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Työssä esitellään ja toteutetaan ensimmäistä kertaa superkontinuumin toisen as-

teen koherenssiominaisuuksien kokeellinen määritys. Kokeellinen menetelmä perus-

tuu toisen asteen koherenssifunktioiden jakamiseen likimääräisesti kahteen erilliseen

osaan. Tämä approksimatiivinen jako koherenttiin ja kvasi-staattiseen (engl. quasi-

stationary) osaan havaittiin vasta hiljattain numeeristen simulaatioiden yhteydessä.

Diplomityön tarkoituksena on todentaa nämä numeeriset havainnot kokeellisesti.

Työssä käsitellään tulosten analysoimisen helpottamiseksi niitä fysikaalisia pros-

esseja sekä kokeellisia parametrejä, jotka vaikuttavat superkontinuumin koherenssiom-

inaisuuksiin. Lisäksi teoriaosuudessa esitellään toisen asteen koherenssifunktiot,

joita voidaan soveltaa superkontinuumin käyttäytymisen tutkimiseen optisissa mit-

tajäjestelyissä. Erityistä huomiota kiinnitetään myös koejärjestelyiden tarkkaan

kuvaamiseen ja mahdollisten ongelmien ratkaisuun, jotta koherenssifunktioiden ko-

keellinen määrittäminen onnistuu luotettavasti.

Kokeelliset tulokset esittelevät kolme erillistä tapausta: täysin koherentin, osittain

koherentin sekä epäkoherentin superkontinuumin, jotka kaikki on luotu femtosekun-

tilaserin sekä erikoisvalmisteisten optisten kuitujen avulla säätämällä pulssien sisään-

menotehoa kuituun. Saatuja mittaustuloksia verrataan simuloituihin tuloksiin, joita

varten on käytetty kokeita vastaavia parametrejä. Hyvä vastaavuus laskennallis-

ten ja kokeellisten tulosten kanssa on havaittavissa, mikä vahvistaa numeerisesti

havaitun likimääräisen jaottelun oikeanmukaisuutta ja luo pohjaa tuleville tutkimuk-

sille alalla.
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Experimental characterization of supercontinuum second order coherence properties

is performed for the �rst time. The experimental method is based on an approxima-

tion separating the supercontinuum second order coherence functions into coherent

and quasi-stationary parts. The approximation was discovered recently in light of

numerical studies and the objective of the work in the thesis is to verify these nu-

merical results experimentally.

In the theory section the mathematical formulation of the coherence functions is

given accompanied with discussion of the physical meaning of the functions. Fur-

thermore the physical processes and experimental parameters a�ecting supercon-

tinuum coherence properties are adressed to further understand the behavior of the

results. The possibility for using approximations of the second order coherence func-

tions for modeling supercontinuum behavior in optical systems is also considered.

Finally emphasis is put also on describing the various experimental methods used

to ensure reliable retrieval of the coherence functions.

Experiments are performed for three distinct cases: coherent, partially coherent and

incoherent supercontinuum generated in a photonic crystal �ber by a Ti:Sapphire

femtosecond laser with an adjustable peak power for the input pulse. Obtained

results are compared to simulated results generated with parameters corresponding

to the experiment. Good agreement between the experimental and numerical results

is observed, further justifying the approximation made and laying groundwork for

future studies made in the �eld.
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Ẽ(ω) Complex electric �eld in frequency domain

f Natural frequency of oscillations

g(t) Gate pulse used in a FROG measurement

D Dispersion parameter

g
(1)
12 First order coherence function

g(Ω) Modulation instability gain

I(t) Mean intensity

Jl Bessel function of l:th kind

Kl Modi�ed Bessel function of l:th kind

LC Coherence length

N Soliton order

n/n(ω) Refractive index

n2 Nonlinear refractive index

nC Fiber core refractive index



IX

nCL Fiber cladding refractive index

neff E�ective refractive index

p Dipole moment

pc Weight function, coherent contribution

pq Weight function, quasi-stationary contribution

p(t) Probe pulse under study in a FROG measurement

P Material polarization

P (t) Instantaneous power in a �ber

Pp Laser pulse peak power

R(T ) Raman response function

S(ω) Mean spectrum

S(τ, ω) Fequency resolved optical gating spectrogram function

tC Coherence time

T0 Laser pulse duration parameter for a hyperbolic secant pulses

TFWHM Laser pulse duration, FWHM

u(r, ω) Electric �eld distribution in an optical �ber

V (τ/ω) Visibility of fringes in time/frequency domain

W (ω1, ω2) Cross spectral density



1

1. INTRODUCTION

Supercontinuum light sources have attracted a lot of interest in the past two decades.

This has been mainly caused by the number of potential applications. Even though

supercontinuum (SC) generation was discovered in bulk glass already in the 1970's

by Alfano and Shapiro [1], it was not until advancements in 1990's in both pas-

sively mode-locked ultrashort (pulse durations of < 1 ps) laser sources [2; 3; 4] and

optical �ber manufacturing techniques (photonic crystal �bers and microstructured

tapered �bers)[5; 6] has made it possible to study this diverse physical process in

detail. A signi�cant amount of scienti�c e�ort has then been put into understanding

the SC generation under various experimental conditions [7; 8; 9] and modeling it

numerically [10; 11; 9].

As the attainability and understanding of the SC sources improved, the road

was paved for applications. The broad spectral bandwidth of SC matched only by

thermal light sources with the directionality and brightness of laser light received im-

mediate interest from engineers & physicists and numerous measurement techniques

were either improved or invented with the help of SC light [12; 13; 14; 15].

However, with some of the processes for SC generation being noise driven [16; 17;

18; 10], the shot-to-shot stability of these sources can vary vastly. For example in

applications such as optical frequency combs one a very high stability (i.e. consecu-

tive SC produced by the pump laser are identical) is required. For this applicational

reason studies trying to characterize the mechanisms a�ecting the stability [19; 20]

and quantizing it [21; 22].

Applicationwise the Dudley-Coen �rst order degree of coherence for SC [21] is

straightforward to implement and yields shot-to-shot stability information su�cient

for most applications. However, it does not describe correlations between di�erent

spectral components of the SC spectrum as it is a �rst order coherence measure.

Thus for a better understanding of the noise e�ects and their in�uence in SC gener-

ation, a second order coherence theory approach for nonstationary light is required

[23; 24]. Even though numerical simulations can reproduce experimental results to a

good degree [25; 26; 10] and second order correlations between di�erent frequencies

can be studied numerically straightforwardly, experiments have yet to con�rm the

analytical and numerical observations.

Determining the second order coherence properties experimentally is not straight-



1. Introduction 2

forward. A recent observation from numerical studies approximately separated the

second order coherence functions into two distinctive contributions (coherent and

stationary) [24]. This separation has opened a venue into experimental characteri-

zation [27]. The work done in this thesis presents the �rst experimental character-

ization of these second order correlations (both in time and spectral domains) for

SC light utilizing the recent numerical �ndings.

The thesis starts by addressing SC generation mechanisms in optical �bers with

emphasis on processes that may alter SC stability. An introduction into numerical

modeling of SC generation in �bers is also given to support the simulations done in

the thesis. After this a short chapter describing the general mathematical tools for

analysing the stability (or coherence) properties is given followed by a more in-depth

view on SC second order coherence properties in chapter four. In the �nal chapters

the experimental methods are described and the results are presented and analyzed

and compared to simulated results. Validity of the separation and measures to

improve experimental results further are also discussed.
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2. SUPERCONTINUUM GENERATION

Supercontinuum as a term was �rst used by Manassah et al. [28] in 1984. In

short it can be described as a remarkable spectral broadening of the laser pulse

spectrum due to various nonlinear processes. Spectral broadening of only 60 nm

can be sometimes considered as SC, but spectral broadening spanning over one

octave (i.e. the bandwidth spans from the lowest frequency ω to double of this

frequency 2ω) are easily achieved in practice.

Supercontinuum generation is in general a complex physical process, arising from

a mixture of nonlinear e�ects sometimes a�ecting each other. These various mech-

anisms are well understood and explained in detail in the review by Dudley et

al. [10]. Numerical models based on the generalized nonlinear Schrödinger equa-

tion (GNLSE) are able to reproduce the experimental results to a good accuracy

[25; 26]. Even though SC generation is also possible with continuous wave (CW)

lasers, pulsed sources are often used for because they can provide higher peak power

and allow for more e�cient nonlinear e�ects. A pulsed source was also used in the

study of this thesis. Thus from here on, unless otherwise mentioned, lasers are to

be assumed to be pulsed. We next brie�y review the most signi�cant theoretical

concepts of light propagation and nonlinear e�ects in �bers. After this the numer-

ical methods of modeling for SC generation are described. The chapter ends with

examples of SC applications.

2.1 Linear light propagation in optical �bers

The concept of guiding and trapping light in waveguides by total internal re�ec-

tion was demonstrated already in the 19th century by trapping sunlight inside the

stream of water pouring out from a barrel [29]. Even though the phenomenon was

known for a long time, it was not until 1960's and 1970's that it started to draw

signi�cant attention. The reason for this was the pioneering work of Charles Kao

in purely dielectric optical �bers with low losses and which combined with optical

ampli�ers have enabled all-optical communication systems [30; 31]. Of course a wide

range of �ber-based applications have also been invented (e.g. �ber optic probes for

biomedical science [32] or �ber lasers for welding [33]).

A schematic of an optical �ber with core diameter 2a is shown in �gure 2.1. Total

internal re�ection e�ect requires the �ber core to have a higher refractive index than
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the cladding (i.e. nC > nCL).

Figure 2.1: An optical �ber with core diameter 2a.

After this the progress has been rapid and along with the simultaneous develop-

ment of ultrashort pulsed lasers has lead to the fact that the modern information

society could not be supported without these inventions. From a physicists point of

view it has opened up new possibilities to study fundamental light-matter interac-

tions over long distances in a more controllable manner.

Obviously the plethora of applications has lead to the fact that there exists plenty

of theory describing light propagation in these �bers under various conditions (e.g.

di�erent modes in �bers, possible refractive index variation pro�les, nonlinear phe-

nomena). For SC generation the nonlinear e�ects are of most importance. But as

we will devote one section for nonlinear e�ects only, let us �rst look at the most

important concept of �ber optical thoery in the linear optics regime. This is the dis-

persion. For a more comprehensiver review on theory behind the light propagation

in �bers, the reader is advised to see the book by Agrawal [31].

2.1.1 Dispersion

When introducing dispersion for the �rst time, an image of a prism separating

white light into distinct colors of the rainbow is often shown. The reason behind

the separation is the wavelength (or frequency) dependence of the refractive index,

which is often referred as material dispersion in optics, as it is an inherent property

of the material in question caused by the response of electrons to the incident light.

In practice this is seen as di�erent colors of light traveling at di�erent velocities

or taking di�erent paths in the material. This causes the bending of light rays of

di�erent colors into di�erent angles in a prism to preserve momentum.

When talking about guided light propagation in waveguides, the geometry of

the waveguide can also a�ect the e�ective refractive index 'seen' by di�erent wave-

lengths. This is caused by the fact that the solutions for the modes (i.e. electric

�eld distributions) in the waveguide are also wavelength-dependent, causing shorter
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wavelengths to be more con�ned in the core of the �ber. This is called waveguide

dispersion. The electric �eld distributions u(r, θ, ω) can be solved with the help of

Maxwell's equations and posing a boundary condition that the tangential compo-

nents of the magnetic and electric �elds are continuous in the core-cladding interface.

The solution in radial coordinates is given by [31]

u(r, θ, ω) =

Jl(κr) cos(lθ), r ≤ a (core)

Kl(ηr) cos(lθ), r > a (cladding),
(2.1)

where κ =
√
n2
Ck

2
0 − β2

m and η =
√
β2
m − n2

CLk
2
0 are de�ned with the help of the core

and cladding refractive indices nC and nCL respectively. Jl is the l:th order of Bessel

function, Kl is the l:th order of modi�ed Bessel function. βm describes the frequency

dependent propagation constant for the modem and is usually solved numerically. It

can also be de�ned as βm = β(ω) = n(ω)k0, where n(ω) is the frequency dependent

refractive index and k0 = 2π/λ is the wave vector of the propagating light in vacuum.

The total dispersion e�ects, resulting from the material dispersion and waveguide

dispersion, are thus completely described with the help of β(ω).

Examples of the modes described above are illustrated in the �gure 2.2.

Figure 2.2: Some of the possible electric �eld distributions (LPlm modes) in an optical
�ber (white ring). The top row has been calculated with a laser wavelength of 200 nm and
bottom row with 800 nm. Note the di�erent mode size between these two which is most
apparent in the LP21 mode. This is the waveguide dispersion.

The modes in the �gure were calculated for �xed �ber parameters and simply

varying the wavelength. Di�erent transverse mode pro�les may be allowed at a

given wavelength. These are illustrated in the horizontal direction. The various LPlm
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modes also propagate with di�erent velocities, this is referred as modal dispersion.

[31]

If the core size of the �ber (white ring in the �gure) is small enough, the higher

order modes cannot exist anymore. A �ber that has small enough core and supports

only the LP01 mode is called a single-mode �ber. The �ber used in the thesis is

a single-mode �ber at all wavelengths and thus modal dispersion e�ects can be

neglected. The condition for single-mode operation for �bers is given by the V -

parameter de�ned as V = 2π a
λ

√
n2
C − n2

CL. It follows from the properties of the

Bessel functions of eq. 2.1 that a single-mode �ber is achieved when V < 2.405 [31].

The propagation constant β(ω) can often be approximated as a Taylor series

around the center frequency ω0 of the pulse propagating in the medium,

β(ω) = β(ω0) + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 +
1

6
β3(ω − ω0)

3 + ... (2.2)

Here βn = dnβ(ω0)
dωn

. The β1 parameter corresponds to the group delay of propa-

gation in materials. It describes how fast di�erent colors (frequencies) propagate in

an optical �ber. For a laser pulse containing multiple frequencies this is the cause

for pulse broadening in time since di�erent colors travel at di�erent speeds. The

temporal broadening can be calculated with the help of the β2 = d2β(ω0)
dω2 , which is

known as the group velocity dispersion (GVD) parameter. Higher order dispersion

parameters can also cause pulse distortions, but are often negligible compared to

the e�ects of the second order parameter [31].

