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Tietokoneiden laskentatehon eksponentiaalinen kasvu on vahvistanut laskennallisen
tieteen merkitystä ja mahdollistanut yhä monimutkaisempiin ja laajempiin ongelmiin
tarttumisen. Fysiikan ja biologian rajapinnassa toimiville tieteenaloille laskennalli-
nen tutkimus on arvokas työkalu tutkittavien ilmiöiden luonteen vuoksi. Laskentate-
hon kasvun myötä mallinnettavien systeemien kompleksisuus on kasvanut samaan
tahtiin, mikä on luonut tarpeen joustavien ja riittävän yksinkertaisten molekyyli-
mallien kehittämiselle.
Biologisessa fysiikassa eräs käytetyimmistä laskennallisista tutkimusmenetelmistä
on molekyylidynamiikka, jossa ratkotaan Newtonin liikeyhtälöitä ajan suhteen ja
tuloksena saadaan atomien sijainnit ajan funktiona. Molekyylidynamiikkasimulaa-
tiot vaativat erittäin paljon laskentaa, mikä rajoittaa niiden käytettävyyttä. Eräs
ratkaisu laskennan keventämiseksi on molekyylimallien yksityiskohtien vähentämi-
nen eli karkeistaminen. Karkeistamisessa useita atomeja yhdistetään yhdeksi par-
tikkeliksi, jonka ominaisuudet vastaavat keskimäärin yhdistettyjen atomien omi-
naisuuksia. Kun simulaation muuttujien lukumäärä pienenee, laskenta kevenee
ja simulaatio nopeutuu. Toinen simulaatiota nopeuttava tekijä on karkeistettujen
molekyylien väliset yksinkertaistetut vuorovaikutukset, jolloin mikrotilojen tutkimi-
nen on nopeampaa. Näistä johtuen karkeistetuilla malleilla tehtyjen si-mulaatioiden
aikaevoluutio on nopeampaa kuin atomistisilla malleilla. Tutkittaessa aikaevoluu-
tion nopeutumista, havaitaan vain molempien nopeuttavien tekijöiden yhteisvaiku-
tus. Jotta aikaskaalan eroavaisuuksia pystyy tutkimaan, tulee molempien nopeu-
tumiskertoimien vaikutus tuntea erikseen. Karkeistettujen mallien rakenteellisia ja
termodynaamisia ominaisuuksia on tutkittu paljon ja niiden on todettu jäljittelevät
hyvin atomitason malleja, mutta dynaamisia eli ajasta riippuvia ominaisuuksia ei
ole tutkittu yhtä tarkasti.
Tässä työssä tavoitteena on selvittää kuinka hyvin karkeistetut vesimallit täsmäävät
oikean veden ja atomistisen veden dynaamisia ominaisuuksia, sekä tutkia eri dy-
naamisten ominaisuuksien aikaskaalojen eroja. Karkeistettujen ja atomististen nestei-
den dynaamisten ominaisuuksien vertailussa käytetään vettä mallisysteeminä, ja
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tutkitaan itseisdiffuusiota, kollektiivista diffuusiota sekä viskositeettia lämpötiloissa
300–350 K. Karkeistettuina malleina on käytössä niin sanottu Martini-malli ja polari-
soituva Martini-malli, joita verrataan atomitason SPC-vesimalliin. Karkeistetuksi
malliksi valittiin Martini ja atomistiseksi malliksi SPC, koska molemmat ovat laa-
jasti käytettyjä ja hyväksi todettuja malleja. Simulaatiot tehtiin GROMACS 4.5.1-
simulaatio-ohjelmistolla ja viskositeetin sekä kollektiivisen diffusion analysoinnit it-
setehdyllä koodilla.
Tulokset osoittavat, etteivät aikaskaalat ole samoja eri dynaamisille ominaisuuk-
sille, mutta ne ovat kuitenkin samaa suuruusluokkaa. Martini-mallin itseisdiffuusion
tiedetään olevan neljä kertaa todellista diffuusiota nopeampaa, ja tämä on otettu
yleiseksi nyrkkisäännöksi dynamiikan nopeutumiselle eri ilmiöissä. Havaitut nopeu-
tumiskertoimet Martini-mallille ovat 2 (leikkausviskositeetti), 4 (itseisdiffuusio) ja
4 (kollektiivinen diffusio). Polarisoituvalle Martini-mallille luvut ovat 1,2, 5 ja 6.
Kollektiiviselle diffuusiotekijälle ei laskentamenetelmästä johtuen saada yksikäsit-
teistä arvoa.
Karkeistettujen simulaatioiden aikaskaalan tulkinta ei siis ole suoraviivaista, sillä
samalle mallille saadaan erilaisia nopeutumiskertoimia riippuen käytetystä dynaami-
sesta ominaisuudesta. Erot ovat kuitenkin maltillisia ja yleisesti ottaen tulokset
tukevat Martini mallin semi-kvalitatiivista luonnetta. Aikaskaalan nopeutumisessa
voidaan jatkossakin käyttää ensimmäsenä approksimaationa kerrointa neljä.
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Coarse-grained models have become commonplace in computational biophysics re-
search for their obvious benefits. They enable simulations of larger systems and
longer time scales compared to atom-level models with reasonable accuracy and
computational load. Coarse-grained models are built from interaction sites which
represent a group of atoms and aim to describe the average properties of the un-
derlying atomistic groups. The decreased computational load is achieved by having
simplified interactions and fewer interacting particles. The simplified interactions
and the coarse-graining process both create a speed up compared to atomistic models
which results in faster time evolution in the simulation.
In this thesis the aim is to study how the dynamic properties of coarse grained
descriptions of water correspond to real water and atomistic fine grained water,
and also to see if there are differences in the time scales between different dynamic
properties. The dynamic properties of liquids are compared through Molecular
Dynamics simulations using water as the model system in the temperature range
300–350 K. Molecular Dynamics technique solves the Newton’s equations of motion
over discrete time steps. The SPC force field is chosen as the fine-grained model and
the coarse-grained models are based on Martini and polarizable Martini force fields.
Viscosity and self-diffusion are calculated using standard methods whereas collective
diffusion is determined from the decay of the density fluctuation autocorrelation
function in resiprocal space. Collective diffusion and viscosity are analyzed with
in-house codes.
The results show that the time scales for different dynamic variables are not the
same, but comparable. Compared with SPC the observed speed up factors for the
Martini water are 2, 4 and 4 for shear viscosity, self-diffusion and collective diffusion,
respectively. For polarizable Martini the speed up factors are 1.2, 5 and 6 in the
same order as above. The computation method for collective diffusion is sensitive
to changes in parameters and thus care is needed in interpeting the results. The
results support the view of the semi-quantitative nature of the Martini model. The
speed up factor of four is reasonably consistent and in simulations it can be used as
a first approximation.
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1. INTRODUCTION

During the last decade computational research has established itself as the third
cornerstone of scientific research in addition to experiments and theory [1]. Compu-
tational studies are often building the bridge between the two and in fields such as
economics, climate research, and biological sciences they are an indispensable tool
in testing hypotheses, because the phenomena at hand are often too big, too small
or too complex to study through any other means. Interestingly, the fields of science
that use a lot of computing resources are also known for intensive experimental re-
search. At CSC, the Finnish IT-center for science, the top three sciences using their
computing resources in 2011 were nanoscience (38 %), physics (35 %) and chemistry
(8 %) — and a good deal of physics can be assigned to biological physics [2]. This
shows how computational science complements experiments and theory in opening
new directions in research.

The exponential increase in computing power makes it possible to numerically
solve problems which before were unimaginable. This further expands the areas of
application for scientific computing. One such example is computational fluid dy-
namics (CFD), where complex fluid flows are analysed. Fluid flows are considered
one of the most difficult problems to solve, but CFD gives tools to analyse the flows
bringing forth advances in automobile design, aeronautics, and power plant furnace
design. On the other hand as the computing power increases so does the complexity
of the problems of interest, which creates the need for simple but flexible solutions
that make it feasible to study big problems without an excessively large computa-
tional cost. To give an example, in soft matter computer simulations with Molecular
Dynamics (see Chapter 3), the length- and time-scales have increased tremendously:
today simulations of systems lasting up to a millisecond and containing up to mil-
lion particles [3, 4] are readily feasible whereas 30 years ago a typical simulation
might have contained no more than a few hundred particles and lasted for tens of
picoseconds [5] – that is a combined increase of nine orders of magnitude. This
would not have been possible without great advances in the molecular models and
in computing power.

For the interest of this thesis, we turn to biophysical simulations where the de-
velopment depicted above has lead to asking new kinds of questions. What kinds of
simplified models can be used to reduce the computational load while maintaining
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an acceptable level of accuracy? Also, what kinds of new physical aspects will the
larger time- and length-scales bring along?

The answer to the first question lies in reducing the level of detail in the model,
which is called coarse graining. Coarse graining schemes reduce the number of
interacting particles by treating groups of atoms as a single particle and simplify
the interactions between the particles [6]. The most common molecule in many
soft matter simulations is water as solvent and hence many of the coarse graining
methods focus on reducing the computational load associated with the solvent.

The coarse graining approaches can be divided into two groups: implicit solvent
models, where the effect of solvent is embedded into non-solvent molecules, and
explicit solvent models, where actual solvent molecules are present in the simulation
[7]. By definition the implicit coarse graining schemes cannot include hydrodynamic
effects and need special arrangements in order to get rid of the solvent. These special
arrangements also create different kinds of limitations to the use of the models which
do not burden explicit solvent models. The explicit solvent models in turn typically
define two to three types of interaction sites: hydrophobic, hydrophilic and water-
like. In some models these basic types contain subtypes which take into account the
chemical nature of the underlying atoms. Interestingly, despite the variety of coarse
graining approaches, all of the models produce fairly similar results in structural
properties being largely consistent with all atom models [7].

The second question about new physical aspects is much more open to debate.
One (side-)effect of the coarse graining process is that it makes the interactions
smoother which results in accelerated dynamics in the system [6]. The molecules
simply diffuse faster resulting in faster time evolution and problems with interpret-
ing the time scale of the simulation. The speed up factor is typically between four
and ten [6, 7]. An all atom (or fine-grained) simulation has typically a small simula-
tion box, which prevents the emergence of large scale hydrodynamical phenomena,
whereas these kinds of dynamic properties become increasingly important in coarse
grained simulations. Even though coarse grained models capture the structural
properties relatively well, how is the case for dynamic properties such as shear vis-
cosity, self-diffusion or collective diffusion? The transfer of mass and momentum are
important from physical point of view, but these have not been examined in detail.

In this thesis, the focus is on the dynamic properties of liquids and in the most
ubiquitous molecule in living systems: water. The significance of water in biophys-
ical simulations is illustrated by the fact that water typically constitutes more than
half of the molecules in a simulation. Dynamic properties of the models become
more important, because the time and size scales make it possible for dynamic and
collective properties to have an impact. The standards used to characterize the
models need to include the dynamic properties to a greater extent. To elucidate
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these points the main research questions are

1. How do the dynamic properties of coarse grained water models correspond to
real water and on the other hand to atomistic water models?

2. Are there differences in the time scales of different dynamic properties?

The following chapters are divided as follows. In the next chapter the physi-
cal concepts regarding dynamics and correlation functions are presented including
the derivations of the necessary equations. Chapter 3 focuses on molecular mod-
els, Chapter 4 descirbes the simulation methods in this thesis and the simulations
used, and Chapter 5 analyses and discusses the results. The final and sixth chapter
contains the conclusions.
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2. BROWNIAN MOTION AND TRANSPORT
PHENOMENA

It is a random world down at the molecular level: the molecules in biological or-
ganisms are in constant motion. In soft matter systems the thermal energy makes
the molecules wander around in a random walk and it is a small miracle how these
random motions actually can create ordered structures — and even life. In order to
understand the dynamics of soft matter systems, one has to understand Brownian
motion, the random walk of particles, and how to analyze it. Brownian motion
is the most fundamental mechanism of molecular transport, and the origin of self-
diffusion as well as collective diffusion lies in Brownian motion. Collective diffusion
and self-diffusion are the passive molecular mechanisms of transporting mass.

When discussing dynamics, the other important quantity to consider, in addition
to spatial movements, is momentum. The intermolecular interactions and collisions
create viscous friction, which drags down the flow of molecules. This is called viscos-
ity of the liquid and it is a measure of the dissipation of momentum in the system.
Shear viscosity and diffusion are called transport coefficients because they describe
the transportation of a given quantity over time in this case the momentum and
mass, respectively. Each liquid has its own characteristic values for both transport
coefficients.

Next, starting from Brownian motion, the diffusion process is explained and a
connection to viscosity is made. This is followed by a look on methods of analyz-
ing diffusion and related processes. Diffusion and other transport phenomena are
analyzed using correlation functions and the Green-Kubo –formalism.

2.1 Brownian Motion and Diffusion

Particles in a liquid are in constant motion randomly colliding with each other.
It is the available thermal energy that facilitates this constant motion, and the
magnitude of the motion depends on the temperature of the system according to the
equipartition theorem 〈v2

avg〉 = 3kBT/2, where 〈v2
avg〉 is the average particle velocity,

kB is the Boltzmann’s constant and T the temperature of the system. The velocity
distribution of the particles is described by the Maxwell-Boltzmann distribution.

