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ABSTRACT 
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Elenia Oy is a forerunner in Finland in adopting the new automatic meter reading 

(AMR). By late 2008 most of Elenia’s customers were equipped with a new meter that 

is capable of recording and sending hourly consumption figures. Since then Elenia has 

been working on ways to utilize this new data. In recent years more attention has been 

given to network losses. Network losses are one of the largest items of expenditure for 

distribution system operators (DSO) and as such a good target for cost optimization. In 

addition the Energy Market Authority is contemplating on possible ways to include 

network loss costs into the regulation model. 

 Network losses are formed whenever electric power is transmitted from a place of 

production to end-users. The losses are formed mainly in the resistances of lines and 

transformers which are heated up by the loss energy. There are two kinds of losses: no-

load losses and load losses. No-load losses are relatively constant and do not depend on 

the load. Load losses are proportional to the square of the transferred power. Before the 

large-scale installation of AMR meters the hourly consumption figures were unobtaina-

ble and as a consequence also the amount of losses was uncertain. 

 The main goal of this thesis was to develop a usable Excel-based application for 

predicting hourly network losses. Loss forecasts can be utilized in procurement and 

hedging of losses. The application is based on hourly consumption figures acquired 

from the meter data management system (MDMS) and it formulates the predictive 

models with the use of multiple linear regression analysis. The application has separate 

regression models for each month and for the whole year. The main predictor variable is 

temperature and in addition there are calendar-based indicator variables. Separate mod-

els are made for two response variables: network losses and network loss percent. 

 A forecast was made for January 2013 with the application and the results were 

compared to the observed values. The results give some promise but also raise ques-

tions. In general the loss forecast follows the trend of the hourly losses fairly well but 

the predicted losses are a bit too high on average with an average error of 2.1 MWh and 

mean absolute error of 2.8 MWh. The mean absolute percent error is 7.3%. Some of the 

magnitude of the errors is attributed to data quality issues in the early 2012 data. 
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Elenia Oy tunnetaan Suomessa edelläkävijänä kaukoluettavien AMR-mittareiden käyt-

töönotossa. Vuoden 2008 loppuun mennessä suurimmalle osalle Elenian asiakkaista oli 

vaihdettu lukemien tuntikohtaiseen tallentamiseen kykenevä etäluettava mittari. Siitä 

lähtien Elenia on työskennellyt uuden tarkemman kulutusdatan hyödyntämisen parissa. 

Viime vuosina verkostohäviöt ovat saaneet enemmän huomiota osakseen. Häviöt ovat 

yksi verkkoyhtiön suurimmista kulueristä ja siten tärkeä kohde kulujen optimoinnille. 

Lisäksi Energiamarkkinavirasto pohtii mahdollisia keinoja häviökustannusten sisällyt-

tämiseen valvontamalliin tulevaisuudessa. 

 Verkostohäviöitä syntyy aina kun sähköä siirretään tuotantopaikasta loppukuluttajil-

le. Häviöt syntyvät pääasiassa johtojen ja muuntajien resistansseissa. Häviöt jaetaan 

kahteen kategoriaan: tyhjäkäyntihäviöihin ja kuormitushäviöihin. Tyhjäkäyntihäviöt 

ovat lähes vakioita eivätkä riipu verkon kuormituksesta. Kuormitushäviöt sen sijaan 

ovat verrannollisia siirretyn tehon neliöön. Ennen AMR-mittareiden laajamittaista asen-

tamista kulutuksien tuntiarvoja ei ollut saatavilla ja siten myös häviöiden määrää ei pys-

tytty selvittämään tarkasti. 

 Tämän diplomityön päätavoite oli kehittää Excel-pohjainen sovellus häviöiden tun-

tikohtaiseen ennustamiseen. Häviöennusteita voidaan hyödyntää verkostohäviöiden 

hankinnassa ja suojauksessa. Sovelluksen lähtödatana oli vuoden 2012 tuntikohtainen 

kulutusdata, joka saatiin mittaustiedon hallintajärjestelmästä. Tämän datan avulla sovel-

lus muodostaa ennustusmallit käyttäen monen muuttujan lineaarista regressiota. Regres-

siomalleja muodostetaan jokaiselle kuukaudelle omat ja lisäksi on koko vuoden kattava 

malli. Tärkeimpänä selittävänä muuttujana käytetään lämpötilaa. Lämpötilan lisäksi 

käytetään kalenteriin pohjautuvia indikaattorimuuttujia. Mallit luotiin kahdelle selittä-

välle muuttujalle: häviöiden määrä sekä häviöprosentti. 

 Sovellusta arvioitiin tekemällä ennuste vuoden 2013 tammikuulle ja vertailemalla 

ennustetta havaittuihin arvoihin. Tulokset ovat lupausta herättäviä, mutta myös kysy-

myksiä nousi esiin. Pääsääntöisesti ennustetut häviöt seurasivat toteutuneiden häviöiden 

trendiä kohtuullisen hyvin, mutta ennustetut häviöt olivat hieman liian suuret. Ennuste-

virheen keskiarvo oli 2.1 MWh ja ennustevirheiden itseisarvojen keskiarvo oli 2.8 

MWh. Prosentuaalisen ennustevirheen keskiarvo oli 7.3%. Osan ennustevirheestä olete-

taan syntyvän 2012 alkuvuoden pohjadatassa olevien puutteiden vuoksi. 
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1 INTRODUCTION 

Electricity distribution business is a natural monopoly. Due to this characteristic the 

government has seen it appropriate to tightly regulate the distribution sector after the 

liberation of the electric markets in 1995 in Finland. The regulation is carried out by the 

Energy Market Authority. Currently the regulation model considers network losses as a 

non-controllable item of expenditure. Network losses are a large expenditure for DSOs 

and the Energy Market Authority is interested in including network losses in a broader 

manner to the regulation model in the future. No matter what method is ultimately cho-

sen to supervise the costs associated with losses it means that DSOs need to be able to 

forecast network losses more accurately on hourly basis to facilitate the procurement of 

loss energy and hedging of the prices. 

 In this thesis the main goal is to develop an Excel-based application for forecasting 

hourly network losses. The application can be used to forecast losses for a chosen time 

period with the help of weather forecasts or it can do forecasts based on long time aver-

age temperatures. The forecasting is done by utilizing multiple linear regression. The 

base data for the regression is the hourly losses for the year 2012 obtained from the 

MDMS at Elenia Oy. 

 The early part of the thesis concentrates on giving the necessary background infor-

mation on how network losses are formed. Overview of the Nordic electricity market is 

presented as well. The background part is finished with a discussion about the manage-

ment of network losses at Elenia. The latter part of the thesis starts with an overview of 

multiple linear regression that is used to build the forecasting models. The main part of 

the thesis is spent analyzing the regression models and their validity. Also a forecast is 

made for January 2013 which is then compared to observed data. Finally there is a brief 

overview of hedging and the viability of week future products is investigated. 

1.1 Elenia Oy 

Elenia Oy is an independent distribution system operator servicing over 410000 distri-

bution network customers in approximately 100 municipalities with a network area of 

nearly 50000 km
2
. Elenia’s network is comprised of mostly rural areas and the average 

line length per customer adds up to around 160 meters. At over 60000 kilometers the 

total line length is enough to go around the world one and a half times. In addition there 

are over 100 primary substations and over 20000 distribution transformers to manage. 

Elenia is known as a forerunner in development and adoption of new technologies for 
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distribution networks. By the end of the year 2008 most of Elenia’s customers had 

AMR meters installed. 

 Elenia Oy was formed at the start of 2013 through the fusion of Elenia Verkko Oy, 

Elenia Asiakaspalvelu Oy and Asikkalan Voima Oy. Previously Elenia Verkko Oy was 

briefly known as LNI Verkko Oy during spring 2012 after Vattenfall sold their Finnish 

distribution division Vattenfall Verkko Oy. 

1.2 Previous research 

There has been some research done previously on determining network losses. For ex-

ample master of science theses by Itäpää (1979), Paloposki (1999), Tyynismaa (2003) 

and Kuisma (2008). Also one licentiate thesis has been made on the subject by Kinnun-

en (2002). However these concentrate on calculating or estimating network losses based 

on modeling the network or its components. The problem has been that the consumption 

figures have been hard to obtain. Traditionally energy meters have been read only once 

a year. This means that determining the hourly consumption has been impossible for 

most of the customers. In recent years the new electricity meters that record hourly con-

sumption and are read remotely have been installed in larger numbers. By the end of 

2013 over 80% of customers in Finland should have a new meter installed by regula-

tion. This new availability of hourly consumption data gives opportunities for better 

estimation and forecasting. Mutanen et al. (2011a; 2011b) have researched the use of 

hourly consumption data in improving the customer load profiles used by DSOs. Matti 

Koivisto made a thesis in 2010 on using hourly consumption data to predict electrical 

loads of residential customers through statistical methods (Koivisto 2010). Koivisto’s 

thesis has given some food for thought while doing this thesis as well. 
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2 BACKGROUND FOR NETWORK LOSSES 

 In this section we consider what network losses are and how they are formed. In 

addition we take a look at how the amount of losses can be estimated and if something 

could be done to reduce them. 

2.1 Definition of network losses 

Network losses can be defined simply as the difference between input energy and output 

energy of the network 

                           ∑                 (1) 

In equation (1) input energy is defined as all the energy fed to the network and 

loadpoint energy is all the energy delivered to customers. Loadpoint energy is all the 

energy delivered to the customers not including the small loading of electricity meters 

themselves. The difference between these is the loss energy. (Seppälä et al. 2011) 

 Network losses are usually divided into two categories: no-load losses and load 

losses. No-load losses do not depend on the load. The losses vary with voltages but re-

main relatively constant. Load losses depend on the load in the network. (Itäpää 1979). 

As can be seen in equation (3) the relationship between load losses and the transferred 

active power is approximately quadratic. 

2.2 Network loss sources 

2.2.1 Lines 

When a current flows through a line the charge-carrying electrons collide with ions that 

make up the conductor material and in the process give a part of their kinetic energy to 

the ions causing the material to heat up. This phenomenon is called resistance and it is 

the primary source of energy losses in the network. 

Figure 2.1. A simple single-phase line. 

 

𝑆0 𝑆1 𝐼 
𝑍𝑃 

𝑈𝑃 
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Power losses over the line in Figure 2.1 can be calculated 
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Where  0 is the apparent power at the start of the line 

  1 is the apparent power at the end of the line 

      is the power loss over the line 

    is the impedance of the line 

    is the voltage over the line (phase-voltage) 

    is the active current in the line 

    is the reactive current in the line 

 

From this equation we can obtain three-phase active power losses 
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In similar fashion we can obtain three-phase reactive power losses 
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Equation (3) shows that transferring reactive power in the network also causes active 

power losses. This happens because transferring reactive power increases the total cur-

rent in the line. 

 Lines have a shunt capacitance and series inductance. Current flowing through the 

inductance consumes reactive power and voltage on the line produces reactive power in 

the capacitance. Each line has an operating point where the line consumes all reactive 

power it produces. It is then said that the line operates at natural power. Natural power 

of a line depends on the surge impedance and voltage. Table 2.1 has a few examples of 

natural power for different lines and voltages. 