Depending on the sign of β2 dispersion is either classi�ed as normal (β2 > 0)

or anomalous (β2 < 0). Usually materials and �bers experience normal dispersion.

This causes the longer wavelengths to travel faster. Consequently this leads to tem-

poral broadening of the pulse and a distribution of di�erent frequencies at di�erent

time-instants of the pulse (this is also referred as the pulse being down-chirped). In

the case of anomalous dispersion the opposite occurs and short wavelengths are at

the leading edge of the pulse (referred as up-chirp).

With advancements in �ber manufacturing technologies it has become possible

to manufacture �bers with tailorable dispersion pro�les and even with anomalous

dispersion at visible wavelengths [34]. The latter one will be of importance when we

discuss SC generation in more detail later. It is also noted, that dispersive e�ects

are often unobservable unless a pulsed laser source with non-negligible bandwidth

is used.

2.2 Nonlinear �ber optics

One of the two major technical steps mentioned above enabling SC generation has

been the progress in mode-locked femtosecond regime lasers. First of these have been
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demonstrated already in the 1980's (e.g. Rolland et al. [35]), however it was not until

1990's that the sources became more widespread and available [4]. Limited by the

Fourier transform property for a time signal and its frequency-domain counterpart,

the shorter the laser pulse is, the more spectral bandwidth it must have. This

is known as the time-bandwidth product (TBP) [36]. For example the laser pulse

durations used in this work were roughly ≈ 70 fs (full width at half-maximum,

FWHM) and had a spectral bandwidth of ≈ 17 nm. This is quite di�erent from the

traditional idealistic image of a laser being purely monochromatic and emitting light

continuously. A pulse for which this TBP is at minimum is called a transform-limited

pulse.

As the pulse peak power is inversely proportional to the duration of the pulse,

peak powers in the order of kilowatts are readily obtained in pulsed sources (even

values close to petawatts have been obtained in laboratories [36]). This also means

that the electric �eld amplitude within the pulse reaches values on the order of 1011

V/m. This value is considered as a threshold value when the optical electric �eld

is comparable to the interatomic electric �elds [37]. At this point the oscillating

movement of electrons driven by the oscillating optical �eld cannot be described as

regular harmonic oscillators but instead the movement becomes highly nonlinear.

This is often described with the nonlinear polarizability of the material [37]. The

branch of physics that studies the interactions of these strong electric �elds within

the material is known as nonlinear optics.

2.2.1 Material polarization and susceptibility

The usual approach to nonlinear optics is the susceptibility formalism, where light-

matter interaction is modeled using susceptibility tensors of various ranks. Tensors

are required to properly treat the vectorial nature of the electric �eld of light. Ten-

sors are mathematical entities that transform vectors (and scalars) linearly similarly

to scalar multiplication. Tensors can however in addition alter the direction of a

vector. To introduce the tensor formalism, we consider �rst just a regular linear

optics case.

When a static electric �eld E (vector quantities are bolded) is applied to a ma-

terial, it moves the charges (usually electrons are the only ones capable of moving

signi�cantly) within the material. These charges in turn cause a dipole moment p

oriented in the opposite direction with respect to the applied electric �eld. When

we want to consider the total e�ect of n dipoles in the entire volume of the material,

we need to know the number of dipole moments per unit volume of the material.

This is the de�nition of the polarization P induced by the light �eld in the material

(word material polarization is sometimes used to distinguish from light polarization)
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P =
total amount of dipole moments

total volume
=
np

V
= Np, (2.3)

where we have used the number density N = n/V of the material. Intuitively it's

clear that the polarization P depends on the electric �eld E, however they need

not to be parallel as one could anticipate. Because of the microscopic structure of

the material, which might restrict the movement of electrons to certain directions,

P might point to a di�erent direction than the applied �eld. This is why the

dependence needs to be formulated with a tensor. With the previous arguments

in mind we write,

PLIN = ε0χ
(1) · E, (2.4)

where ε0 is the vacuum permittivity and the �rst order susceptibility χ(1) (a rank

2 tensor) describes the material response to the �eld.

Next we consider the electric �eld to be rapidly oscillating with time, E(t) as is in

fact in the case of light propagating in materials. As the electrons are very light, they

can usually easily move along this rapidly alternating �eld. The energy absorbed

from the light by the material in the form of moving electrons will again radiate

light at the same frequency (an oscillating charge emits radiation) as that of the

incoming electric �eld and thus light can propagate through (dielectric) materials

unchanged in frequency. Possible changes through absorption can also be described

with the imaginary part of the susceptibility χ(1). The tensor nature of χ(1) takes

care of possible de�ection of light entering a material (e.g. dispersion by prism).

This is the linear optics perspective of light-matter interactions. For example, the

refractive index n(ω) is often de�ned by the help of χ(1) as follows [37],

n2(ω) = 1 + χ(1). (2.5)

The susceptibility can be thought of as a parameter describing the possibility of

electrons to move in di�erent directions in the material, thus a�ecting the speed

and direction of propagation in the material via the refractive index. As mentioned

above the susceptibility can vary depending on the incoming light direction as the

atomic lattice of the material can restrict the electron movement. Furthermore, as

the refractive index is frequency dependent, so is the susceptibility, and we should

in reality write χ(1) = χ(1)(ω). This is sometimes left out to shorten notation, but

should not be forgot. Also as mentioned, the light �eld can be thought of being

absorbed and re-emitted in the material. Some of the energy might be permanently

absorbed and this is described by the imaginary part of the susceptibility. Indeed,

χ(1)(ω) is usually complex valued. [37]
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2.2.2 Nonlinear polarization

If we increase the electric �eld amplitude above the atomic threshold value, the

charges in the material start to get displaced more and their movement cannot be

described anymore with a simple linear model as above. Thus we correct our model

by adding higher order terms:

P = ε0

[
χ(1) · E+ χ(2) : E2 + χ(3)...E3 + ...

]
= ε0χ

(1) · E + ε0

[
χ(2) : E2 + χ(3)...E3 + ...

]
= PLIN +PNL,

(2.6)

In the equation above, we have the regular linear polarization term accompanied

with higher order terms of E. The higher order terms contribute to the so called

nonlinear polarization PNL, which is the foundation for nonlinear optics. Because

the values of the higher order susceptibilities χ(2), χ(3) etc. are much smaller com-

pared to the �rst order susceptibility, the nonlinear terms require intense laser light

to be observed [37]. Thus nonlinear optics are rarely observed in nature. The sus-

ceptibility model can explain only some of the phenomenon occuring in nonlinear

optics. Nonlinear phenomena such as saturable absorbtion, stimulated scattering

processes (e.g. Brillouin, Raman, Rayleigh) and acousto-optic e�ects cannot be de-

scribed by the susceptibility formalism and require a di�erent treatment [37]. The

approach above provides nevertheless a useful and simple way to understand the

background of nonlinear e�ects. For the rest of the discussion we will also neglect

the vectorial and tensorial nature of the quantities in question. This simpli�es the

analysis without leaving any essential phenomenon undiscovered.

Before moving onto the nonlinear e�ects governing SC generation, we look at the

the possibility of truncating the in�nite series above for simplifying the analysis.

Firstly, it can be shown that all even order susceptibilities vanish identically for cen-

trosymmetric crystal structures in the dipole approximation [37]. This is signi�cant,

because the silica used in optical �bers is centrosymmetric. Secondly, the absolute

values in the nonlinear susceptibility tensors χ(n) become quickly smaller as n in-

creases, meaning that very high �eld intensities would be required for these terms to

contribute signi�cantly. In normal optical materials these intensities would lead to

ionization and material destruction, hence in most of the cases we can neglect �fth

and higher order terms. This means that in terms of the susceptibility formalism,

only the third order e�ects need to be considered. (In reality some second order

e�ects can also be observed because of quadrupole and magnetic-dipole e�ects, but
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these occur at such a low e�ciency that they can be neglected in practice [29].)

2.2.3 Nonlinear processes in �bers

Next we will discuss the most important nonlinear e�ects in SC generation. But

�rst we will de�ne a useful quantity used also in describing some of the nonlinear

e�ects later. The nonlinear coe�cient (units W−1/m) is a �gure of merit for �bers

describing the strength of nonlinear e�ects in the �ber and is given by [29]

γNL =
ω0n2(ω0)

cAe�(ω0)
, (2.7)

where n2(ω0) is the nonlinear refractive index at ω0 (caused by the optical Kerr e�ect

discussed below), c is the speed of light and Ae� is the electrical �eld mode e�ective

area of the optical �ber in question (see �g. 2.2). Together with the pulse peak

power P0 they de�ne the nonlinear length LNL = 1/(γNLP0) which is a characteristic

distance in which the nonlinear processes in �bers take place. [29]

Dispersive e�ects on the other hand occur at a distance LD = T 2
0 /|β2|, where

T0 = TFWHM/1.763 is the pulse duration and β2 is the GVD. When LNL << LD

nonlinear processes are expected to be signi�cant in the �ber. In the other case,

LNL >> LD, the pulse is expected to propagate in a linear manner. [29]

Optical Kerr e�ect

The Kerr e�ect in general refers to the variation of the refractive index of material by

applying an external electric �eld. It is similar to the Pockels e�ect, but the Pockels

e�ect depends linearly on the applied electric �eld whereas Kerr e�ect depends

quadratically on the applied �eld [37]. This e�ect can be induced also by the electric

�eld of a laser pulse traveling through a material without any external �eld. In this

case it is called the optical Kerr e�ect. It is fairly straightforward to see how it arises

with the help of the susceptibility formalism.

We apply a strong linearly polarized oscillating electric �eld E(t) = Ae−iωt +

A∗eiωt, oscillating at the (angular) frequency ω = 2πf with an amplitude A, to a

third order nonlinear material. Calculating the polarization induced by this �eld

according to equation 2.6 (using a scalar approximation for simplicity) we get the

following
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Ptotal = ε0[

PLIN︷ ︸︸ ︷
χ(1)E(t) +

PNL︷ ︸︸ ︷
χ(3)E3(t)]

= ε0E(t)
[
χ(1) + χ(3)E2(t)

]
= ε0E(t)

[
χ(1) + χ(3)(A2e−i2ωt + A∗2ei2ωt + 2|A|2)

]
= ε0χ

(1)(Ae−iωt + c.c.) + ε0χ
(3)
[
A3e−i3ωt + A|A|2e−iωt + 2A|A|2e−iωt + c.c.

]
= ε0χ

(1)(Ae−iωt + c.c.) + ε0χ
(3)(3A|A|2e−iωt + c.c.) + ε0χ

(3)(A3e−i3ωt + c.c.)︸ ︷︷ ︸
PNL

.

(2.8)

This total polarization has terms oscillating at frequencies ω and 3ω. The terms

oscillating at 3ω correspond to third harmonic generation (THG). These rapid charge

oscillations radiate photons at a new frequency. Quantum mechanically this fre-

quency tripling corresponds to three photons combining into one photon at a higher

energy. Usually the THG radiation is not phase-matched (discussed later) and can

be neglected.

We next turn our attention to the terms in the previous equation radiating light

at the fundamental frequency ω. For clarity we neglect the c.c. terms as they contain

no extra information. We write

Ptotal(ω) = ε0χ
(1)Ae−iωt + ε0χ

(3)3A|A|2e−iωt

= ε0Ae
−iωt [χ(1) + 3χ(3)|A|2

]
= ε0Ae

−iωtχ
(1)
eff

(2.9)

Here we have used the e�ective �rst order susceptibility χ(1)
eff = χ(1) + 3χ(3)|A|2.

Using equation 2.5 to calculate the e�ective refractive index neff = n + ∆n we get

(assuming the variation ∆n is small),

n2
eff = n2 + 2n∆n+ ∆n2

≈ n2 + 2n∆n = 1 + χ
(1)
eff = 1 + χ(1) + 3χ(3)|A|2

⇒ 2n∆n = 3χ(3)|A|2 , because n2 = 1 + χ(1)

⇒ ∆n =
3χ(3)|A|2

2n
=

3χ(3)I

4ε0n2c
= n2I

⇒ neff = n+ n2I

(2.10)

The last line follows from the fact that intensity depends on �eld amplitude

as I = 2ε0nc|A|2. Thus we see that the induced nonlinear polarization causes an
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intensity dependent refractive index, which is equivalent to the optical Kerr e�ect.

Self Phase Modulation

The intensity dependent refractive index means that a laser pulse can change the

refractive index properties of the material while propagating. This results in an

additional phase shift for the pulse in addition to the linear phase shift caused by

propagation. This can be seen by considering an electric �eld propagating in the

z-direction:

E(z, t) = Ae−i(ωt+kz) + c.c.

= Ae−i(ωt+neff
2π
λ
z) + c.c.

= A exp−i(ωt+ n
2π

λ
z︸ ︷︷ ︸

LIN

+n2I
2π

λ
z︸ ︷︷ ︸

NL

) + c.c.
(2.11)

The last term in the exponent, ϕNL = n2I
2π
λ
z, corresponds to the additional

phase shift. Because the source of this self-induced phase shift arises from the third

order nonlinearity, it's often called the nonlinear phase shift or self phase modulation

(SPM). In practice it causes chirping of the laser pulses, similar to that caused by

normal dispersion [31]. This down-chirp means that longer wavelengths propagate

faster within the pulse and are located on the leading edge. However, unlike dis-

persion, SPM itself does not broaden the laser pulse temporally but broadens the

spectrum symmetrically [36]. Comparison between dispersive and SPM e�ects on a

laser pulse propagating in a nonlinear �ber is shown in �gure 2.3 below. This SPM

spectral broadening is responsible for the SC generation when fs-timescale pulses

are launched in a nonlinear �ber [10].

Cross phase modulation (XPM) is a phenomenon similar to SPM, but XPM

refers to the case when one optical �eld a�ects the refractive index (and nonlinear

phase shift) experienced by another co-propagating �eld with a di�erent wavelength

and/or state of polarization. The most signi�cant di�erence with SPM is that

the nonlinear phase shift induced by XPM will have a factor of two di�erence in

magnitude compared to that induced by SPM. Also the spectral broadening caused

by XPM can be asymmetric in the presence of higher-order dispersion. [29]

Solitons

In the anomalous dispersion regime SPM and XPM induced phase shifts can balance

out with the dispersion e�ects (the chirp in �gure 2.3 c is opposite to that of SPM

induced nonlinear chirp in sub�gure d) leading to the generation of optical solitons,
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Figure 2.3: Top row: a) Transform-limited pulse, b) normal dispersion has broadened
the pulse temporally and imposed a linear chirp (seen in the asymmetric oscillations), c)
chirp caused by anomalous dispersion and d) pulse of sub�gure a has experienced SPM
induced nonlinear chirp. Note that the duration of the pulses is the same in a and d. The
black line corresponds to pulse envelope and grey line to electric �eld amplitude. Bottom
row: Corresponding spectra plotted versus o�set from the pulse center frequency. Note the
signi�cant spectral broadening in the SPM case whereas dispersion causes no broadening.

waves that can propagate undistorted for long distances [38; 39].

