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Proteiinit ovat avaintekijöitä jokaisen elävän organismin solujen biologisissa prosesseis-

sa ja rakenteissa. Proteiineja muodostetaan proteiinisynteesiksi nimitetyssä prosessissa, 

jossa DNA:n sisältämä geneettinen koodi muutetaan ensin RNA:ksi transkriptiossa ja 

lopulta proteiiniksi translaatiossa. Geenit ovat lyhyitä pätkiä DNA-molekyylistä, jotka 

koodaavat yhden tai useamman tietyn proteiinin synteesiä. Tällä hetkellä yksi yleisim-

mistä menetelmistä geenien ilmentymisen tutkimisessa soluissa on RNA-sekvensointi, 

joka sitoo solusta tietyllä ajanhetkellä siellä olevan RNA:n. Vaikka RNA-

sekvensoinnilla yleensä mitataankin tunnettujen geenien ilmentymistä, sitä voidaan 

hyödyntää myös uusien geenien eli novellien transkriptien etsimisessä. 

 Tähän mennessä ei ole vielä julkaistu standardia työkalua, joka tehokkaasti ja katta-

vasti tunnistaisi novelleja transkripteja RNA-sekvensointidatasta. Tässä työssä on kehi-

tetty työkalu - nimeltään Novellette - ratkaisemaan edellä esitetty ongelma. Novellette 

pyrkii tunnistamaan ilmentymiseltään merkittäviä alueita genomissa, jotka ovat erillään 

kaikista tunnetuista geeneistä, ja suorittaa sitten löydetyille alueille kattavan geenira-

kenneanalyysin. Tässä analyysissa hyödynnetään sekä RNA-sekvensoinnilla tuotettua 

data että tutkittavan organismin tunnettua DNA-sekvenssiä proteiinia koodaavien geeni-

en tunnusomaisia rakennepiirteitä etsittäessä löydetystä novellista transkriptiehdokkaas-

ta. Sen jälkeen löydetyt piirteet pisteytetään ja lopulliset novellit transkriptiehdokkaat 

järjestetään näiden pistearvojen perusteella. RNA-sekvensoinnin data-analyysityökalun 

kehittämisen lisäksi tässä työssä esitellään RNA-sekvensoinnin data-analyysiin olennai-

sesti liittyvää tilastomatematiikkaa sekä matemaattisia menetelmiä, ja tutkitaan RNA-

sekvensointidatan normaalisuutta julkisesti saatavilla olevan RNA-sekvensointidatan 

avulla. 

 Erilaisilla aineistoilla suoritettujen testien perusteella Novellette pystyy luotettavasti 

tunnistamaan novelleja transkripteja ja erottamaan toisistaan proteiinia koodaavat ja 

koodaamattomat alueet genomissa työssä kehitetyllä pisteytysmenetelmällä. Lisäksi 

näytetään, että RNA-sekvensointidata noudattaa heikosti normaalijakaumaa ja siten 

korostaa sellaisten tilastollisten hypoteesin testausmenetelmien tärkeyttä, jotka eivät 

perustu datan normaaliudelle. Yhteenvetona todettakoon, että tässä työssä kehitetty työ-

kalu, Novellette, on osoittautunut hyödylliseksi ja toimivaksi, ja sillä on potentiaalia 

kehittyä standardiksi novellien transkriptien analysointimenetelmäksi. 
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Proteins are the key factors in every living organism and they contribute to almost every 

biological process and structure in a cell. Proteins are formed through the process of 

protein synthesis, in which the genetic code of DNA in genes is first transcribed into 

RNA and then finally translated into a protein. Each gene in a cell is a short part of a 

longer DNA molecule, and each gene encodes the synthesis of a certain protein or pro-

teins. Currently the state-of-the-art tool to evaluate which genes are expressed in a given 

biological sample is RNA-sequencing, which captures the RNA content of the cells at a 

specific time point. Although RNA-sequencing is often used to measure the expression 

of known genes in the genome, it can also be utilized to search for new genes, or novel 

transcripts. 

 To date, no standard tool has been published that effectively and thoroughly identi-

fies novel transcripts from RNA-sequencing data. In this work, a tool aiming to solve 

this issue – denoted Novellette – is presented. Novellette attempts to identify differen-

tially expressed regions in the genome that do not overlap with any known genes, and 

then performs a full gene structure analysis to the regions. For this process, information 

both from processed RNA-sequencing data and the known DNA sequence of the studied 

organism is utilized when searching for features in the novel transcript candidates that 

are common for protein-coding genes. The features are then scored and the final novel 

transcript candidates are ranked based on their score values. In addition to developing 

an RNA-sequencing tool in this work, the basics of statistical testing and other mathe-

matical methods related to RNA-sequencing data analysis are introduced and the nor-

mality of count based RNA-sequencing data is assessed with publically available data. 

 The results from analyses performed with various input data show that Novellette is 

able to reliably detect novel transcripts and distinguish protein-coding regions from 

non-coding regions in the genome with the proposed scoring approach. In addition, the 

count based RNA-sequencing data is shown to very poorly follow the normal distribu-

tion, hence pinpointing the importance of statistical hypothesis testing methods that do 

not assume data normality. In conclusion, a functional and useful bioinformatics tool 

has been developed in this work that has the potential to become a standard method for 

novel transcript identification. 
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TERMS AND ABBREVIATIONS 
  

3’ end The phosphate terminus of a DNA molecule. 

5’ end The sugar terminus of a DNA molecule. 

Bp  Base pair, the basic unit of a dsDNA molecule. Also a unit 

used to express the length of a DNA molecule. 

cDNA Complementary DNA. 

CDF Cumulative distribution function. 

CDS Coding sequence. 

Chromosome A structure in the cell consisting of a large DNA molecule 

(millions of bps in length). A human cell has 24 different 

kind of chromosomes. 

Codon A trinucleotide in mRNA that encodes for a certain amino 

acid in translation. 

Contig Contiguous sequence. 

CRPC Castration resistant prostate cancer. 

CpG island A region with a relatively high fraction of CG-

dinucleotides. 

DNA Deoxyribonucleic acid. 

DNA-seq DNA-sequencing. 

dsDNA Double-stranded DNA. 

eCDF Empirical cumulative distribution function. 

Exon A part of a gene, which remains in the mature mRNA and 

hence affects the protein formed in translation.  

Gene Part of a DNA molecule, which encodes for a certain pro-

tein or proteins. 

Genome The full DNA sequence of an organism, containing all 

genes. 

Genome browser A widely used group of tools for data visualization in bioin-

formatics studies. 

GBM  Glioblastoma multiforme. 

HTS High-throughput sequencing, see MPS. 

Hypothesis testing A statistical method to aid in drawing conclusions of a giv-

en dataset.  

Intron A part of a gene, which is removed from the mature mRNA 

prior to translation. 

K-M plot Kaplan-Meier plot, a graphical representation of the surviv-

al estimate of a given population, which is often used in 

survival analyses. 

mRNA (Mature) messenger RNA, the end product of transcription 

containing only the untranslated regions and exons. 
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Motif A specific DNA sequence that a certain protein is able to 

bind to. 

MPS Massively parallel sequencing. 

ncRNA Non-coding RNA. 

Normal distribution The most common mathematical model of data distribution. 

Nucleotide The basic unit of a DNA molecule, which consists of a sug-

ar group, a phosphate group and a base. 

ORF Open reading frame.  

PC  Prostate cancer. 

pre-mRNA The first product of transcription, which contains both in-

trons and exons. 

Promoter A region near the 5’ end of a gene, which contains motifs 

that transcription factors can bind to and enable RNA pol-

ymerase to initiate transcription.  

p-value An indicator of statistical (in)significance in hypothesis 

testing. 

Reference genome An average genomic DNA sequence formed from several 

individual genomes of the same species. 

RNA Ribonucleic acid. 

RNA polymerase The enzyme responsible for transcribing DNA into RNA. 

RNAi RNA interference, the process in which a two ssRNA mole-

cules form a double-stranded RNA molecule, which then 

gets cleaved into small fragments by enzymes. 

RNA-seq RNA-sequencing. 

RPKM Reads Per Kilobase of transcript length per Million mapped 

reads, a normalization method in sequencing data analysis. 

RPM Reads Per Million, a normalization method in sequencing 

data analysis. 

Risk level A threshold set for the p-value in statistical hypothesis test-

ing. 

Sequence The order of nucleotides in a DNA or RNA molecule. 

Sequencing The process in which the sequence of a DNA or RNA mol-

ecule is investigated. 

ssDNA Single-stranded DNA. 

ssRNA Single-stranded RNA. 

TCGA The Cancer Genome Atlas. 

Test statistic A random variable, the value of which is calculated when a 

hypothesis test is performed.   

TP53 Tumor protein 53. 

Translation Protein synthesis, the process in which a protein molecule is 

produced based on the RNA sequence of a mRNA. 
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Transcript A common name for any type of RNA molecule formed in 

transcription. 

Transcription RNA synthesis, the process in which an RNA molecule is 

produced based on the DNA sequence of a gene. 

Transcriptome The full, transcribed RNA sequence content of an organism. 

UTR Untranslated region. 

Wetlab Biological laboratory. 
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1 INTRODUCTION 

Genes and DNA form the basis of life and heritance. Molecular genomics is one of the 

most widely studied fields of biology, which focuses on the molecular events in a living 

cell, including RNA and protein synthesis, gene regulation and epigenetic mechanisms 

such as DNA methylation. As the measurement technologies have evolved rapidly in 

the past few decades, it is now possible to measure the expression of all genes in a cell 

simultaneously. One of these methods is RNA-sequencing, which enables accurate 

quantification of RNA expression levels in a cell, including the expression of genes. 

In a typical RNA-sequencing experiment, the expression of known genes is exam-

ined. Although the human genome has been fully sequenced and the function and ge-

nomic locations of most of the genes have been determined, there are still partly un-

known regions in the genome that might encode for a functional protein. Some of these 

regions arise only in some specific states of the cell, such as in disease or cancer. There-

fore it is important that one does not limit to studying only the expression of known 

protein-coding genes. However, there is currently no standard method to discover novel 

gene transcripts from RNA-sequencing data and to determine whether these transcripts 

exhibit appropriate gene structure in order to encode functional proteins. 

In this work, a data analysis pipeline to identify novel transcripts from RNA-

sequencing data and to determine their gene structure – Novellette – is presented. The 

pipeline features the analysis of both single- and multi-class sample sets followed by the 

prediction of gene structure by utilizing RNA-sequencing measurements processed with 

a splice-junction mapper (Kim et al. 2013; Dobin et al. 2013) in addition to using the 

known reference genome sequence. Instead of making binary calls whether or not an 

identified novel transcript is protein-coding, each transcript is given a score value 

        that describes its protein coding potential (higher score corresponding to a 

higher protein coding potential). The score consists of several different components, 

each of which accounts for a certain feature that is common in a protein-coding gene 

(such as a valid exon-intron structure, promoter motifs etc.). As an output, two different 

files are produced: a summary table with detailed information of each of the identified 

transcripts and their structures, and another file that can be opened in a genome browser 

for graphical illustration of the transcripts and their structures. 

As a typical RNA-sequencing data analysis consists of a wide range of mathematical 

models and statistical hypothesis tests, the basics of statistics related to the analysis per-

formed by Novellette are also discussed in this work. The topics covered in this work 

include statistical hypothesis testing, data normality and similarity assessment and sur-

vival analysis. In addition, the normality of RNA-sequencing data is evaluated by using 
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publically available data from The Cancer Genome Atlas (TCGA) glioblastoma project 

(Brennan et al. 2013). 

In Chapter 2, the basics of molecular biology including the process of forming pro-

teins based on the DNA sequence of genes, the structure of genes and the basics of can-

cer biology are discussed, and the DNA- and RNA-sequencing techniques with their 

typical preliminary data analysis steps are introduced. In addition, the mathematical 

theory related to this work is also covered in this chapter. In Chapter 3, the pipeline de-

veloped in this work is presented in detail and data normality is evaluated with the glio-

blastoma RNA-sequencing data to justify the choice of statistical testing method in No-

vellette. Chapter 4 presents the results of several test runs with the developed pipeline 

and, finally, the results and data normality in an RNA-sequencing project are discussed 

in Chapter 5. The main functions and tools covering the pipeline of Novellette are listed 

in Appendix A, along with a download link to the full source codes. 

 



4 

 

2 BACKGROUND  

In this chapter, the biological and technical background related to this work is dis-

cussed. The first section focuses on molecular biology elements of the cell, and the sec-

ond and third sections focus on the techniques used to measure, analyze and normalize 

(raw) sequencing data. Finally, the last two sections cover the mathematical theory in 

statistical testing and survival analysis, which are standard downstream analyses in can-

cer studies. 

2.1 Biological background  

In this section, the basics of molecular biology related to DNA, genes and proteins are 

introduced and their role in the development of cancer and other diseases is discussed. 

As the biological motivation in this work is cancer and disease related, the molecular 

components and mechanisms are inspected from a human biology point of view.   

2.1.1 The central dogma of molecular biology 

According to the well-known central dogma of molecular biology, the amino acid se-

quence of a certain protein is encoded in the DNA sequence of a gene, which is first 

transcribed into an RNA molecule and then translated into the protein (Figure 2.1). This 

process involves many different molecules in the cell in addition to the DNA and RNA 

molecules and the protein, which is the end product of this operation. The transcription 

process can also be reversed in order to produce DNA based on the RNA sequence, in 

which case the end product is cDNA (complementary DNA). 

 

 

Figure 2.1. The central dogma of molecular biology. 