 

Table 2.1. Examples of natural power of lines (Elovaara & Haarla 2011a) 

Nominal Voltage Overhead line, 3-phase Underground cable, 3-phase 

(kV) (MW) (MW) 

10 0.26 2.6 

20 1.0 10 

45 5.4 54 

110 32 320 

 

 As can be seen from the above table underground cables have ten times the natural 

power when compared to overhead lines because of their capacitance. Overhead lines 

are usually operated near natural power. However cables produce large amounts of ex-

cess reactive power which needs to be taken into consideration. Natural power of a line 

can be estimated with equation (5). (Elovaara & Haarla 2011a). 
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      √
 

 
    √
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 High-voltage overhead lines can also experience corona losses where the dielectric 

strength of the air breaks down and partial discharges start to form on the surface of the 

conductors. However this is not a concern in distribution networks where the rated volt-

age is less than 110 kilovolts. (Aro et al. 2003). 

 Energy losses also happen in the insulators due to leakage current. The conductivity 

of copper is in the order of 10
18

 to 10
21

 times higher than the conductivity of dielectric 

materials like porcelain, glass and mineral oil (Elovaara & Haarla 2011b). The re-

sistances of insulators are so high that leakage losses can usually be ignored in distribu-

tion networks. As an example of magnitudes in question the leakage losses for a string 

insulator unit in 110 kV overhead lines are 5 watts in dry air, 50 watts in fog or rain and 

100 to 150 watts in drizzle or rime. However if the insulators are very dirty the losses 

can be significantly higher. (Elovaara & Haarla 2011a). 

2.2.2 Transformers 

Unlike in the case of lines the no-load losses of transformers are significant in distribu-

tion networks. In his thesis Paloposki (1999) found out that in the studied distribution 

network the no-load losses were over twice as high as the load losses of transformers. 

This is in part due to the tendency to oversize network components just in case. Also the 

need to prepare for equipment outages in contingency plans pushes towards higher rated 

transformers than would be necessary under normal operating conditions. 

 When a transformer is energized by a voltage a magnetizing current starts to flow 

through it and two types of no-load losses occur. First type is termed eddy losses and 

second type is termed hysteresis losses. Eddy losses are caused by currents circulating 

in the structures of the transformer and these currents are induced by the alternating flux 

from the magnetizing current. Hysteresis phenomenon is related to the magnetic proper-

ties of the ferromagnetic core material. Hysteresis deals with the fact that the magnetic 

field in the core material can have different values depending on whether the external 

magnetic field is increasing or decreasing. These no-load losses are also termed iron 

losses or core losses. Load losses are formed in the resistances of the windings when 

load current flows through them. Load losses are also sometimes called copper losses. 

(Nousiainen 2007). 

 Usually the manufacturer measures the no-load losses and load losses of a trans-

former. These are given for the rated voltage and rated power of the transformer. For 

large power transformers the manufacturer might provide measurement data for several 

operation points in addition to the rated voltage and rated power. The voltage dependen-

cy of no-load losses can be estimated with  

  0   (
 

  
)
   

  0  (6) 
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Where  0 is the no-load losses 

  0  is the no-load losses at rated power 

   is the voltage over the primary winding of the transformer 

    is the rated voltage of the transformer 

  0 is the voltage sensitivity of the transformer’s no-load losses 

 

The ranges of values for     in equation (6) are demonstrated in Table 2.2. Calculating 

the no-load losses with these values gives a range from 89% to 120% when compared to 

no-load losses at rated voltage. As a rule of thumb it can be estimated that a one percent 

increase in voltage from the rated voltage increases the no-load losses by three percent. 

(Paloposki 1999). 

 

Table 2.2. Voltage sensitivity of a transformer's no-load losses (Paloposki 1999) 

Voltage Range 

   ⁄  

Voltage sensitivity 

    

0,950 … 0,975 2,35 

0,970 … 1,000 2,90 

1,000 … 1,025 3,30 

1,025 … 1,050 3,80 

 

Load losses can be estimated with equation (7) when the load on the transformer is 

known. (Nousiainen 2007). 

     (
 

  
)
 

     (7) 

Where    is the load losses 

     is the load losses at rated power 

   is the current loading of the transformer 

    is the rated power of the transformer 

 

 Table 2.3 shows a small example of losses in transformers manufactured by ABB. 

ABB manufactures a wide range of transformers with different power rating, losses and 

noise levels.  

 

Table 2.3. Excerpt of losses of liquid filled transformer examples (ABB 2010) 

Rated Voltage 

(kV) 

Rated Power 

(kVA) 

No-load Losses 

(W) 

Load Losses (75 C) 

(W) 

20 50 125 1350 

20 250 650 3250 

20 250 425 4200 

20 630 1300 6500 

20 1600 1700 20000 
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 Using equation (7) we can calculate at which power the load losses match no-load 

losses for the transformers in the ABB (2010) brochure. From calculations we can see 

that the load has to be between 29% and 45% of the rated power of the transformer. 

This is also the point where the transformer is operating at its peak efficiency. However 

the efficiency stays high for the whole operating window with the exception of very low 

powers. For example the peak efficiency for the 1600 kVA transformer in Table 2.3 is 

99.3% at input power of 466 kVA. At rated power the efficiency is 98.6%. Generally 

for the example transformers the peak efficiencies range around 98-99%. 

2.2.3 Other loss sources 

While lines and transformers account for the majority of losses in the network there are 

several other loss sources. Some of them are true losses and some of them appear as 

losses while by different reasoning they might not be considered as losses. 

 Electricity meters also use energy in their operation. Meters use approximately 1-7 

watts of power depending on the type of meter at hand. Generally static meters use less 

energy than inductive meters and single-phase meters use less than three-phase meters. 

(Kuisma 2008). New AMR meters from Iskraemeco that are used in Elenia’s network 

use approximately one watt per single-phase and three watts per three-phase meter. 

Electricity meters in Elenia’s network consume approximately 9.5 GWh per year. (Sievi 

2013). Another way meters cause losses is through measuring error. While the energy is 

not lost in the physical sense it shows up as energy that is input into the network but not 

delivered to the customer. In his thesis Tyynismaa (2003) estimated that the losses 

caused by measuring errors in Helsinki Energia’s network were approximately 4 GWh 

per year. 

 There is also a lot of other equipment in the distribution network that consume pow-

er such as fuses, circuit breakers, switchgear, relays, instrument transformers and other 

equipment in substations. Generally the energy consumed by these is hard to estimate 

and their significance to total losses in the network is negligible. There can also be non-

metered consumption in the network such as street lighting. In these cases the power 

consumption and usage hours are known and their total energy consumption can be es-

timated. Another form of non-metered consumption is electricity theft. In Finland elec-

tricity theft is negligible but it can be a major problem in some other countries. 

2.3 Estimating network losses 

Network losses as defined in equation (1) include all the different loss sources. Input 

energy includes the energy coming in to the network from other networks and the pro-

duction inside the network. Input energy is generally readily available from hourly me-

tering at the network’s access points. Loadpoint energy is comprised of three major 

components. Energy transferred out of the network to other networks, energy delivered 

to end-users and the remaining part that makes up the network losses. The main difficul-
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ty in determining the losses is the estimation of end-user consumption. It is not easily 

available until AMR meters are installed at every consumption point in the DSO’s net-

work. 

 Network information systems (NIS) can be used as a help in calculating network 

losses. NIS has information on the lines and cables in the network and their electrical 

values. However there are many loss components missing from the systems which need 

to be taken into consideration when determining total losses. Another problem is obtain-

ing the load information for non-hourly metered consumption points. 

2.3.1 Loss function 

The loss function estimates hourly energy losses based on the input power to the net-

work. To estimate losses first a loss% is calculated from observed loss energy and input 

energy data of the network 

           
                  

                   
 (8) 

 

The loss function   ( ) estimates network losses from the input energy 

   ( )   0     ( )
  (9) 

 

Where    is the losses at hour t 

  0 is the no-load losses of transformers in the network 

   is the input energy at hour t 

 

From the equation we can see that losses are equal to the no-load losses plus squared 

input energy multiplied by a coefficient. The coefficient k is defined so that the losses 

   resolve in to the loss% given by equation (8) over a time period T 

   
[           ∑  ( )   ]  ∑  0   

∑  ( )    
 (10) 

The time period T is usually one or multiple calendar years. (Seppälä et al. 2011) 

2.4 Reducing network losses 

A simple way to reduce network losses is to increase the conducting cross-section of 

lines. However, when considering reduction of network losses one has to also consider 

the total costs. Usually this is done by valuing the future losses with present value 

method and adding up investment and maintenance costs. The difficulty of estimating 

the financial aspects of different investments rises from the fact that the life time of 

electrical equipment in network is generally in the order of tens of years. Combined 

with the difficulty of choosing appropriate interest rate and cost of electrical energy the 

comparison can quickly turn into nothing more than a guess. 
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 Other ways to affect network losses are to optimize network configuration, optimiz-

ing voltage levels and compensating reactive power near consumption. Network config-

uration can usually be optimized with the help of network information systems but there 

is generally no reason to do this more than once a year or every few years. However 

some companies might employ two different network configurations depending on the 

season. Optimizing the network configuration is constrained by protection design, usage 

concerns and so forth. Leeway in changing voltage levels is usually very small or non-

existent. Large consumers of reactive power are steered into compensating their own 

usage by relatively high reactive power tariffs. 

 In general the Finnish distribution networks are strong already. At around 4% the 

total network losses are among the lowest in EU. Network losses are already taken into 

account while choosing the size of the conductors. For medium voltage cables with 

small cross-section the economical load is only a tenth of the load capacity. (EMV 

2010). In his thesis Paloposki (1999) didn’t find viable ways to lower energy losses in 

Vantaa Energia’s distribution network. One small possibility was to switch off some 

transformers in the summer during low loading but this would have caused unaccepta-

ble reliability risks and potential power quality issues compared to the meager energy 

savings. 
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3 ELECTRICITY MARKET AND REGULATION 

In this section there is an overview of the electricity market in the Nordic and we also 

take a look at the financial market for electric power. In addition there is a brief outline 

of the laws and regulations regarding network losses and an overview on energy effi-

ciency as it pertains to DSOs. 

3.1 Nordic electricity market 

3.1.1 Power exchange Nord Pool Spot 

The power exchange was founded in Norway in 1993 as “Statnett Marked”. Name was 

changed to Nord Pool in 1996 when Sweden joined. Finland’s turn to join was in 1998. 

In 2002 the spot market activities were organized as a separate company, Nord Pool 

Spot. At present Nord Pool Spot is owned by Nordic and Baltic transmission system 

operators (TSO). Total trade volume in 2011 was 316 TWh. (Nord Pool Spot 2011). At 

present Nord Pool Spot covers Denmark, Finland, Sweden, Norway, Estonia and Lithu-

ania (Nord Pool Spot 2012a). 

 Electricity wholesale markets are comprised of several parts. Elspot is a day-ahead 

market in the Nordic and Baltic region. Elbas is intraday market in the Nordic and Bal-

tic region. Elspot and Elbas are physical electricity markets and they are operated by 

Nord Pool Spot. The financial market was sold to NASDAQ OMX Commodities in 

2008 by Nord Pool. (Nord Pool Spot 2011). 

3.1.2 Elspot 

Elspot is a day-ahead physical wholesale market for electricity in the Nordic and Baltic 

region. More than 70% of total energy consumption was acquired through Elspot in the 

Nordic region in 2011 (Nord Pool Spot 2011). Sellers and buyers must send their offers 

to the exchange on the previous day before noon (13:00 Finnish time). The smallest unit 

of trade in the market is 0.1 MWh. At 13:00 Finnish time Nord Pool Spot starts the pro-

cess of aggregating a price for each hour for the next day based on the received offers. 