If the motion of a single particle were to be tracked, it would constitute a random
walk, where the direction of the next steps could not be predicted from the previous
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steps. The random collisions of a particle with its neighbors leads to a random tra-
jectory. This also means that the trajectory has no memory effects. Such a process
is also called a Markovian or a stochastic process. A classic analogy of a random
walk is the walk of a drunken person on a square: sure, there is constant motion,
but whether there is actual progress in certain direction will be an open-ended ques-
tion. There are several fields, where random walks are encountered ranging from
economics to ecology and engineering.

Single Particle Motions

The motion of a diffusive Brownian particle in a diluted suspension can be modeled
with the phenomenological Langevin equation

m
d2r
dt2

= −ξmdr
dt

+ FR(t), (2.1)

where ξ is the friction coefficient, r is the location of the particle, and FR(t) is a
random force. The Langevin equation assumes that the diffusing particle is much
larger than its neighbors. The first term on the right hand side is a friction term,
which reflects the drag from the uniform medium as the Brownian particle moves
through it. The second term on the right hand side introduces a random force which
models the collisions of the particle with the surrounding molecules. The random
force is considered as ’white noise’ meaning that it is uncorrelated and vanishes in
the mean:

〈FR(t)〉 = 0 (2.2)
〈FR(t+ s) · FR(t)〉 = 2πR0δ(s) (2.3)

where R0 is the radius of the Brownian particle, δ(s) is the delta function, and the
brackets denote ensemble average. Also, the random force is uncorrelated with the
velocity 〈

FR(t) · dr
dt

〉
= 0. (2.4)

The two terms on the right hand side of Eq. 2.1 reflect two different time scales
in the system: the first term depicts the long term continuous drag inflicted on
the particle, while the latter term models the instantaneous collisions from the
surrounding particles, which also reflects the local structure of the liquid. These
terms, however, are not independent. When solving the Langevin equation we see
that

ξ = β

3m

∫ ∞
0
〈FR(t) · FR(0)〉dt, (2.5)
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where β = (kBT )−1 is the inverse temperature. The friction coefficient depends on
the cumulative effect of the random collisions. On closer thought this is not an un-
expected result, since the origin of both terms is the same — random collisions from
neighboring molecules. When the Brownian particle travels through the medium
the random collisions induce a systematic drag force, which has to be proportional
to the frequency of the collisions. This is an example of the fluctuation-dissipation
theorem [8].

What we are after here is not the friction coefficient, but a quantity which de-
scribes the movement of the Brownian particle. This is called the self-diffusion
coefficient and it can be discovered using the Langevin approach (Eq. 2.1) and the
Einstein relation (Eq. 2.9). Locating the particle initially (t = 0) at r = 0 and using
the conditions set to the force above, we find the mean square displacement [9]

〈|r|2〉 = 6kBT
ξm

(
t− 1

ξ
+ 1
ξ
e−ξt

)
. (2.6)

At large times, when ξt� 1, the above equation reduces to

〈|r|2〉 = 6kBT
ξm

t. (2.7)

Einstein determined the self-diffusion coefficient in the long time limit to be

Ds = lim
t→∞

1
2dt〈|r(t)|2〉, (2.8)

where d is the number of dimensions in the system. Comparison between Eqs 2.7
and 2.8 yields the so called Einstein relation

Ds = kBT

ξm
. (2.9)

The significance of the Einstein relation is further expanded by the observations
of Stokes, who discovered that an estimate for friction coefficient ξ for a spherical
particle of radius R in a liquid with a shear viscosity η is given simply by

ξ = 6πηR
m

. (2.10)

This equation is also known as Stoke’s law. Substituting it into Eq. 2.9 yields

Dsη = kBT

6πR. (2.11)

This shows the connection between two important transport coefficients, which are
both of interest in this thesis, namely the self-diffusion and the shear viscosity.
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Intuitively it is easy to understand that the more viscous the fluid is the slower the
particles move, and therefore it is expected to see the coefficients being inversely
proportional. Raising the temperature increases thermal motion leading to faster
diffusion and lower viscosity. It also enables the evaluation of the characteristic size
of the molecules R which might be different from the physical radius determined in
the model. Albeit Stoke’s law is derived from macroscopic considerations and applies
only to cases, where the Brownian particle is much larger than the surrounding
molecules, it still gives a reasonable description on the molecular scale [9].

Collective Motions

The Langevin equation is used to describe the motion of a single particle, but what
if we have several diffusive particles? How can many-particle diffusion be charac-
terized? The relaxation of concentration gradients is an example of a many-particle
diffusion phenomenon. Here the problem is tackled with hydrodynamics using Fick’s
law and mass transport equation. The hydrodynamic regime means that the time
and length scales involved are much larger than the ones experienced by individual
molecules. Starting from the fact that mass is a conserved quantity, we write the
continuity equation for mass transport

dρ(r)
dt

+∇ · jr = 0, (2.12)

where ρ(r) is the density at r and jr is the particle current density at the same place
r. Here, the density ρ represents the mass and its rate of change depends on the
gradient per unit area. The continuity equation simply states that the density in
a unit area changes at a rate which corresponds to the net flow of particles in (or
from) that same area. The particle current density can be expressed as the gradient
of density with (local) diffusion constant according to Fick’s first law

jr = −D(ρ)∇ρ(r,t), (2.13)

where D(ρ) is the density-dependent diffusion. Combining the above equations
yields Fick’s second law

∂ρ

∂t
= −∇ ·D(ρ)∇ρ(r, t). (2.14)

In the most general case Eq. 2.1 is a non-linear partial differential equation, which
often can not be solved analytically. Thus, a further assumption is made that the
diffusion coefficient does not depend on the density of the particles (ie. D(ρ) = D).
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Now the equation simplifies to

∂ρ

∂t
= −D∇2ρ(r, t). (2.15)

We have reached another definition for the diffusion coefficient: it is the rate
of change coefficient for density fluctuations. Now, however, we are dealing with
a different kind of diffusion coefficient than what was encountered with Langevin
equation. All the quantities originate from hydrodynamics and implicitly represent
macroscopic length and time scales — not microscopic as with self-diffusion. The
diffusion factor obtained here shall be referred to as the collective diffusion coefficient
and denoted Dc later in the thesis.

In the derivation of Fick’s second law two assumptions have been made. First,
the use of hydrodynamics assumes that the microscopic details can be neglected,
and second, the continuity equation (Eq. 2.12) assumes that mass transport is
proportional to the gradient of the density and higher than second order terms of the
density gradients can be neglected. This is also one expression of the linear response
theorem, which states that the system responds to an external perturbation in the
same way as to a fluctuation of the same size. In hydrodynamics, the drive towards
equilibrium means that spontaneous fluctuations in the microscopic variables decay
in the mean at sufficiently large length scales and long time scales according to laws
governing the macroscopic variables [10].

Both descriptions for self-diffusion and collective diffusion rely on phenomenologi-
cal equations — that is, they only provide mathematical descriptions of the observed
results without considering the fundamentals behind the equations — and are not
directly applicable as such to calculating diffusion coefficients from computer sim-
ulations (with the exception of Eq. 2.8). A simulation produces the trajectories
of individual molecules and not the variables found in the above equations. Means
of connecting the macroscopic and microscopic levels are needed in order to have
a practical way to compute the transport coefficients. This is achieved with the
Green-Kubo –formalism [9] discussed later in this chapter.

Viscosity

Viscosity is a term we do not encounter too often in our daily lives, but we are all
familiar with viscosity even though we might not think about it. Take liquids for
example: we know syrup is much more difficult to mix than water. And we all know
how margarine becomes more pliable when we leave margarine on the table for a
while — the viscosity is decreased. Despite the intuitive feel, getting a grip of the
physical formulation of viscosity is much more difficult. Consider the big difference
between solids and liquids in their response to deformations. Solids want to relax
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back to their equilibrium position after a deformation, but liquids do not have this
property. Instead they want to maintain their current state of motion. Liquids have
no memory effects at variance to solids. That is, liquids do not remember where
they were, only where they are going. Viscosity relates to the propensity at which
the liquids want to maintain the current state of motion. Liquids respond to the
rate of deformation where as solids respond to the amount of deformation.

Another interesting feature of liquids is that for different-size objects the same
medium can feel very different to move in. For a small amoeba water is a difficult
medium to move in, but humans swim in water with ease. The reason for this is that
the ratio of frictional forces — caused by molecular interactions — to momentum
of the object changes with the length scale. This property is captured in Reynolds
number

Re = ρvL

µ
, (2.16)

where ρ is the density of the fluid, v is the mean velocity of the object relative to the
fluid, L is the characteristic length scale and µ is the dynamic viscosity of the fluid.
The numerator in the above equation describes the total momentum transfer and
the denominator the molecular momentum transfer. Reynolds numbers range from
10−1 to 109. Reynolds number helps to understand the role of viscosity and the
interplay between inertia and viscous forces in liquid systems. When the Reynolds
number is large (on the order 104) momentum is the dominating property and objects
move quite easily in the medium in question. With low Reynolds numbers the
frictional properties take the upper hand making it difficult for particles to move in
the medium.

The viscosity in Eq. 2.11 seems to play a balancing or opposite role to self-
diffusion, since they are inversely proportional. Self-diffusion measures the motion
of the molecules, while viscosity is a measure for the frictional forces which oppose
the motions of molecules. Following Tuckerman [11], let us derive an equation for
shear viscosity by starting with a set of microscopic equations of motion

dri
dt

= pi
mi

+ γyiêx (2.17)

dpi
dt

= Fi − γpyiêx, (2.18)

where ri, pi, mi are the location, momentum and mass of particle i, yi and pyi are
the y-components of the location and momentum of particle i, Fi is the force acting
on particle i, and êx is the unit vector in x-direction. The parameter γ is the shear
rate. The equations describe a situation where liquid is placed between two plates
which are pulled apart in opposite directions creating a shear force. The situation
is illustrated in Fig. 2.1. In the bottom the liquid is at rest (v = 0). The velocity of
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the ’liquid layers’ increases in x-direction making them slide past each other, which
results in a shear stress between the layers. The shear flow increases the momentum
of the particles in the system and the total momentum is pi +miv(yi).

Pzx

Pzz

Pxxz

x

y

Figure 2.1: The shearing of liquid layers upon imposing a shearing force in x-direction.
Liquid can be thought of as layers sliding past each other causing friction be-
tween the layers. The sliding resistance is proportional to the zx component
of the pressure.

The shear flow generates anisotropy in the system, which further on creates asym-
metry in the internal pressure. When the pressure is non-uniform a single scalar
value for the pressure is insufficient and a new construct that takes into account the
different pressures in different directions is needed. If the pressure P is obtained
from an estimator for isotropic pressure, which stands

p = 1
3V

N∑
i=1

(
p2
i

mi

+ ri · Fi

)
, (2.19)

where V is the volume of the system and in equilibrium P = 〈p〉, one can define in
analogy an estimator for the pressure tensor (also called the stress tensor) with

Pαβ = 1
V

N∑
i=1

(
(pi · êα)(pi · êβ)

mi

+ (ri · êα)(Fi · êβ)
)
, (2.20)

where êβ and êα are the unit vectors in direction α, β = x, y, z. The first subscript
tells the normal of the plane on which the stress is acting on and the second subscript
the direction of the pressure. Components, where α = β, are normal components
which constitute the isotropic pressure, and components with α 6= β are the shearing
pressures or stresses.

The mathematical description may look complicated, but intuitively the compo-
nents of the pressure tensor are easy to comprehend. Imagine a box on a surface.
There are two different ways of pushing the box around. First, one can push it from
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one of the sides and apply pressure perpendicular to the side and parallel to the
surface, where the box lies. This corresponds to the diagonal terms xx and yy. The
other option is to apply pressure in a oblique angle on the box’s roof and try to
shear it. The applied pressure is perpendicular to the surface, but the movement of
the box happens parallel to the surface. Now the cross terms come into play. This
corresponds to the cross terms zy and zx. These concepts are illustrated also in Fig.
2.1. It has been observed that the xy-cross term of the pressure tensor depends on
the velocity field or shear rate

Pxy = −η∂vx
∂y

= −ηγ, (2.21)

where η is the shear viscosity. Solving for η yields

η = −Pxy
γ

= − lim
t→∞

〈pxy(t)〉
γ

, (2.22)

where 〈pxy(t)〉 is the average of the xy-component of the pressure tensor estimator
in the above described steady-state flow case.

In order to calculate 〈pxy(t)〉, linear response theory and the concept of dissipative
flux are applied [11]. Now the dissipative flux becomes

j(x) =
N∑
i=1

[
γyi(Fi · êx) + γpyi

pi · êx

mi

]
(2.23)

= γ
N∑
i=1

[
(pi · êy)(pi · êx)

mi

+ (ri · êy)(Fi · êx)
]

(2.24)

= γV pxy. (2.25)

With the so called linear response formula [11] the average of the xy-component
of the pressure tensor is

〈pxy(t)〉 = 〈pxy〉0 −
γV

kBT

∫ t

0
〈pxy(0)pxy(t− s)〉0ds, (2.26)

where V is the volume of the system and 〈pxy〉0 is the equilibrium average of the
pressure tensor, which is zero because in equilibrium the pressure is symmetric.
Finally, substituting into Eq. 2.21 and taking the limit, the result for shear viscosity
is

η = V

kBT

∫ ∞
0
〈pxy(0)pxy(t)〉0dt. (2.27)

The result is an example of a Green-Kubo equation, which will be met more
closely in the next section. This form manages to show the relation between the
microscopic phenomenon (the pressure tensor) and a macroscopic variable (shear
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Figure 2.2: Response to shearing stress of different liquids: Newtonian (blue), dilatant
(red), pseudoplastic (green), Bingham plastic (dashed). Dilatant liquids be-
come thicker upon stirring and the shearing stress increases. Inverse happens
to pseudoplastics. Bingham plastics are rigid below certain threshold but be-
come viscous fluids at high shearing rates.

viscosity) and hence describes completely the phenomenon at hand.
Viscosity is a property specific to the liquid and the molecular structure of the

liquid determines the precise functional form of the response to shear force. For
Newtonian fluids, which are the most common, this ratio is linear as expressed in
Eq. 2.21. In contrast non-Newtonian fluids have a shear viscosity that can be
a function of time or shear stress. Fig. 2.2 illustrates the different responses as
a function of shear rate. The viscosity of shear-thinning fluids or pseudoplastics
decreases with increased shear stress. They behave as solids when undisturbed, but
under stirring or other agitation turn into fluids. The reverse happens to shear-
thickening or dilatant fluids.