 

DNA (deoxyribonucleic acid) is a large biomolecule that contains all of the necessary 

information to produce a protein in the cell. The basic components of DNA are called 

nucleotides, which consist of a sugar-phosphate backbone and one of four different pos-

sible bases (A, C, G and T, or adenine, cytosine, guanine and thymine, respectively). 
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The bases of consecutive nucleotides determine the sequence of a DNA molecule: e.g. a 

DNA molecule with the sequence ‘AGCAAT’ is a six nucleotides long molecule, which 

contain the bases adenine, guanine, cytosine, adenine, adenine and thymine, in this or-

der. RNA (ribonucleic acid) is almost identical to DNA in its structure, with a small 

change in the sugar molecule of the sugar-phosphate backbone and the replacement of 

thymine with another base, U (uracil). 

DNA molecules in the cell are very rarely in the simple, single-stranded form of 

sugar-phosphate backbone with attached bases. Instead, a single-stranded DNA (ssD-

NA) is typically paired with another ssDNA molecule via hydrogen bonds, resulting in 

double-stranded DNA (dsDNA). The binding takes place between the bases of the two 

ssDNA molecules in a complementary fashion: A binds to T and C binds to G. On the 

other hand, most of the RNA in a human cell is single-stranded. In fact, if a single-

stranded RNA (ssRNA) would hybridize with another RNA molecule, it would get 

cleaved into small fragments by enzymes in a process called RNA interference (RNAi) 

[Macrae et al. 2006]. In Figure 2.2, the structure of both ssDNA and dsDNA are illus-

trated.    

 

Figure 2.2. The structure of ssDNA and double-stranded, helical DNA. The phosphate 

terminus of DNA is often denoted 3’ end and the sugar terminus 5’ end.    

 

In humans and most other eukaryotic organisms, the DNA of a cell is divided into 

chromosomes. A human cell has 24 different chromosomes: chr1, chr2, …, chr22, chrX 
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and chrY. The mitochondria also contain DNA and can hence also be considered as 

distinct chromosomes (chrM). Most human cells are diploid, meaning that they have an 

extra copy of chromosomes 1 to 22 but still only a single copy of the sex chromosomes 

X and Y. Gametes (egg and sperm) are haploid, however, carrying only a single copy of 

each chromosome. Different chromosomes are of different size in terms of the number 

of nucleotides, and the total haploid, single-stranded DNA in a human cell consists of 

approximately 3 billion nucleotides. Since DNA is usually double-stranded and the pair-

ing between two ssDNAs occurs between the bases, sequence lengths are often ex-

pressed as base pairs (bp) instead of nucleotides.  

Genes are specific regions in the DNA on either strand of the dsDNA, spanning 

from a thousand to a few million nucleotides in length, which encode for a certain pro-

tein. The genetic code is stored in the DNA sequence of the gene. In the first step of the 

central dogma of molecular biology (see Figure 2.1), the DNA of a gene is transcribed 

into a pre-messenger RNA (pre-mRNA) molecule, with a sequence complementary to 

the DNA sequence of the gene. After several steps of modifications (see Section 2.1.2) 

to the pre-mRNA molecule, a mature mRNA molecule is formed, which is then used to 

determine the amino acid sequence of the protein formed in translation. 

2.1.2 Gene structure and expression  

A typical protein-coding gene consists of a promoter region followed by the transcrip-

tion start site (TSS) and several exons with introns between them (Figure 2.3a). The 

promoter region contains binding sites for various transcription factors, which are pro-

teins necessary to enable RNA polymerase, another protein, to bind on DNA. In gen-

eral, the DNA sequence which a certain protein identifies and is able to bind on to, is 

called a motif. In addition, the promoter often also contains regions with a relatively 

high number of CG-dinucleotides (CpG islands). At the TSS, the RNA polymerase 

binds on the DNA and starts transcribing the DNA sequence into RNA. The mechanism 

of transcription termination in humans and other eukaryotic organisms is not yet fully 

understood, but it involves the polyadenylation (poly-A) signal of mRNA. When RNA 

polymerase encounters the poly-A signal (sequence AAUAAA), transcription ends and 

the pre-mRNA molecule is finished. 

  

Figure 2.3. The basic components of a gene (a) and the mechanism of gene expression 

(b). 
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After forming the pre-mRNA molecule, introns are removed from it in a process called 

splicing. Splicing is carried out by proteins that recognize the dinucleotides GU and AG 

in the 5’ and 3’ ends of each intron, respectively. As a result, a mature mRNA with only 

the 5’ and 3’ untranslated regions (UTR) and exons is formed. The mRNA sequence is 

then processed in sets of three consecutive nucleotides (codon), beginning from the start 

codon (sequence AUG) and ending in the stop codon (sequence UAA, UGA or UAG). 

The region in mRNA between the start and stop codon, usually including all of the ex-

ons, is denoted the coding sequence (CDS) of the gene. The final protein is then pro-

duced in translation based on the CDS (Figure 2.3b). In general, a region in an RNA 

sequence between a start and stop codon is denoted an open reading frame (ORF), 

which is a common name for regions in RNA that could potentially be translated into a 

protein. Due to nonsense-mediated decay (Chang et al. 2007), the last exon must be 

contained in the ORF of a protein-coding gene or else the mature mRNA molecule will 

be degraded. 

2.1.3 Cancer and the role of coding and non-coding RNA 

In 2008, cancer accounted for approximately 13 % of all deaths worldwide and was 

hence the most common cause of death in western countries, and the second most com-

mon cause in developing countries (WHO Fact sheet 2013). Cancer forms when cells 

start growing and dividing in an uncontrollable manner. This may occur due to several 

different reasons, many of which are still unknown. However, in most cases the for-

mation of cancer can be explained with alterations in oncogenes, tumor-suppressor 

genes or microRNA genes (for a review, see (Croce 2008)). Oncogenes are genes that 

may not be dangerous in normal conditions, but when their expression is altered, they 

can cause cancer. Tumor-suppressors on the other hand are genes that demote cell 

growth and division in normal conditions, e.g. by contributing to the controlled cell 

death (apoptosis), but cause cancer if their expression is turned off e.g. due to muta-

tions. Finally, microRNAs are a group of small RNA molecules that cause RNA inter-

ference by binding to mRNA, hence preventing a gene from being translated into a pro-

tein. 

One of the most important tumor-suppressor genes is the gene TP53 (tumor protein 

53), which has been found to be mutated in many different human cancers (for a review, 

see (Hainaut & Hollstein 2000)). In addition to TP53, hundreds of other genes have 

been shown to correlate with the progression of various cancer types. However, as some 

cancer cases cannot be fully explained with any of the known gene markers, recent can-

cer studies have shifted the focus from known genes to previously unknown areas of the 

genome. One such study reported 121 novel, non-coding RNA (ncRNA) transcripts in 

prostate cancer, one of which (PCAT-1) was shown to have very high potential for be-

ing a cancer subtype marker in prostate cancer (Prensner et al. 2011). Therefore it is 

important not to neglect regions in the genome that contain no known genes, as they 

may yield information on cancer progression and subtype distinction. 
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2.2 Technical background  

This section covers the background in sequencing technologies and in the preliminary 

data analysis steps performed in a typical high-throughput sequencing process. In addi-

tion, the basics of gene prediction and related algorithms are introduced. 

2.2.1 DNA- and RNA-Sequencing 

DNA-sequencing has been a widely used method in biotechnology to determine the 

DNA sequence of a gene or even a whole bacterial organism for decades. The first se-

quencing technologies were published in 1970s (Sanger & Coulson 1975; Maxam & 

Gilbert 1977), but they were able to sequence only short, 300 – 1000 nucleotide long 

DNA molecules. Within the last ten years, however, sequencing technologies have 

evolved rapidly, allowing the sequencing of the whole human genome at once. This is 

enabled by massively parallel sequencing (MPS), also denoted high-throughput se-

quencing (HTS), which can process millions of short DNA fragments simultaneously. 

In DNA-sequencing (DNA-seq), the DNA is first extracted from target cells and pu-

rified from other cellular components and molecules. After that the DNA is cleaved into 

small fragments of approximately 200 – 500 bps e.g. with sonication, and adapter se-

quences, specific to the sequencing platform used, are added to the fragments. Finally, 

this set of fragments (often denoted DNA library) is sent to a sequencer for high-

throughput sequencing. Single-end and paired-end sequencing are currently the most 

commonly used protocols in HTS. In single-end sequencing, each DNA fragment is 

sequenced only from one end of the fragment. In paired-end sequencing, both ends of 

the fragment are sequenced instead. In either case, the fragment is usually only partly 

sequenced. The output of the sequencer is one large text file per sample, containing the 

sequences of the fragment ends (single-end sequencing), or two files per sample in the 

case of paired-end sequencing: both files contain the sequences of the same fragments, 

but from different ends. These short output sequences are often denoted reads or tags. 

RNA-sequencing (RNA-seq) does not fundamentally differ from DNA-seq apart 

from the library preparation process. In RNA-seq library preparation, mature mRNA in 

the cell is first isolated and purified from other RNA content by utilizing its poly-A tail 

as a primer site for reverse transcription (Mortazavi et al. 2008). The mRNA is then 

reverse-transcribed into cDNA, which is further processed in a similar way as in the 

DNA-seq protocol. When this cDNA library is finally sequenced, the output sequences 

should consist of the cDNA of actively expressed genes in the cell. A summary of the 

RNA-seq protocol is illustrated in Figure 2.4. 
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Figure 2.4. The workflow of a typical RNA-seq experiment. This chart covers only the 

main phases, although the library preparation (from mRNA isolation to cDNA fragmen-

tation) often contains many additional steps before the cDNA can be sequenced.  

2.2.2 Preliminary data analysis 

This subsection covers some of the main data analysis paths after getting the output 

reads from RNA-seq. The amount and type of output reads depends on the sequencer 

used, but in most cases the read length is constant and the output file consists of the 

cDNA sequences and quality values in FASTQ format (Cock et al. 2010), the latter of 

which describes the certainty at which each nucleotide in the cDNA has been detected 

by the sequencer. In an RNA-seq project, the aim can be either to study the expression 

of known genes of a known organism, to build the transcriptome (the set of transcribed 

regions of the genome) of a certain organism or to study the expression of ncRNA or 

other unannotated regions of the genome. 

 When the gene expression levels of a known organism (such as human) are exam-

ined with RNA-seq, the origin of each read output by the sequencer should first be de-

termined by comparing its sequence with the known genomic DNA or RNA sequence in 
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a process called alignment. In a DNA sequencing project the reads are aligned against a 

reference genome, after which the chromosome and specific location within the chro-

mosome (chromosomal coordinates) can be determined for each read that yielded a 

unique match with the reference genome sequence (Figure 2.5a). The reference genome 

is built from the whole genome sequences of a pool of individual organisms of the same 

species, and often only the sequence of one strand is reported, even if the genome usual-

ly exists as dsDNA. However, since the DNA sequences of different individuals of the 

same organism differ significantly from each other, a uniform reference sequence that 

would match the DNA of every other organism of the same species cannot be built. 

Therefore the alignment process is always prone to bias. 

 In RNA-seq, the cDNA reads are often aligned against a reference transcriptome, 

which is a set of sequences where one continuous sequence corresponds to the sequence 

of the corresponding mRNA of a certain gene (Figure 2.5b). With this approach the 

number of matching reads for each gene can be directly calculated from the alignment 

process output. This number is then considered to correlate (positively) with the expres-

sion level of the gene. When aligning against reference transcriptome, however, only 

the expression of known genes can be measured, while all unknown regions - that could 

potentially contain a protein-coding or non-coding transcript - are ignored. Therefore 

aligning against a reference genome is a more thorough approach in RNA-seq, although 

making the gene expression value calculation less straightforward. 

 A third approach to processing the raw read data in RNA-seq is to assemble a de 

novo transcriptome, i.e. to compare the read sequences with each other instead of a 

known reference transcriptome (Figure 2.5c). Each contiguous sequence (contig), estab-

lished by connecting consecutive, overlapping reads, corresponds to a transcribed region 

(transcript) in the genome. Transcriptome assembly is especially useful when studying 

an organism whose transcriptome is poorly known or even completely unknown and it 

is an accurate way to map the expressed regions of the genome since it does not rely on 

any prior knowledge about the genome or transcriptome. 

 As the amount of output data in a sequencing project is enormous and the task of 

comparing millions of short sequences with a 3 billion bps long reference sequence is 

computationally intensive, numerous algorithms have been developed for aligning 

DNA-seq (Langmead et al. 2009; Li & Durbin 2009) and RNA-seq (Kim et al. 2013; 

Dobin et al. 2013) reads as well as for de novo assembly of both genomes (Simpson et 

al. 2009, Zerbino & Birney 2008) and transcriptomes (Haas et al. 2013; Trapnell et al. 

2010). To reduce compatibility issues between aligners and downstream analysis tools, 

a standard format for storing alignment results as well as a toolkit to process them has 

been published (Li et al. 2009). In addition, for visualizing alignment data as well as 

several different types of processed data among with known genome features (such as 

genes), several tools called genome browsers have been developed (Kuhn et al. 2013; 

Flicek et al. 2013; Thorvaldsdottir et al. 2013). 
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Figure 2.5. Summarization of the three principal data analysis paths described in this 

subsection. As input to the data analyses, five short reads output by the sequencer are 

given in this example case. When aligning against a reference genome (a), four out of 

five reads have a perfect or near-perfect match with a certain chromosome in the nucle-

us. In the transcriptome alignment case (b), two reads have a complete or near-

complete match to the mRNA sequence of a gene, while one read has a partial match for 

both of the genes and two reads have no match at all. In the last case (c), sets of over-

lapping reads are used to establish full-length contigs. As one of the reads has poor 

sequence match with the other reads, it is presented as a separate contig. 

