , 'fall' , ...

51 'fMin' , 'fMax' , 'deltaDelay' , 'deltaPulse' )

52 previous = saveName;

53 loopOK = 1;

54 case 'Use previous'

55 if ~strcmp(previous, '' )

56 saveName = [pathSave, '\' , filenameData{ii}(1: end−4), '_P.mat' ];

57 save(saveName, 'wavelengthMin' , 'wavelengthMax' , ...

58 'delayMin' , 'delayMax' , ...

59 'division' , 'tCycle' , 'rise' , 'fall' , ...

60 'fMin' , 'fMax' , 'deltaDelay' , 'deltaPulse' )

61 loopOK = 1;

62 else

63 errordlg( 'There were no previous settings to be used!' , 'Error' )

64 end

65 end

66 end

67

68 filename = [pathData{ii} '\' filenameData{ii}];

69

70 % Remove artefacts from the data

71 traceIn = RemoveArtefacts({filename});

72

73 [traceAfterInitialProcessing, centerFrequency, center Delay] = ...

74 ProcessDataInitial(traceIn, ...

75 wavelengthMin, wavelengthMax, ...

76 delayMin, delayMax);

77

78 saveName = [saveName(1: end−5) 'D.mat' ];

79 save(saveName, 'traceAfterInitialProcessing' , 'centerFrequency' , 'centerDelay' )

80

81 end

82

83

84 end

A.12 ProcessData.m

1 % Processes the PREPARED measurement data for the simulatio n. Called by the

2 % Reconstruction function.

3 function [traceOut, ...

4 delaysCentered, frequenciesExtended, ...

5 NF, frequencyIndicesF] = ...

6 ProcessData(traceAfterInitialProcessing, ...

7 wavelengthMin, wavelengthMax, ...

8 delayMin, delayMax, ...

9 frequencyResolution, ...

10 delayRange, ...

11 fMin, fMax, ...

12 deltaPulse, deltaDelay, ...

13 centerDelay)

14

15 % Assume that the trace is already on correct orientation.

16

17 noOfWavelengthPoints = size(traceAfterInitialProcessi ng,1);

18 noOfDelayPoints = size(traceAfterInitialProcessing,2) ;

19

20 % Vectors for delays and wavelengths.

21 delays = linspace(delayMin,delayMax,noOfDelayPoints);

22 wavelengths = linspace(wavelengthMax,wavelengthMin, ...

23 noOfWavelengthPoints);

24
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25 % Change from fs to s.

26 delays = delays * 1e−15;

27

28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 % Convert wavelengths to frequencies.

30 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31 % Convert the wavelength axis to frequencies. The scale is no t correct at

32 % this point yet, i.e., the frequency axis is not linear.

33 c = 299792458; % Speed of light.

34 frequencies = c./(wavelengths * 1e−9);

35

36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 % Define new axes.

38 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39

40 % FREQUENCY AXIS

41

42 fRange = fMax − fMin;

43 xiF = fRange / frequencyResolution; % frequency step

44

45 % N in the DFT formula.

46 % deltaPulse = delays(2) − delays(1);

47 NF = ceil(1/(deltaPulse * xiF));

48 xiF = 1/(deltaPulse * NF); % update the frequency step

49

50 % The indices for wanted frequencies are... (f_n = n * xi)

51 nMax = floor(fMax / xiF);

52 nMin = nMax − frequencyResolution + 1;

53 frequencyIndicesF = nMin:nMax;

54

55 % Create axes for new resolution. An equidistant vector is cr eated for the

56 % frequencies.

57 frequenciesEquidistant = frequencyIndicesF * xiF;

58

59 % DELAY AXIS

60 noOfPositiveDelays = floor((delayRange / 2) / deltaDelay) ;

61 noOfNegativeDelays = noOfPositiveDelays;

62

63 delays2 = −noOfNegativeDelays * deltaDelay : deltaDelay : ...

64 noOfPositiveDelays * deltaDelay;

65 delays2 = delays2 + centerDelay;

66

67 % Center the delays

68 delaysCentered = delays2 − centerDelay;

69

70 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

71 % Fit to new axes

72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

73 % Cubic spline interpolation to obtain values for the new axe s

74 trace2 = interp2(delays,frequencies.',traceAfterIniti alProcessing, ...

75 delays2,frequenciesEquidistant.', 'spline' );

76

77 % Normalize output.

78 trace2 = trace2/max(trace2(:));

79

80 % Remove very small components.

81 trace2(trace2 < 1e −5) = 0;

82

83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84 % Extend the frequency range

85 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86 frequenciesExtention1 = 0 : xiF : frequenciesEquidistant( 1);

87 frequenciesExtention1 = frequenciesExtention1(1: end−1);

88

89 steps_to_top = floor((2000e12 − frequenciesEquidistant( end ))/ xiF);

90 frequenciesExtention2 = frequenciesEquidistant( end ) + xiF : xiF : ...
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91 frequenciesEquidistant( end) + xiF * steps_to_top;

92

93 frequenciesExtended = [frequenciesExtention1 ...

94 frequenciesEquidistant ...

95 frequenciesExtention2];

96

97 % Fill the new frequencies with zero data.

98 traceOut = [zeros(numel(frequenciesExtention1),size(t race2,2)); ...

99 trace2;

100 zeros(numel(frequenciesExtention2),size(trace2,2)); ];

101

102 % Define new values for FT index n.

103 nMax = ceil(frequenciesExtended( end ) / xiF);

104 nMin = 0;

105 frequencyIndicesF = nMin:nMax;

106

107 end

A.13 ProcessDataInitial.m

1 % Initial processing for measurement data. Called by Prepar eData function.

2 % Removes background, flips the data structure to correct or ientation and

3 % locates zero delay and center frequency.

4 function [traceOut, centerFrequency, centerDelay] = ...

5 ProcessDataInitial(data, ...

6 wavelengthMin, wavelengthMax, ...

7 delayMin, delayMax)

8

9 % Flip to correct orientation...

10 trace1 = flipud(data);

11 noOfWavelengthPoints = size(trace1,1);

12 noOfDelayPoints = size(trace1,2);

13

14 % Vectors for delays and wavelengths.

15 delays = linspace(delayMin,delayMax,noOfDelayPoints);

16 wavelengths = linspace(wavelengthMax,wavelengthMin, ...

17 noOfWavelengthPoints);

18

19 % Change from fs to s.

20 delays = delays * 1e−15;

21

22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 % Remove background (INITIAL).

24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 % Background level estimate:

26 backgroundLevel = median(trace1(:));

27

28 % Keep a copy of original trace1 for background level adjustm ent later on.

29 traceOrig = trace1;

30

31 % Substract backround.

32 trace1 = trace1 − backgroundLevel;

33

34 % Negative elements are set to zero.

35 trace1(trace1 < 0) = 0;

36

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 % Convert wavelengths to frequencies.

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40 % Convert the wavelength axis to frequencies. The scale is no t correct at

41 % this point yet, i.e., the frequency axis is not linear.

42 c = 299792458; % Speed of light.

43 frequencies = c./(wavelengths * 1e−9);

44
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45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

46 % Define the center of gravitation.

47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48 % The goal here is to find the location of the baseband maximum and use it

49 % as the center of gravitation.

50

51 % FFT to delay −frequencies.

52 NFFT = size(trace1,2);

53 F1 = fft(trace1,NFFT,2);

54 h1 = figure;

55 s = get(0, 'ScreenSize' );

56 set(h1, 'Position' , [0 0 s(3) s(4)])

57 imagesc(abs(F1))

58 set(gca, 'YDir' , 'normal' )

59

60 hDlg = helpdlg([ 'Choose a point right from the baseband on the left. ' ...

61 'Data right of this point is filtered in order to extract base band.' ] ...

62 , 'Filtering for zero delay definition' );

63 waitfor(hDlg);

64 [x,~] = ginput(1);

65 x = floor(x);

66 if (x<2)

67 x=2;

68 end

69

70 % Remove all but the baseband.