We already have a measure how mass spreads around in the form of self-diffusion
coefficient and it would be useful to have a corresponding measure for momentum.
Dividing shear viscosity by liquid density does just that and yields a measure for
the diffusion of momentum, called kinematic viscosity

ν = η

ρ
. (2.28)

Kinematic viscosity characterizes liquids in a similar fashion to Reynolds number
(Eq. 2.16) by considering the ratio of viscous force to inertia. Further on, combining
kinematic viscosity and diffusion provides another way to characterize fluid flows and
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even distinguish between phases. This is called the Schmidt number and it is defined

Sc = ν

Ds

. (2.29)

The Schmidt number varies a great deal depending on the medium since the viscosity
of fluids spans three orders of magnitude. For gases the Schmidt number is again
many orders of magnitude smaller due to low viscosity and high particle velocities.
By observing the Schmidt number it is possible to determine how freely the fluid
flows.

2.2 Definitions of Transport Coefficients with Green-Kubo Equa-
tions

The time-dependent transport phenomena are described by so called transport co-
efficients, such as diffusion or viscosity coefficients. Transport coefficients tell how
changes in one place are propagated through the system. Whether it is heat or mass
transfer, there is a transport coefficient related to it. In mathematical terms this
can be expressed with time-correlation functions and the Green-Kubo equation. The
Green-Kubo equation connects the microscopic level of statistical mechanics with
the macroscopic level measured in experiments.

Let us start with the time-correlation function, which describes how the value of
a time-dependent (i.e. dynamic) variable A at some time t is related to the value
of a variable B at a later time t′. In classical statistical mechanics the equilibrium
time-correlation function FAB(t,t′) of dynamic variables A and B is defined as

FAB(t,t′) = 〈A(t)B(t′)〉 (2.30)

where the angular brackets denote ensemble average

〈A(t′)B(t′′)〉 =
∫∫

A[rN(t′),pN(t′)]B[rN(t′′),pN(t′′)]

·f (N)
0 [rN(t′′),pN(t′′)]drN(t′′)dpN(t′′) (2.31)

or time average

〈A(t′)B(t′′)〉 = lim
τ→∞

1
τ

∫ τ

0
A(t′ + t)B(t′′ + t)dt. (2.32)

In the above, f (N)
0 is the equilibrium probability density and the ensemble average is

carried out over all possible states in the phase space (rN and pN) at time t′′. If A and
B are the same variable the time-correlation function is called the autocorrelation
function or self-correlation function and denoted ACFA. In the case of diffusion
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we will be dealing with autocorrelation functions. With dynamic variables we can
define the associated transport coefficient in the Green-Kubo form

CT = α
∫ ∞

0
〈A(0)A(t)〉dt. (2.33)

where α is the appropriate thermodynamic factor, which depends on the specific
transport coefficient in question.

Self-diffusion

The motions of a single molecule can be characterized with the self-diffusion coeffi-
cient, which in turn can be calculated with the Einstein equation (Eq. 2.8) or with
the Green-Kubo formalism using the velocity autocorrelation function

Ds = 1
dN

N∑
i=1

∫ ∞
0
〈vi(t) · vi(0)〉dt, (2.34)

where N is the number of particles, d is the number of dimensions of the system
and vi(t) is the velocity of particle i at time t. The self-diffusion coefficient in the
Green-Kubo equation is interpreted as the time integral of velocity autocorrelation
and averaged over all the particles. The correspondence between the Einstein form
and the Green-Kubo form is a general property of correlation functions. In fact, it
can be shown that the two are exactly equivalent [9]. If A(t) is a dynamic variable
and Ȧ(t) its time derivative then the following holds [12]

lim
t→∞

[A(t)− A(0)]2 =
∫ ∞

0
〈Ȧ(t)Ȧ(0)〉dt (2.35)

The Green-Kubo equation captures the same idea as the Einstein form since the
velocity integral over time yields distance and the correlation of velocity over time
reflects how far the particle travels.

Collective Diffusion

As discussed previously, the collective diffusion coefficient gives insight into the
concerted motions of particles. Therefore the dynamic quantity involved in the
calculation must include the motions of all the particles. The Green-Kubo equation
in an isotropic system is [13]

Dc = 1
dkBTρNκT

∫ ∞
0
〈J(t) · J(0)〉dt, (2.36)

where d is the dimensionality of the system, ρ is the number density, N is the
number of particles in the system, κT is the isothermal compressibility and J is the
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total particle flux defined as J = ∑N
i=1 vi(t). In practice calculating Dc from this

definition is computationally heavy and sensitive to error.
Collective diffusion can also be obtained from density fluctuations. A density

fluctuation at point r at time t is the difference between the local density and the
global average density δρ(r,t) = ρ(r, t) − 〈ρ〉. Using this, the density-fluctuation
autocorrelation function is defined as [14]

B(r− r′,t) = 〈δρ(r,t)δρ(r′,0)〉. (2.37)

The density-fluctuation and its close relative, the van Hove autocorrelation function
[15] are important in the study of structure and dynamics of materials, because
taking the (temporal and spatial) Fourier transform of the van Hove function yields
the dynamic structure factor S(k,ω), which can be measured experimentally with
neutron scattering experiments. Thus the afore mentioned functions provide a bridge
between experiments and theory.

In order to derive an equation for the collective diffusion coefficient let us write
the Fick’s second law for the density fluctuations

∂δρ(r,t)
∂t

= Dc∇2δρ(r,t). (2.38)

Multiplying both sides with δρ(0,0) and taking the ensemble average we get

∂〈δρ(r,t)δρ(0,0)〉
∂t

= Dc∇2〈δρ(r,t)δρ(0,0)〉 (2.39)

∂B(r,t)
∂t

= Dc∇2B(r,t). (2.40)

Assuming hydrodynamic regime (small k and long times) the spatial Fourier
transform of B decays with [14]

B(k,t) = B(k,0)e−k2Dct (2.41)

where k is the wave-vector. The collective diffusion factor is recovered from the
exponential and now it is possible to measure Dc from the decay rate of density
fluctuations in k-space.

2.3 The Relation Between Collective and Self-Diffusion

One might think that collective diffusion is just the sum of the individual one-
particle diffusions and thus easily associated with self-diffusion. This picture is
unfortunately far from the truth. Often the intermolecular interactions are complex
and as a consequence ingredients factoring into collective motions are not readily
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determined. Juxtaposing the Green-Kubo equations for collective and self-diffusion
results in

Dc = Dsε

[
1 +

∑
i 6=j

∫∞
0 〈vi(t) · vj(0)〉dt∑N

i=1
∫∞

0 〈vi(t) · vi(0)〉dt

]
, (2.42)

where ξ is the particle number fluctuation defined as

ε = 〈N〉
〈N2〉 − 〈N〉2

. (2.43)

We see that the role of the intermolecular interactions stands out and only if the
cross-correlations 〈vi(t) ·vj(0)〉 are negligible, there is a simple relation between the
diffusion coefficients. If the motions of the particles are completely uncorrelated the
sum in the nominator goes to zero and we get the so called Draken equation

Dc = ξDs. (2.44)

The Draken equation applies in the dilute limit (or ideal gas limit) or in high temper-
atures, where the motions become uncorrelated due to lack of interactions between
the particles or large kinetic energies.

Now we have established the basic understanding of the origins of the dynamic
variables and their relation on one hand, to each other, and on the other hand, to
the fundamental physical variables of velocity, location and momentum. The math-
ematical formulations of Brownian motion and viscous friction lead to quantifying
the ideas of mass and momentum transfer into transport coefficients. Knowing both
the big picture and the microscopic origin is essential in order to have a solid step-
ping stone into following chapters. The equations derived in this chapter tells us
what to look for in the molecular dynamics simulations and helps in understanding
the analysis methods explained in Chapter 4. But before going into the simulations
let us look at the molecular models in some detail.
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3. MOLECULAR MODELS

The ultimate aim of any model is to represent the underlying phenomenon as real-
istically as possible. In practice, however, this is too demanding a task and models
aim to describe some aspects of the phenomenon to a reasonable degree of accuracy
often exchanging accuracy for simplicity. For water this is especially true: despite
its seemingly simple structure, water is an extremely complex fluid to model. Next
we will discuss some aspects of modeling water followed by overviews of the water
models used in this thesis. Although the focus of the thesis is in dynamic properties
of water, the first section is devoted to describing the water models from atomic and
quantum mechanical levels to give an overview of the field and appreciate the work
of the modeler.

3.1 Modeling Water

The development of accurate water models is an art in itself. A huge number of
water models have been developed during the last 30 years at a rate of more than
one per year, which displays how tedious task it is to model water [16]. There
is no consensus on which is the best model and, surprisingly, some of the oldest
models are still among the most used (SPC published in 1981, SPC/E from 1987,
and TIP3P developed in 1983). The structure of water is extremely complex and
dynamic, where quantum and many-body effects play an important role. Getting
all the properties of water from heat of vaporization to rotational relaxation times
and dielectric constant to match the experimental values in a single model is at the
current level simply impossible.

Two schemes can be used in modeling water: ab initio approach or empirical
approach. Ab initio or first principles approach relies on quantum mechanical (QM)
computation of properties which are, at least in principle, exact. The potential
function, which characterizes the interactions, is discovered as an analytical fit to
the QM results. Unfortunately, QM calculations are extremely heavy and often they
are restricted to a dimer or a tetramer of water molecules. This means that they are
inherently precluded from determining the properties of bulk water. Therefore it is
more fruitful to use QM only on a specific part of modeling such as charge transfer or
hydrogen bonding. Empirical approach takes a more holistic view and the aim is to
reproduce the electrostatic, structural, dynamical and thermodynamical properties
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Table 3.1: Different types of water models. [16]

Number of
sites Type

Rigid Flexible Polarizable
3 SPC, SPC/E TIP3P, SPC/F SPC/FQ, POLARFLEX
4 TIP4P MCDHO MCDHO, SWFLEX
5 TIP5P POL5, NEMO

of real water as closely as possible. When aiming for a multi-scale model, the
approach of choice is empirical.

The water models can be categorized based on their structure and internal degrees
of freedom. Since water molecule consists of three atoms, the natural choice is to
have three interaction sites, but models with four or five interaction sites also exist.
The bonds and bond angles can be rigid or flexible. Categories and examples for
each are compiled to Table 3.1. Models are developed for a certain purpose, and
have different strengths: some have exact thermodynamic properties while others
can reproduce the hydrogen bonding very accurately. In general it can be said that
the more detailed the model, the more properties can be reproduced. However, it is
not clear that this is always the case. In many examples, adding flexibility or more
interaction sites to the model does not improve the performance to a great extent,
while having the offset of being computationally more expensive [16]. In simulations
of biological systems the addition of an extra interaction site to the water model can
increase the simulation time by half [17]. Simple rigid models, such as SPC, often
are a good compromise between accuracy and efficiency, hence such a model is used
in this work also.

Among the many properties of water the most relevant to match are [16]

• Density in the liquid state

• Heat of vaporization, which reflects the polarization of the model

• Diffusivity

• Structure of water in radial distribution function

• Dielectric constant.

Different relaxation times also offer ways to rate the performance of water models.
The water models have a lot in common when it comes to mathematical details

of the model. The interactions between the atoms within a molecule and between
molecules are created with interaction potential functions, which consider the in-
termolecular forces such as dispersion, multipole interactions, dipole-dipole interac-
tions, hydrogen bonding and electrostatics. For the models containing flexibility and
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internal degrees of freedom, potentials have to consider bond stretching and bond
angle as well. The electrostatic potential is modeled with the Coulomb potential,
while for the van der Waals forces there are a few options. The most common is the
Lennard-Jones potential

ULJ(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 =

(
C12

rij

)12

−
(
C6

rij

)6

, (3.1)

where ε is the depth of the interaction well and σ the distance at which the potential
has a value zero, or alternatively they can be combined to give parameters C6 and
C12. Another commonly used choice is the Buckingham potential

Φ(rij) = Ae−Brij − C

r6
ij

, (3.2)

where A, B and C are adjustable parameters. The Lennard-Jones potential is com-
putationally more efficient but less flexible. The most common choice for the in-
tramolecular interactions (i.e. chemical bonds) is the harmonic potential of type

U(rij) = K(rij − r0
ij)2, (3.3)

where K is the force constant, or spring constant in terms of classical mechanics,
and r0

ij is the equilibrium value for the bond or for angle, depending on which is in
question. Other types, such as anharmonic potentials or additional coupling terms
between the bonds and angle, are also used.