2.2.3 Gene prediction 

In gene prediction, also known as gene identification or gene finding, protein-coding 

sequences are searched from a given input DNA sequence. In its simplest form, only 

open reading frames are used in the identification (Stanke et al. 2004), but more ad-

vanced approaches include also other features from a protein-coding gene, such as tran-

scription factor binding motifs and CpG islands on the promoter region, poly-A tail mo-

tif at the 3’UTR and splice junction motifs in the case of eukaryotic organisms (Burge 

& Karlin 1997). As prokaryotes (e.g. bacteria) lack introns and their promoter motifs are 

more conserved than in eukaryotes, gene prediction is much more straightforward for 

prokaryotes. 

 Most gene prediction algorithms apply a Hidden Markov Model (HMM) to combine 

the many different types of signals (promoter motifs, poly-A tail motif, CpG islands 

etc.) into a single prediction whether a region could encode for a protein or not. As in-

put, most tools only take the DNA sequence in which the gene is to be identified, but 

some also utilize the homology between the given sequence and known protein-coding 
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sequences in other organisms (Alexandersson et al. 2003). However, an algorithm that 

would use aligned RNA-seq reads in the standard SAM format and combine them with 

the identification of sequence-based features, does not yet exist.  

2.3 RNA-seq data normalization 

In RNA-seq, the processed alignment data is often expressed as read counts per tran-

script (transcriptome alignment, see Figure 2.5b) or read counts within bins throughout 

the whole genome (genome alignment, see Figure 2.5a). As the number of reads per 

sample and the length of transcripts used in the alignment process vary significantly, 

data normalization is required to make different samples and transcripts or genes com-

parable with each other. Regardless of the popularity of RNA-seq in cancer and ge-

nome-wide association studies, a standard method for read count data normalization still 

has not been established. In this subsection, three widely used approaches are intro-

duced. 

2.3.1 RPM normalization 

The simplest way to account for biases that arise from different number of reads pro-

duced by each sequencing lane is to use reads per million (RPM) normalization, which 

is processed in a sample-wise manner. RPM normalized expression for region i in sam-

ple s,     , is calculated as  

 

     
    

      
  (1) 

 

where      is the raw read count for region i in sample s and    is the total number of 

aligned reads in sample s. In other words, the RPM normalized expression describes the 

percentage of all reads that aligned within a certain region, multiplied by one million. 

As RPM normalized values are basically fractions, samples normalized this way result 

in the same scale and are hence comparable with each other. 

2.3.2 RPKM normalization 

Since the length of mRNA of different genes is not constant, it is expected that longer 

mRNAs would yield more sequenced reads than short mRNAs by random chance. 

Therefore the raw read counts of different transcripts within the same sample are not 

comparable. The reads per kilobase of transcript length per million mapped reads 

(RPKM) normalization method (Mortazavi et al. 2008) takes this bias into account by 

further dividing the normalized expression value presented in Equation 1 by transcript 

length   in kilobases: 
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  (2) 

  

RPKM normalization assumes a linear dependency between mRNA length and the 

number of sequenced reads originating from the mRNA, although a recent study 

(Bullard et al. 2010) has shown that this assumption may not actually hold for longer 

transcripts. 

2.3.3 Quantile normalization  

When quantile normalization is applied to a sample set, each sample will result in an 

identical distribution of data values. This is achieved by performing the following oper-

ations for a data matrix: 

1. Sort each column in the data matrix and store the ranks of the original values 

2. Calculate the arithmetic mean for each row 

3. Replace the greatest value in each column of the original data matrix with the 

greatest mean. Then replace the second greatest value with the second greatest 

mean etc. and continue this process until each data point in the original matrix 

has been replaced with a mean value. 

As an example, a     matrix containing random integers between 0 and 10 is quan-

tile-normalized: 
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Quantile normalization is a robust normalization method when applied on samples that 

originate from the same distribution and is hence appropriate for RNA-seq data normal-

ization. Since the quantile-normalized expression values in each sample have identical 

distributions, sample-wise comparisons are valid. However, as quantile normalization 

does not take into account transcript lengths, a mixture of normalization methods (e.g. 

RPKM + quantile) is often useful when determining normalized gene expression values. 

2.4 Statistical testing 

Statistical testing is a widely used method to determine the significance of a certain sta-

tistic calculated from input data. In statistical (hypothesis) testing, two different hypoth-

eses are formed: the null hypothesis    and the alternative hypothesis   . Commonly 

the null hypothesis states an equality or inequality between a certain parameter derived 

from two different distributions of the same type. For example, in cancer studies the two 

distributions could be formed from the gene expression values of a certain gene in two 

different classes: cancerous cells and healthy cells. Given e.g. the RNA-seq measure-
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ments for each sample from these two classes, a statistical test can be established to de-

cide whether or not the mean gene expression values of this gene could have originated 

from the same distribution: 

 

          
           

(3) 

 

The null hypothesis in statistical testing often is that the two tested parameters are from 

the same distribution, i.e. there is no significant difference between them, and the alter-

native hypothesis is complementary to the null hypothesis. When the population distri-

bution is known (or assumed to be known), a distribution-specific test statistic can be 

calculated for both classes. If the computed statistics are highly unlikely to have origi-

nated from the same distribution, the null hypothesis is rejected and therefore the alter-

native hypothesis can be accepted (e.g. in the example case, the mean gene expression 

values between healthy and cancerous cells differ significantly). 

 In statistical (hypothesis) testing, the p-value is a measure that describes the mini-

mum risk involved in neglecting the null hypothesis (and hence accepting the alternative 

hypothesis), given the evidence based on the input data. When a p-value has been calcu-

lated, the null hypothesis is neglected if the p-value is below a certain threshold called 

risk level,  . In hypothesis testing, a risk level of        is often set as the threshold 

for statistical significance. In biological and especially cancer-related studies, p-values 

are a crucial indicator of biological significance, when comparing e.g. the gene expres-

sion values of each gene between cancerous and healthy patients. Genes with a low p-

value (i.e. the genes that differ most between cancerous and healthy patients by expres-

sion values) are regarded as candidates for having contributed to the cause of cancer, 

and they are hence further processed in the biological laboratory (wetlab). 

 In the following subsections, two of the most widely used statistical tests in cancer 

studies, t-test and U-test, are introduced and their underlying assumptions, p-value cal-

culation and their validity in RNA-seq studies are discussed. In addition, as t-test is a 

special case of the general tests used for normal distributions (Z-tests), the basics of Z-

tests are also covered in this work. 

2.4.1 Z-test 

Whenever the statistic to be tested follows at least approximately a normal distribution, 

a Z-test can be used to determine whether or not to neglect the null hypothesis. In a Z-

test, the sample mean  ̅ calculated from input data is compared to a given constant    

(one-sample location test) or the mean of another sample (paired difference test), using 

a standardized statistic (standard score) z. For a one-sample case, the standard score is 

defined as 

  

  
 ̅    

 
  (4) 
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where   is the sample standard deviation,         and n is the sample size. As the z 

statistic is standardized, it can be compared to the cumulative distribution function 

(CDF) of the normal distribution,   . The probability            represents the 

probability that a random sample taken from a standard normal distribution is as ex-

treme as the calculated sample mean (in the same direction as the sample mean). This 

probability is often also denoted the one-tailed p-value. A two-tailed p-value, on the 

other hand, takes into account both tails of the distribution (positive and negative ex-

tremes) and is hence more appropriate when testing for inequality between two statis-

tics. Since normal distribution is symmetric, a two-tailed p-value can be calculated us-

ing the one-tailed version: 

 

              (5) 

 

Even though Z-test is the most fundamental statistical test for normal distributions, it 

has important features one must take into account before using the test. Obviously, the 

tested statistic must follow a normal distribution as discussed earlier, although accord-

ing to the central limit theorem, the distribution of sample means of a sufficiently large 

number of random variable samples (with a well-defined mean and variance) will be 

approximately a normal distribution, even if the single random variables originate from 

a completely different distribution (see Figure 2.6 for an example). Secondly, the popu-

lation variance has to be known or approximated as accurately as possible.  

 In RNA-seq data, neither of these assumptions necessarily holds, because a) RNA-

seq based count data may not be normally distributed, as shown in Chapter 3, and b) the 

studied subset of (cancer) cells is often a very small proportion of the whole population. 

Due to various technical reasons, wetlab procedures etc., the studied cells are prone to 

systematical effects on either biological content or the measured RNA-seq data. There-

fore it is dangerous to assume that the variance of any measured statistic corresponds to 

the variance of the whole population.  
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Figure 2.6. The histogram of a random sample of size 10000, drawn from a uniform 

distribution U(0,1) (a), and the histogram of 1000 standardized sample means of a 

sample of size 1000 (drawn from a uniform distribution) as point plot (b) are shown. 

The grey curve represents the probability density function of a standard normal distri-

bution, showing the validity of central limit theorem in this simulated data case. 

2.4.2 t-test 

When the data is normally distributed and the population variation is known, Z-test can 

be used to test the difference of means of two samples. However, as discussed in the 

previous subsection, the population variation is hardly ever known in a biological study, 

whether or not the data is produced with RNA sequencing. A solution to this problem is 

the Student’s t-test, which assumes that the data is normally distributed but instead of 

assuming known variance, it models the uncertainty in the true population variance 

based on the calculated sample variance and the number of samples. The test statistic 

for a one-sample test is defined in a similar way as for Z: 

 

  
 ̅    

  √ 
  (6) 

 

which follows a t distribution with n – 1 degrees of freedom. The uncertainty of the var-

iance is stored in the degrees of freedom, as the variance follows a         distribu-

tion (chi-squared distribution with n – 1 degrees of freedom). Unlike for the standard-

ized Z statistic, there is a distinct t distribution for each sample size and as the sample 

size increases infinitely, t distribution approaches the standard normal distribution. 

 One of the most popular uses for t-test is to test the difference of two sample means 

(two-sample t-test). In the simplest two-sample t-test, the variances of the two popula-

tions where the (independent) samples were drawn from are assumed equal. The test 

statistic in a two-sample test is defined as 
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(7) 

 

where     is the pooled estimate of the common standard deviation: 

 

    √
        

          
 

       
   (8) 

 

Since the null hypothesis in a two-sample t-test is often that the population means are 

equal (     ), Equation 7 simplifies into 

 

  
 ̅   ̅ 

   √
 
  

 
 
  

    
(9) 

 

The resulting test statistic follows a t distribution with         degrees of freedom. 

 If the population variances of two different populations are not equal, they must be 

estimated separately instead of as a pooled estimate. In Welch’s t-test this inequality is 

taken into account and the test statistic is defined as 
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(10) 

 

As the variances are unequal and unknown, the degrees of freedom,   , cannot be cal-

culated analytically. However, they can be approximated using the Welch-Satterthwaite 

equation: 
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 (11) 

 

Since t distribution is symmetric as well, the two-tailed p-value in a t-test can be calcu-

lated in a similar way to Equation 5, by replacing the normal distribution CDF with the 

CDF of a t distribution with the specific degrees of freedom. 

 In biological studies, t-test is by far the most widely used tool for statistical hypoth-

esis testing. Since it allows the population variance to be unknown and is less stringent 

with the requirement for data normality, it is a better choice especially for small sample 

sizes than Z-test. Although RNA-seq count data may not be normally distributed as 

such, some processed statistics can still be approximately normally distributed and 
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hence a t-test is appropriate for hypothesis testing. The test statistics presented in this 

subsection all assumed that the samples are independent, but versions of t-test for de-

pendent and paired samples also exist. Additionally, t-tests modified especially for bio-

logical data and for very small sample sizes have been developed (Smyth 2004). 

2.4.3 U-test 

When the distribution of the population is unknown or a mixture of several known dis-

tributions (not necessarily normal distributions), t-test may be inaccurate. In these cases 

a non-parametric test such as the Mann-Whitney U-test (also denoted Wilcoxon rank-

sum test) is more suitable for hypothesis testing. U-test requires that 1) the two popula-

tions have similar, continuous distributions and b) the values in the distribution are or-

dinal, i.e. their greatness can be compared. In U-test, the null hypothesis states that the 

medians of two populations are equal: 

 

     ̃   ̃  
     ̃    ̃  

(12) 

 

To calculate the test statistic, u, the values in each sample are combined and sorted in an 

ascending order into a single sequence. The ranks of each value in the sequence are then 

summed over the samples 1 and 2, forming the rank sums    and   , respectively. If 

there are any tied values, each of them will be assigned the same rank (the arithmetic 

mean of the original ranks of the tied values). Using the rank sums, the test statistic   is 

defined as 
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)  (13) 

 

where    and    are the sizes of sample 1 and 2, respectively. Calculating a p-value for 

u is complicated for small sample sizes and it is often done by using tabulated values. 

For large sample sizes (        ), u is approximately normally distributed based on 

the central limit theorem, with an expected value defined as 

  

   
    

 
  (14) 

 

and a standard deviation defined as 
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where the last summation term takes into account all k tied ranks at the locations denot-

ed by ti. This correction is required, since by assigning all tied ranks a single rank value, 

the standard deviation of ranks becomes smaller than without tied ranks. When there are 

no tied ranks and the summation term equals zero, Equation 15 can be simplified into a 

much more convenient form: 
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(16) 

 

Since RNA-seq data (or any other gene expression measurement data) from different 

patients usually originate from very similar (non-normal) distributions, U-test is often a 

safe choice for statistical testing. Even if the data is normally distributed, the asymptoti-

cal efficiency of U-test compared to t-test is          (Lehmann 1999, p. 176), high-

lighting its priority as the standard statistical hypothesis testing method for any RNA-

seq study. 

