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Grafeenin ainutlaatuiset ominaisuudet ja mahdolliset sovelluskohteet ovat tehneet
materiaalista nykyddn hyvin tunnetun. Siliseeni on kuitenkin uudempi kokeel-
lisestikin havaittu materiaali, jolla on samat hammaéstyttavit ominaisuudet kuin
grafeenilla. Liséksi siliseenilld on kaksi huomattavaa etua grafeeniin verrattuna.
Ensinndkin vyodaukko siliseenissé on paljon suurempi kuin grafeenissa, mika tekee
siliseenistad houkuttelevamman materiaalin elektronisiin sovelluksiin. Toisekseen sili-
seeni on yhteensopiva nykyisten pii-perustaisten puolijohdeteollisuuden menetelmien
kanssa.

Siliseenin elektronirakennetta on téssé tyossa tutkittu tight-binding-menetelméalla
sekd Greenin funktioilla. Erityisesti on keskitytty vyoaukkoon ja sen kiyttaytymiseen
sahkokentdssa. Lisdksi on tutkittu paikallisia ilmioita zigzag-nauhoissa. Lopuksi
nauhan keskelle on luotu keinotekoinen rajapinta sdhkokentilld, jotka osoittavat eri
suuntiin omissa nauhan puolikkaissaan.

Tulosten perusteella havaitaan, etta siliseenin vyorakoa voidaan ulkoisesti sdataa
sihkokentalld. Sédhkokentdn kasvattaminen ensin pienentdd aukkoa, kunnes se taysin
sulkeutuu ja alkaa taas kasvaa. Vyoaukon helppo ja yksinkertainen manipulaatio
avaa monia sovelluskohteita elektroniikassa.

Nanonauhoissa havaitaan kvantti-spin-Hall-ilmio, silla helikaaliset reunatilat aset-
tuvat bulkkiaineen vyoaukkoon. Tama viittaa siliseenin olevan topologinen eriste.
Liséksi siliseeninauhassa, johon on luotu rajapinta vastakkaisilla sdhkokentilld, havai-
taan tilojen paikallistumista rajapinnan laheisyyteen. Nama rajapintatilat kulkevat
vybaukon yli ja niiden lokalisaatio voimistuu kasvavan sahkokentdn myotéa. Lisa-
tutkimuksia tarvitaan esimerkiksi kokeilemalla erilaisia geometrioita tai lisddmalla

magneettikenttd mukaan systeemiin.
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Graphene is nowadays a famous material due to its exquisite properties and poten-
tial applications. However, silicene is more recent experimentally verified finding
which possesses the same main features that make graphene interesting. Addition-
ally silicene has two advantages over graphene. Firstly it has considerably larger
band gap which is very important for electronic applications. Secondly silicene is
much more suitable when it comes to actual applications with today’s silicon-based
semiconductor industry.

The electronic structure of silicene has been studied with tight-binding method
supplemented by Green’s function calculations. Concerning bulk silicene, the fo-
cus has been on the band gap and its manipulation with electric field. We have
also studied nanoribbons where we have looked for localized effects at the edges.
Furthermore an artificial interface has been created in the middle of the ribbon by
applying opposite electric fields on the separate halves of the nanoribbon.

In summary, the results indicate that the band gap of silicene can be externally
tuned with electric field. The gap becomes smaller until it completely closes by
increasing the field. After this is starts to grow once more. Easy manipulation of
the gap suggests a wide range of potential applications in electronics.

Nanoribbons exhibit quantum spin hall effect as there exist helical edge states in
the bulk gap. In effect this suggests the topologically insulating nature of silicene.
Furthermore, electric field interfaced silicene shows localization of states near the
interface. These interface states cross the gap and their localization strengthens
with increasing electric field. Not much can be said yet as further research is needed

in the form of different geometries or application of magnetic field, for example.
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Arriving at the subject of this thesis was more of a coincidence than strict intention.
Originally silicene was to be a brief milestone in our quest to start studying three-
dimensional topological insulators. Instead, silicene turned out to be an intriguing
subject in itself.

As such the project has provided challenges and we have pondered the models
and results back and forth with each iteration leading to a "better” idea. As a result
everything on the way didn’t find its place in the thesis and some have been reserved
for possible future use. Despite this the thesis consists of the most central findings
in silicene.

First of all I would like to thank my supervisor Jouko Nieminen for introducing
me to the world of tight-binding. In addition, he’s given me a hot topic to work on
and presented valuable suggestions and ideas which made this thesis possible.

I would also like to offer my gratitude to Dr. Hsin Lin who often presented sound
observations and viewed results with a critical eye. Without his help this thesis
would look totally different especially when it comes to the last issue of the work,

interfaced silicene nanoribbon.

13 August 2013
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1. INTRODUCTION

Both graphene and silicene have properties that make them very promising for
spintronic applications. They are probably the most prominent materials in this area
of research due to their superior characteristics. However, information processing
through spin requires spin propagation over long distances which has been impossible
so far. Graphene and silicene represent a breakthrough in this field. For example,
spin relaxation length of 5 um at room temperature in graphene was demonstrated
by Gao et al. in IEEE International Electron Devices Meeting in 2012 [8]. This
is the current record which greatly surpasses previous achievements. Moreover, a
whopping relaxation length of over 100 um is achieved when graphene is cooled near
absolute zero [3].

In addition, these materials have other unique properties useful in spintronics. For
instance, magnetic moments can be controlled in graphene when electrons condense
around vacancies. By dissipating and condensing these electron clouds, the magnetic
moments they carry can be switched on or off. This is the first time magnetization
itself has been toggled rather than just reversing the direction of magnetization. [19].

This thesis attempts to shed light on the electronic structure of silicene in an
easily comprehensible way. Hopefully the ideas and methods presented here are
easily grasped by also those not familiar with condensed matter physics. As such
we will recreate some former results with a deeper derivation than those found in
publications and also devise something new of our own.

We are especially interested in two things that affect the main qualities of silicene.
These are spin-orbit interaction and external electric field which have already been
quite thoroughly studied despite the youth of the material. Still, this thesis should
offer some valuable insight and new findings in this area of research.

In computational approach we have basically two alternatives to choose from in
order to study silicene. These are the tight-binding method and ab initio calcula-
tions with density functional theory. We have chosen the former for its simplicity
and ease of use. Furthermore, tight-binding method is also a good choice for possi-
ble future studies which may include more realistic configurations like the effect of
substrate, impurities and defects among others. Tight-binding calculations will be
complemented by Green’s function formalism which allows for more expanded view

and diverse possibilities.
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First in chapter two we begin with an overview of silicene as a material along
with its short history. Furthermore, as all research fundamentally aims for actual
realizations and practical applications, we try to cover this topic as well to the extent
that is possible. Next, chapters three and four cover the theoretical means that have
made this thesis possible. In other words, tight-binding theory and Green’s function
formalism will be introduced and presented in such a manner that will help the
reader form connections from theory to actual applications in future chapters.

Finally in chapters five and six we study bulk silicene and silicene nanoribbons,
respectively. On top of this we present the theory of spin-orbit coupling and its
relation to silicene in our attempt to study the interplay of electric field and this
relativistic effect. Chapter five is heavily based on earlier work and results which
will be derived in detail. Chapter six, on the contrary, will also put forth new

information in the context of nanoribbon under inhomogeneous electric field.



2. THE PAST, PRESENT AND FUTURE OF
SILICENE

Graphene is perhaps the most investigated material in the past decade due to its huge
advantages over conventional materials in electronics industry. Novel, faster devices
made from graphene have been proposed to replace their current counterparts. The
main problems in realizing these dreams are the lack of controllable band gap and
incompatibility with current silicon-based technology.

Since its recent discovery, silicene has been looked upon as the solution to these
problems. Silicene, sharing the same important electronic properties as graphene,
could be easily incorporated into present technology with the huge advantage of an
appreciable naturally occurring band gap. In principle, graphene could be substi-
tuted with silicene wherever graphene is used. Therefore silicene can be considered
as improved graphene.

This chapter is intended to give a general picture of silicene. The most important
things to note are the properties that make silicene highly interesting for a broad
range of applications. However, as a very new material all of silicene’s possibilities
have not yet been revealed. The most basic question — how to incorporate silicene’s

properties to practical solutions — is also open.

2.1 History

The history of silicene is short. This statement refers to the fact that silicene was
experimentally observed only as recently as 2010 and extensive studies have been
carried out in the past couple of years only. However, Takeda and Shiraishi [29]
predicted silicene structure already in 1994. Despite this the term ”silicene” was
introduced by Guzman-Verri and Lew Yan Voon in 2007 in their studies of silicon-
based structures [11]. In addition there has been some speculation of one-atom
thick silicon sheets for the past ten years. For example, Durgun et al. [5] studied
silicon nanotubes and one-atom thick silicon sheets, or silicene as we now know it,
using ab initio calculations in 2005. This is somewhat surprising given that the first
one-atom thick material — graphene — was initially produced in 2004 by Geim and
Novoselov and silicene was considered purely hypothetical. Naturally the discovery
of graphene aroused much interest and led to a huge amount of studies fueled by

graphene’s huge potential as the next-generation electronic device material. Though
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Figure 2.1: Silicene honeycomb structure on Ag(111). Adapted from reference [14].

graphene still remains a hot topic, silicene has started to take its place as the next
wonder material. This can be attributed to its similar properties to graphene as well
as its easier inclusion to current silicon-based technologies.

As previously mentioned, silicene was first synthetized in 2010 by Lalmi et al. [14].
Even though this was the first major breakthrough in producing a real silicene
sheet, the honour of the discovery can be shared among Lalmi’s group and Vogt’s
group. In 2012 Vogt et al. were able to synthetize silicene on Ag(111) surface in the
same manner as Lalmi’s group [34]. However, Vogt’s silicene had arguably better
quality since its Si-Si distance better matched values given by DFT calculations.
Furthermore, Vogt et al. questioned Lalmi’s results. They believed the STM images
presented (figure 2.1) showed only clean Ag(111) surface mimicking silicene-like
structure. In any case, these were only suspicions and both groups can be granted
the honour of being the first to produce silicene on substrate.

Nowadays there has been a number of studies considering the electronic struc-
ture of silicene as well as silicene nanoribbons. Especially the means to tune the
band gap is important for possible electronic applications and this has been studied
by Drummond et al. [4] among others. Most studies are centered on the topic of
single-layer silicene but multilayered structures have not been totally omitted. For
example, Liu et al. investigated bilayer silicene and found it exhibiting a supercon-
ducting state [16]. Single-layer silicene has also been experimentally connected to
superconductivity by Chen et al. with a critical temperature of 35-40 K [2]. This
again was observed with Ag(111) as substrate. On top of all this, silicene has been
connected to topological insulators which is a brand new field in material science.
This shows how broad range of phenomena can be found in silicene and why it is

an intriguing playing ground for both experimentalists and theorists alike.
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2.2 Fabrication and substrates

Fabricating a single silicene sheet is a challenging task. Carbon can naturally form
honeycomb structures through sp? hybridization and the result is known as graphene.
Comparing this to silicon, sp? hybridization is not energetically favourable as sp?
hybridized structures are more stable for silicon. This is the reason why graphene
has been successfully made as an independent material in contrast to silicene. De-
spite this difficulty, freestanding silicene has been shown to be stable when a small
buckling is introduced to the structure [13]. However, in practice silicene requires a
substrate onto which it can grow. Attempts have been made to extract an indepen-
dent silicene sheet but so far these have been in vain.

Forming silicene on Ag(111) surface can be done in ultrahigh vacuum conditions.
First the silver surface is cleaned by a combination of sputtering and annealing.
The second step involves heating a silicon wafer so that silicon is evaporated and
then deposited onto the surface held at 250°C. This is the method used by both
aforementioned groups. Lalmi et al. also pointed out that the rate of deposition
must be lower than 0.1 monolayers per minute.