The choice of which potentials to use is in the discretion of the modeler and
depends on the application. The parameters of the model have to be set carefully,
since the properties of water models are highly sensitive to the parametrization of
the model and underlying assumptions. For example, increasing the O-H -bond
length just by 2 % from 1.0 nm to 1.02 nm can reduce the self-diffusion coefficient
by a third [17]. Now that a general overview has been presented we look at the
models in this thesis in detail.

3.2 Single Point Charge

Single Point Charge, or SPC water model [5] is one of the oldest water models in
use for molecular dynamics (MD) simulations. It was published in 1981 and since
then many variants from it have been developed including SPC/E, with different
charges assigned to oxygen and hydrogen, SCP/HW, and flexible models SPC/F,
and SPC/Fw [17]. SPC was originally designed for simulations with hydrated pro-
teins. The aim was to create a simple yet reliable water model for the liquid state,
which can be extended to interactions with various other molecules. The simplis-
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Figure 3.1: The structure of SPC water model

tic approach taken in the development of the model probably reflects the era when
CPU-time was expensive and simplicity was important. Major number of the wa-
ter models published roughly a decade later were computationally heavier flexible
models [16].

SPC is a rigid, 3-site model, where the oxygen-hydrogen -bond length is fixed
at 0.1 nm and the angle ]HOH at 109.28◦. The geometry is depicted in Fig 3.1.
Note that the angle is larger than the experimentally measured 104.5◦. The charges
centered at the atomic nuclei carry a charge of 0.41e and -0.82e, for hydrogen and
oxygen respectively. The model utilizes an effective pair potential of Lennard-Jones
6-12 form between oxygen centers, where the attractive part is derived from Lon-
don expression and it has experimental origins. The repulsive part and the charge
parameters were fitted using MD simulations to match the experimental interaction
energy and pressure at 300 K. The full parameters and chosen properties of the SPC
model are given in Table 3.2. We can clearly see that the dipole moment is well
below that of real water as well as the dielectric constant, while the self-diffusion
coefficient is significantly higher. This is by no means a coincidence, since the dielec-
tric constant depends on the dipole moment, which again depends (among others)
on the bond length. The bond length on the other hand is intimately related to the
hydrogen bonding capabilities of the model. Hydrogen-bonding creates friction and
reduces the translational motion of the molecules resulting in slower diffusion. The
underestimated dielectric constant indicates indirectly that the hydrogen bonding
is underestimated, which results in overestimated diffusion.
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Table 3.2: The parameters for water and the SPC water model. Data from Refs [5,
17–22] Experimental values given where available at T = 298 K. Units in
parenthesis.

Property Unit Value Experimental
Partial charge of oxygen (e) -0.82 n/a
Partial charge of hydrogen (e) 0.41 n/a
L-J parameter C6 (kJ mol−1 nm−6) 2.6171 · 10−3 n/a
L-J parameter C12 (kJ mol−1 nm−12) 2.6331 · 10−6 n/a
O-H bond length (Å) 1.000 0.9584
H-O-H bond angle (deg) 109.47 104.45
Density (kg m−3) 977 997
Dipole moment (Debye) 2.27 2.9
Self-diffusion coefficient at 298 K (cm2 s−1) 4.02 · 10−5 2.3 · 10−5

Dielectric constant at 298 K ε0 66.29 78.54
Enthalpy of vaporization (kJ mol−1) 44.18 43.99
First peak distance in RDF (nm) 0.276 0.288
Height of first peak in RDF 2.82 3.09

Indeed, the SPC model is very simple but powerful: many of the important prop-
erties of water are well reproduced with only a few parameters. The other side of
the coin is that the model is not very flexible and thus there is not too much room
for improvement. The internal degrees of freedom are frozen and the intermolecu-
lar interactions are modeled with the LJ-potential which lacks flexibility compared,
for instance, to the Buckingham exponential-6 potential [16, 23]. The SPC model
is non-polarizable and therefore it cannot respond to the changes induced by lo-
cal environment electrostatics in heterogeneous systems. This is relevant because
polarization effects are highly environment dependent. The density is off by 2 %,
which is acceptable since the structure of water is relatively accurate as judged by
the distance of the first peak in O-O radial distribution function r1 and the height
of the same peak g(r1) (see Table 3.2).

3.3 Martini Force Field

Martini force field is a coarse grained force field, which simplifies a molecule by
averaging several atoms of the molecule into one particle and making the molecular
model coarser. This results in computational efficiency at the cost of loss of detail.

Martini force field is based on the reproduction of partitioning free energies be-
tween polar and apolar phases of a large number of chemical compounds and it is
designed for biomolecular simulations. Here the focus is on the parametrization,
general characteristics of the Martini force field and aspects relevant to dynamic
properties of the model. For a detailed description of the force field, see [24]. The
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following is based on the original paper by Marrink et al. [24].
The Martini force field and its earlier version [6] have been used in over 40 stud-

ies with good results. It has been applied to systems ranging from vesicles and
lipoproteins to membrane-protein assemblies. Central to many biologically relevant
processes (such as peptide-membrane binding) is the degree of partitioning of the
constituents between polar and apolar environments. Thus the accuracy of the par-
titioning coefficients is chosen as one of the criteria for the model. In coarse graining
the entropy will be decreased by definition due to the loss of atomic degrees of free-
dom. In order to get correct free energies, a corresponding decrease in enthalpy has
to be introduced to the coarse grained system.

The Martini force field has a number of chemical building blocks, which are used
to construct the coarse grained molecules. The standard scenario is four-to-one
mapping, that is four heavy atoms including the associated hydrogens are mapped
to one coarse grained bead. There are four main bead types for charged, polar,
apolar and non-polar atom groups. Each main type has 4–5 subtypes, which allows
the fine tuning according to chemical characteristics. With the subtypes it is possible
to control the polar affinity of the groups or the capability to form hydrogen bonds
(as a donor, as an acceptor or as both). All beads (excluding beads connected by a
chemical bond) interact with van der Waals forces modeled with the Lennard-Jones
(LJ) potential

ULJ(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 , (3.4)

where σij is the effective radius parameter set to 0.47 nm with one exception1 and εij
is the strength of the interaction between particles i and j. The difference between
the bead types is expressed in the ten Lennard-Jones -interaction levels between the
beads. The interaction levels and their typical uses are listed in Table 3.3. The most
polar interaction at ε = 5.6 kJ mol−1 models compounds that are solid in the room
temperature and charged groups with strong hydration shell. The second level is
used to model bulk water making it noteworthy in the context of this thesis.

Non-bonded charged particles (or beads) have a full charge and they interact also
via a shifted Coulomb potential

Uc(rij) = 1
4πε0εr

qiqj
rij

, (3.5)

where rij is the distance between the particles, qi and qj are the charges of par-
1σ = 0.62 nm for interactions between charged and the most apolar types. The extended closest

distance makes it more favorable for charged particles to keep their hydration shells when dragged
into apolar medium.
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Table 3.3: The interaction levels of LJ-potential in Martini force field and their typical
uses as given in [24]

.
Interaction level Interaction strength Use

(kJ mol−1)
O 5.6 Solids
I 5.0 Bulk water

II–III 4.5–4.0 Volatile liquids
IV 3.5 Non-polar aliphatic chains

V–VIII 3.1–2.0 Hydrophobic repulsions between
polar/non-polar phases

IX 0.2 Between charged particles and very ap-
olar medium

ticles i and j, respectively, ε0 is the permittivity of vacuum and εr = 15 is the
relative dielectric constant. Both non-bonded interactions have a cut-off distance at
rcut = 1.2 nm. The Coulomb potential is shifted from rshift = 0.0 nm to rcut, where
as the LJ-potential is shifted from 0.9 nm, which means that starting from rshift

the potential functions are smoothly brought to zero at rcut by adding a polynomial
to the force function so that the derivatives are continuous at the boundary rcut.
The standard shift function in GROMACS is used for this purpose [25]. The shifted
Coulomb potential mimics distance dependent screening.

A few special bead types are also introduced for special purposes, namely the anti-
freeze and ring particles. Martini water has the propensity to freeze at 290± 5 K in
a nucleation driven process quickly and irreversibly. This issue is solved by adding
antifreeze particles, where the LJ-parameter σ is increased to 0.57 nm between
antifreeze and normal water particles. Adding 10 % of anti-freeze particles into the
system is enough to lower the freezing point below 250 K [24]. The ring particles
extend the Martini model to small molecules containing a ring structure. The ring
particles have reduced interaction size and strength to allow close packing of planes
with out freezing.

Bonded interactions are described with weak harmonic potentials for the bond
length and angle. For bonds the potential stands as

Vbond(rij) = 1
2Kbond(rij − r0

bond)2. (3.6)

where Kbond = 1250 kJ mol−1nm−2 is the force constant and rbond = 0.47 nm is
the equilibrium distance. The bond length may be varied if needed. Bonded beads
are slightly closer to each other than non-bonded on average. The chain stiffness is
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expressed in the cosine-type weak harmonic potential for the bond angles

Vangle(θijk) = 1
2Kangle[cos(θijk)− cos(θ0

ijk)]2, (3.7)

where θijk is the angle between particles i, j and k and θ0
ijk is the equilibrium angle

at 180 ◦ by default. The small force constant Kangle = 25 kJ mol−1 rad−2 allows fluc-
tuations up to 30◦ at the expense of one kBT . LJ-interactions are excluded between
nearest bonded neighbours, but not between second nearest. It has been shown [26]
that with these parameters the configurational entropies and angle distributions of
CG aliphatic chains compare well to atomistic models. In the case of cis-double
bonds, the force constant needs to be changed to Kangle = 45 kJ mol−1 rad−2 and
the equilibrium angle to 120◦.

Martini force field can reproduce the partitioning free energies between polar wa-
ter and several organic apolar environments accurately within 2 kBT for a variety
of different chemical compounds modeled with a single Martini bead. The good
fit between experimental data and coarse grained simulation data applies to polar,
non-polar as well as apolar molecules [24]. Particularly it is worth mentioning that
the water/octanol partitioning is accurately generated since water/n-octanol parti-
tion ratio is used to predict the bioaccumulation of chemicals — toxins as well as
drugs. The vaporization and hydration free energies on the other hand are systemat-
ically too high, but show the correct trend for both apolar and polar particle types.
This is because the CG model underestimates the interaction energy of alkanes and
overestimates the repulsion between water and alkanes [27]. Another difficulty for
simulations with water is that the fluid state is not as stable as it should be with
respect to the vapor or the solid phase at room temperature. The instability arises
from the use of Lennard-Jones potential, which has a limited fluid range. This set-
back is not too problematic when simulating systems in the condensed phase, where
the water/oil partitioning behavior is the most important.

The coarse-grained simulations are computationally efficient and can be as much
as 1000 times faster to run than atomistic simulations. Two main factors contribute
to the speed up. First, with simple soft potentials it is possible to use a large time
step. Martini model is stable with time steps up to dt = 40 fs with no significant
changes in the density or the free-energies of the system [6]. Second, due to lighter
level of detail in the model the energy landscape is smoother and coarse grained
systems sample the phase space much faster than atomistic systems. This is seen in
the accelerated dynamics in the system. The particles are larger and friction caused
by atomistic degrees of freedom has vanished. The speed up factor in the time scale
for a variety of phenomena lies between two and ten, the average being four. As a
first approximation the time axis can be scaled with a factor of four.
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3.4 Polarizable Martini

The most crucial weakness of the Martini water model is the lack of polarizability.
This leaves many essential interactions based on electrostatics out of the scope of
simulations.

The polarizable Martini model aims to create a more realistic water model to
use with Martini force field. Three criteria were used in the design: the dielectric
constant of the model should be reasonably close to the one in bulk water while
keeping the number density and partitioning free energies of the original Martini
water. As the good reproduction of partitioning free energies for a wide range of
solvents is at the heart of the Martini force field, the attempt to embed polarizability
must not undermine the correct partitioning free energies.

The polarizable Martini uses four-to-one mapping, but now one water bead has
three constituents. The model is illustrated in Fig 3.2. The neutral W particle in
the center interacts with other particles only via the LJ-interaction. The charged
particles WM and WP are tied to a distance l = 0.14 nm from the central particle
and interact with other particles only through electrostatic interaction. The bond
length l is chosen so that the charged particles stay inside the LJ-radius of the W
particle. The LJ-distance parameter is kept at the same value as in original Martini
(σ = 0.47 nm). The interaction between WM and WP of the same water is excluded
and they are free to rotate around the central particle. WM and WP carry a charge
of q = ±0.46. A harmonic potential is set between the charged particles with a
spring constant Kangle = 4.2 kJ mol−1rad−2 and equilibrium angle θ = 0. This
adjusts the distribution of the dipole moment. By setting the equilibrium angle at
zero, one can be sure that the dipole moment vanishes in apolar environments. Each
particle in the bead has a mass 24 amu totaling 72 amu which is the same as original
Martini water.

The added electrostatic interaction increases the affinity of the beads as well as
affects the partitioning free energies, and needs to be counterbalanced by reducing
the LJ-interaction between the central W-particles. This self-interaction was reduced
from εLJ = 5.0 kJ mol−1 to εLJ = 4.0 kJ mol−1 which corresponds to decreasing the
interaction level from I to III in the Martini force field. Another consequence of the
explicit treatment of polarizability is that the global dielectric constant εr = 15 in
the original Martini is reduced to εr = 2.5 to create correct dielectric environment
in hydrophobic areas. Adjustments need to be done also to the interaction levels
between the W particle and other types of beads in the force field in order to correct
the partitioning free energies. If the interaction levels between W and other beads
are kept as they are in the standard Martini, ∆Gpart will be too favorable. To fix
this the interaction strength has been reduced by 5 %.
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W W
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q = −0.46 e

WP

q = 0.46 e

θ0 = 0◦
Kangle =
4.2 kJ

mol rad2

l

l = 0.14 nm

Figure 3.2: Illustrations of the coarse grained water models. Left: standard Martini
bead. Right: polarizable Martini bead, where one particle has three con-
stituents: the neutral W, WM (charge -q) and WP (charge +q)

.