71 F1(:,x: end−x+2) = 0;

72 imagesc(abs(F1))

73 set(gca, 'YDir' , 'normal' )

74 pause(0.5)

75 close(h1)

76

77 % IFFT to obtain the baseband in delay −space.

78 baseband = abs(ifft(F1,NFFT,2));

79 h2 = figure(2);

80 contourf(delays,frequencies,baseband,50, 'linestyle' , 'none' )

81 % imagesc(delays,frequencies,baseband)

82 % set(gca,'YDir','normal')

83 xlabel( 'Delays [s]' )

84 ylabel( 'Frequencies [Hz]' )

85 set(h2, 'Position' , [0 0 s(3) s(4)])

86

87 hold on

88 hDlg = helpdlg([ 'Choose a point to be used as the zero delay & center ' ...

89 'frequency.' ] ...

90 , 'Select peak point' );

91 waitfor(hDlg);

92

93 [centerDelay,centerFrequency] = ginput(1);

94

95 selectionOk = 0;

96 while ~selectionOk

97 hCross = plot(centerDelay, centerFrequency, 'gx' , 'Markersize' , 40);

98 % Dialog.

99 selection = questdlg([ 'Are you satisfied with the selection ' ...

100 '(delay = ' num2str(centerDelay * 1e15) ' fs, frequency = ' ...

101 num2str(centerFrequency * 1e−12) ' THz)? ' ...

102 'Select No to choose another point' ], ...

103 '' , ...

104 'Yes' , 'No' , 'More options...' , 'No' );

105

106 switch selection

107 case 'Yes'

108 selectionOk = 1;

109 case 'No'

110 set(hCross, 'visible' , 'off' )
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111 [centerDelay,centerFrequency] = ginput(1);

112 case 'More options...'

113 selectionMore = questdlg([ 'Are you satisfied with the selection ' ...

114 '(delay = ' num2str(centerDelay * 1e15) ' fs, frequency = ' ...

115 num2str(centerFrequency * 1e−12) ' THz)? ' ...

116 'Select option' ], ...

117 '' , ...

118 'Use centroid' , 'Use peak' , 'Use peak' );

119 set(hCross, 'visible' , 'off' )

120 switch selectionMore

121 case 'Use centroid'

122 xData = sum(baseband);

123 yData = sum(baseband,2).';

124 mass = sum(sum(baseband));

125

126 xCenter = 1/mass * sum(xData . * (1:numel(xData)));

127 yCenter = 1/mass * sum(yData . * (1:numel(yData)));

128

129 centerFrequency = interp1(1:numel(frequencies), ...

130 frequencies,yCenter);

131 centerDelay = interp1(1:numel(delays), ...

132 delays,xCenter);

133 case 'Use peak'

134 % Locate baseband maximum.

135 [~,index] = max(baseband(:));

136 [freqIndexOfPeak,delayIndexOfPeak]=ind2sub(size(bas eband),index);

137 centerFrequency = frequencies(freqIndexOfPeak);

138 centerDelay = delays(delayIndexOfPeak);

139 end

140 end

141 end

142 close(h2)

143 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

144 % Remove background FINAL

145 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

146 BGLevelOK = 0;

147 BGcnst = 1;

148 while ~BGLevelOK

149 % Remove background.

150 trace1 = traceOrig − backgroundLevel * BGcnst;

151 trace1(trace1 < 0) = 0;

152

153 % Normalize output.

154 trace1 = trace1/max(trace1(:));

155

156 % Remove very small components.

157 trace1(trace1 < 1e −5) = 0;

158

159 % Plot and let user check the level

160 hBG = figure(6);

161 set(hBG, 'Position' , [0 0 s(3) s(4)])

162 imagesc(delays,frequencies,trace1);set(gca, 'ydir' , 'normal' )

163 xlabel( 'Delays [fs]' )

164 ylabel( 'Frequencies [THz]' )

165

166 selection = MFquestdlg([0.5 0.3], [ 'Adjust the background level. ' ...

167 'Substract...' ], ...

168 '' , ...

169 'More' , 'Less' , 'The level is fine' , 'The level is fine' );

170 switch selection

171 case 'More'

172 BGcnst = BGcnst + 0.005;

173 case 'Less'

174 BGcnst = BGcnst − 0.005;

175 case 'The level is fine'

176 BGLevelOK = 1;
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177 end

178 end

179 close(hBG)

180 traceOut = trace1;

181

182 end

A.14 PulseShapeFunction.m

1 % A function to generate an asymmetric pulse shape.

2 function [amplitude, phi] = PulseShapeFunction(t, rise, fall)

3 % Hyperbolic secant.

4 amplitude = 2 ./ ( exp(t ./ ( fall) ) + ...

5 exp( −t ./ ( rise) ) );

6

7 % Make the amplitude decline to zero at the edges.

8 amplitude = blackman(numel(amplitude)).'. * amplitude;

9

10 % Flat phase.

11 phi = ones(1,length(t)) * pi;

12 end

A.15 ReconstructionV13.m

1 % Main function. Reconstructs a pulse from a trace, saves dat a.

2 function [pulseRecovered, ...

3 pulseDelays, delays, frequencies, ...

4 traceRecovered, traceOriginal] = ...

5 ReconstructionV13(optimize, ...

6 frequencyResolution, delayRange, ...

7 bands, weights, optimizationPoints, ...

8 scenario, ...

9 pathD, pathP, ...

10 folderPath, ...

11 tag, iterationsPerCycle)

12 % Initialize output variables.

13 pulseRecovered = 0;

14 traceRecovered = 0;

15

16 % Boolean for testing. Set to 1 if you want to use a known pulse a nd see

17 % how well the program retrieves it.

18 testing = 0;

19

20 % Load the trace and the relevant parameters.

21 load(pathD);

22 load(pathP);

23

24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−PREPARE DATA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27 % Extract the trace and the corresponding axes.

28 [traceOriginal, delays, frequencies, NF, frequencyIndic esF] ...

29 = ProcessData(traceAfterInitialProcessing, ...

30 wavelengthMin, wavelengthMax, ...

31 delayMin, delayMax, ...

32 frequencyResolution, ...

33 delayRange, ...

34 fMin, fMax, ...

35 deltaPulse, deltaDelay, ...

36 centerDelay);

37
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38 % Carrier frequency.

39 omega_0 = 2* pi * centerFrequency / 3;

40

41 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

42 % Initial guess for pulse

43 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

44 NoPositiveDelaysForPulse = floor(length(delays)/2);

45 pulseDelays = −NoPositiveDelaysForPulse * deltaPulse: deltaPulse : ...

46 NoPositiveDelaysForPulse * deltaPulse;

47 [amplitude, phi] = PulseShapeFunction(pulseDelays, rise , fall);

48 pulseInitialGuess = ComplexPulse(pulseDelays, omega_0, amplitude, phi);

49

50 % Format the pulse used in testing scenario.

51 pulseOriginal = 0;

52

53 % +++++++++++++++++++++++++++++++TEST PULSE++++++++++++++++++++++++++++++++

54 if testing

55 amplitude = amplitude.^2 . * (rand(1,numel(amplitude))+1);

56 temp = linspace(pulseDelays(1),pulseDelays( end ),20);

57 amplitude = interp1(pulseDelays,amplitude,temp, 'spline' );

58 amplitude = interp1(temp, amplitude, pulseDelays);

59 amplitude = amplitude / max(amplitude);

60 % phi = rand(1,numel(phi))/3 + pi;

61 phi = linspace( −1,1,numel(phi)) + pi;

62

63 pulseOriginal = ComplexPulse(pulseDelays, omega_0, ampl itude, phi);

64 end

65 % +++++++++++++++++++++++++++++++/TEST PULSE+++++++++ ++++++++++++++++++++++

66

67 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

68 % Data for the fourier transforms.

69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

70 % FOR FT ALONG TIME DELAY−AXIS (X)

71

72 % BASEBAND−−−−−−−−−−−−−−−−−−−−−−−−

73

74 % Let's assume that we need L positive frequencies for the ban d retrival.

75 L = 15;

76

77 % We are only interested in baseband frequencies, so let's se lect them.