After the calculation has been finished Nord Pool Spot informs the participants how 

much they bought and sold electricity each hour. This information is also sent to TSOs 

who need it for balance settlement. (Nord Pool Spot 2012a). 

 The procedure described above gives the system price which is the price that would 

be if there were no transmission bottlenecks. The Nordic and Baltic markets are divided 
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in to several different price areas that are connected by various amounts of transmission 

capacity. For example Sweden is divided into four distinct price areas, Norway into five 

areas while Finland is one area itself. The transmission capacities between the areas are 

determined by the TSOs. (Nord Pool Spot 2012b). 

 After a bottleneck is discovered the prices for areas in question will diverge and 

form the area prices. The area price is formed by first aggregating the price curves for 

demand and supply within the areas with the crossing point as the initial price. Then for 

the area with surplus energy the transfer is reflected as additional demand and for a def-

icit area the transfer is reflected as additional supply. The area prices are then found 

from the new crossing points. (Nord Pool Spot 2012a). 

3.1.3 Elbas 

Elbas is intraday market in the Nordic and Baltic region and it operates around the clock 

every day of the year. It serves as an aftermarket for Elspot and the products for the fol-

lowing day are published 15:00 Finnish time. Elbas enables one to trade up until one 

hour before delivery. (Nord Pool Spot 2012). The trade volume in Elbas was 2.7 TWh 

in 2011 and 2.2 TWh in 2010 (Nord Pool Spot 2011). 

3.1.4 Financial market 

The financial market for electricity is now operated by NASDAQ OMX Commodities. 

Only commodity that changes hands on the financial market is money. On the financial 

market the participants can hedge their selling or buying prices in to the future. The 

physical electricity market Elspot only operates day-ahead but on the financial market 

there are products up to six years into the future which allows for appropriate longer 

term risk management. The reference price used for Nordic market is the Elspot system 

price. (NASDAQ 2012). 

 There are several different financial products available in the market. Futures and 

forwards with base load and peak load products, options and contracts for difference 

(CfD). Base load contracts are delivered every hour of the week for the duration of the 

contract while peak load contracts are delivered from 8 to 20 from Monday to Friday. 

Table 3.1 sums up the available products on the financial market. 

 

Table 3.1. Available financial products. 

Duration Base load Peak load 

Day Future  

Week Future Future 

Month Forward, Option, CfD Forward 

Quarter Forward, Option, CfD Forward 

Year Forward, Option, CfD Forward 
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 Futures are available in base load day and week products and peak load week prod-

ucts. The day products are listed for the next week on the last trading day. Thus there 

are from three to nine day futures available for trade at any one time. There are six base 

load and five peak load week products available on a rolling cycle. After a trade the 

future contract is subject to daily mark-to-market settlement until the end of the delivery 

period. Mark-to-market covers the changes in the future contracts value. During the 

delivery period there is also a spot reference settlement which covers the difference be-

tween the value of the future contract and the spot reference price. 

 Forward contracts are available in base load and peak load month, quarter and year 

products. For base load there are six month, from eight to eleven quarter products and 

five year products. Also for peak load the available products are for the next two 

months, three quarters and one year. Forwards are similar to futures except that the set-

tlement doesn’t start until the delivery period. 

 Since the area price can differ from the system price which is used as the reference 

price for the financial products there are also products available that allow the hedging 

of this price risk. A Contract for Difference (CfD) is a forward product for the differ-

ence in area price and system price. The value can be negative or positive depending on 

whether the market expects the area in question to be a surplus or a deficit area. CfDs 

are available for the next four months, quarters and years. 

 Options come in two varieties. Seller of a put option agrees to buy the underlying 

contract of the option and seller of a call option agrees to sell it. While the seller has the 

obligation to sell or buy the buyer of the option has the right to buy or sell it. This 

means that the buyer doesn’t have to do it if the prices have developed unfavorably. For 

this the buyer pays the seller a risk premium. The underlying contracts for options are 

quarter and year forward products. 

3.1.5 Balance settlement 

In a sense Elspot is also only a financial market. The buyer gets the electricity even if 

the producer cannot generate the power due to a sudden fault and the buyer has to pay to 

the producer. The producer then has to acquire the electricity he had sold to settle his 

balance. For this reason each market actor needs an open supplier who sells or buys the 

electricity required. At the highest level the balancing supplier in Finland is Fingrid who 

is also responsible for electrical balance in the grid. (Partanen et al. 2012). 

 

3.1.6 Risks at the electricity market 

 There are many risks involved in the electricity business. After the deregulation of 

the Nordic electricity market the risks have gone up. Some risks are due to the nature of 

the commodity and some due to the structure of the market. Partanen et al. (2012) list 

some of the major risks as follows: 
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 Price risks arise from the volatility of the market. The major factors behind price 

risks are the weather dependency of production and demand and the fact that 

storage of electric power is not viable. 

 Demand risks are caused by customer’s ability to change suppliers. 

 Volume risks are formed when procurement and sales differ. 

 Political risks arise from the whims of the politicians. Political terms are short 

when compared to the timescales involved in electricity business. Varying and 

uncertain politics create unknown risks for long term investments. One example 

is the emissions trading system in the EU. 

 Operational risks involve miscalculations in the planning of procurement and 

sales. 

 

In addition to these risks there can be currency risks, credit risks and strategic risks. 

Open position is the part of procurement that is not secured by bilateral agreements or 

hedged with financial products. Karjalainen (2006) lists few additional risks. Area price 

risk means that the price in the area differs from system price due to insufficient trans-

mission capacity. Profile risks are formed because the financial products have a constant 

volume but the actual consumption varies with time. 

3.2 Laws and regulations concerning network losses 

Distribution network operation is a natural monopoly as the building of several physical 

networks in the same area is not feasible. For this reason the Electricity Market Authori-

ty regulates the transmission and distribution business. The goal of the regulation is to 

keep the prices reasonable for consumers while facilitating the further development of 

electricity networks. 

 Article 15 b of Electricity Market Act says that network operators must acquire loss 

energy for their network through open, non-discriminating and market-based procedures 

(Sähkömarkkinalaki 1995). The current regulation model for years 2012-2015 (EMV 

2011) does not include network losses in any special way. Based on a consultation work 

by Pöyry Management Consulting Oy (EMV 2010) network losses are included in un-

controllable operating costs. However Electricity Market Authority does monitor that 

DSOs procure energy losses in accordance with the law. 

 New legislative proposal concerning electricity and natural gas markets states in the 

justifications portion that an obligation for a bidding competition on providing the loss 

energy should be set (Government 2013a). 

3.3 Energy efficiency 

The European Union (EU) has set a goal to decrease the amount of primary energy used 

in EU by 20 percent by the year 2020 as a part of the so called “20-20-20” target. In 

practical terms this means that the amount of primary energy used in 2020 should be no 
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more than 17.1 PWh or the final energy used should be less than 12.5 PWh. In 2007 the 

forecasted primary energy consumption for 2020 was 21.4 PWh so to meet the goal a 

reduction of 4.3 PWh in primary energy consumption needs to be achieved. (EU 2012). 

 In Finland the government set a goal of reducing final energy use by 37 TWh or 

about 11 percent compared to what it would be according to forecasts if the efficiency 

measures would not be implemented by 2020. In addition the use of electricity needs to 

be made more effective by 5 TWh or in other words by about 5 percent. (Government 

2010). The goal for final energy use in 2020 is 310 TWh. With the current measures in 

place the projected final energy use would be 325 TWh which means that further 

measures need to be taken. (Government 2013b) 

 A cornerstone of meeting the requirements imposed by EU is the energy efficiency 

agreements. The goal of the voluntary agreements is to reduce the usage of energy that 

is not included in the emissions trading system by 9 percent by year 2016. The reference 

level is the average consumption during the years 2001-2005. By signing the agreement 

the company or community agrees to set goals to improve energy efficiency, implement 

the measures to achieve these goals and finally to report on the implemented measures 

and planned improvements. The duration of the contracts is from 2008 to 2016. (EEA 

2013) 

 The electricity distribution sector’s goal in the agreement is to reduce losses by 150 

GWh during the time period. The only realistic way for a DSO to reduce its losses is to 

replace a network component with a more efficient one. A big challenge is the verifica-

tion of the achieved loss reductions for reporting. In addition to the problem of knowing 

the exact losses before and after the change a big problem is the possibly huge amount 

of components changed. Current information systems do not have adequate support for 

the needs of the energy savings reporting. (Seppälä & Trygg 2011) 

 Another problem in achieving the target of 5 percent reduction in consumption is 

that network losses make up a vast majority of a DSO’s energy consumption. For ex-

ample Elenia’s network losses are approximately 250 GWh per year at a loss percent of 

less than four. In comparison all the substations in the network use approximately 3 

GWh in total per year. Small reductions in the energy consumption at substations or at 

the DSO’s other premises will not be enough to meet the goal by a long shot. As dis-

cussed in chapters 2.4 and 4.2 a large reduction in network losses is not economically 

feasible as the conductor cross-sections in the network are already fairly robustly sized. 
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4 NETWORK LOSSES AT ELENIA OY 

This section gives on overview on how Advanced Metering Infrastructure (AMI) has 

been progressing at Elenia. Also there is a brief outline on how network losses are man-

aged at Elenia Oy and some discussion on why forecasting network losses is important. 

In addition there is a description on the forecasting application developed as part of this 

thesis. 

4.1 Overview of AMI at Elenia 

AMI can be thought of consisting of six different functionalities: Data Acquisition, Data 

Transfer, Data Cleansing, Data Processing, Information Storage and Information Deliv-

ery. New smart meters take care of the data acquisition. Data transfer is handled by 

many techniques such as PLC (Power Line Carrier), GPRS (General Packet Radio Ser-

vice), radio links and so forth. Meter Data Management System (MDMS) is a part of 

AMI and it is involved in rest of the functionalities. Its main job is to validate the in-

coming data, store it, analyze it and share it. (Mäkelä 2011).  

 The MDMS used at Elenia is Energy Information Platform by eMeter (EnergyIP or 

EIP for short). EnergyIP is comprised of several parts. There are two databases called 

Meter Usage Data Repository (MUDR) and AMI Database. MUDR stores the large 

amounts of data coming from the meters. In Elenia’s network the AMR meters generate 

approximately 10 million hourly consumption figures each day. AMI Database holds 

the asset information such as accounts, meters, service delivery points, premises and so 

forth. The application part of EnergyIP is modular. There is no single big application 

but instead there are many different applications that have different purposes. The ap-

plications communicate with each other and the databases through EnergyIP Message 

Bus. EnergyIP is mainly used through a web browser. 

 For Elenia the AMI project started in the early 2000s. After a few pilot projects the 

main AMR project designated Santra started in 2005 and ended in 2008. The goal of 

Santra was to change the electricity meters of all the residential customers to new AMI 

meters. After the Santra project the MDMS project was started in 2009. In 2012 the 

MDMS project had progressed to the point where Elenia started to send hourly meas-

urement data to suppliers. With AMI the most important issue to take into consideration 

is data quality. Without good data quality all the analyses done with the data will be 

flawed and the largest benefits of advanced meters will be lost. Also the figures sent to 

the suppliers will contain balance errors. To facilitate good data quality EnergyIP has 
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applications that process all the incoming data according to set rules before it is stored 

into the database. (Halkilahti 2013) 

 When considering network losses the biggest issue in data quality is missing data. 