Up till now only two other substrates have been found. The first one is (0001)-
oriented thin film of zirconium diboride (ZrBs) grown on silicon wafers which support
the formation of silicene through surface segregation [7]. The other is (111)-oriented
crystalline iridium as reported by Meng et al. [18|.

The main problem with these three substrates is that they are conductors. As
such they hide silicene’s electrical properties and make it difficult to compare ex-
perimental data with theoretical predictions. What is worse, Ag(111) is unsuitable
substrate as it destroys the Dirac cone found in silicene [35; 10]. With this in mind,
a semiconducting or insulating substrate that preserves silicene’s properties needs
to be found. The best solution would of course be to make an independent sheet of
silicene but so far no clear idea as how this could be done has been presented.

Even though no insulating substrates have been experimentally found, Liu et al.
performed first-principles calculations which showed that, when used as a substrate,
hexagonal boron nitride monolayer and Si-SiC preserve silicene’s main electrical
properties [17]. In this way these provide an interesting possibility to experiment
on silicene. It is not, however, obvious if these kinds of systems could be created in

practice.

2.3 From graphene to silicene

The success of graphene as the prodigy of future electronic device material has
set up the way for silicene. This can be easily understood when comparing these

materials. Both of the them share the same basic geometry which also leads to
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Figure 2.2: The honeycomb structure, unit cell and Brillouin zone of silicene [26].

similar electronic properties. The next two subsections will go over the geometries
of these materials as well as their main electronic properties which have excited
the scientific community with extraordinary qualities. Especially the differences are

worth to note to understand why silicene prevails over graphene.

2.3.1 Geometry and reciprocal space

Starting from graphene, its geometry can be characterised as a honeycomb structure
where each carbon atom has three nearest neighbours. The structure is fully planar
and it can be decomposed into two sublattices, marked A and B in figure 2.2.
Therefore the unit cell (shaded area) consists of two atoms, one from each sublattice.

Silicene shares the same honeycomb formation but includes a small buckling to
the structure. Side view in figure 2.3 best demonstrates this. The sublattices have
shifted so that they don’t rest in the same plane anymore but rather form their own
planes. Throughout this thesis the value of 0.46 angstroms is used for the buckling
parameter A. Other sources may give slightly different values.

The buckling is the key structural aspect which separates silicene from graphene.
It introduces additional properties in silicene’s electronic structure. As perhaps the
most important possibility, this buckling enables careful manipulation of the band

gap by electric field. More of this will be presented in chapter 5.

o:oozn:oo:oo:oW

a) Graphene ) Silicene

Figure 2.3: Side view of (a) graphene and (b) silicene structures [13].

Turning now to the reciprocal space, it is easily seen that the Brillouin zone is
hexagonal as presented in figure 2.2. This stems from the fact that the real space

geometry is hexagonal as well. Important symmetry points in the Brillouin zone are
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marked in the figure apart from the gamma point in the center of the zone. The
corners of Brillouin zone are labeled as K or K’ as these are inequivalent in the sense
that they cannot be connected with a reciprocal lattice vector. The center point
between neighbouring K and K’ point is marked M. These high symmetry points

will be used in the band structures presented later.

2.3.2 Properties

As silicene is structurally very similar to graphene, we would expect their properties
to be alike. Therefore we summarize the main properties of graphene which we
would expect to find in silicene as well. In fact, some of them have already been
theoretically found.

Graphene has been verified to be mechanically very strong. Its breaking strength
is over 100 times greater than a hypothetical steel film of the same thickness. On
top of this, graphene is also more flexible than steel and very light. Its density is
only 0.77 meg/m2 and so a graphene sheet is much stronger, lighter and more flexible
than a steel film.

Moreover, graphene has very high electrical conductance. This is caused by a
linear dispersion relation near the K point. This is called a Dirac cone since a cone-
like structure is formed in three dimensions. The Dirac cone has been shown to lead
to massless Dirac fermions. The potential applications are obvious since electrons
residing around K point could be used for very fast electronics. The minimum limit
of resistivity at room temperature is as low as 10 Qcm which is the lowest known
value at this temperature regime.

Graphene also has the highest thermal conductivity of any carbon allotrope, even
exceeding the thermal conductivity of diamond. For example, graphene’s thermal
conductivity is 10 times higher than copper’s. Graphene also possesses useful optical
properties as it is almost transparent. It absorbs only 2.3 % of light regardless of
wavelength and therefore it has no color. [30]

A Dirac cone is also present in silicene which leads to electrical conductance
comparable to graphene. However, one of graphene’s big limitations is the lack of
natural band gap which greatly hinders its application to electric devices. Strictly
speaking this is not true because spin-orbit coupling (SOC) induces a tiny gap in
graphene. This is nevertheless negligible. In silicene instead, spin-orbit interaction
is much stronger leading to a small but still appreciable naturally occurring gap
between valence and conduction bands. Also, the gap can be easily controlled with
a perpendicular electric field giving silicene a clear advantage over graphene.

Furthermore, Xu et al. predicted giant magnetoresistance (GMR) effect in a
structure consisting of zigzag silicene nanoribbon connecting two silicene sheets [36].

Besides GMR, spin-related phenomena in silicene include quantum spin Hall effect
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(QSHE). This has been studied by An et al. [1], for instance. The interesting
point in QSHE is that it is related to topological insulators, a new phase of matter
observed not until 2007. In appropriate conditions, silicene can be characterized
as a two-dimensional topological insulator whose all viable applications are not yet

fully clear.

2.4 Possible applications

Since graphene has been around for some time now, a vast number of applications
have been proposed. To begin with, one of the best known idea is to make field-effect
transistors from graphene. The idea is provoked by the high carrier mobility due to
the Dirac cone. Naturally the lack of band gap forces the use of extra tricks which
complicate the manufacturing of transistors. Silicene is more viable material here
for two reasons. Firstly it has larger band gap which can be easily tuned. The gap
is actually still too small but Quhe et al. have shown how to overcome this difficulty
by adsorption of alkali atoms [25]. Secondly silicene is more compatible with current
semiconductor industry which relies heavily on silicon. In general silicene could be
used in integrated circuits which would benefit from silicene’s exquisite properties.

Graphene is ideal material for e.g. touchscreens, liquid crystal displays and or-
ganic photovoltaic cells which all require transparent conducting electrons. These
in turn are provided by graphene’s high electrical conductivity and optical trans-
parency. The same properties also lead to an intriguing application in solar cells.
Theoretically graphene solar cells could offer 60 % efficiency which is double the
current maximum efficiency reached. These devices would also be very durable and
flexible which is an additional advantage of graphene.

Graphene is also a prospect of distillation processes as it allows water vapor to
pass through but blocks all other liquids and gases. Development of this property
could be a huge improvement for biofuel or alcoholic beverage production. Further-
more, graphene is a great candidate for gas detection as its entire volume is exposed
to its surroundings thanks to its two-dimensional character. As graphene is intrin-
sically insensitive, functionalization is required which can be accomplished by e.g.
coating with suitable polymers. Adsorption of gaseous molecules on the polymer
layer would then locally change the electrical resistance which is detectable thanks
to graphene’s high conductivity and low noise. Partly due to the same reasons
graphene could also be used for mammalian and microbial detection and diagnosis.

The high thermal conductivity of graphene can be utilized if graphene is used as
additive in coolants. Yu et al. reported that even as little as 5 volume percentage
graphene enhances the thermal conductivity of a base fluid by 86 % [37]. Last but
not least, graphene is believed to be a good material for energy storage due to its

exceptionally high surface area to mass ratio. For example, ultracapacitors made
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from graphene could give greater energy storage density than is currently available.
As a very specific application regarding silicene, Tritsaris et al. speculated that
silicene could be used as a high-capacity host of lithium in Li-ion batteries [31].
Additionally silicene contributes more as it is also a viable candidate for spin-
tronic applications which are based on manipulating electron’s spin as well as its
charge. They are expected to be faster and less energy-consuming than today’s
traditional electronic devices. Silicene can contribute to this in more than one way.
Firstly, spin filtering has been the subject in a number of publications. For instance,
Tsai et al. showed how spin-polarized current can be extracted from silicene [32].
Secondly, GMR effect in silicene may be readily used as GMR as an old and well-
known phenomenon has already found its way in many applications. On top of this,
topological insulators have been suggested to be used in quantum computing. Thus

silicene is a material to be remembered when engineering such exotic devices.
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3. TIGHT-BINDING BASICS

In this thesis silicene has been studied by tight-binding (TB) method. Therefore
some insight to TB model is presented in this chapter. It should be noted that even
though the TB method is heavily reduced and simple picture of the physics in solids,
it holds surprisingly powerful and easily implementable theory.

Tight-binding model is a semi-empirical method for modelling solids that form
crystalline structures. It is based on forming the crystal wave function using atomic
orbitals centered on each atom in the crystal. The term "tight binding” indicates
that the crystal potential is strong. Therefore electrons are bound to atoms for a
long time before moving to the next atom. In effect electrons are considered to
move slowly through the lattice. TB often gives good qualitative results and can
be combined with ab initio calculations for comparison. It can sometimes even give
excellent quantitative results with a carefully adjusted parametrization.

Tight-binding method shows at least two clear perks. First and foremost, TB is
computationally very light which is one of the reasons for its wide and popular usage.
Secondly, different terms, for instance spin-orbit coupling, can be easily switched on
or off. This allows to study individual terms and their contribution to the whole

electronic structure.

3.1 Periodic crystal and Bloch sums

In the TB method our aim is to get the band structure of the material we are
interested in. This means we want to know the electronic states (energies) as a
function of wave vector k. Before rushing ahead, we first need a wave function for
the electron corresponding to these energies. Consequently we are using one-electron
picture and begin to form the crystal wave function based on the crystal periodicity.
As the simplest case it is initially assumed that the unit cell of the crystal has only
one atom.

The crystal potential V' is due to the atomic potentials V;
V(r) =) Vur-R) (3.1)
R

where the sum runs over all lattice vectors R. We want to solve the Schréodinger

equation for an electron in a periodic potential. The system is described by the
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Hamiltonian )

=l +V(r) (3.2)

2m
where h is the reduced Planck’s constant and m is electron mass.

In a periodic crystal it is reasonable to assume that the crystal wave function is
related to the orbitals of the atoms that constitute the crystal. Again, it is intuitive
that the wave function should show the same periodicity as the underlying lattice.
This is where Bloch’s theorem steps in. We want to form a periodic wave function

and an appropriate guess is
1 ‘
Box(r) = —=>» ™%, (r—R). (3.3)
VN 4

This is called a "Bloch sum” and it is formed from the atomic orbitals ¢,, accompanied
with a phase factor since the orbitals are located on different sites. Here n tells which
orbital is in question — s, p, d etc. —and N is the number of unit cells in the whole
crystal. It is straightforward to see that the Bloch sum in equation 3.3 satisfies the
Bloch condition

Box(r +Rg) = BB, (r) (3.4)

and is therefore a valid guess for the wave function we are looking for.

3.2 Basis functions

Now we have a wave function for an electron in the crystal. However, the wave
function postulated so far is formed of only one type of atomic orbital. In general
we want the crystal wave function to be a mixture of different atomic orbitals because
often atoms have multiple types of orbitals in the valence shell. It follows that the

final wave function ¥ we are looking for is a linear combination of Bloch sums
Uye(r) =Y cu(k)By(r). (3.5)

This allows ¥ to have mixture of atomic orbital characters. In effect we have now
defined the Bloch sums to be the basis functions of the crystal wave function. Each of
the Bloch sums, or rather each of the atomic orbitals, included in the TB model leads
to its own energy band. Since the interesting things are due to the valence electrons,
only valence orbitals are usually included in any realistic model. Sometimes one can
use unoccupied orbitals as well to get a better description of conduction bands.
Having formed a wave function we are happy with, it remains to solve the
Schrodinger equation
HUy = 6,V (3.6)
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where it is explicitly indicated that the energies € are a function of the wave vector.
Solving the equation is best done in matrix form. Getting there will be the subject

of the next section.

