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Electricity is the lifeline of modern society. Without major improvements and new 

technology, the current electric grid cannot meet the future demand for safe, reliable, 

sustainable, and affordable electricity. A proposed solution is the Smart Grid that 

utilises advanced information and communication technologies (ICT). The Smart Grid 

will help to change the ways electricity is produced and consumed. This thesis focuses 

on two important areas in the Smart Grid: the integration of existing and new 

information systems, and the information security of the integration solutions. 

The Smart Grids and Energy Markets (SGEM) is a project for extensive research on 

the future of electric energy. As part of the SGEM project, this thesis focuses on the 

integration of information systems within the distribution domain. Earlier research 

suggests that concepts such as Service-Oriented Architecture (SOA), Enterprise Service 

Bus (ESB), and Common Information Model (CIM) are essential for a successful Smart 

Grid integration. The goal of this work was to study these topics and to provide an 

integration component to be used in a concrete demonstration environment. 

The theoretical background section consists of research on various integration 

architectures and their characteristics, and provides details of their functionality and 

performance. The integration landscape includes an introduction to the Smart Grid, the 

electricity distribution domain and related information systems, and the most important 

standards in the field. An introduction is provided to Microsoft BizTalk Server, the 

integration platform used in this project. Information security is a key aspect that cross-

cuts the entire work. A specific section for related information security aspects is 

included for each of the discussed topics. 

The experimental part of this work started from an example ICT architecture and 

three use cases as described previously within the SGEM project. The use cases are 

analysed in detail using a data flow approach to define the specific integration and 

information security requirements. A BizTalk based demonstration environment was 

designed and implemented. It will serve as a foundation for future work and allow for 

the integration of other parts of the example architecture. 

The main result of this work is that, although SOA, ESB, and CIM are beneficial 

concepts, they are no silver bullet for integration issues. Further, they fundamentally 

change the approach to information security; this is particularly true for service-

orientation. BizTalk offers a viable platform for integration, but, as an ESB, has certain 

limitations that must be carefully considered. A guideline for implementing the said 

concepts is offered to aid future integration work. It can be used to lower the barriers for 

collaboration between experts in the fields of electricity, integration, and information 

security. Co-operation of the foresaid parties is crucial for building secure, reliable, and 

efficient integration that will meet the needs of the Smart Grid.  
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Sähköenergia on elintärkeää modernin yhteiskunnan toimivuudelle. Tulevaisuudessa 

tarvitaan yhä enemmän turvallista, luotettavaa, ympäristön kannalta kestävää ja riittävän 

edullista sähköenergiaa. Nykyinen sähköverkko vaatii kehittämistä ja merkittäviä 

parannuksia, jotta se pystyy vastaamaan näihin tarpeisiin. Ratkaisuksi on ehdotettu 

älykästä sähköverkkoa, Smart Gridiä. Tavoitteena on kehittää uusia tapoja tuottaa ja 

kuluttaa sähköä hyödyntämällä sähköverkon toteutuksessa laajamittaisesti tieto- ja 

viestintäteknologioita. Tässä työssä käsitellään kahta Smart Gridin kannalta tärkeää 

aihetta: tietojärjestelmien integrointia ja tietoturvallisuutta. 

Smart Grids and Energy Markets (SGEM) -projekti tutkii laaja-alaisesti 

sähköenergian tulevaisuutta. Osana SGEM-projektia tämä diplomityö keskittyy sähkön 

jakeluverkon hallinnassa käytettävien tietojärjestelmien integrointiin, sekä siihen 

liittyvään tietoturvaan. Aiemman tutkimuksen perusteella integraatioratkaisun 

tärkeimmiksi osa-alueiksi on todettu palveluväylään perustuva palvelupohjainen 

arkkitehtuuri, sekä kaikille toimijoille yhteinen tietomalli. Tämän työn tavoitteena on 

tarjota konkreettisia ohjeita ja esimerkkejä mainittujen konseptien hyödyntämisestä. 

Tarkoitus on demonstroida projektissa aiemmin esitettyä malliarkkitehtuuria 

rakentamalla testiympäristö ja toteuttamalla siinä tarvittava integraatioratkaisu. 

Yhtenä päätavoitteena oli tutkia integraation teoriaa ja eri arkkitehtuureja ja esitellä 

niiden toiminnallisuuden ja suorituskyvyn olennaisia eroja. Monet tahot tarjoavat 

ohjelmistoalustoja, jotka toimivat eri integraatioarkkitehtuurien käytännön toteutusten 

pohjana. Toinen päätavoite oli evaluoida erästä integraatio-ohjelmistoa, Microsoftin 

BizTalk Serveriä. Evaluoinnin pohjana ovat yksityiskohtainen analyysi ja BizTalkiin 

perustuvan demonstraatioympäristön rakentaminen. Tavoitteena oli toteuttaa tässä 

ympäristössä yksinkertaisia testejä ja luoda perusta, jota voidaan hyödyntää tulevissa 

testauksissa. BizTalk-ympäristön tulee mahdollistaa uusien järjestelmien integrointi 

myöhemmin. Tietoturva tulee ottaa huomioida integrointiprosessin kaikissa vaiheissa. 

Se on siten koko työtä läpileikkaava aihealue, jota erityisesti painotetaan.  

Työn ensimmäinen osa esittelee teoreettista taustaa ja toimintaympäristön. Toinen 

luku esittelee lyhyesti sähköverkon toimintaa lukijoille, joilla ei ole sähköalan taustaa. 

Olennainen osa on älykkään sähköverkon tietoturva-aspektien käsittely. Smart Grid on 

ympäristönä ainutlaatuinen yhdistelmä perinteisen tietotekniikan ja automaatioalan 

järjestelmiä. Laajuutensa ja monimutkaisuutensa vuoksi se on ennennäkemättömän 

haastava toimintaympäristö tietoturvan kannalta. Automaatiojärjestelmien erityis-

piirteet, muun muassa reaaliaikavaatimukset, tulee huomioida myös tietoturvan 

suunnittelussa ja toteutuksessa. 
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Kolmannessa luvussa käsitellään integraation ja eri arkkitehtuurien kehitystä. 

Luvussa esitellään työn kannalta olennaiset konseptit: palveluorientoitunut arkkitehtuuri 

(Service-Oriented Architecture, SOA) ja palveluväylä (Enterprise Service Bus, ESB). 

Samalla käsitellään myös palveluväylän tärkeimmät erot perinteisempään yritys-

sovellusten integrointiin (Enterprise Application Integration, EAI) verrattuna.  

Väliohjelmiston (middleware) testaamiseen ja valintaan vaikuttavia asioita sekä 

tietoturvaa käydään läpi. Tietoturvassa erityisesti palveluorientoituneisuus aiheuttaa 

suuria muutoksia: monet perinteisessä sovellusarkkitehtuurissa käytetyt tietoturvan 

toteutusmenetelmät eivät enää ole käyttökelpoisia. 

Neljäs luku esittelee aluksi tutkimusongelmaa ja toimintaympäristöä eli sähkön 

jakeluverkon moninaisia tietojärjestelmiä sekä niiden välisiä kommunikaatiotarpeita. 

Jakeluverkko-operaattorin (Distribution System Operator, DSO) tärkeimmät tieto-

järjestelmät sekä yhteinen tietomalli (Common Information Model, CIM) esitellään 

lyhyesti. Lisäksi tärkeimmät standardit ja suositukset käydään läpi, koska niillä on 

olennainen rooli minkä tahansa laajan ja monimutkaisen järjestelmän kehittämisessä. 

Tarkastelun näkökulmina ovat Smart Grid, integraatio yleisellä tasolla ja tietoturva 

Smart Gridissä. Lopuksi esitellään tietovuot ja tietovuokaaviot (Data Flow Diagrams, 

DFD), jotka tarjoavat hyvän perustan eri järjestelmien välisten tiedonsiirtotarpeiden 

käsittelyyn ja helpottavat myös tietoturvavaatimusten analysointia.   

Työssä käytetty integraatioratkaisu, Microsoft BizTalk Server, esitellään 

viidennessä luvussa. Luvussa kuvataan lyhyesti, mitä BizTalk tekee, mihin sitä voidaan 

käyttää ja miten se on toteutettu teknisesti. BizTalk on pohjimmiltaan viestin-

välitysohjelmisto (message broker). Viestien välityksen toteuttavien komponenttien ja 

toimintalogiikan esittely antaa hyvän kuvan BizTalkin toiminnasta ja käyttö-

mahdollisuuksista. Toimintalogiikan lisäksi käydään lyhyesti läpi BizTalkin asennus, 

sovelluskehitys, ajonaikainen ympäristö ja ylläpito. BizTalk on kehitetty alun perin 

EAI-tuotteeksi, mutta ESB Toolkit -laajennuksen avulla sitä voidaan käyttää myös 

ESB-palveluväylän rakentamisen perustana. ESB Toolkitin kehitys ja toiminnallisuus 

käydään läpi. Lopuksi käsitellään myös BizTalkin tietoturvaominaisuuksia. Kuten 

monet väliohjelmistot ja integraatiotuotteet, BizTalk on monimutkainen ohjelmisto-

kokonaisuus. On syytä korostaa, että sen syvällinen tuntemus vaatii huomattavaa 

kokemusta. Yhden diplomityön puitteissa BizTalk voidaan esitellä vain pintapuolisesti. 

Työn toinen osa kuvaa esimerkkiarkkitehtuurin, rakennetun testiympäristön ja 

testauksen pohjana toimineet kolme käyttötapausesimerkkiä. Arkkitehtuuri ja käyttö-

tapaukset pohjautuvat SGEM-projektissa aiemmin saatuihin tuloksiin. Testiympäristön 

tarkoituksena on toteuttaa osa malliarkkitehtuurista, tämän työn tavoittena on erityisesti 

integraatiokomponenttina toimivan BizTalk-pohjaisen palveluväylän toteutus. Testi-

ympäristö ei siis sisällä kaikkia malliarkkitehtuurin osia, ja siihen tulee voida myöhem-

min lisätä uusia järjestelmiä. Käyttötapaukset toimivat esimerkkeinä, ja uusia käyttö-

tapauksia tulee voida jatkossa testata demonstraatioympäristön avulla. 

Testiosuus perustuu käyttötapausten yksityiskohtaiseen analysointiin ja toteutukseen 

siinä määrin kuin se on testiympäristössä mahdollista. Analysoinnin lähtökohtana 

perehdyttiin integroitavien järjestelmien välisiin tiedonsiirtotarpeisiin jokaisen eri 

käyttötapauksissa. Tiedonsiirtoa havainnollistettiin tietovuokaavioiden avulla. Tietovuot 

ovat hyödyllinen apuväline myös integrointiin liittyvien tietoturvariskien ja -vaatimus-

ten analysoinnissa.  

Työn kolmannessa osassa käydään läpi tulokset ja johtopäätökset. Testiympäristöä 

rakennettaessa ja käyttötapauksia analysoitaessa kävi ilmi, että kokonaisuudessa on 

vielä suuria puutteita. Testiympäristön integraatiokomponentti eli BizTalk asennettiin ja 

sillä suoritettiin yksinkertaisia testejä. Käyttötapausten toteutus jäi puutteelliseksi 
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osaltaan siksi, että ympäristön monia muita järjestelmiä ei ollut saatavilla. Kuitenkin jo 

käyttötapausten analysointivaihe toi ilmi monia ongelmakohtia. Havaitut ongelmat ja 

niihin liittyvät kehitysehdotukset on käyty läpi käyttötapauskohtaisesti seitsemännessä 

luvussa.  

Kahdeksas luku esittelee käyttötapausten analysoinnista opittuihin asioihin 

pohjautuvan ohjeistuksen, jota voidaan käyttää tulevien käyttötapausten suunnittelussa. 

Yhdessä BizTalk-luvun teorian ja asennetun BizTalk-ympäristön kanssa ohjeistus 

helpottaa ympäristön jatkokehitystä. Ohjeiden mukaisen prosessin avulla uusien käyttö-

tapausten analysointi ja suunnittelu ja sitä kautta tietoturvallisen integraation rakenta-

minen helpottuu. 

Jakeluverkon tietojärjestelmien turvallinen ja toimiva integraatio on älykkään 

sähköverkon toteutuksen avaintekijöitä. Palveluorientoitunut arkkitehtuuri, palvelu-

väylä sekä yhteinen tietomalli voivat tarjota ratkaisuja integraation haasteisiin. 

Johtopäätöksenä voidaan kuitenkin todeta, että ne vaativat merkittäviä muutoksia sekä 

ajatusmalleissa että ohjelmistojen ja integraation toteutustavoissa. Ne eivät ole 

integraation hopealuoteja eivätkä olemassa olevan arkkitehtuurin päälle liimattavia 

komponentteja, jotka ratkaisisivat integraatio-ongelmat. Lisäksi erityisesti palvelu-

orientoituneisuus vie pohjan monilta pitkään käytössä olleilta tietoturvan toteutus-

tavoilta ja vaatii uutta ajattelua myös tietoturvaratkaisuihin. 

Olennaisen tärkeää on ymmärtää palveluväylän erot perinteisempiin integraatio-

ratkaisuihin nähden ja verrata näitä toteutusvaihtoehtoja integraatiolle asetettuihin 

vaatimuksiin. Jakeluverkko-operaattorin tietojärjestelmät ovat monoliittisia, eivätkä ne 

välittömästi muutu palvelupohjaisiksi. Ala kehittyy muutenkin hitaasti muun muassa 

sähköverkon toiminnan kriittisyyden vuoksi. Lisäksi toimintaympäristö pysyy 

suhteellisen samanlaisena, vaikka muutokset tulevaisuudessa lienevätkin aiempaa 

nopeampia. Tällaisessa ympäristössä myös perinteinen, monoliittinen viestinvälitys-

palvelin saattaa olla hyvä integraatioratkaisu. Integraatioratkaisut kehittyvät kohti 

palvelupohjaisuutta ja dynaamisen palveluväylän hyödyntämistä, mutta käytännön 

toteutuksen vaatimat merkittävät muutokset tulee ymmärtää ja huomioida. Tämän työn 

perusteella ESB-pohjaisen palveluorientoituneen integraatioratkaisun käyttöönotto 

sähkön jakeluverkkoympäristössä vaatii huomattavaa jatkokehitystä. Työn teoriaosuus 

toimii johdantona aiheeseen, ja tuloksena kehitetty ohjeellinen prosessi tarjoaa perustan 

käytännön toteutuksen kehittämiseen. 
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VMM Virtual Machine Manager 

W3C World Wide Web Consortium 

WCF Windows Communication Foundation  

XLANG/s Microsoft’s “programming in the large” language that 

BizTalk Orchestrations use to define business processes. 

XML eXtensible Markup Language 

XPath XML Path Language 

XSD XML Schema Definitions 

XSLT eXtensible Stylesheet Language Transformation 
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1 INTRODUCTION 

Constantly available, reliable and affordable electric energy is a crucial element of 

modern society. The basic technology supplying electricity for everyday needs has 

served the world for more than a century, and has served it well. However, there is 

urgent need for major improvements. Without significant upgrades and investment, the 

ageing electric gird will not be sufficient for the requirements of tomorrow. Demand for 

energy increases rapidly as the world population continues to grow, countries are 

developing and standards of living improve. At the same time, the non-renewable 

energy resources, upon which our energy economy is built, are diminishing with 

alarming speed. 