All the consumption data that is missing from the database shows up as additional loss-

es. Data missing from a customer usually means that there has been either a data input 

error which means that the MDMS cannot determine the correct target for the incoming 

data or that the meter has become faulty. Another possibility is that the reception of the 

meter is so poor that the meter cannot be contacted. 

 Since 2010 on average 200-300 faulty AMR meters have been replaced each month. 

The number varies a lot depending on the amount and severity of thunderstorms in 

Elenia’s network area. Naturally when a meter becomes faulty it isn’t possible to obtain 

the consumption figures from it. Generally it can be seen from the systems fairly quick-

ly when data isn’t received from a meter. Some difficulties are caused by so called 

main-switch targets such as summer cottages where the power is turned off when the 

residents are away. If the meter is installed after the main-switch it is hard to distinguish 

whether the meter cannot be contacted because it has become faulty or because it simply 

doesn’t have power. Luckily the main-switch targets do not use a lot of power usually 

so the error is not big when it comes to loss calculations. Some companies install shunt 

wires that keep the meter energized even when the main-switch is turned off but Elenia 

does not do this because it is seen as risky especially when dealing with old switch-

boards. New instructions that were given in late 2009 call for switchboard manufactur-

ers to have a place for the meter before the main-switch. (Sievi 2013) 

4.2 Management of network losses at Elenia 

Network losses in Elenia’s network were 245 GWh in 2011. Energy losses compared to 

input energy were 3.85%. Compared to other Finnish DSOs this loss percent is the me-

dian value with values ranging from under 1% to over 10%. (EMV 2012). Combining 

the fairly low overall loss percent with the fact that Elenia’s network is mostly in rural 

areas we can judge that overall the network is already fairly robust. Company’s inner 

estimates have also come to the conclusion that increasing the cable sizes or transformer 

sizes to reduce losses is not economically feasible. (Halkilahti 2013) 

 In early 2012 Elenia moved to utilizing the MDMS data in determining the network 

losses. Figure 4.1 displays an overview of network loss management at Elenia on a gen-

eral level. On the left side the current process is illustrated and on the right side a possi-

ble use of the forecasting application developed in this thesis is displayed. The process 

starts at the AMR meters that measure consumption. The meters are read by a service 

provider who sends the figures to Elenia’s MDM system EnergyIP. After checks the 

data is stored in to the MUDR database. Based on the data EnergyIP calculates the net-

work loss report. In addition to MDMS calculations a loss formula similar to equation 9 

is used to estimate network losses which are then compared to the network loss report to 
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provide a sanity check in case of serious data quality issues which were mentioned in 

chapter 4.1.  If the report seems ok it will be sent to the supplier. (Halkilahti 2013) 

 Loss energy is acquired through a supplier who is chosen by a bidding competition 

to minimize the costs and to comply with the law as stated in chapter 3.2. In addition to 

the physical energy procurement the supplier is required to provide a portfolio manage-

ment service for hedging the electricity prices. Elenia’s hedging policy is to fully hedge 

the forecasted volume in advance over a lengthy time period to spread the price risk. 

The main goal of hedging is to have stable and predictable network loss costs. Trying to 

minimize the costs is important as well but not at the expense of predictability. Elenia 

does not speculate with the financial products. (Halkilahti 2013) 

 The right side of Figure 4.1 shows a possible use of the forecasting application de-

veloped as a part of this thesis. Network loss data is inserted in to the application as 

base data from which the forecasting models are formulated. With the help of tempera-

ture forecasts the models can be used to forecast network losses. The supplier could 

then possibly make additional hedging based on the forecast. 
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Figure 4.1. Diagram of the network loss management at Elenia. 
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4.2.1 Overview of the developed forecasting application 

The forecasting application was developed as an Excel application with Visual Basic for 

Applications (VBA). The application contains roughly 3500 lines of code. Chapter 5 

explains how the forecasting models implemented in the application have been formu-

lated. The application is divided into four sections: temperature estimation, basic fore-

casting, monthly forecasting and model updating and analyzing. The main interface of 

the application reflects these operations. Figure 4.2 displays the Model tab of the appli-

cation. 

 

 

Figure 4.2. Model section of the application. 

From this tab the user can choose to insert data, update all the models to use a different 

date range of the data or graph charts and residuals for analyzing the regression models. 

Insert data button takes the user to a sheet where the hourly energy measurement and 

temperature data is entered. The models can be updated to use any range of the data 

with the restriction that the length is a minimum of 360 days and the range is continu-

ous. Graphs can be generated to analyze how well the formulated models fit the data. 

Also distributions of residuals can be generated to analyze the normality like in Figure 

5.4. 

 Figure 4.3 shows the Estimates tab of the main interface. First field is used to speci-

fy a start date. Hours per data point is used to specify how many hours one temperature 

value will cover. The specified number of days is used to generate the date stamps for 

the insert page that opens after pressing the button. Temperature offsets lets the user to 

specify an offset value for the temperature. The application then generates temperature 

estimates for the given time range from the long time average temperature plus offset 

value to the insert sheet. 
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Figure 4.3. Estimates section of the application. 

 Figure 4.4 displays the basic forecast interface. The user simply defines the time 

period and the application then calculates the forecast. The temperature used for the 

forecast is the given estimates or if there is no estimate given for an hour then the long 

time average value is used. 

 

 

Figure 4.4. Basic Forecast section of the application. 

 Figure 4.5 displays the monthly forecast interface. Target volume means the fore-

casted total distribution volume for the month. After the user gives the required target 

values the application then calculates the basic forecast for losses and loss percent for 

the given month and then scales the losses as described in chapter 5.3. 
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Figure 4.5. Monthly Forecast section of the application. 

 Basic operation of the application is simple. To update the model the user must 

gather the relevant data from other systems and insert it to the application. Then he 

chooses the time period for the models, instructs the application to recalculate the model 

coefficients and then checks that the results look valid. Updating the models is done 

relatively infrequently. To forecast the user enters the temperature estimates, chooses 

the forecast time period and finally instructs the application to generate the forecast. 

(Järvinen 2013) 

4.3 The need for accurate loss forecasting 

Accurate energy loss forecasting is important so that the hedging levels can be more 

accurately set. The losses are highest during cold winter days and the electricity price is 

also at its highest in the power exchange at the same time. The amount of losses in Fin-

land is heavily influenced by the weather due to heating load. During the winter months 

in 2012 Elenia’s network losses were over 30 GWh per month while in June the losses 

were as low as 13 GWh. During exceptionally cold weather in the Nordic region the 

spot-price can spike up and DSOs have very little control over the energy loss amounts. 

During winter 2009-2010 there were three massive price spikes in the 1000-1400 

€/MWh range (NordREG 2010). Figure 4.6 shows the Finnish area price during the 

winter in question. Large open position during such price anomalies can result in signif-

icant extra costs. 

 Finland’s own generating capacity is not able to satisfy domestic demand. In Febru-

ary 2011 the peak hourly demand was nearly 15000 MWh while the domestic produc-

tion was only a bit above 12000 MWh with the difference being covered by import from 

neighboring countries (Fingrid 2012). This reliance on electricity imports leaves Finland 

at risk in case of faults or some other unexpected incidents. During winter 2005-2006 

there were few such incidents. First the Swedish TSO Svenska Kraftnät abruptly low-



21 

 

ered its electricity transmission to Finland without prior notice which caused a price 

spike of 1147 €/MWh during the hour from 16 to 17 on 8
th

 of December 2005. The se-

cond event happened during January 19
th

 and 20
th

 when Russia lowered its electricity 

exports to Finland by a third on a very short notice. The spot price in Finland rose to 

over 300 €/MWh on 19
th

 and over 200 on 20
th

. The price of balancing power rose to 

1800 €/MWh at its highest. (Energiateollisuus 2006). 

 Accurate forecasting is also needed for procurement of electricity and not only for 

hedging purposes. When staging a bidding competition for loss energy procurement the 

suppliers are very interested in more accurate forecasting of losses. If the losses cannot 

be forecasted in any reasonable accuracy by the supplier the offers given will have a 

higher risk margin applied in them which means extra costs for the DSO. The supplier 

needs to acquire the electricity from Elspot or other sources and poor forecasting expos-

es the supplier to large open position during consumption peaks. 

Figure 4.6. Finnish area price in December 2009 and January 2010 (Fingrid 2010) 
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5 NEW LOSS FORECASTING MODELS 

In this section we go over the basic principles of multiple linear regression and analyze 

the developed forecasting models. Linear regression is a widely used and studied meth-

od for statistical inference. It was chosen as the method of choice for this thesis for its 

relative simplicity, ease of implementation and relative clarity of the results. 

5.1 Linear regression 

The exposition of multiple linear regression and statistics in this chapter and its sub-

chapters has been adapted from the textbooks by Kutner et al. (2005) and Laininen 

(2000). 

 Regression analysis is a statistical method for predicting a response variable based 

on one or several predictor variables. These variables are also termed as dependent and 

independent variables respectively. The general linear regression model with p-1 predic-

tor variables and n observed values can be expressed as follows 

     0   1  1             1     1     (11) 

 

Where    is the i th observed value of the response variable 

    1 is the p-1 th regression coefficient 

  0 is the intercept term 

      1 is the i th value of the p-1 th predictor variable 

    is the value of the i th error term 
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The general linear regression model (11) can be expressed in matrix notation simply as 

        (12) 

The model assumes that the random error terms    have a mean of zero, constant vari-

ance    and that the error terms are uncorrelated. 

 To find good estimators for the regression coefficients β in equation (12) the method 

of least squares is employed. The least squares method means minimizing the sum of 

squared deviations between the observed value and the expected value. This means min-

imizing Q in the following equation 
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 (13) 

It can be shown that the least squares estimators, denoted here as b, that minimize Q can 

be obtained by the following equation 

   (   ) 1    (14) 

According to Gauss-Markov theorem the least squares estimators b are unbiased and 

have minimum variance among all unbiased linear estimators. Furthermore it is usually 

assumed that the error terms    have normal distribution. Under this assumption the es-

timators b are also the maximum likelihood estimators and also they are consistent and 

sufficient. 

 The fitted values can be obtained by 

  ̂     (15) 

and residual terms by 

      ̂       (16) 

The residuals have an interesting property: the sum of the residuals equals zero. This 

means that the mean of the residuals is zero and also that the sum of the fitted values is 

equal to the sum of the observed values when calculated over the base data. 

5.1.1 Predictor variables 

There are few basic types of variables that can be employed in regression analysis. 

Quantitative variables are interval scaled numerical variables that can have different 

values freely. Qualitative variables can represent different things such as gender or day 

of the week. In regression qualitative variables are usually represented by indicator var-

iables (also called dummy variables). For example in the case of gender the indicator 

variable can be defined to get the value 1 when the gender is male and 0 if female. 

 Indicator variables can also be used to represent a qualitative variable with several 

classes. For example in the case of a weekday variable one would need to use six indi-

cator variables. Generally speaking there has to be one less indicator variable than there 

are classes in the qualitative variable. This is because if there is an indicator variable for 

each class then the columns in the predictor value matrix X are linearly dependent 

which leads to the matrix     having columns that are linearly dependent. This means 

that in equation 14 the inverse cannot be calculated and no unique estimators of the re-

gression coefficients can be found. The class without an indicator variable can be inter-

preted to be the base case on which the other classes are compared to. 