3.3 Matrix formulation

Quantum mechanically the Hamiltonian matrix elements H,, ,, are integrals between
basis functions with respect to the Hamiltonian. To get them we simply need to
multiply the Schrodinger equation in 3.6 on the left by the complex conjugate of
another Bloch sum B,, k. After this we integrate over the whole crystal.

After multiplication and integration the left hand side of equation 3.6 is

B H 19 = 3009 [ B HBus) = 3 Hon0en. - (67)

n

What we have achieved here is to extract the matrix elements between two basis
functions, one formed from n-type atomic orbitals, the other from m-type orbitals.

Similarly the right hand side has the form

Bl ] ) = a3 en(k) / OBk = 4 S Men(k). (38)

The matrix S directly measures the extent of overlap between functions B,, x and
B, x. As the Bloch sums are formed from atomic orbitals, the matrix S actually
tells the overlap between atomic orbitals. Therefore it is called the overlap matrix.

Whether it is obvious or not, we have formulated a matrix equation with Bloch
sums as the basis functions. Writing equations 3.7 and 3.8 implicitly, we have a

generalized eigenvalue problem
H(k)c(k) = e.S(k)c(k). (3.9)

At this point there is only one problem left. We need to know what the matrix
elements are. As it turns out, this is fairly easily solved. This is also where the

empirical part of tight-binding turns up.
3.4 Hopping integrals

We are looking for the Hamiltonian matrix elements H,, (k) as defined in equa-
tion 3.7 by the Bloch sums. The natural way to follow is to insert the Bloch sum

definitions (equation 3.3) into this and see what will happen. If we change the
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summation indexes in the Bloch sum definitions from R to R; and Ry, we get

1 .
Hmn k) = — 1k-(R2R1)/ *(p— H (T —
RPN xRy, (x — Ry)
L (3.10)
= — Z eik'(Rz—R1)Hm7n(R2 - R,)
NRl,Rz

From this we see that the matrix element depends only on the difference Ry — Ry
and not R; or Ry individually. We can then simply sum over one index, R, which
still goes through the whole crystal. The other sum in 3.10 then just gives the number
of unit cells N in the crystal. In summary, the Hamiltonian matrix elements are of

the form

Hypn(k) =) e™®H,, .(R) (3.11)

where we have defined
H..(R) = /qﬁfn(r)Hqﬁn(r —R). (3.12)

The elements H,,,(R) are between atomic orbitals ¢,, centered at the origin
and ¢, centered at R. The integral 3.12 therefore measures the amplitude that an
electron in orbital ¢, moves, or hops, to the orbital ¢,,. Since the basic assumption
of TB model was to assume strong ionic potential, this amplitude cannot be too
large. Also, when |R| is large the orbitals ¢,, and ¢,, do not overlap appreciably
and the integral is negligible. This allows us to confine ourselves to a few nearest
neighbours at most.

However this still doesn’t tell us what the actual value of the matrix element
H,, (k) is. In fact, the TB model doesn’t explicitly tell us this. The values H,, »(R)
are rather taken as constant parameters to TB model and are called hopping param-
eters. In practice the hopping parameters can be found out by fitting to ab initio
calculations, for example. It is also worth noting that they depend on the distance
|IR|. Thus we need a hopping parameter for every value of |R|. Luckily we only
need to consider nearest neighbours as discussed above.

One special case is H,, ,,(0) where we now have a matrix element between orbitals
n and m centered on the same site. To study this, it is useful to split the crystal

potential V' in equation 3.1 into two parts
V(r) = Vyu(r) + V'(r) (3.13)

where the first term is the potential due to the atom at the origin and the second

term contains the potential due to all the other atoms. This means V’(r) is small
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near the origin and we can write

Hypn(0) = (6n() | H | 60(2))
= (6ut (—%vz V)

The first term involves two atomic orbitals on the same site with the Hamiltonian

(3.14)

¢n<r>> () [ V() | f(0)) -

being the atomic Hamiltonian. Therefore the first term equals to the atomic eigen-
value ¢, if the orbitals are the same. Otherwise the result is zero since atomic
orbitals are orthogonal to each other. The second term instead can be neglected
because it involves two orbitals at the origin together with a potential that is small

there. To summarize, the term H,,,(0) can be approximated as
Hm,n(o) = 877,5mn (315)

where 0,,, is the Kronecker delta. These are called on-site energies. [21].

One useful point should be remembered here. We don’t actually need to use the
atomic orbital energies as our on-site terms since we can define the energy reference
point arbitrarily. Hence it is common to set the on-site terms to zero. When we are
using different orbitals, however, their relative difference should be maintained.

Lastly, there is the notational part of hopping integrals. The common notation
used in tight binding models is followed in the subsequent chapters. Therefore it
is time to introduce the parameter ¢ which is just the hopping integral defined in
equation 3.12

tmn(R) = Hpn(R). (3.16)

In effect, TB models present a hopping parameter for every pair of orbitals m and
n and for every distance |R| that includes a new neighbour.

Furthermore, often second quantized notation is used when presenting tight-
binding models. In this formalism the Hamiltonian including only one hopping
parameter is presented as

H=—t Z ¢l cio (3.17)
(i.3).0
where c' is the creation operator, ¢ annihilation operator and the sum runs over all
nearest-neighbours (i, j) and spin states (up or down) o. The phase factors el*®
which entail the wanted k-dependence get hidden in this representation as they are
not written explicitly anymore.

The Hamiltonian in equation 3.17 includes electron’s spin which is unnecessary
for the bare hopping term. Hopping from one orbital to another does not change
spin state and has the same magnitude for both spin states. However, in future

models we will include terms which depend on spin. Hence the spin polarization
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has been included to the bare hopping Hamiltonian. In practice it means that the
hopping Hamiltonian is a block diagonal matrix where both blocks correspond to

different spin. Also, since the blocks are identical, the system is spin-degenerate.

3.5 Generalization to multi-atom unit cell

So far the discussion has been limited to a simple unit cell containing only one
atom. Despite this, the results do not change when multiple atoms in the unit cell
are allowed. To be sure of this, the following briefly presents the generalization of
the previous results.

The generalization is easy to implement and doesn’t entail additional difficulties.
However, the notation is starting to get somewhat awkward. As it cannot be avoided,
let’s include additional subscript ¢ which specifies the particular atom in the unit
cell we are dealing with. The atomic orbitals which the Bloch sums are formed of
are now ¢, ;(r — R—7;) where 7; indicates the position of the i-th atom with respect
to the origin of the cell at R. Using these the Bloch sums in equation 3.3 generalize

to
1 .
Boix(r) = —=> e*®mg (r —R —7,). (3.18)
VN 4

The crystal wave function is still defined according to equation 3.5 with the addition
that the sum now extends over i as well since we want to take all atoms into account.
It should also be remembered that the atoms in unit cell can be different (in this
case we have a compound) and we could include different orbitals from different
types of atoms in the basis. As such the coefficients ¢ depend on 7 as well.

Going back to determining the Hamiltonian matrix elements in equation 3.10, we

now get
1 ~ _Ry—7 .
Hying(k) = 5 ) el @etnfamm) / G5 (r — Ry — 1) Hoy(r — Ry — 7))
Ri1i,R2
(3.19)
— o ik (Z Hm,z’;n,j<R 7 - Ti)eik-R> ok Ty
R

This look exactly like equation 3.11 apart from the two additional phase factors on
both sides. As a matter of fact, the phase factors are superfluous as they can be
regarded as a unitary transformation acting on the matrix in parenthesis. Since the
matrix involved is Hermitian, its eigenvalues do not change under unitary transfor-
mation and the additional phase factors can be disregarded. As a result we regain
the same basic result as in the simple one-atom case.

As was claimed, multi-atom unit cell isn’t basically any different from the initial

assumption that the unit cell contains only one atom. Only additional notation
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has been introduced. Furthermore, nothing has been said about the overlap matrix
S thus far. This is because in this thesis it is totally omitted by setting it to
identity matrix. This can done because the overlap matrix is defined analogously to

equation 3.11
Sma(k) = RS, . (R) (3.20)

R

where S, ,(R) denotes the integral [ ¢¥ (r)¢,(r — R). Now it it assumed that the
atomic orbitals are normalized and do not overlap at all. That is, whenever R # 0
holds, the integral goes to zero. Only when m equals n and the orbitals are at the

same site the integral will be nonzero, namely one.
3.6 Two-center approximation and angular dependency

There are further difficulties related to the hopping integrals we have not yet consid-
ered. The definition of hopping integral in equation 3.12 is composed of three parts:
two atomic orbitals and the Hamiltonian. Since we defined the crystal potential
according to equation 3.1, the integral consists of many terms which in general have
contributions from three regions. These regions are located around the orbitals ¢,,
and ¢,, as well as around the atomic potential V,;. Depending on where the regions

are located at we have four different cases:

1. If the orbitals and the atomic potential all lie on the same site, we have the

on-site integral introduced in section 3.4.

2. If the orbitals lie on separate sites with the potential locating at the same site

with one of the orbitals, we have a two-center integral.
3. If all regions are located at different sites, we have a three-center integral.

4. The final situation arises when both orbitals are on the same site with the

potential being somewhere else.

The last case, number four, was originally neglected by Slater and Koster when they
introduced their tight-binding method in 1954. It can be considered as a correction
to the on-site energies according to equation 3.14 but is omitted here as already
stated. [23].

Furthermore, the two-center approximation is now introduced to be used in this
thesis. It simply means that we ignore the three-center integrals so that the poten-
tial is always located at the site of one or the other orbital. Therefore the hopping
parameters depend only on the relative position between the orbital sites like was
assumed and stated earlier. It should be emphasized that the two-center approxi-
mation is not always valid but usually leads to a good description of the electronic

structure.
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Figure 3.1: The fundamental hopping integrals of s and p orbitals.

The last issue in understanding the nature of hopping integrals is their angular
variation. This hasn’t got any consequence in the case of hopping between two s
orbitals since they are spherically symmetric and look the same when viewed from
any direction. However, when p orbitals are introduced we can have m-bonds as
well as o-bonds between two orbitals as illustrated in figure 3.1. The fundamental
hopping integrals are labeled as (sso), (spo), (ppo) and (ppr) indicating the orbitals
involved and the nature of the bond. The signs of these basic parameters can be
readily deduced. Since two s orbitals have the same sign, the integral (sso) must
be negative. Correspondingly, the element (spo) must be positive since it involves
overlap of lobes of opposite sign. It then follows that the integral (ppo) is positive
and (ppm) is negative.

If we take two p orbitals forming a o-bond (look at the integral (ppo) in figure 3.1)
and start to rotate the other orbital around the other, the hopping integral changes.
When the angle is zero degrees the integral is purely o-type and once the angle
reaches 90 degrees, we have a pure m bond. In between the integral is a mixture of 7
and o-types with the actual amounts depending on the angle of rotation. Similarly
there is angular variation in the hopping integral between s and p orbital. These
have been tabulated up to d orbitals by Slater and Koster [27]. Here we only need the
integrals between s and p and two p atomic states which can be found in table 3.1.
Here [, m and n are the direction cosines of the vector from the left state to the right

state with direction cosine meaning the cosine of the angle between a vector and
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Table 3.1: Slater-Koster table for angular dependencies of hopping integrals.

tss (sso)

tsx l(spo)

tex | P(ppo) + (1 — 1%)(pp)
tvy | Im(ppo) — Im(ppr)
tvz | In(ppo) — In(ppm)

a coordinate axis. That is, the direction cosine [ is with respect to x-axis, m with
respect to y-axis and n with respect to z-axis. The subscripts x, y and z refer to the
three p orbitals. The missing hopping integrals can be constructed by permutation
of indices and cosine directions. [28].

In addition, certain symmetric situations make hopping integrals vanish. For
instance, considering py and py orbitals both lying in x-axis, the resulting hopping
integral is zero because contributions from different lobes cancel each other. This
can be routinely seen from table 3.1 as well where the value of m in this case would

be zero.
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4. GREEN'S FUNCTION THEORY

Green’s functions are a powerful tool which together with TB method provides
versatile arsenal to study solids. Their usefulness stems from the fact that most
properties of the system are related to them. In particular transport properties are
systematically calculated from Green’s functions. Here however we don’t need to
delve so deep into the formalism.