The optical solitons in the anomalous dispersion regime are characterized by their

soliton order N =
√
LD/LNL =

√
γNLP0T 2

0 /|β2|. Analytically the optical soliton of

duration T0 = TFWHM/1.763 and peak power P0 is of the form [10]

A(T, z = 0) =
√
P0sech

(
T

T0

)
. (2.12)

Increasing the peak power also increases the soliton order N . The fundamental

soliton (N = 1) propagates totally unchanged in a lightwave system, whereas the

higher order solitons experience periodic change of shape during propagation. The

temporal pulse shapes of fs-lasers are usually hyperbolic secants and can be consid-

ered as higher order solitons. Moreover, any reasonable pulse shape is expected to

evolve into a (higher order) soliton [40]. Example of the evolution of a higher order

(N = 4) soliton envelope is shown in both time and frequency in �gure 2.4

Higher order solitons can be perturbed either by higher order dispersion or Ra-

man scattering (discussed below) which can lead to the soliton �ssion process where
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Figure 2.4: Evolution of a higher order soliton over one period in time and spectral domains.
[41].

the input pulse (i.e. a higher order soliton) breaks up into individual fundamental

solitons [29; 11]. These solitons can then shift their center frequency towards lower

frequency via Raman scattering, which constitutes the main mechanism of SC to-

wards the long wavelengths [10; 42].

There is often an associated dispersive wave with the ejected solitons. This disper-

sive wave is generated on the short wavelength side by the ejected soliton shedding

a part of its energy as an optical Cherenkov radiation due to higher-order dispersion

perturbations [43]. This extends the SC spectrum on the short wavelength side.

Soliton �ssion plays a signi�cant role in SC generation with pulses below 200 fs

duration when the soliton order is relatively high.

Four Wave Mixing and Modulational Instability

Four wave mixing (FWM) refers to the interaction of four distinct frequencies

ω1, ω2, ω3 and ω4 via a third order nonlinearity. Physically it describes the annihila-

tion and/or generation of four distinct photons. One can calculate the corresponding

nonlinear polarization terms according to equation 2.6 as was done in equation 2.8.

Because of four distinct �elds interacting the result will have a large number of terms

involving all the possible combinations of the four �elds. However, most of the terms

do not contribute signi�cantly to the resulting �eld because of phase-mismatch

In order for a certain �eld at frequency ωi to be ampli�ed, net energy and

momentum need to be conserved in the process. Energy conservation requires

ω4 = ±ω1±ω2±ω3 and momentum conservation requires ∆k = β4±β3±β2±β1 = 0,

which is often referred as the phase-matching condition. Here βi = niωi/c is the

propagation constant at a given frequency. The ±-signs can be chosen at will, rep-

resenting all the possible frequency mixing combinations. [29]

The FWM process is called degenerate when two of the frequencies are the same

e.g. ω1 = ω2. In this case the input pulse (pump at ω0 = ω1 = ω2) can amplify

very weak sidebands located symmetrically about ω0 by the FWM process. At the

extreme, sidebands can even be generated from noise. The e�ciency is often limited
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by the phase-matching conditions, but even with partial phase-matching (∆k 6= 0)

weak gain is allowed over a certain wavelength range for short propagation distances

in �bers [29]. This kind of process is an important mechanism in SC generation with

pulses of picosecond duration and longer.

SPM and XPM can contribute to phase-matching pf the FWM processes. In these

cases the name modulational instability(MI) is also used for the process. MI actually

describes the physical process in the time-domain, whereas FWM is the frequency-

domain description. For the degenerate FWM/MI process phase-matched by SPM

the gain can be shown to be given by [29]

g(Ω) = |β2Ω|
(

4γNLP0

|β2|
− Ω2

)1/2

, (2.13)

where Ω = ω0−ω describes the frequency o�set from the pump center frequency,

P0 is the pump power, γNL is the nonlinear coe�cient of the material/�ber and

β2 is the second order dispersion/GVD. The gain pro�le can be understood to be

power-dependent because of the power dependence of SPM (as can be seen from eq.

2.11). The gain pro�le as given by equation 2.13 is illustrated in �gure 2.5 versus

the frequency detuning from the pump for various power values.

Figure 2.5: Modulation instability gain for various input powers. The frequency of maxi-
mum gain shifts away from the pump frequency as the peak power is increased.

Even though not apparent from the equation above, MI occurs in the anomalous

dispersion (β2 < 0) regime, even though it has also been shown that near the ZDW

or for large frequency o�sets the higher order dispersion parameters can allow for

phase-matching even in the case of normal dispersion [44; 45].

The analysis above has considered CW light, but the results also apply for pulses
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of ps durations and longer. FWM/MI is the dominant spectral broadening mech-

anism when generating SC with CW pumping or with picosecond or nanosecond

pulses [46]. However, it has been shown that it also contributes to the spectral

structure of SC generated with femtosecond pulses [47]. Because of the phase-

matching condition is automatically satis�ed in the anomalous dispersion regime, it

can be readily understood why dispersion engineering had a signi�cant impact on

SC generation [10]. Finally we note that MI can have a signi�cant impact on the SC

coherence properties as it can amplify noise leading to a loss of coherence [48; 18].

Stimulated Raman Scattering

The Raman e�ect was discovered in 1928 by Indian physicist C.V. Raman [49]. Ra-

man scattering refers to energy transfer by an inelastic collision from the vibrational

energy states of the system (phonons) to photons. The nonlinear phenomena de-

scribed previously are parametric (e.g. THG and FWM), meaning that the quantum

state of the material stays unchanged throughout the light-matter interaction. In

Raman scattering energy is clearly not conserved, and by it is thus referred to as a

non-parametric process.

The collision causes the photon energy to be changed and thus frequency to

be shifted. Shifting to both higher and lower frequencies is possible [37]. When

the emitted photon has less energy (i.e. wavelength is longer than original and

a red-shift is observed) the scattering is described as Stokes scattering and when

the photon shifts to shorter wavelengths it is referred to anti-Stokes scattering or

blue-shift. Of these two the Stokes scattering usually dominates, which follows from

thermodynamical equilibrium arguments [37].

This spontaneous scattering process which occurs only for one photon in million

scale [29] can also be stimulated when a weak amplitude wave co-propagates with

an intense laser beam (compare to spontaneous emission of light vs. stimulated

emission in laser crystals). In this case the term stimulated Raman scattering (SRS)

is used. SRS can be associated with the imaginary part of the third order nonlinear

susceptibility [37; 50]. Because of the amorphous nature of fused silica used in optical

�bers it allows for energy transfer from vibrational states over a wide bandwidth

[51]. The Raman gain parameter can be measured experimentally and is shown in

�gure 2.6.

SRS can generate new frequencies, leading to additional spectral broadening in

SC. As with MI, also SRS can cause ampli�cation of noise at the maximum of

the gain spectrum [29; 16]. SRS is responsible for extending the spectrum further

to longer wavelengths via the Stokes scattering process. SRS itself cannot lead to

spectral broadening to short wavelengths as the gain spectrum is antisymmetric

causing Anti-Stokes scattering to experience loss [37], however SRS coupled with
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Figure 2.6: The normalized Raman gain spectrum for fused silica. After ref. [50].

FWM can also cause broadening to the blue end of spectrum [52; 53].

In the case of short pulses below picosecond durations the pulse bandwidth can

be broader than the SRS gain bandwidth. In these cases the low frequencies of

the pump pulse can amplify the high frequencies leading to a shift towards the

longer wavelengths. If the pump pulse is located in the anomalous dispersion regime

leading to solitonic behaviour the process is also referred to as the soliton self-

frequency shift. As this e�ect is inversely proportional to the fourth power of pulse

duration it can cause signi�cant shift of the spectrum towards the longer wavelength

side [42]. Furthermore, if the injected pulse is a higher order soliton the SRS will

perturb the soliton and cause it to break down into fundamental solitons as discussed.

These fundamental solitons can then experience an enhanced shift towards longer

wavelengths extending the SC spectrum signi�cantly [54; 29].

Lastly we note that Raman scattering is similar to Brillouin scattering. However

Brillouin scattering occurs with decreased probability for short pulses and lower

energy photons resulting in smaller frequency shifts. In addition the generated

photons are counterpropagating with respect to the original light [29]. Thus Brillouin

scattering can be completely neglected in the case of this thesis.

2.3 Modeling pulse propagation and SC generation

As can be understood from the discussion above, the nonlinear e�ects a�ecting the

SC generation are often competing and coupled making it di�cult to describe SC

generation in a simple manner. Even though other mechanisms can be recognized

as more signi�cant under certain conditions, a general treatment of SC generation
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usually requires taking all processes into account.

This multitude of competing and cooperating nonlinear processes and the stochas-

tic nature caused by noise make the analysis di�cult and thus the analysis is usually

done by computational methods. Usually an ensemble of 100 simulations or more

with random noise seed is implemented to investigate shot-to-shot stability. This

has been shown to be a pro�cient method to reproduce experimental results to a

good accuracy and has become the standard in modeling these e�ects. We will

next discuss how this is done in practice to provide background on the numerical

simulations of the thesis.

2.3.1 Nonlinear propagation equation

The nonlinear equation governing pulse propagation in nonlinear �ber optics is de-

rived from Maxwell's equations and has various forms in both spectral and temporal

domains [46]. The time-domain formulations of these nonlinear di�erential equations

belong to the family of nonlinear Schrödinger equations, which have been studied

extensively for example in the �elds of superconductivity (the Ginzburg-Landau

equation), ocean waves [55] and optics [56].

They have further been generalized to be suitable for modeling ultrashort pulse

propagation in �bers [57]. The derivation of this Generalized nonlinear Schrödinger

equation (GNLSE) is beyond the scope of the thesis, but the result will be repre-

sented here for overall consistency and general information. The following formula-

tion follows the one used in reference [10], where the time T is represented in the

co-moving frame of the fundamental laser pulse at group velocity β−11 . Here A(z, t)

is the complex envelope of the electric �eld.

∂A

∂z
+
α

2
A−

∑
k≥2

ik+1

k!
βk
∂kA

∂T k
= iγNL

(
1 + iτshock

∂

∂T

)
×
(
A(z, T )

∫ ∞
−∞

R(T ′) |A(z, T − T ′)|2 dT ′ + iΓR(z, T )

)
(2.14)

The left hand side of the equation represents linear propagation e�ects, α repre-

senting absorption and βk being the dispersion coe�cient from the abovementioned

Taylor series expansion around the center wavelength ω0. Usually up to 10 terms

are used for the dispersion expansion to ensure accuracy. When working with PCF,

short �ber lengths are used in experiments and absorption is no remarkable allowing

us to set the α term to zero in simulations.

The right hand side corresponds to the nonlinear e�ects mentioned in the previous
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subsection and their strength is characterized with the nonlinear coe�cient γNL as

discussed earlier.

The time derivative term associated with τshock models the dispersion of the

nonlinearity. It is necessary to include it for the GNLSE to correctly model single

cycle optical pulses of broad bandwidths, where the frequency dependence of the

nonlinearity needs to be taken into account.

The multiplicative term on the second line of equation 2.14 takes SRS into ac-

count by the R(T ′) term, which is the response function of the Raman scattering.

It can be determined via the Kramers-Kronig relations and Fourier transform of

the experimentally measured Raman gain parameter illustrated in �gure 2.6 [50].

The �nal term ΓR corresponds to spontaneous Raman noise, which is required to

reproduce experimental results accurately (in some cases) as mentioned earlier.

2.3.2 Numerical modeling by the Fourier split-step method

Solving equation 2.14 is all but trivial, and general solutions do not exist as it is

nonintegrable [29]. The Fourier split-step method (FSSM) is the standard technique

used in nonlinear �ber optics to solve equation 2.14 , though other methods can be

used. A comprehensive view on the method is given in the book by Agrawal [29].

Various modi�cations of the method do exist, but the underlying principle is the

same in all of the methods.

The method separates the linear dispersive terms of the left hand side of eq. 2.14

from the nonlinear terms on the right. The idea behind this is that for propagation

distances short enough in the �ber the normally simultaneous nonlinear and disper-

sive terms can be approximated to act independently. One �rst calculates the e�ect

of dispersion over a short step of distance h, then calculates the e�ect of nonlinearity

over the same propagation step. These two stages are then repeated sequentially

until the end of the �ber is reached. A variation of the regular FSSM described here,

is illustrated in �gure 2.7.

The dispersive part is usually treated in the frequency-domain via a Fourier trans-

form. Because of advanced FFT-algorithms this can be done in a fast manner. The

convolution of the Raman response on the nonlinear side is also often calculated in

the frequency-domain, as it transforms into a computationally fast multiplication.

Rest of the nonlinear terms are usually integrated numerically by methods such as

the second order Runge-Kutta algorithm. This method has shown to work well,

when enough care is taken in choosing the propagation step size and the simulation

grid parameters in time and frequency domains [10]. A single simulation realization

solved by the FSSM is illustrated in �gure 2.8.
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Figure 2.7: Symmetrized FSSM illustrated with a piece of optical �ber. Here the envelope
A(z, T ) is �rst propagated with dispersion for half the step size h/2, then the nonlinearity
is applied in the center of the step over the whole step length h, followed by dispersive
propagation over h/2 to the end of the step. This method has proven to be more accurate
compared to the original FSSM [29].

Figure 2.8: Simulation results for the evolution of a 200 fs pulse in an optical �ber. The two
�gures illustrate the a) time and b) spectral evolutions of the pulse at various propagation
distances. Solitons ejected by the soliton �ssion process are highlighted in both domains
by S and the corresponding dispersive wave by DW. Image taken from ref. [58].
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2.4 Photonic Crystal Fibers

The other major step along pulsed laser sources enabling robust SC generation has

been the advancements in optical �ber production techniques. Optical �bers in

general work as a reliable platform for studying optical phenomenon because of the

possibility of propagating the light without attenuation over long distances. In the

context of nonlinear optics another factor is the con�nement of light within the �ber.