 Alternative to using indicator variables when describing qualitative variables is to 

use a single variable with allocated codes. For example in the case of weekdays one 

could assign the codes as in Table 5.1 
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Table 5.1. Example of code allocation for a qualitative variable. 

Class Code 

Monday 1 

Tuesday 2 

Wednesday 3 

Thursday 4 

Friday 5 

Saturday 6 

Sunday 7 

 

The problem when using allocated codes is that the coding implies something about the 

difference between different classes. For example in the weekday example the coding 

implies that the difference between Monday and Tuesday is the same as the difference 

between Friday and Saturday. Using indicator variables instead of allocated code varia-

ble avoids this problem of inherent assumptions. 

5.1.2 Regression diagnostics 

There exist many methods for analyzing regression models. The list of methods used in 

this thesis is by no means exhaustive. In this thesis the analysis is done mostly by visual 

methods supplemented by some mathematical methods. 

 Total sum of squares is a measure of the variance in the observed values. The equa-

tion for it is 

      ∑(    ̅)
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Where    is the i th observed value of the response variable 

  ̅ is the mean of the observed values 

   is a matrix of appropriate size full of ones 

 

Error sum of squares is a measure of how much the regression line deviates from ob-

served values. The equation for it is 
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Where  ̂  is the i th fitted value of the response variable 

    is the value of i th residual 

   is a vector of the estimated regression coefficients 

 

Coefficient of multiple determination is a measure of how much of the variation in the 

observed values the regression model explains 

      
   

    
 (19) 
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With multiple predictor values the adjusted coefficient of multiple determination is of-

ten used. The issue is that when adding more predictor variables to the model R
2
 cannot 

get smaller. In the adjusted version the formula is modified so that each sum of squares 

is divided by its associated degrees of freedom. With this modification the R
2
 value can 

get smaller if the added variable does not decrease SSE enough to offset losing a degree 

of freedom. The equation for R
2
-adjusted is 

   
    

   
   
    
   

   
   

   
 
   

    
 (20) 

Where   is the number of observations 

   is the number of predictor variables plus one for the intercept term 

 

The variance of residuals is estimated by error mean square which is defined as follows 

     
   

   
 (21) 

The square root of MSE is called standard error which is an estimate of standard devia-

tion. 

 The predictive capabilities of the model can be evaluated by making a forecast and 

then looking at mean absolute error and mean absolute percent error which are defined 

as follows 
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Prediction intervals can also be calculated. The 100(1 - ) % prediction intervals for a 

future observation is 

  ̂   (
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 (   ) 1 0] (24) 

 

Where  (
 

 
    ) is the 100(1 - /2)th percentile of t-distribution with     de-

grees of freedom 

   is the amount of observations in the base data 

   is the number of predictor variables plus one for the intercept term  

 
 0 is a vector of predictor variable values from which the prediction is being 

made 
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Multicollinearity 

When predictor variables are correlated with each other it is called intercorrelation or 

multicollinearity is said to exist among them. Often the term multicollinearity is re-

served for situations when the correlation is high. If there is a perfect correlation be-

tween predictor variables then the columns in the X matrix are linearly dependent and as 

mentioned in chapter 5.1.1 this means that the unique estimators of regression coeffi-

cients cannot be calculated. In a model with high multicollinearity the interpretation of 

the regression coefficients is hard or impossible as the values can vary a lot when new 

data is introduced to the model. 

 A widely used formal method for investigating multicollinearity is the use of vari-

ance inflation factors 

 (   )  
 

    
                   (25) 

In the equation   
  is the coefficient of determination where the k th predictor variable is 

acting as the response variable and other variables are used as predictor variables. As a 

rule of thumb a factor above 10 is considered to be an indication that multicollinearity is 

influencing the least squares estimates of regression coefficients disproportionately. A 

factor of 10 means that the other variables in the model can be used to explain 90% of 

the variation of the kth variable. 

5.2 Base forecasting models 

The forecasting model implemented in the application is not just a single model. The 

application includes a year-based model for predicting network losses and another year-

based model for predicting loss percentages. In this context year-based means that it 

uses all the data in the defined range to form the regression models. In addition to the 

year-based models there are models for each individual month for both network loss and 

network loss percent prediction. For month-based models the regression model is 

formed by using only the data for the appropriate month. The analysis and investigation 

of different models was done mostly with the program R (R Core Team 2012). 

 The base data for all the models is the same. Data input for the application consists 

of hourly measurements of energy input to the network, energy output of the network 

and temperature in Jyväskylä. For temperature only a single measurement is used for 

the whole network. Some investigations were also done with additional measurement 

points around Elenia’s network but they did not seem improve the forecasting capabili-

ties of the models and actually in some cases they got worse. From the energy input and 

energy output values the observed network losses and loss percentage are calculated for 

each hour. The temperature is used to calculate a 48 hour and a 24 hour rolling average 

where the temperature for each hour is the average of the previous 48 or 24 hours in-

cluding the hour in question. Using temperature averages makes sense because for ex-
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ample heating loads do not react instantly to temperature. Instead there is a delay de-

pending on the type of residence. 

 For this thesis the available data included the aforementioned variables for the year 

2012. The models were calculated from the data in the time period from 3.1.2012 to 

31.12.2012. As more data becomes available it is possible to change this period to in-

clude newer data and possibly drop older data out of the models. 

 The reason for keeping both the year-based and the month-based models is that the 

year-based model is less sensitive to data quality issues and exceptional weather. For 

example February in 2012 was quite cold with average temperature in Jyväskylä being  

-11.2 C while in 2013 the average temperature was -3.9 C with the long time average 

being -8.5 C. On the other hand month-based models seem to be able to better follow 

the changes in losses. Another reason for year-based models is that the data quality of 

early 2012 is slightly in question so they act as a sanity check when making predictions. 

5.2.1 Model variables 

The predictor variables for all the models are the same except that month-based models 

do not have the indicator variables for different months. Also while the application is 

calculating the regression coefficients for each model it will try out both 48 and 24 hour 

temperature averages and settles on the one which gives a higher R
2
-adjusted value. 

This temperature selection is done every time the models are updated. Table A.1 in Ap-

pendix A lists the variables used in the models. 

 The data is time series data. For the given hour the month and hour variables are 1 

or 0 depending when the hour is. Similarly the value of Saturday and Holiday variables 

is 1 or 0 depending on which day the hour is. Holiday gets the value 1 when the day is 

either a Sunday or one of the following days when they do not fall on Saturday: New 

Year’s Day, Epiphany, Good Friday, Easter Monday, First of May, Ascension Day, 

Midsummer’s Eve, Independence Day, Christmas Eve, Christmas Day or Boxing Day. 

Temperature 

Temperature can be considered as the main variable of the model. Temperature is cho-

sen because it has a large impact on the consumption of electrical energy especially in 

houses with direct electrical heating. Figure 5.1 illustrates the temperature dependency 

of transmission volume in Elenia’s network. The temperature in the chart is Jyväskylä’s 

temperature and distribution volume displays the total energy coming in to the network 

measured at the connection points. The temperature and distribution volume are rolling 

24 hour average values to smooth the curves. The correlation between electricity con-

sumption and temperature is displayed very well during the periods of cold weather. 



28 

 

 

Figure 5.1. Temperature dependency of distribution volume. 

 Temperature forecasts can be expected to be accurate in the 4 to 7 day range. Most 

of the uncertainty comes from cloudiness which can have a noticeable effect on temper-

ature. During winter cloud cover raises the temperatures and in summer it lowers the 

temperatures. When considering losses the effect of cloudiness is at its highest during 

high pressure in winter. (FMI 2013) 

5.2.2 Discarded variables 

Early on the use of a predictor variable which denoted the proportion of middle-voltage 

and high-voltage distribution from overall distribution volume was investigated. Large 

consumers are connected usually straight to 20 kV network and some very large con-

sumers to 110 kV area network. It had been noted that when this proportion was higher 

the network losses were proportionally lower as the distribution at higher voltages 

meant less resistive losses. However the variable was eventually discarded as it didn’t 

bring enough extra information to the model. It was found that the value of the propor-

tion variable could be predicted from the other variables with an R
2
-adjusted value of 

over 0.9. Another large problem with it was that it was practically impossible to forecast 

beforehand which made its use as a predictor variable questionable. 

 More hour-based variables were also investigated such as a variable for peak hours 

denoting hours from 8 to 20 on workdays. These variables were discarded as well for 

not bringing enough new information to the model. Also in an effort to lower the total 
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amount of variables in the model the variables for Sunday and midweek holiday were 

combined to a single Holiday variable. 

 While constructing the models all the possible averages from 1 to 48 hours were 

investigated for temperatures. Some month-based models got the highest R
2
-adjusted 

value with 48 hour or 39 hour averages for example while some others peaked at 22 or 

25 hour averages. As a solution the forecasting application now compares 24 and 48 

hour temperature averages when updating the models and chooses appropriately for 

each model every time the models are updated with new data. The values 24 and 48 

were chosen instead of arbitrary values because they are easier to understand and more 

logical. 

5.2.3 Year-based models 

Year-based models include all the data in the chosen data range. The regression formula 

can be expressed as follows 

 

    0                                                (26) 

                                                1  1    

                                             

                 10  10    11  11    1   1    1   1    

   1   1    1   1    1   1    1   1    1   1    

   1   1     0   0     1   1                      

                                 

 

The values for the regression coefficients are expressed in Table A.2 in Appendix A for 

both year-based models. The values for the loss percentage model are multiplied by 100 

and thus expressed in percentage units. With 2012 base data for the loss model the tem-

perature average used was the 24 hour average and for the loss percentage model the 

average used was the 48 hour average as they gave a better R
2
-adjusted value as ex-

plained in chapter 4.2.1. 

 As can be seen from the table, some coefficients for the hour indicator variables are 

close to zero. This means that their statistical significance is low. These are kept in the 

model because they have a logical reason for being included and after updating the 

models with newer data the relative values might change. If the model had been reduced 

to arbitrary hour variables it might not make any sense after updating. 

 For the loss model the highest VIF value is 5.3 when the temperature average is be-

ing predicted from the other variables. This makes sense because temperature is quite 

dependent on the month of the year. For loss percent model the same VIF value is 5.9. 

The values are different because the loss percent model uses 48 hour temperature aver-

age and loss model uses 24 hour average. These values are still under 10 but they are 

starting to get in the problematic region when considering multicollinearity. 
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 The residuals are graphed for the year-based loss model in Figure 5.2. Residuals are 

the difference between observed losses and fitted values. The observed losses are the 

network loss values that are obtained from loss calculations as explained in chapter 4.2. 

The true losses are not exactly known due to problems explained in chapter 4.1 however 

the observed losses can be assumed to be fairly close to true losses. The fitted values are 

given by the regression formula for the same data that was used as the basis of estimat-

ing the regression coefficients. The smaller the residuals are the better the regression 

model developed can explain the variations in the base data. Residuals are also used to 

analyze the developed models. 

 

 

Figure 5.2. Residuals for the year-based loss model. 