The polarizable water model has a good semi-quantitative agreement with ex-
periments and atomistic models. There are several compromises done in the model,
but the gains in the improved electrostatics make them all worth it. Compared to
the standard Martini, the density is increased by 4.7 % to 1043 kg m−3, but the
freezing point is lowered to 282 ± 2 K. The diffusion is slightly higher than in the
standard or the experimental value Ds = 2.5 · 10−5 cm2 s−1. The dielectric constant
is ∼4 % smaller than the experimental value of 75.6 debye at 300 K. The dielectric
constant and density show the correct decreasing trend as function of temperature
between 300–350 K as observed in experiments albeit the dependence on tempera-
ture is stronger in both cases. For the polar bead types the partitioning free energies
are the same as in the standard Martini, but the values are smaller for apolar types
and closer to experimental values. The distribution of the dipole moment is skewed
and sharper than distribution obtained with atomistic SPC/E water model, but the
semi-quantitative agreement is good. There is no certainty that the distribution of
the atomistic model actually represents real water, so some reservations regarding
the comparison have to be made. Never the less, the atomistic distribution is still the
best approximation and the only to compare with. The maximum dipole moment of
a single water bead is given by 2ql which yields 6.2 debye where as the maximum for
four SPC/E water molecules is 9.4 debye. The polarizable Martini will inherently
produce smaller dipole moments than atomistic models such as SPC/E.

The structure of water is the same for both models as judged by radial distribu-
tion functions in high ionic strength solution. Most significantly the structure of CG
bilayers in conjunction with polarizable water is not changed, but the electrostatic
potential across the membrane is improved a lot but still differs with results from
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atomistic simulations. In atomistic simulations the surrounding water overcomes
the negative charge of the lipid head groups and creates a negative overall potential
inside the bilayer, where as the polarizable water produces too small a potential to
generate a positive overall potential. The diffusion in lipid bilayers is slowed down
compared to the standard Martini, but still remains in good agreement with ex-
perimental values. The electrostatics clearly slow down the movement. Phenomena
like electroporation and ion translocation through a lipid bilayer can be successfully
simulated with the polarizable water model.

From computational point of view the embedded electrostatics in polarizable
Martini water brings out the question of long range interactions. It is observed that
long range Coulomb interactions of polarizable water are well suited to be used with
Particle Mesh Ewald technique (PME) as well as with shifted cut-off [28]. Therefore
in this study, PME is used in all simulations. With PME the densities will be
0.6–1.1 % lower and diffusion slightly faster at elevated temperatures.

3.5 Effects of Coarse-graining on Dynamic Properties

The process of coarse-graining loses some information concerning the system, be-
cause the number of degrees of freedom is curtailed. This has effects in the ther-
modynamic properties as well as in the dynamic properties of the system. Let us
examine theoretically the effects of coarse-graining in the case of four-to-one map-
ping taking ideal gas as a model system.

In general, the effects of coarse-graining can be considered to originate from two
factors. First, the mapping itself reduces the number of particles in the system and
hence effects the quantities, which depend directly on the number of particles, such as
entropy or Gibbs free energy or even self-diffusion. When we average over particles
it also produces smoother energy landscapes, which accelerates the dynamics of
the system regardless of the details of the mapping used [6]. The second factor is
the parametrization of the coarse-grained force field which determines the precise
interactions between the particles. Naturally it is possible to gain different results
by changing the force field parameters while keeping the mapping fixed. In order
to compare the coarse-grained models with fine-grained ones both of these factors
need to be considered in detail. There are two different speed up or mapping factors
associated with these effects and in order to gain comparable results we need to know
both of them. A simulation with a CG model happens in a simulation time/coarse-
grained picture and a simulation with a fine-grained model happens in effective
time/fine-grained picture, because for fine-grained model simulation time equals
effective time. The factor associated with the mapping from coarse-grained to fine-
grained shall be called the geometric coefficient and from simulations we gain another
model-specific factor which is assigned to the mapping from simulation time to
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effective time.
In the following a framework is developed where the contribution of the aforemen-

tioned factors to diffusion coefficients are characterised. The geometric factor can
be derived theoretically while the force field factor is discovered from simulations.
A 2 × 2 matrix presented in Table 3.4 clarifies the framework.

Fine-grained Coarse-grained
Simulation time AFG,sim ·cm←− ACG,sim

↓ ·cff
Effective time AFG,eff

Table 3.4: Framework for interpreting analysis results and making them comparable.

In the table A is the dynamic variable in different situations, cm is the mapping
coefficient and cff is the force field coefficient. The results from the CG simulations
are in simulation time and when comparing the results to fine grained models, the
conversion factor cm is needed. The lower right corner is empty because coarse-
grained effective time results are meaningless: there is no equivalent for them in the
physical world. For all atom simulations cff = 1 and the simulation time matches
the effective time. In the following the geometric coefficients for self-diffusion and
collective diffusion are derived. Comparisons between the results from the simu-
lations need to be done in the same picture that is in FG/simulation time. The
geometric coefficients are needed to make this possible.

Self-diffusion

The trajectory of an ideal gas particle constitutes a random walk when it collides
with other particles in the system. This is true also for the center of mass of four
individual particles. If the individual particles move a distance ∆R over a time t
then the center of mass of four particles moves with

RCG = 1
4

4∑
i=1

∆Ri, (3.8)

where ∆Ri are the traveled distances of the individual particles. Considering the
mean square displacement this converts to

R2
CG = 〈RCG ·RCG〉 = 1

16

〈 4∑
i=1

Ri ·
4∑
j=1

Rj

〉
= 1

16

( 4∑
i=1
〈Ri ·Ri〉

)
(3.9)

since the motions of ideal gas particles are uncorrelated, cross terms (i 6= j) in the
dot product disappear and since the ideal gas particles are identical the sum can be
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converted to multiplication by a scalar

4
16〈Ri ·Ri〉 = 1

4R
2. (3.10)

Inserting the above to the equation for self-diffusion (Eq. 2.8) it can be seen that
the self-diffusion coefficient of the center of mass of four particles, which equals the
coarse-grained particle, is one quarter of that for the individual particle.

DCG
s = Ds

4 . (3.11)

Hence the mapping factor for self-diffusion is cm,Ds = 4. Although the result is
derived from ideal gas assumption and omits the effect of interactions, it is still a
decent approximation. Studies by Bulavin et al. suggest that the collective effects to
self-diffusion are significant [29]. Now we move on to derive the geometric coefficient
in collective diffusion.

Collective Diffusion

To derive the relationship between coarse-grained and fine-grained collective diffu-
sion coefficients, we can follow the same line of reasoning as in the case of self-
diffusion. Let us observe the motion of the center of mass of four identical particles:

N∑
i=1

Ri(t) =
N/4∑
j=1

4∑
k=1

Rjk(t).

We rearrange the sum to make the centers of mass visible and make the same
conclusions as before: the center of mass of four particles moves four times slower
as the individual particles

4∑
k=1

Rjk(t) = 4RCG
j .

Inserting the above expression to the sum yields

N∑
i=1

Ri(t) =
N/4∑
j=1

4RCG
j . (3.12)

As mentioned before (Eq. 2.35), the Green-Kubo equation for a transport coef-
ficient CT can be written as

CT = β

V

∫ ∞
0
〈Ȧ(t)Ȧ〉dt, (3.13)
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where A is a microscopic dynamic variable, which is equivalent to writing

CT = β

V
lim
t→∞

1
2t〈|A(t)− A(0)|2〉. (3.14)

For collective diffusion Dc the dynamic variable is A = ∑
N r(t). Therefore, the

equation for collective diffusion in Einstein form is

Dc = 1
dkBTρNκT

lim
t→∞

1
2t

〈∣∣∣∣∣∑
N

r(t)−
∑
N

r(0)
∣∣∣∣∣
2〉
. (3.15)

The sum over fine-grained particles can be replaced with the coarse-grained sum:

Dc = 1
dkBTρNκT

lim
t→∞

1
2t

〈∣∣∣∣∣∑
N

r(t)−
∑
N

r(0)
∣∣∣∣∣
2〉

(3.16)

= 1
dkBTρNκT

lim
t→∞

1
2t

〈∣∣∣∣∣∣
N/4∑
j=1

4RCG
j (t)−

N/4∑
j=1

4RCG
j (0)

∣∣∣∣∣∣
2〉

(3.17)

= 16
dkBTρNκT

lim
t→∞

1
2t

〈∣∣∣∣∣∣
N/4∑
j=1

RCG
j (t)−

N/4∑
j=1

RCG
j (0)

∣∣∣∣∣∣
2〉

(3.18)

(3.19)

The last line is just the definition of collective diffusion for the coarse-grained par-
ticles (or centers of mass). Thus it can be written

Dc = 16DCG
c . (3.20)

We see that the speed up coefficient from the four-to-one mapping is cm,Dc = 16.
Again the same limitations apply as with self-diffusion.

In this chapter the discussion has been on the practical elements of modeling
water and getting to know the models used in this thesis. All of the models used are
derived using empirical approach, which aims to produce models suitable to a wide
range of applications. The atomistic model SPC has strengths in simplicity and
providing an overall good match with actual water. The coarse-grained models are
semiquantitative in nature meaning that the properties and behaviour of the model
match real water when painting with a broad brush. There is an important and deep
relation between the FG and CG models when it comes to dynamic properties and
to get a concrete grasp of the connection the speed up coefficients of self-diffusion
and collective diffusion were derived. This connection is central in the underpinning
of interpreting the results and final conclusions. Viscosity is omitted here, because
the case for viscosity is much more complicated and deriving the speed up coefficient
between CG and FG models is beyond the scope of this thesis. After gaining an
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overview of the simulation and analysis methods we are well equipped to look at the
actual results and understand in the light of the theory presented in this and the
previous chapter.
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4. METHODS

It is relatively simple to probe a sample with some input and measure the response,
but to discover the molecular mechanism behind the response is difficult — if not
right out impossible. The measured signal is something macroscopic, while molecules
and their interactions are microscopic. With computer simulations it is possible to
fill this gap and explore the motions of single molecules and their interactions on the
atomic scale. Simulations try to enlighten the question how the molecules interact
by approximating the molecular interactions with an empirical force field. Only dur-
ing the last two decades the experimental techniques, such as single-molecule atomic
force microscopy, have managed to study the properties of single molecules. Next,
the basic concepts of the simulation technique used in this thesis, Molecular Dy-
namics, are explained as well as the analysis methods to computationally determine
the dynamic properties discussed in Chapter 2.

4.1 Molecular Dynamics

The two most widely used simulation techniques for studying atomic ensembles
are Monte Carlo (MC) and Molecular Dynamics (MD). MC methods use random
sampling to compute the desired quantities of a system and MD uses the classical
equations of motions to determine the time evolution of the system at hand. The
biggest difference between the techniques is that MC cannot produce the time evo-
lution of the simulated system, whereas this is in the core of the MD method. Monte
Carlo methods can be applied in finance, physics, mathematics, telecommunications
and biology, but Molecular Dynamics is restricted to physical systems. In this the-
sis the focus is on the dynamics and time scales, so our method of choice is MD.
Before jumping into the world of MD, a basic understanding of some concepts from
statistical mechanics is useful.

Theoretical Considerations and Basic Concepts

Imagine the most simple statistical system: a particle in a box. If we would like to
completely and uniquely capture the state of such a (classical) single-particle system,
we would need to know the location and the momentum of the particle. These
can be described with three spatial coordinates and three momentum coordinates,
which create a six dimensional space, in which each point describes one state of the
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system. As the particle moves inside the box, so does its phase point move in the
six dimensional space. Similarly, to describe the state of a system consisting of N
particles we need six dimensions for each particle and in total a 6N -dimensional
space, which is called the phase space (or Γ-space). The 3N momentum coordinates
and 3N spatial coordinates are collectively denoted by (p,q), respectively. Now
we see the benefit of this notation: we can simplify the statistical system into one
point and follow its movement instead of following all the N particles separately.
The phase space is a central concept in statistical mechanics and also in computer
simulations.

The N -particle system moves through the phase space as the system evolves over
time. The dynamics of this motion are completely contained in the Hamiltonian
H(p,q) and the Hamiltonian equations of motion

dqi
dt

= ∂H(p,q)
∂pi

and dpi
dt

= −∂H(p,q)
∂qi

where i = 1, · · · , N. (4.1)

The phase point representing the particles is not free to wander around as it
wishes, because the different statistical ensembles impose different restrictions to
the trajectory. How then do different statistical ensembles differ from one another in
phase space? The microcanonical ensemble has a fixed number of particles, volume
and energy (NVE-ensemble) which means H(p,q) = E. In phase space this means
that NVE-ensembles constitute a constant energy surface, where the phase point of
the system moves, and only the points on the surface are accessible to the system. In
the canonical ensemble energy is allowed to fluctuate, but temperature is kept fixed
(NVT-ensemble). Now all the points in phase space are attainable to the system
and the probability of visiting a phase point is proportional to the Boltzmann factor

e−A/kBT , (4.2)

where A is the Helmholtz free energy, kB is the Boltzmann constant and T is the
absolute temperature. States with high energy have a small probability to be visited
due to the exponential nature of the Boltzmann factor. The most common ensemble
in MD simulations is the NPT -ensemble, also known as the isothermal-isobaric
ensemble, where all phase points are accessible, but the probability is proportional
to e−PV/kBT , where PV is the product of pressure and volume called the grand
potential. In the thermodynamic limit all ensembles produce the same results [9].