78 m = 0; % m=1 for one harmonic band and so forth.

79 delayFrequencyMax = (m + 0.3) * 1/tCycle;

80 delayFrequencyMin = 0;

81 delayFrequencyRange = delayFrequencyMax − delayFrequencyMin;

82

83 xiD = delayFrequencyRange / L; % frequency step

84

85 ND = ceil(1/(deltaDelay * xiD));

86 xiD = 1/(deltaDelay * ND); % update the frequency step

87

88 % The indices for wanted frequencies are... (fN = n * xi)

89 nMax = floor(delayFrequencyMax / xiD);

90 % Only non−negative delay frequencies wanted for the baseband

91 % extraction when transforming to Fourier domain. Negative frequencies are

92 % obtained by using the positive frequencies.

93 nMin = 0;

94 n = nMin:nMax;

95 frequencyIndicesD = 1:numel(frequencyIndicesF);

96

97 k = 1:length(delays);

98 if length(k) > ND

99 disp( 'Problem officer: length(k) > N. Reduce delay range???' )

100 return

101 end

102

103 % These are for the transform into Fourier domain in the time d elay −axis.
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104 [sineData_2{1}, cosineData_2{1}] = SineCosineData_knN( n,k,ND);

105

106 % Both negative and positive frequencies are required when t ransforming

107 % back. Check notebook for explanation.

108 nMin = −nMax;

109 n = nMin:nMax;

110 [sineData_3{1}, cosineData_3{1}] = SineCosineData_knN( k,n,ND);

111

112 % FIRST & SECOND HARMONIC−−−−−−−−−−−−−−−−−−−−−−−−−−−

113 for m = 1:2 % m = 1 for first harmonic band and so forth.

114 delayFrequencyMax = (m + 0.4) * 1/tCycle;

115 delayFrequencyMin = (m − 0.4) * 1/tCycle;

116

117 % The indices for wanted frequencies are... (fN = n * xi)

118 nMax = floor(delayFrequencyMax / xiD);

119

120 % Only non−negative delay frequencies wanted for the band extraction

121 % when transforming to Fourier domain. Negative frequencie s are

122 % discarded.

123 nMin = floor(delayFrequencyMin / xiD);

124 n = nMin:nMax;

125

126 % These are for the transform into Fourier domain in the time

127 % delay −axis.

128 [sineData_2{m + 1}, cosineData_2{m + 1}] = ...

129 SineCosineData_knN(n,k,ND);

130

131 % Both negative and positive frequencies are required when t ransforming

132 % back.

133 n = [ −fliplr(n) n];

134 [sineData_3{m + 1}, cosineData_3{m + 1}] = ...

135 SineCosineData_knN(k,n,ND);

136 end

137

138 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

139 % Trace for initial guess pulse.

140 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

141 % Integer delays, used in calculation of Trace.

142 if mod(numel(delays),2) == 0

143 d0 = find(delays==0);

144 integerDelays = −(d0 − 1): numel(delays) − d0;

145 else

146 integerDelays = −floor(numel(delays)/2) : floor(numel(delays)/2);

147 end

148

149 % Alakazam!

150 integerDelays = integerDelays * 2;

151

152 if testing

153 traceOriginal = TraceFun(pulseOriginal, delays, ...

154 division, ...

155 integerDelays, ...

156 NF, frequencyIndicesF);

157 end

158

159 % Trace of the initial guess pulse.

160 traceInitialGuess = TraceFun(pulseInitialGuess, delays , ...

161 division, ...

162 integerDelays, ...

163 NF, frequencyIndicesF);

164

165 % Extract bands.

166 [basebandOriginal, harm1Original, harm2Original] = Extr actBandsFast ...

167 (traceOriginal, ...

168 frequencyIndicesD, ...

169 sineData_2, cosineData_2, ...
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170 sineData_3, cosineData_3, ...

171 [1 1 1]);

172

173 [basebandInitialGuess, harm1InitialGuess, harm2Initia lGuess] = ...

174 ExtractBandsFast ...

175 (traceInitialGuess, ...

176 frequencyIndicesD, ...

177 sineData_2, cosineData_2, ...

178 sineData_3, cosineData_3, ...

179 [1 1 1]);

180

181 % Errors.

182 errorTraceInitial = TraceErrorFunction(traceOriginal, ...

183 traceInitialGuess);

184 errorBasebandInitial = TraceErrorFunction(basebandOri ginal, ...

185 basebandInitialGuess);

186 errorHarm1Initial = TraceErrorFunction(harm1Original, ...

187 harm1InitialGuess);

188 errorHarm2Initial = TraceErrorFunction(harm2Original, ...

189 harm2InitialGuess);

190

191 pulseInput = pulseInitialGuess;

192

193 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

194 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−PLOTTING−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

195 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

196

197 hOriginalAndGuessTraces = figure;

198

199 % Original trace.

200 subplot(2,4,1)

201 imagesc(delays * 1e15,frequencies * 1e−12,traceOriginal)

202 set(gca, 'ydir' , 'normal' )

203 xlabel( 'Time delay [fs]' )

204 ylabel( 'Frequency [THz]' )

205 title([scenario ' Original trace' ])

206

207 % Initial guess pulse trace.

208 subplot(2,4,5)

209 imagesc(delays * 1e15,frequencies * 1e−12,traceInitialGuess)

210 set(gca, 'ydir' , 'normal' )

211 xlabel( 'Time delay [fs]' )

212 ylabel( 'Frequency [THz]' )

213 title([ 'Trace for Initial Guess Pulse, \delta = ' ...

214 num2str(errorTraceInitial,6)])

215

216 % Original baseband.

217 subplot(2,4,2)

218 imagesc(delays * 1e15,frequencies * 1e−12,basebandOriginal)

219 set(gca, 'ydir' , 'normal' )

220 xlabel( 'Time delay [fs]' )

221 ylabel( 'Frequency [THz]' )

222 title( 'Original baseband' )

223

224 % Initial guess pulse baseband.

225 subplot(2,4,6)

226 imagesc(delays * 1e15,frequencies * 1e−12,basebandInitialGuess)

227 set(gca, 'ydir' , 'normal' )

228 xlabel( 'Time delay [fs]' )

229 ylabel( 'Frequency [THz]' )

230 title([ 'Baseband for IGP, \delta = ' ...

231 num2str(errorBasebandInitial,6)])

232

233 % Original first harmonic band.

234 subplot(2,4,3)

235 imagesc(delays * 1e15,frequencies * 1e−12,harm1Original)
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236 set(gca, 'ydir' , 'normal' )

237 xlabel( 'Time delay [fs]' )

238 ylabel( 'Frequency [THz]' )

239 title( 'Original FM −band' )

240

241 % Initial guess pulse first harmonic band.

242 subplot(2,4,7)

243 imagesc(delays * 1e15,frequencies * 1e−12,harm1InitialGuess)

244 set(gca, 'ydir' , 'normal' )

245 xlabel( 'Time delay [fs]' )

246 ylabel( 'Frequency [THz]' )

247 title([ 'FM−band for IGP, \delta = ' ...

248 num2str(errorHarm1Initial,6)])

249

250 % Original first harmonic band.

251 subplot(2,4,4)

252 imagesc(delays * 1e15,frequencies * 1e−12,harm2Original)

253 set(gca, 'ydir' , 'normal' )

254 xlabel( 'Time delay [fs]' )

255 ylabel( 'Frequency [THz]' )

256 title( 'Original 2nd harm. band' )

257

258 % Initial guess pulse first harmonic band.

259 subplot(2,4,8)

260 imagesc(delays * 1e15,frequencies * 1e−12,harm2InitialGuess)

261 set(gca, 'ydir' , 'normal' )

262 xlabel( 'Time delay [fs]' )

263 ylabel( 'Frequency [THz]' )

264 title([ '2nd harm. band for IGP, \delta = ' ...