 Residuals for February and March seem to display a clear pattern while December 

which was very cold as well looks better in comparison. As said in chapter 5.2 there are 

some doubts about the data quality of early 2012 which might also be one of the causes 

for the pattern. Once data for 2013 becomes available it can be investigated further. The 

second peak in the residuals for December is during the 22
nd

 and we can conjecture that 

this peak is caused by Christmas preparations. The reason for the first peak in December 

is not clear but it coincides with the temperature getting very cold for that time of the 

year with temperatures falling under -20 C. 

 Figure 5.3 shows the residuals graphed for the year-based loss percent model. Dur-

ing March there is similar pattern in the residuals as there was with the loss model in 

Figure 5.2. During the summer the overall volumes are a lot smaller than during winter 

which might lead to the loss percentage being more volatile. 
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Figure 5.3. Residuals for the year-based loss percent model. 

 Table 5.2 shows the coefficients of determination for the year-based models. The 

values are fairly high. A high R
2
-value means that the regression model can explain a 

high proportion of the variation in the base data. While having a high R
2
-value does not 

guarantee that good predictions can be made with the model it is a good starting point. 

 

Table 5.2. Coefficients of determination for year-based models. 

Statistic 

Losses as 

response variable 

Loss percent as 

response variable 

R
2
 0.9347 0.8265 

R
2
-adjusted 0.9344 0.8257 

 

 Table 5.3 shows the statistics for the residuals of the year-based models. First quar-

tile means that 25% of the values of the residuals are between the minimum value and 

the quartile value. Respectively third quartile means that 25% of the values are between 

it and maximum value. In other words the quartiles denote the range in which 50% of 

the values of the residuals fall between. 

 

Table 5.3. Statistics for the residuals of the year-based models. 

Residuals 

Losses as 

response variable 

Loss percent as 

response variable 

Maximum 14.239 1.334 % 

3
rd

 quartile 1.796 0.134 % 

Median -0.057 -0.003 % 

1
st
 quartile -1.995 -0.136 % 

Minimum -11.130 -0.883 % 

Standard error 3.014 0.231 % 
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 In Figure 5.4 the histogram for the residuals of the year-based loss model residuals 

is plotted. In the regression model (equation 12) an assumption is made that the error 

terms have a mean of zero, constant variance 
2
, are normally distributed and that the 

error terms are uncorrelated. The residuals of a sound regression model should exhibit 

similar qualities. 

  

Figure 5.4. Histogram of residuals together with a normal distribution plot for the 

year-based loss model. 

 Each column is 0.5 MWh wide. For the normal distribution plot the standard error of 

3.014 from Table 5.2 is used as the standard deviation. From the chart we can see that 

the residuals seem to be very close to normally distributed. This gives us assurance that 

the model is theoretically a proper model. 

 Similarly to the loss model the histogram for the year-based loss percent model is 

graphed in Figure 5.5. 
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Figure 5.5. Histogram of residuals together with a normal distribution plot for the 

year-based loss percent model. 

In this case the columns are 0.05 %-units wide and the normal distribution plot uses a 

standard deviation of 0.231 %-units. Again the residuals are fairly close to being nor-

mally distributed. 

5.2.4 Month-based models 

Month-based models use the same base data as the year-based models however there are 

independent models for each month. The regression formula is similar to equation 26 

except that there are no variables for the months 

 

    0    1  1                                      (27) 

                        10  10    11  11    1   1    

   1   1    1   1    1   1    1   1    1   1    

   1   1    1   1     0   0     1   1             

                                          

 

For the month-based models only January will be analyzed here. The regression coeffi-

cients are represented in Table A.3 in Appendix A. The loss model uses 24 hour tem-

perature average and the loss percent model uses 48 hour temperature average with the 

2012 data. 
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 Similarly to the year-based model there are some coefficients that are close to zero 

which are kept in the model for consistency. For the month-based models the VIF val-

ues are under two for all the variables which is very good. In Figure 5.6 we can see the 

residuals for all the month-based loss models put together. 

 

 

Figure 5.6. The residuals for the month-based loss models. 

 Comparing the statistics for residuals is harder because there is a different month-

based model for each month while the year-based model covers the whole year. Visual-

ly we can see when compared to the year-based model in Figure 5.2 that overall the 

residuals have less variance in them. However we can also see that the early 2012 has 

similar issues with the patterns in residuals. 

 In Figure 5.7 we can see the residuals for all the month-based loss percent models. 

 

 

Figure 5.7. The residuals for the month-based loss percent models. 
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Overall the graph and residuals look fairly similar to the year-based model in Figure 5.3 

including the pattern in March. 

 In Table 5.4 we can see the coefficients of determination for the month-based mod-

els of January. While the R
2
-values are lower than they are for year-based models it 

doesn’t necessarily mean that the models are worse for prediction. The year-based mod-

els have more variables in them which increases the R
2
-value and with a lot of data 

points also usually the R
2
-adjusted value. 

 

Table 5.4. Coefficients of determination for month-based models of January. 

Statistic 

Losses as 

response variable 

Loss percent as 

response variable 

R
2
 0.8738 0.7761 

R
2
-adjusted 0.8689 0.7674 

 

 In Table 5.5 the statistics for residuals for the January models are displayed. While 

the R
2
-adjusted values are not as high as for the year-based models in Table 5.2 the re-

sidual distributions statistics look slightly better although as discussed above the data 

sets for the models are not equal. 

 

Table 5.5. Statistics for the residuals of month-based models of January. 

Residuals 

Losses as 

response variable 

Loss percent as 

response variable 

Maximum 11.460 0.460 % 

3
rd

 quartile 1.400 0.089 % 

Median -0.032 -0.016 % 

1
st
 quartile -1.747 -0.097 % 

Minimum -6.687 -0.436 % 

Standard error 2.592 0.144 % 

 

 In Figure 5.8 we can see the residual histogram of the month-based loss model for 

January plotted together with a normal distribution curve with the standard error of 

2.592 from Table 5.5. The residuals seem to be reasonable close to being normally dis-

tributed although not quite as nicely as for the year-based model in Figure 5.4. Sample 

size for the month-based model is naturally a lot smaller which plays a part. 
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Figure 5.8. Histogram of residuals together with a normal distribution plot for the 

month-based loss model of January. 

 
Figure 5.9. Histogram of residuals together with a normal distribution plot for the 

month-based loss percent model of January. 
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 In Figure 5.9 we can see the residual histogram of the month-based loss percent 

model for January plotted together with a normal distribution curve with the appropriate 

standard error from Table 5.5. Again the residuals are close to being normally distribut-

ed. 

5.3 Volume-based monthly loss forecasting 

The application has a feature that uses network loss and network loss percent models to 

forecast losses for a given total distribution volume for a given month (see chapter 

4.2.1). The forecast is done by first producing a base forecast for network losses and for 

network loss percentages for each hour of the given target month. Then the total distri-

bution volume is estimated in the following way 

             ∑
  
  

  

 (28) 

Where            is the estimated distribution volume 

   is an hour of the target month 

    is the forecasted loss for the hour h 

    is the forecasted loss percent for the hour h (divided by 100) 

 

 After the estimated volume is calculated then the forecasted losses for each hour are 

multiplied by a factor k given by 

    
       

          
 (29) 

 

Estimating the total distribution volume from these multiplied losses will equal the de-

sired target volume. The application will calculate the forecasts using all the four com-

binations of year-based and month-based loss and loss percent models for comparison 

purposes. 
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6 EVALUATING THE NEW FORECASTING 

MODELS WITH JANUARY 2013 DATA 

In this section we evaluate the forecasting models constructed in chapter 5 by using two 

different methods. First we calculate the coefficients for the models using data for 

whole 2012 plus 2013 January and then with January 2013 data combined with year 

2012 data without January. These coefficients are compared to each other and the coef-

ficients obtained in chapter 5 with the data for 2012. The second method used to evalu-

ate the models is to forecast January 2013 losses based on the observed temperatures 

and comparing predicted losses to the actual observed losses. 

6.1 Model coefficient comparisons 

6.1.1 Loss model 

The first model to be looked at is the loss model. In Figure 6.1 there are the values of 

coefficients graphed for all the variables in the year-based model with the three different 

data sets. We can see that the values for the month variables seem to change visibly but 

the other variables stay fairly constant. Considering most of the data for the year-based 

model stays the same the changes seem surprisingly large. 

 The intercept term of the regression model is omitted from figures Figure 6.1 and 

Figure 6.2 to keep the vertical scales more appropriate. The intercept terms for the year-

based and month-based models with different data sets are displayed in Table 6.1. We 

can see that the intercept term has changed in magnitude by approximately the same 

amount as the month variable coefficients in Figure 6.1 have changed. The relative val-

ues between month variables seem to be fairly similar. 

 

Table 6.1. Intercept terms for loss models based on different data sets. 

January 

data set 

Year-based 

model 

Month-based 

model - January 

2012 37.948 36.941 

2013 35.779 34.118 

2012+2013 36.655 35.177 
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Figure 6.1. Year-based loss model coefficients with different data sets. 

 
Figure 6.2. Month-based loss model coefficients for January model with different data 

sets. 
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 In Figure 6.2 we can see the coefficient values for the month-based model for Janu-

ary with different data sets. Overall the coefficients and their relative values seem to be 

fairly similar even with completely different data sets. This gives further confidence in 

that the model might be able to produce sensible forecasts. 

6.1.2 Loss percent model 

In Figure 6.3 we can see the coefficients for the year-based loss percent models with 

different data sets. Similarly to the year-based loss model we can see changes in the 

values of the month variable magnitudes and intercept term magnitudes. The intercept 

terms for the loss percent models are shown in Table 6.2. 

 

 

Figure 6.3. Year-based loss percent model coefficients with different data sets. 

Table 6.2. Intercept terms for loss percent models with different data sets. 

January 

data set 

Year-based 

model 

Month-based 

model - January 

2012 4.269 % 4.367 % 

2013 3.846 % 3.888 % 

2012+2013 4.044 % 4.077 % 

 

In Figure 6.4 we can see the coefficient values for the month-based models for January 

with different data sets. 
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Figure 6.4. Month-based loss percent model coefficients for January with different data 

sets. 

 The coefficients seem to be fairly similar again although during the day there seems 

to be a bit of a difference. 

6.2 Forecasting January 2013 losses 

In this section we look at a forecast made with the application based on 2012 data. 

Temperature used for making the forecast was the observed temperature of January 
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but nonetheless it is useful to investigate how well the model can forecast in an ideal 

situation. Uncertainties of the temperature forecasts are a separate issue that needs to be 

taken into consideration when making forecasts. 

6.2.1 Loss forecast 

In Figure 6.5 there are displayed the observed losses, predicted losses made with month-

based loss model and the prediction error between predicted and observed losses. Gen-
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fairly well. Figure 6.6 shows the same data for a forecast made with the year-based 
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Figure 6.5. Predicted and observed losses for January using the month-based model. 

 

Figure 6.6. Predicted and observed losses for January using the year-based model. 