A simulation system mimics the real system it represents by sampling the same
regions of the phase space as the real system, but a simulation has only a finite
number of steps to do this. Thus one measure for the efficiency of the model is the
extent it can sample the phase space in a limited time. In a grand canonical ensemble
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the probabilities of visiting a state are proportional to the Boltzmann factor, which
means that states with low probability (ie. high energy) are not sampled properly
[30]. This is to be considered, when interpreting the results from a simulation.

The Molecular Dynamics Algorithm

Computer simulations have many similarities to conducting experiments: first, we
need to choose the materials or models and prepare the sample(s), then do the
measurement or run the simulation, and finally analyze and interpret the results.
A schematic flow chart of the MD simulation algorithm is depicted in Fig 4.1 and
a more realistic flow chart is depicted in Fig 4.1, which is the actually used flow in
the simulation package GROMACS 4.5.1. The basic algorithm (4.1) is simple as it
should be for easy implementation. Real flow shows more details and highlights some
of the computational aspects of conducting an efficient simulation. For instance, the
long range electrostatic interactions are calculated efficiently on a separate PME
node.

Preparing the sample in a computer simulation means defining the topology of
the system. Topology includes the initial positions and velocities of the particles,
which constitute the molecules, and the interactions between the particles. The
interactions are defined in the force field of the model as discussed in the Models
Chapter. The initial conditions must be reasonably close to the equilibrium condi-
tions (or in the high probability region of phase space) so that we can be sure that
the system will find equilibrium during the restricted simulation time. The correct
distribution of velocities for the particles is generated from the Maxwell-Boltzmann
distribution:

p(vi) =
√

mi

2πkBT
e
−

miv2
i

2kBT , (4.3)

where mi and vi are the mass and velocity of the particle, respectively, kB is the
Boltzmann constant and T is the absolute temperature.

The simulation system is assembled by randomly locating the molecules in the
simulation box, which may place certain atoms too close to each other. Before the
actual simulation the energy of the system is minimized by moving the particles
in minute displacements and trying to find the local energy minimum in the vicin-
ity of the initial configuration. Energy minimization is not enough, and a short
equilibration simulation is run before the actual production simulation.

The core of the simulation is solving the equations of motion with short time
intervals (or time steps) and moving the particles to new locations based on the
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Input: initial conditions
Interaction potential, posi-
tions & velocities of atoms

Compute forces
on particles

Update configurations
Apply leap-frog algorithm

Apply thermo-
stat and barostat

More
steps?

Output step
Write out temperature, pres-
sure, energies & trajectories

No

Yes

ory Comput., Vol. 4, No. 3, 2008

Figure 4.1: On the left, a schematic flowchart of MD algorithm and on the right, actual
algorithm used in GROMACS, from [25]
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forces acting on them:
mi
∂2ri
∂t2

= Fi, i = 1, . . . , N, (4.4)

where Fi is the resultant force on particle i, mi and ri are the mass and location of
particle i. The resultant force is obtained from the potential

Fi = −∂U
∂ri

. (4.5)

In Gromacs the time integration is implemented with the leap frog –algorithm,
where the locations and the velocities are solved in turns every half step:

ri(t+ ∆t) = ri(t) + vi
(
t+ ∆t

2

)
∆t (4.6)

vi
(
t+ ∆t

2

)
= vi

(
t− ∆t

2

)
+ Fi(t)

2mi

∆t, (4.7)

where vi and ri are the velocity and location of particle i, ∆t is the time step,
t the current time, mi and Fi(t) are the mass and the force acting on particle i.
The leap frog algorithm is a version of the Verlet algorithm and it possesses many
good features for an algorithm to solve the Newton’s equations of motion. It is
time reversible, low on memory consumption, and the error is of third order. The
velocities and locations of all the particles in the system are recorded at regular
intervals and this produces the output of the simulation.

There are several technical details that still need to be taken into account when
running a simulation. The simulation box has a finite size, which raises the question
what happens at the boundary of the simulation box. Handling the long range
interactions demands combining physical accuracy and computational feasibility. In
the NPT-ensemble, controlling the pressure and temperature are important tasks
and require specific techniques. These technical issues are addressed in the following.

Periodic Boundary Conditions

Due to the finite size of the simulation box some boundary conditions need to be
imposed. The typical solution is the so called periodic boundary condition where a
particle leaving the box from left immediately re-enters the box from right. Likewise
passing through the roof of the simulation box results in entering the box back from
the ceiling. This corresponds to replicating the simulation box infinitely in every
direction. The concept of periodic boundary conditions is illustrated in Fig 4.2.
When calculating the forces, the program needs to know the closest neighbours to a
given particle and the periodic boundary conditions have some ramifications when
determinig this when a particle is close to the edge of the simulation box. Namely,
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Figure 4.2: Periodic boundary conditions consider only the nearest neighbour whether
it is located in the actual simulation box or its periodic image

the closest neighbours can be also found from the adjacent copy of the simulation
box and not just in the one where the particle in question is located.

Long Range Interactions

Vast majority of the computational effort is consumed in the calculation of forces
exerted on the particles. Simulations typically employ a cut-off scheme to decrease
the computational cost of computing the forces on particles by omitting the inter-
actions between particles beyond a certain distance. This is very problematic for
the long range electrostatic forces, because it causes the long tail contribution to
be neglected, which increases the error in the simulation. In the worst case the
neglect leads to unphysical artifacts at the cut-off distance, such as overestimating
the structure of the liquid or underestimating the repulsion between charged groups.
There is a clear need for advanced methods to include the long range interactions
with reasonable computation, and this call has been answered with a multitude of
methods, such as Ewald summation [31], reaction field [32], Particle-Mesh Ewald
(PME) [33, 34] and Particle-Particle Mesh Ewald [35, 36]. In the following, the
focus is on PME method, because it is the method used in the simulations in this
thesis.

The PME method is accurate and computationally efficient. The electrostat-
ics are important in the polarizable Martini model and therefore they need to be
computed properly in the simulation. The fundamental problem of computing the
electrostatic energy is the slow convergence of the total electrostatic energy sum
when it includes the periodic images

Ue = f

2
∑
nx

∑
ny

∑
nz∗

N∑
i

N∑
j

qiqj
rij,n

, (4.8)

where (nx,ny,nz) = n is the box index vector and the star indicates that at i = j
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the terms should be omitted when n = 0. The sum considers the distance rij,n as
the real distance between charges and not just the minimum image distance.

The idea in PME is to convert the sum V into a constant and two quickly con-
verging sums: a short range part computed in the real space and a long range part
computed in reciprocal space using Fourier transform. The short range part up to
rcut is computed with a modified Coulomb’s law [25]

Umod(r) = Uc(r)erfc(ζr), (4.9)

where Uc(r) is the Coulomb potential and

erfc(ζr) = 2
π1/2

∫ ∞
ζr

exp(−t2)dt (4.10)

is the complementary error function and ζ is a parameter to determine the relative
weight between the real space sum and the reciprocal space sum. In reciprocal
space the charges are interpolated onto a discrete mesh or a grid, on which the Fast
Fourier transform (FFT) can be efficiently applied to obtain the long-range energy
term. The inverse Fourier transformation is then applied to calculate the potential
at the grid points and with the interpolation factors the forces on each particle are
recovered.

PME is a further development of the Ewald summation method. The advantage
of PME is the efficient application of FFT making the PME algorithm of order
N log(N) in contrast to the Ewald sum which is of order N2 [33]. The second
advantage, which is particularly important in this thesis, is that it does not cause
artifacts in pressure fluctuations [37].

Pressure and Temperature Coupling

Biological phenomena and often experiments happen in conditions of constant tem-
perature and pressure. Since isobaric-isothermal conditions match the physiologi-
cal conditions, biophysical simulations are most often run with the NPT-ensemble,
which requires a thermostat and a barostat in the simulation to keep the tempera-
ture and pressure constant. In the simulations in this thesis, the velocity rescaling
thermostat [38] and Berendsen barostat [39] are used.

The temperature T in a system is defined through its kinetic energy Ekin using
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the equipartition theorem [25]

Ekin(t) = 1
2

N∑
i=1

miv
2
i (t) = 1

2NdfkBT (4.11)

T (t) =
N∑
i=1

miv
2
i (t)

kBNdf

(4.12)

where mi and vi(t) are the mass and velocity of the particle i at a time t and Ndf

is the number of degrees of freedom in the system. The velocity rescaling thermostat
controls the temperature by rescaling all the velocities of the particles with a random
factor drawn from the canonical distribution. The equation for the dynamics of Ekin
is

dEkin = (E0
kin − Ekin)dt

τ
+

√√√√EkinE0
kin

Ndf

dW√
τ

(4.13)

where E0
kin is the target kinetic energy, Ekin is the observed kinetic energy, τ is the

time constant, Ndf is the number of degrees of freedom and dW is Wiener noise.
Without the latter stochastic term this is equivalent to the Berendsen thermostat.
In the velocity rescaling thermostat temperature oscillations decay exponentially far
from equilibrium. The thermostat has one important advantage over the Berendsen
thermostat: the correct canonical ensemble is produced.

The other constant in a NPT-simulation, the pressure, is computed from the trace
of the pressure tensor P

P = 2
V

(Ekin −Ξ), (4.14)

where V is the volume of the system, Ekin is the kinetic energy and Ξ is the virial
tensor

Ξ = −1
2
∑
i<j

rij ⊗ Fij. (4.15)

The scalar pressure is computed as the trace of the pressure tensor

P = 1
3
∑
i=j

Pij. (4.16)

The Berendsen barostat controls the pressure by a weak coupling to an external
‘pressure bath.’ The rate of change of the pressure is proportional to the fluctuation
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from the target pressure and the characteristic time constant:

P
t

= P0 −P
τp

, (4.17)

where P0 is the target pressure, P is the current pressure and τp is the time
constant chosen by the user. The simulation box vectors and the atomic coordinates
are scaled every nPC steps with a matrix µ given by

µij = δij −
nPC∆t

3τp
κij(P 0

ij − Pij(t)). (4.18)

Here δij is the Kronecker delta, κij is the isothermal compressibility, ∆t is the time
step, τp is the pressure coupling time constant and P 0

ij is the target pressure.

4.2 Analysis Methods

For each model three dynamic properties are analysed from the simulations. There
is a variety of possible methods to analyse the properties and thus care needs to
be taken in choosing the most suitable one. Only for one of the properties, self-
diffusion, there exists a ready-made tool in GROMACS simulation package. For the
other two, viscosity and collective diffusion, the analysis codes are self-made. In a
comparative manner short descriptions of different methods are included and the
rationale for the chosen methods is presented as well as the technical details of the
methods.

Self-diffusion

Self-diffusion, or tracer diffusion, is calculated in a standard way using the Einstein
equation [12] and averaging over all the particles in the system:

Ds = lim
t→∞

1
6t〈[r(t− t0)− r(t0)]2〉, (4.19)

where r are the coordinates of the centers of mass of the particles at times t − t0
and t0. Another method would be to use the Green-Kubo formalism as introduced
in Chapter 2, but it converges slowly. The GROMACS tool g_msd implements the
Einstein equation.

Collective Diffusion

Collective diffusion, which describes the collective density fluctuations in the system,
can be computed using the Green-Kubo formula (Eq. 2.36), but since the correlation
time is very short it is difficult to get an accurate estimate for the collective diffusion
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factor. Instead, the density-fluctuation method [40] is used for the computation as
explained in Chapter 2.

The computational effort required to compute collective diffusion with the same
accuracy as self-diffusion is much larger, because Dc is a collective property of the
system and all the particles in the system are required to obtain one sample for the
evaluation of Dc. This is at variance to self-diffusion, where we get N samples from
the simulation.

In order to calculate the local density the simulation box is divided into cubical
subunits, which have dimensions approximately matching the particle size as defined
through the van der Waals -radius of the coarse grained particles. Local density is
defined as the number of particles inside the subunit divided by the volume of the
subunit. The size of the subunit is an important choice. The local (number) density
would be ill-defined if the subunits were smaller than the particle size. On the other
end, the subunits cannot be too large because it makes it more difficult to measure
the density fluctuations.

The density fluctuation is discovered by subtracting the average density from
the local density, after which the Fourier transform is applied. From the several
wavelengths given by the FFT-algorithm, the two longest are chosen in order to
stay in the hydrodynamic regime of long times and small k. For simplicity the local
density is calculated in each dimension separately. A single autocorrelation function
is computed from the three dimensional density fluctuations, and an exponential
function of the form

y = a expbx (4.20)

is fitted to the data. The autocorrelation function is calculated using g_analyze
from the GROMACS simulation package [25]. The collective diffusion coefficient is
extracted from the exponential. The one-dimensional autocorrelations would give
the diagonal elements of the collective diffusion tensor Dc which can be combined
to give the isotropic Dc

Dc = 1
3Tr Dc. (4.21)

Now g_analyze combines the three dimensions automatically and only a single fit
is needed to get the collective diffusion coefficient Dc.