265 num2str(errorHarm2Initial,6)])

266

267 s = get(0, 'ScreenSize' );

268 set(hOriginalAndGuessTraces, 'Position' , [0 0 s(3) s(4)])

269

270 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

271 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−OPTIMIZATION−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

272 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

273 if (optimize == 1)

274 % Optimize.

275 [pulseRecovered, traceRecovered, hRetrieval] = ...

276 RecoverPulse( ...

277 delays, pulseDelays, integerDelays, ...

278 frequencies, frequencyIndicesF, frequencyIndicesD, ...

279 NF, omega_0, division, ...

280 pulseInput, pulseOriginal, ...

281 traceOriginal, basebandOriginal, harm1Original, harm2O riginal, ...

282 sineData_2, cosineData_2, ...

283 sineData_3, cosineData_3, ...

284 bands, weights, optimizationPoints,iterationsPerCycle );

285

286 % Extract bands.

287 [basebandRecovered, harm1Recovered, harm2Recovered] = ...

288 ExtractBandsFast ...

289 (traceRecovered, ...

290 frequencyIndicesD, ...

291 sineData_2, cosineData_2, ...

292 sineData_3, cosineData_3, ...

293 [1 1 1]);

294

295 % Errors with the error function.

296 errorTraceRecovered = TraceErrorFunction(traceOrigina l, ...

297 traceRecovered);

298 errorBasebandRecovered = TraceErrorFunction(basebandO riginal, ...

299 basebandRecovered);

300 errorHarm1Recovered = TraceErrorFunction(harm1Origina l, ...

301 harm1Recovered);
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302 errorHarm2Recovered = TraceErrorFunction(harm2Origina l, ...

303 harm2Recovered);

304

305 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

306 % PLOTTING

307 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

308

309 % ERROR PLOTS OF THE TRACES

310 hErrors = figure;

311

312 % Recovered trace error.

313 subplot(2,2,1)

314 errorMatrixTrace = abs(traceRecovered − traceOriginal);

315 imagesc(delays * 1e15, frequencies * 1e−12, errorMatrixTrace)

316 set(gca, 'ydir' , 'normal' )

317 colorbar

318 title( 'Trace error' )

319 xlabel( 'Time delay [fs]' )

320 ylabel( 'Frequency [THz]' )

321

322 % Recovered baseband error.

323 subplot(2,2,2)

324 errorMatrixBaseband = abs(basebandRecovered − basebandOriginal);

325 imagesc(delays * 1e15, frequencies * 1e−12, errorMatrixBaseband)

326 set(gca, 'ydir' , 'normal' )

327 colorbar

328 title( 'Baseband error' )

329 xlabel( 'Time delay [fs]' )

330 ylabel( 'Frequency [THz]' )

331

332 % Recovered first harmonic band error.

333 subplot(2,2,3)

334 errorMatrixHarm1 = abs(harm1Recovered − harm1Original);

335 imagesc(delays * 1e15, frequencies * 1e−12, errorMatrixHarm1)

336 set(gca, 'ydir' , 'normal' )

337 colorbar

338 title( 'FM−band error' )

339 xlabel( 'Time delay [fs]' )

340 ylabel( 'Frequency [THz]' )

341

342 % Recovered second harmonic band error.

343 subplot(2,2,4)

344 errorMatrixHarm2 = abs(harm2Recovered − harm2Original);

345 imagesc(delays * 1e15, frequencies * 1e−12, errorMatrixHarm2)

346 set(gca, 'ydir' , 'normal' )

347 colorbar

348 title( '2nd harm. band error' )

349 xlabel( 'Time delay [fs]' )

350 ylabel( 'Frequency [THz]' )

351

352 s = get(0, 'ScreenSize' );

353 set(hErrors, 'Position' , [0 0 s(3) s(4)])

354

355 % Plot the absolute squares and phases of the pulses.

356 hPulses = figure;

357 s = get(0, 'ScreenSize' );

358 set(hPulses, 'Position' , [0 0 s(3) s(4)])

359

360 subplot(1,2,1)

361 if testing

362 plot(pulseDelays * 1e15,abs(pulseInitialGuess).^2, 'b * ' , ...

363 pulseDelays * 1e15,abs(pulseRecovered).^2, 'r' , ...

364 pulseDelays * 1e15,abs(pulseOriginal).^2, 'g −−' )

365 else

366 plot(pulseDelays * 1e15,abs(pulseInitialGuess).^2, 'b * ' , ...

367 pulseDelays * 1e15,abs(pulseRecovered).^2, 'r' )
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368 end

369 title( 'Pulse intensity' )

370 xlabel( 'Time delay [fs]' )

371 ylabel( 'Normalized intensity' )

372 set(gca, 'ylim' ,[0 1.05])

373

374 subplot(1,2,2)

375 phiInitialGuess = ...

376 ExtractPhase(pulseDelays, omega_0, pulseInitialGuess) ;

377 phiRecovered = ...

378 ExtractPhase(pulseDelays, omega_0, pulseRecovered);

379

380 if testing

381 phiOriginal = ...

382 ExtractPhase(pulseDelays, omega_0, pulseOriginal);

383 plot(pulseDelays * 1e15,phiInitialGuess, 'b * ' , ...

384 pulseDelays * 1e15,phiRecovered, 'r' , ...

385 pulseDelays * 1e15,phiOriginal, 'g −−' )

386 legend( 'Initial guess' , 'Recovered' , 'Original' , 'Location' , 'Best' )

387 else

388 plot(pulseDelays * 1e15,phiInitialGuess, 'b * ' , ...

389 pulseDelays * 1e15,phiRecovered, 'r' )

390 legend( 'Initial guess' , 'Recovered' , 'Location' , 'Best' )

391 end

392 title( 'Phase' )

393 xlabel( 'Time delay [fs]' )

394 ylabel( 'Phase [rad]' )

395

396 end

397

398 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

399 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SAVE DATA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

400 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

401 if optimize == 1;

402 % Date.

403 timeStamp = datestr(now, 'yyyy −mm−dd' );

404

405 % First part of the filename, second would be the specifying t itle,

406 % i.e. 'data.mat'.

407 filename = [folderPath timeStamp '_' scenario '_' tag '_' ];

408

409 % SAVE DATA ON .mat FILE

410 hWaitbar = waitbar(0, 'Saving data...' );

411

412 save([filename 'Data.mat' ], ...

413 'delays' , 'pulseDelays' , 'frequencies' , ...

414 'pulseRecovered' , ...

415 'traceOriginal' , 'traceRecovered' , ...

416 'basebandOriginal' , 'basebandRecovered' , ...

417 'harm1Original' , 'harm1Recovered' , ...

418 'harm2Original' , 'harm2Recovered' , ...

419 'bands' , 'weights' , 'division' , ...

420 'errorTraceRecovered' , 'errorBasebandRecovered' , ...

421 'errorHarm1Recovered' , 'errorHarm2Recovered' , ...

422 'errorTraceInitial' , 'errorBasebandInitial' , ...

423 'errorHarm1Initial' , 'errorHarm2Initial' )

424

425 % SAVE FIGURES

426 progress = 0.1;

427 waitbar(progress, hWaitbar, 'Saving figures...' )

428

429 h = hOriginalAndGuessTraces;

430 set(h, 'PaperOrientation' , 'landscape' );

431 set(h, 'PaperUnits' , 'normalized' );

432 set(h, 'PaperPosition' , [0 0 1 1]);

433 print(hOriginalAndGuessTraces, ' −dpdf' , ...
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434 [filename 'OriginalAndGuessTraces' ])

435

436 h = hRetrieval;

437 set(h, 'PaperOrientation' , 'landscape' );

438 set(h, 'PaperUnits' , 'normalized' );

439 set(h, 'PaperPosition' , [0 0 1 1]);

440 print(hRetrieval, ' −dpdf' , ...

441 [filename 'Retrieval' ])

442

443 h = hErrors;

444 set(h, 'PaperOrientation' , 'landscape' );

445 set(h, 'PaperUnits' , 'normalized' );

446 set(h, 'PaperPosition' , [0 0 1 1]);

447 print(hErrors, ' −dpdf' , ...