Designing and building a better, more intelligent electric grid plays a major role in 

solving these energy issues. Tomorrow’s more intelligent, highly automated Smart Grid 

will support bidirectional flow of both energy and information. It is the key enabler in 

utilising more sustainable ways of producing energy and more efficient ways of 

consuming it. 

Smart Grids and Energy Markets (SGEM) project studies widely the landscape of 

future’s electric energy solutions. This thesis is part of the project and its main focus is 

on two important areas within the Smart Grid: integration and information security. The 

entire Smart Grid is a vast field for research. This thesis concentrates on the operations 

and solutions of the electricity distribution domain. 

In the utilities industries, like in almost any field, information systems are growing 

both in complexity and in numbers. A common problem is that information and 

functionality remains locked within isolated systems. Efficient integration of these 

systems provides many benefits, but is often challenging. The goal of integration is to 

provide new functionality and new possibilities, as well as increase the efficiency and 

level of automation of existing processes. While this is a good and desirable thing, new 

possibilities always go hand in hand with new vulnerabilities and threats. Thus, the 

integration solution should take information security aspects into consideration. Smart 

Grid’s role as an important part of national critical infrastructure further emphasises the 

role of information security. 

Significant research in both integration and information security has been done 

throughout the years. The theories are well formulated and often actually quite simple. 

For example, concepts such as service orientation, loose coupling, authentication, or 

encryption are clearly advantageous, and on a high level of abstraction, relatively easy 

to grasp. Yet in practice, integrating or securing systems remains extremely challenging 

and attempts are not always successful. 
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Throughout the years, the electricity distribution domain and its ICT architecture 

have been a focus for research and development. In Tampere University of Technology 

(TUT) alone, many publications have covered the integration requirements within a 

distribution network, and offered possible solutions [113;114;137;138;145]. Some of 

these examples date back to late 1990s, and the topic has been researched even before 

that. Analysing information security in the Smart Grid from the point of view of home 

automation is among the recent research topics in the Automation and Information 

Networks (AIN) research group (where this work was also done) [110]. Clearly, the 

main problems and needs for improvement have been recognised long ago. The core 

requirements for the ICT architecture have developed through the years as well. 

Currently, it is often recommended to develop a Service Oriented Architecture (SOA), 

which facilitates a modern ESB solution to integrate the systems [81]. 

After defining a conceptual architecture, the next step is typically to build a 

prototype or a proof-of-concept solution. As a starting point for this work, example ICT 

architecture was given, along with three possible use cases that utilise the architecture. 

Microsoft BizTalk Server was chosen as the integration product for this project. 

The objective of this work was to build a demonstration environment to provide 

concrete results on how an ESB-based integration solution works. The demonstration 

environment built partially implements the given example architecture. The goal was to 

provide the ESB component, which can then be used to connect various IT systems and 

to test different use cases. Thus, this work provides details on both the architecture in 

general, as well as BizTalk as a specific product. Information security spans through the 

entire process, and it was given special consideration throughout the work. 

The analysis of the use cases started with resolving the data flows between the 

systems that need to be integrated. These flows were then represented with diagrams, 

and the information content was analysed. This made it easier to analyse the security 

requirements for the contained data, and serves as a basis for the integration solution 

design. It should be possible to integrate systems incrementally, adding one part at a 

time. Therefore, one goal is to provide some guidelines for a process that will be helpful 

when adding more systems to the integration and implementing new use cases. 

The thesis is organised into three parts. First part (Chapters 2-5) of the thesis 

describes the landscape and theoretical background. It provides an introduction to the 

Smart Grid, various integration architectures and their characteristics, the electricity 

distribution domain and related information systems, most important standards, and 

Microsoft BizTalk as an example of integration software product. Information security 

aspects of each topic are discussed. Second part (Chapters 6&7) describes the example 

ICT architecture and three use cases, which were used as a starting point for 

experimentation. Third part (Chapters 8-10) describes the results and conclusions. As a 

result of this work, a BizTalk integration component and a few other parts of the 

demonstration environment are now installed. This, along with the BizTalk information 

in Chapter 5, serves as a foundation for future work. The guideline process described in 

Chapter 8 will help in designing and implementing more use cases in the future. 
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2 SMART GRID 

This chapter explains shortly how the electric grid works today, why it needs to be 

upgraded, and what enables the Smart Grid. It describes the vision for future 

development of the Smart Grid, and discusses some research initiatives. Information 

security considerations specific to the Smart Grid are also discussed. 

 The globally interconnected electrical networks are suggested to constitute the 

largest and most complex construction ever built by mankind [42]. Rather than a single 

entity, it is a system-of-systems. With more and new types of monitoring and 

controlling capabilities, the Smart Grid will be even more complex. This brief 

introduction to the Smart Grid includes the basics for readers with little or no 

background in electrical engineering. 

2.1 Electrical networks today 

In today’s grid, electricity has a typical route from power plants to the consumers. The 

electrical flows in Figure 2.1 below illustrate the process. The grid itself consists of four 

main domains: power generation, transmission network, distribution network, and 

consumer or customer. Additional supporting domains are the network operations, the 

markets for electricity, and service providers. 

 

Figure 2.1. NIST Smart Grid framework conceptual model [102]. 
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Today, production is concentrated on large, central power plants (such as nuclear, 

coal, gas, and hydro plants). The transmission network is used to transfer large 

quantities of power throughout a wide geographical area, using high voltages (from 110 

kV upwards). The network can cover the entire country, and the transmission system 

operator (TSO) is usually owned and/or controlled by the state. Nationwide 

transmission networks may be connected to other countries’ networks, as is the case, for 

example, in the Nordic countries. 

The medium-to-low-voltage (110-20-0.4 kV) distribution networks operate in 

smaller geographical areas and distribute electricity from the transmission network to 

the customers. A distribution system operator (DSO) owns and operates the distribution 

network within a certain area. DSOs are local monopolies, as the networks are very 

capital-intensive investments, and building multiple networks within a single area 

would not make any sense. To avoid abuse of the monopoly position and ensure reliable 

operations, the distribution business is usually strictly regulated. 

The entire electrical network together with its operation and the supporting markets 

comprises a vast system of interconnected subsystems. Governments and other 

regulating bodies, as well as standardisation organisations, have an influence on the 

development of the grid. Additional stakeholders are, for example, the companies that 

manufacture the various products for building the network and its supporting systems. 

For the purposes of this thesis, the generation and transmission domains, as well as the 

customer point of view, are of less interest. The focus is on various information systems 

used in the distribution domain and its supporting operations. 

The way electricity is produced, transmitted, and distributed today has many 

drawbacks. For example, there are no cost-effective solutions for storing large amounts 

of electricity. As a result, production and consumption (including line losses) must be in 

balance at any given time. Today the network is operated so that production follows 

consumption, meaning that production is adjusted as consumption varies. This is 

especially challenging in the distribution domain: the load pattern varies dynamically 

with time, it is hard to predict, and cannot be adjusted [38, p.142]. 

Backup production capacity is needed in order to meet peaks in demand. This 

backup capacity is, however, poorly utilised; its use may total just a few days per year. 

Keeping the capacity in place is expensive because it yields returns for the investment 

only when used. In addition, the passive network (wires and components) has to be 

designed and built with excess capacity to withstand the peak loads. 

In transmission networks the remote monitoring and control capabilities are 

relatively high [42, p.513]. In distribution networks the structure is more complex, and 

the degree of automation is much lower. The medium-voltage (MV) feeders feature 

limited remote control capabilities. In the case of low voltage (LV) networks, the 

operator is essentially blind; there is no sensory data of the status of the network. The 

operators cannot see the grid, and even if they could, without available control systems 

there is no way to react [73]. For example, while LV networks are fuse-protected, fault 

location is based purely on customer reports.  
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2.2 Towards a smarter grid 

The basic technology of the electric grid dates back to the 19th century. The oldest 

installed parts still in operation could technically be from that time. In many countries, 

large portions of the network are approaching the end of their lifecycle. Major parts of 

the distribution network in Finland were built decades ago. The existing network is 

outdated and needs to be improved, both in the sense of technological ideas as well as 

the concrete installation. [51, pp.4-5] The long lifecycle (often many decades) implies 

two things. First, the average age of the existing installation is rather high. Second, the 

updates done today may well be in place for a half of a century. Thus, appropriate 

decisions in planning and implementation are crucial. 

The rapid development of ICT over the past decades provides means for significant 

improvements in the grid. The ageing assets have to be replaced in any case, which 

makes this the perfect time to upgrade to the Smart Grid.  

2.2.1 Need for a smarter grid 

Largely based on fossil fuels, our current energy systems are evidently not 

environmentally sustainable. Renewable energy sources have the potential to provide 

plenty of clean energy. In the future, extensive distributed generation (DG) is required 

in addition to large central power plants. For details on distributed generation, see, e.g., 

[6;136]. 

However, the output of renewable energy and DG installations is unpredictable and 

fluctuates in response to natural conditions. The traditional, passively managed 

distribution grid would require additional backup power generation resources and 

massive investments in wires and equipment in order to accommodate to the fluctuation. 

This would further decrease the utilisation rate of the network – in times when 

economic reasons call for increased rate. Another option is a more intelligent, actively 

managed grid. Demand response (DR) and demand side management (DSM) allow for 

the intelligent adjustment of consumption to the currently available level of production.  

There are a few ways to achieve this. Functions such as space or water heating, or 

operation of a washing machine, can take place in times of non-peak load, without 

affecting the consumer’s life significantly. This will help reduce the peak load. 

Alternatively, these activities can be performed when there is excessive production 

(from renewable sources). With near real-time pricing information, smart appliances can 

be programmed to switch themselves on or off depending on the price of electricity.  

As electrical vehicles (EVs) become more popular, their batteries will offer 

possibilities for large-scale distributed energy storage. This is another example of 

DR/DSM. The batteries can be charged when there is surplus production due to, e.g., 

strong wind conditions. During peak load times, some energy can then be drawn from 

the batteries, which lowers the need for backup generation capacity.  

Increased consumer awareness is also a desired outcome. Providing consumers with 

more information and more and better ways to manage consumption will hopefully lead 
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to energy savings. Individually, the effects may be small, but when combined they can 

make a large difference.  

Environmental concerns and growing energy demand are not the only reasons to 

upgrade the grid. The modern society is highly dependent on electricity. Securing the 

supply with proper infrastructure is a priority task for governments around the world. 

The grid needs to be secured against malicious attacks as well as natural phenomena. 

Extreme weather conditions due to climate change are increasingly probable, and the 

adverse effects of losing electricity supply are more severe, as so many things depend 

on electricity. Further, many high-technology devices such as computers have higher 

requirements in terms of the quality of electricity, demanding more from the grid. 

All these scenarios call for a smarter grid that offers bidirectional flow of both 

energy and information. Better customer service, improved market for electricity, as 

well as overall reliability and security are also important drivers and needs related to the 

Smart Grid. A list of drivers and needs of the Smart Grid is given in [75]. 

2.2.2 Enabling technologies 

Various technological improvements and innovations will enable the envisioned future. 

The development of ICT in the recent years is one of the main reasons why a smarter 

grid is now an actual possibility. The key is to provide more information to base 

decisions on (measurements) and better decision-making solutions (controls). Keeping 

the costs affordable and providing information in a real-time manner are major 

challenges. Yet in most cases the technology exists; it is about applying it successfully - 

in a scale never seen before. 

The future development of increased intelligence (that is, penetration of ICT) in the 

grid is illustrated in Figure 2.2. The equilibrium point will move to the right on the 

horizontal axis as both of the curves shift. The cost curve will shift downward along 

with cheaper technologies and the value curve upwards as the more intelligent grid will 

provide new usage scenarios and benefits. 

 

Figure 2.2. Amount of intelligence in the grid, adapted from [134]. 

From the customer point of view, the most prominent and obvious development is 

the introduction of the smart meter. It is a key enabler of a smarter grid, acting as a 
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customers’ gateway to the grid. From the utility point of view, however, it is only one 

improvement among others. The smart meter also involves certain problematic issues 

and threats, especially in the fields of information security and privacy. 

The development of electric vehicles (EVs) is important for the whole Smart Grid. 

Key issues in EVs are the battery capacity and recharge speed. Widespread use of EVs 

will pose challenges to the gird. An infrastructure of charging stations and outlets needs 

to be built. Charging requires intelligence as well; if badly coordinated, it might quickly 

over-strain the grid [117].  

The Smart Grid is an umbrella term covering countless concepts, ideas, and 

technologies. Promising topics of research include, for example, grid-scale battery 

storage [82]  and superconductivity [80]. Other important aspects not discussed in this 

short introduction include low-voltage direct current (LVDC) networks, improved 

power electronics, virtual power plants, power cells, micro grids, and super grids. A 

more comprehensive listing along with examples is offered in, e.g., [42, pp.508-511]. 

2.2.3 Visions for the future grid 

Building the Smart Grid is a massive effort that will span over the coming decades. 

High-level visions for the long-term development play an important role in such vast 

projects. The visions for the Smart Grid are numerous, and there is no single definition 

for it either. Key differences of the traditional grid and the visions of the future Smart 

Grid are presented in Table A.1 (Appendix A). These qualities are commonly listed in 

literature and largely accepted as important aspects of the Smart Grid. 

The European Technology Platform for Smart Grids defines the Smart Grid as “an 

electricity network that can intelligently integrate the actions of all users connected to it 

- generators, consumers and those that do both - in order to efficiently deliver 

sustainable, economic and secure electricity supplies” [128]. According to an unknown 

source, quoted in [74] the Smart Grid is “an attempt to maximize the utilization degree 

of electricity networks and electricity production capacity by leveraging the latest 

information technology, two-way communication and system intelligence.” 

2.3 Smart Grid research and development 

Smart Grid is currently a trending topic and subject of interest and major research all 

over the globe. Or, as the grid modernisation efforts were more bluntly described in 

[84]: “-- bringing intelligence into this venerable relic of nineteenth-century technology 

is a worldwide priority.” Major players, such as the European Union, the USA, China, 

Japan, South Korea, and Australia have all started their Smart Grid development and are 

investing heavily into research in this field. Pilot projects of various scales have also 

been launched in the recent years, in order to provide concrete results. 

Finland has also launched its own Smart Grid development programme. In many 

ways Finland’s grid is already quite advanced, sometimes called “Smart Grid version 

1.0” [43;74]. This thesis is done as part of the Smart Grids and Energy Markets (SGEM) 
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programme, which was launched in 2009 under the CLEEN (Cluster for Energy and 

Environment) Strategic Centre for Science, Technology and Innovation (SHOK, 

Strategisen huippuosaamisen keskittymä). The programme aims to create a vision and 

develop practical solutions for the next generation smart grids. For more information, 

see e.g., [27;29;135]. Public deliverables are available at [28]. 

2.4 Information security and real-time aspects 

In the heart of the Smart Grid is ICT, which introduces countless benefits but also 

completely new issues of information security. The Smart Grid is not a traditional IT 

environment. It has special properties that make it an exceptionally challenging and 

important environment for information security. 

The fact that Smart Grid is part of society’s critical infrastructure makes its 

information security a critical aspect as well. The Smart Grid can even be considered 

more critical than most other parts of the infrastructure, as so many things depend on 

electricity. Critical infrastructure is a prime target for advanced attacks, performed by 

adversaries with utmost capabilities and resources (e.g. Advanced Persistent Threats 

[APTs], or full-blown cyber warfare between nation-states). This must be taken into 

account in the design of Smart Grid information security - even though it might be 

impossible to be completely safe from such attacks. 