Shear Viscosity

The shear viscosity can be easily obtained from experiments and used to compare
the molecular models to reality. Since majority of the properties used in compar-
ison are static or thermodynamic, shear viscosity and self-diffusion are valuable in
shedding light into the dynamics. There are several ways to calculate the liquid’s
viscosity from MD simulation. One can use equilibrium methods, such as pressure
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or momentum fluctuations [41], or non-equilibrium methods, such as periodic shear
flow [42] or sliding boundary condition method with SLLOD algorithm [43]. A good
survey of the performance of the different methods is given by Hess [37].

The pressure fluctuation method uses the intrinsic pressure fluctuations of the off-
diagonal elements of the pressure tensor in the Green-Kubo equation to calculate the
viscosity. It relies most closely on the definition of shear viscosity, but it converges
slowly, because the pressure fluctuates strongly during simulation. It is also sensitive
to the long-range interactions and to the method used for handling the long-range
interactions, which have significant influence on the pressure fluctuations [37].

The momentum fluctuation method is based on the transverse-current autocor-
relation functions (TCAFs) and is wave-length dependent [41]. In the momentum
fluctuation method the decays of the transverse-currents are determined at differ-
ent wave-lengths. To obtain the shear viscosity at certain wave-length, a fit to
the analytic TCAF is needed. Then, the viscosities at different wave-lengths are
extrapolated to zero-wave length to get the proper shear viscosity. There is some
uncertainty in the extrapolation and also in the analytic fit.

The afore mentioned methods utilise the internal fluctuations of the system at
equilibrium, whereas another approach is to impose an external perturbation on
the system and calculate the viscosity from the response of the system in a non-
equilibrium simulation. One must be careful, however, not to take the system too far
from equilibrium, since this will effect the viscosity calculations. Here two common
non-equilibrium methods are considered: the SLLOD algorithm and the periodic
perturbations method. The SLLOD algorithm creates a Couette flow, that is a
laminar flow between two plates, which is achieved by modifying the equations
of motion of the particles. This results in a linear velocity profile and the shear
viscosity is obtained from the off-diagonal component of the pressure tensor. The
result of this procedure is that the equations of motion in the SLLOD algorithm are
non-Hamiltonian: the induced velocities generate forces –not the other way around.
This is unnatural and the preferred method in this work is the periodic perturbations
method (PP-method).

The periodic perturbation method offers high signal-to-noise ratio and is compu-
tationally efficient [37]. In short the method relies on applying an external periodic
force in the x-direction to all the particles in the system and calculating the vis-
cosity from the response to this shearing force. Next, the equation for viscosity is
derived in the PP-method starting from the basic equation of hydrodynamics. The
Navier-Stokes equation stands as

ρ
∂u
∂t

+ ρ(u · ∇)u = ρ

m
F(r,t)−∇p+ η∆u (4.22)
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where ρ is the density of the system, u is the velocity field, p is the pressure and η
is the viscosity. The external force F(r,t) is chosen such that it is zero in the y and
z directions and the value in x direction depends on z. Furthermore, to achieve a
steady-state in the simulation, the force will also be time-independent. The equation
4.2, thus, simplifies to a one dimensional case:

ρ

m
Fx(z) + η

∂2ux(z)
∂z2 = 0. (4.23)

The external force profile needs to be smooth, so that it generates a smoothly
varying velocity profile and in order to keep the local shear rates small. The force
has to be large enough to create a steady flow in to the system, but not so large as
to take the system far from equilibrium. For a smoothly varying function the cosine
is chosen:

Fi,x(z) = miA cos(kz), (4.24)

where A is the amplitude of the force and k is the wave-index number:

k = 2π
lz
, (4.25)

where lz is the height of the simulation box. Since Navier-Stokes equation is not
valid for microscopic length scales, the wavelength has to be at least an order of
magnitude larger than the typical length scale of the system. This is guaranteed
by making the height of the box an order of magnitude larger than the size of a
molecule in the simulation [37]. The simplified Navier-Stokes is readily solved with
the chosen external force. With initial condition uz(x) = 0 at t = 0, the generated
steady-state velocity profile is [37]

ux(z) = V(1− e−t/τr) cos(kz) (4.26)
V = A ρ

ηk2 (4.27)

where τr is the macroscopic relaxation time of the liquid given by τr = ρ
ηk2 . By

measuring V from the simulation, the viscosity can be calculated using Eq. 4.26. In
a simulation the instantaneous V(t) is defined as

V(t) = 2
∑N
i=1 mivi,x(t) cos(kri,z(t))∑N

i=1 mi

, (4.28)

where vi,x is the velocity in x-direction, ri,z is the z-coordinate and mi is the mass
of atom i. The estimated time for the full development of the velocity profile is
t = 5τr, after which it is possible to start measuring the average V .
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The larger one chooses the amplitude of the external force A to be the larger the
amplitude of the velocity profile V is, and the better the statistics for determining
viscosity. However, a large amplitude inflicts high shear rates and the system is not
able to relax resulting in too low values for the measured viscosity. The upper limit
for A is determined by the maximum shear rate:

smax = maxz

∣∣∣∣∣∂vx(z)
∂z

∣∣∣∣∣ = A ρ

ηk
. (4.29)

The shear rate has units of inverse time. When inverse of smax is larger than the
typical relaxation time, the system is able to relax. For most liquids the correlation
time used is the rotation correlation time and it has values around 10 ps [37]. The
typical values for A are in the range 0.1 – 0.0025 nm ps−2 [28, 37].

The external force field is doing work on the system, which heats up the system.
The generated heat is removed by a coupling to the thermostat, but since the cou-
pling is not immediate the real temperature will be slightly lower than the observed
temperature of the system. For the correct calculation of viscosity, the velocity pro-
file should not, however, be coupled to the the heat bath and should be excluded
from the kinetic energy [37]. For the Berendsen thermostat the shift in temperature
is

Ts = ητT
2ρCv

s2
max, (4.30)

where τT is the Berendsen thermostat coupling time, Cv is the heat capacity, ρ is
the density and smax is the maximum shear rate. For water the temperature shift
is typically ∼ 0.2 K.

The periodic perturbation method gives an error in the viscosity

ση = 2
smax

√
kBTη

taV
, (4.31)

where ta is the time over which V(t) is averaged and V is the volume of the system.
Error decreases with square root of time and volume (ie. number of particles). On
the other hand, CPU-time increases linearly with the number of particles and thus
the CPU-time needed for a certain level of accuracy is independent of system size
[37].

4.3 Simulations in This Thesis

More than 50 simulations in total were run to analyse the dynamic properties of
the three water models. Two different simulation boxes were used for diffusion and
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Table 4.1: Simulation systems and simulation box sizes at the end of equilibration sim-
ulation.

System # of parti-
cles

Box size in diffusion
simulations (nm)

Box size in viscosity
simulations (nm)

SPC 8192 6.33 × 6.33 × 6.33 4.07 × 4.07 × 15.41
Martini 2048 6.27 × 6.27 × 6.27 3.91 × 3.91 × 15.54
Polarizable
Martini

2048 6.21 × 6.21 × 6.21 3.93 × 3.93 × 15.51

viscosity calculations. The simulation systems are described in Table 4.1, where the
box sizes are only indicative, since the box size varies during the simulation and
between different simulations in accordance to temperature.

The required number of molecules were randomly positioned in the simulation
box using standard tools in GROMACS followed by energy minimization and an
equilibration simulation. For SPC water, the equilibration simulation was 1 ns and
for Martini water and polarizable Martini the equilibration runs were 2 ns all of them
using Berendsen barostat and V-rescale thermostat. The reference temperature was
310 K with a time constant τT = 4.0 ps, and reference pressure was 1.0 bar with a
time constant τp = 2.0 ps. For the Coulomb interactions PME treatment was used
with a cut off radius rcut = 1.2 nm. Standard time steps were used for all models.

In the analysis simulations the electrostatic treatment, barostat and thermostat
along with the associated time constants were kept unchanged in all simulations
whereas the durations varied from 5 ns to 10 ns with atomistic simulations, and
from 10 ns to 100 ns with coarse grained simulations. Analysis simulations for
collective and self-diffusion were the longest: 10 ns for SPC water and 100 ns for
the coarse grained models. Long simulations ensure good statistics and provides
reliability to the results. The temperature dependence of the dynamic variables
were examined with simulations in the temperature range 300 K to 350 K with 10 K
intervals. Simulated annealing was used to reach the target temperature in 200 ps.
The systems were allowed to equilibrate properly in the analysis simulations by
omitting the first nanosecond in SPC simulations and the first 10 to 25 nanoseconds
in CG simulations.

The analysis simulations for viscosity were significantly shorter and ranged from
3 ns to 10 ns. It has been shown that a 2 ns simulation can produce good statistics
if the system size is large enough [28, 37]. The analysis simulation for the SPC
model was 5 ns and 10 ns for the coarse grained models. Six different acceleration
amplitudes were used in coarse grained simulations: 0.01, 0.005, 0.004, 0.0025, 0.002
and 0.001 nm ps−2 to study the effect of the acceleration amplitude.
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5. RESULTS AND DISCUSSION

In this chapter, the dynamic properties are used to characterize the coarse grained
models, and a comparison to atomistic models is made. In particular the temper-
ature dependence of the dynamic quantities is analysed in detail. Starting with
self-diffusion and collective diffusion we move on to viscosities. The attempt is to
understand the time scales in different dynamic properties.

5.1 Self-Diffusion

Self-diffusion coefficient is the standard measure of the dynamics of a system and
thus the discussion is started with the self-diffusion coefficient at different temper-
atures as presented in Fig. 5.1. Here the results for CG models are in effective
time and for individual water molecules making them comparable to SPC and ex-
perimental results. The numerical values are presented in Table 5.1. The figure
shows that the atomistic SPC water has a much stronger response to temperature
than coarse grained counterparts, and the self-diffusion coefficient more than dou-
bles from 4.4 · 10−5 cm2 s−1 to 10.0 · 10−5 cm2 s−1 when the temperature is raised
from 300 to 350 K. The coarse grained models behave almost identically with a
strictly linear response polarizable Martini having larger values by 3.71 · 10−5 to
5.73 · 10−5 cm2 s−1. The speed up is clearly visible in the results as well as the fact
that it does not stay constant over the whole temperature interval.

Table 5.1: Self-diffusion coefficients between temperatures 300–350 K. The experimental
results have been intrapolated to match the simulation temperatures. Exper-
imental data from [44]

Ds[10−5 cm2 s−1 ]
T [K] SPC P-Martini Martini Exp
300 4.40 ± 0.01 10.11 ± 0.12 6.40 ± 0.24 2.60
310 5.16 ± 0.02 11.89 ± 0.04 7.63 ± 0.12 3.22
320 5.91 ± 0.12 13.26 ± 0.40 9.01 ± 0.04 3.98
330 7.24 ± 0.15 15.52 ± 0.32 10.26 ± 0.16 4.77
340 8.23 ± 0.31 17.80 ± 0.68 11.64 ± 0.40 5.65
350 10.02 ± 0.80 18.80 ± 0.60 13.07 ± 0.16 6.58

The ratios of experimental Ds to coarse grained Ds have been calculated in Table
5.2 where we can see that the speed up diminishes with increasing temperature.
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Figure 5.1: The self-diffusion of different models in the temperature range 300–350 K
including error limits. Experimental data from [44]

Table 5.2: The speed up factors for self-diffusion between temperatures 300–350 K. Ex-
perimental data from [44]

T [K] Speed up factors
SPC/Exp P-Martini/Exp Martini/Exp

300 1.792 2.601 4.112
310 1.712 2.533 3.945
320 1.575 2.404 3.538
330 1.598 2.264 3.427
340 1.533 2.167 3.314
350 1.579 2.059 2.964

For the Martini model the change in speed up is 28 % over the whole temperature
interval, which is significant. For polarizable Martini the change is 21 %.

5.2 Collective Diffusion

There are no previous thorough studies on collective diffusion of water through
MD simulations. In order to examine the reliability and accuracy of the density-
fluctuations method for computing the collective diffusion (as described in Chapter 3),
it was tested against a few essential parameters: the effect of simulation length and
time interval between consecutive frames in the simulation, and the impact of sub-
unit length. The simulation length an important variable in order to see how much
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data is needed for good statistics.
It was observed that the dynamic structure factor decays rapidly over time – in a

matter of tens of picoseconds – so the density of data points in this short period of
time is an important factor in determining the collective diffusion factor accurately.
The above mentioned parameters were tested only with the Martini model and the
results from tests were assumed to be applicable as such to the two other models.
The Martini model was chosen for the tests because of its computational efficiency.

Sensitivity Analysis

The density fluctuations method was tested against different lengths of simulation
data. Collective diffusion was calculated from separate simulations using the Martini
model at 310 K and ranging from 10 to 200 ns. The results are presented as a
function of simulation length in Fig. 5.2. The results clearly show that even with
short simulations it is possible to gain accurate results and the method does not
show a strong dependence on simulation length.
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Figure 5.2: Collective diffusion for Martini model at 310 K as a function of simulation
length.

The second simulation parameter that was tested was the frame output frequency
in the trajectory file. This test allows us to examine the sensitivity with regard
to data point density, which is important for the accuracy of the density-density
autocorrelation function. First, one 100 ns simulation with 0.1 ps frame interval
was run. Then from this simulation frames with sparser interval were chosen and
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Figure 5.3: Collective diffusion for Martini model at 310 K as a function of frame interval

the analysis was run on the sparser set of frames. The results will not be statistically
independent, but the effect of larger frame intervals becomes clear.

