
PAU VILA FERNÁNDEZ
PARALLEL LANGUAGE PROGRAMMING IN DIFFERENT
PLATFORMS
Masters of Science Thesis

Examiner: Professor Jarmo Takala and
Vladimír Guzma
Examiner and topic approved in the
Computing and Electrical
Engineering Council, meeting on
05/05/2013

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
VILA FERNÁNDEZ, PAU : Parallel Language Programming In Different Plat-
forms
Master of Science Thesis, 44 pages
June 2013
Major: Digital and Computer Electronics
Examiner: Prof. Jarmo Takala
Examiner: M.Sc. Vladimír Guzma
Keywords: CUDA, GPU, Halide, OpenACC, OpenCL, Parallel Programming

The need to speed-up computing has introduced the interest to explore parallelism
in algorithms and parallel programming. Technology is evolving fast but computing
power in sequential execution is not increasing as much as earlier but CPUs contain
more and more parallel computing resources. However, parallel algorithms may not
be able to exploit all the parallelism in computers. The key issue is that algorithms
need to be divided in independent parts to be executed at the same time. By using
suitable parallel processors, such a GPU, we can address this problem and explore
possibilities for higher speed-ups in computation. High performance calls for efficient
parallel architecture but also the tools used to convert high level program description
to parallel machine instructions, like languages, compilers. are equally important.

This thesis remarks on the importance of using suitable languages to describes the
algorithm to exploit the parallelism. This thesis discusses the following parallel pro-
gramming languages: CUDA, OpenCL, OpenACC and Halide. The programming
model and how they run on parallel processors. Each language has its different
properties and we discuss portability, scalability, architectures and programming
models. In the thesis these languages are compared and advantages and drawbacks
are considered.

II

PREFACE

This Master of Science Thesis has been undertaken at Tampere University of Tech-
nology (TUT) at the Faculty of Computing and Electrical Engineering from Decem-
ber 2012 to May 2013.

I would like to thank Jarmo Takala assigning me this thesis and give me the
opportunity to come to Tampere and enjoy this year. Also, I would like to thank
Vladimír Guzma for having spent most of his time helping me.

III

CONTENTS

1. Introduction . 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Structure of Thesis . 2

2. Background . 4
2.1 Brief description of parallel computing 4
2.2 Hardware . 5
2.3 Software . 6
2.4 How GPU works . 6

3. CUDA . 9
3.1 CUDA architecture . 9
3.2 Programming model . 10
3.3 Memory model . 11
3.4 Programming in CUDA . 12
3.5 Conclusion . 12

4. OpenCL . 14
4.1 Platform model . 14
4.2 Execution model . 14
4.3 Properties of kernel . 15
4.4 Properties of the host . 16
4.5 Memory model . 16
4.6 Programming model . 17
4.7 Example of application . 18
4.8 Conclusion . 19

5. OpenACC . 20
5.1 Execution model . 20
5.2 Memory model . 21
5.3 Programming model and examples 21
5.4 Conclusion . 23

6. Halide . 25
6.1 Algorithm . 26
6.2 Schedule . 27
6.2.1 Inline . 27
6.2.2 Root . 28
6.2.3 Chunk . 28
6.2.4 Reuse . 29
6.2.5 Modelling dimensions . 29

IV

6.3 Compilation . 33
6.4 Applications . 33
6.5 Conclusion . 34

7. Differences . 35
7.1 CUDA vs OpenCL . 35
7.2 OpenACC as an alternative . 37
7.3 Halide vs CUDA, OpenCL and OpenACC 38

8. Conclusions and future work . 40
8.1 Conclusions . 40
8.2 Future work . 41

V

NOMENCLATURE AND ABBREVIATIONS

ALU: Arithmetic Logic Unit

AMD: Advanced Micro Devices

API: Application Programming Interface

CPU: Central Processing Unit

CUDA: Compute Unified Device Architecture

DRAM: Dynamic Random Access Memory

GPU: Graphic Processing Unit

OpenACC: Directives for accelerators

OpenCL: Open Computing Language

SIMD: Single Instruction Multiple Data

SRAM: Static Random Access Memory

1

1. INTRODUCTION

This thesis proposes an analysis of different parallel programming languages, CUDA,
OpenCL, OpenACC and Halide. It takes into account functionalities and portability
among other characteristics. Nowadays, the algorithms that can be executed in a
parallel way are commonly used in many devices such as cell phones and cameras.
But also in Internet, where web pages are becoming every day more visual. Blogs
and social networks are examples to demonstrate the necessity of images processing.
These technologies allow the user to upload big amount of data in internet, of which
most are pictures or animation sequences. Hence, it could be interesting to manage
these data using accelerators devices, such as GPUs.

At the same time, these technologies are increasing their quality and size. How-
ever, this means that the processing becomes harder, so we have to optimize algo-
rithms looking for efficiency, readability, portability among others features. These
algorithms must have a condition, they need to be divided in pieces of code and
executed in parallel to make the algorithm faster.

We have many parallel algorithms that can be programmed for one specific de-
vice, such as GPU, in order to improve the speed-up. However, many of them are
difficult to read, difficult to update and hardly portable. Hence, they hardly can be
improved or modified in a future by other programmers. In this thesis we discuss
different parallel programming models [1] and in a second time we have focused the
attention on the main different characteristics among them. After that we have
tried to find out which is the best one or which one would be the best depending on
what is going to be done. At last, we have described what in the future could be
done, since this technology is not fully explored yet and there is still a long way to
go about parallel computation.

1.1 Motivation

Technology has become one of the most important parts of our lives. We are sur-
rounded by electronic devices, like cell phones, tablets and computers. That influ-
ence our everyday life and from which we depend. The field of computer systems
(processors) is daily increasing; hardware and software are evolving faster, both of
them should evolve in the same level to take advantage of all the properties.

1. Introduction 2

Hardware provides us a lot of resources to improve the speed-up of many algo-
rithms. For example, the multiple GPUs that we can find in the market provide us a
good way to run operations at the same time. This is very useful to take advantage
of the resources, but it is also important to look for a way to teach the programmers
to know how to use these accelerator devices. Also, they should know about the
parallel programming languages such as CUDA, OpenCL, OpenACC, Halide among
others. There are more languages that work over accelerator devices, but the most
commons are the ones mentioned.

By using these technologies properly we would be able to increase the efficiency
of many applications that are commonly used, like image processing [2], DSP [3],
etc. A good knowledge of them would be a big step to compute faster algorithms
whose need a high runtime. On the other hand it would be also interesting to look
for readability, portability, etc.

1.2 Objective

The main goal is to understand how some specific parallel programming languages
work. If the algorithms we can write are easy to understand, modify and if they
are portable to different platforms. The parallel programming languages that we
have studied in this thesis are four: CUDA and OpenCL that are the most used and
widely known. OpenACC that even if is not as common as the previous it could
represent a valid alternative. As last one, a fairly recent language: Halide, which
could generate outputs for the other languages after the compilation.