 The Smart Grid is a combination of traditional IT and automation systems. Here, 

automation refers to Industrial Control Systems (ICSs), as industrial automation 

traditionally has its role in electricity generation, transmission, and distribution. 

However, in the Smart Grid vision, the customer is no longer a passive consumer of 

electricity, and aspects of home automation will be increasingly important. Information 

security of home automation is an important issue, but will not be discussed here.  

Experts in fields of IT and automation look at security from a very different point of 

view [30]. While automation systems share some basics with IT systems, they are 

technically, administratively, and functionally more complex and unique [147]. Yet 

when combined, usually the smaller control network “joins” the larger, more mature 

enterprise IT network [30]. An obvious difference in the nature of the systems is that 

automation monitors and controls the physical realm around us. Breaches in its 

information security can potentially have very concrete, direct consequences. [147]  

Using up-to-date software is a crucial information security method. This is 

challenging in the automation industry, which is notoriously slow to adapt to change. 

Each change poses a threat to the continuous operation of the process, and thus must go 

through a rigorous and time-consuming testing process before acceptance. Automation 

systems, and many parts of the Smart Grid, have a lifespan of decades rather than years. 

Further, these systems may operate continuously for months, with no possibility for 

software updates or restarts. In general, the information security of ICSs is said to be up 

to a decade behind the enterprise IT [116]. Thus, compared to IT, automation systems 
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will use older technology that can neither be replaced very often, nor updated rapidly. 

For more details on ICS information security, see e.g. [8;78;131;133]. 

The traditional triad of IT security, (confidentiality, integrity, and availability, or  

C-I-A) is applicable to ICSs, but the priority is reversed (A-I-C) [147]. Here, availability 

is used in a very general sense: data needs to be available to the intended users, and 

within a specified timeframe. In this typical ICT definition, the aspect of time is added 

almost as an afterthought. Arguably, on a high level of abstraction, the time aspect of 

availability is a requirement for control systems as well (a controller needs to have 

measurement data available, and at a specified time). However, the term “availability” 

alone is insufficient, and, in fact, hardly ever used. Discussion of automation 

information security must include more detailed definition of real-time requirements.   

The following examples will clarify how the conception of “sufficient availability” 

is very different for ICT and ICS realms. For example, resending lost data is a common 

method in communication protocols: if a sent Transmission Control Protocol (TCP) 

packet is not acknowledged as received, sender will try resending it. The data is still 

considered available, if it reaches the destination after resending. If a hard drive fails, 

but a recent backup can be restored, the data is considered available. If a website is 

unavailable for a short while, but then can be reached again, it could still be considered 

available according to its Service Level Agreement, SLA (e.g., 99.99% availability). 

Having data available in a sense that it is never lost is important for IT systems. In 

control systems, data that is not there at the exact moment it is needed is generally bad 

data; it is useless and could lead to erroneous operation and system failure [35, p.3]. 

The concept of utility (how the utility or usefulness of the information changes as a 

function of time), is helpful when discussing the timeliness issues [79] (Figure 2.3). 

 

Figure 2.3. Concept of utility and types of real-time requirements, adapted from [79]. 

In best effort operation, there is no deadline; utility does not change over time. Hard 

real-time requirement means that data must be available before the deadline, without 

exception. Soft real-time requirements are less demanding, and can either be missed 

sometimes, be missed with small time deviations, or occasionally even ignored. [35, 

p.3] Isochronous means that data is only useful within a specific time frame.  

For many ICT solutions, best-effort operations are sufficient. However, real-time 

systems do not operate correctly if the timeliness, performance, and schedulability 

requirements cannot be met [35]. This is a major concern in automation systems, and 
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designing and building real-time systems and software is an art of its own (for further 

information, see, e.g., [35]). 

In control systems, these are traditionally assessed mainly as safety considerations, 

which will not be discussed here. However, information security, which is the point of 

view in this work, does contribute to the overall safety, thus the issues overlap. 

Intentionally affecting real-time performance through means of network attacks, for 

example, is an information security issue which could affect the overall safety of the 

system. A cyber-attack against automation systems can cause major problems with mere 

addition of transmission delay into the control network. 

Any modern automation system is increasingly an ICS/ICT system combination, 

thus information security is a valid concern. However, what differentiates the Smart 

Grid from any earlier system is the staggering size. The complexity of the current 

electrical network (let alone the Smart Grid) is a threat in itself. Tightly coupled 

interconnected mega-systems, such as the Smart Grid, are more efficient, but also more 

vulnerable [17, see 14]. One potential risk is the uncontrollable and unpredictable 

propagation of disturbances. Even a relatively small fault, unintentional or malicious, 

can have major cascading effects [17;146]. Examples of this are the massive blackouts 

in recent years (e.g. in the USA and India). The network is vulnerable even without any 

hostile actions. 

Cloud computing is an emerging trend, that will likely have many uses in the Smart 

Grid. It has even been argued that it is the only technology capable of providing the 

computing power required by the Smart Grid. For example, smart meters will allow 

measuring intervals to be hourly instead of yearly or monthly, increasing data amounts 

manifold. Cloud computing promises nearly unlimited computing capacity, but its 

performance currently falls short in other areas for Smart Grid use (e.g., real-time 

capabilities, consistency, security, and privacy). [15] 

Clearly, the importance of information security in the Smart Grid has been 

recognised at an early stage. Smart Grid is, to a large degree, a new system, and it is 

crucial to “build security into it”, rather than try to add it as an afterthought. System 

development life cycles (SDLCs) indicate that the former approach is highly 

advantageous. Much has been learned by securing traditional IT systems; the experience 

should be used to lower the learning curve for Smart Grid security. For a more detailed 

review on Smart Grid security aspects, see for example [51], and Chapter 4.2.4. 
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3 INTEGRATION OF INFORMATION SYSTEMS 

Different information systems and software are an important part of the Smart Grid. 

Fundamentally, IT systems offer 1) a way to store and access information, and 2) 

various functionalities to process that information. In the early days of information 

technology, software systems operated as isolated containers, without any kind of 

integration. The number and complexity of IT systems has proliferated, leading to issues 

of redundancy and inconsistency: the same functionality is implemented in multiple 

places, and copies of information are stored within various systems. 

These times of isolation are now history. As more complex functionality is 

demanded from the IT systems, the benefits of inter-system communication and 

integration have become evident. Integration aims to make reuse of the existing 

functionality simpler, thus helping to remove redundant functionality. It also helps with 

data inconsistency and redundancy issues, when each system no longer needs to keep its 

own copy of information. Successful integration increases efficiency and reduces costs 

and errors.  

The idea of systems communicating with each other is seemingly simple but 

implementation is often far from it. Many challenges arise within heterogeneous IT 

environments (e.g., incompatibility of data formats, system metadata, wire formats, and 

message exchange protocols, as well as weak process visibility [122, p.66]). Integration 

efforts can lead to what Chappell fittingly refers to as “accidental architecture” [23]. 

Integration, just as the Smart Grid, is a vast and complicated topic. A basic 

introduction is offered here, with the emphasis on those architectures, patterns, ideas, 

and technologies that are relevant for this project. A good source on integration is [58]. 

3.1 The evolution of integration architectures 

In today’s connected and networked environment, no software is an island. Looking 

back, the evolution of integration solutions has advanced in logical steps. When the 

need to connect two separate systems first arises, the logical thing to do is to directly 

link the systems together. New links are built as new systems need to be connected.  

This sort of ad hoc point-to-point integration became popular, mainly because the 

design is simple and the implementation straightforward. A sample structure is shown in 

Figure 3.1. Point-to-point architectures are still used and they work well for a small 

number of nodes. Also, for some performance-critical applications it might be the best 

(or even the only) option, as the direct links can be implemented with very little 

overhead.  
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Figure 3.1. Simple point-to-point integration. 

However, as the number of systems grows, the downsides manifest. One major issue 

is scalability. When n systems need to be connected with each other, the number of 

unidirectional connections required is n * (n-1). The number of required connections 

grows with the square of the number of nodes. This exponential growth quickly leads to 

a complicated structure, as shown in Figure 3.2, and adding more nodes becomes 

burdensome. It is hard to monitor such a system as there is no central connectivity point.  

 

Figure 3.2. Complex point-to-point integration. 

This sort of integration becomes impossible to maintain because the systems are 

tightly coupled. The links between the nodes are based on sort of technical contracts 

that define the connectivity details, such as endpoint location. Changing a node in a way 

that changes the contract (e.g., updating a system) breaks the integration, and all the 

links must be updated accordingly. With anything but the simplest cases, the cost of 

implementing and updating this sort of integration becomes prohibitive. Arguably, the 

point-to-point architecture could be described more accurately as lack of architecture.  

3.1.1 Hub-and-spoke and Enterprise Application Integration (EAI) 

The logical next phase in the integration evolution is to add a hub as a central node, to 

which all the other nodes connect to. This is known as the hub-and-spoke architecture 

(Figure 3.3), and the corresponding integration of systems is called Enterprise 

Application Integration (EAI).  

 

Figure 3.3. Hub-and-spoke architecture. 

When using the hub, the number of required connections equals the number of 

nodes, so the growth is linear instead of exponential. This makes the solution 

significantly more scalable. The active hub can act as a message broker that decouples 

the senders from the receivers. The endpoints are now loosely coupled. Maintenance is 
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easier because a change in one system only changes the connection between that system 

and the hub. The hub-and-spoke architecture also enables central monitoring and 

administration, logging, and traffic flow control. These are hard, if not impossible, to 

implement in point-to-point solutions. 

This architecture has its downsides, too. Each message now has to make two hops 

instead of one, which makes the path more complex and increases latency. The hub can 

also become a performance bottleneck as all the messages travel through it. In this 

sense, pure hub-and-spoke does not scale well. Further, the hub introduces a single point 

of failure. These issues can be mitigated with the so-called federated architecture, where 

redundant, interconnected hubs provide load sharing and improve fault tolerance. [109] 

The hub quickly grows into a complex structure that is difficult to maintain and 

expand (even more so if the architecture is federated). All in all, traditional EAI 

solutions have been criticised for being expensive, monolithic structures based on 

proprietary technologies, where the hub needs to “know everything and do everything” 

[37, p.647]. 

3.1.2 Enterprise Service Bus (ESB) 

The Enterprise Service Bus (ESB) emerged to address the shortcomings common to 

EAI solutions. The bus architecture (Figure 3.4) is seemingly similar to the hub-and-

spoke architecture. It seems that, instead of a hub, the central node is just pictured as a 

bus and renamed accordingly. However, there is more to it than just a new name [24].   

 

Figure 3.4. Bus architecture. 

An ESB shares some of the downsides of EAI, and has all the same benefits. Yet, in 

order to be useful, ESB has to have some additional advantage over EAI. While both 

architectures separate the application and integration logic, they are differentiated by the 

distributed nature of the ESB, as shown in Figure 3.5. This, among other differences, 

will be explained in more detail in Chapter 3.5. As opposed to EAI and ESB, 

application server and Message-oriented Middleware (MOM) are approaches that have 

the integration and application logic intertwined. 
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Figure 3.5. Different integration approaches, adapted from [23]. 

Regardless of the choice of architecture, a poor implementation can spoil a good 

design: it is possible to build a good point-to-point solution, as well as a bad hub-based 

solution [26]. Further, the architecture will only address a small subset of the problems 

common to integration. Other problems and some suggested solutions are explained in 

the following subchapters. 

3.2 The Canonical Data Model (CDM) 

The central hub decoupled the sender and receiver in terms of location, and helped to 

solve the problem of exponentially growing number of physical connections. However, 

similar problems arise in the data format level. Systems have different ways to represent 

data internally, and translations from one format to another are required (Figure 3.6). 

 

Figure 3.6. Message translator [60]. 

Each system can use a format of its own, wherefore transformations from any 

format to any other format are required, as illustrated by the green dots in Figure 3.7. 

Thus, the number of transformations grows exponentially when new systems are added, 

which again leads to major scalability issues. 

 

Figure 3.7. Data format translations [59]. 
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For a familiar problem, there is also a familiar solution. The concept of a central hub is 

applicable for many situations [26]. To solve data format issues, it is applied on a 

metadata level. The resulting “metadata hub”, illustrated in Figure 3.8, is not a physical 

component; it is a Canonical Data Model, CDM (sometimes Common Data Model).  

 

Figure 3.8. Canonical Data Model [57]. 

The canonical format is, in a way, common for all the participants, yet it is 

independent from all of them. All translations happen between the canonical format and 

a system-specific format. This effectively decouples the endpoints on a data format 

level. The number of translations is now equal to the number of nodes: adding a new 

node means just adding a translation from the system’s specific format to the canonical 

format. Thus, the growth is again linear and scalability significantly improved. 

The hub was again a successful solution to the problems that arise from exponential 

growth. Unsurprisingly, the same solution will lead to similar new issues. Using a 

CDM, each passing message needs to be translated twice instead of once. The solution 

is more complex and latency increases as more computing is required. The CDM must 

offer a representation for any sort of data contained in the endpoint systems. Just like 

the monolithic hub, the model can quickly become complex and difficult to 

comprehend. For additional information, see, e.g., [20, p.397;57;102, p.57]. 

3.3 Publish-Subscribe messaging pattern 

Participants in a message passing system can connect and communicate with each other 

in various ways. Messaging patterns are one way to describe the communication 

paradigms. Publish-Subscribe (often: pub-sub, pub/sub), is a messaging pattern that fits 

well into the hub-and-spoke architecture. The hub acts as a subscription manager, where 

subscribers register their interest in certain messages. Publishing means simply sending 

messages to the hub. 

With the use of hub-and-spoke architecture and Publish-Subscribe messaging, the 

integration solution becomes loosely coupled in terms of location, time and 

synchronisation. A publisher is unaware of how many subscribers there are, where are 

they located, and in what state they possibly are (e.g., offline or online). Further, the 

systems are not synchronised: a subscriber does not have to block its execution while 

waiting for a message or a response. [45] This decoupling increases scalability. 
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Subscribers usually receive only a small subset of all the messages. Filtering can be 

based on message topic or content. Topic-based is rather static and primitive as it is the 

publishers’ responsibility to know the right topic to publish into. Content-based filtering 

is more dynamic, as messages are classified based on their properties, not some 

predefined external criteria. The subscribers are responsible of defining what type of 

messages they wish to receive. This can be highly expressive, but as a downside it 

requires sophisticated protocols that have higher runtime overhead. For details on pub-

sub, see, e.g., [45;62;121, pp.17-19]. 

3.4 Service Oriented Architecture (SOA) 

A move from a component-based towards a service-based architecture was another 

attempt to avoid the problems of tightly coupled point-to-point integration [50, p.4]. 

Fundamentally, Service Oriented Architecture (SOA) is an architectural pattern and a 

set of design principles; it is one approach to organise enterprise IT resources. The key 

goals of SOA are flexibility, agility and reusability. The underlying idea is that IT and 

software systems should support, not restrain, business needs. The concept of service-

orientation and recognition of its benefits predate the buzzword ‘SOA’ [85;99]. A short 

introduction is offered here, for details see, e.g., [20;21]. 

The basic building block of SOA is a service, which, by a general definition, is 

performance of work by one for another [72]. In SOA, however, the definition is not 

generic [10]. Using a service is called consuming, and, rather than human end users, 

consumers are most often other systems, applications, or services.  