A small �ber core allows a high energy density of a focused pulse within the �ber

enhancing the nonlinear e�ects. Even though SC generation has been demonstrated

even in traditional �bers [59], photonic crystal �bers (PCF) provide a much tighter

con�nement in the narrow core and a tailorable dispersion pro�le by adjusting the

hole lattice parameters surrounding the core.

It was not untill 1996 that the �rst PCF were succesfully produced by Knight et

al [5]. An example of a PCF is illustrated in �gure 2.9. In short, the structure has

either a fused silica core or an air hole in the middle, where the light is con�ned.

This core is then surrounded by a periodic lattice of airholes. Depending on whether

the core is made of glass or is hollow the guiding e�ect of light is caused either by

modi�ed total internal re�ection for a glass core [34] or the photonic band gap e�ect

for hollow core �bers [60].

Figure 2.9: a) Scanning electron microscope image of the cross section of the �ber used
in the experiments in this work. The �ber is polarization-maintaining. In b) the corre-
sponding dispersion parameter D. The core diameter is 1.8µm ±0.3µm as reported by the
manufacturer. The nonlinear coe�cient is γNL = 95 W−1/km compared to standard �ber
values of 1 W−1/km. The �ber has two ZDWs at 750nm and 1235nm. Images are the
courtesy of NKT Photonics.

Besides the large nonlinearity, another signi�cant property of PCF , is the dis-

persion pro�le which can be engineered. More speci�cally the zero dispersion wave-

length (ZDW) of the �ber can be shifted towards the wavelengths in the vicinity of

the wavelengths emitted by ultrafast laser sources. The ZDW is de�ned as the wave-
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length, where the �ber dispersion parameter D = −2πc
λ2

d2β
dω2 cancels. In principle laser

pulses launched into the �ber at the ZDW will undergo minimal spreading in time

by dispersion, though often higher order dispersion terms and nonlinearities become

e�ective and cause distortion. ZDW engineering allows both normal and anomalous

dispersion properties to be exploited, allowing di�erent pump wavelength regimes to

be explored for phase-matching FWM processes or trigger soliton �ssion processes

responsible for SC generation mechanisms in fs and ps timescales respectively [10].

2.5 Applications

Even though creating laser rainbows in laboratory and studying the mechanisms is

interesting per se, supercontinuum sources house a wide range of applications. Tra-

ditionally broadband white light sources have relied on blackbody radiation from

thermal sources, leading to poor coherence (SC can have varying coherence proper-

ties) and directionality. Superluminescent diodes overcome the directionality prob-

lems at the cost of losing bandwidth, with the best ones spanning over 100 nm.

Supercontinuum sources can overcome all of these problems with proper choices of

�bers and pump laser sources.

Applications include spectroscopic studies where the broad bandwidth allows the

use of the same source for simultaneous excitations of multiple compounds with high

sensitivity [13]. Microscopy techniques can also bene�t from the wide SC bandwidth.

For example in confocal microscopy researchers have exploited the chromatic aberra-

tion often found as a hindrance as a depth probe in the study [61]. Other applications

can be found in biomedical imaging of tissues such as Optical Coherence Tomogra-

phy (OCT) used for �nding defects in eyes [15], dynamic surface characterization by

stroboscopic White Light Interferometry (WLI) [14] and accurate frequency combs

for the most accurate frequency references available [62]. SC has also been used

in broadband optical communication systems with wavelength-division multiplexing

[63].

Even though applications exploiting SC are plenty, the requirements of SC prop-

erties depend highly on the application. Besides the broadband nature, the second

order coherence (i.e. stability) of the SC a�ects strongly the performance of an ap-

plication. For frequency combs, extremely stable sources are required, whereas the

other extreme lie applications such as OCT and WLI requiring only a broad band-

width. Thus determining and possibly manipulating the coherence properties of SC

is desirable. In the next chapter we discuss the basic concepts behind coherence.
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3. COHERENCE

Coherence is often introduced in the context of lasers and interference. For example

Wikipedia de�nes coherence as "an ideal property of waves that enables stationary

interference". Coherence can also be listed by any high-school student as a property

of laser light. While both of these are true, they do not explain what coherence is.

Interference can be observed even with incoherent light sources as e.g. in WLI.

The concept of laser coherence becomes even more complex when consider pulsed

(non-stationary) sources, where the optical intensity drops to zero between pulses.

Obviously a more accurate and elaborate description is required.

The word correlation is perhaps the most useful word when talking about coher-

ence. Indeed, nearly every instance of the word 'coherence' could be replaced with

the word 'correlation' without any loss of information or generality. Correlation is

de�ned in a dictionary as the "mutual relation of two or more things, parts, etc."

and this is essentially what coherence measures; the mutual relation between optical

�elds in two distinct space-time points. Obviously coherence and correlation can be

found in other systems, but here we concentrate on the correlations between electric

�elds. This chapter attempts to clarify the concept and provide a mathematical

background for studying coherence of electromagnetic waves. Most of the analysis

here follows the book by Mandel and Wolf [64].

We take E(ri, ti) to represent the analytic (and thus complex) electric �eld at

position ri and time instant ti. Its representation in the spectral domain will be

noted with : Ẽ(ri, ωi). We assume that the light is linearly polarized and thus

we can neglect the vectorial nature of E(ri, ti) and take it to represent just the

electric �eld component along a given Cartesian coordinate. It should be noted that

this does not reduce the validity of the analysis, as extra dimensions can be easily

implemented using the very same analysis. We further take the real valued (as an

experimentally measurable quantity) instantaneous power P (t) (often referred to

instantaneous intensity outside �ber optics) to satisfy the condition

I(r, t) = E∗(r, t)E(r, t). (3.1)
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3.1 Temporal and Spatial coherence

We start by looking at the traditional concepts of temporal and spatial coherence.

Consider the situation depicted in �gure 3.1 which represents a laser beam propa-

gating in the z-direction. In this picture, points P1 and P2 are in the same transverse

plane (at z = 0 cross-section of the laser beam). Also P ′1 and P ′2 are on the same

transversal plane (at z = LC) as well as P ′′1 and P ′′2 are on the plane z = L. The P1

points are assumed to lie on the same transversal position of the beam cross-section

(i.e. only the z-coordinate changes, x and y stay constant). Thus they can be un-

derstood as representing the electric �eld at di�erent times in the same transversal

position E(P1, t), E(P1, t
′) and E(P1, t

′′) (this is because the �eld at E(P ′′1 , t) has

propagated from the space-time point (P1, t−∆t) = (P1, t−(P ′′1 −P1)/c)) = (P1, t
′′).

Similar logic applies to the points P2.

P1 

P2 

P1’ P1’’ 

P2’ P2’’ 

AC 

z = 0 z = LC z = L 

Figure 3.1: Schematic illustration of coherence.

Now we ask the question, are the �elds E(P1, t), E(P ′′1 , t) and E(P ′′1 , t) correlated?

If we can say that the �eld at E(P1, t) depends highly on the �eld at E(P ′1, t) (i.e.

we can calculate what the �eld will be after a time ∆t = (P ′′1 − P1)/c from the

knowledge of the value of the �eld at time t) the light is temporally coherent in

the interval from t to t + ∆t. However, if the �eld E(P ′′1 , t) does not depend at all

on the �eld at E(P1, t) (for example because of a random phase jump caused by

quantum �uctuations in the laser) it is incoherent in this interval. If the maximum

time interval over which the electric �elds are correlated is the time it takes for

light to propagate from P1 to P ′1 it is called the coherence time tC = ∆t [64]. Thus

coherence time de�nes the maximum time after which we can predict the electric
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�eld associated with the laser light (i.e. the time that the �eld stays correlated). We

can also calculate the distance light would travel during this time LC = ctC , which

is referred to as the coherence length.

Besides asking ourselves, how does the �eld correlate with itself at di�erent in-

stants of time (or equivalently di�erent longitudinal coordinates P1 and P ′′1 ), an

equally valid question is how does the �eld correlates between di�erent transversal

parts of the beam? Thus we are comparing the �elds at E(P1, t) and E(P2, t). Again

if they are correlated, and we can deduce the �eld at P2 from the value of the �eld

at P1 we say the light is spatially coherent. The are over which the electric �eld of

di�erent points are fully correlated is de�ned as the coherence area AC .

3.2 First order coherence, fringe visibility

Having introduced the basic ideas behind coherence, we now turn to means of mea-

suring and de�ning it in a mathematically rigorous way. First we note that any anal-

ysis in optics can be performed either in the frequency (spectral) or time-domain,

and the same applies to coherence theory and Fourier transformations can be ex-

ploited similarly to switch between the two domains. Thus we will use descriptions

in both domains depending on the relation to actual measurements.

Traditionally the methods for measuring coherence are based on observing and

characterizing interference fringes. For determining spatial coherence properties one

inserts two pinholes in the beam cross-section and observes how the fringe pattern

varies as the hole spacing is varied. Temporal coherence properties are on the

other hand usually obtained by using a Michelson interferometer and observing the

intensity fringes as a function of delay between the two arms of the interferometer.

In both of these cases the physically measurable quantity is the visibility of the

interference fringes de�ned as [64]

V (r/τ) =
Imax − Imin
Imax + Imin

, (3.2)

where V (r/τ) is the visibility measured in the spatial or temporal domain as dis-

cussed above. We neglect the spatial coherence properties of the light from here on,

as the system studied in the thesis is single-mode and the SC generated in the �ber

is thus perfectly spatially coherent.

We next introduce the �rst order spectral coherence function de�ned as [21]

g
(1)
12 (ω) =

〈
Ẽi(ω)Ẽ∗j (ω)

〉
i 6=j〈∣∣∣Ẽ(ω)

∣∣∣2〉 =

〈
Ẽi(ω)Ẽ∗j (ω)

〉
i 6=j

〈S(ω)〉
, (3.3)

where Ẽi(ω) and Ẽj(ω) represent the electric �eld associated with di�erent SC
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Figure 3.2: Example of a spectral interference pattern measured for a highly coherent SC.
The visibility is calculated with the help of consecutive peaks and valleys of the interference
pattern marked with red arrows.

pulse realizations.

We will later refer to g(1)12 (ω) with the shorter notation g(1)12 the superscript high-

lighting the fact that it is a �rst order coherence function. The angle brackets 〈〉
indicate an ensemble average over independent (i 6= j) �eld realizations. We note

that this quantity could be equivalently de�ned in time domain just by replacing ω

with τ . This formulation with the help of ensemble averaging is convenient because

it can be used with pulsed and CW light sources. In the CW case (stationary pro-

cess) the ensemble averaging can be replaced by a time average of the process [64].

In the above equation the absolute value |g(1)12 | is actually equal to the fringe visibil-

ity of equation 3.2 measured in the spectral domain (i.e. using a delayed Michelson

setup with a spectrometer as the detector) [64]. The values of |g(1)12 | = V are bound

by values 0 and 1 with the �rst value referring to incoherence and latter to complete

coherence. An example of measured spectral interference pattern from which |g(1)12 |
can be infered is illustrated in �gure 3.2

Because the equation deals only with correlations at a certain single frequency

(time instant) between realizations, it is referred to as a �rst order coherence func-

tion. It thus describes how the electric �eld of a laser pulse at a certain frequency

changes between di�erent pulses. If the laser is stable and the electric �eld does not

�uctuate in amplitude and phase at this frequency between consecutive pulses (or

ensemble realizations), the source is coherent. It cannot however describe how the

�eld correlates between di�erent frequencies.
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3.3 Second order coherence

Even for non-stationary light sources, such as SC, some insight can be gained from

the �rst order coherence function. However useful additional information can be

obtained by second order coherence functions. A �rst order function relies on mea-

suring correlations at the same frequency (time) of independent realizations, whereas

the second order functions measure correlations between two di�erent frequencies

(times) between di�erent realizations[64].

3.3.1 Mutual Coherence Function and Cross Spectral Density

We de�ne the two-time mutual coherence function (MCF) as [64]

Γ(t1, t2) = 〈E(t1)E
∗(t2)〉 =

∫ ∞
−∞

∫ ∞
−∞

E1E
∗
2p(E1, t1;E2, t2)dE1dE2. (3.4)

The last form is a general formulation of the ensemble average, given here just to

illustrate the relation to correlation functions (i.e. the inde�nite integrals), here the

p(E1, t1;E2, t2) represents the joint probability density function [64]. For convenience

the coordinates of the system may be transformed from the absolute time (t1, t2) to

average and di�erence coordinates (t̄ = (t1 + t2)/2,∆t = t2 − t1). The MCF is then

transformed into

Γ(t̄,∆t) = 〈E(t̄+ ∆t/2)E∗(t̄−∆t/2)〉 (3.5)

This is often normalized in a manner similar used for the �rst order coherence

function,

γ(t̄,∆t) =
Γ(t̄,∆t)√

I(t̄+ ∆t/2)I(t̄−∆t/2)
(3.6)

Here I(t) = Γ(t̄,∆t = 0) is the ensemble average intensity of realizations. The

width (FWHM) of |γ(t̄,∆t)| along the ∆t axis is related to the coherence time at an

instant t̄ [27]. The MCF has a spectral domain counterpart called the cross-spectral

density (CSD) function, de�ned in average and di�erence frequency coordinates as

W (ω̄,∆ω) =
〈
Ẽ(ω̄ + ∆ω/2)Ẽ∗(ω̄ −∆ω/2)

〉
. (3.7)

It also has a normalized form

µ(ω̄,∆ω) =
W (ω̄,∆ω)√

S(ω̄ + ∆ω/2)S(ω̄ −∆ω/2)
. (3.8)

It's worth noting that all of the above functions are two dimensional. Furthermore
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the non-normalized MCF and CSD in equations 3.5 and 3.7 form a dual Fourier

transform pair, however the normalized functions γ(t̄,∆t) and µ(ω̄,∆ω) do not

posess this property in the general case [64]. Both are normalized forms, bound in

absolute value similarly to |g(1)12 | between 0 and 1. Clearly, if one is able to determine

either one of the MCF or CSD, it gives access to information in both domains. The

CSD is in general more accessible by experimental measurements (by the ease of

optical spectrum measurement) and hence we demonstrate most of the results with

the help of the CSD as no additional transformations are required.