2.5 Assessing data similarity and normality 

As many of the statistical hypothesis tests are based on the normal distribution or the 

tested datasets originating from the same distribution, and since the normality of RNA-

seq data usually does not hold (Marioni et al. 2008), two mathematical methods to as-

sess the normality or similarity of given data are covered in the following subsections: 

Kolmogorov-Smirnov test and Shapiro-Wilk test. In addition, two graphical methods to 

compare any two distributions with each other, quantile-quantile plot (Q-Q-plot) and 

boxplot, are introduced. 

2.5.1 Graphical methods 

In a quantile-quantile plot, the quantiles of the data from both of the two different distri-

butions or empirical samples are first divided into a set of intervals and then plotted 

with the first distribution on the x-axis and the other one on the y-axis. For example, a 

ten-point quantile-quantile plot would consist of each decile (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9 and 1) of distribution 1 plotted against the corresponding decile from distri-
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bution 2. Each point in the plot is drawn at a threshold value below which one tenth, 

two tenths, three tenths etc. of the values in each distribution are located. 

 When two identical distributions are compared in a Q-Q-plot, the points drawn 

based on the quantiles form a line    . If the distributions are similar but one of them 

has been shifted by a constant value,  , a linear dependency is shown again but this time 

in the form of       . On the other hand, if the other distribution is multiplied by  , 

the dependency gets the form     . If the distributions are different, no linear de-

pendency is seen in the Q-Q-plot. In Figure 2.7, different kinds of Q-Q-plots are shown 

for data from similar and dissimilar distributions. 

 Another popular way to describe one or more distributions graphically in statistics is 

the boxplot. In a boxplot (or a box and whiskers plot), the distribution of each sample is 

illustrated with a box, the height and position of which is determined by the first and 

third quartiles (0.25 and 0.75) of the data. The second quartile, or the median, is drawn 

as a horizontal line within the box. In addition, two “whiskers” are connected to the box, 

the end points of which are not standard. Commonly used values for the whisker end 

points include the extreme values (maximum and minimum, or percentiles 1.00 and 

0.00) and the percentiles 0.91 and 0.09. Values that are not included within the box and 

whiskers (outliers) are drawn as dots in the plot. An example of a boxplot drawn with 

the boxplot function (using default parameters) in R (R: A language and environment 

for statistical computing 2013) is shown in in Chapter 4. 
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Figure 2.7. Six different Q-Q-plots, each with the quantiles 0.00, 0.02, 0.04, …, 0.98, 

1.00 and the red line (y = x) representing an ideal match between the two distributions. 

In the first case (a), the quantiles of two identical distributions fall on the line x = y, 

while in the second (b) and third (c) cases the other distribution is shifted or multiplied 

by 2, hence changing the line on which the quantiles are matched. When the samples 

originate from the same distribution but are not identical (d), the match on the line x = 

y is no longer perfect especially within the first and last quantiles. Finally, when two 

completely different distributions are compared in a Q-Q-plot (e, f), no linear depend-

ency is seen.   
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2.5.2 Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov test, named after Andrey Kolmogorov and Nikolai Smirnov, 

is a nonparametric test to compare a given sample distribution to either a known refer-

ence distribution (one-sample K-S test) or to another sample distribution (two-sample K-

S test). In a K-S test, the null hypothesis states that two cumulative distribution func-

tions are equal: 

 

                    
                    

(17) 

 

where      is the cumulative distribution function of the sample and       either the 

reference or the CDF of another sample. However, since the true CDF of the original 

population distribution for the sample is not usually known, it is approximated by an 

empirical cumulative distribution function (eCDF),      .  

 In a one-sided, one-sample K-S test, the test statistic is defined by the following two 

equations (Ruohonen 2002): 
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where   
  is the statistic for the eCDF of the studied distribution being greater than the 

reference CDF,   
  for being smaller than the reference CDF and   is the sample size. 

A two-sided, one-sample test statistic can be formed using Equations 18 and 19 simply 

by choosing the maximum value of the one-sided test statistics:          
    

  .  

 The p-value for a one-sample, one-sided K-S test can be calculated using the cumu-

lative distribution function defined by the Birnbaum-Tingey equation (Birnbaum & 

Tingey 1951):  
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The CDF defined in Equation 20 applies only to the one-sided, one-sample test statis-

tics. To calculate a p-value for the two-sided test, an alternative definition for the CDF 

of the test statistic can be used (Marsaglia et al. 2003): 
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which yields asymptotically exact p-values for the two-sided, one-sample test statistic.  
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 The K-S test statistic,       
, for testing two eCDFs,         and        , with sam-

ple sizes    and   , respectively, is defined by 

 

      
    

 
|               |  (22) 

 

where the notation         represents the fraction of values in sample i that are smaller 

than  . In other words, the test statistic       
 describes the maximum distance between 

two CDFs, one or both of which may be empirically derived. Equation 22 represents the 

two-sided test statistic, i.e. it measures the absolute value of the differences between the 

two CDFs. For the two-sample K-S test, tabulated values are often used when determin-

ing the p-value. 

 As Equation 20 may contain a computationally challenging component for large 

sample sizes (the binomial coefficient), Equation 21 is inaccurate for small sample sizes 

and tabulated p-values do not exist for every sample size and risk level, alternative ways 

to compute p-values may prove useful. One option is to simulate the hypothesized dis-

tribution with a permutation test, i.e. by generating a sufficiently large number of sam-

ples (>10000) of size n from the assumed distribution and computing      for each gen-

erated sample i. By computing the histogram (the shape of which corresponds to the 

probability density function) for the distribution of      and comparing the location of 

the original    in the histogram, the corresponding probability can be considered as 

(        ) of the hypothesis test. 

 Similarly as for the one-sample test, a fairly reliable p-value can be estimated for the 

two-sample K-S test by using a categorical permutation test to estimate the null distribu-

tion of       
. As the underlying distributions of the populations may be of unknown 

form, the permutation cannot be performed by generating another set of samples as for 

the one-sample K-S test, but instead the permutation is performed by first pooling each 

value in samples 1 and 2 together, and then dividing the pooled values randomly to new 

samples with the same sizes as the original samples. For each permuted sample 1 vs. 

sample 2 comparison and for the original comparison, the statistic         
 is calculated 

using Equation 22 and a histogram of the distribution of         
 is formed. Finally, the 

p-value can be estimated similarly as for the one-sample test by comparing the original 

test statistic to the histogram values. 

 In Table 2.1, three different samples from the standard normal distribution 

(        ) and a uniform distribution (         ) are simulated. For this data, a 

two-sample K-S test was used to determine whether or not a) samples 1 and 2 originate 

from the same distribution and b) samples 2 and 3 originate from the same distribution. 

In addition, a one-sample K-S test was used to test if c) sample 1 was drawn from a 

standard normal distribution and if d) sample 1 was drawn from a uniform distribution, 

       . The p-values are calculated using the permutation approach described above, 

and as a reference, the function ks.test implemented in R is used, which calculates 

the K-S test p-values using an asymptotic distribution for the test statistic. 
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Table 2.1. Samples generated for the permutation tests of the K-S statistic. 

  n Source Data           

Sam1 12 U(-3,3) 
1.411 1.166 2.452 1.520 -2.666 -2.223 

-2.547 -2.468 -1.829 2.486 -1.457 1.122 

Sam2 8 N(0,1) 
1.074 -1.204 -0.081 1.328 -1.229 0.807 

-0.041 1.393 
    

Sam3 10 N(0,1) 
-0.693 1.493 -0.881 0.802 1.925 -0.424 

0.173 -0.248 -0.389 -0.243 
  

 

The resulting test statistics and corresponding p-values for the comparisons described 

above are presented in Table 2.2 and an illustration of how they were derived is shown 

in Figure 2.8. The p-values of ks.test in the two-sample test correspond to the two-

sample, two-tailed p-values, and in the one-sample test they correspond to the one-tailed 

(‘greater’) p-value. As shown in Table 2.2., the p-values calculated with the proposed 

permutation method are very similar to the results of ks.test apart from the test 

‘Sam2 vs. Sam3’. The discrepancy of these two p-values may have been caused by the 

inaccuracy related to the asymptotical Kolmogorov distribution in ks.test, since the 

joint sample size is small (        ). However, when considering e.g. a risk level 

of        as the threshold for neglecting the null hypothesis, both methods agree on 

each of the four tests: only when comparing the simulated data           to the 

standard normal distribution, the alternative hypothesis (        ) has strong enough 

evidence. 

 

Table 2.2. P-values for four different K-S tests calculated with two different methods. 

Test Permutation ks.test 

Sam1 vs. Sam2 0.1432 0.1496 

Sam2 vs. Sam3 0.1624 0.5423 

Sam1 vs. N(0,1) 0.0087 0.0083 

Sam1 vs. U(-3,3) 0.2134 0.2078 
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Figure 2.8. An illustration of how the test statistic is determined in a two-sample com-

parison (a, b) and how the p-value in a one-sample K-S test can be estimated from the 

simulated distribution of D, when data is sampled from the null-hypothesized distribu-

tion (c, d).  

 

One-sample K-S test can be used to determine whether a given sample could have orig-

inated from any given distribution, hence providing a useful tool to test for normality 

e.g. in an RNA-seq study. On the other hand, two-sample K-S tests can be applied to 

study the similarity of two samples, which is a useful feature for assuring that e.g. the 

use of U-test is valid given the data. 

2.5.3 Shapiro-Wilk test 

While the K-S test can be used also to test for data normality, several methods have 

been developed that are specifically tailored for normality testing and are thus more 

powerful for that purpose. One of the most popular methods of these is the Shapiro-

Wilk test (S-W test) (Shapiro & Wilk 1965), which tests the following hypothesis: 
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(23) 

 

where   is the random variable representing the population whose distribution is to be 

tested.  

 To understand how Shapiro-Wilk test is performed and how the test statistic, W, is 

formed, a few other operations should be carried out. Firstly, the sample            

is sorted into an ascending order, i.e.         . Secondly, the expected value of the 

order statistic of independent and identically distributed (i.i.d.) random variables sam-

pled from a standard normal distribution,              , and the covariance ma-

trix V for the sampled order statistics, are calculated. The test statistic W is then defined 

by 
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where  ̅ is the sample mean and the constant vector              is given by 
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The distribution of W is analytically defined only for the sample size     and thus, 

for other sample sizes, approximations must be used. Currently the broadest approxima-

tion of Shapiro-Wilk test statistic, developed by Rahman & Govindarajulu (1997), is 

applicable for sample sizes of         . Since the distribution of W often has to 

be simulated, an exact p-value cannot be determined (apart from    ), but a permuta-

tion approach as the one discussed in the previous subsection can be used to estimate it. 

 As the Shapiro-Wilk test statistic takes into account both the mean and variance of 

the distribution instead of a single and simple metric (such as in the K-S test), it pro-

vides more reliable evidence for (or against) the normality of given data. Regardless of 

its power in normality testing, the limited sample size is an important downside for S-W 

test, which may be critical in an RNA-seq study where the input data can consist of mil-

lions of data points. However, as pointed out in Chapter 3 of this work, the data to be 

tested in an RNA-seq study does not necessarily consist of the whole input data, but just 

a small subset of it.  

2.6 Survival analysis  

A survival analysis, in general, focuses on how many individuals of a population under-

go a certain event (death, recurrence of a cancer, mechanical failure etc.) during a de-

fined time frame. In biomedical studies, it is a common way to study the effects of a 

certain drug in disease or cancer treatment or how the expression of a certain gene 

marker correlates with patient survival or cancer recurrence. A typical feature of surviv-
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al analysis is that some of the individuals under inspection may not remain till the end 

of the study, which is also known as censoring. For censored cases, the last known in-

formation (of the patient being alive, machine part being unharmed etc.) is utilized 

when determining its effect on the survival of the population. If the censored cases are 

always considered as losses, the survival estimation of the population becomes too pes-

simistic and if they are always assumed to survive, the estimation becomes too optimis-

tic. However, completely ignoring censored patients is not desirable either, since signif-

icant information is lost in that case. 

 In this section, two fundamental components of a survival analysis that are able to 

deal with censored data - Kaplan-Meier estimate and logrank test - are introduced. As 

the focus of this work is on analyzing RNA-seq data from a cancer study, the survival 

analysis will be discussed from that point of view. 

2.6.1 Kaplan-Meier estimate and plot 

The Kaplan-Meier estimate (Kaplan & Meier 1958) developed by Edward Kaplan and 

Paul Meier, is the maximum likelihood estimate of the survival function, S(t), used in a 

survival analysis. In a cancer study, the survival function could e.g. describe the proba-

bility that a patient of a certain population is still alive   days after cancer diagnosis. 

Assuming that censoring occurs independently of the group and that each patient re-

cruited in the study has an equal survival probability at the time of diagnosis, the 

Kaplan-Meier estimate of surviving past time   is defined by 
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where    is the time of diagnosis,    is the number of uncensored, alive patients (“pa-

tients at risk”) at time    and    is the number of deaths at time   . The index   covers 

each time point before   when a patient dies or becomes censored. 