448 [filename 'Errors' ])

449

450 h = hPulses;

451 set(h, 'PaperOrientation' , 'landscape' );

452 set(h, 'PaperUnits' , 'normalized' );

453 set(h, 'PaperPosition' , [0 0 1 1]);

454 print(hPulses, ' −dpdf' , ...

455 [filename 'RecoveredPulse' ])

456

457 % SAVE DATA ON TXT FILES

458

459 progress = progress + 0.2;

460 waitbar(progress, hWaitbar, 'Saving txt data...' )

461

462 % Print pulse on a file.

463 pulseDelaysOut = pulseDelays * 1e15; % fs

464 pulseOut = pulseRecovered;

465 outputForPulse = [pulseDelaysOut; real(pulseOut); imag( pulseOut)];

466

467 fileID = fopen([filename 'Pulse.txt' ], 'w' );

468 fprintf(fileID, '%11s %11s %11s \n' , ...

469 'delays [fs]' , 'Real part' , 'Imag part' );

470 fprintf(fileID, '%6.3f\t%6.4f\t%6.4f\n' , ...

471 outputForPulse );

472 fclose(fileID);

473

474 progress = progress + 0.1;

475 waitbar(progress, hWaitbar, 'Saving txt data...' )

476 % Print trace delays on a file.

477 delaysOut = delays * 1e15; % fs

478

479 fileID = fopen([filename 'Delays.txt' ], 'w' );

480 fprintf(fileID, '%s \n' , ...

481 'delays [fs]' );

482 fprintf(fileID, '%6.3f\n' , ...

483 delaysOut );

484 fclose(fileID);

485

486 progress = progress + 0.1;

487 waitbar(progress, hWaitbar, 'Saving txt data...' )

488 % Print frequencies on a file.

489 frequenciesOut = frequencies * 1e−12; % THz

490

491 fileID = fopen([filename 'Freqs.txt' ], 'w' );

492 fprintf(fileID, '%s \n' , ...

493 'frequencies [THz]' );

494 fprintf(fileID, '%7.2f\n' , ...

495 frequenciesOut );

496 fclose(fileID);

497

498 progress = progress + 0.1;

499 waitbar(progress, hWaitbar, 'Saving txt data...' )
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500 % Print original trace on a file.

501 dlmwrite([filename 'TraceOriginal.txt' ], traceOriginal, '\t' )

502

503 progress = progress + 0.1;

504 waitbar(progress, hWaitbar, 'Saving txt data...' )

505 % Print recovered trace on a file.

506 dlmwrite([filename 'TraceRecovered.txt' ], traceRecovered, '\t' )

507

508 waitbar(1, hWaitbar, 'Done!' )

509 pause(1)

510 close(hWaitbar)

511

512 end

513 disp( 'The program has finished.' )

514 msgbox( 'The program has finished.' , 'All done!' );

515 end

A.16 RecoverPulse.m

1 % AUTOMATED VERSION Recovers the original pulse through opt imization.

2 function [pulseRecovered, traceRecovered, hRetrieval] = ...

3 RecoverPulse ...

4 (delays, pulseDelays, integerDelays, ...

5 frequencies, frequencyIndicesF, frequencyIndicesD, ...

6 NF, omega0, division, ...

7 pulseGuess, pulseOriginal, ...

8 traceOriginal, baseOriginal, harm1Original, harm2Origi nal, ...

9 sineData2, cosineData2, ...

10 sineData3, cosineData3, ...

11 bands, weights, optimizationPoints,iterationsPerCycle )

12

13 % Measure how long the optimization takes.

14 tstart = tic;

15

16 % Estimate the envelope at XX delay points.

17 sparseDelays = linspace(pulseDelays(1),pulseDelays( end),optimizationPoints);

18

19 % Extract phase and amplitude of the guess pulse.

20 amplitude = abs(pulseGuess);

21 phi = ExtractPhase(pulseDelays, omega0, pulseGuess);

22

23 % Sample.

24 amplitudeInput = interp1(pulseDelays, amplitude, sparse Delays, 'spline' );

25 phiInput = interp1(pulseDelays, phi, sparseDelays, 'spline' );

26

27 % Input pulse is provided in this format.

28 pulseInput = [amplitudeInput; phiInput];

29

30 % Function to be minimized.

31 objfun = @(pulseAmpPhase) NormFunction(pulseAmpPhase, ...

32 delays, pulseDelays, sparseDelays, ...

33 baseOriginal, harm1Original, harm2Original, ...

34 division, frequencyIndicesD, ...

35 sineData2, cosineData2, ...

36 sineData3, cosineData3, integerDelays, omega0, ...

37 NF, frequencyIndicesF, ...

38 bands, weights);

39

40 disp( 'Optimization follows.' )

41

42 pause(0.1)

43

44 % Create a large figure for retrieval plots.

45 hRetrieval = figure;
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46 s = get(0, 'ScreenSize' );

47 set(hRetrieval, 'Position' , [0 0.5 * s(4) s(3) 0.5 * s(4)])

48

49 % Add pushbuttons to figure for user control.

50 hButtonPushStop = uicontrol( 'Style' , 'pushbutton' , 'String' , 'Stop' , ...

51 'Position' , [10 10 50 20], ...

52 'Callback' , @ButtonPushStop);

53

54 hButtonPushIterations = ...

55 uicontrol( 'Style' , 'pushbutton' , 'String' , 'Change number of iterations' , ...

56 'Position' , [70 10 170 20], ...

57 'Callback' , @ButtonPushIterations);

58

59 % Plots for original trace and its baseband.

60 subplot(2,3,1)

61 imagesc(delays * 1e15, frequencies * 1e−12, traceOriginal);

62 set(gca, 'ydir' , 'normal' )

63 title( 'Original trace' )

64 xlabel( 'Time delay [fs]' )

65 ylabel( 'Frequency [THz]' )

66

67 subplot(2,3,4)

68 imagesc(delays * 1e15, frequencies * 1e−12, baseOriginal)

69 set(gca, 'ydir' , 'normal' )

70 title( 'Baseband of original trace' )

71 xlabel( 'Time delay [fs]' )

72 ylabel( 'Frequency [THz]' )

73

74 global stop;

75 stop = 0;

76

77 drawnow

78

79 pause(0.1)

80

81 % Set maximum number of iterations per cycle. This can be incr eased in the

82 % UI.

83 global maxIter;

84 maxIter = iterationsPerCycle;

85

86 error = 0;

87 lastError = inf;

88

89 % Optimization loop.

90 while ~stop && lastError ~= error

91 lastError = error;

92

93 options = optimset( 'Display' , 'iter' , ...

94 'MaxIter' , maxIter);

95 [pulseRecovered, error] = fminsearch(objfun, ...

96 pulseInput, ...

97 options);

98

99 pulseInput = pulseRecovered;

100

101 amplitude = interp1(sparseDelays, pulseRecovered(1,:), pulseDelays);

102 phi = interp1(sparseDelays, pulseRecovered(2,:), pulseD elays);

103

104 % Convert the pulse into complex form.

105 pulseRecovered = ComplexPulse(pulseDelays, omega0, ampl itude, phi);

106

107 % Normalize the pulse.

108 pulseRecovered = pulseRecovered/max(abs(pulseRecovere d));

109

110 % Calculate the normalized trace.

111 traceRecovered = TraceFun(pulseRecovered, delays, divis ion, ...
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112 integerDelays, ...

113 NF, frequencyIndicesF);

114

115 % Extract the baseband.

116 baseFit = ExtractBasebandFast(traceRecovered, frequenc yIndicesD, ...

117 sineData2{1}, cosineData2{1}, ...