As indicated in Fig. 5.3 a simulation with output frequency of 1 ps is a good
compromise between accuracy and efficiency. The dependence on frame interval is
weak up to 10 ps, but beyond that a significant error starts to accumulate. Thus
1 ps frame interval was selected for the following final analyses.

As discussed in Chapter 3, when calculating the local density fluctuations, the
simulation box needs to be divided into smaller subunits and the choice of subunit
size is essential. In Fig. 5.4 the effect of subunit dimension is displayed with the
smallest k-vector. The simulation box is 6.26 nm in length.

The Martini model shows a strong increasing linear trend with subunit length:
collective diffusion doubles when subunit length grows 2.5 times. Around 0.47 nm
there seems to be a kink which is interpreted to reflect the structure of the fluid. This
interpretation is supported by the fact that the Martini Lennard-Jones –parameter
is 0.47 nm, but since the gaps between the data points increase at lengths larger
than 0.62 nm makes it too uncertain to draw further conclusions. Due to technical
details in the analysis program, it is impossible to create a set of data points which
would be closer together. In the following analyses the subunit length 0.47 nm is
used because it matches the physical dimensions of the underlying particles. The
polarizable Martini is assumed to behave similarly to Martini and the same choice
of subunit length is made when analysing Dc for polarizable Martini. It is indeed
worth bearing in mind that the choice of subunit length has a big impact on the
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Figure 5.4: Collective diffusion (a) for CG and (b) for SPC as a function of subunit
dimension at 300 K.
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value of collective diffusion.
Interestingly, there is only a minimal dependence on the subunit length with the

SPC model. A weak increasing linear trend can be observed with a dip from the
general trend at 0.35 nm. The location of the first peak in the radial distribution
function for SPC is known to be at 0.276 nm, which is not reflected in the figure.
There seems to be no obvious explanation for the dip at 0.35 nm. For the results
to be comparable with CG collective diffusion, the same unit length as above was
used in SPC analyses.

Temperature-dependence

The temperature dependence of collective diffusion is presented in Figure 5.5 and in
Table 5.3 for the first k-vector, and in Table 5.4 for the second k-vector. It can be ob-
served that the ratio of the values remains fairly constant at different temperatures,
which implies that the temperature-dependent behaviour is similar in all models.
When comparing the values at different k-vectors, the strong k-vector-dependence
is obvious, which is in odds with theoretical predictions. This raises doubts about
the reliability of the chosen computation method or its implementation.
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Figure 5.5: Collective diffusion as a function of temperature
in the range 300–350 K.

The ratio of fine-grained collective diffusion to coarse-grained is surprisingly sim-
ilar to the one measured for self-diffusion. The ratios differ only by a factor 1.5,
which indicates that the time scales for these dynamic properties are similar.
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Table 5.3: Collective diffusion for the first k-vector (k = 1) and the ratio between fine-
grained and coarse-grained values. The values are in simulation time and
coarse grained values have been transformed into their fine-grained represen-
tatives.

Temperature [K] Dc [10−2 cm2 s−1] Speed up factors
SPC Martini P-Martini Martini/SPC P-Martini/SPC

300 1.297 4.541 7.711 3.502 5.947
310 1.366 5.193 8.151 3.803 5.969
320 1.416 5.429 8.124 3.835 5.739
330 1.438 5.694 8.222 3.959 5.716
340 1.420 5.783 7.742 4.073 5.453
350 1.468 5.573 7.953 3.796 5.417

Table 5.4: Collective diffusion for the second k-vector (k = 2) and the ratio between
fine-grained and coarse-grained values. The values are in simulation time and
coarse grained values have been transformed into their fine-grained represen-
tatives.

Temperature [K] Dc [10−2 cm2 s−1] Speed up factors
SPC Martini P-Martini Martini/SPC P-Martini/SPC

300 0.088 0.516 0.878 5.844 9.950
310 0.102 0.544 0.937 5.335 9.189
320 0.110 0.693 0.983 6.315 8.965
330 0.123 0.744 1.020 6.072 8.328
340 0.126 0.775 1.049 6.157 8.334
350 0.131 0.808 1.082 6.172 8.265
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There is a lot of difficulty in interpreting the results because of the strong k-vector
dependence, which is clearly visible when comparing the values in Tables 5.4 and
5.3. Unfortunately no experimental data was found for comparison and the speed
up factors with respect to real water cannot be obtained.

5.3 Viscosities

Two types of viscosities have been examined: shear viscosity and kinematic viscosity.
Although they are closely related they complete each other in forming the picture
of momentum transfer in the fluid.

The periodic perturbations method has been used and a thorough analysis of
the method applied to atomistic water models has been done by Song et al. [28].
Thus the focus here is on the coarse grained models. Song et al. discovered that
when using the periodic perturbations method, the shear viscosity depends on the
chosen acceleration amplitude and indeed the same results is found in this thesis
as illustrated in Fig 5.6. The apparent viscosity grows with decreasing acceleration
amplitude, but at very small values for acceleration amplitude the signal-to-noise
-ratio becomes poor and the results become unreliable.

The choice of acceleration amplitude is crucial for later simulations, where the
temperature dependence is studied. Following Song et al., the acceleration ampli-
tude for SPC simulations was chosen to be 0.005 nm ps−2 and for CG simulations
0.002 nm ps−2.

If the shear rate, which depends on the acceleration amplitude, is too high the
system is too far from the equilibrium and thus is not able to relax. According to
Hess, the system will be able to relax, if the inverse shear rate is longer than the
typical relaxation time, such as the rotational relaxation time, 10 ps [37]. In the
simulations in this thesis, the inverse relaxation times are between 21–35 ps in SPC
simulations, 62–103 ps in polarizable Martini, and 95–170 ps in Martini simulations.

The temperature dependence of the models shows a correct trend in comparison
to experimental data, but the polarizable Martini as well as the SPC model have
consistently too low values. The Martini water displays reasonably accurate values
in the temperature interval 300 to 320 K.

In contrast to diffusion factors, no geometric scaling is considered in the compu-
tation of viscosity, which results in dismissing the effective speed up factor of CG
simulations. This is because the definition of shear viscosity in the periodic pertur-
bation method does not take time explicitly into account nor does the definition of
shear viscosity provide a simple method to determine this factor. The estimation of
the geometric scaling factor arising from the CG process is extremely difficult.

Table 5.6 presents the ratios of viscosities, which can be interpreted as the speed
up factors of the combined effect of the CG process and force field parametrization.
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Figure 5.6: The shear viscosity as a function of acceleration amplitude (a) Martini model
(b) polarizable Martini water as determined with the periodic perturbations
method at 310 K.

The ratios are calculated by dividing the respective values in Table 5.5. There is a
weak temperature dependence on the ratio and overall it is clear that the speed up
factor here differs from the speed up factor in self-diffusion albeit the difference is a
mere factor of 2.
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Figure 5.7: The shear viscosities as determined with the periodic perturbations method
in the temperature range 300–350 K. Experimental data from [20]
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Figure 5.8: The kinematic viscosities as determined with the periodic perturbations
method in the temperature range 300–350 K. Experimental data from [20]
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Table 5.5: The shear viscosities as determined with the periodic perturbations method
in the temperature range 300–350 K. Experimental data from [20]

η [10−3 kg ms−1]
T [K] SPC P-Martini Martini Exp
300 0.422 ± 0.003 0.524 ± 0.007 0.848 ± 0.015 0.854
310 0.370 ± 0.003 0.458 ± 0.006 0.737 ± 0.02 0.693
320 0.332 ± 0.002 0.416 ± 0.006 0.629 ± 0.01 0.577
330 0.294 ± 0.002 0.371 ± 0.005 0.572 ± 0.009 0.489
340 0.265 ± 0.002 0.341 ± 0.004 0.510 ± 0.008 0.422
350 0.244 ± 0.002 0.305 ± 0.004 0.459 ± 0.007 0.369

Table 5.6: The ratios of shear viscosity which represent the speed up factors.

T [K] SPC/Exp Martini/Exp P-Martini/Exp Martini/SPC P-Martini/SPC
300 0.495 0.994 0.613 2.008 1.240
310 0.533 1.063 0.660 1.995 1.238
320 0.576 1.090 0.722 1.893 1.253
330 0.601 1.170 0.759 1.946 1.262
340 0.629 1.210 0.808 1.925 1.286
350 0.661 1.245 0.827 1.883 1.251

Table 5.7: The kinematic viscosities as determined with the periodic perturbations
method in the temperature range 300–350 K. Experimental data from [20]

ν [cm2 s−1]
T [K] SPC P-Martini Martini Exp
300 0.432 0.506 0.846 0.857
310 0.381 0.447 0.742 0.698
320 0.346 0.412 0.639 0.583
330 0.309 0.372 0.587 0.497
340 0.281 0.346 0.529 0.430
350 0.261 0.314 0.480 0.378
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Furthermore the dynamic viscosity was determined from the periodic perturba-
tion simulations. The kinematic viscosity ν scales the shear viscosity with density
and thus gives a description of the diffusivity of momentum in the system. Due to
the fact that all three models give consistent results with density, the picture given
by kinematic viscosity is similar to shear viscosity. The difference between SPC
and polarizable Martini becomes smaller where as the difference between the afore
mentioned and Martini force field remains the same or is slightly increased. Martini
model gives accurate values at room temperature, but overestimates the kinematic
viscosity as the temperature increases. Since the ratios of the kinematic viscosities
are essentially the same as for shear viscosity, no separate table is presented.

5.4 Schmidt Number

One useful tool to characterize the nature of fluid flows is the dimensionless Schmidt
number, which describes the ratio of momentum diffusivity to mass diffusivity. In
other words it can be used to tell whether the fluid is gas- or liquid-like. Gases have
low Schmidt numbers where as thick liquids have high Schmidt numbers. In Fig.
5.9 the Schmidt number has been calculated in the temperature interval 300–350 K.
For experimental results the data was gathered from [20, 44]. The values for correct
temperatures were intrapolated using cubic splines from the existing data points.
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Figure 5.9: The Schmidt number in the temperature range 300–350 K. Experimental
data interpolated from [20, 44]
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The polarizable Martini and SPC force fields have weaker response to changes in
temperature and the values are lower than the experimental ones. At around 300 K
the Schmidt number of ethanol is 135.5 and we can see that polarizable Martini and
SPC in particular have dynamic characteristics closer to ethanol than water. The
Martini shows a correct trend in temperature-dependence, but the values are 1.5
to 2.4 times larger than the experimental values. Martini water can be considered
thicker than real water, and SPC and polarizable Martini can be considered thinner
than real water.
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6. CONCLUSIONS

It is well known that the time evolution in CG simulations is faster than in atom-
istic simulations, but detailed understanding of the this has remained unclear. The
dynamic properties of SPC, Martini, and polarizable Martini water models have
been examined and compared in order to elucidate the question of time scales in
fine-grained and coarse-grained simulations. The chosen dynamic properties have
been self-diffusion, collective diffusion, shear viscosity and kinematic viscosity. Self-
diffusion and collective diffusion present the picture of mass transfer and collective
properties of the liquid whereas shear viscosity and kinematic viscosity measure
momentum transfer. The main research questions in this thesis have been

1. How do the dynamic properties of coarse grained water models correspond to
real water and on the other hand to atomistic water models?

2. Are there differences in the time scales of different dynamic properties?

In all of the studied properties the temperature-dependence of the models shows
similar trend, but the actual values are distinctly different. The polarizable Martini
model exaggerates the most the values of self-diffusion and with shear viscosity none
of the models can mimic the correct temperature-dependence of real water. Experi-
mental values depend much more strongly on temperature than the models can por-
tray. Interestingly the models show only a minimal temperature-dependence with
collective diffusion. Composite characteristic properties such as the Schmidt number
reveal that the Martini model has the correct trend with temperature whereas the
polarizable Martini has the most accurate values with experimental results.

In this study the observed speed up factors in coarse-grained simulations are
in line with the semi-quantitative nature of the Martini coarse-grained force field.
That is to say, when comparing the values for different dynamic properites the
speed up factors are constant up to a factor of two. However, it must be noted that
it is difficult to draw conclusions from the comparisons, because they have been
made with figures from slightly different origin. The self-diffusion speed up has
been calculated comparing Ds of the assumed fine-grained particles in simulation
time to experimental values. For collective diffusion the speed up was gained by
comparing the assumed fine-grained paritcles in simulation time with values from
atomistic simulations with SPC, whereas the speed up for shear viscosity has been
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drawn from comparing the values for coarse-grained particles in simulation time with
experiments. From a theoretical point of view the effect of coarse-graining process on
shear viscosity is still unclear and thus we are left with values, which only reflect the
combined effect of the coarse-graining process and the force field parametrization. As
a limiting factor, the results in this thesis hinge on the assumption of uncorrelated
movement of the particles, which is not reasonable in many cases. For strongly
interacting liquids, like water, this can be the case.

The results found in this study are also in line with earlier findings in the field.
The time scale for pore formation and the self-diffusion coefficients for different lipids
vary, but are close to the commonly held speed up factor of four [6]. The results
support the current understanding, that the time scales in coarse-grained simulations
are non-unique and there is no precise way of interpreting them. Even when studying
the same simple isotropic system but using different dynamic measures, it is possible
to observe different speed ups.

In further research it could be beneficial to look at the interplay of different
time scales in complex simulations. What happens when phenomena depending on
momentum transfer, which seems to have a slower speed up, are combined with
phenomena depending on pore formation or collective diffusion, which have faster
speed up factors.
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