 The most important application of the Kaplan-Meier estimate is a graphical illustra-

tion denoted the Kaplan-Meier plot (K-M plot). In a K-M plot, a curve with the K-M 

estimate of the survival function is drawn for each population (e.g. patients treated with 

drug A, patients treated with drug B, patients without drug treatment etc.) with horizon-

tal steps between each time point when death occurs, followed by a vertical drop to the 

K-M estimate value at the next event. As an example, artificial survival data has been 

generated for three classes of patients (with 15 patients in each class) that suffer from a 

deadly disease:  

 

 Patients treated with a good drug, 

 patients treated with a weak drug and 

 patients with no drug treatment. 
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The generated times of death, the last known times to be alive for censored patients and 

the corresponding K-M estimates are shown in Table 2.3 and a K-M plot for the three 

different patient categories is shown in Figure 2.9. The time point     equals to the 

day when the disease was diagnosed and drug treatment given (if it was given at all). 

 

Table 2.3. K-M estimates for simulated data of patients with three different treatment 

strategies. The event times (in days) with red font represent a loss to censoring, other 

values are times of death for a certain patient. 

Strong drug Weak drug No drug 

Time KM Time KM Time KM 

3 0.93 28 1.00 11 0.93 

44 0.93 33 0.93 16 0.87 

52 0.86 45 0.93 31 0.80 

63 0.86 45 0.85 35 0.73 

84 0.78 46 0.77 37 0.67 

88 0.78 47 0.70 41 0.60 

93 0.70 49 0.70 53 0.53 

95 0.61 54 0.61 56 0.47 

107 0.52 55 0.61 61 0.40 

115 0.44 58 0.51 62 0.33 

120 0.44 62 0.41 65 0.33 

123 0.44 84 0.30 66 0.25 

124 0.29 86 0.20 66 0.17 

139 0.29 93 0.10 73 0.08 

166 0.00 121 0.00 75 0.08 

 

 
Figure 2.9. Kaplan-Meier estimates for the three different patient groups. Each ’x’ in 

this plot represents a patient becoming censored. 
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In this example, a clear difference in survival between patients treated with a good drug 

vs. patients without drug treatment can be seen, which is obviously the outcome of any 

successful drug development study. Based on the K-M estimates shown in Table 2.3, 

the estimated probability that a patient of a certain population is alive after 60 days of 

diagnosis is                                  and               , respectively. 

At this time point, the difference between the weak drug and no treatment is not yet 

very significant, although at day 80 the difference is noticeable. Since the last surviving 

patient from the ‘No drug’ group becomes censored at day 75, the K-M estimate never 

becomes zero for this class. When inspecting the survival beyond day 175, e.g., this 

would lead to the contradictory result that having no treatment is a better way to survive 

than taking any drug, since              and               but              . 

This is most likely a false conclusion and points out the noisiness of the right tail of the 

survival curve, which thus should not be used as significant evidence for differences in 

survival between two or more groups. 

 K-M plots are a very common sight in any cancer or medical investigation publica-

tion, where two or more types of groups are involved in the study. In this work, the nov-

el transcripts found with the analysis pipeline, Novellette, are also inspected from the 

survival analysis point of view. Although survival analysis is not the main focus in the 

development of Novellette, it may give important insight into finding transcripts that 

may have a significant role in the survival of the patient, and is hence also covered in 

this work. 

2.6.2 Logrank test 

To draw conclusions on the statistical significance of the difference between estimated 

survival functions, a specific test that would take into account censoring in the survival 

distributions should be used. One of the most widely used tests in this kind of analysis is 

the logrank test, which was originally proposed by Nathan Mantel (Mantel 1966). Un-

der the null hypothesis of a logrank test (with the same assumptions as in the K-M esti-

mate), the hazard functions of   different populations are equal: 
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where       are the hazard functions of populations        , respectively, and   de-

notes time. The hazard function, sometimes also denoted the hazard rate function,     , 

is defined by 
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where      is the survival function and      is the hazard density function, which can 

be modeled with the probability density function of either exponential distribution or the 

Weibull distribution. 

 As the true population hazard functions are again impossible to determine from dis-

crete and finite data, they must be estimated. One way to construct a hazard function 

estimate is to first combine the data from different groups into a single group (this is a 

valid operation since, according to the null hypothesis, the survival distributions are 

same) and then calculate the risk of death for the joint population at each time point, 

when a death has occurred in any of the original groups. The risk is simply calculated 

by dividing the number of deaths at a given time point by the number of patients at risk 

(alive and not yet censored). The expected number of deaths,     , is then calculated in 

each of the original groups at each time point   by multiplying the risk of death with the 

number of patients at risk in group  . Similarly, the actual observed numbers of death, 

    , for each group and time point are calculated from the survival times. According to 

Bland & Altman (2004), the test statistic   is then defined by 
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where   is the number of groups to be tested and    is the number of patients in group  . 

Equation 29 is not the only way to define the test statistic, but it is straightforward and 

easy to interpret. This test statistic follows a    distribution with     degrees of free-

dom and hence the p-value can be obtained directly from one minus the cumulative dis-

tribution function of the    distribution, but similarly as for other tests discussed in this 

work, the p-value can also be estimated with a permutation test. 

 As an example, logrank test is applied to the simulated data shown in Table 2.3 with 

four different comparisons: all three groups compared together and three different pair-

wise comparisons. The p-values of these comparisons calculated with two different 

methods are summarized in Table 2.4. The p-values are calculated using a) Equation 29 

and    distribution and b) the survdiff-function in R. As shown in Table 2.4, the p-

values imply significant difference in survival in every comparison apart from weak 

drug vs. no drug, which also agrees well with the survival curves shown in Figure 2.9. 

 

Table 2.4. Logrank test p-values with two different methods. 

Test 
Good drug vs. 

no drug 

Good drug vs. 

weak drug 

Weak drug vs. 

no drug All vs. All 

Eq. 29 +    7.04e-4 5.98e-3 0.181 1.95e-4 

survdiff 1.33e-4 3.10e-3 0.142 1.52e-4 

 

The logrank test has been shown to be a permissive test: it may yield a low p-value even 

if the data is very inaccurate and therefore alternative and more stringent tests for sur-
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vival analysis have been developed (Berty et al. 2010). Logrank test is still the most 

popular hypothesis test in survival analysis, since it is simple, takes the censoring into 

account and does not make any assumptions of the underlying survival distributions of 

the populations. If there is no censoring, however, any other distribution independent 

and potentially asymptotically more powerful tests (such as U-test) can be used.  
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3 METHODS 

In this chapter, the RNA-sequencing data analysis pipeline developed in this work (No-

vellette) is introduced and its components along with theoretical rationalization for the 

methodological choices are presented. To support the theoretical arguments, publicly 

available human glioblastoma multiforme (GBM) RNA-seq data from 169 samples in 

The Cancer Genome Atlas (TCGA) glioblastoma project (Brennan et al. 2013) is 

viewed. 

3.1 Motivation 

As the cost and run-time of whole-genome DNA sequencing and whole-transcriptome 

RNA sequencing have dropped drastically within the last few years, RNA-seq has be-

come the standard tool to quantitatively and accurately measure the expression levels of 

both coding and non-coding RNA content in the cell. This has given rise to the devel-

opment of computationally efficient data processing algorithms (especially for read 

alignment (Kim et al. 2013; Dobin et al. 2013)) and in storing the increasing amounts of 

raw and alignment data. The state-of-the-art solution to standardizing data storage and 

alignment data procession is the SAM format (Sequence Alignment Map) and the related 

SAMtools package (Li et al. 2009), which contains several command-line tools for bina-

rizing, indexing and fetching of information from aligned read data. 

 As one of the major downstream analysis options in an RNA-seq study is to detect 

novel transcripts and assess their protein coding potential, a computationally efficient 

and SAM format supporting tool to perform this kind of data analysis would be feasible. 

However, most of the current publicly available tools either use unnecessarily compli-

cated mathematical models, making the processing slow and the output and possible 

errors harder to interpret, or require very specific configurations and setups on the com-

puter, making the tool difficult or even impossible to install on most platforms. In addi-

tion, a tool that would utilize splice-junction aligned reads (in the standard SAM format) 

in determining exon structures of the novel transcripts in the gene identification analy-

sis, does not yet exist. 

3.2 Overview 

Novellette is an RNA-sequencing pipeline developed in this work, which takes splice-

junction aligned reads in the binary SAM format (BAM) as input, detects novel tran-

scripts that are differentially expressed between two different classes (e.g. cancerous 

samples vs. healthy samples) or, in a one-class analysis (e.g. only cancerous samples), 
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detects novel transcripts that are overexpressed in a subset of the samples, and finally 

performs a full gene identification analysis to all of the detected transcripts. The core of 

Novellette is implemented in C++, but some of the subtasks (e.g. statistical testing) is 

performed with R, and the SAMtools package is also utilized for efficient alignment 

data processing. Apart from SAMtools and R, which are both very standard bioinfor-

matics tools, Novellette does not have any requirements or limitations for installation 

and use.  

 In Figure 3.1, an overview of the data analysis steps and different paths in the No-

vellette pipeline is shown as a chart. The pipeline consists of two fundamental parts: 1) 

detection of novel transcript candidates and 2) gene structure identification and scoring 

of the candidates. These two parts and the respective data analysis steps are covered in 

the following two sections. 

 

 

Figure 3.1. An overview of the workflow of Novellette. 

3.3 Detection of novel transcript candidates 

The analysis in Novellette starts by reading in any number of BAM files, each of which 

corresponds to the reads of one sample aligned against a reference genome with a 

splice-junction mapper. The goal of the first analysis part is to calculate the normalized 

read counts for each sample in windows with pre-defined width across the whole ge-
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nome, and then systematically define which of these windows could potentially be a 

novel transcript or a part of it. The way this is done depends on whether the data con-

sists only of cancerous samples or if reference (healthy) samples are available as well. 

The following subsections cover the relevant data analysis steps and related theory in 

forming the putative novel transcript candidates. 

3.3.1 Calculating normalized read counts 

The first component of Novellette takes any number of BAM or SAM files and a user-

defined window length (default: 500 bp) as input. It then calculates the RPM value 

(Equation 1) in a sliding window throughout the whole genome (one chromosome at a 

time) for each sample based on the aligned reads in the BAM/SAM file, by sliding the 

window with half of its length in each step (e.g. 0 – 499, 250 – 749, 500 – 999, 750 – 

1249, …). The RPM value calculated this way corresponds to the read coverages in the 

specified sliding windows in the genome. The resulting RPM values for each processed 

sample are then stored in a single matrix (coverage matrix) in the .igv format, which can 

further be processed into a more convenient and storage-friendly binary file format (.tdf) 

using IGVtools, and viewed with the IGV genome browser (Thorvaldsdottir et al. 

2013).  

 RPM normalization method was chosen at this step of the analysis since 1) the win-

dow length is constant and thus no length normalization (e.g. RPKM, Equation 2) is 

required and 2) the read counts are processed one sample at a time, making sample-wise 

adjustments (e.g. quantile normalization) impossible. Nevertheless, RPM normalized 

read counts are comparable each other since the most important source of bias, i.e. the 

different number of mappable reads in different samples, is taken into account. 

3.3.2 Two-class analysis 

Most cancer studies focus in finding differences e.g. between cancer cells and adjacent 

healthy cells, between aggressive/invasive/metastatic cancer cells and less-aggressive 

cancer cells, or between cells from two different cancers or cancer subtypes. In an 

RNA-seq study, this usually means the detection of differentially expressed genes, e.g. 

finding genes that have statistically significantly higher or lower expression in one class 

versus the other class. In this work, the comparison is performed for each of the sliding 

windows for which the RPM value is calculated.  

 Regardless of the assumptions discussed in Section 2.4.2 that do not necessarily 

hold for RNA-seq data, t-test is the most widely used method in any kind of differential 

expression analysis. To investigate the normality of RPM values calculated by Novel-

lette, a coverage matrix is calculated for the 169 TCGA GBM samples using a 500 bp 

sliding window. Although no two-class comparison can be performed with this example 

data, the normality should still hold also for this data as the samples are all from the 

same population (assuming that t-test would generally be valid in an RNA-seq study). 

As the comparison in Novellette is performed for the window RPM values between dif-
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ferent samples, the data vector consists of 169 values. Since the window length used in 

this analysis is 500 bp, the sliding step is 250 bp and since the length of the whole hu-

man genome is approximately 3.14 billion bp long, the number of data vectors is 

                    .  

To assess the normality of this many samples simultaneously, K-S and S-W tests are 

performed for the first 10
6
 windows covering the genome and the corresponding p-

values for the test statistics are compared to three different risk levels. The p-values are 

calculated using the functions ks.test and shapiro.test in R, both of which 

assume that the given data is normally distributed as the null hypothesis. Therefore a 

smaller risk level   means a less stringent required evidence for non-normality, and thus 

more false positive conclusions of the data being normally distributed. As shown in Ta-

ble 3.1, the RNA-seq data in this work shows poor evidence for normality based on both 

of the normality tests at the defined risk levels, when compared to simulated data of 

similar size drawn from a standard normal distribution. In other words, the use of t-test 

is not valid with this data and hence U-test will be the primary choice for statistical test-

ing of differential expression in Novellette. 

 

Table 3.1. The percentages of how many tests supported the hypothesis of the window 

RPM values in this RNA-seq data set being normally distributed.  