We have described the advantages and disadvantages of the different parallel
programming languages that have helped us to explore parallelism in different plat-
forms. We have evaluated the different characteristics of each parallel programming
language separately, we have described the differences between them and finally we
have presented our conclusions showing the best languages depending of the goal we
want to achieve.

Through some program examples we have demonstrated how useful can be these
technologies and how we can improve the speed-up of many algorithms that can run
over accelerator devices. Depending on the device, we have seen if the programming
model can be used in different platforms and if it can be programmed easily.

1.3 Structure of Thesis

This thesis is organized in eight different chapters. The Chapter 2 gives a brief review
about the history of computer devices and their evolution. The next four chapters

1. Introduction 3

will describe and define the main characteristics of the different parallel languages
that we will treat, from how to take advantage of the hardware resources to the
explanation of some implementation of the code. The order of the these chapters
will be as follows: CUDA (Chapter 3), OpenCL (Chapter 4), OpenACC (Chapter 5),
where we will talk about platform models, memory model, architecture, etc for each
language; and Halide (Chapter 6). In this chapter we will describe more accurately
how it works because the point of view is different than from the others. Chapter 7
will present the differences between the program models explained before. Finally,
the Chapter 8 will describe the conclusions that we can draw from the previous
chapters.

4

2. BACKGROUND

2.1 Brief description of parallel computing

Parallel computation [4] is a way to execute many instructions at the same time
instead to do it sequentially. Using this characteristic properly, we can divide some
programs that require a large time of computation in small parts to execute them
at the same time. This technique can not be used in every application. This is
because the parts of a program executed in a parallel way have to be independent
from the others. This means that each part can not modify external data during
the execution.

A good example to explain this clearly is done in a bank. We suppose that we
have a bank where there are many customers waiting in a queue to be served. We
have four offices (4 processors). It has not sense serve all the customers in one office.
The best idea is distribute the different customers in the available offices, making
easier and faster the process.

Another example is how to make a poll of 10000 persons for a concrete case. The
best way to manage this is look for different interviewers. Each one of them should
interview more than one person. We have divided the problem in small parts and
we have obtained better time results instead to do it in a sequentially way. This
means, interview all the persons in different times. Finally, the recount could be
also parallel. We could organize groups to manage de different polls for then put
the results in common.

During last years, parallel computation has been increasing and being more used
in computation due to the advantages it provides. One of the main problems in
sequentially programming is that hardware can not afford high frequencies and it
generates high temperatures. The solution for this is the parallel computation. We
will try not to overload the hardware. This technique can be also useful for cell
phones or other mobile devices to save energy in their batteries. Parallel computa-
tion requires a control of the hardware and software. The hardware must provide
multiple processors to execute different instructions or a same instruction with dif-
ferent data at the same time. On the other hand, software must provide different
techniques to manage these processors and the execution of the instructions through
synchronization. This fact will be described in the next sections.

Thus, parallel computation is taking an important roll in the evolution of com-

2. Background 5

puter science allowing us to explore other ways of efficiency. Although it is a popular
topic, this techniques needs to be studied deeper to get better results. The most im-
portant issue is the implementation is not easy as a parallel program can be written
in many different ways. So it is difficult to find out the best solution. In this way,
taking a bad decision could be worse than execute the same program in a sequen-
tially way. There are also different programming languages and many architectures
what is also a big inconvenience.

A good point to start studying this techniques is identifying which problems we
can already manage in a parallel way. Some application would be: images processing,
mathematical models [5], artificial intelligence [6].

Image processing consist on the execution of different functions over pixels. These
functions are not usually depending on others. For this reason, the algorithms in
this field can be improved significantly. We will use this application to demonstrate
through examples how useful can parallelism be.

Mathematical problems are used to treat with equations which have many vari-
ables and constants. The solutions can need a high time of computation which can
be improved with parallelism. Physics and concretely quantum mechanics are some
fields that can be also managed in a parallel way.

Artificial intelligence tries to mimic human behavior. Usually this field looks for
decisions that have to be compared to figure out the best one. An example would
be how to solve a Rubik’s cube in an efficient way. There are many decisions that
can be taken, so they can be checked in parallel and compared.

2.2 Hardware

We have a standard architecture for sequential computation. Thus, it is easy to
program applications for this model. In parallel computation we find several different
architectures which are daily changing looking for optimizations. In fact, we have not
enough information about the first parallel machines and only a few companies has
survived working in this field, like IBM. However, it seems clear that the tendency
is try to make platforms to get the best relation cost and performance. If any
platform provides the correct software and solve some of the main problems of
parallel programming it will have future. The issues that have to be fixed to evolve
would be: improve the memory access, use standard processors or reduce the cost
to make it accessible to buyers.

Parallel computers can be classified in different levels: depending on the tools it
provides, how many processors, multiprocessors, etc. We can find multicore comput-
ing, distributed computing and symmetric multiprocessing and specialized parallel
computers. Processors with multicore computing has several execution units in a

2. Background 6

chip. This characteristic allows to execute multiple instructions per cycle.
Distributed computing joins many individual computers, creating a large system

with massive computational power. As the work is divided into small parts that can
be processed simultaneously, research time is reduced from years to months.

Symmetric multiprocessing allows to some processing units to share the memory
access. Therefore, any processor can work in some task, regardless of the memory
location. With a good operating system support, these systems can move easily
tasks between the processors in an efficient way.

Specialized parallel computers are devices that focus in a determinate parallel
problem. So, the domain is limited and the future of this kind of processors are
poor.

2.3 Software

The tendency of software is evolve scientific applications where we are looking for
reach high speeds. As it has been said, we could use parallel applications for fields
like artificial intelligence, robotics or graphs among other examples. One of the main
goals for this section is giving enough tools to practice and familiarize with parallel
computing. Hence, it has to provide powerful compilers, languages, etc and enough
informations, such tutorials, to learn about these software.

The main problems we have in parallel applications are: the software is not
portable to other platforms. There is not any standard platform as the CPUs.
Therefore, each application should be modified depending of the platform it would
be run. There are many accelerator devices in the market that differs each other,
this is the reason why the portability is hard.

Also, there are not enough tools to develop software easily. Some frameworks used
to program on accelerator devices are continually changing. Therefore, a change can
lead that a development of a project has to be changed. Hence, it has a big impact
to the development of applications.

2.4 How GPU works

In this thesis GPU is an important concept. In this section we will explain more
accurately the operation of a standard GPU to show an architecture.

A GPU has a fast memory. Another characteristic is that the structure of a GPU
is highly divided. This means that we can find different functional units. This units
are divided in two types: the functional units that processes vertexes and the others
processing pixels. Vertex are programs that manage the vertex of 3D images, such

2. Background 7

the movement of a person. Pixel is used to decide the color, illumination, where a
pixel will be drawn, etc.

With the basic concepts mentioned before, we can explain how a GPU works.
First of all, the CPU (host) will send vertexes to the GPU. Then we define the
pixels and we store them in a cache memory to draw them in a screen forming the
desired image.