118 sineData3{1}, cosineData3{1});

119

120 figure(hRetrieval)

121

122 subplot(2,3,2)

123 imagesc(delays * 1e15, frequencies * 1e−12, traceRecovered)

124 set(gca, 'ydir' , 'normal' )

125 title([ 'Trace fit, weighted error = ' num2str(error,6)])

126 xlabel( 'Time delay [fs]' )

127 ylabel( 'Frequency [THz]' )

128

129 subplot(2,3,5)

130 imagesc(delays * 1e15, frequencies * 1e−12, baseFit)

131 set(gca, 'ydir' , 'normal' )

132 title( 'Baseband fit' )

133 xlabel( 'Time delay [fs]' )

134 ylabel( 'Frequency [THz]' )

135

136 PlotPulses(pulseDelays, omega0, ...

137 pulseGuess, pulseRecovered, pulseOriginal)

138

139 drawnow

140

141 % Round error.

142 error = fix(error * 10^8)/10^8;

143 end

144

145 set(hButtonPushStop, 'Enable' , 'Off' )

146 set(hButtonPushIterations, 'Enable' , 'Off' )

147

148 disp( 'Optimization done.' )

149

150 % Display how long the optimization took.

151 telapsed = toc(tstart);

152 disp([ 'Optimization took ' num2str(telapsed) ' seconds.' ])

153 end

154

155 function ButtonPushStop(hObj,event) %#ok<INUSD>

156 global stop;

157 stop = 1;

158 end

159

160 function ButtonPushIterations(hObj,event) %#ok<INUSD>

161 global maxIter;

162 ok = 0;

163 while ~ok

164 prompt = { 'Enter number of iterations before figures are drawn.' };

165 dlgTitle = 'Maximum iterations' ;

166 numLines = 1;

167 def = {num2str(maxIter)};

168 maxIter = inputdlg(prompt,dlgTitle,numLines,def);

169 maxIter = str2num(maxIter{1});

170

171 % Error check.

172 if length(maxIter)~=1 || mod(maxIter,1)~=0

173 errordlg( 'Please provide an integer number.' )

174 else

175 ok = 1;

176 end

177 end
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178 end

179

180 function PlotPulses(pulseDelays, omega0, ...

181 pulseGuess, pulseFit, pulseOriginal)

182

183 subplot(2,3,3)

184

185 if length(pulseOriginal) == 1 % No original pulse involved (not testing)

186 plot(pulseDelays * 1e15,abs(pulseGuess).^2, 'b * ' , ...

187 pulseDelays * 1e15,abs(pulseFit).^2, 'r' )

188 else

189 plot(pulseDelays * 1e15,abs(pulseGuess).^2, 'b * ' , ...

190 pulseDelays * 1e15,abs(pulseFit).^2, 'r' , ...

191 pulseDelays * 1e15,abs(pulseOriginal).^2, 'g −−' )

192 end

193 title( 'Intensity' )

194 xlabel( 'Time delay [fs]' )

195 ylabel( 'Normalized intensity' )

196 set(gca, 'ylim' ,[0 1.05])

197

198 subplot(2,3,6)

199

200 phiGuess = ...

201 ExtractPhase(pulseDelays, omega0, pulseGuess);

202 phiFit = ...

203 ExtractPhase(pulseDelays, omega0, pulseFit);

204 if length(pulseOriginal) ~= 1 % Original pulse involved (testing)

205 phiOriginal = ...

206 ExtractPhase(pulseDelays, omega0, pulseOriginal);

207 plot(pulseDelays * 1e15,phiGuess, 'b * ' , ...

208 pulseDelays * 1e15,phiFit, 'r' , ...

209 pulseDelays * 1e15,phiOriginal, 'g −−' )

210 legend( 'Initial guess' , 'Recovered' , 'Original' , 'Location' , 'Best' )

211 else

212 plot(pulseDelays * 1e15,phiGuess, 'b * ' , ...

213 pulseDelays * 1e15,phiFit, 'r' )

214 legend( 'Initial guess' , 'Recovered' , 'Location' , 'Best' )

215 end

216 title( 'Phase' )

217 xlabel( 'Time delay [fs]' )

218 ylabel( 'Phase [rad]' )

219 end

A.17 RemoveArtefacts.fig

1 % REMOVEARTEFACTS MATLAB code for RemoveArtefacts.fig

2 function varargout = RemoveArtefacts(varargin)

3 % Begin initialization code − DO NOT EDIT

4 gui_Singleton = 1;

5 gui_State = struct( 'gui_Name' , mfilename, ...

6 'gui_Singleton' , gui_Singleton, ...

7 'gui_OpeningFcn' , @RemoveArtefacts_OpeningFcn, ...

8 'gui_OutputFcn' , @RemoveArtefacts_OutputFcn, ...

9 'gui_LayoutFcn' , [] , ...

10 'gui_Callback' , []);

11 if nargin && ischar(varargin{1})

12 gui_State.gui_Callback = str2func(varargin{1});

13 end

14

15 if nargout

16 [varargout{1:nargout}] = gui_mainfcn(gui_State, vararg in{:});

17 else

18 gui_mainfcn(gui_State, varargin{:});

19 end
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20 % End initialization code − DO NOT EDIT

21

22 %−−− Executes just before RemoveArtefacts is made visible.

23 function RemoveArtefacts_OpeningFcn(hObject, eventdata, handle s, varargin)

24 % This function has no output args, see OutputFcn.

25 % hObject handle to figure

26 % eventdata reserved − to be defined in a future version of MATLAB

27 % handles structure with handles and user data (see GUIDATA)

28 % varargin command line arguments to RemoveArtefacts (see V ARARGIN)

29

30 % Choose default command line output for RemoveArtefacts

31 handles.output = hObject;

32

33 % Initialize variables

34 handles.data{1} = 0;

35 handles.currentDataIndex = 1;

36 set(handles.eBrushSizeX, 'value' ,1)

37 set(handles.eBrushSizeY, 'value' ,1)

38 set(handles.eBrushSizeX, 'string' ,num2str(get(handles.eBrushSizeX, 'value' )))

39 set(handles.eBrushSizeY, 'string' ,num2str(get(handles.eBrushSizeX, 'value' )))

40

41 % Update handles structure

42 guidata(hObject, handles);

43

44 % Handle no structure being passed to GUI

45 if nargin<4

46 handles.fileNameOriginal = 'Default String' ;

47 else

48 fileNameOriginal = varargin{1}{1};

49 handles.fileNameOriginal = varargin{1}{1};

50 end

51

52 % Load data.

53 data = load(fileNameOriginal);

54 % handles.data{1} = data.';

55 handles.data{1} = rot90(data);

56 imagesc(handles.data{1})

57 set(gca, 'YDir' , 'normal' )

58

59 % Update handles structure

60 guidata(hObject, handles);

61

62 % UIWAIT makes RemoveArtefacts wait for user response (see U IRESUME)

63 uiwait(handles.figure1);

64

65 %−−− Outputs from this function are returned to the command line.

66 function varargout = RemoveArtefacts_OutputFcn(hObject, eventda ta, handles)

67 % Output data (the trace with artefacts removed)

68 varargout{1} = handles.output;

69

70 % Clean up.

71 delete(handles.figure1)

72

73 %−−− Executes on button press in pbUndo.

74 function pbUndo_Callback(hObject, eventdata, handles)

75 % hObject handle to pbUndo (see GCBO)

76 % eventdata reserved − to be defined in a future version of MATLAB

77 % handles structure with handles and user data (see GUIDATA)

78 if handles.currentDataIndex ~= 1

79 handles.currentDataIndex = handles.currentDataIndex − 1;

80 guidata(hObject, handles);

81

82 xLim = get(gca, 'xlim' );

83 yLim = get(gca, 'ylim' );

84 hold off

85 imagesc(handles.data{handles.currentDataIndex});set (gca, 'YDir' , 'normal' )
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86 set(gca, 'xlim' ,xLim)

87 set(gca, 'ylim' ,yLim)

88 hold on

89 plot(handles.levelX,handles.levelY, 'gx' , 'markersize' ,40)

90 end

91

92 %−−− Executes on button press in pbSelectLevel.