α K-S S-W K-S sim S-W sim 

0.001 18.293 % 15.794 % 99.929 % 99.914 % 

0.01 16.726 % 15.792 % 99.225 % 99.149 % 

0.1 15.923 % 15.791 % 92.111 % 91.726 % 

 

After calculating the p-value for each window in the two-class analysis of Novellette, a 

user-defined threshold (default:       ) will be used to determine which windows, or 

500 bp long regions in the genome, are considered differentially expressed. As the 

number of tests performed is large, using only a p-value threshold of        without 

multiple testing correction would lead to having thousands of statistically significant 

test results just by random chance. In this work, multiple testing correction is not used, 

but instead this feature is taken into account by setting two additional requirements for a 

window to be differentially expressed: 1) the absolute difference of the median RPM 

values between the two classes must be    and 2) the ratio (fc, fold change) of median 

RPM values between the two classes must correspond to             . These two 

requirements guarantee that 1) there are enough reads to make a reliable call and 2) the 

difference in terms of fold change is significant as well (at least two-fold difference). 

Although using the median values (default option in Novellette) in each window as the 

single-value representation of a class is fairly robust, this approach may miss the novel 

transcripts that are e.g. highly expressed only in a small subset of the samples of one 

class. Therefore the user of Novellette can also choose to use mean instead of median in 

the two-sample analysis. 
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3.3.3 One-class analysis 

Although cancer studies mostly focus in comparing samples from different classes with 

each other, one approach in a cancer study is to identify outliers: samples in a single 

class that behave in a different way – e.g. in terms of the expression of certain genes – 

than other samples in the class. With this approach, it is possible to distinguish subsets 

of similar samples that may e.g. represent a novel cancer subtype. In an RNA-seq study, 

both known and unknown genes can be used in this kind of analysis. 

 In Novellette, if only one class of samples is available, an outlier analysis will be 

performed. This is carried out by first sorting the RPM values of the samples in each 

window in an ascending order, and then dividing the samples into two groups based on 

a user-defined quantile value. By default, Novellette uses the quantile 0.8, i.e. 20 % of 

the largest values are put into one group and the rest into the other (overexpressed outli-

ers), or the quantile 1 – 0.8 = 0.2, in which case the smallest 20 % are compared against 

the rest (underexpressed outliers). Novellette then compares the median expression of 

these groups with the same criteria as in the two-class analysis apart from the p-value, 

which in this case is unreasonable to calculate. Finally, windows with a significant dif-

ference (in terms of absolute RPM difference and fold change) between the groups are 

considered as novel transcript candidates for the downstream analyses. 

 The approach used in the one-class analysis of this work aims to find only such nov-

el transcripts that have high or low expression in a subset of samples. It would also be 

possible to look for regions that have high expression in all of the samples, but that 

would not give any information on the differences between the samples, thus preventing 

any conclusions on potential cancer subtype markers. In addition, if there are no refer-

ence samples, it is impossible to determine whether or not a feature that appears in all of 

the studied cancer samples would also appear in another class of samples. 

3.3.4 Filtering and merging 

As the final goal in Novellette is to find novel transcripts, the output differentially ex-

pressed windows from the previous analysis step should be filtered by using the location 

information of known genes. This information is available from several different 

sources (Ensembl (Flicek et al. 2013), Refseq (The Reference Sequence Project 2013), 

UCSC (Rosenbloom et al. 2013), Gencode (Harrow et al. 2012)), and a reasonable ap-

proach is to combine some or all of this information. By default, Novellette uses a file 

that combines the genome annotations from Ensembl, Refseq, UCSC and Gencode by 

taking the union of the coordinates that represent a known gene in any of the annotation 

sources. The differentially expressed windows are then filtered with this annotation file, 

removing each window that overlaps with any known gene based on any annotation 

source. 

 Since the first and last exons of protein-coding genes may be several thousand bp 

long and the read counts are calculated in a much shorter window (by default), the out-

put of the first part of the analysis may contain several consecutive, overlapping win-
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dows. As these most likely represent the same transcript on the RNA level, all windows 

that are at most 3000 bp (default, can be tuned by user) away from each other, and all 

regions between them, are merged into a single window. Although this operation is not 

vital for the functionality of Novellette, it reduces the redundancy in the gene identifica-

tion analysis and thus moderately reduces the computation time. 

3.4 Gene identification 

The second major part of Novellette performs a gene identification analysis to the fil-

tered, merged differentially expressed windows. The goal of this analysis is to form the 

full exon structure of the transcript and evaluate its potential for being a protein-coding 

gene. In this work, a scoring approach is used to give each novel transcript candidate a 

numerical representation of its protein-coding potential instead of making binary calls 

on whether or not a given sequence is a gene.  The score consists of four different 

components: exon structure score, promoter score, 3’UTR score and ORF score. Each 

component score          is defined by custom rules, with      representing good 

evidence of coding potential and      poor or no evidence at all. The final score is 

then defined as the arithmetic mean of the component scores.  

 In the gene identification analysis, Novellette uses the aligned reads in the BAM 

format of                       most highly expressed samples for each differentially 

expressed window. In addition, a file folder with the whole genome DNA sequence, 

each chromosome in a separate file, is required as an input parameter. In the next four 

subsections, forming of the gene structure by utilizing the BAM file and each of the 

component scores are discussed and, by using the DNA sequences of the genes based on 

Ensembl v68 annotations, biological rationalization is given for some of the score calcu-

lations. 

3.4.1 Defining and scoring the exon structure 

The first and most vital part of the gene identification analysis is to define the gene 

boundaries along with exon and intron breakpoints and intervals. To begin with the 

analysis of expanding a raw novel transcript candidate window into a full gene, each 

read that was aligned within the window is fetched from the input BAM files by calling 

SAMtools in Novellette. The following procedures are then carried out: 

 

1. Start from the right end of the window and expand it to the left 

1.1.  By using the CIGAR string field in the BAM file, exon breakpoint candidates 

are gathered from split-mapped reads 

1.2.  As long as there are splice junction candidates that at least 3 reads per sample 

(on average) support, expand the region to the left end of the splice junction 

1.3.  When there are no more spliced (split-mapped) reads, keep expanding the re-

gion to the left by sliding a 200 bp window, as long as it contains at least 10 

reads per sample (on average)  



 38 

2. Start from the left end of the original window and expand it to the right similarly 

Whenever the region is expanded in any of the steps of the procedure described above, 

SAMtools is called again and new reads from the BAM files are fetched according to 

the expanded coordinates. Ideally the algorithm described above would terminate the 

expansion at the transcription start and termination sites and the resulting region would 

contain all exon-intron breakpoints of the transcript, but this will rarely be the result due 

to various biological features in the transcription and technical noise.  

 After the gene boundaries have been defined and a set of exon-intron breakpoints 

have been gathered, the next step is to determine which breakpoint intervals represent 

exons and which introns. Due to alternative splicing (i.e. alternative combinations of 

exons of the same gene) within the samples and noisy reads (i.e. reads that were falsely 

aligned on an intron of a gene), detected, consecutive intervals do not necessary repre-

sent exons and introns alternately. In this work, Novellette does not attempt to distin-

guish alternative splice variants from each other, but instead a single consensus tran-

script with only one specific combination of exons is formed. This is achieved by using 

expression thresholding: intervals that contain a high amount of reads are considered as 

exons and intervals with low read count are considered as introns. This approach is 

based on the fact that RNA-seq targets the mRNA in the cell, which contains only the 

untranslated regions and exons of a gene, but no introns (see Figure 2.3b). For this pur-

pose, Novellette calculates the number of reads in the interval and divides it with the 

interval length, and if this value is less than 0.1 (default), the region is considered as an 

intron. In other words, e.g. a region with length 1000 bp and 90 aligned reads is inter-

preted as an intron. 

 As the goal with every component of the gene identification analysis in Novellette is 

to give a score that describes how well a certain feature in a novel transcript candidate 

corresponds to the same feature in known, protein-coding genes, an additional aspect is 

taken into account when determining the goodness of an exon candidate. Since the first 

two nucleotides (GU and AG) in a splice junction are very well conserved in human 

cells (Burge & Karlin 1997), each exon candidate is considered valid only if the splice 

junction motifs in 5’ and 3’ ends match the dinucleotides GU and AG, respectively. In 

addition, as most protein-coding human genes have multiple exons, regions in the ge-

nome with no evidence for multiple exons (no split-mapped reads) are likely to repre-

sent non-coding or repetitive regions (such as LINEs and SINEs). By taking these fea-

tures in account, the exon score     is calculated by 

 

    {
                
      

   
       

 (30) 

 

where     is the total number of exons and        is the number of exons with valid 

splice junction motifs. 
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 In addition to calculating the exon score, the directionality of the gene is determined 

in this part of the analysis. This is done by inspecting the splice junction dinucleotides 

at each exon: if the dinucleotides are GU and AG in donor and acceptor sites, respec-

tively, the gene lies on the same strand as what was used in the reference genome, based 

on this exon. In this case, ‘+’ will be assigned as the directionality of the novel tran-

script candidate. However, as the human genome is double-stranded (most of the time), 

genes are found also on the reverse complementary strand compared to the reference 

genome sequence. Therefore the reverse complementary dinucleotides CT and AC in 

donor and acceptor sites, respectively, found in the splice junctions would imply the 

opposite directionality for the gene based on this exon, and ‘–‘ would be assigned as the 

orientation. However, due to the fact that genes on the opposite strands in the genome 

may overlap with each other, the data-driven approach of Novellette may result in as-

signing the exons of two or more genes on different strands to a single novel transcript 

candidate, since the reads produced with RNA-seq are not strand-specific. To compen-

sate for this effect, Novellette will give a special flag and reduced exon score to each 

identified transcript that yield strand-contradictory exons. The score reduction is per-

formed by assigning                       in Equation 30, where      and      

are the number of exons with positive or negative directionality based on valid splice 

junction motifs, respectively, instead of the total number of valid splice junctions. For 

single-exon genes the directionality cannot be determined from the splice junction mo-

tifs, since there are no splice junctions. 

 For every subsequent analysis step in Novellette, the directionality information de-

termined in this step is utilized: e.g. if only positive strand splice junctions are found, all 

subsequent features will be searched in the positive strand as well. On the other hand, if 

there are contradictory splice junction motifs or there is only a single exon, both direc-

tions (positive and negative, i.e. forward and reverse complementary orientation) will be 

used in the subsequent analyses. 

3.4.2 Promoter score 

To calculate a score for the promoter region of the novel transcript candidate, the pro-

moter features discussed in Section 2.1.2 and illustrated in Figure 3.2 are taken into ac-

count by calculating a separate score for each feature and then combining them by their 

arithmetic mean. The final promoter score consists altogether of three different compo-

nents: 1) Promoter motif score, 2) CG enrichment score and 3) Chargaff’s second rule 

violation score. According to Chargaff’s rules, the fraction of nucleotide A is equal to T 

and the fraction of C is equal to G in any single- or double-stranded genome (Chargaff 

et al. 1952). The balance in dsDNA occurs due to complementary base pairing, but 

much less is known why the same balance holds also for single-stranded DNA. Howev-

er, this rule no longer holds for the ssDNA sequence of a gene, which is a phenomenon 

of very little information given in literature, but which can clearly be seen in Figure 

3.2b.  



 40 

 The first component of the promoter score is based on three different motifs (TA-

TA-box, initiator element and downstream promoter element), which are commonly 

bound by the general transcription factors required for transcription initiation. Any of 

the three motifs mentioned above is sufficient for initiating transcription, and therefore 

the promoter motif score        is defined as 

 

       {
                                           
                                                                       

 (31) 

 

where the match is defined by string comparison of consensus sequences (Figure 3.3). 

 

 

Figure 3.2. Illustrations of the occurrences of three different promoter motifs often 

bound by transcription factors near the TSS (a) and the nucleotide composition 2 kbp 

upstream and downstream from the TSS (b). The Chargaff’s rule applies upstream from 

the TSS as the A and T curves (as well as the C and G curves) align perfectly, but when 

moving downstream from the TSS, the curves diverge. These plots were generated by 

using the DNA sequence of approximately 21000 protein-coding genes based on En-

sembl annotations. 
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Figure 3.3. In the consensus sequence representation, a single letter is used to encode 

for alternative nucleotides at a certain location in a motif. For example, as the consen-

sus sequence of the downstream promoter element begins with ‘R’, the first nucleotide 

in the motif can be either ‘A’ or ‘G’. The consensus sequences for the three motifs used 

in this work are based on the most conserved sequences reported in literature (Kadona-

ga 2002; Shi & Zhou 2006; Xi et al. 2007). 

 

The second and third components of the promoter score are based on the nucleotide 

composition before and after the TSS of a gene (see Figure 3.2b). Since the fraction of 

cytosines and guanines of all nucleotides is substantially higher (           )  

around the TSS than in the genome on average (          , not visible in Figure 

3.2), this information can be used to distinguish a TSS from its surroundings. In Novel-

lette, the score for GC enrichment is formed by calculating the fraction of G and C nu-

cleotides,       , in a sliding window of width 250 bp (sliding step 50 bp), starting 

from 500 bp upstream of the TSS location predicted in the previous part of the analysis 

and ending at 500 bp downstream from it. The score     is then defined by choosing the 

largest found fraction and calculating 

 

    {

                                                    
          

    
                

                                                      

 (32) 

 

A similar approach is used to score the Chargaff’s second rule violation. Since generally 

                 , but inside the gene             and        

     (based on visual judgement of Figure 3.2b), this small difference will be utilized 

when calculating the score. The Chargaff score,       , is finally calculated as 
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 (33) 

 

where again the largest fraction        is used. The value 0.6 is used instead of 0.55 

to assure more stringent evidence for the Chargaff’s second rule violation, since the 

chance for a random DNA sequence of length 500 – 1000 bp to have            

is fairly large. 

 The window widths, sliding steps and distances to TSS used in this part of the anal-

ysis are all user-tunable, and the values reported above correspond to the default values. 