The architecture of a GPU is thought to do massive parallel operations. As in
the common CPUs where we can find different kernels. But many more in GPUs. A
GPU will manage a huge quantity of data. So it is clear that the bandwidth of data
memory have to be big enough to keep all the data demanded by the process units.
If it is not like this, we would lose performance and we would not take advantage of
parallelism.

Figure 2.1: CPU vs GPU

In the Figure 2.1 we can observe the differences between the number of ALUs that
CPU has and the number of ALUs that a GPU has. We have to mention that this
computing units of a GPU are slower than the one of a CPU. This means that the
way to parallelize a program is very important. If it is done in an incorrect way the
execution in a CPU would be faster than in a GPU. But if we parallelize a program in
a proper way we would obtain a good results, It means, parallel algorithms running

2. Background 8

on CPUs would be much faster on GPUs. We can also see that a GPU is formed by
multiple multiprocessors which each of them has its own registers, shared memory
(SRAM), cache of constants and textures, and the global memory (DRAM) that is
faster than the one of a CPU.

9

3. CUDA

CUDA [7] [8] [9] was created by NVIDIA [10] as an extension of C. It was thought
to explore parallelism and take advantage of GPUs in order to improve speed-up of
parallel algorithms. Most of them common in image processing field or 3D.

In the consumer market, many applications, applications that need a parallel
computation, are executed through CUDA. CUDA is being used by many researches
that are working on dynamic molecular field, financial market, etc. These fields need
a high level of computation. It is necessary to note that this language is not the
only in the market.

The performance measurement of a CPU is defined by the number of operations
we can compute in one second. The current processors can compute 50 GFLOPS
(billion floating point operations per second) and GPUs can compute about 500
GFLOPS. As CUDA was created by NVIDIA [10] it is just available for NVIDIA
GPUs. Concretely from G8x series until the GPUs of nowadays. Thus, the porta-
bility is very poor.

Basically we must be clear that CUDA is useful for parallel algorithms. Those
that work with many threads and can compute at the same time. Otherwise it
would be useless the usage of the GPU.

A simple example of a useful algorithm executed in a GPU would be the product
of two matrices. The operations that we have to do are always the same but in
different positions. These functions will be called kernels. Now we want to execute
these kernels in parallel and each execution will be called thread. Therefore, in
this individual case each thread is responsible to compute one element of the result
matrix. So we will have as many threads as elements of the result matrix.

The graphic cards that supports CUDA are formed by several multiprocessors
and each one is formed by many more processors. These processors are responsible
to execute the threads.

3.1 CUDA architecture

CUDA architecture allows the programmer to use the graphic card like a processor
of general purpose. The image below, Figure 3.1, shows a standard model of hard-
ware architecture of a common graphic card of NVIDIA. As we can see is formed

3. CUDA 10

by different multiprocessors, each one of them with an architecture SIMD. Where
we can find more processors (SP) inside them. There is no synchronization between
multiprocessors. Each processor inside a multiprocessor would compute the same
function with different data.

Figure 3.1: Hardware model. Figure from [10].

3.2 Programming model

A GPU (device) offers to CPU a co-processor highly divided in threads. This co-
processor has own memory where each thread can be executed in parallel through the
different kernels. Threads in CUDA are light. This means they are created in a very
short time and the switching is instantaneous. The programmer of CUDA has to
declare all the threads that a GPU needs to achieve the scalability and performance
desired.

Threads can be organized in blocks cooperating among them, sharing information
through fast memories and synchronizing. Each thread is identified with its thread
identifier. This is the number of the thread within a block. It helps to define it in
more than one dimension and make the identification easier.

3. CUDA 11

In CUDA, the numbers of threads are limited in each block, nonetheless, CUDA
threads can be grouped by blocks of threads. So, in the running we could execute
more threads than the limit without synchronization.

3.3 Memory model

The next image below, Figure 3.2, shows a typical architecture of CUDA memory.
There is a limitation of number of threads running inside a block. However, we
could distribute threads to multiple blocks, this relation is called "grid". Each one
of them executing the same kernel but taking into account that there would not be
communication between blocks as said before.

Figure 3.2: Memory model. Figure from [10]

About memory hierarchy we can differentiate four different types of memory:
local memory, global memory, shared memory and texture memory. Local memory
is the memory available just for each thread. Global memory can be read and
written by threads of GPU and CPU. Shared memory is shared for each thread in a

3. CUDA 12

block. Therefore it exist communication between threads and we could synchronize
points inserted in the kernel. Shared memory stands out for being very fast. Texture
memory is generally read only and cached.

When a thread is executed in the device it can only access DRAM (global mem-
ory) shared memory and local memory. Taking into account that the access to
the memory scopes are as follows: local memory of each thread, shared memory and
global memory can be accessed in a read/write way. Texture memory can only be ac-
cessed in a read way. The application can write and read global and texture memory.

3.4 Programming in CUDA

As it is said before, CUDA is an extension of C. In this way, a programmer famil-
iarized with this language would be able to manage a NVDIA graphic card through
the NVIDA APIs. An example of generated kernel with CUDA code would be as
follows below, Figure 3.3.

Figure 3.3: Code example

The program above declares a variable called "thread" to decide which threads
we will use and then makes operations over each pixel on an image. The function
"computationOfAPixel" makes a determination operation over a given pixel, it could
be smooth the pixel. We will follow this example during the thesis. This function
will be executed once per thread. This means that the execution time will be faster
than the same program executed in a sequential way. CUDA allows us to choose
which dimension we want to define, this can be one, two or three. In this example
we would us two because we are working with matrices.

3.5 Conclusion

CUDA adds benefits to past, present and future generations of NVIDIA. Nowadays
it is interesting to check this platform beacuse it gives us a wide repertoire of ap-

3. CUDA 13

plications. However, its future is not as clear as the present. CUDA is just for
NVIDIA platforms, the APIs cannot compete with open APIs, that are already in
the market, like OpenCL.

The specialization in determinate platforms, the ones make by NVIDIA, makes
CUDA a powerful language that take all the advantage of each part of the architec-
ture. The customers are assured of the optimization of NVIDIA.

14

4. OPENCL

OpenCL [11] [12] [13] is an open standard for programmers of CPUs, GPUs or other
devices that could be even cell phones. OpenCL allows us to decide which element of
a device, for example a determinate processor in a platform, will manage a specific
operation. This is done without changing the language used in the code. As CUDA,
OpenCL was thought to improve the speed-up in parallel algorithms. Thus, it would
not be very useful for algorithms that has to be executed in a sequential way.

One of the aims of OpenCL is look for efficiency, but also portability. So, if we
have the proper drivers, OpenCL can be used in many different platforms.

We will divide this chapter in different parts. We will talk about the platform
model, the execution model, the properties of the kernel, the properties of the host,
the memory model, the programming model and, at the end, we will show an ex-
ample that demonstrates that OpenCL can be really useful.