This chapter covers the topic of Green’s functions to the extent that is relevant
and utilized in the following chapters. This includes the basic connection of Green’s
function to density of states with emphasis to its local distribution. All in all Green’s
function formalism is but a small part of the thesis. Nevertheless, it has an important
role. With Green’s functions we are able to study silicene in real space through
localized DOS. In addition we will be focusing on spins separately to find out if a

system exhibits spin-dependent features.
4.1 Basics of Green’s function

Green’s function G(F) is defined through the Hamiltonian as
(E—-—H)GE)=1 (4.1)

where F is energy and [ the identity matrix. From the above equation it is easy to
see that we could calculate the Green’s function of the system by simply inverting
the operator F — H. It can therefore be regarded as an operator in the same way
that the Hamiltonian is with the exception that it is also a function of energy. [38].

To proceed, Green’s function in time space acts as a propagator of a particle
from time ¢ to a later time t’. It is thus natural to expect that the Green’s function
is causal meaning that the future events do not affect the present. In practice we
mean to say that the time dependent Green’s function G(t,t') is zero whenever
the condition ¢ > ¢’ holds. We can get the energy dependent Green’s function
G(FE) from G(t,t') through Fourier transformation where the causality restriction is
implemented by a vanishing imaginary part in. This is generally called a retarded
Green’s function G (FE) but here we drop both the pre-qualifier and the superscript

and define the Green’s function as

Gk,E)=(E—H+in) '=(E+in)l —H)™* (4.2)
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where the last equivalence wishes to clearly indicate that we are dealing with ma-
trices and shows the appropriate form for the Green’s function matrix. The k-
dependence has also been explicitly indicated since the tight-binding Hamiltonian
depends on it. [22].

Now, splitting the Green’s function into a sum running over all the eigenstates

1, of the Hamiltonian, the following is equivalent to equation 4.2:

Gl
G(k, B) Z _Em Enjl _En+m<|- (4.3)

In this basis the Green’s function matrix is diagonal. It is also clear that the eigenval-
ues of the Green’s function operator are just the inverse of the operator £ — H +in.
Green’s function peaks sharply near the Hamiltonian eigenvalues €, and thereby
gives the electronic spectrum. Generalizing equation 4.3, the Green’s function can
be expressed in any basis. Particularly, we want to use the TB basis from which we

take the states a and b to obtain a non-diagonal matrix representation

Gab(k> E) _ Z <a’ | Tl> <Tl ’ b) _ ca(n)c;j(n) . (44)

E—e¢,+in ~ E—e¢,+in

The linear combination coefficients ¢,(n) and ¢,(n) describe how strongly the states
a and b contribute to the eigenstates. To study individual orbitals and their contri-
bution to the energy bands we can calculate the Green’s function partially by setting
both states in equation 4.4 to be the same, i.e. we look at the diagonal elements.
Therefore the numerator c,(n)ci(n) becomes |c,(n)|* which is just the norm squared
of the corresponding linear combination coefficient. To get the total contribution
from all the orbitals in our basis, we only need to sum over all of them. Interestingly
we can also choose to look at the cross terms between orbitals which comes with an
additional feature: the complex phase leading to interference effects. Here however
we are only interested in the diagonal terms. [20].

To close the discussion of defining the Green’s function, the precise connection
to the tight-binding models is now established. In fact, we want to differentiate
between the two spin states and recalling that the TB basis consists of atomic

orbitals centered on different sites, we write the equation 4.4 again as

Cio(n)ct, . (n)
Givjor(k, F) = Z - J+ o (4.5)

Here 7 and j mark the atomic orbitals and o labels the spin state. The coefficients

give the spectral weight of each orbital and are obtained by solving equation 3.9.
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4.2 Density of states

There is a very fundamental connection between Green’s function and density of
states (DOS). The density of states p of the system is given by the imaginary part

of the Green’s function |G| as [3§]

pk,E) = —%%[G(k, E)]. (4.6)

At this point it is fair to wonder what the role of the imaginary part in of the Green’s

function is. In fact, in the case of DOS it can be seen to be connected to the width

of the energy levels. In effect, the larger 7 is, the broader are the energy levels. We

can use this to our advantage by using an appropriate value for n according to the
level of needed resolution.

We are also interested in the local density of states (LDOS). According to equa-

tion 4.5 we obtain LDOS which is even partitioned to spin densities of states:
1
pio (. E) = ——S[Giio (k, E)]. (4.7)
T

This tells the DOS at the site i of the system. In addition, we can choose to look at
the different spins individually. All in all this is a very useful equation in the sense
that it makes it possible to study localized effects. For example the density of states
is very different at the edge compared to the bulk deeper in the sample.

We will mainly be using equation 4.7 to calculate LDOS projections on a k-F
grid to see how the bands are distributed in real space and if they are spin polarized.
In effect basic TB calculations gives us the overall band structure. Through Green’s

function formalism we can then study where individual bands come from.
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5. MODELLING OF BULK SILICENE

Ab initio calculations stand physically on solid ground and they would give the most
precise results. Despite this we can study silicene with the simplified picture given
by TB models which are accurate enough for our purposes. In addition to being
very light, TB calculations offer the possibility of studying different interactions and
terms individually. We will be taking full advantage of this as well.

We now apply tight-binding theory to silicene. To be more precise, we start with
a fully periodic system, i.e. bulk silicene, in which we use nearest-neighbour TB
model. This means that we can restrict ourselves to only one hopping parameter
per distinct pair of neighbouring orbitals. Recall also that every atom in silicene
structure has three nearest neighbours (figure 2.2).

In addition, here we go further than the bare hopping model takes us by studying
the effect of spin-orbit coupling on the electronic structure. Together with an electric
field, SOC induces interesting physical phenomena which will be revealed in the

following discussion.

5.1 Band structure

Silicon has the electron configuration of [Ne|3s?3p? indicating that both s and p
orbitals are occupied in the valence shell. Therefore we form the TB basis from s,
Px, Py and p, orbitals. In fact, s and the two p orbitals, px and py, lying on the same
plane as the silicene sheet, are responsible for holding the structure together. On
the contrary, p, orbital points perpendicular to the silicene sheet and is responsible
for the interesting electronic properties. The Hamiltonian derived here is based on
the model by Vogl et al. [33] who used it to study semiconductors such as silicon.
Here we apply the same parametrization to silicene. This controversy leads to a
rather faulty band structure but most importantly it is qualitatively right.

Silicene has two atoms in the unit cell of the lattice as showed in figure 2.2. This
implies an 8 x 8 Hamiltonian since we have two atoms each holding 4 orbitals. The
task is to form the Hamiltonian in equation 3.11 in the basis of {s1, px1, Py1, Pa1, Sos

Dx2, Dy2; Ds2}- It is easily seen that the Hamiltonian can be divided to blocks

A B
B A

(5.1)
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where A and B are 4 x 4 matrices. The block A holds only the on-site terms,

equation 3.15, and it is diagonal

o o o ™
o oMo
oMo o
8o oo

Here E; and E, are the energies of the s and p orbitals.
The block B holds the inter-atomic terms, i.e. the hopping terms, which signify

the electron movement in the crystal. In short, B is basically the following matrix

ts,s ts,x ts,y ts,z

I tx S tx X tx tx Z

B=| e ey (5.3)
ty75 ty7X t}’vy tsz
t t t t

Z,S

N
"

7,7

after we have multiplied each element with the corresponding phase factor e'x'F

and summed over the three neighbours. That is, the first element, for example, is
calculated from B(1,1) = Zj’:l e Rit .. The vectors R; connecting an atom to its
neighbours are easily deduced by noting that the three neighbouring atoms are at the
corners of an equilateral triangle around the center atom. It follows that the angle
between vectors R; and R;; is 120 degrees. The lattice constant a of silicene is 3.86
angstroms giving a distance of about 2.28 angstroms between nearest neighbours.
Consequently this is also the length of each vector R;. Note that neighbouring
atoms belong to different sublattices, i.e. they are not in the same plane (buckling
parameter A = 0.46 A). The full set of parameters used in the calculation is given
in table 5.1. It should be noted that the value of (ppr) is -0.72 eV whereas usually
-1.6 €V is used. Despite this we stick with the value given in the table throughout

this whole work.

Table 5.1: Tight-binding parameters used in the calculation of the band structure. From
Vogl et al. [33].

Parameter | Value (eV)
E; -4.2
E, 1.715

(sso) -2.08
(spo) 2.48
(ppo) 2.72
(ppm) -0.72
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Lastly we can take advantage of a trick which allows us to save some computa-
tional time and trouble. Since the Hamiltonian must be Hermitian, we only need
to calculate the matrix elements above the main diagonal. The elements below the
diagonal are then straightforwardly obtained from the complex conjugates of the
calculated elements. This was already marked in equation 5.1 where B’ indicates

the complex conjugate transpose of matrix B.

Figure 5.1: Unit cell and lattice vectors.

There remains the issue of choosing the path in reciprocal space along which
the band structure will be plotted. At first, however, lattice vectors and reciprocal
lattice vectors should be defined. The computational unit cell along with the lattice

vectors are shown in figure 5.1 where the lattice vectors are

ay = % <\/§ 1 0) (5.4)

a2:g<\/§ 1 o). (5.5)

The atoms belong to different sublattices with A lying higher and B lower. The

corresponding reciprocal lattice vectors are

Ay X ag 27
b — 9 :_(L _1 o) 5.6
! Wal-agxag a V3 ( )
az X aj 2
by = 2r— = =L (1 () 5.7
2 Wa2~a3><a1 a V3 ( )

where the last lattice vector az simply points to the z-direction.
Next we choose to plot the band structure along the path I'-K-M-I'". The sym-

metry points are shown in figure 2.2 with the specific coordinates being

1. 2

K=-b,+-b .
Zbi+ 2 (5.8)
1

M= Sbe. (5.9)

The calculated band structure is shown in figure 5.2. Most notably there is a linear
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Figure 5.2: Band structure of silicene. Dashed line marks the Fermi-energy.

dispersion of the bands near the K point at the energy of approximately 1.3 electron
volts. The point where the bands cross is called Dirac point. Recall that the effective

mass of a particle depends on the band curvature through the relation

PE\
* 2

Hence it can be immediately seen that the effective mass is very small at Dirac
point due to large curvature. This in turn leads to very high carrier mobility. Since
the Fermi-energy also rests at the Dirac point, we can conclude that it is the most
important feature of silicene band structure as conduction electrons are located near
K point in low temperatures. Note also for future reference that there is no band
gap as the bands cross each other at K point.

Another thing to point out is that the band structure in figure 5.2 doesn’t faith-
fully mimic ab initio results. This is mainly due to the less-than-perfect parametriza-
tion. However, the important features are produced and basically the only task to

be done is to tune the bands up or down in the energy scale.

5.2 Spin-orbit interaction

Spin-orbit coupling is a relativistic effect which couples particle’s spin with its mo-
tion. In atoms it splits degenerate states leading to a fine structure of the atomic

levels. The same kind of treatment leads to splitting of the bands in solids as well.
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However, the real significance of SOC comes in the form of inter-atomic coupling
which is k-dependent.

We begin with a somewhat simpler case and first look at the spin-orbit interaction
within an atom as described by Petersen and Hedegard [24]. We add their model to
the Hamiltonian used so far. This is followed by the spin-orbit interaction between
next nearest neighbours at which point we will change to a one-band Hamiltonian.
The inter-atomic spin-orbit interaction turns out to have a clear significance in

silicene.