A service represents a discrete chunk of functionality, described in a published 

contract which the service adheres to. Beyond this contract, a service is abstract and 

autonomous, i.e., it encapsulates (hides) the implementation logic and has control over 

it. Services are loosely coupled, having minimal outside dependencies. Services are 

stateless, thus improving SOA scalability as state management can be resource-

intensive. They are technology-agnostic and context-independent, meaning the 

technological details of the environment of both consumer and provider and the 

previous action of caller before service invocation, are irrelevant. Other key qualities 

include discoverability and accessibility (over a network), and ability to effectively 

compose complex solutions using multiple services. Last but not least, services are 

reusable and provide some valuable business functionality to one or, preferably, many 

consumers. [9;34;44;76;111]  

Figure 3.9 shows the three core principles, namely service contract, loose coupling, 

and abstraction, and their influence on the other principles as described in [44]. 



 17 

 

Figure 3.9. SOA principles interrelations, adapted from [44]. 

In order to move towards service-orientation, the currently used architecture needs to be 

broken down into its functional primitives. The information and behaviours 

(functionality) of the system must be understood. The service-oriented architecture is 

then built with service interfaces that are abstracted into a configuration layer which is 

used to create (and re-create) business solutions. [85] This supports the idea that SOA is 

about architecture rather than application development. More important than 

implementation of a particular service, is the decision of which services will be created. 

[99]  

Services are rarely created from scratch. It is common to expose functionalities 

within existing systems as services (i.e., use service wrappers). One key design question 

is: when or where does it make sense to use services? Not all functionality should be 

provided as a service, because services introduce certain overhead, both in design work 

and runtime execution. [21]  

Service invocation involves usually three roles and three operations (Figure 3.10).  

 

Figure 3.10. Service invocation roles, operations and artefacts.  

A service provider publishes the service contract in the service registry. By querying the 

registry, a service requestor will find what it needs. After finding the proper service and 

obtaining binding information, the requestor binds and invokes (executes) the service. 
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The entire process is referred to as “find-bind-invoke”. The registry is an optional 

component, as the binding can be direct and static between the provider and requestor, 

or the information about the service can be obtained through other means (these 

approaches have obvious downsides). [23, pp.126-127;111, pp. 22-26] 

High expectations were placed on the concept of SOA, up to the point of over-hype 

and eventual disillusionment. Advantages of SOA are clear, but again, a good concept 

can be spoiled with poor implementation. A haphazard, ad hoc approach to building 

services can lead to a similar architecture and similar issues as point-to-point systems 

integration. This sort of uncontrolled “service spaghetti” is illustrated in Figure 3.11.  

 

Figure 3.11. “Service spaghetti” [50]. 

Service-oriented applications can end up delivered as a set of point-to-point 

solutions and become just as tightly coupled as a monolithic application. This kind of 

implementation faces all too familiar issues (e.g., it does not scale well, has redundant 

functionalities, is inflexible, and difficult to monitor). In other words, the system loses 

most (or all) of the benefits of service-orientation and might end up worse off. [50]  

3.5 Using ESB to solve integration issues 

In EAI solutions, the monolithic nature of the hub became a problem. The move 

towards SOA held many promises, but many of them were left unfulfilled (at least with 

the “first wave” of implementations). ESB aims to solve issues discovered in earlier 

attempts of integration and to serve as a framework for building service-oriented 

applications. The ESB is often described as one layer, the messaging backbone, of an 

overall SOA. The idea is to move the logic away from individual endpoints into a 

logically centralised, loosely coupled, dynamic layer that manages interactions. All the 

services will connect through a mediation layer provided by the ESB, which helps to 

solve many point-to-point service connectivity problems. [50] 

This idea of a central layer seems very similar to the EAI hub. However, ESB is 

different from EAI in two important ways. First, the ESB is internally service-based; it 

offers integration service components that can be distributed across the bus. Second, it 
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is more dynamic in nature. It can resolve certain things (e.g., endpoint location, 

transformations) runtime, instead of configuring them beforehand at design-time. [24] 

3.5.1 ESB is internally service-oriented 

In order to improve the monolithic hub architecture, the ESB design is distributed and 

internally service-oriented. Figure 3.12 illustrates the integration architecture 

development, showing how the ESB is composed of services that allow distributed 

deployment. 

 

Figure 3.12. Integration evolution: an ESB is internally service-based [1]. 

The base functions of the integration broker are divided up into their constituent 

parts (i.e. services). These services can be deployed separately and independently across 

the bus. [12] What the ESB offers is a messaging fabric and a common set of integration 

components, on top of which developers can build their own services [87, p.640]. 

Examples of commonly needed functionality that the ESB can offer as services are data 

transformation, protocol conversion, location and version transparency, and error 

handling, as shown in Figure 3.13 [50].  

 

Figure 3.13. ESB offers the integration functionality as services [50]. 

This architecture is a clear step forward from a single monolithic stack, and it solves 

some EAI problems. The ESB has no single point of failure. The architecture scales 

well, as the integration broker functionalities can be deployed selectively, exactly where 
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and when they are needed and without any over-bloating. Co-operating harmoniously, 

together the services provide all the required integration functionalities. [12;24] 

3.5.2 Dynamic itinerary-based routing 

In addition to the distributed nature, the emphasis on dynamic execution differentiates 

the ESB from an EAI solution. The often heard ESB mantra is “configuration rather 

than coding”. The idea is to remove the need for design-time specification and 

hardcoding of the relationships between interconnected applications. [24] For example, 

using the find-bind-invoke approach in SOA, each client (service) needs to have code 

that implements the lookup and invoking [23, p.126]. Changes in code require 

recompiling and redeployment. Configuration, on the other hand, happens post-

deployment. 

The core of the problem is: how to route a message through a series of steps 

(services), when these steps are not known design-time, and may vary for each 

message? [63]. Content-based routing, offered by many EAI solutions, is a partial 

solution. It is dynamic in a sense that the endpoints are determined runtime, based on 

the content of the message. Additionally, the router can refer to a central, configurable 

rules engine to determine the endpoints. That is clearly dynamic, configuring rather than 

coding, so how does the ESB improve that?  

The problem becomes evident (and is all too familiar) when a message has to be 

routed through multiple steps. In EAI, the routing logic is implemented in the central 

hub or rules engine. After each step, it is necessary to refer back to it for instructions. 

This is again a possible bottleneck and a single point of failure. Itinerary-based routing 

is offered as a solution. The idea is to attach an itinerary (routing slip) to each message, 

specifying the sequence of the processing steps (Figure 3.14). Technically, the message 

could already have an itinerary attached to it once it enters the bus, but in most 

scenarios, the ESB will dynamically resolve the correct itinerary and attach it to the 

message.   

 

Figure 3.14. Itinerary-based routing [63]. 

Itinerary-based routing contributes to the distributed nature of the ESB. The 

itinerary details are stored as message metadata and carried with the message across the 
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bus. There is no centralised rules engine to refer back to for each step in the process, 

thus the different parts of the ESB can operate independently. [24] 

An itinerary represents a business process definition. They are best fitted for 

stateless processes that contain a limited number of steps (so-called microflows). For 

more complex or long-running transactions, a specific orchestration engine can be 

added to the ESB as a service. [24] The ESB helps to solve the SOA issue of having to 

code the find-bind-invoke sequence into clients [23]. The itineraries describe the set of 

services that should be invoked [87, p.651]. Thus, identifying and locating the next 

service in the chain, binding to it, and invoking it, are all steps performed by the ESB 

and the sequence can be altered through a change in configuration [23]. 

3.6 Software solutions for integration 

The integration concepts and architectures explained earlier can be implemented in 

various ways. It is possible to develop an integration solution from scratch, entirely with 

in-house coding. However, the amount of effort required and the related cost are usually 

prohibitive for anything but most trivial solutions. Usually it does not make sense to 

build integration that way, starting from the very basics. At the other end of the 

spectrum, integration can be bought as a service.  

A common choice is in between those two extremes: a software vendor offers an 

off-the-shelf integration product, and a customer-tailored solution is built on top of it. 

This allows the customer to benefit from the experience the vendor has gained through 

spending significant amounts of time and money to develop these products. Most of the 

platforms require somewhat high levels of expertise (often being hired from outside). 

Many large software companies have EAI and ESB offerings, for example, IBM 

WebSphere, Oracle ESB, Microsoft BizTalk Server, and TIBCO ActiveMatrix Service 

Bus. Examples of open-source options are Mule ESB, JBoss ESB, and Open ESB, just 

to name a few. All of these have similarities, but naturally no two are exactly alike. The 

product used in this project, Microsoft BizTalk Server, is introduced in Chapter 5. 

3.7 Middleware and SOA performance evaluation 

Considering the number of available options for integration, it is not a trivial task to 

determine the best possible solution. Basic understanding of the fundamental concepts 

(such as EAI and ESB), what they have to offer, and how they differ from each other, is 

a good starting point. Specifying the core integration needs of the project or 

organisation is also important. Vendors can have different definitions for what each 

“buzzword” means. This may create confusion and it is difficult to make an informed 

decision. Understanding at least basics of the architectures and determining the 

requirements of the project makes it easier to accurately judge which platform might 

suite the needs. This seems like stating the obvious, but cannot be overemphasised.  
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Such decision-making is, however, based on approximate qualitative analysis at 

best. For more detailed understanding, certain measurable criteria should be defined, 

and then evaluated against. Things to consider are such as latency, throughput, security, 

availability, and so on. These are often measurable qualities, and acceptable values or 

ranges can be defined and tested against. Ideas for testing and selection methodology 

could be derived from what is proposed in, e.g., [22;141].  

However, actual testing can be very complicated. The performance of the platform 

depends significantly on the used hardware configurations. Further, the distributed 

nature means that there are externalities, e.g. the general performance of the network 

affects the results. Performance problems might have multiple causes, and identifying 

and isolating each can prove difficult if not impossible. Building a full-scale 

environment for testing would be costly, more so as it would have to be built for each 

platform included in the evaluation. Thus, performance estimates based on modelling, 

rather than testing, are likely more attainable.  

Results from tests performed by others can also offer guidance. An example case of 

testing middleware platform for automation use can be found in [123]. The source offers 

some insight on using middleware in a scenario that includes hard real-time 

requirements. However, Microsoft BizTalk, the platform used in this work, is not 

optimised for low-latency scenarios: it aims to maximise throughput. It may be possible 

to provide low-latency solutions with sufficient consistency, but that would sacrifice 

many of the things the platform is planned to do well. [37, p.24]  

This work tries neither to offer exact evaluation criteria, nor to test a platform (let 

alone multiple platforms) against such criteria. That is well beyond the scope of this 

work. This discussion aims more for offering food for thought and things to consider. 

SOA performance evaluation is challenging as well. The performance of SOA falls 

into two broad categories: the performance of an individual service, and that of the 

composite services together [33, see 86]. Testing an individual service is rather 

straightforward, and there are well established methods and tools available. Testing the 

performance of services integrated by an ESB is far more complex. For example, in a 

service composition scenario, one service might expect high volumes of traffic from a 

specific consumer, while another expects high reuse. Thus, it is complicated to analyse 

the workload characteristics of the composition. The ESB also introduces processing 

overhead, in addition to the atomic service overheads. To analyse the performance as a 

whole, understanding of the individual services as well as the ESB characteristics is 

required. [86] 

3.8 Information security aspects 

Having information and functionality locked in isolated silos is a major usability issue, 

but at least it is beneficial for information security. After all, it is hard for attackers to 

access something that even intended users cannot access. As the integration concepts 

develop, new information security issues arise, and new security methods are necessary. 
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A traditional EAI hub has its benefits, but it also introduces obvious security issues. 

It is a central point for integration functionality, monitoring, and logging of information. 

As a single point of failure, and (possibly) a centralised location for data, it is a target 

for attacks. A positive aspect is that it makes centralised security controls easier. 

The Publish-Subscribe messaging pattern has security implications as well. In 

traditional systems, identifying (authenticating) various parties plays a key role in 

security. Authentication between two parties directly contradicts with the loosely 

coupled nature of pub-sub, where publishers and subscribers are unaware of each other. 

Delegating some aspects of trustworthy interaction to the hub requires that the 

infrastructure as a whole is trusted. [49] For each case, it should be carefully considered 

whether this assumption holds, both currently, and in the future. Securing a multi-

domain pub-sub system using role-based access control (RBAC) is discussed in detail in 

[11].  

The move towards an ESB based SOA is a major paradigm shift and probably the 

single biggest cause of changes in the information security aspects within the scope of 

this work. Ensuring a secure infrastructure in a service-oriented environment is difficult 

and there is no standard information security framework for SOA [25]. Successful SOA 

means lower barriers for reuse, and in the progress it makes application, technology, and 

enterprise boundaries insignificant. This clearly has major effects on security. [76]  

Information security in the context of traditional applications is generally well 

understood. There are many techniques, best practices, etc., available to secure 

applications against common threats. Figure 3.15 illustrates a traditional approach to 

application security. [76] 

 

Figure 3.15. Traditional application security approach, adapted from [76]. 

A single server application has several functionalities that reside within clear borders. 

Access is provided through a secure channel, and security decisions are centrally 

handled by the application’s security module. This approach works well with traditional 

application architecture. The problem is that SOA makes many important security 

practices ineffective. Their use might even become counterproductive in SOA 

implementations. [76] 

In comparison to Figure 3.15, three different server applications operating in a 

service-oriented environment are illustrated in Figure 3.16.  
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Figure 3.16. Traditional application security approach is inadequate for SOA, adapted 

from [76]. 

The security boundaries do not exist anymore. The client applications can be composed 

of any combination of services provided by the server applications. None of the 

applications control or have a complete view of the security model. A composite 

application may invoke services located in a completely different domain, like 

Composite Application 2 in Figure 3.16 does. [76] This serves as an example of how a 

common security method, consulting a centralised domain repository for authentication, 

does not work in SOA [25].  

Service developers cannot know all the possible ways that the services might be 

invoked: Service 2b in Figure 3.16 is invoked by Client Application 3 and Service p2. 

Use of secure channels is also more complicated. For example, part of the information 

that Client Application 4 submits to Service p2 might be intended only for Service 2b. 

Thus, a secure channel between Service p2 and Client Application 4 is not sufficient for 

secure communications. These are but a few examples. The functional and non-

functional aspects of information security and the insufficiency of traditional security 

approaches for SOA are discussed in detail in [76].  

The problem is that the very principles that service design is based on directly 

contradict with information security [25;76]. A new way of looking at security is 

needed, and it has to be in alignment with the SOA design principles, otherwise the 

benefits of SOA will be lost. As was stated, SOA, in general, is about architecture rather 

than application development. Similarly, SOA security should focus on securing the 

architecture instead of a single application [76].  

As a solution for the SOA information security challenges, three new security 

approaches are proposed in [76]: message-level security, security as a service, and 

policy-driven security. The discussion is continued in [25], where four components 

(namely, SOA information security governance, management, model, and policy 

information security framework) are proposed as a guide towards a SOA information 

security framework. 
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4 INTEGRATION LANDSCAPE: SMART GRID 

AND THE DISTRIBUTION DOMAIN 

Smart Grid visions and plans promise many benefits and new usage scenarios. To 

successfully deliver these, efficient and secure integration of various information 

systems is required. This chapter will introduce the most important information systems 

that a DSO uses within the domain. Standards and guidelines play an important role 

when the goal is to achieve greater levels of interoperability. Various organisations have 

extended great effort in this field, and the key interoperability, integration, and 

information security standardisation work is introduced. Data flow diagrams are 

explained, as they are a good tool for analysis and design of both integration and 

information security. 