4.1 Platform model

Platform model defines a connected host to one or more devices that supports
OpenCL. The host can be a CPU running over an operating system that supports
OpenCL. Host executes an application that will manage commands and instruc-
tions. These operations will run through the OpenCL APIs in a determinate device.
This runtime system will manage the device following the instructions given by the
host. An OpenCL device is a collection of one or more computing units, which are,
subdivided into processing elements. Figure 4.1 shows a platform model.

4.2 Execution model

Execution model is formed by kernels and the application that is controlling the
different devices. As CUDA, kernels are functions of code, that can be executed in
parallel for explore parallelism. These kernels have to be executed in a device, which
will compile it in execution time. Finally, the application controls the devices con-
nected to the host and it also controls the flow of data between the host and devices.

4. OpenCL 15

Figure 4.1: Platform model

4.3 Properties of kernel

The application put the kernels in the queue before being executed. But before this
we have to define a dimension. OpenCL allows us to choose which dimension we
want to define. There are three dimensions. If we were working with vectors the
dimension could be one. But, if we were working with matrices the dimension should
be two or more. An example of this can be found in the field of image processing,
where we have to compute pixels in a matrix. Figure 4.2 shows us a dimension = 2.

Figure 4.2: Dimension of an image

4. OpenCL 16

Each element of the dimension, called work-item, will execute the same code.
In this way, the elements will have their own ID. OpenCL also allows us to create
groups of elements, called work-groups. This groups will be useful to decide which
elements of the dimension will share memory. This is important if some elements
needs to be synchronized with another element. OpenCL provides us the necessary
tools to allow communication between them. If we do not define any group, the
APIs of OpenCL will do that for us.

4.4 Properties of the host

The host manages the queues and also the flow of the memory between devices. It
will decide which kernels are going to be executed in a specific device and also it
will manage the synchronization between kernels. All of this will be done through
the APIs of OpenCL.

4.5 Memory model

The host need to send and receive information. This is done through the different
memories that its model provide us. A common model of memory has a host memory
that is the memory available for the host application responsible to control the
different devices. Following the example of computing image’s pixels we will describe
the other memories. It is important to remind that each pixel was an element and
elements could form groups to share information. According to this example we can
describe global memory and constant memory (Figure 4.3).

Global memory allows read/write for all the elements of all the groups (ele-
ments/groups mentioned in section 4.3). To read and to write in global memory
can be stored in cache depending on the device. Constant memory is a part of a
global memory that holds constant during the execution of one kernel. Host will
manage the data in this memory.

This model also has a deeper memory. Only shared for the groups of elements or
just for the elements. These memories are called local memory and private memory
(Figure 4.3).

Local memory is the memory allocated in each group. This memory can be used
to assign variables that will be shared for all the elements of the group. Finally, the
private memory is just available for each element. One element cannot access to
others private memories.

We have described the memory in the order of access. The order is:

4. OpenCL 17

HostMemory → GlobalAndConstantMemory → LocalMemory → Work −
item→ PrivateMemory

Host cannot access to local memory or private memory.

Figure 4.3: Memory model OpenCL

The main problem in this memory model is the bottleneck between host and de-
vices. A device, like a GPU, could be much faster than a host processing data.

4.6 Programming model

OpenCL as a parallel model of programming provides us enough tools to explore
parallelism. As we said before OpenCL allow us to use synchronization. Synchro-
nization can be used in devices (GPUs) or in a host. We can not assure the execution
of the kernels in a specific order. Therefore, we can put control points inside devices
to control the execution of the different kernels. Synchronization in a host can be
very useful. It allows us to do a proper communication between host and devices.
In this way, while host is waiting for any information from the devices, it can work
in others processes.

4. OpenCL 18

4.7 Example of application

We will put into practice the example of the image formed by different pixels. Imag-
ine that we have to smooth an image from an initial picture. Each pixel has to
compute an average of the surrounding pixels of the initial image and make spe-
cific operations to achieve the desired result. As we can see the result of one pixel
(element) does not depend on the others.

As said before, we will define a dimension of two where each element will be a
pixel. This means that we will design a kernel for each pixel. Then, each kernel will
have an identifier formed by two numbers that will be (i, j), got from the functions
of OpenCL called get_global_id(). We have as many kernels as the value of the
dimension. The image below, Figure 4.4, shows how to generate a kernel over an
element.

Figure 4.4: Algorithm OpenCL

This kernel (function) receive an initial image (matrix) and a result matrix. Each
pixel of the result is the average between the surrounding pixels and the applica-
tion of the function "smooth" that make the specific changes to achieve the desired
result. This algorithm will be executed as many times as elements in the matrix,
and we can execute it at the same time in a GPU. This feature give us the ability
to improve greatly the speed-up of this algorithm. In a sequential way it would be
much slower. We also could apply this parallelism in other fields, like video, DSP, etc.

4. OpenCL 19

4.8 Conclusion

OpenCL is an emergent technology that can be supported for different platforms.
One of the main aims is improve the portability and the performance. OpenCL is
thought for parallel programs that can compute multiples operations at the same
time. A sequential program programmed in OpenCL would be useless. In a future,
OpenCL probably will be present in lots of platforms thanks to its flexibility and
its scalability. Besides, it can be used to improve image processing, video, digital
signal processing, etc.

20

5. OPENACC

OpenACC [14] could be an alternative language for CUDA and OpenCL. It has
been developed by CAPS, Cray and PGI. OpenACC is looking for the improvment
the speed-up in parallel algorithms using other devices, like GPUs, through one host
that could be a CPU. OpenACC APIs are based in C, C++ and Fortran what makes
greatly portable for different platforms.

The main goal of this technology is to forbidden the programmer to manage the
GPU or the transfer of data between the host and the device. The compiler has to
be capable to generate an efficient way to use the device. The idea was to make
the programming easier for those programmers who are not experts in OpenCL or
CUDA.

This chapter is formed by three sections. In the first one we will explain the
execution model. Then, the memory model and, at the end, we will see an example
about image processing to clarify the improvement of speed-up of algorithms with
this technology.

5.1 Execution model

Execution model consist of a host related with a device, such a GPU. The host will
manage one or more devices through an application made by an user. The device
will be responsible to explore the parallelism. It will compute functions than can
be executed at the same time without affecting the final result of an algorithm. As
it has been said in previous chapters, this functions will be called kernels. The host
will decide which kernel has to be in a specific queue, which data that has to be sent
to a device, when the host has to receive the data from the device, etc.

OpenACC has two ways of work: using kernels and parallelism. The architecture
is formed by different processors. Each processor is provided with many threads.
Knowing this we could distinguish three levels using parallelism: gang, worker and
vector. The following Figure 5.1 shows the different levels.

Gangs would be mapped in the processors where they would not communicate
between them because there is no possible synchronization between gangs. Worker
would be related with threads. Finally, at the deepest level, vector, as the word
says, would be a vector within a thread. The last levels could communicate among

5. OpenACC 21

Figure 5.1: Levels OpenACC

them through the common memories that we will explain in next section.
How to allocate kernels depends directly of the device we are using. In this way,

the compiler will be able to manage the kernels properly for a specific device. First
of all, the compiler will check the code and will select the operations than can be
executed in parallel. Then, it allocates them in a proper part of the hardware. Fi-
nally, the compiler manages the generation and optimisation of the code.