Overall degree of coherence

To give an overall estimate of the degree of coherence the overall degree of spectral

coherence µ̄ is used. It represents a kind of an average coherence over the CSD

normalized by the average spectrum in a way that it becomes bounded in the interval

0 ≤ µ̄ ≤ 1. It is evaluated by the equation

µ̄2 =

∫∞
−∞

∫∞
0
|W (ω̄,∆ω)|2 dω̄d∆ω[∫∞

0
S(ω)

]2 . (3.9)

In a very similar manner an overall degree of temporal coherence γ̄ can be cal-

culated with the help of the MCF. It can be shown that γ̄ = µ̄ [27] and thus we do

not explicitly de�ne it here.
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4. SUPERCONTINUUM AND SECOND ORDER

COHERENCE

The possible e�ect of noise in SC generation has become obvious in chapter two

describing the nonlinear mechanisms causing the spectral broadening. This ran-

domness in the SC generation process makes it a so called stochastic non-stationary

process. We introduced the tools for analysing correlations in such systems in chap-

ter 3 and this chapter employs them for studying the coherence properties of SC.

Even though randomness is present in SC generation, it does not mean it would be a

completely (temporally/spectrally) incoherent light source �uctuating signi�cantly

between realizations (we emphasize again that spatial coherence properties can be

neglected in a single-mode �ber). Indeed the e�ect of noise varies depending on the

experimental parameters and coherent, stable, SC can be obtained.

From numerical simulations point of view this noise e�ect can be accounted for.

As it was mentioned in section 2.2, the numerical models employ a random noise

seed at the beginning of a single simulation and multiple simulations are done to

produce an ensemble of realizations. Often an ensemble of 100-1000 realizations is

su�cient to bring out the characteristics observed in experiments, where the number

of realizations per one observation is in the order of millions when using typical MHz

repetition rate Ti:Sapphire laser oscillators. Thus we have the means to study the

coherence properties of SC experimentally as well as numerically.

Before turning into the more mathematical analysis, we discuss what does coher-

ence of SC mean and introduce some rule-of-thumb generalizations on determining

the coherence properties of SC.

4.1 Supercontinuum coherence

The early studies [21] to determine SC coherence employed only the �rst order coher-

ence function g(1)12 of equation 3.3. Experimentally the measurement is performed by

a delayed Michelson interferometer, where the delay between the two arms matches

separation between consecutive laser pulses resulting in spectral interference mea-

sured by a spectrometer or optical spectrum analyzer (OSA). In this case the spectral

interference pattern resulting from two independent (and consecutive) SC generated

is measured.

At frequencies where the fringes visibility is high, the generated SC electric �eld
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amplitude and phase remains nearly constant from shot to shot. On the other hand

if the visibility is low there are signi�cant �uctuations in the SC. These �uctuations

are caused by noise ampli�cation dynamics during SC generation as discussed below.

In short, if consecutive SC spectra resemble each other the coherence is high. On

the other hand if consecutive SC spectra vary a lot it's said to be incoherent (note

that we cannot measure a single spectrum experimentally, but this can be veri�ed

by simulations).

Although the use of the �rst order coherence function gives a fairly good picture of

the overall coherence. A complete second order coherence measurement is required

to be able to study for example the behavior of SC in optical systems.

4.2 E�ect of pulse duration and peak power on coherence

4.2.1 Pulse duration

We �rst consider the e�ect of varying the pulse duration. We assume that the peak

power of the pulse remains �xed. As mentioned, TBP ties the temporal duration

and spectral width together: shortening the pulse in time increases the bandwidth

and vice versa. For short pulses below 50 fs duration the FWHM bandwidth is on

the order of tens of nanometers.

In these short pulse cases the soliton �ssion process is deterministic when pumping

in the anomalous dispersion regime (as done in the experiments of this thesis) [10].

The dominant process in the beginning is SPM causing spectral broadening [10].

This means that the FWM and SRS gain bandwidths usually overlap with the laser

pulse bandwidth, leading to coherent growth of the sidebands with respect to the

center wavelength and thus the soliton �ssion process also occurs in a coherent

manner. If the laser pulse-to-pulse �uctuations at the �ber input are small this will

lead to consecutive SC to be identical and thus being highly coherent.

At the other extreme we consider pulses of durations of picoseconds and longer

up to CW operation. In these cases the pulse bandwidth is initially narrow and

symmetrical sidebands around the pump grow from noise seeded by the FWM/MI

processes [10]. This means that consecutive spectra vary signi�cantly, and the co-

herence is typically low.

In the 100 fs ... 1 ps range the coherence can vary remarkably from coherent to

partially coherent to entirely incoherent, caused by competition between the noise

driven MI e�ects with the deterministic soliton �ssion process. The signi�cance of

other parameters such as the location of the ZDW relative to the pump wavelength

and the peak power grow in these cases. One way to ensure coherence is to pump

in the normal dispersion regime, where soliton �ssion and FWM/MI processes are

prohibited. However this comes at a cost of maximum attainable bandwidth as SPM
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is the main mechanism of spectral broadening. [10]

4.2.2 Pulse peak power

We next examine the e�ect of varying the peak power keeping the pulse duration

�xed. This can be easily done in practice with a half-wave plate and polarizer

combination.

Generally speaking, increasing the peak power leads to a loss of coherence. The

reason behind this can be understood again by looking at the FWM/MI gain band-

width at di�erent peak powers of �gure 2.5. The maximum gain shifts further away

from the pump wavelength as the peak power is increased. Because of this mis-

match between the laser and MI gain spectrum bandwidth, sidebands are seeded

by noise. SPM broadening is not able to compensate for this shift and the soliton

�ssion process is perturbed by noise driven MI e�ects leading to shot-to-shot varia-

tions in the �ssion process. Even though a low peak power allows higher coherence,

the downside is that the resulting SC bandwidth is limited.

Finally we note the nearly binary behavior of the overall SC coherence on varying

the peak power. As was noted in ref. [24] (see �gure 4.1 below), the overall degree

of coherence de�ned in eq. 3.9 stays near unity for low powers but then experiences

a rapid drop to values below 0.3 when the peak power is increased and noise starts

to in�uence. The cases where the overall degree of coherence drops rapidly (and has

values ≈ 0.2− 0.8) is referred as partially coherent SC.

Figure 4.1: Second order overall degrees of spectral coherence µ̄ (red) and �rst order |g(1)12 |
(black) for various pumping powers. Case A corresponds to complete coherence, B partially
coherent and C incoherent. The drop in overall coherence is rapid near point B. Image
taken from ref. [27]
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4.3 Separation into coherent and quasi-stationary parts

It has been shown, that the second-order coherence functions of SC can be separated

into two distinct contributions: a quasi-coherent square (cs) and quasi-stationary

(qs) part [24]. The separation into these parts in the normalized MCF and CSD

representations is illustrated in �gure 4.2 below.
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Figure 4.2: Illustration of separation of the (absolute value of) a) normalized MCF
(|γ(t̄,∆t)|) and b) CSD (|µ(ω̄,∆ω)|) functions into cs and qs parts.

The cs-part corresponds to a square part in the normalized CSD(MCF), where

the value is nearly unity representing perfect coherence. The qs-part on the other

hand is represented by a line in the average frequency (time) direction with nearly

constant width in the di�erence frequency direction so that the coherence properties

only depend on the time (or frequency) di�erence. The separation appears to be

valid for any combination of pump pulse and �ber parameters (duration, peak power,

wavelength) [24].

The separation can then be used to approximate the normalized MCF and CSD

functions as follows:

γ(t̄,∆t) = γc(t̄,∆t) + γq(t̄,∆t)

µ(ω̄,∆ω) = µc(ω̄,∆ω) + µq(ω̄,∆ω),
(4.1)

where the subscripts c and q correspond to the coherent square and quasi-stationary

parts, respectively. The separation can be extended to Γ(t̄,∆t) and W (ω̄,∆ω) by
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simple multiplication according to equations 3.5 and 3.7

Coherent part

Because γc(t̄,∆t) and µc(ω̄,∆ω) represent fully coherent contributions they can be

written in a similar form as the total CSD and MCF of equations 3.5 and 3.7 but

without the ensemble averaging. The averaging can be left out because the coherent

part does not �uctuate from shot to shot by de�nition. Replacing Ẽ(ω) with Ẽc(ω)

and E(t) with Ec(t) we can then write:

µc(ω̄,∆ω) =
Ẽc(ω̄ + ∆ω/2)Ẽc

∗
(ω̄ −∆ω/2)√

Sc(ω̄ + ∆ω/2)Sc(ω̄ −∆ω/2)

γc(t̄,∆t) =
Ec(ω̄ + ∆ω/2)E∗c (ω̄ −∆ω/2)√

Ic(t̄+ ∆t/2)Ic(t̄−∆t/2)
.

(4.2)

The replacement mentioned above is just�ed, if we assume that the �elds can be

separated to coherent and quasi-stationary parts, where they satisfy the conditions

I(t) = Γ(t, t) = Ic(t) + Iq(t) = |Ec(t)|2 + |Eq(t)|2

S(ω) = W (ω, ω) = Sc(ω) + Sq(ω) = |Ẽc(ω)|2 + |Ẽq(ω)|2.
(4.3)

The coherent parts of the intensities and spectra can be retrieved from the ±45o

cross-sections of the cs-parts (illustrated by Ic and Sc in �gure 4.2) [24].

Looking at �gure 4.1 it is fairly clear that the polychromatic spectral coherence

function g(1)12 is closely related to the overall degree of coherence and thus the CSD. It

was shown in a recent publication [27] that the coherent part of the normalized CSD

function can be approximated with the help of the �rst order coherence function of

equation 3.3 as

|µc(ω1, ω2)| ≈
√
|g(1)12 (ω1)||g(1)12 (ω2)|. (4.4)

Thus we have the experimental access to the |µc| through this approximation.

Quasi-Stationary part

For the quasi-stationary part we assume that it describes a �eld with intensity Iq(t̄)

varying slowly with t̄ compared to the variation of |γq(t̄,∆t)| with respect to ∆t (i.e.

Iq >> Gq in �g. 4.2). This allows the approximation Γq(t̄,∆t) ≈ Iq(t̄)γq(∆t) to be

made. Similar arguments (i.e. Sq >> Uq) apply in the frequency domain, allowing
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us to write Wq(ω̄,∆ω) ≈ Sq(ω)µq(∆ω). The quasi-stationary contributions, now

approximated as one-dimensional distribution being constant over the average time

(frequency) direction, can be calculated directly through 1-d Fourier transforms:

µq(∆t) =
1

E0

∫ ∞
−∞

Iq(t̄)exp(i∆ωt̄)dt̄,

γq(∆ω) =
1

2πE0

∫ ∞
−∞

Sq(ω̄)exp(−iω̄∆t)dω̄.

(4.5)

where E0 = (2π)−1
∫∞
−∞ I(t)dt is the total pulse energy.

4.4 Supercontinuum coherence representation

The above approximations have been veri�ed through numerical simulations, where

the exact MCF and CSD can be determined. By the use of the approximations, we

can experimentally access the second order coherence function for SC light. Before

discussing the experimental methods for determining the CSD and MCF in more

detail in the following chapter, we will brie�y take a look in two other representations

of the CSD and MCF functions. We will not discuss these topics in depth, as they

require involved mathematical analysis. The reason they are included here is to give

the reader a hint how the results of the separation could be exploited in practical

applications.

4.4.1 Coherent modes

The �rst of these representation is called the coherent mode (CM) representation.

Generally, the CSD and MCF (we focus only on the CSD but similar argument can

be applied to the MCF) of partially coherent �elds can be represented as a linear

combination of fully coherent �elds [65; 64].

W (ω1, ω2) =
∞∑
n=1

λnψ
∗
n(ω1)ψn(ω2) (4.6)

where the ψn(ω) represent fully coherent �elds or coherent modes and λn are the

corresponding eigenvalues satisfying the eigenvalue equation of the form∫ ∞
0

W (ω1, ω2)ψn(ω1)dω1 = λnψn(ω2). (4.7)

Each term of the sum in eq. 4.6 actually represents the CSD of single coherent

�eld. Thus one can think that we are expressing the total partially coherent CSD

as a sum of individual coherent CSDs.

The CSD and MCF functions can be used to model light propagation in linear
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optical systems (i.e. providing insight into SC behavior in various measurement

setups) [64]. However this can be computationally demanding and simpli�cation by

the CM representation can greatly decrease the complexity of calculations [66]. This

is based on the fact that the above in�nite summation can be �rst of all truncated

to a �nite number of terms and secondly that the calculations of involving coherent

�elds are faster compared to that of �elds of partial coherence [66].

4.4.2 Elementary �eld representation

The number of required modes for the truncated CM representation to be accurate

varies greatly depending on the coherence properties of the SC �eld. For cases with

high coherence, even the �rst mode gives an accurate approximation whereas for

cases with low coherence more than 100 modes might be required [66].

Even though this can still reduce the computational complexity compared to the

full CSD analysis, another method called the elementary �eld (EF) representation

can be employed to further simplify the calculations [67].

The EF method for supercontinuum makes use of the aforementioned observation

of dividing the complete CSD into the qs and cs parts and constructs two (quasi-

coherent) elementary �elds weighted by weight functions to approximate the CSD

(similarly to eq. 4.3). To introduce this concept we follow the time-domain analysis

of the MCF as in ref. [68].

Applying the decomposition of eq. 4.1 we can write the two-time MCF as

Γ(t1, t2) =

∫ ∞
−∞

pc(t
′)E∗c (t1 − t′)Ec(t2 − t′)

+

∫ ∞
−∞

pq(t
′)E∗q (t1 − t′)Eq(t2 − t′).

(4.8)

Here the �rst term on right denotes the coherent part and the second term the

quasi-stationary part of the MCF. The Ec, Eq are the elementary �elds and pq, pc

their associated weight functions. Note that here we have used the non-normalized

version of the MCF decomposition which is easily obtained by multiplying eq. 3.6

by the average intensity.

If the coherent part is assumed to be completely coherent, allowing us to assume

the weight function to be binary, we can further write [68]

Γ(t1, t2) =E∗c (t1)Ec(t2)

+

∫ ∞
−∞

pq(t
′)E∗q (t1 − t′)Eq(t2 − t′).