The Smart Grid is a challenging integration environment for many reasons: it is 

complex, very heterogeneous, extremely large, and critically important. The landscape 

is illustrated in Figure 4.1, which shows the various information systems and 

connections. It is a conceptual reference, not a design diagram that defines a solution 

and its implementation. It is divided into domains similarly as Figure 2.1. [102] 

 

Figure 4.1. Conceptual reference diagram for Smart Grid information networks [102]. 
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The electrical network can be divided into primary and secondary networks. Primary 

network consists of the components and wires that transmit the electricity. The 

secondary network consists of the devices and software that are used to operate and 

manage the primary network. Another name for the secondary network is distribution 

automation [83]. Figure 4.1 partly illustrates this division.  

The distribution and transmission domains consist of the primary network 

components and relatively low-level secondary network components (e.g., substation 

controllers and field devices). Data from these components is usually aggregated before 

it enters the integration solution (the enterprise bus in the figure). More complex 

information systems, such as Distribution Management Systems (DMS), Supervisory 

Control and Data Acquisition (SCADA) systems, Network Information Systems (NIS), 

and Customer Information Systems (CIS) are located in the domains of operations and 

service providers. Figure 4.2 illustrates the key functions within the operations domain.  

 

Figure 4.2. Smart Grid: Operations domain [102]. 

This work concentrates on the higher levels of control centre and company-level 

automation, and integration of the related information systems. Thus, more accurately, 

the focus is on the operations supporting the distribution domain, rather than the 

distribution domain itself.  In this work, the term “distribution” generally covers both 

the distribution and operations domains, just as a DSO has control over both of these. 

The term is used here to separate this discussion from the concerns of generation, 

transmission, and customer domains. Finally, it should be pointed out that emphasising 

one area is no reason to ignore the fact that all the domains are interconnected. 
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4.1 DSO information systems 

The DSOs have a wide variety of tasks to perform: network monitoring and operation, 

metering, customer billing, network planning, network maintenance, and so on. Figure 

4.3 shows main operations performed by a DSO, along with the required information 

systems and information exchange. Many operations or processes have a dedicated 

software system (that likely interacts with other systems). These are provided by various 

vendors. A DSO likely uses a combination that consists of arbitrary number of systems 

from different providers. This leads to complex, heterogeneous environments. The 

benefits of integration are obvious in such environments. 

 

Figure 4.3. Examples of information exchange needs between DSO business functions 

and software systems, adapted from [137;138]. 

The challenges in integrating these systems are in no way new, and have been 

studied throughout the years at TUT, in Finland, and worldwide (e.g., [7;113;114;148]). 

More than a decade ago, the integration of applications was already stated as a long-

term goal for utilities [7]. The industry clearly develops at a rather slow pace (much like 

the field of industrial control). There are some recent studies covering this issue from 

the point of view of Finnish DSOs [52;81;137].  

Currently, most DSOs have implemented some level of integration between their IT 

systems. However, the solutions are often point-to-point based and product and 

company specific, each DSO having different implementations. [81;137] For example, 

according to [81], there are 89 DSOs in Finland, each having different IT system 

combination and level of integration [81, p.59]. There are no standard interfaces or 

standard information models in use [74]. Generally, the interfaces should be based on a 

standard, canonical data model. This is not a new idea either, and has been suggested, 
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for example, in a 2004 article [120]. The Common Information Model (CIM, see 

Chapter 4.2.2) is intended to be used as such data model for the utilities industry. 

Figure 4.4 gives an example of the required connections between various systems.  

 

Figure 4.4. Example distribution systems interconnections [39]. 

Connections shown are logical, and the figure clearly shows the downsides of creating 

the actual integration solution following this point-to-point logical topology. Adding 

new applications would be difficult. Both the EAI and ESB type integrations have been 

offered, as well as implemented, as a solution.  

Figure 4.5 illustrates the conceptual idea of a control centre ESB, showing the 

environment and some of the various information systems that will be integrated using 

this ESB. The lower-level systems that do not directly connect to the ESB have an 

important role in the DSO architecture, but are not the main concern of this work. 

 

Figure 4.5. The concept of control centre ESB and sample DSO IT systems. 
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The core systems in Figure 4.5 are usually owned and operated by the DSO, but many 

business functions are outsourced to service providers. This is likely a growing trend. 

The service provider systems will need to be integrated to the control centre ESB as 

well, which clearly has security implications. Most important systems connecting to the 

ESB are introduced next. For further information, see, e.g., [42;81;104]. 

4.1.1 Supervisory Control and Data Acquisition (SCADA) 

Supervisory Control and Data Acquisition (SCADA) is one type of an Industrial 

Control System (ICS). The term is not specific to electrical utilities; it is commonly 

used in many fields such as industrial processes, water treatment, or building 

automation.  

In the electrical network SCADA is used for communicating with measurement and 

control devices within the network. SCADA system has the following attributes [38, 

p.143-144]:  

1. Data acquisition: collecting data describing the operating state of the system 

and passing it to the control centre (in a near real-time manner).   

2. Monitoring, event processing and alarms: comparing measured values to 

normal values and limits, and detecting changes in status, alarming operator 

of any critical events.  

3. Control: manually initiated or automatic (event or time-triggered) control 

actions of, for example, specific devices (e.g. a circuit breaker or tap-

changer).  

4. Data storage, event log, analysis and reporting: data update overwrites the 

real-time measurements in the database, so time-tagged data is stored in the 

historical database at periodic intervals, for future use. 

What differentiates SCADA from most of the other systems listed here is the fact 

that it deals with process information and often controls the operation of devices, with 

more or less in a real-time manner. Thus, it has stricter requirements for performance 

and security than most of the other systems.  

4.1.2 Distribution Management System (DMS) 

The Distribution Management System (DMS), along with SCADA, is a crucial 

information system within the DSO control centre. It is a collection of applications used 

to monitor, control and optimise the performance of the distribution system. It is an 

attempt to manage the complexity of the system. [38, p.141]  

The goal of a DMS is to enable a smart, self-healing distribution system and to 

provide improvements in supply reliability and quality, and efficiency and effectiveness 

of system operation. Usually a DMS is able to combine the more static network data 

from, for example, the NIS, and dynamic measurement data provided by SCADA.  

The DMS was referred to as a “collection of applications”, and its boundaries are 

not explicitly defined. Depending on the product vendor, the DMS may offer different 
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things. The core functionality stays the same, but certain functions are sometimes 

offered as part of the DMS, sometimes as a part of some other system. For example 

Network Information System (NIS) functionalities could be combined to the DMS, thus 

eliminating the need for separate NIS software. 

4.1.3 Network Information System (NIS) 

The term Network Information System (NIS) is often used in Finland. Elsewhere, the 

same system is a combination often referred to as Automated Mapping/Facilities 

Management/Geographical Information System (AM/FM/GIS). [81] 

The NIS is a network database that contains data of various network components. 

This includes electrotechnical data, other technical data, location information and 

background maps, and condition data. Information about network topology (the status 

of switching) is stored in the NIS. It can perform various calculations, for example for 

load flow, fault current, and reliability. It also supports network planning applications. 

[74] 

4.1.4 Customer Information System (CIS) 

As the name implies Customer Information System (CIS) stores and processes 

information about customers. It handles various things such as holds an inventory of 

meters and their locations, processes billing for customers, delivers bills, identifies 

losses, identifies customers affected by outages, informs customers of scheduled system 

maintenance, and helps complain handling and customer service personnel [38, p.145].   

In a sense it is not a core part of the distribution automation, but it serves an 

important purpose as other systems access its information. In the Smart Grid scenarios, 

it is participating in many new use cases. It should be integrated to the ESB, and likely 

its importance will only increase in the future scenarios.  

4.1.5 Advanced Metering Infrastructure (AMI) 

In the heart of the Advanced Metering Infrastructure (AMI) is the smart meter. It is the 

component of the Smart Grid that is most familiar to the customer, and the AMI is more 

accurately part of the customer domain, but it is tightly connected to the distribution 

operations as well. The rollout of smart meters in European Union is mandatory, and the 

meters have induced active public discussion.  

The terminology is somewhat confusing. Smart metering is used as an umbrella 

term that constitutes of Automated Meter Reading (AMR), Automated Meter 

Management (AMM), and Advanced Metering Infrastructure (AMI). Smart metering is 

seen as an essential part of the Smart Grid [74].  

The AMR system offers many new possibilities. For example, it is envisioned as an 

extension of SCADA and DMS for controlling and monitoring also the fuse protected 

networks, especially LV-networks [74]. However, the smart meter is only a portion of 

the entire metering infrastructure. As there can be hundreds of thousands of meters 
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installed within a DSO’s network, it is obvious that the metering data needs to be 

somehow aggregated before it can be transferred into higher-level information systems.  

4.2 Smart Grid and integration standardisation efforts 

Standards are an essential part of engineering work. Large projects, such as the Smart 

Grid, would be impossible without standardisation. This is a brief look at some of the 

most important organisations that provide standards and guidance, and to the work they 

have done to enable the Smart Grid. The term “standard” is used here very liberally, as 

these are more of references, guidelines, frameworks, recommendations, and so on. 

However, they are crucial to Smart Grid development, and many either are, or will 

likely become, standards or de facto standards. For simplicity, they are all referred to as 

“standards”.  

Many of the envisioned Smart Grid scenarios require that existing systems can work 

efficiently together, and access information and functionality within other systems. 

Thus, many standards aim for greater interoperability, defined as the “ability of two or 

more networks, systems, devices, applications or components to exchange information 

between them and to use the information so exchanged” [47, p.5]. The goal of greater 

interoperability is in no way unique to the electric system.  

4.2.1 Roadmaps, frameworks, guidelines, and recommendations 

Various organisations offer roadmaps that list the most important Smart Grid standards. 

This again illustrates the complexity of the topic. In addition to the ones introduced 

here, many other organisations worldwide offer similar documents.  

Notable examples are the following: The International Electrotechnical Commission 

(IEC) has a Smart Grid Standardization Roadmap [70]. The Institute of Electrical and 

Electronics Engineers (IEEE) offers guidance for interoperability as well as information 

security in [64]. The European Electricity Grid Initiative (EEGI) provides a roadmap 

and detailed implementation plan in [46].  

NIST: list of interoperability standards for Smart Grid 

The U.S. National Institute of Standards and Technology (NIST) have done significant 

research in the field of Smart Grid standards. A good starting point to understand the 

Smart Grid standardisation in general is the “NIST Framework and Roadmap for Smart 

Grid Interoperability Standards”. 

The first release (2010 [101]) provides a list of 75 standards that NIST sees as most 

important for the development of Smart Grid. Most of the subsequent standards listed in 

this chapter are on the list. It introduces the conceptual reference model (shown in 

Figure 2.1 and Figure 4.1). Priority action plans to fill gaps in standardisation are also 

suggested, and cyber security aspects are covered. The second release (2012 [102]) of 

the same document contains updates of the achieved improvements, and cyber security 

aspects have a dedicated chapter.  
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GWAC: interoperability context-setting framework 

The GridWise Architecture Council (GWAC) also originates in the United States: it was 

formed by the Dept. of Energy to promote and enable interoperability in the Smart Grid. 

Publications are available from [54]. The “GridWise Interoperability Context-Setting 

Framework” illustrates interoperability on a conceptual level. The concept of “distance 

to integrate” is illustrated in Figure 4.6. The greater the customisation efforts and 

manual work required for two systems to be interoperable, the greater the distance to 

integrate [53]. 

 

Figure 4.6. Distance to integrate [53]. 

The distant is non-existent with “Plug and Play” interoperability, a concept familiar 

from e.g., consumer electronics. For complex systems, Plug and Play might not be a 

practical goal, but standards and best practices can help to minimise the distance. The 

end goal is, of course, to lower the installation and integration costs and allow 

individual components and systems to be interchangeable (with reasonable effort). [53] 

 The GWAC framework (referred to as the “GWAC stack”) introduces eight 

categories of interoperability, which are further grouped into organisational, 

informational, and technical aspects (Figure 4.7).  

 

Figure 4.7. GWAC: Interoperability Framework Categories [53]. 
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The idea of context-setting framework is to organise concepts and terminology so 

that problems can be identified and discussed effectively (i.e. “to put everyone on the 

same page”).  The E+I infrastructure depicts the interconnected nature of electricity and 

information technology. The organisational (top) layers (pragmatics) are concerned with 

the management of electricity. At the bottom, the technical layers deal with 

communications, networking, and syntax issues of IT. The semantics, the informational 

layers in the middle, are used for transforming information into knowledge that supports 

the electricity related businesses. [53]  

The issues that this work is concerned with are mainly located on layers three and 

four of the stack. The framework also identifies another dimension: the cross-cutting 

issues that affect all the layers. For example, security, privacy, and quality of service are 

concerns that cross-cut all the layers, and are important in terms of this work. 

IEC: TC57 reference architecture 

The IEC Technical Committee 57 provides reference architecture for Smart Grid, as 

shown in Figure 4.8 (and in Figure B.1, Appendix B). The charter for TC 57 is:”Power 

System Management and Associated Information Exchange”.  

 

Figure 4.8. The IEC Reference architecture [70;71]. 

The reference architecture shows how the various IEC and other standards relate to 

each other. This again indicates the complexity of the whole Smart Grid. For our 

purposes, most interesting are the 61970 and 61968 standards that constitute the 

Common Information Model (pictured as the bright green box in Figure 4.8).  
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4.2.2 IEC: Common Information Model (CIM) 

Generally, the idea of an information model is to describe a problem domain without 

constraining how that description is implemented [39]. The Common Information 

Model, CIM, was originally developed by the Electric Power Research Institute (EPRI), 

and has been adopted by the IEC. The goal of CIM is to provide a canonical data model, 

a common vocabulary, for utilities industry. It aims to increase interoperability so that 

various systems can exchange information regarding the status and configuration of a 

network. The IEC is responsible for maintaining and developing the CIM model 

(currently, the formal definition uses the Unified Modelling Language, UML). [40;91] 

The CIM User Group describes CIM as “an abstract information model that 

provides data understanding through the identification of the relationships and 

associations of the data within a utility enterprise” [140]. When the data is better 

understood (through the use of a common vocabulary), it becomes easier to exchange 

data models and messages and integrate applications (intra- and inter-enterprise) [140]. 

The CIM is a set of standards, and the entire model is large and complex, as it needs 

to cover such a wide range of topics. The EPRI CIM primer states that the standards 

IEC 61970-301, 61968-11, and 62325-301 are collectively known as the CIM, and 

proceeds to list their three primary uses. These are 1) to facilitate the exchange of power 

system network data between organisations, 2) to allow the exchange of data between 

applications within an organisation, and 3) to exchange market data between 

organisations. [40, p.7].  

The standards 61970 and 61968 are of most interest in this work, as the use cases 

are mainly based on these. These are defined as follows, in [71].  