5.2 Memory model

As current GPUs, the memory of the host and the memory of a device are separated.
All the transfer of data has to be managed by the compiler through some directives
given by the programmer.

The programmer has to take care about the architecture of the devices in order
to do not overload the memory and not to cause a bottleneck.

5.3 Programming model and examples

OpenACC is thought to reusing code, in other words, to be portable. The main goal
is reuse code that have been already created adding some directives. This means
that we would do just modest changes in the code. This language is supported by
C, C++ and Fortran compilers. What we will do is just describe how to compile the
parts of the code that can be split to be paralleled. Then the compiler will generate

5. OpenACC 22

the gangs, workers and threads following the instructions given by the programmer.
Next Figure 5.2, shows the responsibility of generate kernels by the compiler through
the directives.

Figure 5.2: Architecture OpenACC

We will show some examples that will lead us to identify the differences between
kernels and parallelization. We will take the example that we have been following
until now, the processing of one image. In this case, the computation of each pixel
of an image to achieve a specific result. Result pixels does not depends on the other.

The code below, Figure 5.3, shows us how to make notice the compiler if we want
to use a parallel or a kernel construction.

In the case of using a kernel construct we have to add the line "program acc
kernel loop" at the beginning of the program. The compiler will split the program
in kernels, the construct says to the compiler to generate a kernel from the single
loop. The compiler will convert these kernels to parallel kernels that will run in a
GPU. Each kernel will be launched separately. In this example each computing of
a pixel will be a different kernel.

If we want to use a parallel construct, we must change the first sentence of the
program for "program acc parallel loop". In this case, the compiler will create a
group of parallel threads that will execute the code of the construct. This construct
generates a group of parallel gangs that will execute the code. The main difference
in front of kernel construction is that parallel construction is a single CUDA kernel.

We can add clauses after each construction. This will help the compiler to identify
how the different parts of the code should be accelerated. In the case of a kernel
and parallel construct we could find some clauses like the next ones:

5. OpenACC 23

Figure 5.3: Defining a kernel

• num-gangs clause is just available for parallel constructs, this clause allows us
to define the number of gangs.

• if clause. This clause evaluates a condition, if this condition is true, the con-
struct, kernel or parallel, will be executed on the accelerator, if not, it will be
executed a thread will execute the construct.

We can find more clauses in the official document of OpenACC [15], and also the
constructs to use in the case of programming in Fortran.

OpenACC provides us a run time library with many routines. The use of this
library could be a disadvantage for the platforms that cannot support this API. In
this way, we could lose some portability. Some examples of routines are:

• acc-get-num-devices: This routine let us know the number of accelerator de-
vices related with the host.

• acc-set-device-type: It shows to the programmer which devices he/she could
use.

• acc-get-device-type: It allows to the programmer to select the accelerator de-
vices that he/she wants to use.

We can find more routines in the official documentation of openACC [15].

5.4 Conclusion

OpenACC is an alternative language thought for people that are not familiarized
on languages like CUDA or OpenCL, which require a high knowledge. This system
makes easier for the programmers to work on this kind of devices. In order to
accelerate algorithms which can be executed in a parallel way. The programmer
will not need to focus on the memory model. The person just will have to know
some basic concepts, such the bandwidth to make a proper connection between host
and devices. The compiler will manage the allocation of the data provided by the

5. OpenACC 24

application from the host. In this way, the programmer will be able to create kernels
and define the parts of the algorithm which can be executed in parallel using the
different three levels mentioned: gang, worker and vector. Thus, OpenACC is simple
and portable where the compiler compile code programmed in C/C++/Fortran to
make it run in different devices.

25

6. HALIDE

Halide [16] is an incoming programming language implemented by researchers of
MIT (Computer Science and Artificial Intelligence Laboratory (CSAIL)). Concretely
is an extension of C++. MIT released the Halide’s libraries.
This language programming emphasizes two aspects:

• Simplifies the process of writing image processing software. It makes the code
more readable and also easier to modify.

• As other parallel languages the main goal is economize the use of energy
through running programs in a more efficient way.

The process of taking a picture with a cell phone device is simple: press a button
and in less than a second it will appear on the screen. However, the image processing
requires a very complex sequence of operations. These processes are related with
the capture of light read to deduce each pixel color and contrast settings. Besides, a
constant correction process that change the image to get something closer to what
captures the human eye. As more mega pixels a camera has, more time needs the
device to process them.

By rewriting the algorithms in this language, researchers have been able to in-
crease the speed of processing an image by three times and significantly reducing
the length of the code.

There is not doubt this idea can benefit not only those who work with images.
Also it is an interesting approach to parallelism which could be extended to other
areas. But we would like to emphasis, in this thesis, the image-processing field
because is its principal use.

What Halide suggest is separate the algorithm from the schedule through pipelines.
In this way, we will be able to modify the algorithm without changing the schedule
or, in the case contrary, change the schedule without modify the algorithm.

So Halide has two different parts, algorithm that specify what the program is
doing, which mathematical functions we will use (what is computed), and schedule
that define where and when we will execute or allocate what we have done in the
algorithm (how is mapped in a machine). It means that programmer will have to
care about the schedule, not letting to the compiler do all the schedule work.

For each machine the processing schedule could be different. Thus, we could say
schedule is never portable. However, the algorithm is completely portable. Almost

6. Halide 26

in all the cases a code written in Halide the algorithm is the biggest part of the code.
If this is the 90% of the code, then the 90% of the code is portable. Besides, from
Halide’s web page we can download all the resources necessaries to use it. With
many examples of Halide applications and demonstrate that the algorithm is the
most predominant part in the algorithm. So, what we should do is just change the
schedule and adapt it for a determinate machine what is easy work for an architecture
expert that is looking for efficiency.

In the next section there is explained step by step what algorithm and schedule
means more accurately.

6.1 Algorithm

The part of the algorithm will be defined as a functional language. This means that
we will emphasise in the application functions instead of the imperative program
style. In this way is easier to manage the algorithm by the schedule, but it will be
explained in the next section. The characteristics would be:

• Arithmetic and logical operations.

• The control flow operations if, then and else.

• The capacity to call other function, even external.

• Focussing in image-processing, we will load external files, in this case images.

A code example of and algorithm would be like the image below, Figure 6.1:

Figure 6.1: Example of algorithm. Extracted from [16].

What has been done in the image above is processing the pixels of an image and
making the average of each one. We can deduce that we could calculate different
pixels at the same time depending on the processor or GPU we are working on. We
must notice that in this example the second function definition depends on the first
one. And this will be important to know how to manage the schedule.

6. Halide 27

6.2 Schedule

As it has been explained in the last section, the algorithm is a chain of functions
which defines the algorithm. Thus, we have to take care in the schedule what is
stored, what is recomputed and the order of the execution. The programmer will
handle the schedule. Hence, explode the sources through GPU, SIMD, etc. Also it
should be noticed that we will not need to get a very complicated compiler.