1
.1

.2
0

1
3

2
.1

.2
0

1
3

3
.1

.2
0

1
3

4
.1

.2
0

1
3

5
.1

.2
0

1
3

6
.1

.2
0

1
3

7
.1

.2
0

1
3

8
.1

.2
0

1
3

9
.1

.2
0

1
3

1
0

.1
.2

0
1

3

1
1

.1
.2

0
1

3

1
2

.1
.2

0
1

3

1
3

.1
.2

0
1

3
1

4
.1

.2
0

1
3

1
5

.1
.2

0
1

3

1
6

.1
.2

0
1

3

1
7

.1
.2

0
1

3

1
8

.1
.2

0
1

3

1
9

.1
.2

0
1

3

2
0

.1
.2

0
1

3

2
1

.1
.2

0
1

3

2
2

.1
.2

0
1

3

2
3

.1
.2

0
1

3

2
4

.1
.2

0
1

3
2

5
.1

.2
0

1
3

2
6

.1
.2

0
1

3

2
7

.1
.2

0
1

3

2
8

.1
.2

0
1

3

2
9

.1
.2

0
1

3

3
0

.1
.2

0
1

3

3
1

.1
.2

0
1

3

En
er

gy
 [

M
W

h
/h

] 

Observed losses

Predicted losses

Prediction error

0 

1
.1

.2
0

1
3

2
.1

.2
0

1
3

3
.1

.2
0

1
3

4
.1

.2
0

1
3

5
.1

.2
0

1
3

6
.1

.2
0

1
3

7
.1

.2
0

1
3

8
.1

.2
0

1
3

9
.1

.2
0

1
3

1
0

.1
.2

0
1

3

1
1

.1
.2

0
1

3

1
2

.1
.2

0
1

3

1
3

.1
.2

0
1

3
1

4
.1

.2
0

1
3

1
5

.1
.2

0
1

3

1
6

.1
.2

0
1

3

1
7

.1
.2

0
1

3

1
8

.1
.2

0
1

3

1
9

.1
.2

0
1

3

2
0

.1
.2

0
1

3

2
1

.1
.2

0
1

3

2
2

.1
.2

0
1

3

2
3

.1
.2

0
1

3

2
4

.1
.2

0
1

3
2

5
.1

.2
0

1
3

2
6

.1
.2

0
1

3

2
7

.1
.2

0
1

3

2
8

.1
.2

0
1

3

2
9

.1
.2

0
1

3

3
0

.1
.2

0
1

3

3
1

.1
.2

0
1

3

En
er

gy
 [

M
W

h
/h

] 

Observed losses

Predicted losses

Prediction error

0 



43 

 

losses. In Appendix A there are charts for each week for the month-based forecast. In 

these charts we can more clearly see the relation between observed and predicted losses. 

Overall the predicted losses seem to follow the hourly changes and overall magnitude 

fairly well. 

 The sums of the predicted losses for the month were 32 GWh for both models while 

the observed losses were 30.4 GWh. The month-based model for January is based on 

January 2012 data. The overall losses in the data for January were about 33 GWh. Some 

data quality issues have been identified and improved upon in the MDMS over time and 

it has been estimated that the losses for January 2012 might be too high by around 1-2 

GWh in the data (Halkilahti 2013). This is meaningful because as was mentioned in 

chapter 5.1 in the regression model the fitted values sum up to the observed values if the 

values for the predictor variables are the same. Thus if the base data has higher losses 

then also the predicted values will be higher. Mean of the prediction error in both fore-

casts is around 2.1 MWh per hour which would add up to around 1.5 GWh over the 

month. 

 Table 6.3 shows the mean absolute error and mean absolute percent error for the 

prediction errors of the loss predictions in addition to 95% prediction intervals. 

 

Table 6.3. Statistics for January loss prediction errors. 

 Year-based loss model Month-based loss model 

MAE 2.95 MWh 2.84 MWh 

MAPE 7.77 % 7.29 % 

95% prediction intervals ±5.9 MWh ±5.2 MWh 

 

The error statistics are fairly similar for both models. Month-based model seems to be 

slightly more accurate despite the data quality issues mentioned earlier. The prediction 

intervals are fairly large and the data issues discussed above mean that they are not par-

ticularly useful. 

6.2.2 Loss percent forecast 

Figure 6.7 and Figure 6.8 show the observed and predicted loss percent along with the 

prediction error calculated with month-based and year-based loss percent models. The 

predicted values have a similar overall trend but the observed values are much more 

volatile. Similarly to the loss prediction in chapter 6.2.1 the year-based model has 

smaller changes while maintaining similar average value as the month-based model. 
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Figure 6.7. Forecasted loss percentages for January 2013 using the month-based mod-

el. 

 

Figure 6.8. Forecasted loss percentages for January 2013 using the year-based model. 
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As discussed in chapter 6.2.1 the losses for January 2012 are slightly higher than they 

should be. Same goes for the loss percent. The observed loss percent for January 2012 

was 0.5 %-units higher than the observed loss percent for January 2013. Table 6.4 

shows the mean absolute error and mean absolute percent error for the prediction errors 

of the loss percent predictions in addition to 95% prediction intervals. 

 

Table 6.4. Statistics for January loss percent prediction errors. 

 Year-based loss model Month-based loss model 

MAE 0.42 %-units 0.43 %-units 

MAPE 10.59 % 10.85 % 

95% prediction intervals ±0.45 %-units ±0.29 %-units 

 

 MAPE is displayed in percentages and the other two in percentage units. Again both 

models seem to be fairly similar but now the predictions made with the year-based 

model are slightly better. However the year-based models prediction intervals are larger. 
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7 INVESTIGATING THE USABILITY OF THE 

WEEKLY PRODUCT ON THE FINANCIAL MAR-

KET 

In this section we take a look at the financial products. First we have a brief overview of 

hedging in general. Then we investigate the viability of the week future products. With 

the help of the developed forecasting application one could forecast the network losses 

for the following week. 

7.1 Hedging of network loss procurement in general 

When thinking about hedging policies it is good to keep in mind that the profitability of 

a forward or a future product depends only on the price of the product and the average 

Elspot system price during the delivery period of the product. The actual losses and 

their procurement from Elspot market or from a supplier is a different issue. It can be 

shown with a simple calculation as follows 

       ∑ ( ) ( )

 

  1

 (30) 

Where       is the cost of buying all the loss energy from Elspot 

  ( ) is the Elspot system price for hour t 

  ( ) are the losses at hour t 

 t is an hour during the delivery period (t = 1…n) 

 

With a financial product for volume V acquired for price D the total price is 

        ∑{   [ ( )   ] ( )}

 

  1

 (31) 

 
 ∑ ( ) ( )

 

  1⏟        
      

  [∑ ( )

 

  1

   ] 
 

 

From the equation above we can deduce that 

                 
 

 
∑ ( )

 

  1

          (32) 
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By combining equations 31 and 32 we can see that if the price D of the financial prod-

uct is higher than          then the total costs are higher than having no hedging prod-

uct at all. Respectively if the price D is lower than          then the total cost to acquire 

the loss energy is lower. Same can be shown for CfDs by replacing the spot price with 

the difference between the area price and system price which by definition is the price 

of the CfD. 

 Naturally when acquiring the financial products the future Elspot prices are not 

known. Elspot prices can be volatile and difficult to predict. Figure 7.1 displays the 

monthly system average prices and Finland area prices since 2000. Even on monthly 

scales there are large spikes during some winters but not during every winter. Over time 

the separation between Finland’s area price and Elspot system price has become more 

volatile as well. 

 

Figure 7.1. Monthly Elspot system prices, Finland area prices and the differences since 

2000. 

 There are many factors influencing the exchange prices: for example temperature, 

hydrologic balance, emissions trading, fuel prices, functioning of the market and general 

economic state (Karjalainen 2006). These factors combined with practically non-

existing elasticity of demand mean that the price of electricity can be very volatile. Vol-

atile prices combined with network loss volumes that can vary by a factor of five from 

an hour during a summer night to peak hour during a cold winter day propose a chal-

lenge for DSOs. 
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 Forecasting losses is the pre-requisite for making appropriate decisions on protec-

tion levels. Once loss volumes are predicted a complete hedge can be attained by first 

hedging the required volume with forward contracts, then hedging against the area price 

risk by acquiring CfDs for the same time period and volume and finally by procuring 

the volume of electric energy from the spot market (NASDAQ 2012). 

 One of the most used basic hedging strategies is to distribute the acquisition of fi-

nancial products over time according to pre-set hedging levels (Karjalainen 2006). For 

example Fingrid starts the price hedging of network losses five years before and distrib-

utes it over time. Hedging products are evenly purchased according to forecasts so that 

the following year is fully hedged in the autumn. (Fingrid 2013) 

 In Finland network losses vary significantly over the duration of a year. The amount 

of year forwards needs to be tailored so that during the summer when losses are at their 

lowest the volume risks are not too high. Usually the Elspot prices are at their lowest 

during this time as well. During July 2012 the average system price was down to 13.7 

€/MWh. Similarly the amount of quarter and month forward products needs to be scaled 

appropriately. Figure 7.2 shows an example of basic hedging with different financial 

products during a winter week where the temperature is significantly colder during a 

part of the week. Equivalent amounts of CfD products should be acquired for a full 

hedge. 

 

Figure 7.2. Network loss hedges during a hypothetical winter week. 

 Year, quarter and month products form the base of the hedging. Profile risk imposed 

by varying losses can be seen from the figure. The hedging products are constant while 
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the losses can vary a lot with time. Open position shows the times when the losses are 

not fully hedged and are exposed to price risk. At other times there is a situation of over 

hedging which also causes a price risk. Week and day futures provide a possibility for 

more fine-grained hedging. However the shortest duration for a CfD contract available 

is a month. 

7.2 Weekly products during winter 2012-2013 

In this section we investigate the week future products from November to March during 

winter 2012-2013. With the help of the forecasting tool and accurate weather forecasts 

the losses for the following week could be estimated. In case of cold weather and higher 

than expected losses some additional hedging could be done. Week products were cho-

sen for this investigation because weather forecasts become increasingly unreliable after 

about a week as mentioned in chapter 5.2.1. Table C.1 in Appendix C shows the price 

data for the weeks during the winter in question. 

 Table 7.1 shows the calculations based on the price data for a few different scenari-

os. 

 

Table 7.1. Week future calculations (unit is €). Profit is positive. 

Week Case A Case B Case C Case D 

44 -3108.00 -2696.40   

45 -1789.20 -1058.40   

46 -16.80 411.60   

47 -2281.44 -1990.80   

48 789.60 1402.80 789.60 1402.80 

49 2103.36 2217.60 2103.36 2217.60 

50 1209.60 -2284.80 1209.60 -2284.80 

51 1352.40 1881.60 1352.40 1881.60 

52 579.60 991.20 579.60 991.20 

1 -982.80 -1024.80   

2 1512.00 1411.20   

3 -3894.24 -4258.80 -3894.24 -4258.80 

4 -3281.04 -2226.00 -3281.04 -2226.00 

5 -1221.36 50.40   

6 -1318.80 -1587.60   

7 -105.84 420.00   

8 -38.64 -109.20   

9 949.20 798.00   

10 -277.20 -352.80 -277.20 -352.80 

11 1780.80 1260.00 1780.80 1260.00 

12 2931.60 1839.60 2931.60 1839.60 

13 2847.35 1920.50 2847.35 1920.50 

Total -2259.85 -2985.10 6141.83 2390.90 
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The total amount bought in each scenario for each week is 5 MW. In case A it is as-

sumed that week futures are bought throughout the final trading week so that they are 

acquired for the average closing price of the weekly future product for each week 

(         column in Table C.1). In case B the week futures are assumed to be bought 

during the last trading day for the final closing price each week (       column in Table 

C.1). Case C is similar to case A except that week futures are only bought if the week’s 

average temperature will be below the long time average temperature. Case D is similar 

to case B with the same restriction as in case C. 