61968: “Standards for Distribution Management System (DMS) interfaces for 

information exchange with other IT systems. These include the distribution 

management parts of the CIM and eXtensible Markup Language (XML) message 

standards for information exchange between a variety of business systems, such as 

meter data management, asset management, work order management, Geographical 

Information Systems (GIS), etc.” [71] 

61970: “Standards to facilitate integration of applications within a control center, 

exchange of network power system models with other control centers, and interactions 

with external operations in distribution as well as other external sources/sinks of 

information needed for real-time operations.  These standards include the generation 

and transmission parts of the Common Information Model (CIM), profiles for power 

system model exchange and other information exchanges, and XML file format 

standards for information exchange.” [71] 

Some of the important features of the CIM (listed in [71]) are as follows.  

- The CIM is hierarchical.  

- The CIM is normalised. 

- The CIM is static. 

- The CIM is modelled in UML. 
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- The CIM IEC standards documents are auto-generated using the electronic 

UML model. 

- The CIM has a representation in XML. 

- The CIM is in use in many production systems. 

- The CIM is meant to contain classes and attributes that will be exchanged over 

public interfaces between major applications. [71] 

The IEC 61968 standard provides an Interface Reference Model (IRM), illustrated 

in Figure 4.9, which divides the typical DSO operations into 14 business functions.  

 

Figure 4.9. The IEC Interface Reference Model (IRM) [69, see 108]. 

The IRM provides the framework for a series of message payload standards. The 

business functions are illustrated by the green and purple boxes, and these are connected 

by the CIM-compliant (ESB) middleware, pictured as a light blue bus. The yellow 

boxes represent standard interfaces, and each of these is described by a specific part of 

the IEC 61968 standard. These 61968 series standards define the use of XML for the 

exchange of information between the various systems defined in the IRM. 

An effort similar to CIM is the MultiSpeak, coordinated by the National Rural 

Electric Cooperative Association (NRECA). The MultiSpeak is arguably more mature 

model than the CIM, but does not have as wide coverage as the CIM. It is North 

America centred, whereas the CIM is international. MultiSpeak and CIM have slightly 

different approaches, and there are efforts to harmonise these models. [103]  

MultiSpeak will not be discussed here; more information can be found in [103]. 

Details of the CIM and how to apply it can be found in, e.g., [39-41;90;91;142]. 

4.2.3 W3C recommendations and integration 

Many recommendations from the World Wide Web Consortium (W3C) [150] have 

become de facto standards and basic building blocks for integration (e.g., XML, 

Resource Description Framework RDF, Web Services, and their related 



 36 

recommendations). These recommendations are general and applicable for many fields, 

i.e. they are not Smart Grid specific. They form the foundation of many concepts and 

technologies used in this work. For example, many integration and SOA 

implementations, the CIM, and the BizTalk platform, all make use of the W3C 

recommendations.  

The technologies based on these recommendations have become so ubiquitous that 

a general introduction is included in various books and other sources, and thus will not 

be repeated here. For more details, the official W3C recommendations, found in [149], 

are a good starting point, as well as books such as [111]. 

4.2.4 Smart Grid information security standards 

Various organisations provide standards and guidelines dedicated to the information 

security aspects of Smart Grid and industrial control systems in general. These are 

partly overlapping, but often differ slightly in their approach, and a few are introduced 

here. The NIST offers both 800-series Special Publications, and the NIST Interagency 

Reports (NISTIRs), that are dedicated to control systems and the Smart Grid. Notable 

work has been done by the International Organization for Standardisation (ISO), the 

IEEE, the IEC, the European Network and Information Security Agency (ENISA) [48], 

the International Society of Automation (ISA), the (U.S.) Department of Homeland 

Security (DHS), and the North American Electric Reliability Corporation Critical 

Infrastructure Protection Committee (NERC CIPC), among others. 

The NIST Special Publication SP 800-82 Guide to Industrial Control System (ICS) 

Security aims to provide guidance for securing ICSs. It explains shortly the specific 

nature of ICSs (compared to IT), and identifies some of the common threats and 

vulnerabilities. It also lists recommended security methods to mitigate the risks. [131] It 

is not intended to be a checklist for security, and does not cover the topic in detail, but it 

is a good starting point to familiarise oneself with the ICS information security aspects. 

The NIST IR 7628 Guidelines for Smart Grid Cyber Security is the work of the 

Smart Grid Interoperability Panel (SGIP) Cyber Security Working Group (CSWG) 

[127]. It is offered as a three-volume set, with a separate introductory document, and 

intended to be a companion document to the NIST Framework and Roadmap for Smart 

Grid Interoperability Standards. The first volume describes the approach used to 

identify high-level security requirements, and presents a high-level architecture, and 

proceeds to more details [124].  The second volume is dedicated to the privacy issues 

and concerns of the customer, also providing recommendations [125]. The third volume 

lists the supporting analyses and references that were used in the development of the 

first two volumes [126]. 

In addition to these information security specific standards, most of the more 

general Smart Grid standards have a part dedicated for information security. The 

awareness about the issues is increasing rapidly. Yet, in the end, it should be noted that 

information security contributes only to a small part of the overall safety and security 

requirements.  
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4.3 Data flows within the distribution domain 

Data flow diagrams (DFDs) are a good tool to help understand the information 

exchange between systems. DFDs are not included as part of the UML, but have been 

used in software and systems development for many decades. Other (UML) diagrams 

are useful tools as well, but DFDs are especially useful for integration purposes, when 

defining data flows between various systems. 

DFDs are used to describe logical connections and data flows, independent of the 

used technology. The basic components, and guidance for drawing DFDs, are 

introduced here (for details, see, e.g., [36;55;115;132]). Further, example context 

diagram and data flows within a DSO are illustrated. 

4.3.1 Data flow diagrams (DFDs)  

A DFD shows information flows that go into, and out of, a system. It shows the sources 

and destinations of the flows, and stores of data within the system. A DFD is not 

concerned with the timing or sequence of the flows, the reasons why a flow occurs, or 

the technical implementation of the flow. 

DFDs are not very strictly or formally defined, but certain rules help make them 

more understandable. A few widely used notations exist, yet the main components, 

shown in Figure 4.10, are the same in each notation: processes (functions), data 

repositories, external entities (inputs/outputs, sources/sinks) and data flows. 

 

Figure 4.10. Main components of a DFD. 

Process is where data is used or generated. Process labels should be verb phrases 

describing what the process does. External entities represent an external source, user or 

depository of the data. Labels should be noun phrases. Data is stored into and retrieved 

from data stores, which are internal repositories of data. Data flow (a connecting arrow) 

represents how data flows through the system. [115] 

Importantly, DFDs are hierarchical; that is, a process can be decomposed to sub-

processes. Figure 4.11 illustrates the idea of decomposition.  

 

Figure 4.11. Decomposition of DFDs, adapted from [132]. 
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The context-level DFD shows the entire system as a single process, which interacts with 

external entities. Internal organisation of the system is not shown. The diagram 

implicitly defines the system boundaries, as the external entities communicate with the 

system, but are not part of it, and the system has no control over them. The context 

diagram is decomposed to form the level 0 DFD, which shows how the system is 

divided into sub-systems (processes). Each of the subsystems deals with one or more of 

the data flows to or from an external system. Combined, the subsystems provide all of 

the functionality of the system as a whole. Level 1 DFD is again the result of 

decomposition of a process in the level 0 diagram. At the lowest level, processes can no 

longer be decomposed. 

4.3.2 Example DFDs 

Figure 4.12 illustrates a sample context diagram of an integration platform (EAI or 

ESB) within a DSO environment. As is often the case with context diagrams, it is so 

simple that it seems hardly worth the effort to draw it. However, it indicates where the 

borders of the system are. It shows how the systems that will be integrated are outside 

the scope of the ESB/EAI implementation itself.  

 

Figure 4.12. A sample context diagram of an integration platform. 

In the case of the integration solution, the level 0 DFD is rather simple. The main 

purpose of the middleware is to transmit information between various endpoints. The 

process does involve many sub-processes, such as endpoint resolution and data format 

transformation. However, only one process, “route information”, is used in the level 0 

DFD. It is also possible to break the routing process into its constituent parts. This could 

be used, for example, to illustrate the internal operation of the middleware. However, 

analysis at that level of detail is unnecessary for the purposes of this work.  

 Figure 4.13 illustrates sample flows that could occur within a DSO environment. 

This already shows enough details to help analyse the information content of each flow.  
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Figure 4.13. Sample Level 0 DFD within a DSO environment.  

However, the traditional DFD functional decomposition is somewhat ineffective for the 

purpose of this work. Level 0 DFD offers sufficient level of detail for analysing the 

integration in general, thus further decomposition is not necessary. Yet there are 

countless types of data flows within the environment, and it would obviously not make 

sense to try to illustrate each of them in a single DFD. However, it makes sense to use 

the DFDs on a per-use-case analysis: the process “route information” is same for each 

use case, but the participating systems and flows vary. 

4.4 Using DFDs in information security analysis 

The integration system context diagram (Figure 4.12) is useful also as a starting point 

for the information security analysis. Information is mostly stored within the endpoint 

systems, and proper security measures for these systems are crucial. Yet the detailed 

operation of the endpoints is generally beyond the scope of this work. Excluding the 

external systems from the analysis leaves two types of components in the context 

diagram: the central node (whether an ESB or an EAI hub), and the arrows (data flows).  

Securing the central node, the integration platform itself, is extremely important. 

There are general best practices, such as hardening the platform by removing or 

inactivating all unnecessary functionalities, and always using the most up-to-date 

software. The specific security measures and implementation vary depending on which 

integration software product is used. Most vendors offer product-specific integration 

platform security guides, which are likely the best source for detailed information. 

Finally, the security requirements for the data flows need to be analysed. The data 

flows represent the essential functionality of the integration, and their security aspects 

are considered in this work. Depending on the scenario (use case), any or all of the C-I-

A objectives could be important, and at varying degrees. Figure 4.14 illustrates a normal 

data flow and the most common types of threats (interruption, interception, 

modification, and fabrication). Each scenario shows how a different objective (C-I-A) 

could be compromised, and what countermeasures are generally available. These are a 

typical starting point for information security related discussions in the literature, for 

details see, e.g., [16;112;130]. 
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Figure 4.14. Securing the flow of information, adapted from [129, see 105]. 

Most middleware platforms provide the common countermeasures for each threat. 

For example, encryption aims to provide confidentiality, signatures are used for 

authentication, and so on. The implementation specifics vary for each platform, but 

conceptually, the methods are available. However, one issue that often arises in 

integration is the need to communicate with legacy systems. Even though the 

middleware platform offers encryption, it may have to communicate with an endpoint 

that does not support it. 

Authenticity and accountability are important aspects of information security that 

many feel are not sufficiently covered in the C-I-A analysis [130, p.11]. Authenticity 

means that information can be verified and trusted. Accountability supports 

nonrepudiation: often, it is important to be able to prove that a certain event took place, 

and provide details of the event (such as participants in a transaction). Additionally, 

some data flows may have timeliness requirements requiring more detailed analysis. 

Thus, analysing the C-I-A requirements of data flows is a good starting point, but does 

not cover everything. 

Analysing the security requirements is a task that requires co-operation of experts 

from various fields. Knowledge of the subject domain (electricity distribution) is 

necessary to understand the purpose of a use case or a data flow. Information security 

professionals have the expertise and mind-set to ask the right questions. Domain experts 

(electrical engineers) have the necessary understanding to answer those questions. 

Integration experts can design and implement the solution, once sufficient requirements 

for both functionality and security have been defined.  

These steps are essentially about understanding the system, performing a risk 

analysis, and designing the implementation in a way that the risks can be mitigated. 

Risk analysis is a well-formulated and widely used method to improve information 

security. There are many formal approaches available which can be used as a 

framework and starting point for each specific risk analysis situation [112, p.526].   
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5 MICROSOFT BIZTALK SERVER 

Microsoft’s enterprise integration platform, BizTalk Server, is the integration product 

used in this project. Outside the field of enterprise integration, it is relatively unknown. 

Yet it claims the title for the most broadly deployed integration middleware technology 

of today, with more than 12 000 customers worldwide [87, p.xxii]. It has been described 

as “quite possibly the most advanced product produced by Microsoft to date” [121, p.9]. 

BizTalk has its roots in Enterprise Application Integration (EAI) and Business-to-

business (B2B) integration, but over time it has developed into a highly complex and 

flexible software solution [97]. 

BizTalk Server is a mature software product. First release was BizTalk 2000, and as 

this work begun, BizTalk was in its seventh version (BizTalk 2010). During this work, 

BizTalk 2013 was released, first as a beta version, and later as an official release. Two 

versions are tested in this project: the latest stable release that was available at the 

beginning of the project (BizTalk 2010) and a beta version of the new BizTalk 2013. 

For the sake of simplicity, term “BizTalk” will be used, and a specific version is 

mentioned only when necessary. 

5.1 Introduction to BizTalk 

Figure 5.1 illustrates where BizTalk fits in an enterprise. It allows the (often massive) 

enterprise-scale systems to communicate with each other, within, as well as across, the 

company borders. Business rules guide the processes, and in addition to more technical 

reports, BizTalk offers comprehensive business process monitoring capabilities.   

 

Figure 5.1. Integration with BizTalk [18].   
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It is not trivial to introduce something as complex as BizTalk and do it briefly, with 

simplicity and clarity, yet without overlooking any crucial properties. Throughout this 

introduction it is important to keep in mind that BizTalk is much more complex and has 

more components than is possible to cover in this limited space. BizTalk’s versatility 

only adds to this complexity: it is difficult to pinpoint any typical BizTalk solution, as 

BizTalk can be used to build a multitude of different solutions, and in most any 

industry. 

5.1.1 BizTalk components on a high level 

BizTalk is, in essence, a message broker. It receives information from a source, often 

processes that information somehow, and sends it to one or more destinations. At its 

core, BizTalk functions as a publish/subscribe engine [56, p.7]. BizTalk’s main 

components are shown in Figure 5.2. The messaging component is the heart of BizTalk, 

providing the ability to communicate with other systems. Continuing with the metaphor, 

if messaging is the heart of BizTalk, the orchestration engine is the brain. It is used to 

create and run graphically defined processes called orchestrations. [96]  

 

Figure 5.2. BizTalk Server core components, adapted from [96]. 

The Messaging Engine receives inbound messages, parses them to identify their 

formats, and evaluates the message contents. The messages are routed and processed 

according to their contents. The engine delivers the messages to their respective 

destinations, and tracks the status and state of documents. The Orchestration Engine 

coordinates and schedules message processing, and is used to implement more 

complicated and long-running processes. [97, p.10] These form the core of BizTalk. 

Several other components, such as Business Activity Monitoring (BAM), Business 

Rules Engine (BRE), Health and Activity Tracking and Enterprise Single Sign-on 

(SSO), are used in addition.  
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5.1.2 Common enterprise usage of BizTalk 

BizTalk has a long history as a hub-and-spoke type EAI solution, but it can be used for 

various purposes. While it is hard to name one specific scenario above others, there are 

certain common ways for using BizTalk. In [122], four key areas are mentioned: 

Enterprise Application Integration (EAI), business to business communications (B2B), 

Business Process Automation (BPA), and Enterprise Service Bus (ESB) [122, p.68]. 

Similar scenarios are described in [37]: workflow automation, legacy application 

integration, trading partner exchange, and organisational message broker [37, p.24]. If 

such a thing as a typical role for BizTalk exists, it is likely the EAI message broker role 

(Figure 5.3).  

 

Figure 5.3. BizTalk Server as an EAI message broker [122]. 