By using the three component scores defined above, the final promoter score,      , 

can now be calculated: 

 

      
                 

 
  (34) 

 

In addition to calculating the promoter score, Novellette stores the locations of each 

found motif (the ones nearest to TSS, if multiple matches are found) and the windows 

with the highest GC enrichment and Chargaff’s second rule violation. This information 

is not utilized in the current version of Novellette, although it might be useful e.g. for 

improving the estimation of TSS location.  

 Although any of the three promoter motifs is enough to enable transcription factor 

binding, especially the downstream promoter and initiator element motifs are so unspe-

cific that they can be found even in fairly short (< 500 bp), random DNA sequences just 

by chance. Therefore the motifs alone are a poor indicator of whether a region in the 

genome could represent the promoter of a protein-coding gene. In addition, as Figure 

3.2 shows statistical features of nucleotide compositions of transcription start sites of 

more than 20000 genes, the nucleotide composition of the promoter of a single gene 

does not necessarily correspond to these statistical features. This is not a major draw-

back, however, as no final, binary call of protein-coding potential is made based on the 

calculated scores. 

3.4.3 3’UTR 

As the wetlab protocol of RNA-sequencing is based on the detection of the poly-A tail 

in the mRNA molecule, every full transcript identified by RNA-seq should contain the 

poly-A signaling motif, AAUAAA. Since both the sequencing and preliminary data 

analysis processes can yield errors and noise in the data, this cannot always be guaran-

teed. Therefore the identification of poly-A motif from novel transcript candidates gives 

both evidence for protein-coding potential and a way to control the quality of detected 

transcripts, both novel and known. 
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 According to (Retelska et al. 2006), the poly-A tail complex can bind to the motif 

AAUAAA with a single-nucleotide mismatch in any of the six nucleotides. In addition, 

the motif is often followed by a U-rich region in the mRNA molecule (or T-rich region 

in the gene/DNA). This feature is investigated similarly as in Figure 3.2, by using the 

known 3’UTR DNA sequences of protein-coding genes based on Ensembl annotations. 

In this case, for each found poly-A motif, the composition of nucleotides surrounding 

the motif is calculated. As is shown in Figure 3.4, there is a clear enrichment of T’s 40 – 

60 bp downstream from the motif location. 

 

Figure 3.4. The nucleotide composition surrounding detected poly-A motifs, showing 

the T-rich region, which peaks at 40 bp downstream from the motif with an average 

fraction of %T = 0.4. 

The 3’UTR score consists of two components: poly-A motif score and T-rich region 

score. To calculate the motif score, poly-A motifs are first searched from the start coor-

dinate of the last exon to the end coordinate of that exon + 50 bp (default) in case of 

multi-exon genes, or from end coordinate  – 500 bp (default) to end coordinate + 50 bp 

for single-exon genes. The poly-A motif score,, is then defined by  

 

       {
                                           
                            
                                                    

 (35) 

 

where the near perfect match corresponds to a single-nucleotide mismatch between the 

DNA sequence and the motif. 

 To take into account the T-rich region often followed by a functional poly-A site, 

the fraction of T’s in up to 80 bp (default) downstream of each location where a poly-A 

motif was found is calculated. This is performed by using a sliding window of width 20 

bp (default) and a sliding step of 5 bp (default). Similarly as for the promoter analysis, 

the largest fraction    is stored, and the T-rich region score is calculated by 
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 (36) 

 

Square root is used to make the requirement of T enrichment slightly less stringent, as 

the evidence of every poly-A site being followed by a T-rich region based on Figure 3.4 

is not very strong, implying that it may not be vital to enable the poly-A complex to 

bind on DNA. Having the motif and T enrichment scores calculated, the final 3’UTR 

score is then defined as 

 

       
             

 
  

(37) 

3.4.4 Open reading frames 

The last component of the gene structure score is formed by identifying open reading 

frames within the coding sequence of the gene. This is performed by joining the identi-

fied exons together and thereby rebuilding the corresponding DNA sequence of the 

measured mRNA of each transcript, and then finding each start and stop codon on any 

of the three possible frames (or six, if the other strand of the gene must be searched as 

well). Subsequently, each valid start codon - stop codon pair on the same frame is iden-

tified and the longest three (per strand), non-overlapping pairs (raw ORFs) are further 

processed. In Figure 3.5, the raw ORF detection procedure is illustrated. 

 

 
Figure 3.5. An example DNA sequence and the resulting raw ORF.  

 

In the example of Figure 3.5, one start codon and four stop codons are found in the giv-

en DNA sequence. In ORF detection, the start codon frame is denoted with 0 and the 

following two codons with 1 and 2. Since the mRNA molecule is translated one codon 

at a time into a protein, each codon in the same frame with the start codon is processed 

into an amino acid. Therefore the third codon after the start codon (‘CGC’ in the exam-

ple) is the next codon in line when translating the mRNA sequence, and it is given the 
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frame 0. Out of the four different stop codons, only one of them shares the same frame 

with the start codon and is hence the translation termination codon. 

 In the next step of the ORF detection analysis of Novellette, for each of the top three 

raw ORFs, the number of exons and the frames for each exon that belongs to the ORF 

are calculated. Exon frames are determined by the frame of the first nucleotide in the 

exon. If the longest raw ORF covers each exon in the transcript, it will represent also the 

final ORF of the novel transcript candidate and the corresponding start and stop codon 

coordinates and the exon frames will be stored for result printing. If there are no ORFs 

that would cover each exon, three longest raw ORFs are reported as the final result.  

 The score for transcripts with multiple exons is then calculated as 

 

     (√
    

   
  )      (38) 

 

where      is the number of exons that belong to the longest ORF,     is the total 

number of exons and      , if the last exon is included in the ORF, otherwise    . 

The pseudo-constant   assures that identified ORFs suggesting the transcript to be more 

prone to nonsense-mediated decay get a significant penalty to score.  For single-exon 

transcripts, the score is set to           if a valid ORF is found, otherwise       . 

The best score (      ) is never given to a single-exon transcript since the expected 

number of start and stop codons e.g. in a 500 bp long random, continuous DNA se-

quence are (
 

 
)
 

             and (
 

 
)
 

               , respectively, and 

therefore it is also highly likely to find a valid start codon - stop codon pair within the 

sequence by chance. The probability to find a stop codon is multiplied by three since 

there are three different possible combinations of nucleotides for stop codons, while 

there is only one possible trinucleotide that can act as a start codon. 

3.4.5 Result printing 

As illustrated in Figure 3.1, Novellette produces two different output files. The first one 

is a genome browser viewable text file in the general transfer format (.gtf) [ref], which 

contains the chromosomal coordinates of each identified novel transcript, both for the 

full transcript and for each exon and coding sequence region separately. When viewed 

in a genome browser, the transcript is shown as a line with boxes at the location of each 

exon. When opening this file in a genome browser, the user can browse through the 

results graphically and easily inspect the exon structures of the novel transcripts. An 

example of a .gtf file opened in IGV is shown in the next chapter. 

   The second output file is a table with detailed data of the gene identification analy-

sis, with one row for each identified transcript. In this table, the most relevant infor-

mation gathered in the gene identification analysis (such as the chromosomal coordi-

nates and the calculated scores for protein-coding potential) is reported. In Table 3.2, 
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the output table fields are explained and example values for a novel transcript identified 

in the TCGA GBM dataset are given. In this example, the transcript is found in chromo-

some 6 and its final gene structure score is 0.9566668, indicating high protein-coding 

potential. The only feature that did not get a maximum score is the promoter, which 

may be due to good but not perfect GC enrichment or evidence for Chargaff’s second 

rule violation, although both a downstream promoter element (DPE) and initiator ele-

ment (ini) are found on the promoter. The total number of exons in this case is 15 and 

each one of them also belongs to the longest ORF, thus giving a perfect ORF score of 1. 

In Novellette, the exons are numbered according to their location on the forward strand, 

and hence the exons of a transcript on the reverse strand are numbered in a reverse or-

der. Therefore the exon with the largest ordinal number is the first one to be translated. 

  



 47 

 

Table 3.2. Format of the output table printed by Novellette. 

Field name Explanation Example 

TranscriptName 
A unique identifier for the 

transcript 
transcript_1 

Chr Chromosome 6 

Start Start coordinate  105725513 

End End coordinate 105850927 

Strand 
Orientation compared to the  

reference genome used 
- 

TotalScore Final gene structure score 0.9566668 

ExScore Exon score 1 

PromScore Promoter score 0.826667 

UtrScore 3'UTR score 1 

OrfScore Open reading frames score 1 

PromInfo 
Features identified in the 

promoter  
ini, DPE, CpG_island, Charg 

PolyAsite 
Location of the identified 

AAUAAA motif 
105725530 

ORFs 

The ordinal numbers of ex-

ons beloning to the ORFs 

and their corresponding 

frames 

[exons:15,14,13,12,11,10,9,8,7,6,5,4,3,2,1; 

frames:0,0,0,2,1,1,0,1,1,1,0,2,1,1,2] 

nExons 
Total number of exons iden-

tified 
15 

ExonStarts 
Start coordinates of identi-

fied exons 

105725513, 105729620, 105730325, 

105733360, 105736632, 105771539, 

105776703,  105781188, 105800846, 

105816777, 105821243, 105823999, 

105825260, 105845727, 105850721 

ExonEnds 
End coordinates of identified 

exons 

105726313, 105729777, 105730457, 

105733455, 105736769, 105771643, 

105776901,  105781380, 105800952, 

105816899, 105821453, 105824130, 

105825394, 105845802, 105850927 

SpliceMotifs 

Splice junction motifs be-

tween each exon, in the for-

mat "Exon n - 1 donor / Ex-

on n acceptor" 

/AC, CT/AC, CT/AC, CT/AC, CT/AC, 

CT/AC, CT/AC, CT/AC, CT/AC, CT/AC, 

CT/AC, CT/AC, CT/AC, CT/AC, CT 
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4 RESULTS 

In this chapter, the results from two different analysis cases with Novellette are reported 

and the performance of Novellette is investigated. In the first case, one-class analysis is 

performed for the 169 TCGA GBM samples. The second case covers a two-class analy-

sis of prostate cancer (PC) samples versus castration-resistant prostate cancer (CRPC) 

samples from a recent study (Annala et al. 2013). In addition, by running the gene iden-

tification analysis with RNA-seq reads from known, protein-coding genes and regions 

outside any known genes, the capability of the scoring approach in Novellette to distin-

guish protein-coding sequences from random DNA sequences in the genome is evaluat-

ed. Finally, a survival analysis is performed for the one-class analysis case to study 

whether the outlier expression approach of Novellette is able to discover novel tran-

scripts that may have biological significance. 

4.1 One-class analysis with GBM data 

In this section, the results for running a full analysis with Novellette with the same 169 

glioblastoma multiforme samples that were used in the previous analyses are reported. 

The full analysis covers the following steps: detection of interesting windows based on 

outlier overexpression analysis, merging of consecutive windows into longer, overlap-

ping regions, survival analysis based on expression values calculated in these merged 

regions, and finally the gene identification analysis.  

4.1.1 Preliminary analysis and outlier expression 

The analysis begins with aligning the 169 raw sequence files with TopHat (using default 

parameters) against a reference genome (version hg19) and using SAMtools to create 

sorted and indexed, binary files (BAM files). The RPM normalized read coverage val-

ues are then calculated with Novellette, using a 500 bp window and a 250 bp sliding 

step. Since there are some regions in the genome that contain unmappable sequences 

(e.g. the telomeric repeat regions) and regions that typically yield no transcribed RNA 

(intergenic regions), the coverage matrix may contain a significant amount of rows with 

only zeros. These rows and also windows that overlap with any known genes are re-

moved from the matrix in this analysis before moving to the next step. 

 With the filtered coverage matrix of RPM values, an outlier overexpression analysis 

is performed using the quantile q = 0.8. This approach aims to detect all 500 bp win-

dows with significantly higher expression in 20 % of the most highly expressed samples 

compared to the rest. After the RPM values of each 500 bp window with at least one 



 49 

non-zero value have been divided into two quantiles this way, the default criteria (as 

described in Section 3.2.2) are used for filtering outliers with significant difference in 

expression. As a result, 336 differentially expressed windows are detected before and 

113 after merging consecutive diff. exp. windows. Based on a graphical inspection with 

IGV, however, some of these windows appeared to contain millions of reads mapped 

with a very poor quality. When comparing the sequence of these reads with the PCA 

adapter sequences used in the wetlab protocol of Illumina Genome Analyzer sequencer 

(which was used in the TCGA project), a 100 % match is found, implying a failure in 

purifying the RNA content prior to sequencing. Therefore these windows are systemati-

cally removed as technical artifacts, leaving 53 final novel transcript seeds for the 

gene identification analysis. 

4.1.2 Gene identification 

Using the 53 novel transcript candidate regions and default parameters for the gene 

identification analysis in Novellette, the scores are calculated and the full gene struc-

tures are formed, using the top 5 most highly expressed samples for each transcript as 

input for the data-driven gene identification. The mean and standard deviation of the 

resulting total score values are 0.5752018 and 0.1439068, respectively. In Figure 4.1, an 

example of the graphical illustration with IGV is shown for a) the identified novel tran-

script with the best total score and b) for the transcript with worst score. The best tran-

script shows a clear exon structure of two exons, and an open reading frame covering 

both exons is found. The worst transcript, instead, only has a single exon and also lacks 

the poly-A tail motif in the 3’UTR, suggesting that this transcript may actually be an 

RNA-seq artifact or a repetitive region in the genome. The full, detailed table with gene 

structures and scores is shown in Appendix B. 