5.2.1 L-S coupling

Think of an electron orbiting the nucleus. As charged particles the protons create

an electric field around the atom. The electron feels it and experiences a magnetic

field - o
VvV X Vv X
B=-—— =5 (5.11)

where v is electron’s velocity, E electric field, ¢ speed of light and V' potential. The
electric field produced by the nucleus is spherically symmetric. Thus it depends only
on the distance r from the nucleus and we can write
_rdV

rdr’

\a% (5.12)

Note that this is the same treatment that is used in determining spin-orbit in-
teraction in single atoms. In solids, however, and particularly in silicene there isn’t
spherical symmetry. Therefore this is only an approximation. In any case, electron’s

spin couples to the magnetic field leading to interaction

e

Uso - %S . B (513)

where m is electron mass, e its charge and S is the spin operator. The additional
divisor 2 comes from the Thomas precession correction.

When equation 5.12 is substituted into equation 5.11, a little arithmetics gives

us the following form for the interaction (9]

[ — . X
2m2c? P r dr (5.14)
e 1dV
2m2c2 r dr

=AL-S.

In the last line we have put every constant in front of the operator L -S into a
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single constant A\ which we will once again take as a TB parameter. It measures the
strength of the spin-orbit coupling.
Let’s take now a deeper look into the spin-orbit interaction operator. First, the

components of the spin operator can be expressed in terms of the Pauli matrices

Alo 1 Al o —i Al1 0
S, = — S, = — S, = — . 5.15
2[10] v 2L 0] 2[0—4 (5.15)

Writing out the dot product gives

L-S=L,S, + L,S, + L.S.
| L Lw——iLy:

2| L, +iL, L. (5.16)
L L
2| Ly —L,

where L, and L_ are the raising and lowering operators, respectively. The operator
is now in a useful form since we now just need to apply either L, or one of the ladder
operators to s or p atomic orbital. Conveniently the p-type real orbitals are given
by the eigenstates of the above operators. Using a shorthand notation |m;) where

m; is the magnetic quantum number, the p orbitals are

2) = 7<|1>+r— )
) = =1~ |-1) (5.17)
2)=10).

%

Recall that L, operating on |m;) gives the eigenvalue hm; but state |m;) is not an
eigenstate of L. However, L. acting on the state produces an eigenstate of L, with
Finally, it’s time to calculate the matrix elements. In order to do this, let’s sketch

a prototype which instantaneously shows the required operator. The matrix element

between arbitrary eigenstates of the operator is

[my, 1)
((ml,ﬂ (mh“) L-S <|m;,¢)>

((rma, T Lz [ g, 1) + (ma, P Lo [y, L)

mla\L‘L+‘m27T> - <mlv\HLZ|m;a¢>)

(5.18)

| St

_|_

—~
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We can already see that any matrix element involving s orbital vanishes. This is
because atomic orbitals are orthogonal to each other. Also the expectation values
of L, and L are zero for s orbital.

Including spin-orbit interaction to our Hamiltonian doubles the basis size. In
effect the basis is {SI, pll, P;T,p P, sg, plQ, p;Q, ply + same for spin down} and we
have a 16 x 16 Hamiltonian. Now we need to calculate all the spin-orbit interaction
matrix elements between p orbitals. Hence there are 36 terms to be calculated.
Actually most of these turn out to be zero and we can even use the Hermiticity of
the Hamiltonian to reduce the number of calculations. Here are two examples of the

calculations of the nonzero elements which there are twelve in total:

(yr|L -S| ar) = (yr| L. | z)
_ —%((H = (1D L:(1) +]-1))
[

= =5 (U0 = (1] =1) = (=1]1) + (1] -1))

h
= _Z(1+1)

=ih
(p1|L-S|xy) = (zy]L-|z)

1

= —(1] +(—1])L- |0
\/5(< |+ (=1))L-|0)

=n((1]=1) + (=1 -1))

= h.

Each of the elements has a factor of 2 which we can dump into the strength param-

eter \. Therefore the above elements are just i and 1, respectively. The matrices

produced this way are

00 0 O
00 —2 0
SO = \ 5.19
7 0 i 0 0 (5.19)
00 0 O
and
00 O 0
00 O 1
SO+ = )\ 5.20
10 00 0 i (5.20)
01 —2 O

where SO44 describes the interaction between spin up orbitals and S04, between

spin up orbitals and spin down orbitals.
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Using these matrices the total Hamiltonian is

B’ A
I + SO 0 S04y (5.21)
SO 4 0 A+ S50y B
0 SO 4 B’ A+ S50

where SOy = SO'N and SO = SO/TT‘ The hopping elements give rise to a block
diagonal matrix and spin-orbit interaction couples opposite spins to each other. Note
also that the blocks due to the hopping and on-site terms corresponding to different
spins are identical. Therefore the spin up and spin down bands would be degenerate.
Now however, spin-orbit coupling directly lifts the degeneracy as the matrix SO

describes the up spins whereas SO, describes the down spins.

14

1.35¢

1.3}

Energy (eV)

1.257

K
Figure 5.3: Effect of intra-atomic spin-orbit coupling near the K point.

Solving the eigenvalues of the Hamiltonian gives the dispersion relation presented
in figure 5.3. The strength of spin-orbit interaction is 34 meV [15|. It is naturally
a small perturbation which thus cannot be seen on full scale band plot such as
figure 5.2. Nevertheless, we are mainly interested in what happens in the vicinity
of the K point which is exactly what figure 5.3 tells us. As was discussed, the spin
degeneracy is lifted which leads to a splitting of each band to two bands that follow
the same dispersion. This in turn is simply the consequence of intra-atomic SOC
being independent of k. Most notably there still isn’t a band gap as two of the
bands shown cross each other. As a result the band structure is still qualitatively
the same as was obtained from the bare hopping model. Therefore we now abandon

the intra-atomic spin-orbit coupling and turn to study the effect of inter-atomic

SOC.
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5.2.2 Reduced Hamiltonian and inter-atomic coupling

The bands near the Fermi-energy in figure 5.2 have primarily p, character. Since
these bands are in the interesting energy range, we reduce the TB basis to contain
only the p, orbitals and set their on-site energy to zero. In effect the Fermi-energy
lies now at zero electron volts with the size of the Hamiltonian being only 4 x 4.
Now the next subject is to introduce inter-atomic spin-orbit interaction using this
minimal basis and see how the electronic structure behaves at K point. The model
presented here was first derived by Liu et al. [15]. Notably, it is a model designed
specifically for silicene and so we will be using this constantly from now on.

The general Hamiltonian for the spin-orbit coupling requires relativistic deriva-
tion. Therefore one can use the Dirac equation instead of the Schrédinger equation

to arrive at a Hamiltonian H,, describing spin-orbit interaction as
HyyxVV xp-cd=-Fxp-a (5.22)

where p is momentum, & is the vector of Pauli matrices (spin operator) and F is the
force caused by potential. Note that this leads to equation 5.14 when the potential

is the atomic potential.

Figure 5.4: (a) Nearest neighbour SOC vanishes but next nearest SOC is nonzero from
symmetry aspects. (b) Perpendicular force components are due to the nonplanar sublat-
tices. [15].

Now, however, we look at a larger picture and take the whole crystal potential into
account. First one should examine figure 2.2 showing the silicene structure. Any
bond connecting nearest neighbours has other atoms symmetrically surrounding
it. Therefore the average force along the bond due to each atomic potential gets
cancelled out by an equal but opposite contribution from an atom at the other side
of the bond. Hence the nearest-neighbour SOC vanishes.

On the other hand, there isn’t such symmetry along a line between next nearest
neighbours as indicated in figure 5.4 (a). At this point we should refer to figure (b)
and yet again recall the buckled nature of silicene which causes the force to have
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both parallel and perpendicular components. This is why we need to look at the
different components separately.
First we analyze the component parallel with the silicene plane. We have the
Hamiltonian
Hl,=im(Fyxd,) o (5.23)

where 7 is a parameter and d;; is vector to the next nearest neighbour. Note that
the next nearest neighbours belong to the same sublattice. Therefore they lie in the
same plane and d;; is parallel with the plane as well. As a result the cross product
of F|| and d;; points perpendicular to the plane, i.e. to z-direction. In summary

only the z-component of the dot product survives

ASO
HI = ig—yijaz. (5.24)

Here A, is the SOC strength for the parallel component, v;; = ﬁii—gjg; = =41 and d;
and d; are the two nearest bonds connecting the next nearest neighbour d;;. Note
that there are six next nearest neighbours around any atom and therefore three
positive and three negative terms with respect to v;;.

We can verify that the Hamiltonian 5.24 is Hermitian. The matrix element
H s”O(z', j) is proportional to iv;; and since only v changes for the transpose element, we
get H ;‘0 (4,1) o< ivj;. As changing the vectors in v only reverses its sign, we easily see
the Hermiticity property of the Hamiltonian: Hl'o(j, i) = —iy; = ()" = HL‘O(i,j)*
where the common constants have been dropped from the equalities.

For the perpendicular component we want to switch the operators in the scalar

triple product 5.22 to obtain

HE =iy(a x dy) - Fy (5.25)
where Ei,-j = %, i.e. unit vector in the direction of d;;. This time we know that F |
points perpendicular to the plane and so only the z-component of the dot product

is nonzero. In effect we pick only the z-component of the cross product to arrive at
—sz(a' X dij)z (526)

where Ar measures the strength of the perpendicular SOC component and p;; is 1
for A site and -1 for B site. This definition for p;; arises because F | points up for
A-A interaction due to the B atoms lying lower. Similarly the A atoms are behind
the perpendicular force component for the B-B interaction and F | points down in
this case. The magnitudes of the force components are naturally equal between

these cases due to symmetry. [15].
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Let’s again verify the Hermiticity of the Hamiltonian 5.26. From equation 5.33
we see that the matrix element is proportional to HX(i 1,7 |) o i(G x (All-j)z =
i(d,+id,) = —d,+id,. Then looking at the transpose element and ignoring irrelevant
constants, we obtain HL(j 1,i 1) = i(6 x d;;)* = i(—d, + id,) = —d, — id, =

(—d, +id,)* = H5(i 1,7 })*. Hence the Hamiltonian is Hermitian as required.

To sum up, we have the total Hamiltonian

. Aso 2 S
H=—tY ¢ cjn+i22 viicl 0% scip — 1= el (5 x dy)iges (527
<z]>:a J 3ﬁ(<;a5] sCi8 — 13 ii%agy ( i)aptis )

where the first term is the nearest-neighbour hopping Hamiltonian. The other two
terms are the spin-orbit interaction corrections where ((i,j)) indicates sum over
next nearest neighbours and «, 3 are spin states. The second term is the effective
SOC and the last term is called Rashba SOC. Next we derive how these terms are

translated into matrix elements.

Effective spin-orbit coupling

Figure 5.5 depicts the six next nearest neighbours of atom A where the sign at each
atom is the sign of v;;. The nearest neighbours are also presented in the figure to help
determine these signs. Note also that the vector between next nearest neighbours is

ap, a, or the difference of these.

+eo o
2
—_0 °

=+

Figure 5.5: The closest neighbours of atom A. The value of v;; is marked with a plus or a
minus sign.

Let’s recall that the Pauli matrix is o, = [ (1) _01 ] . We can now look only at
the spin up—spin up term and we have
" - Aso : ik-d;;
Hioe = i3 7 ; el di (5.28)

where the phase factor has also been explicitly written. If we now look only at the
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pair of atoms 1 and 2 and ignore the common constants, we get

I/lelk.al + V2€71k-a1 — eflk-al _ elk~a1

= cos(k-a;) —isin(k-a;) —cos(k-a;) —isin(k-a;) (5.29)
= —2isin(k - a).

The other two pairs give similar expressions so that in total we have the matrix

element
At 250

000 = %

This is all we need to calculate since only the terms v;; change sign in the case of

5 [sin(k - a;) —sin(k - ag) + sin(k - (ag — ay))]. (5.30)

atom B. We can then readily say that ¢5(k) = —e4T(k) and the terms change sign

again for spin down.