Following the last example of algorithm, we will explain the different ways to
manage the schedule. Through the functions defined in the algorithm of example
we could realize that there is a dependence. The second function declared need
the results from the first. So, we can define the first as callee and the second as
caller. Halide allows four types of realations between caller and calle to manage the
schedule:

• Inline: Compute as needed.

• Root: Recompute all the region.

• Chunk: Compute only subregions.

• Reuse: Load regions computed.

6.2.1 Inline

Figure 6.2: Inline

The image above, Figure 6.2, defines the functions of the Figure 6.1 as two
squares. In each square is defined an image that we will call region. In this way, the
first region is the callee and the second one is the caller.

Inline is the easiest way to schedule. When the caller needs to calculate a pixel
it will call the callee to compute the values needed. So, for each pixel of the caller

6. Halide 28

we will compute three of the callee. This means that we will generate redundant
computation. Usually, it does not require too much storage and we are winning in
temporal locality. The problem could be the redundant computation.

6.2.2 Root

Figure 6.3: Root

In this case, Figure 6.3, what have been done is computing all the region before
executing from the second function (blurred). We are storing all the region in order
to avoid redundant information. This time each pixel of the callee is computed only
one time.

On the other hand, Inline requires to store the entire region. Thus, the temporal
locality would be poor, but we would avoid redundant computation.

6.2.3 Chunk

Figure 6.4: Chunk

6. Halide 29

This type of relation, Figure 6.4, would be like an intermediate type between
Inline and Root. As we can see in the region below, the region of the callee is split
in sub-regions. In each sub-region will be stored if it is needed. Contrary Root, we
are reducing storage, but we could find some redundant information between the
limits of sub-regions.

6.2.4 Reuse

Figure 6.5: Reuse

Reuse can be used if previously we have chunked or rooted some function that
could be used in the future for other functions. In the Figure 6.5 we can see another
region that means a new function depending on the first. What we are doing using
Reuse is avoiding recompute again values computed before. We should use reuse
always we can.

We could apply, once explained the four types of relations, the functions as func-
tion.root(), function.chunk(), etc.

6.2.5 Modelling dimensions

What remains to be explained yet is how to manage each region or sub-region. Halide
provides us some functions to define the order of the regions, how to vectorize them

6. Halide 30

among others.
Following the same example where each region is supposed to be an image. We

have to decide how to manage them. Here we have some examples that define how
to use some of the functions provided by Halide.

In the example of the Figure 6.6 we are using the function transpose, used as
image.transpose(x, y). We have defined the direction of how we will read the image.
In this case, we have first moved through the rows and then through the columns.
We may get the opposite effect changing the values ’x’ and ’y’; image.transpose(y, x).

Figure 6.6: Transpose

Another example would be the one at the Figure 6.7. Here we are reading the
matrix through the rows and then through the columns, but now we have vec-
torized the rows in parts of four pixels. The function that we may use would be
image.transpose(x,y).vectorize(x,4).

Figure 6.7: Transpose and vectorize

Another important function among others, would be "parallel". The following

6. Halide 31

Figure 6.8 shows us the result in a matrix which combines the function image paral-
lel(y).vectorize(x, 4). What is done here is vectorize the rows in parts of some pixels
and parallelize the two columns resulting of the function vectorize.

Figure 6.8: Parallelize and vectorize

A complete example, Figure 6.9, combine functions which define the regions and
then they models them. It would be; image.root().vectorize(x,4).transpose(x,y).parallel(x).
In this case we are defining the image as a root. This means that we will store the
whole region. Then we will vectorize the rows in a group of pixels and we will define
the direction with the function "transpose". Finally, it would parallelize the rows.

Figure 6.9: Complete example

6. Halide 32

In order to explain better the functionalities of Halide we have a short program,
Figure 6.10. This code makes the same operation on each pixel. It defines the
schedule and finally define a domain 32x32. We can see easily the two parts: the
algorithm and the schedule. The algorithm is formed by three functions declared.
We can see how "g" depends on "h" and "f" depends on "h". The schedule will be
defined as root for "h" and "g".

Figure 6.10: Code example

If we execute this code in our computer we will see how Halide works. First we
will compute all "f.g.h". Then "f.g" as a root. Finally we will compute the last
function which is "f". The following Figure 6.11 is an output of this program.

Figure 6.11: Output

6. Halide 33

6.3 Compilation

The compiler used to compile Halide will be LLVM. As we have been saying before,
Halide programs are composed by the functional algorithm and schedule. In this
way, the compiler has to transform the algorithm as an imperative language. Then,
the compiler manages to create an architecture-specific LLVM bitcode in order to
run it in a machine.

6.4 Applications

The article of Halide [16] shows some applications done to demonstrate how we can
significantly reduce the code and the performance. The code of these applications
are released, so we can download them and check how they are implemented

The target is compare the applications made by halide in front of the same ap-
plication implemented in other languages. This programs are executed in the same
machine. The applications implemented are: camera raw pipeline, local laplacian
filter, and bilateral grid.

Camera raw pipeline converts a picture from an image sensor, that contains little
processed data, to a color image. There are several processes to achieve this, like
hot-pixel suppression, demosaicking, etc.

Local laplacian improve the contrast of the images. Finally, bilateral grid smoothes
an image without loosing quality.

The image below, Figure 6.12, shows the results obtained by the researchers of
MIT.

Figure 6.12: Results. Figure from [16]

We can see that the code is more reduced than the others languages, separated
by the algorithm and the schedule. Besides, we can observe that the applications

6. Halide 34

implemented by Halide are faster.

6.5 Conclusion

As other language, Halide needs to be improved and generate outputs for others
languages like OpenCL or OpenACC. Halide developed in a proper way can be very
useful in the future. It gives many facilities to expert and non-expert programmers
who are working in GPUs. Besides, the code is easily readable. This means that
it does not take lot of time to understand code written by other people. Also, it
is easily portable because, as we have seen in the previous sections, algorithm and
schedule are totally decoupled. Thus, we just need to know the structure of our GPU.

35

7. DIFFERENCES

In this chapter we will show a comparative between the previous parallel comput-
ing languages explained: OpenCL, CUDA, OpenACC and Halide. The aim of the
section is to show the reader the similarities and differences that we can find in the
languages mentioned. Also, it would be useful for the reader to know which language
a certain programmer could use in a given situation. This chapter is structured in
three sections. CUDA vs OpenCL because they are platforms that share common
properties and are the most common languages nowadays in the market. Next sec-
tion will be OpenACC as an alternative for CUDA and OpenCL. OpenACC has
some properties that CUDA and OpenCL don’t have. Finally, Halide as an emer-
gent language that could work on the previous platforms mentioned. Halide is an
interesting language that can generate outputs for the other languages, it give us
new ideas to address parallel computation that differs of the originals of CUDA,
OpenCL and OpenACC.