(4.9)
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The validity of this approximation is somewhat questionable in partially coherent

SC cases where the coherent square has values signi�cantly less than unity. However

for the fully coherent and incoherent cases (remember the nearly binary behavior of

SC coherence mentioned in section 4.2.2) this approximation is generally valid.

Now the elementary �elds describing the coherent and quasi-stationary parts of

the above equation can be obtained from the temporal intensity of the coherent part

and spectrum of the quasi-stationary part (because of the separation of eq. 4.3) with

the help of the equations

Ec(t) =
√
Ic(t)exp[iφc(t)]

Eq(t) =

∫ ∞
−∞

√
Sq(ω)exp(−iωt)dω.

(4.10)

From an experimental point of view, the phase information φc(t) is generally lost,

but in principle it could be retrieved with the help of the average spectrum of the

coherent part using a phase-retrieval algorithm [68]. The second equation is the

Fourier transform of the spectrum of the quasi-stationary part. As the phase of this

part is random, no retrieval is required here.

The weight function pq is connected to the quasi-stationary intensity according

to our earlier decompositions through

Iq(t) =

∫ ∞
−∞

pq(t
′)|Eq(t− t′)|2dt′. (4.11)

With the assumption that pq is generally real and nonnegative the above equation

can be inverted yielding pq explicitly [69]. Thus by determining Iq(t),Ic(t) and Sq(ω)

we are able to construct the elementary �elds.

In reference [68] a comparison between the CM and EF representations for prop-

agating SC light in a linear system (single-mode �ber) was also performed. The

results showed that the CM results in general a much more accurate picture of the

system behavior but the EF yields comparatively good approximations in the com-

pletely coherent and incoherent cases. Because of the simpler and computationally

less demanding approach provided by the EF, it could be the preferred representa-

tion in the incoherent cases where the number of required modes for CM can easily

exceed one hundred.
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5. EXPERIMENTAL MEASUREMENT OF

SUPERCONTINUUM SECOND ORDER

COHERENCE

Having introduced the 2nd order coherence functions, the possibilities to approxi-

mate them and utilize for applications we now turn to their actual measurement.

The analysis is straightforward to implement for simulations but an exact CSD is im-

possible to build from experimental data. This is because (with current techniques)

single shot electric �eld (in time or frequency) is impossible to measure.

However the separation into the distinct coherent and quasi-stationary contri-

butions allows to determine approximatively the second order coherence functions

experimentally.

5.1 Separation to coherent and quasi-stationary parts exper-

imentally

Coherent part

As mentioned previously, the coherent part can be approximated with the help of

equation 4.4. This argument can be readily veri�ed from �gure 5.1, where the exact

CSDs from simulations are compared to CSDs constructed with the approximation

above. One can immediately notice the resemblance of the two. It is also evident

from the �gure that for the coherent cases (insets a) and b)) there is nearly one-

to-one correspondence whereas when the coherence decreases g(1)12 cannot reproduce

the quasi-stationary line but is still able to reproduce the coherent square.

The |g(1)12 | function can be readily accessed experimentally by measuring the visi-

bility of the fringes from the interference spectrum between the two arms of a delayed

Michelson interferometer as mentioned in section 3.2.

Quasi-stationary part

To gain access to the quasi-stationary contribution of the CSD, one can make use

of equations 4.5. The average temporal intensity I(t) of the SC can be determined

experimentally using cross-correlation frequency-resolved optical gating (XFROG)

[70].
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Figure 5.1: Top row: Exact CSDs |µ(ω̄,∆ω)| calculated for a) coherent case, c) partially
coherent and e) in coherent case corresponding to the cases in �gure 4.1. Bottom row:

Corresponding approximate CSDs calculated with |g(1)12 |. Taken from ref. [24].

However, the quasi-stationary contribution of the CSD requires to measure the

contribution to the temporal intensity Iq(t) of the quasi-stationary part. This can

be retrieved from the XFROG spectrogram and the spectral coherence function g(1)12

following the procedure desccribed below and illustrated in �gure 5.2.

1. Filter out the coherent contribution to the 2-D spectrogram by multiplying

with (1 − |g(1)12 |) along the time axis which isolates the incoherent part in the

spectrogram representation.

2. Integrate the �ltered spectrogram over the frequency axis essentially which

gives the intensity corresponding to Iq(t) (Actually, this is a convolutionIq(t)

with the XFROG reference pulse. The validity of this approximation is as-

sessed in the section covering XFROG.)

3. Perform the FT according to eq. 4.5.

We have described above how to reconstruct the CSD from distinct experimental

measurements. Because of the direct connection to the spectral coherence function,

it is also possible to construct the MCF from the measured data. The coherent

contribution to the MCF can be calculated from |Γc(t1, t2)| =
√
Ic(t1)Ic(t2). The

coherent part of the temporal intensity is directly obtained from the XFROG spec-

trogram since Ic(t) = I(t) − Iq(t) and the qs contribution is obtained by Fourier
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Figure 5.2: Procedure to retrieve Iq(t) from an XFROG spectrogram. Start with the 2-D
spectrogram of inset a), �lter it out with the help of the coherence function of b). From
the remaining spectrogram, integrate over the frequency axis to get Iq(t) illustrated in c).

transformation of the �ltered spectrum Sq(ω) = S(ω)× (1− |g(1)12 |) (see eq. 4.5).
The di�erent pathways to recover the di�erent domain coherence functions is

illustrated in �gure 5.3.

5.1.1 Phase retrieval of coherence functions

The CSD and MCF are in general complex-valued functions and so far we have only

been plotting the absolute values of these functions. In experiments, we can only

measure modulus of the complex values and cannot access the phase of the data.

Even though µq obtained by the preceeding procedure is complex because of the

FT performed to retrieve it, the phase obtained in this manner has no real physical

signi�cance.

This is a common problem (e.g. electron microscopy, astronomy, holography,

FROG [71]) in physics and mathematics. This is an inversion-problem that requires

usually the use of algorithms to retrieve the phase. Furthermore, one-dimensional

phase retrieval problems are well-known to be ill-posed and having only trivial,

in�nitely many or no solutions [72; 70].

On the other hand, the support constraints in a two-dimensional phase retrieval

problem provide usually enough information for one to be able to solve the phase

retrieval problem [71; 70]. Even though it's a well studied problem, there are no

universal algorithms that work for all the cases. We next introduce two of the most

general algorithms, which are typically modi�ed to suit the exact problem at hand.
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Figure 5.3: The di�erent experimental parts required and a �ow-chart to determine either
the CSD or MCF experimentally. OSA:Optical spectrum analyzer, MZI: Mach-Zehnder
interferometer which can be replaced with a Michelson interferometer. Taken from ref.
[27].

Gerchberg-Saxton algorithm

As mentioned previously, we have access to both the MCF and CSD modulus data

experimentally. As the non-normalized MCF and CSD form a FT pair we can switch

between these domains while enforcing the measured modulus data after each FT.

Because the FT gives a complex result, one hopes that the phase information gets

closer to the actual solution after each cycle of FTs and forcing the modulus data

in both domains. This is the basic principle behind the Gerchberg-Saxton(GS)

algorithm [73].

A modi�cation of this algorithm was actually used in the early FROG experiments

[74]. The FROG measurement setup allows for additional constraints to be imposed,

improving convergence. For FROG measurements the convergence of the algorithm

has been further improved by applying principal value decomposition methods [75].

In the absence of additional constraints the basic GS algorithm converges rather

poorly with even simulated data. So far for the CSD phase retrieval convergence

has been reached only with an initial phase guess constructed of the correct phase

with added random phase. For experimental cases, the convergence is expected to

be even worse because of the noise inevitably present in the modulus data.



5. Experimental measurement of supercontinuum second order coherence 41

Hybrid Input-Output algorithm

Another workhorse in phase-retrieval is the Hybrid Input-Output (HIO) algorithm

introduced by Fienup [76]. It also makes use of the Fourier transform property,

but instead of enforcing modulus data in both domains, it only does it in either

of the domains. The algorithm starts with an initial guess (which can be in our

case the modulus of the CSD) with a (random) phase seed. It then performs the

FT, enforces the MCF modulus data followed with an inverse FT. The output CSD

is then compared to the original CSD and corrected towards the desired direction.

This corrected CSD is then used as a new input followed by a new iteration.

The di�culty here is to de�ne the correction in a way that it would be in the

direction of the result. Often, just a simple support constraint is used, where the

data outside of the support is set to zero and data inside the support is corrected

towards the modulus data. This is a very simplistic method and corresponds nearly

to the GS algorithm. However, were one to be able to �nd a better correction

method, improvement of convergence could be expected.

Finally we highlight the possibility of using other phase-retrieval algorithms, such

as the Generalized Projections algorithm used in FROG retrieval [75] or genetic

algorithms with suitable modi�cations to the problem. However the phase plots of

simulated CSD are very complex and retrieval is expected to be di�cult.

5.2 Experimental setup

Separate measurements are needed to determine the modulus value of the CSD.

These include a Michelson interferometer and an XFROG system. The XFROG

measurement further requires a complementary FROG measurement to characterize

the gate pulse used in order to be able to retrieve the temporal intensity properly.

The same complementary FROG can also be used to characterize the input pulse

injected into the �ber which can be used to make comparative simulations. Thus

all in all three distinct components can be recognized in the whole measurement

scheme:

1. FROG measurement to determine the gate/input pulse,

2. XFROGmeasurement to characterize the SC spectral and temporal properties,

3. Delayed Michelson interferometer (DMI) for measuring |g(1)12 |.

An overall schematic is given in �gure 5.4. We next give descriptions of each

of these components separately. The setup used in the experiments was slightly

di�erent because of practical issues. The di�erences are not shown in the �gure,

because we wanted to preserve clarity in the schematic, but the principle of the

schematic still holds.
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Figure 5.4: Simpli�ed schematic for the experimental setup emloyed in this thesis. Three
components are required: 1) SHG FROG , 2) XFROG , 3) Delayed Michelson interferom-
eter. PBS: Pellicle beamsplitter, FM: Flip mirror, BBO: Beta-barium-borate, the second
order nonlinear crystal used for frequency mixing, SFG: Sum-frequency generation, PCF:
Photonic Cystal Fiber, ∆τ : variable delay on a motorized stage.

5.2.1 Supercontinuum generation

The SC under study were generated with a Spectra Physics Tsunami Ti:Sapphire

laser oscillator with a repetition rate of 80 MHz and pulse energies in the order of

nanojoules with an adjustable wavelength. These pulses were divided with a pellicle

beamsplitter to obtain the gate pulse for the XFROG and the input pulse to the

PCF �ber. The input pulse to the �ber passed through an optical Faraday isolator

consisting of approximately 6.5 cm of terbium-gallium-garnet. This caused signif-

icant broadening and down-chirp in the input pulse, which also was characterized

with SHG FROG. The center wavelength in experiments was 785 nm.

For generating the SC a PCF �ber NL-PM-750 was chosen. It is a polarization-

maintaining, highly nonlinear �ber from NKT Photonics. The length of the �ber is

68.5 cm. The nonlinearity, dispersion pro�le and a scanning electrograph image of

this �ber are presented in the chapter 2.4, Photonic Crystal Fibers. The dispersion

pro�le used in the simulations was the one provided by the manufacturer and shown

in �gure 2.9.

The peak power of the input pulse was varied during experiments by rotating

a half-wave plate (HWP) in combination in front of a polarizer, right after the

optical isolator. A separate HWP was used to couple the light into one of the main

polarization axis of the PCF to ensure correspondence with simulations.
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5.2.2 Frequency-Resolved Optical Gating

SHG FROG

SHG FROG is an intensity autocorrelation type measurement, where the short pulse

is used to sample itself. This is achieved by splitting the pulse into two identical

replicas of itself and introducing a variable delay for the other pulse. These pulses

are then combined back in a nonlinear crystal where the measured second harmonic

signal strength depends on the delay. The signal is at maximum when the pulses

overlap perfectly in time and the electric �eld strength is at maximum causing

strong second harmonic signal. When the pulses overlap only a little or not at all,

the measured SHG signal is weak. By measuring the signal strength as a function

of delay one obtains a picture of the pulse in question. Often a chromatic �lter

is also implemented in the setup to cut of residual pump power causing possible

distortion in the measurement. In our case a dichroic mirror by Semrock with a

cuto� wavelength of 510 nm was used.

This method has to be implemented because ultrashort pulses are generally non-

measurable even by the fastest photodetectors. But where intensity autocorrelators

measure the total intensity with a photodetector, a FROG measurement replaces

this with a spectrometer (in our experiments it was the Avantes AvaSpec-ULS2048L

StarLine with a resolution of 0.5 nm and variable integration time). Often a non-

collinear beam geometry is used as illustrated in �gure 5.5 a). In this case a SHG

beam is created in the direction of the green beam only when the two pulses overlap

in the nonlinear crystal. Thus by systematically changing the delay for the second

pulse and measuring the resulting spectrum at the output one constructs a two-

dimensional spectrogram of the pulse shown in �gure 5.5 b). Mathematically the

spectrogram S(τ, ω) is of the form

S(τ, ω) =

∣∣∣∣∫ ∞
−∞

p(t)g(t+ τ)eiωtdt

∣∣∣∣2 , (5.1)

where p(t) is called the probe pulse under study and g(t+ τ) is the gate pulse used

to sample the probe. In the SHG FROG case these two are the same pulse, but the

other one is delayed as discussed earlier.

As mentioned in the phase-retrieval algorithms section, a FROG measurement

requires also a phase-retrieval to produce accurate results. The acquired spectrogram

data are fed to a commercial FROG software made by Femtosoft, which has various

algorithms implemented and calculates the results automatically.

Other nonlinearities can be exploited for FROG setups (e.g. THG, self-di�raction)

yielding often easier traces to retrieve. SHG FROG was chosen here because of its

experimental simplicity and the possibility of using the same nonlinear crystal and
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Figure 5.5: a) FROG measurement. b) An example of a measured spectrogram of the pulse
produced by the Ti:Sapphire laser used in this work and that serves as the reference pulse
for the XFROG measurement. Retrieval yields a pulse with TBP of 0.642 and a FWHM
temporal duration of 70 fs. Center wavelength λ0 = 785nm.

beam alignment for the XFROG measurement. As the nonlinear crystal a beta-

barium borate crystal of thickness 1 mm was chosen to provide su�cient nonlinear

conversion e�ciency.