Rashba spin-orbit coupling

The starting point of Rashba terms is

2\ 5
—1—R 1 (7 % dy )7 el (5.31)
3 9
We once again look at the A atoms (u;; = 1) and take the atom pair 1 and 2. We

have

z ik-aj —ik-a;

(5’ X él) e — (5’ X él)ze
= ajpcos(k - ay) +iargsin(k - a;) — ajp cos(k - a;) +iagpsin(k - a;) (5.32)

= 21@12 Sil’l(k : al)

where ajo = (G x a;)?. If we now sum up all the three pairs, we obtain an expression
gR [a12sin(k - a;) + asgsin(k - ag) + asgsin(k - (ag — a;))]. Lastly we just need to
work out the cross product in each term a.

The general form of the cross product is

0 d,+id,

5.33
d, —id, 0 (5.33)

(5’ X (Aiz'j)z = O'xdy — O'ydx = [

where it should be noted that d, and d, are normalized coordinates. From figure 5.5

one can deduce that the coordinates of atom 1 are (sin% — COS %) and so the spin
N

.. i
= —cos% + ISIH% = —e'3. The other terms can be

obtained in the same way which gives us the atom A matrix element

up-spin down term is a;

AR

g =

—[—e 5 sin(k - a;) + ' sin(k - ay) + sin(k - (ay — ay))]. (5.34)
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Furthermore it is once again easy to see that the same term for B atoms is just the
same with a minus sign. It is also important to notice that the Rashba terms lie in
the off-diagonal contrary to the effective SOC terms. In effect the term 52” should

be complex conjugate of 52” to preserve Hermiticity. It is easily proven as only the

Ty«
aij) .
Since the imaginary unit doesn’t exist anywhere else than in these terms, we can

conclude that the Hermiticity is satisfied, e’ = (e *)*.

terms a;; change for the transpose element and equation 5.33 tells that aij = (

Wave vector dependence of Hamiltonian matrix elements

Comparing the behaviours of SOC, Rashba and hopping terms as a function of
wave vector is important to understand the features of the band structure. Most
importantly we wish to see the difference at K (K’) point to understand which terms
affect the gap and why. Additionally symmetrical k-dependence, i.e. are the values
at k and —k related to each other, is interesting to look for.

Without further ado, let’s analyze SOC and Rashba terms in equations 5.30
and 5.34 which are plotted in figure 5.6. Hopping term ¢(k) is also presented in
figure (a). The path taken is from negative K point to positive K point through
I', i.e. the center of the zone. The path continues from K point to K’ point along
the zone boundary. In effect we actually traverse through M point as well which is
situated between K and K’ point. Pay attention to the different nature of the terms.
SOC lies on the diagonal of the Hamiltonian and it is therefore purely real. Rashba
and hopping terms, however, are complex and so figures 5.6 (a) and (c) show both

the real and imaginary parts.

—Real
---Imaginary 2 1

Value (meV)

—Real
-2 -1 ---Imaginary
2K r K K Kk r K K’ 2K r K K’
(a) Hopping (b) SOC (c) Rashba

Figure 5.6: Variation of different terms in the Hamiltonian.

Note that -K point is equivalent to K’ point and so the values in each figure
coincide at these two points. More important however is that the k-points along
-K-I' are negative whereas points along I'-K are the same with positive sign. We
see that the values for SOC and Rashba terms are equal in magnitude but have

opposite signs when k-point changes sign. This can of course be easily seen from the
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mathematical expressions as well. The hopping term on the contrary acts differently
as there’s no change of sign when k-point changes sign.

The behaviours of the terms differ in other ways as well. SOC peaks at K point
whereas Rashba term has its maximum between I' and K points, i.e. inside the
Brillouin zone rather than at its boundary. There is also symmetry between the real
and imaginary parts of Rashba term. The parts have the same sign inside the zone
but opposite sign along the zone boundary.

Looking at the hopping term, it is clear that the bands cross at K point as hopping
term vanishes there. Interestingly it can also be seen that the imaginary part is zero

inside the Brillouin zone and only emerges at the zone boundary.

5.3 Effect of electric field and results

The last matter concerning bulk silicene is how electric field can be used to manip-
ulate the band gap. After going through this we can determine how and why SOC
and electric field affect the gap in liaison. For now we consider homogeneous electric
field perpendicular to the silicene sheet.

This field has a simple effect. It merely changes the on-site energies of every p,
orbital. Furthermore, since the structure is buckled there is a potential difference
between the two sublattices. In effect electric field tears the sublattices further apart.

We now add this to the Hamiltonian in equation 5.27 to come up with

. Aso .
H=— tz C;raCja + 1% Z VijC;-raO'aﬁng
(i) ((1.3))eB

2 ' . A T (5.35)
- 1§>\RA . 11iCio (0 X dij)ap¢s + B} Z pij B Cio Cia-

{(i.3)eB ia
The last term describes the electric field with p;; being the usual £1. E, is the
strength of the field and A is buckling parameter.

Let’s ignore the Rashba term for now. We then have the Hamiltonian matrix

eo+ V + £o(K) t(k) 0 0
t*(k) g0 — V —e5(k) 0 0
1= 0 0 g0+ V — eso(k) t(k) (5.36)
0 0 t*(k) e =V +esk)

where g is the on-site energy (set to zero but included here for generality), V' = %EZ,
€50 = €21 and t(k) is the hopping term. If we don’t have electric field, i.e. V = 0,
the two blocks describing the opposite spins are identical. As a result the bands

stay degenerate even if SOC is included. In addition, the eigenvalues of the matrix
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(c) E = E, (d) B =23

Figure 5.7: Variation of the band gap due to electric field. Spin up bands are drawn
with solid lines, spin down bands with dashed lines. The script to reproduce the figures is
presented in the appendix.

would be

e = co £ /22, () — JHK)P. (5.37)

Let’s plot the band structure without electric field in figure 5.7 (a) which presents
the dispersion near K point. Note that the figures have been obtained with Rashba
term present. The values of the effective SOC and Rashba parameters are A\,, = 3.9
meV and A\g = 0.7 meV. There are two notable features in this band plot: Firstly,
we see that a band gap has developed due to the inter-atomic spin-orbit interaction.
This is because SOC has nonzero value at K point. Secondly we notice that the
bands are still degenerate which matches the discussion related to identical spin
blocks.

We can also discern that the band gap is solely due to the effective SOC which
is the main reason why we neglected Rashba terms in equation 5.36. This can be
straightforwardly seen from figure 5.6 or by calculating the Rashba term (equa-
tion 5.34) at K point. Rashba term goes to zero whereas SOC term gives exactly Ay,
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Energy (meV)
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Figure 5.8: LDOS projections of atom A orbitals (left) and atom B (right).

at K point. It follows that the band gap is actually 2¢,,(K) = 2),, giving a value
of 7.8 meV. This is quite significant gap since it corresponds to 91 K temperature
and is a great improvement from the SOC gap of graphene. Moreover it should be
emphasized that this is an intrinsic gap that silicene possesses without any external
manipulation.

Finally we can ask ourselves why the band gap develops exactly at K point.
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To understand this we should again refer to figure 5.6 (b). SOC term reaches its
maximum at K point (minimum at K’ point) whereas the hopping term vanishes
there causing the bands to cross. SOC is zero at I' and M points which is the natural
consequence of them being in the middle of K and K’ points. Thus SOC term has
to be zero at these points due to symmetry. In summary we see that SOC peaks
where hopping term vanishes and vice versa. Hence conduction and valence bands
can meet only at K point where, consequently, SOC drags them apart.

If we now let the electric field be nonzero in equation 5.36, we can immediately
see that the spin blocks are inequivalent. Note that ignoring SOC altogether would
again give us equivalent blocks meaning that the spin degeneracy is lifted only
through the simultaneous interplay of both spin-orbit coupling and electric field.

The eigenvalues in this case can be given independently for spins and they are

er =€ =V (V +ewk)? + [tk)]

5.38
e =0 £ V(V — eso(k))? + [t(K)[2. 539

Rashba interaction would of course alter the eigenvalues. It is however a small term
even compared to effective SOC. More importantly though, Rashba SOC is zero at
K point where this result gets interesting. The spin up gap is 2|V + A,,| whereas
spin down gap is 2|V — A,,|. Combining these we get 2|V + s, )\, | where s, = +1 for
spin up (down). However, note that e5,(—k) = —&,,(k) as can be easily seen from
equation 5.30. This means that the spins change roles at K’ point which corresponds
to -K point. In the end the band gap is

A
E,=2 ‘gEZ + 152 A0 (5.39)

where n = 1 at K (K’) point [6].

Equation 5.39 shows the development of the gap in the presence of an electric
field. Figures 5.7 (b)—(d) demonstrates the effect where the solid lines depict spin
up bands. Spin down bands are shown with dashed lines. First the gap decreases
linearly as a function of .. At a critical electric field, E., the gap vanishes. When
we further increase electric field, the gap opens up again and grows linearly. The

critical point is easily seen to be

(5.40)

Figure 5.7 (c) illustrates the closure of the gap. Note that the spin up bands cross
whereas the spin down band exhibit a big gap at K point as indicated by equa-
tion 5.38. Also note that we get the same band structure at K’ point except that

the spin bands have switched, i.e. the spin down bands would cross at K’ point.
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Furthermore, we can also switch the bands with each other by reversing electric field.
It is important aspect to understand that the K and K’ points are inequivalent only
in the presence of electric field. Without the field, bands are degenerate and so it is
insignificant which spin band we are looking at.

Imagine now silicene in a perpendicular electric field. The strength of the field is
E. and so the gap is closed at each K and K’ point. In a sufficiently low temperature
the three K points would be occupied by spin up electrons at Fermi-energy whereas
the three K’ points would be occupied by spin down electrons. If we now could
separate the different K valleys from each other, we would be able to have spin-
filtered current. An application related to this has been proposed by Tsai et al. [32].

So far we have only made a distinction between spins. It is also informative to
look at the contributions from different sublattices individually. Figure 5.8 continues
where figure 5.7 left and shows LDOS projections of the total contributions from
atom A and atom B.

The figures show a few important features. First we see that the bands are fully
spin polarized only at the K point exactly. Spin polarization gradually diminishes
with k deviating from K. We also see which bands have primarily atom A character
and which come from atom B orbitals. These are opposite as could be expected.

Moreover, the most important aspect is revealed if we vary electric field strength
and look at all the figures. It is seen that the weight from atom A shifts towards
the other spin up band when going over the critical field. The same is seen for B
atom. In effect we observe band inversion happening at the critical field. This is a
characteristic result for topological insulators where band inversion happens when
changing some parameter. This parameter is electric field for silicene. We will be

coming back to this subject in the next chapter.
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6. SILICENE NANORIBBONS

Reducing the dimensionality of bulk silicene, nanoribbons offer a different playing
ground due to the finiteness of the system. We would expect the edges to have
a very distinct electronic structure and magnetic properties from the rest of the
ribbon. It would also be interesting to see whether nanoribbons introduce localized
states which would be the consequence of the inequality between an atom at the edge
and an atom in the bulk. In effect the edges play an essential part in applications
as the lattice periodicity is broken.

First we take a look at what kind of nanoribbons we could have and how they
differ from each other. This is followed by the band structures and how they change
when we play with spin-orbit coupling and electric field. The last issue concerns a
zigzag nanoribbon in an inhomogeneous electric field which creates an interface at
the middle of the ribbon. This introduces interesting effects at the interface which

are different from those at the edges.

6.1 Edge types

Like silicene is considered 2-dimensional, nanoribbons are 1-dimensional in the sense
that they are periodic only in one dimension. A nanoribbon can be imagined to be
cut from bulk silicene and so it has a certain width which has an important impact on
its electronic structure. Additionally, the edges can have various shapes depending
on how we cut the ribbon. Nevertheless, they can be formed as a combination of
two fundamental edge types, namely zigzag and armchair edges.

Figure 6.1 visualizes these two cases. The armchair nanoribbon shows deep sags
along the edge whereas the zigzag edge resembles gently sloping V letters. The
figure also shows the unit cells for both cases. Since the structure is periodic only
in one direction, the unit cell must encompass all the atoms along the full width of
the ribbon. The unit cell height is marked with an a or z in each case.