7.1 CUDA vs OpenCL

CUDA is a language dedicated for NVIDA platforms and OpenCL is an open solution
for parallel computing. NVIDIA devices can support OpenCL. However, CUDA can
run only in NVIDIA GPUs. Knowing this, we could deduce that CUDA is not a
parallel language which we should dedicate time studying. But we would be wrong.
NVIDIA is taking good care of its language and this means that CUDA can be more
powerful than OpenCL. So NVIDIA and OpenCL are not equal.

The first difference between these platforms is the terminology. While CUDA uses
threads as a terminology, OpenCL uses words as groups (work-groups) or elements
(work-items). This could lead to a confusion. CUDA threads correspond to work-
items on OpenCL and CUDA blocks correspond to work-groups on OpenCL.

Despite the great nomenclature of both languages we can also find some dif-
ferences in the memory model. The names of the memories in each language are
different. This could also lead to errors when we are programming and managing
the different memories. Specially when we are dealing with local memory which is
not the same in CUDA and OpenCL. Next Figure 7.1, shows the main differences
of nomenclatures about memory.

7. Differences 36

Figure 7.1: Memory differences

OpenCL seems more difficult than CUDA in some cases. In OpenCL we have
to create the execution context, load de disk sources and hand compile OpenCL
kernels, while CUDA does not need to take responsibility for this task.

On the other hand, you can immediately determine the advantage of creating the
context manually, one can determine at runtime if the parallel portions of the pro-
gram should run on the CPU, GPU or both at the same time. In this characteristic
OpenCL is better because CUDA can only run kernels on the GPU.

A similarity between them is the portability of kernel. The portability of a
OpenCL kernel to CUDA and CUDA kernel to OpenCL is easy because the lan-
guages architectures are similar. The problem we can find is the portability between
hosts.

In the case of the host we can find the most significantly difference. While in
CUDA the management of the host executing a kernel is easy, the same operation
in OpenCL using the same kernel is totally different and very much complicated.
OpenCL has available some interesting APIs in C and C++ to make it easier. But
programming is still complicated. We can deduce that for the portability the part
that corresponds to the host is complex.

Is harder to know which program done in CUDA and OpenCL is the faster.
CUDA has its own platform, so it can take advantage and just be optimized for one
platform. Also OpenCL can take advantage of the platforms of CUDA, CUDA has
its implementation of OpenCL running over its platforms. Besides, OpenCL has to
deal with other platforms (not NVIDIA) and this makes harder the implementation
of a parallel language and can not take all the advantage of a platform. It could
lead to do not get the fullest optimization.

OpenCL offers more portability for different platforms. Not only in NVIDIA and
AMD devices, it also can control a CPU with different processors. This means that

7. Differences 37

OpenCL is able to decide if some parts of a parallel program can be executed in a
CPU or GPU giving us more flexibility.

7.2 OpenACC as an alternative

The most common frameworks in the market nowadays are CUDA and OpenCL. But
there are alternative technologies like OpenACC that looks for parallelism computa-
tion and try to make easier the management of accelerators devices. One of the most
important difference between OpenACC and CUDA/OpenCL is that OpenACC does
not leave responsibilities to the programmer. On the other hand, CUDA/OpenCL
allows to programmer take decisions of how to manage the memory. The OpenACC
compiler has to manage in an efficient way the program through some directives
given by the programmer. This means that CUDA and OpenCL are available just
for expert programmers. This is not the case of OpenACC which was thought for
non-expert programmers who do not need a high knowledge of the low-level archi-
tecture.

The terminology of this language is also different, like CUDA/OpenCL. In this
case we have to define kernels or parallel that are the regions we will parallelize.
Also, we have to define the gangs, workers, vector-lenght, etc. Gangs and wokers
would be related with work-groups (groups) and work-items (elements) in case of
OpenCL.

As a consequence, the compiler has the responsibility to allocate the program
in the device. OpenACC makes easier the rewrite of some programs and increase
highly the readability of them. So, the APIs provided by OpenACC are easier to
understand for programmers. Hence, to develop an application in OpenACC is
easier than do it in CUDA/OpenCL.

Ruse some programs programmed in C, C++ or Fortran made for other platforms
is one of the best goals of OpenACC. Contrary to CUDA or OpenCL, with OpenACC
we can just to change some lines of code, deleting the schedule, if there is, and add
some directives that we will give to the compiler.

OpenACC provides a compiler guidelines for C, C++ and Fortran. It is not
complicated to know the characteristics of the accelerator device attached to a CPU.
This makes this language portable to different platforms, more than CUDA.

The memory model has different nomenclatures as CUDA and OpenCL. But the
structure is similar, the memory of the host and the accelerator device are separated.

7. Differences 38

7.3 Halide vs CUDA, OpenCL and OpenACC

In this section we compare Halide with the other platforms as a language that
could generate outputs for parallel languages. This language does not provide us
a framework as OpenCL or CUDA. Halide is a compilation of libraries based in
C++ and made by researchers at MIT. As the emergent language it is, it has some
limitations comapred with the other parallel languages. But it has some interesting
points to take into account.

The portability of Halide nowadays is very limited because it can generate only
kernels for CUDA. And, how it has been, CUDA just runs in NVIDA platforms.
However, researches are working in the generation of kernels for OpenCL. A task
that will not take lot of time due the structure of Halide where the code is written in
an standard language (C++) and the algorithm and schedule are totally separated.
Thus, they have to adapt just the part of the schedule that has a few functions.
So, now the portability is limited compared with OpenCL, but it is the same than
CUDA.

As we are using a standard language it can be improved easily. It can be updated
to achieve new targets as CUDA and OpenCL which are in constant development.
All of them competing for the best places in the market.

A characteristic that differs this language from the others is the terminology. We
will use specific functions like parallalize, vectorize, etc (explained in Halide chapter)
to define threads, the schedule of the program, etc. But, also the algorithm will be
programmed as in a functional language. Then it will be compiled in an imperative
language. Contrasted to CUDA/OpenCL/OpenACC this way is totally different
from the programs that are written always in an imperative way.

In this case Halide was thought to know accurately how the architecture of dif-
ferent platforms works, as CUDA or OpenCL. We have the responsibility to look for
the best implementation in the schedule through the given functions. Halide does
not requires a complex compiler as OpenACC to do the memory work. In this way,
Halide requires a programmer with a good knowledge about the architecture.

One of the best points of Halide is readability. The decoupling of the algorithm
and schedule cannot be found in CUDA, OpenCL or OpenACC. A program written
in Halide can be much easier to read and understand than other languages. We can
clearly distinguish the parts of the algorithm and update or improve a code made
by another programmer can be easy. This point is very important because most
of parallel programs code are very difficult to understand and hard to modify or
improve for different people than the creator.

As an emergent language, this language is not consolidated as CUDA/OpenCL.
But it can have future because it is a new idea and very much different than the other

7. Differences 39

languages. It just has to be more developed and be available for other platforms
like OpenCL, but it will be soon.

One of the problems of Halide compared to other languages is we have just a few
applications. To check, the only place to look for some is the sources that can be
download in the official web page of Halide. In contrast with CUDA/OpenCL/OpenACC
we can find lots of sources and applications through internet and learn about this.