93 function pbSelectLevel_Callback(hObject, eventdata, handles)

94 [x,y] = ginput(1);

95 levelX = floor(x);

96 levelY = floor(y);

97 handles.level = handles.data{1}(levelY,levelX);

98 handles.levelX = levelX;

99 handles.levelY = levelY;

100

101 xLim = get(gca, 'xlim' );

102 yLim = get(gca, 'ylim' );

103 hold off

104 imagesc(handles.data{handles.currentDataIndex});set (gca, 'YDir' , 'normal' )

105 set(gca, 'xlim' ,xLim)

106 set(gca, 'ylim' ,yLim)

107 hold on

108 handles.hLevelCross = plot(levelX,levelY, 'gx' , 'markersize' ,40);

109 guidata(hObject, handles);

110

111 %−−− Executes on button press in pbRedo.

112 function pbRedo_Callback(hObject, eventdata, handles)

113 if handles.currentDataIndex ~= size(handles.data,2)

114 handles.currentDataIndex = handles.currentDataIndex + 1 ;

115 guidata(hObject, handles);

116

117 xLim = get(gca, 'xlim' );

118 yLim = get(gca, 'ylim' );

119 hold off

120 imagesc(handles.data{handles.currentDataIndex});set (gca, 'YDir' , 'normal' )

121 set(gca, 'xlim' ,xLim)

122 set(gca, 'ylim' ,yLim)

123 hold on

124 plot(handles.levelX,handles.levelY, 'gx' , 'markersize' ,40)

125 end

126

127 function eBrushSizeX_Callback(hObject, eventdata, handles)

128 set(hObject, 'Value' ,str2num(get(hObject, 'string' )));

129

130 %−−− Executes during object creation, after setting all propert ies.

131 function eBrushSizeX_CreateFcn(hObject, eventdata, handles)

132 if ispc && isequal(get(hObject, 'BackgroundColor' ), get(0, 'defaultUicontrolBackgroundColor' ))

133 set(hObject, 'BackgroundColor' , 'white' );

134 end

135

136 function eBrushSizeY_Callback(hObject, eventdata, handles)

137 set(hObject, 'Value' ,str2num(get(hObject, 'string' )));

138

139 %−−− Executes during object creation, after setting all propert ies.

140 function eBrushSizeY_CreateFcn(hObject, eventdata, handles)

141 if ispc && isequal(get(hObject, 'BackgroundColor' ), get(0, 'defaultUicontrolBackgroundColor' ))

142 set(hObject, 'BackgroundColor' , 'white' );

143 end

144

145 %−−− Executes on button press in pbBrush.

146 function pbBrush_Callback(hObject, eventdata, handles)

147 [x,y] = ginput(1);

148 x = round(x);

149 y = round(y);

150

151 brushSizeX = get(handles.eBrushSizeX, 'Value' );
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152 brushSizeY = get(handles.eBrushSizeY, 'Value' );

153

154 editRangeX = x − floor(brushSizeX/2) : x + floor(brushSizeX/2);

155 editRangeY = y − floor(brushSizeY/2) : y + floor(brushSizeY/2);

156

157 dataEdited = handles.data{handles.currentDataIndex};

158

159 % Make sure that indices are applicable

160 editRangeX = editRangeX(editRangeX>0);

161 editRangeY = editRangeY(editRangeY>0);

162 editRangeX = editRangeX(editRangeX<=size(dataEdited,2 ));

163 editRangeY = editRangeY(editRangeY<=size(dataEdited,1 ));

164

165 dataEdited(editRangeY,editRangeX) = handles.level;

166

167 handles.data{handles.currentDataIndex + 1} = dataEdited ;

168 handles.currentDataIndex = handles.currentDataIndex + 1 ;

169 handles.data = handles.data(1:handles.currentDataInde x);

170 guidata(hObject, handles);

171

172 xLim = get(gca, 'xlim' );

173 yLim = get(gca, 'ylim' );

174 hold off

175 imagesc(dataEdited);set(gca, 'YDir' , 'normal' )

176 set(gca, 'xlim' ,xLim)

177 set(gca, 'ylim' ,yLim)

178 hold on

179 plot(handles.levelX,handles.levelY, 'gx' , 'markersize' ,40)

180

181 %−−− Executes on button press in cbZoom.

182 function cbZoom_Callback(hObject, eventdata, handles)

183 if get(hObject, 'Value' )

184 zoom on

185 else

186 zoom off

187 end

188

189 %−−− Executes when user attempts to close figure1.

190 function figure1_CloseRequestFcn(hObject, eventdata, handles)

191 handles.output = handles.data{handles.currentDataInde x};

192 guidata(hObject, handles);

193

194 % The GUI is still in UIWAIT, us UIRESUME

195 uiresume(handles.figure1);

A.18 RemoveArtefacts.m

1 % REMOVEARTEFACTS MATLAB code for RemoveArtefacts.fig

2 function varargout = RemoveArtefacts(varargin)

3 % Begin initialization code − DO NOT EDIT

4 gui_Singleton = 1;

5 gui_State = struct( 'gui_Name' , mfilename, ...

6 'gui_Singleton' , gui_Singleton, ...

7 'gui_OpeningFcn' , @RemoveArtefacts_OpeningFcn, ...

8 'gui_OutputFcn' , @RemoveArtefacts_OutputFcn, ...

9 'gui_LayoutFcn' , [] , ...

10 'gui_Callback' , []);

11 if nargin && ischar(varargin{1})

12 gui_State.gui_Callback = str2func(varargin{1});

13 end

14

15 if nargout

16 [varargout{1:nargout}] = gui_mainfcn(gui_State, vararg in{:});

17 else
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18 gui_mainfcn(gui_State, varargin{:});

19 end

20 % End initialization code − DO NOT EDIT

21

22 %−−− Executes just before RemoveArtefacts is made visible.

23 function RemoveArtefacts_OpeningFcn(hObject, eventdata, handle s, varargin)

24 % This function has no output args, see OutputFcn.

25 % hObject handle to figure

26 % eventdata reserved − to be defined in a future version of MATLAB

27 % handles structure with handles and user data (see GUIDATA)

28 % varargin command line arguments to RemoveArtefacts (see V ARARGIN)

29

30 % Choose default command line output for RemoveArtefacts

31 handles.output = hObject;

32

33 % Initialize variables

34 handles.data{1} = 0;

35 handles.currentDataIndex = 1;

36 set(handles.eBrushSizeX, 'value' ,1)

37 set(handles.eBrushSizeY, 'value' ,1)

38 set(handles.eBrushSizeX, 'string' ,num2str(get(handles.eBrushSizeX, 'value' )))

39 set(handles.eBrushSizeY, 'string' ,num2str(get(handles.eBrushSizeX, 'value' )))

40

41 % Update handles structure

42 guidata(hObject, handles);

43

44 % Handle no structure being passed to GUI

45 if nargin<4

46 handles.fileNameOriginal = 'Default String' ;

47 else

48 fileNameOriginal = varargin{1}{1};

49 handles.fileNameOriginal = varargin{1}{1};

50 end

51

52 % Load data.

53 data = load(fileNameOriginal);

54 % handles.data{1} = data.';

55 handles.data{1} = rot90(data);

56 imagesc(handles.data{1})

57 set(gca, 'YDir' , 'normal' )

58

59 % Update handles structure

60 guidata(hObject, handles);

61

62 % UIWAIT makes RemoveArtefacts wait for user response (see U IRESUME)

63 uiwait(handles.figure1);

64

65 %−−− Outputs from this function are returned to the command line.

66 function varargout = RemoveArtefacts_OutputFcn(hObject, eventda ta, handles)

67 % Output data (the trace with artefacts removed)

68 varargout{1} = handles.output;

69

70 % Clean up.

71 delete(handles.figure1)

72

73 %−−− Executes on button press in pbUndo.

74 function pbUndo_Callback(hObject, eventdata, handles)

75 % hObject handle to pbUndo (see GCBO)

76 % eventdata reserved − to be defined in a future version of MATLAB

77 % handles structure with handles and user data (see GUIDATA)

78 if handles.currentDataIndex ~= 1

79 handles.currentDataIndex = handles.currentDataIndex − 1;

80 guidata(hObject, handles);

81

82 xLim = get(gca, 'xlim' );

83 yLim = get(gca, 'ylim' );
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84 hold off

85 imagesc(handles.data{handles.currentDataIndex});set (gca, 'YDir' , 'normal' )

86 set(gca, 'xlim' ,xLim)

87 set(gca, 'ylim' ,yLim)

88 hold on

89 plot(handles.levelX,handles.levelY, 'gx' , 'markersize' ,40)

90 end

91

92 %−−− Executes on button press in pbSelectLevel.