There’s also the issue of naming nanoribbons based on their width. For the
armchair case we simply count how many atoms are side-by-side and come up with
a shorthand notation 13-ASiNR which is the specific ribbon used as an example in
the figure. In the zigzag case we count the number of zigzagging bonds and get
7-ZSiNR in the figure.

Note also that the number of orbitals in TB basis increases rapidly with the width.
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Figure 6.1: Labeling conventions and computational unit cell for (a) armchair (b) zigzag
nanoribbon [12|. Electric field interface is drawn with a dashed line.

We need quite large matrices to model nanoribbons which can cause problems in
the case of very wide ribbons. Thankfully most of the Hamiltonian matrix elements
are zero, however, because we use nearest-neighbour hopping model. At most the
interactions span over next nearest neighbours when we include SOC. So overall we
have a lot of zeros in the Hamiltonian which we can take advantage of by using

sparse matrices in the computational calculations.

6.2 Band structures

When forming the Hamiltonian for a nanoribbon, the edges need special treatment
as some interactions are cut out. Keeping this in mind, we model both armchair and
zigzag nanoribbons with effective SOC and Rashba terms included. Note that the
spin-orbit coupling terms as well as hopping terms get split and are distributed to
different positions in the Hamiltonian due to the reduced dimensionality. In effect
the different terms in equations 5.30 and 5.34 are no longer summed but rather cut
and distributed individually in the Hamiltonian.

The reciprocal space is also one-dimensional which further simplifies things. Fig-
ure 6.2 shows the band structure of 8-ZSiNR plotted from the center of Brillouin
zone to the center of neighbouring zone at 47 which corresponds to 0. The band
structure shown is characteristic to all zigzag ribbons regardless of width. As each
orbital in the TB basis adds a new band, we have 16 bands in the figure. Increas-
ing the width of the ribbon increases the number of bands which are closer and
closer to each other effectively forming a continuum of states in infinity. However,
qualitatively the band structure remains the same.

There are two things to point out in figure 6.2. First it should be emphasized that

the effect of spin-orbit interaction cannot be seen at this scale so we are effectively
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Figure 6.2: Band structure of 8-ZSiNR.

looking at the hopping model. The Fermi-energy lies at 0 eV where we see that the
bands cross at the Brillouin zone boundary located at 27. In effect zigzag nanoribbon
is gapless analogously to bulk silicene.

Contradictory to zigzag ribbons, armchair ribbons are richer in features as the
nature of the band structure depends on the ribbon width. For example, figure 6.3
shows the band structures of 8-ASiNR and 9-ASiNR. As one can surprisingly see,

@

Energy (eV)

0 0 2
k (1/a) k (1/a)

(a) 8-ASiINR is metallic (b) 9-ASiNR is semiconducting

Figure 6.3: Band structures of two armchair nanoribbons.

the other ribbon is metallic whereas the other is semiconductor featuring a small
band gap. This result is similar to what has been seen for graphene nanoribbons.
Therefore, knowing this, we shouldn’t be very surprised to see the same effect happen

in silicene. In general TB calculations predict armchair nanoribbon to be metallic
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when N4 = 3p + 2 and semiconducting when N4 = 3p or Ny = 3p + 1 where p is
integer.

Another clear feature is that the band gap (or crossing of the bands) occurs at the
center of the Brillouin zone. This is a big difference compared to zigzag nanoribbons
where the bands cross at the zone boundary. Now, however, we focus only on the
zigzag geometry and zoom in at the zone boundary to see the effects of SOC and
electric field.

6.2.1 Brillouin zone boundary

The Brillouin zone boundary is the most interesting area of the band plot since the
bands cross there at Fermi-energy. Also spin-orbit interaction and electric field show
their nature in this area. Figure 6.5 shows the zone boundary area in four different
situations. This figure should be compared with figure 6.2 to get an idea how far
from the zone boundary the plots stretch.

First figure 6.5 (a) shows only the results from the hopping model where we see
that the bands remain degenerate exceedingly far from the boundary. Adding SOC
to the model, we still don’t get spin degeneracy lifted. Nonetheless, SOC separates
the two bands and effectively removes their degeneracy. The system still remains

gapless despite this.
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Figure 6.4: Mirror symmetries due to electric field. Left: initial circumstances. Right:
Mirror image with A and B changing places.

When we put the ribbon in a homogeneous perpendicular electric field, we get
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a similar result to the bulk silicene in that the spin bands are now separate, fig-
ure 6.5 (c). This also has the effect of developing a gap at the zone boundary.
However, bands are still crossing some distance away from the boundary. This ob-
servation raises the question whether we can truly create a band gap by increasing
electric field. This should drag the band crossing point further and further away
from the boundary until the bands finally separate.

As it turns out, this is exactly what electric field does. We could now again define
the critical electric field E. where this separation happens. But alas, E. depends on
the width of the ribbon and so it differs from the critical field of bulk silicene.
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Figure 6.5: The effect of various terms at the Brillouin zone boundary. Dashed line marks
the Fermi-energy. 50-ZSiNR is used as example.

The last figure labeled 6.5 (d) involves inhomogeneous electric field perpendicular
to the ribbon plane. More specifically we have put one half of the ribbon under
homogeneous electric field E and the other half under electric field —E, figure 6.1
(b). In effect their magnitudes are the same but directions are opposite. This creates

an interface in the middle of the ribbon. Note that there are two different places
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where to set the interface depending on ribbon width. It is however irrelevant which
one we choose to use since electric field doesn’t couple neighbouring sites.

Interestingly the effect of the setup is to only shift the bands in the energy scale.
Figure 6.5 (d) should be compared with 6.5 (b) where only SOC is included. No-
tably also spin degeneracy is not lifted contrary to the case of homogeneous field.
This is actually the consequence of additional mirror symmetry introduced by inho-
mogeneous field. Figure 6.4 sketches the situation where A atoms are in the upper
row and B atoms lie at the lower row with the middle of the ribbon marked with
a vertical line. In figure 6.4 (a) we have homogeneous electric field. It raises the
on-site energies of A atoms (+) and lowers those of B atoms (-). This breaks the
symmetry between the sublattices since after mirroring A and B the shifts in their
on-site energies have reversed. Note that mirroring A and B is equivalent to chang-
ing the sign of electric field. In the case of inhomogeneous electric field, however,
where the fields have equal magnitudes, half of the A atoms still have their on-sites
raised and half have their on-sites lowered after mirroring. The system is therefore
not changed in any way. In effect homogeneous field breaks mirror symmetry allow-
ing spin eigenvalues to differ. Inhomogeneous field reintroduces the same kind of
symmetry.

The spin degeneracy in figure 6.5 (d) is in fact only present when the fields on
the different halves are equal in magnitude. When we let their strengths differ,
mirror symmetry is once again removed (figure 6.4 (¢)) and so is spin degeneracy.
Note that electric field has no direct effect on spin. It rather separates A and B
sublattices which causes splitting of the bands. Anyway, recall also that the effect
of inhomogeneous electric field is that it allows us to shift the bands as we please.

We will focus more intensively on inhomogeneous electric field in section 6.3. Now

however we should analyze the bands in real space and see how they are localized.

6.2.2 Localization of states

Comparing edge states to the states in the middle of the ribbon, let’s call them bulk
states, could reveal new important features. For this purpose we need the Green’s
function of the system from which we can calculate the local density of states for the
edge atom and plot this projection in figure 6.6. Figure (a) shows the contribution
from p! orbital and figure (b) from the spin down orbital. Electric field is not present
here so the LDOS projections should be compared to figure 6.5 (b).

As can be immediately seen, contributions from opposite spins are different. Fur-
thermore, even though the scale of the figure does not reveal it, we get few states
outside the region shown in the figure so that the edge states are confined to a rather
narrow window. In effect it seems that the flat bands around Brillouin zone bound-

ary are actually purely edge states and they are even spin polarized. Remember also
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Figure 6.6: LDOS contributions from spin up and spin down orbitals at the edge. The
states show spin polarization. The figures are calculated for 50-ZSiNR.

that the ribbon has two edges and only the other is shown here. If we calculate the
LDOS projections from the other edge too, we see the same result except that the
spin contributions have reversed. This suggest that one band is up spin polarized
(at least partly) on the left edge. The same band is then down spin polarized on
the right edge.

However, we have not yet demonstrated that the flat bands come solely from the
edges of the ribbon. We could now calculate LDOS projection in some bulk site in
the same manner but actually the density of states diagrams in figure 6.7 will do
also. The densities of states have been calculated with k-points ranging through the
whole Brillouin zone and thus the figure tells us the overall picture how states are
distributed.

LDOS

5 i S 0
Energy (eV)

(a) Edge (b) Bulk

0
Energy (eV)

Figure 6.7: Density of states at the edge and in the bulk for 50-ZSiNR.

Figure 6.7 (a) shows DOS at the edge which is just as we would expect. DOS
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is highly peaked around the Fermi-energy exactly where the flat bands are located.
This confirms that there are very few states other than the flat bands at the edges
of the ribbon. Figure 6.7 (b) on the contrary shows DOS at bulk site, i.e. in the
middle of the ribbon. It is completely different as one could expect and peaks at
about 0.6 eV. Most importantly, however, we see that there aren’t practically any
states at Fermi-energy proving that the flat bands are purely edge states. They are
highly localized as the flat bands nearly disappear when traveling only couple of
atoms away from the edge. This also leads to the fact that there exists a sizable
bulk band gap as the flat bands are not present there. The edge states then lie in
the bulk gap.
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Figure 6.8: Rashba spin-orbit coupling effect on edge states. Demonstration is for left edge
and spin up.

Curiously the edge state bands are not purely spin polarized as the other bands
always shows small polarization. This is in fact caused by Rashba interaction whose
role is to mix spins. Figure 6.8 shows the edge states again for the left edge where
we have arbitrarily chosen to look at spin up contribution. As can be seen, Rashba
interaction enlarges the gap between bands around the boundary points. However,
more important point here is how spin polarization is affected by Rashba SOC.
Rashba SOC strength has been varied from zero (figure 6.8 (a)) to A, (figure 6.8
(c)). The real value of \g is about 18 % of A, so figures (b) and (c) are greatly
exaggerated.

According to this demonstration we see that the edge state bands would indeed
be purely spin polarized without Rashba term. This would correspond to a fully
planar structure similar to graphene where A and B sublattices are coplanar. The
effect of the buckling is then to mix spins so that edge states show some kind of
mixing or hybridization. In the extreme case where Rashba strength equals SOC
strength, there is very little spin polarization as spin down contribution would be
almost identical to spin up.

Figure 6.7 (a) showed the combined LDOS from both spin orbital contributions.

If we look at the peak more closely and calculate spin-resolved densities of states
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separately for positive and negative k-points in the Brillouin zone, another surprising
phenomenon emerges. It is most clearly presented by calculating spin polarization

p from spin densities of states as

G (6.1)
pr+ Py

where equation 4.7 is put to use. Figure 6.9 shows the results of these calculations
for the left edge.
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Figure 6.9: Spin polarization at the edge site calculated for 50-ZSiNR.

If up and down spin densities of states were equal, we would see nothing in
the figures. Instead, we can see peaks in the plots meaning that the difference is
at its largest near the Fermi-energy. Positive peaks indicate an excess of up spin
DOS whereas negative values indicate more down spin DOS. The peaks are also
reversed when changing the sign of k-points indicating that spin and wave vector
are coupled at the edge. In addition, spins once again change roles at the right
edge. This is an important result as it resembles quantum spin hall effect met in
topological insulators. In fact, combining spin and wave vector coupling with the
knowledge of the localized edge states inside the bulk gap hints that we are dealing
with a topological insulator. Indeed, Ezawa has shown this to be the case when
electric field |E| < E. [6]. At the critical field there occurs a phase transition from
topological insulator to a band insulator which is easily understood since the edge

states do not connect valence bands to conduction bands when |E| > E..