The recently studies of Halide are focused in image processing, just one field. In
the other hand, CUDA/OpenCL/OpenACC are researching in many more fields as
artificial intelligence, scientific researches, etc. So, nowadays Halide is much less
developed than others parallel platforms, but with an interesting future.

40

8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Nowadays and in the future, parallel computation will be very useful for many ap-
plications. Technology is evolving quickly and it needs more power of computation.
In this way, this kind of accelerator devices are very useful and important. The
different languages mentioned in this thesis are very important to manage this tech-
nology. They give us the possibility to use these accelerators devices, such GPUs.
We can not choose the best language. We can only mention the best goals for each
in contrary of the others. We have mentioned here the best points for each language
in the different fields.

OpenCL, CUDA, OpenACC and Halide has different terminologies and we can-
not distinguish the best one. With a good user’s manual we should be able to write
a program without many difficulties. The most complicated language to program
could be with Halide. Normal programmers are used to develop in imperative lan-
guages instead of functional languages. Because of this, it could be difficult for users
that are not related with the way of programming.

If we are looking for portability OpenCL would be the best choice. It is the
most supported language for different platforms. On the other site we find CUDA
which runs only over NVIDIA platforms. For the moment Halide just can generate
kernels for CUDA. But, if we are looking for efficiency CUDA would the best choice.
This is because they are focusing on determined platforms and they take the fullest
advantage of the device.

The complexity to develop code with these languages is not the same. In CUDA,
OpenCL and Halide it is harder because we have to know how we will allocate
the parts of the parallel program in the memory. Contrary to this, the OpenACC
compiler take care of all this process. So, with OpenACC it is not necessary to
have the same responsibility as in the others languages. The compiler manages it
for us what make it appropriated for those non-expert programmers in low level
architectures.

As it is well known in programming, readability is an important point to take into
account. It is very important for a programmer to understand code made by others.
In this case, Halide could be the best option. The decoupling of the algorithm from
the schedule helps the programmer to develop programs easily and understandable.

8. Conclusions and future work 41

The future of these languages is uncertain. At the moment CUDA and OpenCL
are more powerful in the market. However, every day there are appearing new ways
to manage the parallel computation like Halide and OpenACC. This competition is
good because it provides other points of view and new totally different ideas. As we
have seen until now, each language offers different features for every field and there
is not a concrete language that we could say is the best one.

8.2 Future work

To finish we expose a possible future works we could do after this thesis:

• Those parallel languages are continually evolving trying to look for improve-
ments. So, it requires us to continue study of these technologies as they can
be changed significantly in the future.

• It would be interesting to program different applications and then test them
one by one in different platforms to make a more practical analyse of these
languages. Then check which applications could be better used depending of
the language applied.

• Focusing in Halide. It would be interesting to study other fields, not only
image processing. For example intelligence artificial or signal processing among
others parallel applications.

• CUDA/OpenCL/OpenACC/Halide are not all the languages that supports
parallel computing. It would be interesting to study others like Spiral (program
generation system for DSP, the aim is to explore the parallelism and look for
optimizations) [17] and compare with the already known.

• Try to make more accessible to the programmer these technologies and offer
the possibility to play with codes without having to know very much about
architecture.

• Make easier the way of synchronization. One of the biggest problems in parallel
computing is how to synchronize the parts of the program. Either through
semaphores, critical sections, shared memory, etc.

• Make more accessible the access to accelerator devices with high performance
for common users, reducing the cost of the devices and the way of how to learn
about use them.

8. Conclusions and future work 42

• Focusing in CUDA it would be interesting to extend the power of managing
kernels. It would be interesting to be able to generate kernels also for CPUs.
Hence, we would have more control over the different parallel algorithms.

43

BIBLIOGRAPHY

[1] David B. Skillicorn, Domenico Talia. Models and Languages for Parallel Com-
putation. Journal ACM Computing Surveys (CSUR), 1998. New York, USA.

[2] Jason Ng, Jeffrey J. Goldberger. Practical Signal and Image Processing in Clin-
ical Cardiology. Published by Springer, 2010.

[3] John D. Lovell, David C. Nagel. Digital filtering and signal processing in Be-
haviour Research Methods and Instrumentation. Perceptual Systems Labora-
tory University of California, Los Angeles, 1973.

[4] Ananth Grama, George Karypis. Introduction to Parallel Computing. Published
by Pearson Addison Wesley, 1994.

[5] Diederich Hinrichsen, Anthony J. Pritchard. Mathematical Models. Mathemat-
ical Systems Theory I. Published by Springer, 2005.

[6] Jens Kubacki. Artificial Intelligence. Technology Guide. Published by Springer,
2009.

[7] Kanupriya Gulati, Sunil P. Khatri. GPU Architecture and the CUDA Pro-
gramming Model, Hardware Acceleration of EDA Algorithms. Department of
Electrical and Computer Engineering, Texas A and M University. Published by
Springer, 2010.

[8] Max Grossman, Alina Simion Sbirlea. CnC-CUDA: Declarative Programming
for GPUs. Languages and Compilers for Parallel Computing, 2011. Department
of Computer Science, Rice University.

[9] David B. Kirk, Chief Scientist. NVIDIA CUDA Software and GPU Parallel
Computing Architecture. NVIDIA Corportation 2006-2008. Available online in
the web page of NVIDIA (http://www.nvidia.com).

[10] Lindholm, E., Nickolls, J., Oberman, S., Montrym, J. NVIDIA Tesla: A Uni-
fied Graphics and Computing Architecture. Published by the IEEE Computer
Society, 2008.

[11] Jungwon Kim, Sangmin Seo, Jun Lee. OpenCL as a Programming Model for
GPU Clusters. Languages and Compilers for Parallel Computing. Center of
Manycore Programming School of Computer Science and Engineering, Seoul
National University. Published by Springer, 2013.

BIBLIOGRAPHY 44

[12] Peter Collingbourne, Cristian Cadar Symbolic Testing of OpenCL Code. Hard-
ware and Software: Verification and Testing. Department of Computing, Impe-
rial College London. Published by Springer 2012.

[13] Ralf Karrenberg, Sebastian Hack. Improving Performance of OpenCL on CPUs.
Compiler construction. Published by Springer, 2012.

[14] Sandra Wienke, Paul Springer, Christian Terboven. OpenACC First Experi-
ences with Real-World Applications. JARA, RWTH Aachen University, Ger-
many, Center for Computing and Communication. Published by Springer, 2012.

[15] The OpenACC application programming interface, 2013. Available in
(http://www.openacc-standard.org).

[16] Jonathan Ragan Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, Saman Amarasinghe. Decoupling Algorithms from Schedules for
Easy Optimization of Image Processing Pipelines. MIT Computer Science and
Artificial Intelligence Laboratory, Massachusetts, 2012.

[17] Markus Puschel, Franz Franchetti, Yevgen Voronenko. Spiral. Department of
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA, USA, 2011.