 In the total row at bottom we can see that categorically buying week futures each 

week would not have been profitable in either case while buying only when the weather 

was cold it would have been profitable. It is interesting that it would have been profita-

ble to acquire week futures even during the final trading day when the forecast for the 

next week can be expected to be reasonably accurate at least when it comes to tempera-

tures. However the profit or loss in each case is only few thousand euros for a reasona-

ble amount of work over the winter especially when trading every day and checking 

temperature forecasts. 

 The temperature used is the temperature in Jyväskylä which is located fairly middle 

of Southern Finland and can be expected to reasonably portray the overall weather in 

Southern Finland where most of the Finnish consumption is located. The temperatures 

over the whole Nordic area should be taken into account as well when deciding whether 

to acquire week futures or not when anticipating cold weather. 
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8 CONCLUSIONS 

The main goal of this thesis was to develop an application for forecasting network loss-

es. With the use of multiple linear regression and Excel VBA programming this goal 

was achieved in the form of a spreadsheet application. The implemented loss and loss 

percentage models were analyzed and some predictions were made with the application. 

The network loss data for the models was hourly measurement data for year 2012 that 

was aggregated from AMR meters. In addition to loss data the hourly temperatures in 

Jyväskylä were used. 

 The loss models and loss percentage models were analyzed by looking at the distri-

butions of residuals. The residuals were fairly close to being normally distributed which 

means that the basic assumption of linear regression holds and we can conclude that the 

models used are applicable regression models. In addition January 2013 data was used 

to calculate new regression coefficients and these matched fairly well to the coefficients 

obtained with 2012 data. With the models validated a forecast for January 2013 was 

investigated. When taking some data quality issues into consideration the month-based 

loss model seemed to be able to predict the network losses with reasonable accuracy. 

Network loss percent forecast was able to follow with a similar trend but the observed 

loss percent was much more volatile. When more data becomes available the predictive 

capabilities can be further investigated. 

 Overall the month-based loss model seems to be able to reasonably accurately fore-

cast network losses given accurate temperature forecasts. With an accurate forecast the 

model can be used to predict the following week’s network losses or by utilizing the 

built-in average temperatures it can be used to forecast month volumes. The network 

loss percentages seem too volatile to be predicted with such a simple model but the gen-

eral trend of the loss percentages can be predicted. However the loss percentage predic-

tion seems even more sensitive to issues with the base data. 

 Main issue with the models used is that there are quite a lot of variables, especially 

in the year-based models. Also the use of the hour variables in the models mean that the 

basic hour profile is the same for every day. The values just get scaled depending on 

temperature and other variables. This can be clearly distinguished from the charts in 

Appendix A. From experience we know that hour profiles for workdays are quite differ-

ent from weekends and other special days. One possible option would be to develop 

models to forecast daily energy loss amounts and then derive the hourly distribution by 

other means. In addition other statistical methods such as polynomial regression, non-

linear regression and neural networks to mention a few could be investigated. Another 

possible venue to investigate would be to divide Elenia’s distribution network into dif-
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ferent areas for prediction as the network covers a fairly large geographical area and the 

weather conditions can vary significantly in different portions. However EnergyIP does 

not currently make this division possible. 
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APPENDIX A: REGRESSION VARIABLES AND COEFFICIENTS 

Table A.1. Predictor variables used in the models. 

Variable Variable type Symbol 

February Indicator      

March Indicator      

April Indicator      

May Indicator      

June Indicator      

July Indicator      

August Indicator      

September Indicator      

November Indicator      

December Indicator      

Hour 1-2 Indicator   1 

Hour 2-3 Indicator     

Hour 3-4 Indicator     

Hour 4-5 Indicator     

Hour 5-6 Indicator     

Hour 6-7 Indicator     

Hour 7-8 Indicator     

Hour 8-9 Indicator     

Hour 9-10 Indicator     

Hour 10-11 Indicator   10 

Hour 11-12 Indicator   11 

Hour 12-13 Indicator   1  

Hour 13-14 Indicator   1  

Hour 14-15 Indicator   1  

Hour 15-16 Indicator   1  

Hour 16-17 Indicator   1  

Hour 17-18 Indicator   1  

Hour 18-19 Indicator   1  

Hour 19-20 Indicator   1  

Hour 20-21 Indicator    0 

Hour 21-22 Indicator    1 

Hour 22-23 Indicator      

Hour 23-24 Indicator      

Saturday Indicator      

Holiday Indicator      

Temperature average Quantitative       
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Table A.2. Regression coefficients for the year-based models. 

Coefficient 

Losses as 

response 

variable Std. Error 

Loss percent as 

response 

variable Std. Error 

 0 37.948 0.204 4.269 % 0.0157 % 

     1.960 0.162 0.013 % 0.0125 % 

     -6.028 0.168 -0.426 % 0.0128 % 

     -8.043 0.177 -0.531 % 0.0136 % 

     -8.412 0.208 -0.660 % 0.0162 % 

     -7.634 0.223 -0.534 % 0.0175 % 

     -4.988 0.242 -0.214 % 0.0190 % 

     -5.449 0.228 -0.269 % 0.0180 % 

     -5.010 0.208 -0.219 % 0.0163 % 

     -6.403 0.185 -0.437 % 0.0144 % 

     -3.651 0.177 -0.255 % 0.0137 % 

     -4.024 0.160 -0.564 % 0.0123 % 

  1 -2.875 0.223 -0.032 % 0.0171 % 

    -4.550 0.223 -0.058 % 0.0171 % 

    -5.310 0.223 -0.068 % 0.0171 % 

    -5.340 0.223 -0.064 % 0.0171 % 

    -4.584 0.223 -0.134 % 0.0171 % 

    -1.863 0.223 -0.246 % 0.0171 % 

    0.103 0.223 -0.218 % 0.0171 % 

    0.254 0.223 -0.259 % 0.0171 % 

    0.858 0.223 -0.211 % 0.0171 % 

  10 0.412 0.223 -0.271 % 0.0171 % 

  11 0.535 0.223 -0.237 % 0.0171 % 

  1  0.149 0.223 -0.260 % 0.0171 % 

  1  -0.349 0.223 -0.251 % 0.0171 % 

  1  -0.977 0.223 -0.274 % 0.0171 % 

  1  -0.923 0.223 -0.254 % 0.0171 % 

  1  -0.666 0.223 -0.283 % 0.0171 % 

  1  1.061 0.223 -0.147 % 0.0171 % 

  1  1.553 0.223 -0.148 % 0.0171 % 

  1  2.184 0.223 -0.144 % 0.0171 % 

   0 1.938 0.223 -0.100 % 0.0171 % 

   1 -0.269 0.223 -0.159 % 0.0171 % 

     0.069 0.223 -0.051 % 0.0171 % 

     1.490 0.223 -0.015 % 0.0171 % 

     -1.044 0.094 0.389 % 0.0072 % 

     -2.657 0.088 0.380 % 0.0067 % 

      -0.874 0.007 -0.035 % 0.00057 % 
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Table A.3. Regression coefficients for the month-based models of January. 

Coefficient 

Losses as 

response 

variable Std. Error 

Loss percent as 

response 

variable Std. Error 

 0 36.941 0.506 4.367 % 0.0283 % 

  1 -3.648 0.681 -0.116 % 0.0377 % 

    -5.573 0.681 -0.160 % 0.0377 % 

    -6.228 0.681 -0.176 % 0.0377 % 

    -6.013 0.681 -0.190 % 0.0377 % 

    -4.527 0.681 -0.230 % 0.0377 % 

    -0.335 0.681 -0.286 % 0.0377 % 

    1.131 0.681 -0.283 % 0.0377 % 

    2.304 0.681 -0.305 % 0.0377 % 

    1.821 0.681 -0.275 % 0.0377 % 

  10 1.065 0.681 -0.332 % 0.0377 % 

  11 1.237 0.681 -0.293 % 0.0377 % 

  1  0.502 0.681 -0.344 % 0.0377 % 

  1  -0.295 0.681 -0.362 % 0.0377 % 

  1  -0.853 0.681 -0.372 % 0.0377 % 

  1  -0.210 0.681 -0.343 % 0.0377 % 

  1  2.223 0.681 -0.313 % 0.0377 % 

  1  5.624 0.681 -0.145 % 0.0377 % 

  1  5.924 0.681 -0.128 % 0.0377 % 

  1  5.894 0.681 -0.121 % 0.0377 % 

   0 4.504 0.681 -0.100 % 0.0377 % 

   1 1.037 0.681 -0.151 % 0.0377 % 

     4.230 0.681 0.014 % 0.0377 % 

     5.803 0.681 0.155 % 0.0377 % 

     -2.075 0.290 0.369 % 0.0162 % 

     -4.290 0.266 0.317 % 0.0147 % 

      -0.881 0.016 -0.030 % 0.00095 % 
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APPENDIX B: WEEKLY CHARTS FOR MONTH-BASED LOSS 
FORECAST FOR JANUARY 2013 

 

Figure B.1. Month-based loss forecast for week 1. 
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Figure B.2. Month-based loss forecast for week 2. 

 

Figure B.3. Month-based loss forecast for week 3. 
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Figure B.4. Month-based loss forecast for week 4. 

 

Figure B.5. Month-based loss forecast for week 5.
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APPENDIX C: DATA FOR WEEK FUTURES 

 In Table C.1         is the average Elspot system price for the week,        is the 

final closing price of the week future product,          is the average price of the clos-

ing prices during final trading week for the week future product,   is the average tem-

perature in Jyväskylä during the week and the final column is the difference between 

long time average temperature and the temperature in Jyväskylä during the week. The 

long time average temperature is a monthly average and there are two values when the 

week is split between months. The average temperatures are from Climatological statis-

tics of Finland 1981-2010 (Aalto et al. 2012). 

 

Table C.1. Price data for week future products. 

Week 

        

(€/MWh) 

       

(€/MWh) 

         

(€/MWh) 

  

(C) 

       

(C) 

44 35.19 38.40 38.89 1.1 -2.5 / 3.1 

45 34.29 35.55 36.42 -0.3 1.7 

46 34.29 33.80 34.31 2.6 4.6 

47 32.63 35.00 35.35 4.1 6.1 

48 37.27 35.60 36.33 -6.8 -4.8 / -0.6 

49 48.39 45.75 45.89 -13.4 -7.2 

50 48.98 51.70 47.54 -6.7 -0.5 

51 41.89 39.65 40.28 -16.7 -10.5 

52 35.33 34.15 34.64 -11.1 -4.9 

1 34.38 35.60 35.55 -2.6 3.6 / 5.7 

2 40.06 38.38 38.26 -8.2 0.1 

3 46.43 51.50 51.07 -11.8 -3.5 

4 46.10 48.75 50.01 -8.5 -0.2 

5 36.76 36.70 38.21 -2.8 5.5 / 5.7 

6 38.66 40.55 40.23 -6.8 1.7 

7 40.95 40.45 41.08 -2.9 5.6 

8 40.12 40.25 40.17 -4.3 4.2 

9 40.05 39.10 38.92 -4.1 4.4 / -0.3 

10 40.98 41.40 41.31 -10.2 -6.4 

11 46.70 45.20 44.58 -12.5 -8.7 

12 46.94 44.75 43.45 -8.8 -5.0 

13 47.10 44.70 43.59 -6.2 -2.4 

 