6.3 Interfaced system

Finally we apply inhomogeneous electric field to silicene as described previously.
The interface of the two fields in the middle of the ribbon is now interesting as it

could show somehow localized effects like the edges. First however we extend the
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nanoribbon and use 100-ZSiNR to ensure that the interface and the edges do not

interact and distort the results.
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Figure 6.10: Band structure of 100-ZSiNR under inhomogeneous electric field of 12F..

Figure 6.10 shows the band structure around Brillouin zone boundary for a rather
strong field |E| = 12E,. We use the bulk critical field as a reference unit. Note that
the electric field doesn’t destroy the edge states or alter them in any way other than
shifting them downwards. In effect the edge states don’t go over the gap anymore.
Instead we have bands with high dispersion connecting the conduction and valence
bands.

Next we calculate LDOS projection at the interface. We also choose a site between
the interface and edge to be compared with the interface states. These are shown in
figure 6.11 where (a), (¢) and (e) visualize LDOS far from the interface for various
values of electric field. Figures (b), (d) and (f) show LDOS exactly at the interface
site.

Figures 6.11 (a) and (b) show local densities of states when electric field is not
present and so we do not even have any interface. This would imply that the two sites
in the middle of the ribbon and one closer to the edge are more or less equivalent.
This is as one would expect. Recall that the flat bands are present only at the edges
of the ribbon and so they are not seen in these LDOS projections.

Figures 6.11 (c) and (d) show the situation when electric field is 6E,.. Now we
notice that the interface site has shifted its weight towards the steep bands crossing
the gap. The other site further away from the interface has done the opposite: the
bands with high dispersion have begun to vanish. Pay also attention to that the

steep bands are not continuous here as there is a kink of some sort where the edge
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Figure 6.11: LDOS projections at two distinct sites of 100-ZSINR under inhomogeneous
electric field. Left: site between interface and edge. Right: interface site.

states begin.

Finally in figure 6.11 (e) we see that the bands crossing the gap have basically
vanished. They are now very strongly present at the interface site in figure (f). Also

these interface bands are now continuous. This requires roughly the field 12F, as
presented in the figures.
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In summary, bands crossing the gap localize near the interface when electric field
is increased. Furthermore it becomes evident that the bands are not spin polarized
when we calculate spin-resolved LDOS projections. This is the opposite of the edge
states which show spin polarization. Also pay heed to the fact that the bands which
localize at the interface are present in the whole ribbon (except at the edges) when
electric field is zero. Therefore the effect of inhomogeneous electric field is very clear:
it localizes the bands at the interface. It has no effect on the edge states other than

shifting them away from the bulk gap.
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Figure 6.12: Localization of interface state as a function of electric field.

An obvious question would be how the localization behaves in real space as a
function of electric field. To study this we have calculated the sum of spectral
weights of both spin up and spin down orbitals (the numerator in equation 4.5) at
every site in the ribbon at a specific k-point. The chosen point is marked with a dot
in figure 6.10. This one k-point should represent any point along the interface band
equally well.

Figure 6.12 indicates the nature of the localization. Atoms 0 and 200 are at the
edges whereas the interface is located between atoms 100 and 101. At zero field the
band is divided along the whole ribbon. The abrupt oscillation of the curve is due
to the A and B sites which have different contributions. Also because of the same
reason the curve is not symmetrical with respect to the interface. However, recall
that the interface bands are spin degenerate. Repeating the calculation for the other
degenerate band would lead to a diagram which is a mirror image of figure 6.12 and
so the sum of these two would yield a symmetrical plot.

More importantly though we see that the localization strengthens with increasing
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electric field. This is of course as one would expect. Nevertheless, the figure indicates
a continuous change rather than some critical field where we would get a jump in
the localization plot. The system also requires a fairly high electric field, about 10
E., to achieve strongly localized interface states.
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7. CONCLUSIONS

The discussion on silicene’s substrates states that some substrate is always needed
and it is not possible to make freestanding silicene. Despite this we have ignored
the effect of substrate and studied only independent sheet of silicene. However, the
current knowledge of substrates is summarized in the following.

Thus far only three substrates have been experimentally found. These are (111)-
oriented silver surface, (0001)-oriented zirconium diboride and (111)-oriented irid-
ium. Ag(111) is not a good choice for any application because it destroys the Dirac
cone in silicene. A study based on DFT calculations suggest that a much better
candidate is h-BN [17]|. This still requires experimental proof. In general the search
of suitable substrates should be leaned towards solutions where the interaction be-
tween the substrate and silicene preserve silicene’s properties, especially the Dirac
cone.

In this thesis, silicene has been studied with tight-binding calculations. We have
shown how spin-orbit coupling and electric field affect the electronic structure of
silicene. As spin-orbit interaction is an intrinsic feature and therefore a fixed pa-
rameter, particular focus has been on electric field which can be externally tuned.
Research on the matter has led to three main points.

Firstly, due to the buckled structure of silicene, spin-orbit interaction has both
parallel (effective SOC term) and perpendicular (Rashba term) component with
respect to the silicene plane. The intrinsic band gap at K and K’ points in the
Brillouin zone is caused solely by SOC. The size of band gap is several milli-electron
volts which is unaffected by Rashba interaction as it vanishes at K (K’) point.

By applying perpendicular electric field we can tune the band gap. First the gap
diminishes linearly with increasing field. At a critical point the gap is closed after
which it again starts to grow by further increasing electric field strength. Further-
more, the field also splits spin-degeneracy in such a way that the gap is between
spin up bands at K point and between spin down bands at K’ point.

Easy tuning of the band gap by electric field offers a convenient way to implement
on and off states as required by e.g. transistors. However, the intrinsic gap is still
rather small and so ways to further increase it are worth studying. In addition, the
inequivalence of K and K’ points allows us, in principle, to separate spin-currents.

Secondly, we have shown the existence of spin-polarized edge states lying in the
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bulk gap in zigzag silicene nanoribbons. The edge states are highly localized at the
edges of the ribbon with spin-polarization reversing between the edges. In addition,
electron’s spin is coupled to the direction of its motion at the edges showing the
existence of quantum spin hall effect. As a conclusion we have seen silicene to be
a topological insulator. However, this is only true when electric field strength does
not exceed the critical point where band gap closes. By going over the critical field
silicene becomes a trivial band insulator.

Thirdly we have placed silicene under inhomogeneous electric field such that the
fields on separate halves have equal strengths but opposite signs. In effect this
creates an interface in the middle of the ribbon. We have seen the building up
of interface states with increasing electric field. With a high enough electric field
the edge states no longer reside in the bulk gap. This causes a situation where
the interface states alone go over the gap. This suggests a change in the nature of
the material where initially the bulk is insulating and the edges conduct electricity.
Under inhomogeneous electric field we see a change of conductance to the bulk with
localization depending on the field strength. However, high localization requires
rather strong fields. Also the localization of interface states still remains wide when
compared to the edge states.

The system still requires more work. Possible further studies could include differ-
ent geometry, for example armchair edges or a combination of armchair and zigzag.
Also various defects could have a surprising impact and these could be studied with
or without electric field. Furthermore, the combination of magnetic field and electric
field should be worth studying.
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A. APPENDIX

The Matlab script below shows the code which calculates bulk silicene band structure
in the vicinity of K point. By setting the variable Ez to zero in the script, one obtains
figure 5.7 (a). Similarly figures (b)—(d) are obtained by playing with Ez.

% This code sample calculates silicene band structure

% in the wicinity of K point.

% Main function
function silicene

% Adjust these parameters at will %

points = 101; % Measures the number of k—points

% FElectric field strength
% Critical point Ec = 0.0169

Ez = 0.0169;
% %
[R,a,al,a2,onsite ,lambda_ SO,lambda R, eigenvalues| = initialize (points);

[k,ticks ,labels] = kpoints(a,points);

% Gather eigenvalues at every k—point
for index = 1:size(k,2)
% Phase factors for each of the three mneighbours.
phase = zeros(3,1);
for i = 1:3
phase(i) = exp(lixdot(k(:,index) ,R(:,1)));
end
% Hopping integrals
hop = 0;
for i = 1:3
hop = hop + hopping (R(:,1))*phase(i);
end

% Inter—atomic SOC
eff SOC = 2xlambda_SO/(3xsqrt(3)) = (sin(alxk(:,index))
— sin(a2xk(:,index)) + sin((a2—al)xk(:,index)));

% Rashba SOC
p = exp(lixpi/3);
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rashba = 4xlambda R/3 x (—1/pxsin(alxk(:,index))
+ pxsin(a2xk(:,index)) + sin((a2—al)xk(:,index)));
% Electric field
EF = 0.23076 * Ez x diag([-1 1 -1 1]);
% Hamiltonian in the basis {pzl up, pz2 up, pzl_ down, pz2 down}
H = [onsiteteff SOC hop rashba 0;
hop’ onsite—eff SOC 0 —rashba;
conj(rashba) 0 onsite—eff SOC hop(1);
0 conj(—rashba) hop’ onsiteteff SOC]
+ EF;
eigenvalues (index ,:) = eig(H);
end
plot _bands(eigenvalues ,ticks ,labels);

ok % 4 3k sk ok ok ok ok ok ok oKk ok ok ok ok Kk ok ok K ok ok ok ok ok ok ok Kk ok ok R ok ok Kk ok K Rk ok ok kR Rk ok ok k ok
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function [R,a,al,a2,onsite ,lambda_SO,lambda R,eigenvalues]

= initialize (points)
% On—site energy
onsite = 0;

lambda_ SO = 3.9%x10~—=3; % Inter—atomic SOC strength
lambda R = 0.7%x10~—=3; % Rashba SOC strength

% Atomic coordinates in the unit cell
coordinates = [4.45714 0 0; % B
2.22857 0 0.46152]; % A

% Initialize space for eigenvalues, 4 is basis size

eigenvalues = zeros(2*points ,4);

% Lattice constant and wvectors
a = 3.86;

al = a/2x|sqrt(3),—1,0];

a2 = a/2x[sqrt (3),1,0];

% Vectors to mearest meighbours

R1 = coordinates(2,:) —coordinates (1,:);

R2 = Rl+tal;
R3 = Rl+a2;
R = [R1’ R2’ R3’];

%*************>|<>k>|<>k>(<*****************************************%
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A. Appendix 61
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% Construct k—points near K point

function [k,ticks ,labels| = kpoints(a, points)

d = 0.01; % How far to travel from K point

% Go towards gamma point

x1 = linspace((1—d)*2xpi/(sqrt(3)*xa), 2xpi/(sqrt(3)*a), points);
yl = linspace((1—d)=*2+pi/(3%a), 2xpi/(3%a), points);

% Go towards M point

x2 = linspace(2xpi/(sqrt(3)xa), (1-d)*2xpi/(sqrt(3)*a), points);
y2 = linspace (2xpi/(3%a), (1+d)*2xpi/(3%a), points);

k = [x1 x2; yl y2 ; zeros(l,2xpoints)];

ticks = points;

labels = {'K’};

%***********************************************************%
Dtk kot kot ks s sk s ok sk ok ok s ok ok ok ok ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok kKRR ok sk ok sk sk sk sk ok ok 0
function [hop| = hopping(vector)

% Hopping parameters

Vpp_sigma = 2.72;

Vpp_ pii = —0.72;

n = dot(vector ,[|0 0 1])/norm(vector); % Direction cosine
hop = n"2+«Vpp_sigma+(1l-n"2)xVpp pii;

Db 3 3 o o k% 5K ok ok oK o o KK KKK K R SR R R KK KKK SR R SR R R K KKK SRR KR R K KRRk ok ok )
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function plot bands(eigenvalues ,ticks ,labels)

figure;

hold on;

for i=1l:size(eigenvalues ,2)

plot(eigenvalues (:,i), linewidth’,2);

end
hold off;
box on;

set (gca, 'fontsize’ ,23);

ylabel (’Energy._(eV)’);

set (gca, 'XTick’,ticks);

set (gca, ’XTickLabel’ ,labels , ’FontName’ , ’Symbol " );
xlim ([1 length(eigenvalues)]);

ylim([-1 1]%0.022);