XFROG

The principle of XFROG is similar to SHG FROG, but here one uses a well known

reference pulse to sample the pulse under study. In our case the characterized laser

pulse by the SHG FROG (the gate pulse in eq. 5.1) is used to sample the SC

generated in the �ber (the probe pulse in eq. 5.1). These two pulses are then again

combined in a second order nonlinear crystal resulting in sum-frequency generation

(SFG). This sum-frequency signal is then measured with a spectrometer.

The major di�erences are �rstly that the total delay scanned needs to be longer as

the SC often spans durations over picoseconds compared to the laser pulse femtosec-

ond scale. The maximum scan range for experiments was roughly 10 ps, covering the

studied SC easily. Secondly, because the SC spectral density is fairly weak, a thick

nonlinear crystal is required to achieve measurable sum-frequency signals. This on

the other hand leads to limitations in phase-matching for the SFG between the laser

pulse and SC and the crystal needs to be rotated quickly to enable phase-matching

over the whole SC bandwidth [77].

Attention should be paid to the polarization of the SC such that phase-matching

is e�cient in the selected nonlinear crystal. In our experiment a HWP was used

to select one of the principal axis of polarization of the PCF at the input and the

output of the �ber was mounted on a rotational �ber mount to align the polarization

so that SFG signal is optimized.

A retrieval is also required in the XFROG measurements. However, in order to

be able to retrieve the electric �eld from the experimental XFROG spectrogram
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the gate pulse must be scanned with less than 2 fs steps, corresponding to 0.3 µm

displacement in the motorized delay stage. This is due to gridding in the phase-

retrieval software that binds the spectral and temporal resolutions together [78].

The stage used in the experiments (ThorLabs DRV-001) was however limited to a

minimum step size of 3 µm (corresponding to resolution of 20 fs) and thus a retrieval

was not possible.

It should be noted however, that in the incoherent case the retrieval is somewhat

irrelevant as the experimental XFROG will consist of an ensemble of very di�er-

ent SC and thus most likely a single electric �eld cannot be retrieved which would

represent the whole ensemble. Even if the mean �eld could be retrieved, the phase

information would be close to useless. In the coherent case, the ensemble would

consist of similar �elds, and in principle a retrieval could be possible from a math-

ematical point of view. To study the possibility of using the frequency marginals

(integration of the trace over the frequency axis) as a representation for the average

intensity I(t), an XFROG trace was calculated numerically for a simulated coherent

SC using a gate pulse of 70 fs corresponding to experiments.

It was found that the general characteristics of the XFROG time marginals re-

sembled that of the average intensity well. This is illustrated in �gure 5.6. This

can be understood easily by noting that the XFROG time-margin is practically the

same as a convolution of the average intensity with the gate pulse. As the gate pulse

duration is comparable or less than the temporal structures of the SC, the convolu-

tion does not change the result signi�cantly. Hence we conclude that when a short

enough gate pulse is used, the XFROG time margin can be used to approximate the

average intensity.

Figure 5.6: Comparison between a) the simulated mean intensity and b) XFROG time
margin. With a short gate pulse, the general shape is similar, but the XFROG margin
washes out the �ne structure.

Finally we highlight that from an experimental point of view decreasing the step

size in the measurements (in order to make a retrieval possible) increases the mea-
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surement time. As the �ber coupling can vary in practice over long periods (e.g.

because of heating of the �ber), this would lead to reliability issues in the mea-

surements. Thus the signi�cance of this alteration needs to be considered carefully.

To ensure the coupling e�ciency does not vary througout the measurement, the

spectrum of the SC should be measured before and after completion of a set of mea-

surements. In a reliable measurement these two would produce identical results.

5.2.3 Delayed Michelson interferometer

The third and �nal step of the measurement is the DMI that measures the coherence

function |g(1)12 |. As the XFROG measurement requires all available power from the

SC and takes a longer time compared to the DMI measurement, the XFROG was

measured �rst and after that a �ip mirror was used to reroute the SC beam to the

interferometer as shown in �g. 5.4.

The whole idea behind the interferometer lies in the fact that the second inter-

ferometer arm is longer by a distance equal to the laser repetition rate ∆S = cτrep.

This means that we are actually mixing two consecutive, independently created SC

(i.e. in equation 3.3 we are enforcing the rule i 6= j). The interference fringes are

then recorded in the spectral domain by the OSA. The fringe spacing depends on the

delay and it determines the measurement resolution. The OSA's superior resolution

(the ANDO 6315B with 0.05 nm resolution), allowing for small fringe spacing to

be resolved is thus preferred over spectrometers. Fringe spacing was set to approx-

imately 4 nm resulting in points at 2 nm resolution in the |g(1)12 | function, which is

well above the Nyquist sampling limit of 0.1 nm obtainable with the OSA resolu-

tion available. Fringe spacing was set large to ensure the highest possible contrast

obtainable of the visibility fringes, rather than sampling close to the limit causing

possible loss of contrast.

Because the visibility of the fringes (and hence |g(1)12 |) is largely a�ected by beam

allignment, mirror stability and focusing into the OSA, extra care needs to be taken

to ensure that the actual contrast of the fringes is measured. In a normal Michelson

interferometer, this is easily achieved. However, as the propagation lengths vary by

a distance of nearly 4 m in our setup, di�raction and mirror stability in the longer

arm play an even more crucial role. In practice, even for completely coherent SC

with weak powers (only SPM broadened), a value higher than |g(1)12 | = 0.93 was

not measured. Hence it can be argued that the experimentally measured overall

degree of coherence value is systematically underestimated compared to the actual

values. This should be kept in mind when comparing the experimental results to

simulations.
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6. RESULTS AND DISCUSSION

The second order coherence properties of SC light corresponding to various overall

degrees of coherence were measured using the procedure described in the previous

section. These are compared with numerical results simulated with the GNLSE

using similar parameters as used in the experiment.

As mentioned, the duration of the injected pulse into the nonlinear �ber to gen-

erate SC was di�erent from the gate pulse used for XFROG as it was temporally

broadened and strongly chirped after passing through the optical isolator. The in-

put pulse at the �ber input characterized by SHG FROG and the temporal FWHM

width for the input pulse was found to be ≈ 290 fs with a spectral width of 17

nm. As a comparison the gate pulse for XFROG was found to be ≈ 70 fs with an

identical spectral width.

For the numerical results, an ensemble of 500 realizations was simulated for each

set of input parameters investigated. The simulation grid contained 214 points (≈
16000) spanning a range of 22 ps resulting in a time resolution of roughly 1 fs and

a spectral resolution of 0.05 THz. The step size in the split-step method was about

0.2 mm.

As these resolutions are much higher than our experiments allow, the absolute

values of the simulated CSD and MCF were two-dimensionally convolved with a

Gaussian function to produce comparable results with experiments. For the CSD a

Gaussian with a FWHM of 2 nm was used, corresponding to the fringe spacing in

the DMI. As for the MCF the width was chosen to be 70 fs corresponding to the

duration of the XFROG gate pulse. Of these two convolutions the MCF experienced

a more signi�cant change, whereas the blurring e�ect on the CSD was more minute.

The simulation parameters were set to match the experimental conditions, with

the exception of the peak power which was increased compared to the experimental

setup to produce a comparable spectral bandwidth. This is justi�ed, as the power

measurement in the experiments performed at the �ber input are underestimated

compared to actual power injected into the PCF. The experimentally measured

powers were 78%, 65% and 68% of that used in the simulation for the coherent,

partially coherent and incoherent cases investigated respectively. The similar values

hint further of a systematic error in the experimental power measurement.

Moreover, the typical dispersion pro�le (�g. 2.9) for the �ber provided by the
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manufacturer has a fairly large error margin of ±15 nm for the ZDW. As the pump

wavelength is very close to the reported ZDW of 750 nm, even a slight variation in

this can cause signi�cant di�erences in the numerical simulations.

6.1 Highly coherent, narrowband case

We start by looking at a highly coherent case with an experimental peak power of

Pp,exp ≈ 70 W. In this case the SC spectrum spans a 220 nm bandwidth from c.a.

650 nm to 870 nm. The corresponding peak power in the simulations was Pp,sim = 90

W. The measured XFROG spectrogram with its marginals are shown in �gure 6.1

and a corresponding �gure for simulations is shown in 6.2.

Figure 6.1: Experimental XFROG spectrogram and corresponding marginals for a coherent
SC. The green line shows the SC spectrum measured with the OSA which matches the
XFROG frequency margins marked with blue. S: Soliton, DW: Dispersive wave.

Figure 6.2: Simulated XFROG spectrogram and corresponding marginals for the coherent
SC. The green line shows the SC spectrum measured with the OSA which agrees very well
with the XFROG frequency margins marked with blue. Soliton S can be observed very
clearly.
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The XFROG traces share similar distinct characteristics such as the clear soliton

ejected by the soliton �ssion process and the corresponding dispersive wave. The

soliton order is N ≈ 6 for experiments and simulations and the �rst ejected soliton

can be observed clearly red-shifting via SRS. As the peak power is still su�ciently

low, soliton �ssion is highly deterministic as MI noise e�ects are still nonexistent.

Some di�erences can be also seen. The soliton at 850 nm has separated further

away in time from the pump in the simulations. Furthermore, the soliton inten-

sity seems to be higher in the simulations which can be seen from comparing the

time marginals. The spectra share very similar characteristics as do the �rst order

coherence functions |g(1)12 |. These are shown more accurately in �gure 6.3.

Figure 6.3: Spectrum and corresponding |g(1)12 |. a) Experimental result with an average

value for |g(1)12 | of 0.90. b) Simulated result withand average of 0.99.

A very good correspondence can be seen in both the spectra and |g(1)12 |. As

for the �rst order coherence function, the experimental value never exceeds 0.93

whereas in the simulations it is practically equal to unity at every wavelength. This

can be understood by the discussion in the experiments section regarding the high

sensitivity to vibrational noise of the DMI measurement.

We further compare the CSD (�g. 6.4) and MCF (�g. 6.5) functions retrieved

from the experiments to the ones directly calculated from the simulation ensembles.

Both the CSD and MCF are dominated by the cs-part.
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Figure 6.4: a) CSD retrieved from experiments, b) CSD calculated from the simulation
ensemble. Second order overall degree of coherence is µ̄ = 0.93 and µ̄ = 0.99 for a) and b)
respectively.

Figure 6.5: a) MCF retrieved from experiments, b) MCF calculated from the simulation
ensemble. Second order overall degree of coherence is γ̄ = 0.93 in a) and γ̄ = 0.99 in b).

A good agreement between simulated results and experimentally retrieved results

can be seen for both the MCF and CSD, even though the experimental values are

slightly lower and not uniform because of the noise. The slight di�erences in the

sizes of the squares are just a result from slightly di�erent temporal extents and

spectral bandwidths of the SC.
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6.2 Partially coherent case

The peak power was then increased to Pp,exp ≈ 360 W resulting in a partial loss

of coherence. The decrease in coherence occurs rapidly within a narrow power

range as discussed earlier. This can also be veri�ed experimentally by observing the

interference pattern of the DMI while adjusting the half-wave plate and polarizer

combination. Below we plot again the experimental (�g. 6.6) and simulated (�g.

6.7) XFROG traces with marginals. The peak power used in the simulations was

Pp,sim = 560W which corresponds to a soliton order of N = 15.

Figure 6.6: Experimental XFROG spectrogram and corresponding marginals for partially
coherent SC. The green line shows the SC spectrum measured with the OSA which matches
the XFROG frequency margins marked with blue.

Figure 6.7: Simulated XFROG spectrogram and corresponding marginals for partially
coherent SC. In the frequency marginal: green line is the SC spectrum measured with the
OSA. Blue line: XFROG frequency margins marked with blue. Three distinct solitons
with their corresponding dispersive waves can be seen in the �gure.
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Again the correspondence is qualitatively vey good between experiments and

simulations. The noise driven MI is starting to create spectral sidebands outside

the pulse bandwidth e�ecting soliton �ssion at these power levels. The random

perturbations cause jitter in the soliton locations, both temporally and spectrally.

This is seen especially in the blurred S2 soliton of �gure 6.7. On the other hand

soliton S3 is ejected from the pump before MI sidebands have grown signi�cantly and

thus is less a�ected by MI which is why this soliton is not blurred. In both cases three

solitons and their dispersive waves can be recongized, even though in experiments the

third one is much closer to the pump. The soliton intensities observed in experiments

are again lower compared to those in the simulations and they have moved further

away in time in the simulations.

The lower intensity of the solitons could possibly be explained by a decreased

phase-matching for the extreme wavelengths in experiments. This would explain the

di�erences in the XFROG frequency marginal (blue) and OSA spectrum (green).

Even though the crystal is rotated to allow partial phase-matching, the beams are

also propagating through di�erent thicknesses of the crystal caused by the non-

collinear beam geometry illustrated in �g 5.5. This can cause attenuation of the

reference pulse via SHG before interacting with the SC in the crystal.

Indeed, some residual SHG was always present in experiments which was �ltered

out by substracting a background spectrum recorded in the absence of XFROG

signal. However this was not always su�cient, and some residual SHG could still

be observed in the XFROG traces. They are not seen in the experimental traces

however as they were further �ltered out in the parts of the XFROG trace where

easily visible. Thus some residual SHG could have arti�cially increased the intensity

at the pump wavelength in the measured traces.

The spectra and |g(1)12 | are plotted again in �gure 6.8 to inspect the di�erences

more closely.

Figure 6.8: Spectrum and corresponding |g(1)12 |. a) Experimental result with an average

value for |g(1)12 | of 0.18. b) Simulated result with an average value of 0.16.

The general correspondence is good between experiments and simulations with
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the spectral bandwidth being nearly the same in both cases. The simulated spectrum

contains however stronger spectral components at around 750 nm. In the experi-

mental case the dispersive wave peak at 600 nm is also less pronounced. This is most

likely due to the uncertainty on the dispersion pro�le of the PCF or non-uniform

coupling e�ciency of light over the spectrum into the OSA.