BizTalk is used for differing purposes, and within various industries (e.g., in 

finance, retail, or utilities). It is well suited for moving data between different systems, 

and it has a well-established position as an EAI tool. However, when discussing ESBs, 

there are arguments for, as well as against, BizTalk. Using BizTalk as an ESB is 

covered later in Chapter 5.4. 

5.1.3 Technical point of view 

From a more technical viewpoint, BizTalk server is a .NET application that is built on 

top of a set of SQL databases [121, p.15]. (Briefly, .NET is Microsoft’s software 

framework, and SQL stands for Structured Query Language). BizTalk has certain 

dependencies, as it requires a few other Microsoft products to support its operation.  

A core dependency is that BizTalk installation must have a MS SQL Server as an 

underlying database system. BizTalk uses internally almost a dozen different SQL 

databases. Although not strictly required, typically Windows Server is used as the 

operating system to host the MS SQL and BizTalk Servers. Separate machines for SQL 

and BizTalk Servers, as well as appropriate redundancy measures, are highly 

recommended. BizTalk is dependent on MS Active Directory, which provides service 

account and user access and control [121, p.84]. Thus, a domain installation with a 

Domain Controller is required (although a test environment can be built on a single 

Workgroup machine). 
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It is important to understand that BizTalk is not a working integration solution out-

of-the-box. It is a platform on top of which integration solutions can be built. In this 

sense, BizTalk is much like SQL Server: after installation, it does nothing. Solutions 

need to be developed on top of the provided platform. [121, pp.13-15] Visual Studio, 

Microsoft’s integrated development environment (IDE), is used for BizTalk solution 

development. BizTalk installation, solution development, runtime architecture, and 

administration are discussed in detail in Chapter 5.3. 

5.2 BizTalk key concepts and message flow 

Key part of understanding how BizTalk works internally is to understand the message 

flow. This is an overview of how a message enters BizTalk, how it is processed, 

transformed, and finally routed to its destination. Figure 5.4 below illustrates the path of 

a message through the key components of BizTalk.  

 

Figure 5.4. Message flow within BizTalk [97]. 

Messages enter BizTalk through receive ports. A receive port is a collection of one 

or more receive locations that define specific entry points into BizTalk Server. Each 

location is configured with an adapter and a receive pipeline. Adapters are responsible 

for the transport and communications part of receiving a message. Receive pipelines can 

process the message in various ways and prepare it to be published to the MessageBox. 

Each receive port is configured with zero or more maps. Mapping means simply 

transforming a message from one format to another. This is usually done in order to 

normalise the incoming messages to an internal format. After the message has been 

transformed into internal BizTalk format, it is ready to enter the MessageBox database. 

Once the message has entered the database, it is considered “published”. The messaging 

system then checks the existing subscriptions and the message metadata, in order to 
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resolve the orchestrations and/or send ports where the message should be delivered to. 

The MessageBox is the centre of BizTalk: every message travels through it. 

Depending on the solution, a message might be delivered directly to a send port, or 

to an orchestration. Orchestrations are BizTalk’s way of defining and implementing the 

business process workflow logic. Not all solutions require the use of orchestrations. 

They are often used when complex and long-running processes are needed, and 

messaging-only solutions are insufficient.  

A message will always leave BizTalk through a send port, whether it was processed 

by an orchestration or not. The process of sending a message is quite similar as 

receiving a message - naturally with reversed order of steps. Figure 5.5 below illustrates 

a messaging-only solution (no orchestrations used), showing the main messaging 

components within BizTalk. The main difference in send and receive is that there is no 

“send location”. 

 

Figure 5.5. Message flow in a messaging-only solution [13]. 

This overview illustrated the fundamentals of BizTalk message flow, the following 

subchapters providing more details. Much additional functionality such as the Business 

Activity Monitoring (BAM), Business Rules Engine (BRE), and the ESB Toolkit 

(ESBT), were omitted altogether. The ESB Toolkit builds on top of these basic 

messaging and orchestration components (see Chapter 5.4). 

5.2.1 Receive ports and receive locations 

A message enters BizTalk through a receive port. A receive port consists of one or more 

receive locations. Figure 5.6 below shows a receive port consisting of two different 

receive locations (File and Simple Object Access Protocol, SOAP). 
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Figure 5.6. Receive ports and locations [96].  

The idea is that each location represents a single entry point to BizTalk. Each location is 

configured with an adapter and a receive pipeline, as shown below (Figure 5.7).   

 

Figure 5.7. Receive location within a receive port [96]. 

Thus, within a port, each location can have a specific adapter and pipeline according to 

what the incoming message requires for processing. The locations merely serve as 

logical containers for adapters and pipelines, which are discussed next.   

5.2.2 Adapters 

Adapters are an essential part of BizTalk, as they provide the points of contact to the 

outside world [121, p.20]. They handle the communication and transmission of 

messages, and are the outmost endpoints, providing wire connectivity in and out of 

BizTalk [87, p.337;122, p.77]. All messages enter BizTalk through an adapter [121, 

p.20]. In fact, no other component has any knowledge of the endpoints they are dealing 

with, thus adapters make BizTalk truly loosely coupled [122, p.77]. 

Adapters can be divided into three classes: 

- Transport (or protocol) adapters (e.g. HTTP, POP). 

- Line-of-Business adapters (e.g. SAP, Siebel) 

- Data (or database) adapters (e.g. SQL, DB2, Oracle) [13, p.335;122, p.77] 
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BizTalk offers a wide variety of built-in adapters, such as File, FTP, HTTP, POP, 

SOAP, and WCF (Windows Communication Foundation) adapters. These are called 

native or integrated adapters, as they are part of the core BizTalk product. They handle 

the most common communication needs and are not specific to any system or 

application. In addition, Microsoft offers a library of Line-of-Business (LOB) adapters, 

which contains adapters for many common enterprise applications (e.g. Oracle 

PeopleSoft, TIBCO Rendezvous, and IBM WebSphere) [87, pp.337-339]. Third-party 

adapters are also available on the market. Finally, it is possible to develop custom 

adapters with the BizTalk Adapter Framework [96]. 

Figure 5.8 below illustrates an HTTP adapter. In this case, the same adapter can be 

used for both receiving and sending messages. This depends on the adapter: some only 

support send or receive functionalities. In general, adapters have different functions and 

features; some simple, others very complex. [87, p.338] 

 

Figure 5.8. BizTalk HTTP Adapter [87]. 

Adapters can support either push or pull models or both. On the receive side, both 

are common. On the send side, most adapters use the push model. BizTalk explicitly 

support four specific message interchange patterns: one-way send and one-way receive, 

request-response, and solicit-response. With custom code, additional patterns and 

variations can be supported. [87, pp.341-342] 

5.2.3 Pipelines and pipeline components 

Pipelines are used to normalise data in and out of BizTalk. A pipeline is an 

implementation of the “Pipes and Filters” integration pattern in BizTalk [121, p.75]. 

The idea of the pattern is to break down large processing tasks into a sequence of 

smaller, independent processing steps (Filters) that are connected by channels (Pipes) 

[61]. A pipeline does exactly that: it is a series of components that are executed in 

sequence, each providing specific processing to a message [96]. A key benefit of this 

pattern is that the components are interchangeable, and thus can be re-arranged and used 

in various combinations. There is less need to change the components themselves. [61]  

The receive pipeline prepares the message for publishing into the MessageBox [96]. 

Pipelines typically perform tasks such as break up inbound documents into separate 
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individual documents, verify or sign documents, process encoded documents, and 

process flat text files into XML and vice versa. With custom coding, pipelines can be 

used for a multitude of other things as well. [37, p.116] The receive pipeline has four 

stages as shown in Figure 5.9.  

 

Figure 5.9. Stages in the receive pipeline [96]. 

The send pipeline stages are in reversed order, but otherwise it is almost identical with 

the receive pipeline. One key difference is that there is no party resolution concept in a 

send pipeline.  

5.2.4 Schemas 

BizTalk uses structured documents for all internal messaging and orchestration 

operations [97, p.15]. Structured messages form the core of most applications. The 

XML Schema Definition (XSD) language is used to define the structure of messages 

[96]. Internally, all messages that BizTalk messaging and orchestration engines handle 

are in XML format [97, p.15]. 

Schemas are essential for BizTalk for three main reasons. First, a schema defines a 

message structure which serves as a contract between BizTalk and the system that 

BizTalk communicates with. If a message received by BizTalk conforms to the schema 

that both parties have agreed upon, BizTalk can accept it as correct input. Without valid 

input, BizTalk cannot guarantee valid output. An exact and detailed contract helps in 

troubleshooting and allows BizTalk to discard invalid input at an early stage. Second, 

BizTalk creates a message type based on the schemas. This message type is extensively 

used in subscriptions, where messages can be routed to various locations based on their 

type. Third, maps (see next subchapter) use schemas as input and output structures 

when transforming messages. [87, pp.15-16] 

BizTalk supports four types of schemas: XML schemas, flat file schemas, envelope 

schemas and property schemas. Schemas can also be divided into internal and external. 

An internal schema is essentially a canonical data model used within BizTalk. It 

decouples the BizTalk internal domain from all the possible external schemas used. 

Thus, when the external schemas change, only thing that needs to be changed in 

BizTalk is the mapping. Using internal schemas within BizTalk is a highly 

recommended best practice. [87, p.19] 

The XSD schemas are not specific to BizTalk; they are commonly used in 

integration. What BizTalk does is it provides graphical tools to help in using them. 

Although schemas in BizTalk are ultimately represented in XSD, the Visual Studio 

based BizTalk Editor is used to create, edit, and manage the schemas without having to 

work with all the intricacies of the XSD syntax. [96;97, p.16]  
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5.2.5 Maps 

Maps enable the transformation and translation of messages. In BizTalk, each port is 

configured with zero or more maps, helping to convert messages between internal and 

external types. Maps can also be utilised within orchestrations, when transformations 

are needed within an internal business process. A map is a graphically illustrated 

conversion between two XML schemas. It converts an input message that conforms to 

one schema into an output message that conforms to a different schema [97, pp.16-20]. 

Maps are created and edited with BizTalk Mapper tool that is integrated to the 

Visual Studio environment (Figure 5.10). Technically, BizTalk Maps are based on 

eXtensible Stylesheet Language Transformations (XSLTs). BizTalk maps provide a 

visual representation of the transformations, and a graphical tool for creating and editing 

them. 

 

Figure 5.10. BizTalk Mapper in Visual Studio [97]. 

A map defines one-way transformation between schemas by defining conversions 

between the elements. These conversions can be either simple links that copy values 

from one element to another, or functoids that perform more complex manipulations on 

the data [97, p.19]. There are pre-made functoids available, but it is also possible to 

write new ones as needed. 

5.2.6 The messaging infrastructure  

The MessageBox database forms the backbone for messaging, and thus, for the entire 

BizTalk Server product. It is the central database that contains all the in-flight messages 

that are processed by the BizTalk Server. Often, the MessageBox is thought of as the 

entire messaging infrastructure, but this is not true. The BizTalk messaging subsystem 

(the Message Bus) consists of multiple interrelated parts, each performing a specific job.  

[37, pp.77-78] The MessageBox database is the centre for all action in BizTalk. All 

messages go through the MessageBox at some point. The operation of the MessageBox 

is based on the concept of queues [121, p.21].  
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The term message should be defined in order to better understand messaging. A 

message in BizTalk is a finite entity that has zero to many parts, one of which is the 

body part [96]. Messages contain both data and context. Context properties are crucial 

for routing. It is critical to understand that messages are immutable after publishing. 

That means that they cannot be changed once they reach the MessageBox. [37, p.82] 

Messages are considered published once they enter MessageBox, and the database is 

then queried for matching subscriptions. When a published message matches an existing 

subscription, it is then sent to all appropriate subscribers (that is, instances of 

orchestrations or send ports). After a message is delivered to all subscribers, it is 

removed from the MessageBox in order to optimise the memory usage and keep the 

database small and lean. It is important to note that the MessageBox is not used for 

long-term storage of messages. 

On a technical level, the infrastructure is quite complex. However, a basic 

introduction is sufficient here, and generally even BizTalk developers and 

administrators do not need to understand all the specifics. Microsoft’s product 

documentation and most BizTalk-related books can be referred for details. 

5.2.7 Orchestrations 

A messaging-only solution that utilises schemas, maps, pipelines, and various artefacts 

such as ports, is sufficient for many needs. However, BizTalk orchestrations are useful 

when process or workflow automation or complex routing is required. Orchestrations 

are useful for managing data flow, decision points, parallelism, exception handling, and 

other requirements of the interchange between systems [87]. 

An orchestration is simply a procedural algorithm in a visual form [37, p.272]. They 

are similar to flowcharts that were used to detail algorithms in functional specifications 

before sequence diagrams and object-oriented design. An orchestration consists of a 

series of ordered operations or transactions that implement a business process. [37, 

p.269] Orchestrations can be nested and they can call other orchestrations, thus making 

it easier to divide them into manageable-sized parts. This is recommended, as smaller 

units are easier to manage, and also promote reusability.  

 Orchestrations are created within Visual Studio in the BizTalk Orchestration 

Designer, shown in Figure 5.11.  
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Figure 5.11. BizTalk Orchestration designer in Visual Studio [96]. 

When deployed, orchestrations are compiled into .NET assemblies and installed on the 

BizTalk databases [37, pp. 7-8]. At runtime, the Orchestration Engine then executes the 

files created with the designer [97, p.31]. Technically orchestrations are based on the 

XLANG/s language, which is a sort of a Business Process Execution Language (BPEL), 

or Microsoft’s “programming in the large” language. 

Orchestrations are a powerful tool, because they allow for the rapid development 

and deployment of complex processes and often require little to no coding [37, pp.7-8]. 

Partly because of this, orchestrations are often overused in BizTalk solutions. They 

should be used with consideration, as orchestrations burden the databases with 

significantly heavier usage than messaging-only solutions. [37, p.272] 

5.2.8 Send ports and send port groups  

A message should always leave BizTalk through a send port, whether it was processed 

by an orchestration or not (technically, it may be possible to code orchestrations to 

directly send messages, but it is likely not the correct approach) [56, p.22]. Send ports 

operate in a manner very similar to receive ports, although the steps are naturally in 

reverse order. 

Similar to receive side message flow, a map may or may not be applied. Next, the 

message goes through a pipeline for possible further processing. There is no concept of 

“send location” within send ports, each port will point to a specific location outside 

BizTalk. However, send port groups can be used. They are named collections of send 

ports, and BizTalk uses them to send the same message to multiple locations. A send 

port may belong to zero or more send port groups, thus having multiple subscriptions.  
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5.2.9 BizTalk databases 

In addition to the MessageBox, BizTalk uses multiple other databases for various 

purposes. Most important of these is the Management Database, which is a central store 

for meta-information. It holds all artefacts (e.g. ports, maps, schemas, and 

orchestrations) that are part of the BizTalk solution. The Tracking database records all 

events which take place within BizTalk. [121, p.23] It is also the long-term storage for 

all messages. The Business Rules Engine, Business Activity Monitoring, Enterprise 

Service Bus Toolkit and Single Sign-On components each use their own database (or 

possibly multiple ones).  

Total of almost a dozen databases may seem excessive, but the use of these highly 

specialised and optimised databases is essential for making BizTalk a distributed, 

scalable and fault-tolerant product. Complete listing of databases and their usage can be 

found for example in: [92;96;121, pp.23-24]. 