93 function pbSelectLevel_Callback(hObject, eventdata, handles)

94 [x,y] = ginput(1);

95 levelX = floor(x);

96 levelY = floor(y);

97 handles.level = handles.data{1}(levelY,levelX);

98 handles.levelX = levelX;

99 handles.levelY = levelY;

100

101 xLim = get(gca, 'xlim' );

102 yLim = get(gca, 'ylim' );

103 hold off

104 imagesc(handles.data{handles.currentDataIndex});set (gca, 'YDir' , 'normal' )

105 set(gca, 'xlim' ,xLim)

106 set(gca, 'ylim' ,yLim)

107 hold on

108 handles.hLevelCross = plot(levelX,levelY, 'gx' , 'markersize' ,40);

109 guidata(hObject, handles);

110

111 %−−− Executes on button press in pbRedo.

112 function pbRedo_Callback(hObject, eventdata, handles)

113 if handles.currentDataIndex ~= size(handles.data,2)

114 handles.currentDataIndex = handles.currentDataIndex + 1 ;

115 guidata(hObject, handles);

116

117 xLim = get(gca, 'xlim' );

118 yLim = get(gca, 'ylim' );

119 hold off

120 imagesc(handles.data{handles.currentDataIndex});set (gca, 'YDir' , 'normal' )

121 set(gca, 'xlim' ,xLim)

122 set(gca, 'ylim' ,yLim)

123 hold on

124 plot(handles.levelX,handles.levelY, 'gx' , 'markersize' ,40)

125 end

126

127 function eBrushSizeX_Callback(hObject, eventdata, handles)

128 set(hObject, 'Value' ,str2num(get(hObject, 'string' )));

129

130 %−−− Executes during object creation, after setting all propert ies.

131 function eBrushSizeX_CreateFcn(hObject, eventdata, handles)

132 if ispc && isequal(get(hObject, 'BackgroundColor' ), get(0, 'defaultUicontrolBackgroundColor' ))

133 set(hObject, 'BackgroundColor' , 'white' );

134 end

135

136 function eBrushSizeY_Callback(hObject, eventdata, handles)

137 set(hObject, 'Value' ,str2num(get(hObject, 'string' )));

138

139 %−−− Executes during object creation, after setting all propert ies.

140 function eBrushSizeY_CreateFcn(hObject, eventdata, handles)

141 if ispc && isequal(get(hObject, 'BackgroundColor' ), get(0, 'defaultUicontrolBackgroundColor' ))

142 set(hObject, 'BackgroundColor' , 'white' );

143 end

144

145 %−−− Executes on button press in pbBrush.

146 function pbBrush_Callback(hObject, eventdata, handles)

147 [x,y] = ginput(1);

148 x = round(x);

149 y = round(y);
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150

151 brushSizeX = get(handles.eBrushSizeX, 'Value' );

152 brushSizeY = get(handles.eBrushSizeY, 'Value' );

153

154 editRangeX = x − floor(brushSizeX/2) : x + floor(brushSizeX/2);

155 editRangeY = y − floor(brushSizeY/2) : y + floor(brushSizeY/2);

156

157 dataEdited = handles.data{handles.currentDataIndex};

158

159 % Make sure that indices are applicable

160 editRangeX = editRangeX(editRangeX>0);

161 editRangeY = editRangeY(editRangeY>0);

162 editRangeX = editRangeX(editRangeX<=size(dataEdited,2 ));

163 editRangeY = editRangeY(editRangeY<=size(dataEdited,1 ));

164

165 dataEdited(editRangeY,editRangeX) = handles.level;

166

167 handles.data{handles.currentDataIndex + 1} = dataEdited ;

168 handles.currentDataIndex = handles.currentDataIndex + 1 ;

169 handles.data = handles.data(1:handles.currentDataInde x);

170 guidata(hObject, handles);

171

172 xLim = get(gca, 'xlim' );

173 yLim = get(gca, 'ylim' );

174 hold off

175 imagesc(dataEdited);set(gca, 'YDir' , 'normal' )

176 set(gca, 'xlim' ,xLim)

177 set(gca, 'ylim' ,yLim)

178 hold on

179 plot(handles.levelX,handles.levelY, 'gx' , 'markersize' ,40)

180

181 %−−− Executes on button press in cbZoom.

182 function cbZoom_Callback(hObject, eventdata, handles)

183 if get(hObject, 'Value' )

184 zoom on

185 else

186 zoom off

187 end

188

189 %−−− Executes when user attempts to close figure1.

190 function figure1_CloseRequestFcn(hObject, eventdata, handles)

191 handles.output = handles.data{handles.currentDataInde x};

192 guidata(hObject, handles);

193

194 % The GUI is still in UIWAIT, us UIRESUME

195 uiresume(handles.figure1);

A.19 ShiftedPulse.m

1 % Creates a delayed pulse of original pulse length, padded wi th zeros. Used

2 % to construct the second matrix in TraceFun function.

3 function output = ShiftedPulse(pulse, delayInteger)

4 output = zeros(1, 3 * length(pulse) − 1);

5 start = length(pulse) + delayInteger;

6 output(start:start + length(pulse) − 1) = pulse;

7 end



A. Source code for pulse retrieval software 120

A.20 SineCosineData_knN.m

1 % Sine and cosine data for custom Fourier transform function s.

2 function [sineData, cosineData] = SineCosineData_knN(k,n,N)

3 temp = (n.' * k / N) * (2 * pi);

4 sineData = sin(temp);

5 cosineData = cos(temp);

A.21 TraceErrorFunction.m

1 % Frog error. Measure for the goodnes of a fit.

2 function error = TraceErrorFunction(traceOriginal, traceFit)

3 % Calculate the normalization constant mu.

4 mu = sum(sum(traceOriginal . * traceFit)) / sum(sum(traceFit.^2));

5

6 % Number of points.

7 N = size(traceOriginal,1) * size(traceOriginal,2);

8

9 % Trebino p.160 formula.

10 error = sqrt( ...

11 1/N * sum(sum( ...

12 abs(traceOriginal − mu * traceFit).^2 ...

13 )));

14 end

A.22 TraceFun.m

1 % Calculates the trace of a pulse.

2 function output = TraceFun(pulse, delays, division, ...

3 integerDelays, ...

4 NF, frequencyIndices)

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % Pulse matrices

7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 % Matrix for the original pulse. Including zero padding to in crease data

9 % width to 3 * pulseLength − 1

10 pulseLength = length(pulse);

11 zeroPaddedPulse = [zeros(1, pulseLength − 1), pulse, zeros(1, pulseLength)];

12 pulseMatrix1 = repmat(zeroPaddedPulse,numel(delays),1 );

13

14 % Matrix for delayed pulse values.

15 pulseMatrix2 = arrayfun(@(delayInteger) ...

16 ShiftedPulse(pulse, delayInteger), ...

17 integerDelays.', 'UniformOutput' , false);

18 pulseMatrix2 = cell2mat(pulseMatrix2);

19

20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 % Calculate the trace.

22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 data = (pulseMatrix1 + division * pulseMatrix2).^3;

24

25 % This is a workaround to avoid data truncation.

26 M = 2;

27 NFFT = M* NF;

28 while NFFT < size(data,2)

29 M = M + 1;

30 NFFT = M* NF;

31 end

32

33 trace1 = fft(data, NFFT, 2);
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34

35 % Take only the relevant frequencies.

36 trace1 = trace1(:,M * (frequencyIndices + 1));

37

38 % Flip to correct orientation.

39 trace1 = trace1.';

40

41 % Intensity.

42 trace1 = abs(trace1).^2;

43

44 % Normalize.

45 output = trace1/max(max(abs(trace1)));

46 end
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