The coherence functions |g(1)12 | exhibit similar variations. The simulated one con-

tains in general more �ne structure, which cannot be observed in simulations. Most

likely the correspondence could be improved with a convolution with a Gaussian

corresponding to the fringe spacing. Of the similarities worth noting are the peaks

at just above 900 nm close to the soliton, the wide interval of higher coherence from

750 nm to 870 nm with a dip in the middle and �nally the coherent peak at the low

end edge of the spectrum corresponding to the dispersive wave. The center interval

is seeded by SPM of the redshifted pump leading to better coherence. MI causes

jitter in the soliton positions and consequently in the dispersive waves, leading to

a loss of coherence at wavelengths far from the pump. However, at 600 nm the

associated dispersive wave for coherent soliton S3 at 900 nm causes the rises in the

|g(1)12 | function at these wavelengths.

We next compare the CSD (�g. 6.9) and MCF (�g. 6.10) functions retrieved

from experiments to that caluclated directly from the simulations.

Figure 6.9: a) CSD retrieved from experiments, b) CSD calculated from the simulation
ensemble. Second order overall degree of coherence is µ̄ = 0.25 and µ̄ = 0.28 for a) and b)
respectively.

Even though the simulations show much more �ne structure, a good general

correspondense can be seen, in agreement with the similarity of the |g(1)12 | function in

the simulations and experiments. Most signi�cant di�erences can be seen along the

axis ∆ω = 0, with the clearest di�erence at the low mean frequency ω̄ edge at 320

THz. The simulated CSD contains wider parts in the ∆ω direction corresponding
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Figure 6.10: a) MCF retrieved from experiments, b) MCF calculated from the simulation
ensemble. Second order overall degree of coherence is γ̄ = 0.50 in a) and γ̄ = 0.29 in b).

to correlations between the solitons. These cannot be reproduced well by the qs-

approximation used to retrieve the experimental CSD.

The experimental MCF su�ers from greater di�erences. The qs-part is thicker in

experiments than simulations and the experimental MCF is much more blurred even

after the convolution. Some similarities can be seen nevertheless: the MCFs roughly

span a similar square area comparable and both contain a smaller square of higher

coherence at t̄ = −3.5 ps. Only one of the distinctive stripes of the simulated MCF is

seen in the experiment crossing at t̄ = −2 ps. This could again be explained with the

lower intensity of the experimental solitons which fail to produce the higher peaks

observed outside the coherent square in the simulated MCF. The large di�erence in

overall degree of coherence values further hints that the experimentally determined

MCF is not accurate.
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6.3 Incoherent, wideband case

The peak power was next increased to Pp,exp ≈ 820W ( Pp,sim = 1200W in the

simulations, soliton order N = 23) leading to a SC spectral bandwidth of more than

600 nm and a nearly complete loss of coherence. The corresponding XFROG traces

for the experiments and simulations are shown in �gures 6.11 and 6.12, respectively.

Figure 6.11: Experimental XFROG trace for an incoherent SC.

Figure 6.12: Experimental XFROG trace for an incoherent SC.

We immediately notice clear di�erences to earlier cases and also between simu-

lated and experimental results. With the increased power, initial spectral broadening

is caused by MI and even the �rst ejected solitons will get a�ected by it leading to

a loss of coherence. MI perturbs these solitons di�erently from shot to shot causing

their positions to jitter (spectrally and temporally) signi�cantly in both cases lead-

ing to a general blurring e�ect in the trace. The experimental trace seems to show
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however a bit more distinct solitons compared to simulations. Some correlations are

seen around the pump wavelength corresponding to some residual SPM processes

occuring early on in the propagation.

The experimental solitons seem to disappear entirely after 6 ps delay, whereas

in simulations they are observed nearly at 8 ps. Most likely this is again due to

the phase-matching problems that cause even stronger attenuation of the measured

soliton intensities further away from the pump. It's worth noting that the lower

wavelength dispersive waves do not seem to su�er from this as signi�cantly, as can

be seen comparing the frequency marginals. On the other hand this can also be

due to the abovementioned wavelength dependence of the coupling e�ciency to the

OSA. Despite the cause, it can be anticipated that the MCF cannot be reproduced

very accurately in the experimental case.

Comparing the experimental and simulated spectra and |g(1)12 | of �gure 6.13 we

notice that the spectra are qualitatively well matched with the experiments su�ering

again from a weaker low wavelength part most likely due to coupling e�ciency

di�erences. However for the |g(1)12 | a signi�cant di�erence between experiments and

simulations can be observed.

Figure 6.13: a) Experimental spectrum and corresponding |g(1)12 | function with an average

value of 0.03. b) Simulated spectrum and |g(1)12 | function with an average value of 0.006.

Firstly the experimental |g(1)12 | is highly localized at around 810 nm, whereas in

simulations the residual coherence is more widely spread over the 800nm region

with some also seen at 600 nm. Secondly the measured value of |g(1)12 | is signi�-

cantly higher, which is unexpected because of the noise e�ects mentioned earlier.

Even dropping simulation peak power moderately does not produce as high values

of |g(1)12 |. Further dropping the power would cause signi�cant di�erences in spectral

bandwidths between experiments and simulations. Variations in the dispersion pro-

�le are known to cause di�erences in the coherence properties and this could be one

possible reason for the discrepancy.

Looking at the CSDs (�g. 6.14) and MCFs (�g. 6.15) clear di�erences can be

noticed as expected from the previous results. The simulated CSD has stripes of
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residual coherence crossing at ω̄ = 375 THz, whereas the experimental one only

contains a less pronounced square around the crossing point.

In both MCFs higher correlations are observed in the cs-part in beginning of the

pulse at t̄ = −9 with the simulational containing more structure. In the experi-

ments the qs-line is normalized to unity and looks very bright. It is also slightly

broader than its simulational counterpart. Even though the cs-parts are somewhat

comparable in size between simulations and experiment, the values are lower in the

experimental one, which can be also seen from the large di�erence of the overall

coherence values. Furthermore the �ne structure in other parts of the MCF cannot

be observed at all which could be partially caused by the low experimental soliton

intensities.

Figure 6.14: Incoherent CSDs from experiments a) compared to the ones from simulations
b). Overall degrees of coherence are a) µ̄ = 0.08 and b) µ̄ = 0.01.

Figure 6.15: Incoherent MCFs from experiments a) compared to the ones from simulations
b). Overall degrees of coherence are γ̄ = 0.22 and γ̄ = 0.01 for a) and b) respectively.
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6.4 Discussion

Cross-spectral density

The experimental CSD functions show accurately many of the characteristics seen

in the simulated counterparts with the overall degree of spectral coherence µ̄ being

systematically slightly lower (but comparable) with respect to the simulations except

in the incoherent case. This further implies additional noise sources in experiments

caused most likely by the vibrations in the DMI or varying coupling e�ciency into

the PCF caused by heating of the �ber tip. The exact reason of the discrepancy of

the CSD in the incoherent case is not known, but it could be due to variations in

the actual dispersion pro�le of the �ber.

Obviously not all of the minute details of the simulated CSD can be reproduced

in experiments. One limiting factor (setting aside the noise �uence) is the resolution

of the g(1)12 function which is most clearly seen in �gure 6.8 where the overall shape

of simulated |g(1)12 | are similar qualitatively but the experimental lacks detail of the

simulations. The resolution is set by the fringe spacing set in experiments by �ne-

tuning the delay. The minimum achievable fringe spacing on the other hand is

limited by the OSA resolution. In our experiments the fringe spacing was chosen to

be 4 nm yielding points at a resolution of roughly 2 nm. This means that there are

80 points between two peaks with the OSA resolution of 0.05 nm. The large fringe

spacing was chosen to yield with certainty the maximum obtainable contrast in the

fringe measurement. The spacing could perhaps still be decreased as currently we

are sampling about ten times the Nyquist sampling limit.

Mutual coherence function

For the MCF the experimental and simulated correspondence is not as good as

for the CSD except in the coherent case. The most likely reason for the observed

di�erences is the fact that the components at the far edges of the spectrum (i.e.

solitons and dispersive waves) are of lower intensity in experiments caused probably

by a mix of phase-matching problems, large angle di�erences for the incoming beams

and residual SHG from the pump as discussed in the section covering the partially

coherent case. The SHG �ltering could possibly be enhanced in a simple manner by

averaging over more than two background spectra as is done now.

The solutions for the other two problems could possibly be adjusting the setup

so that the beams cross at a smaller angle,using a thinner crystal improving phase-

matching or measuring (or calculating) the SFG e�ciency over the SC bandwidth

and then correcting the XFROG trace with this. Using a thinner crystal would

decrease the background SHG signal but would also cause the SFG signal strength

to drop and should be thus considered in more detail.
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The experimental MCF also lacks a lot of detail caused by the accuracy of the

temporal intensity retrieved from the XFROG measurement. As discussed and

illustrated in �g. 5.6 the XFROG time margin is a fairly good general estimate of

the mean temporal intensity, but it loses the �ne-structure. This structure cannot be

retrieved by a simple deconvolution with the known pulse pro�le, thus an XFROG

retrieval would be needed. This would require a motorized delay stage with a �ner

step size for the experiments. And as discussed earlier, the possibility of a retrieval

for an incoherent SC is uncertain. On the other hand, if an even shorter probe pulse

was available for the XFROG, the time margin accuracy would improve even with

the current stage.

The inaccuracy of the experimental MCF also inhibits the retrieval of the phase

for the CSD and MCF. As convergence of the retrieval is hard to achieve already with

simulated results, it is clear that with the current MCF an experimental retrieval is

impossible.

Dispersion pro�le

It is also fairly evident from the results above that the dispersion pro�le used for

the simulations does not exactly correspond to the one in experiments. This can

be argued by the fact that in all the cases studied, the temporal stretching in the

simulations was systematically larger (i.e. the solitons are further away from the

pump) compared to experiments when the spectral width was kept corresponding

between the two. Especially the location of the ZDW can cause some variations in

coherence properties because of the di�erent dynamics e�ecting at anomalous and

normal dispersion regimes. The e�ect of varying the ZDW (or pump wavelength)

could be studied further to see if even better simulational correspondece could be

achieved.
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7. SUMMARY AND PERSPECTIVES

An experimental characterization setup for determining supercontinuum second or-

der coherence properties (i.e. shot-to-shot variations) was successfully built. The

method is based on separating the SC into coherent and quasi-stationary parts and

determining them separately. The separation approximation was made in recent

publications based on numerical results and the experimental results presented in

this thesis are the �rst measurements of the second order coherence characteristics

of SC light.

As a conclusion for all the three cases a qualitatively good correspondence between

simulations and experiments can be observed for the XFROG traces, spectra and

CSD functions verifying the separation theory experimentally. Remarkable was the

surprisingly good reconstruction of the CSD in the partial coherent case, which has

the most di�cult characteristics to reproduce. The MCF function reconstruction did

not succeed as well in experiments due to a likely problem in SFG phase-matching.

Some minor di�erences in details between simulations and experiments do occur

and these are further separated and discussed below with some notes on possible

experimental improvements given in the same context.

We have experimentally veri�ed the separation to the qs and cs-parts as argued

with the support of numerical simulations in earlier publications. An overall good

correspondence between the simulations and experiments was observed. Of course

the separation is just an approximation and thus the details of the CSD/MCF from

simulations are lost. From an experimental point of view the separation works

specially well in the spectral domain CSD because of the ease of measuring g(1)12 and

its connection to the cs part. Improvements in the MCF measurement could be

expected with changes in the experimental setup as discussed below.

The qs-part tends to be wider to the di�erence coordinate directions in the ex-

perimental results. The accuracy of this could possibly be also improved with a

higher quality delay stage or a shorter pulse and correcting the phase-matching of

the XFROG traces. However, even with a new delay stage, the variations in the qs

thickness cannot be reproduced with the current approximation at all.
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7.1 Future perspectives

In section 4.4.2 we have discussed the EF representation for the MCF and its ap-

plication as describing SC performance in optical systems. As it should be clear by

now, it could be similarly done for the CSD, and we look at this possibility because

of the superior properties of the experimental CSD compared to the MCF. Now one

would require knowledge of Sq(ω), Sc(ω) and Iq(t) to do the EF construction. The

absolute values of the �rst two are fairly straightforward and accurate to determine

from experiments as discussed. However the accuracy of Iq(t) measurement could

limit the possibility to determine the required weight function accurately.

Even a more signi�cant problem is the currently impossible phase retrieval for

Sc(ω) because of the inaccurate MCF. Experimentally these problems could be over-

come with the following approaches done either together or separately. Firstly, a

motorized delay stage with a step size in the order of 0.3µm would make the XFROG

retrieval at least theoretically possible. Secondly if a probe pulse with a temporal

width of < 20 fs (corresponding to current minimum step size) would be available, a

better resolution in the XFROG time margin could be achieved. Of these two, obvi-

ously the �rst choice is more readily implemented as stages with accuracies of 10 nm

are available whereas robust few cycle pulsed lasers are more expensive and would

require larger adjustments in the current setup. A third and the most straight-

forward approach expected to improve results dramatically is the correction of the

XFROG trace with an experimentally or analytically determined phase-matching ef-

�ciency curve. After overcoming the experimental problems a robust phase-retrieval

algorithm for the coherence functions needs to be developed.

Even though a proof-of-principle for experimental measurement of the CSD and

MCF was shown, it is clear that these measurements are still too complicated to be

implemented robustly on a day-to-day basis in applications. Thus the experimental

characterization of SC sources at will and using the results for modeling propagation

in commercial applications is still far, but not impossible.

With the increased accuracy by taking some of the measures noted above, the EF

representation with an experimental setup described could be well used to model

SC propagation in linear optical systems used in various imaging techniques. Only

for the partially incoherent case this could prove to be problematic as the EF is

inherently less accurate in these cases. The increased noise in measurements could

enhance the inaccuracy. From an applicational point of view, this should not be a

very limiting factor, as most of the applications require either coherent or incoherent

light where the EF representation works.

It could also prove to be interesting to study in more detail the cause for the

much higher coherence value in experiments compared to simulations near the pump
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wavelength in the incoherent case. The behavior seen the experimental data is quite

unexpected because of the inherent experimental noise usually causing degradation

of coherence compared to simulations. The dispersion pro�le of the �ber used in

experiments compared to that of in the simulations could be a reason for this be-

havior. However, in light of brief tests of varying the dispersion pro�le of the �ber

in the simulations failed to reproduce the phenomenon and a more rigorous study

would be required.

In summary, even if the experimental measurement is not yet entirely accurate,

it was again shown that the simulations are able to reproduce experimental results

accurately and the separation is generally valid, hence it is justi�ed to use simulations

and the EF or CM formalism for application design.
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