4.1.3 Survival analysis 

To evaluate the biological significance of the identified 53 novel transcripts, the expres-

sion values in their seed regions (the input given to the gene structure identification 

analysis) for all 169 GBM samples are calculated. For each novel transcript candidate, 

the values are then divided into two subgroups (high expression and low expression) 

using K-means clustering. Finally, the survival times of patients belonging to each 

group are then used for calculating a p-value with logrank test between the low and high 

expression groups for each transcript. In Figure 4.2, survival plots for the best four tran-

scripts based on the logrank test (p < 0.05 for each) are presented, each of which show a 

clear difference in survival between samples with high or low expression. 
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Figure 4.1. The best (a) and worst (b) identified novel transcript based on the scores of 

the gene identification analysis of Novellette. The grey boxes along with the histogram 

represent the aligned reads in one of the 169 GBM samples (G17190) and their counts 

at specific locations, respectively, and the blue connected boxes correspond to the tran-

script structure predicted by Novellette. 
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Figure 4.2. Survival plots for the best four novel transcripts, located in chromosomes 1, 

8 and 17, based on logrank p-value. The plotted value represents the fraction of patients 

that are alive or censored, which is an optimistic estimate of the survival compared to a 

K-M estimate. 

4.2 Two-class analysis: CRPC vs. PC 

In this subsection, the statistical analysis part of the Novellette pipeline is evaluated by 

using prostate cancer data from two different subtypes, CRPC (castration resistant pros-

tate cancer) and PC (a mixture of other prostate cancers) from a recent study (Annala et 

al. 2013). The CRPC class consists of 12 samples and the PC class from 29 samples. 

First, the coverage matrix is calculated using the default window size and sliding step 

and regions that overlap with known genes are filtered out. A statistical test (U-test) is 

then performed for each row in the matrix, comparing the RPM values of CRPC sam-

ples with those of PC samples. This analysis resulted in 491 differentially expressed 

windows with p < 0.05, one of is overlaps with a human endogenous retrovirus K 

(hERV-K) known to be highly expressed in several different cancer types (Agoni et al. 

2013; Wang-Johanning et al. 2003). 
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4.3 Performance of the scoring approach 

To test the performance of the proposed scoring approach as a method to distinguish 

protein-coding from non-coding regions in the genome, 25 protein-coding genes known 

to be differentially expressed in GBM (Brennan et al. 2013) and 181 intergenic regions 

with sufficient expression (RPM > 1.00), chosen randomly from chromosomes 1 and 2, 

are investigated in the gene structure analysis. The resulting score distributions for ran-

dom regions and protein-coding regions are illustrated in Figure 4.3.  

 A clear difference can be seen in each of the score components and the total score, 

protein-coding regions yielding higher scores than the intergenic, random regions, 

which supports the validity of the chosen scoring approach (K-S test p-value for total 

score: p < 0.0001). As was expected, the 3’UTR scores are high for both of the test cas-

es due to the RNA sequencing protocol. The differences in the exon and ORF scores are 

high due to the fact that protein-coding regions usually have multiple exons, while most 

intergenic, random regions yielding RNA-seq content are mainly non-coding or repeti-

tive regions. The few outliers in the exon scores for protein-coding genes arise from 

genes on the opposite strands that either overlap or are very close to each other, which 

Novellette is unable to separate in the gene structure analysis and thus gives penalty in 

score due to contradictory strands in splice junction motifs. These also affect the ORF 

scores, since a continuous ORF covering each exon cannot be assigned to a transcript 

that consists of parts from genes on opposite strands. 

 

 
Figure 4.3. Boxplot illustration of the score distributions for each component and the 

total score, red boxes representing the random regions and green boxes the protein-

coding regions.  
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5 DISCUSSION 

In this work, a thorough analysis pipeline for detecting novel transcripts from RNA-seq 

data, Novellette, has been presented and the basics of statistical hypothesis testing and 

evaluating data similarity and normality have been introduced. The results of several 

analyses with different type of data all show that Novellette is able to reliably discover 

novel transcript candidates with biological significance and to distinguish protein-

coding regions from non-coding regions with the scoring approach used in the gene 

identification analysis. However, improvements still need to be done to the gene identi-

fication algorithm as the run time for more than thousand highly expressed, protein-

coding regions exceeded two weeks. In addition, the issue of merging two genes on op-

posite strands in the current version of Novellette is bypassed by assigning a penalty to 

the exon scores, although the problem could be thoroughly solved with an iterative 

component to the gene structure analysis, in which potentially separate transcripts 

would be split into two different transcript candidates. Finally, Novellette is currently 

available only as a set of separate source code files and binaries, but an integrated and 

easy-to-use command line tool that covers the whole analysis will be developed in the 

near future. 

 Data normality and whether or not it affects the choice of the statistical testing 

method used in a biological study has been discussed in this work. Although from a 

mathematical point of view the use of Welch t-test is justified only when a) the data is 

normally distributed or b) the sample size large enough to make the central limit theo-

rem valid, it is widely used in bioinformatics even when neither of these conditions ap-

ply. As was shown in this work, count based RNA-seq data indeed is not normally dis-

tributed and therefore t-test is not used in the analysis pipeline of Novellette. However, 

biological studies utilizing t-test can still be successful even though its use is invalid, 

since the results are always validated in the laboratory with other methods as well. For 

gene expression values, e.g., the difference in mean or median expression (both fold 

change and the absolute difference) between two classes is a more important indicator 

of biological significance than a single p-value. In addition, since the normal distribu-

tion is a theoretical mathematical model that never describes perfectly a data set in a 

real study (whether or not biological), the t-test is actually never perfectly valid. In con-

clusion, the t-test is sufficiently accurate for any data set, the distribution of which at 

least slightly resembles a normal distribution, but if there is no evidence for data nor-

mality at all, other hypothesis testing methods such as U-test should be used. 
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APPENDIX A 

In this appendix, the most important parts of the analysis pipeline of Novellette are 

briefly introduced. Each of the source codes listed here are available for download at 

https://www.dropbox.com/s/zqssssivrs2g30w/thesis_sourcecodes.zip, although the pro-

cess of developing a more user-friendly, integrative command line tool is still unfin-

ished. In addition, the script for running a statistical testing analysis is currently under 

revision and hence it will not be available for download yet. 

 

File Description 

copa.R 

This R script performs the outlier analysis (Cancer Outlier Profil-

er Analysis). The quantiles and coverage matrix to be analyzed 

are given as command line parameters. 

seqtools.cc 
This file contains all of the functionality of the gene structure 

analysis pipeline. It is used by the script "gene_structure.cc". 

seqtools.hh 
The header file for seqtools.cc containing also all the (default) 

parameter values used in the gene identification analysis. 

gene_structure.cc 

The main program for running the gene identification analysis. 

This script will be the one that takes in all the user-defined pa-

rameter values for the gene identification (work still in progress). 

rna_coverage.cc 

This tool takes any number of SAM files, a sliding step size and a 

window size as input and calculates and prints the RPM normal-

ized expression values in the coverage matrix format (.igv). If the 

input is in the binary (BAM) format, it can be first transformed 

into SAM format by using SAMtools. 

  

https://www.dropbox.com/s/zqssssivrs2g30w/thesis_sourcecodes.zip
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APPENDIX B 

This appendix contains the details of the 53 novel transcripts identified in the GBM da-

taset. Due to the large size of the table, some fields are omitted. 

 

Chr Start End Strand TotalScore ExScore PromScore UtrScore OrfScore PromInfo nExons 

1 37598751 37602000 + 0.963333 1 0.853333 1 1 ini,DPE,CpG_island 2 

17 62461251 62464000 + 0.934167 1 0.986667 0.75 1 ini,DPE,CpG_island,Charg 4 

6 92035851 92050750 - 0.869167 1 0.56 1 0.916667 ini,DPE 2 

15 46702351 46709851 + 0.864167 1 0.706667 0.75 1 ini,DPE 2 

16 47996640 48081601 - 0.84375 1 1 1 0.375 ini,DPE,CpG_island,Charg 2 

1 154643960 154652301 + 0.800417 1 0.826667 1 0.375 ini,DPE,CpG_island 2 

X 53192381 53209600 - 0.785 1 0.973333 0.25 0.916667 TATA,ini,DPE,CpG_island,Charg 3 

7 9118001 9229550 - 0.729583 1 0.626667 1 0.291667 TATA,ini,DPE 4 

13 110630447 110709856 - 0.721354 0.666667 1 1 0.21875 ini,DPE,CpG_island,Charg 4 

1 68807355 68850000 - 0.699583 1 0.506667 1 0.291667 TATA,ini,DPE 2 

17 10575770 10672451 - (+) 0.686797 0.666667 0.88 1 0.200521 ini,DPE,CpG_island 16 

6 23307541 23640408 - 0.678822 0.875 0.746667 1 0.0936214 TATA,ini,DPE 9 

17 21730501 21731500 + 0.650888 0 1 0.603553 1 ini,DPE,CpG_island,Charg 2 

3 153501 157939 + 0.593056 0 0.622222 0.75 1 TATA,ini,DPE 2 

2 173099601 173102201 

 

0.5625 0 1 1 0.25 ini,DPE,CpG_island,Charg 1 

5 138889751 138891450 

 

0.5625 0 1 1 0.25 ini,DPE,CpG_island,Charg 1 

9 67665301 67666101 

 

0.5625 0 1 1 0.25 ini,DPE,CpG_island,Charg 1 

17 30454751 30455351 

 

0.5625 0 1 1 0.25 TATA,ini,DPE,CpG_island,Charg 1 

9 42608751 42610551 

 

0.5625 0 1 1 0.25 ini,DPE,CpG_island,Charg 1 

21 48002751 48007551 

 

0.561389 0 0.995556 1 0.25 TATA,ini,DPE,CpG_island,Charg 1 

X 44653751 44654500 

 

0.559167 0 0.986667 1 0.25 ini,DPE,CpG_island,Charg 1 

2 112796851 112798251 

 

0.555833 0 0.973333 1 0.25 TATA,ini,DPE,CpG_island,Charg 1 

17 72184251 72184750 

 

0.553611 0 0.964444 1 0.25 ini,DPE,CpG_island,Charg 1 

9 70631051 70632051 

 

0.5525 0 0.96 1 0.25 TATA,ini,DPE,Charg 1 

9 42236301 42237301 

 

0.5525 0 0.96 1 0.25 TATA,ini,DPE,Charg 1 

9 68284501 68285250 

 

0.550278 0 0.951111 1 0.25 TATA,ini,DPE,Charg 1 

9 70596901 70599000 

 

0.549167 0 0.946667 1 0.25 TATA,ini,DPE,CpG_island 1 

1 153560951 153562351 

 

0.548056 0 0.942222 1 0.25 TATA,ini,DPE,Charg 1 

13 104880751 104881500 

 

0.546944 0 0.937778 1 0.25 TATA,ini,DPE,Charg 1 

2 140649501 140650500 

 

0.543611 0 0.924444 1 0.25 TATA,ini,DPE,CpG_island 1 

13 50528801 50530350 

 

0.5425 0 0.92 1 0.25 ini,DPE,CpG_island 1 

19 46927751 46932000 

 

0.5325 0 0.88 1 0.25 ini,DPE,CpG_island 1 

21 27588001 27589801 

 

0.5325 0 0.88 1 0.25 ini,DPE,CpG_island 1 

6 99297401 99299801 

 

0.530278 0 0.871111 1 0.25 ini,DPE 1 

9 42202151 42204050 

 

0.529167 0 0.866667 1 0.25 TATA,ini,DPE,CpG_island 1 

1 120693251 120697251 

 

0.521389 0 0.835556 1 0.25 ini,DPE,Charg 1 

19 47799751 47800351 

 

0.5 0 1 0.75 0.25 ini,DPE,CpG_island,Charg 1 

21 46975501 46976501 

 

0.5 0 1 0.75 0.25 ini,DPE,CpG_island,Charg 1 

2 104066278 104096501 + 0.499306 0 0.622222 1 0.375 TATA,ini,DPE 2 

8 90598051 90600300 

 

0.496944 0 0.737778 1 0.25 ini,DPE,Charg 1 

6 153943501 153944250 

 

0.491389 0 0.715556 1 0.25 ini,DPE 1 

2 241587551 241589351 

 

0.48 0 0.92 0.75 0.25 ini,DPE,CpG_island 1 

13 110076001 110077000 

 

0.4725 0 0.64 1 0.25 TATA,ini,DPE 1 

18 64289001 64289750 

 

0.47 0 0.88 0.75 0.25 ini,DPE,Charg 1 

8 79872801 79873601 

 

0.454722 0 0.568889 1 0.25 ini,DPE 1 

2 104066001 104067900 + 0.45375 0 0.44 1 0.375 TATA,ini,DPE 2 

19 31201651 31204451 

 

0.45 0 0.8 0.75 0.25 TATA,ini,DPE,CpG_island 1 

7 148199001 148199750 

 

0.45 0 0.8 0.75 0.25 ini,DPE,CpG_island 1 

7 54802501 54809750 

 

0.431389 0 0.475556 1 0.25 TATA,ini,DPE 1 

22 29574801 29577150 + 0.424777 0 0.595556 0.853553 0.25 TATA,ini,DPE 1 

5 63682201 63688401 

 

0.416667 0 0.666667 0.75 0.25 TATA,ini,DPE,Charg 1 

5 87063301 87066700 + 0.373333 0 0.493333 0.75 0.25 TATA,ini,DPE 1 

1 68807251 68809150 + 0.226944 0 0.657778 0 0.25 TATA,ini,DPE 1 

 