5.3 The lifecycle of a BizTalk integration solution 

The BizTalk discussion has so far been centred on the logical aspects of message flow.  

Transforming a logical, abstract message flow to an actual BizTalk solution running on 

a server still requires a fair amount of installation, development, and administration 

work.  

BizTalk Server, along with the supporting Microsoft products, provides the 

development environment, where solutions are created, as well as the runtime 

environment, where the solutions can be hosted and executed. 

5.3.1 Installation 

Installing BizTalk, even just for simple testing purposes, has certain prerequisites. 

Depending on the BizTalk features to be installed, various supporting components and 

systems must be installed and configurations made. For production environments, 

careful planning should precede the installation. Microsoft provides thorough 

instructions and manuals for installation, and it is important to familiarise oneself with 

all the steps before beginning.  

The core dependencies between BizTalk features and supporting platforms and 

software are illustrated in Figure C.1 (Appendix C). In addition to the basic 

configuration, examples of typical components to be installed are Internet Information 

Services (IIS) server role, .NET Framework, Windows SharePoint Services, SharePoint 

Foundation, and MS Office Excel. 

The details are not discussed here. This is just to point out that creating a BizTalk 

installation that will fit the needs of the enterprise requires careful planning. Instructions 

are available from Microsoft. For Windows Server 2008 environment, the basic 

installation, list of supporting software required and the configuration are explained in 

[94]. Installation with BAM (Business Activity Monitoring) on a multicomputer 
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environment is explained in [93]. Known issues and troubleshooting setup are listed in 

[98]. 

5.3.2 Solution development and deployment 

BizTalk offers a platform and a working environment to develop, deploy, and host 

solutions. The specific integration functionality resides within the solutions. Creating 

BizTalk solutions typically involves the creating of schemas, maps, and orchestrations, 

followed by a local deployment (for testing). This is done in Visual Studio. Next, the 

Administration console is used for binding the solution. Creating visibility and 

monitoring is usually performed with Excel and Tracking Profile Editor (TPE). Testing 

the (already running) solution is the final step, and can be done in many ways. [121, 

p.32] 

Figure 5.12 shows the main components of a BizTalk solution. The components that 

are created with Visual Studio are compiled into .NET assemblies. These are then 

executed at runtime in a BizTalk host instance.  

 

Figure 5.12. Components of a BizTalk solution [121]. 

BizTalk solution development, like any sort of programming, has its guidelines, 

best practices, naming conventions, and so on. Testing is naturally an important part as 

well. Further, BizTalk usually offers multiple ways to perform a given task, some more 

optimal than others. Experience in BizTalk development will help to make the correct 

decisions. For development guidance, see e.g., Chapter 2 of [121] and [13;37]. 

During the deployment process 1) the application metadata such as bindings, 

subscriptions, schemas, and so on, need to be transferred to the Management database, 

2) the .NET assemblies that the application comprises of need to be deployed to the 

servers, and 3) physical endpoints (e.g., file shares, IIS virtual directories, FTP sites) 

need to be created and configured. Necessary modifications due to changing from 
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development environment to production environment must be made to the physical 

endpoints. [87, pp.687-688] 

5.3.3 Runtime environment 

BizTalk runtime environment depends on the specifics of the installation, but each 

installation shares same basic concepts. BizTalk Server can be installed across multiple 

physical servers, and the installation consists of various abstract concepts that promote 

distribution.  

The runtime environment comprises various servers (not necessarily physical server 

machines, but servers in the sense of server roles, such as the IIS). First, there are 

Application Servers, and these are generally perceived as being the “BizTalk Servers”. 

Each BizTalk Server can run multiple instances of this role or service. Other important 

servers or services are Database Servers (hosting the BizTalk databases), Web Servers 

(used as endpoints for HTTP/Web Services/WCF, and the BAM Portal), and the 

Enterprise SSO service (provides secure credential storage). These could be hosted on a 

single physical server, but this is not recommended. [121, pp.25-26]  

Key runtime environment components are illustrated in Figure 5.13. The highest 

level of abstraction is a BizTalk group, which is a logical container for everything in a 

BizTalk installation [121, p.26]. A group consists of BizTalk runtime machines that 

share a common Management Database [122, p.74]. Next level of abstraction is hosts. A 

host defines an abstract, logical runtime container for BizTalk Server resources, such as 

orchestrations and adapter handlers [122, p.75]. It is presented as a single unit, but can 

consist of processes on separate physical servers [121, p.27]. Finally, host instances are 

the actual, deployable and executable runtime processes. A host instance is a physical 

instance of a logical host, and resides on a single physical machine [122, p.75]. A host 

instance is where maps, orchestrations, pipelines, and other components all execute 

[121, p.28]. 

 

Figure 5.13. BizTalk Server runtime architecture concepts, adapted from [121;122]. 
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This somewhat complicated structure improves scalability and availability. First, 

hosts can contain combinations of artefacts, which helps segregate the duties based on 

the performance requirements. For example, a single host can be dedicated for 

orchestrations, if the solution is expected to process large amounts of them. A basic 

recommendation is to have separate send, receive, orchestration, and tracking hosts 

[121, p.105]. A single host can just as well contain all types of artefacts (orchestrations, 

ports, adapters, etc.). Second, a single host can (but does not have to) be deployed as an 

instance on multiple physical machines. Typically, in a production environment, a host 

has instances on at least two machines, to provide redundancy and high availability. Yet 

it is not required for all hosts to have instances on all machines. [122, p.75] These 

measures allow the distribution of functionality across multiple machines and thus form 

the basis of the hybrid hub-bus architecture (Figure 5.14).  

 

Figure 5.14. BizTalk hub-bus hybrid architecture, adapted from [87]. 

Each machine is shown as a physical hub that shares a centralised message bus, which 

encompasses the messaging data store (MessageBox), configuration data store 

(Management Database), and operational and management tools [87, p.6]. The 

processing capabilities can thus be distributed across different machines. The solution 

can easily be scaled out by adding servers, or hosts and host instances. Further, different 

hosts can be assigned with different tasks (e.g., messaging or orchestration). [12;87, p.6] 

The hub-bus architecture significantly improves the distribution and scaling options 

for a BizTalk installation. However, this shows where BizTalk clearly falls short of the 

ESB criteria. An ESB can be distributed in a fine-grained manner, as the deployment is 

based on the concept of services. In BizTalk’s case, the smallest possible increments (or 

decrements) are BizTalk servers (and hosts and host instances). Whether this is an 

actual issue depends on the specific scenario, and is a topic for another discussion. 

5.3.4 Administration 

Once BizTalk is installed and configured, solutions can be developed in Visual Studio 

and deployed on the BizTalk Server installation. In addition to these tasks, BizTalk, like 

any other server, requires administration. There are three main methods for 

administration work: the Administration Console, a command-line tool, and various 

scripting or programmability APIs (Application Programming Interfaces) [87, p.669]. 

The two latter are ideal for routine tasks, but the Administration Console (Figure 5.15) 
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remains the main tool for many configuration, troubleshooting, and management tasks 

[87, p.669, p.685]. 

 

Figure 5.15. BizTalk administration console [121]. 

The Administration Console can in fact be used for developing simple messaging-

only solutions without the help of Visual Studio. The console is used for example to 

tune the BizTalk group, run queries to monitor the current operational state, debug 

various issues, configure applications, and to evolve the physical topology of the 

BizTalk group [87, p.685]. 

5.4 BizTalk as an Enterprise Service Bus 

BizTalk has traditionally been positioned as an EAI solution. It was already a well-

established product before the term ESB was introduced. As the concepts of SOA and 

ESB became more popular, EAI was seen more and more outdated as an integration 

pattern. BizTalk developers were concerned about the future of BizTalk: how Microsoft 

would position the product in their integration portfolio? Would Microsoft continue to 

support BizTalk, or deem it obsolete? Throughout the past few years, it has been 

questioned whether BizTalk is dead. The answer is that BizTalk has not been 

deprecated, and it is, in fact, at the heart of Microsoft’s ESB solution [37, p.645].  

Rather than a product, Microsoft sees ESB as an architectural pattern, a set of 

capabilities that can be provided by a combination of Microsoft technologies. BizTalk 

Server, with the ESB Toolkit (ESBT), forms the core of this combination. The ESBT 

started out as “ESB Guidance”, a collection of documents and components, which then 

developed into the first version of the toolkit. ESBT 1.0 was released to be run on top of 

BizTalk 2006 R2, and ESBT 2.0 was similarly for BT 2009. In BizTalk 2010, the ESBT 

was upgraded into 2.1, but still offered as an additional feature, requiring separate 

installation. In BizTalk 2013, the ESBT has become part of the core BizTalk product. 
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This course of evolution indicates that Microsoft (as well as many others) considers the 

ESB an important part of modern integration. 

The question is: how can a product that has always been an EAI hub, suddenly 

become an ESB? Is this just about Microsoft trying to repackage old functionality under 

a new name, in order to extend the lifetime of the product? Historically, many BizTalk 

solutions have become large, complex, and tightly coupled. That is, they suffer from the 

common EAI problems. Yet, it does not have to be so, and BizTalk is not inherently 

inflexible. BizTalk does offer many dynamic capabilities. The main reasons why 

developers were not using these were that 1) the developers were unaware of the 

features and 2) a significant amount of custom code is required to make use of the 

features. [37, pp.646-648] 

The ESB Toolkit is trying to bridge this gap between what is possible in theory, and 

what is achievable with practical amounts of work. It introduces new components and 

frameworks and provides architectural guidance. In technical terms, it is a codification 

of many BizTalk best practices. However, it is essentially an abstraction layer, building 

on top of the existing architecture rather than changing the underlying components. The 

ESB Toolkit is always used together with BizTalk; it does not function as a standalone 

installation. The five layers of the ESB Toolkit stack are illustrated in Figure 5.16. 

 

Figure 5.16. The ESB Toolkit stack. 

The stack illustrates how BizTalk Server forms the foundation for the Toolkit. The 

ESBT uses the BizTalk mapping engine, adapters, pipelines, orchestrations, rules 

engine, and the host environment itself. The other layers of the stack contain the 

components that constitute the actual ESBT (e.g., .NET components, web services, and 

prebuilt BizTalk components, such as orchestrations and pipelines). [37, p.649] 

The two top layers, mediation policies and components, form the basis for 

implementing itinerary-based routing. The middle layer, resolvers, provides the 

dynamic, runtime resolution capabilities. Right on top of the BizTalk Server, the adapter 

providers allow the .NET-based ESBT components and BizTalk Adapters to 

communicate with each other. 

Mediation policies sit on top of the ESBT stack. These policies define how the 

various mediation components should process a message, and where the components 

can retrieve the required configuration information. A mediation policy is used as a 

conceptual term, and a concrete instance is called itinerary (or routing slip). [37, p.659] 

An itinerary essentially describes a series of steps required to process a message (that is, 
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a series of services to be invoked). This description is then implemented by the 

mediation (or itinerary) components residing on the subsequent layer.  

If not using the ESBT, an orchestration could be used to define the message flow. 

However, orchestrations are static artefacts that require many operations in order to 

function (e.g., they must be compiled, registered in the Global Assembly Cache, GAC, 

and deployed on the ESB). On the other hand, itineraries are nothing but raw XML data, 

travelling along the message through the ESB. This data is stored in the message 

context properties, and can be accessed by any component. [37, p.660] If the message 

flow changes, only thing that needs to be updated is the itinerary: no changes to low-

level code or BizTalk, and no need to recompile anything [37, p.663]. 

The itineraries are technically just XML, so it is possible to manually create them. 

What BizTalk once again does is it offers helpful tools for this rather cumbersome task. 

Visual Studio has a specific design surface that is used for itinerary development. The 

itineraries can then be exported to any environment as XML files, or, more likely, 

exported directly to the SQL database which functions as a repository. [87, pp.651-652] 

The mediation (or itinerary) components perform the actions described by the 

itineraries. The core mediation components are the generic Routing service and the 

generic Transformation service (called the ESB services or ESB agents), and on-ramps 

and off-ramps. The ESB agents are the (BizTalk) components that provide the dynamic 

routing and transformation capabilities. The on-ramps and off-ramps allow applications 

on other platforms to leverage the BizTalk-based ESB agents. They provide generic and 

reusable entry and exit points to and from the ESB. [37, pp.650-652] 

One of the ESB keywords is “dynamic”: in order to provide flexibility and 

reusability, static and hard-coded values should be avoided, and dynamic runtime 

resolution used instead. However, whether static or dynamic, all the metadata and 

instructions still need to come from somewhere. The resolver framework (the middle 

layer of the stack) provides the means to dynamically resolve all types of required 

metadata at runtime, from various data sources. The resolver mechanism can be used to 

specify itineraries, maps, endpoints, and so on. The ESBT has prebuilt resolvers to 

support various technologies, e.g., UDDI (Universal Description, Discovery, and 

Integration), XPath (XML Path Language), and BRE. [50, pp.10-11;87, pp.655-657] 

For example, as a message enters the ESB, an itinerary to be used should be 

specified. This could be done already at client-side, but it is preferred to use server-side 

specification in combination with an itinerary repository. [87, pp. 651-652] A resolver 

could be used to perform a UDDI query, execute an XPath statement against the 

message, or execute a BRE Policy, in order to retrieve the itinerary name. Using the 

name, the resolver can then retrieve the correct itinerary from the ESBT database and 

attach it to the message. [50, pp. 11-12] Thus, the itinerary is resolved dynamically, at 

runtime. 

Adapter provider framework basically provides mapping between the ESBT 

configuration properties and BizTalk adapter properties [50, p.10]. The core problem is 

that the resolvers use a data format (a dictionary object) that the send ports do not 
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understand. The adapter providers extract the data from this format and place it into 

BizTalk context properties, which the send port is able to process. [87, p.657] It is worth 

noting that only those BizTalk adapters that have a corresponding ESBT adapter 

provider can be used as dynamic off-ramps. The ESBT has multiple built-in adapter 

providers available, and it is possible to develop custom ones. [87, pp. 658-659] 

Figure 5.17 illustrates an example scenario of a message traveling through a 

BizTalk-based ESB. It shows how the previously introduced components work together 

to provide the key ESB functionalities. For more information about the ESB Toolkit, 

and BizTalk as an ESB, see e.g., [50;95]. 

 

Figure 5.17. Message flow through the BizTalk ESB [50]. 

Whether BizTalk is an ESB or not has been a topic of rather heated debate. 

Arguably, the most important qualities of an ESB are 1) dynamic operation, i.e. runtime 

resolution of transformations, routing endpoints, and so on, and 2) internally service-

based implementation and deployment. The ESBT can be used to build significantly 

more dynamic solutions than what is possible with BizTalk alone. The ESBT operation 

is also internally, up to a degree, service-based. Yet the underlying BizTalk 

environment, which the ESBT needs in order to function, is clearly monolithic in nature. 

This is a fact that cannot be easily changed. It can be argued that this disqualifies 

BizTalk as an ESB. However, rather than entering the debate, it is probably more 

important to understand whether this limitation has any real effects on the integration 

task at hand. 
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5.5 Information security in BizTalk 

Planning and building a secure BizTalk architecture, and securing the BizTalk platform, 

the underlying databases, and operating systems, are all essential to the overall security. 

An example diagram of a highly distributed BizTalk architecture that takes defence-in-

depth into consideration is given in Figure D.1 (Appendix D). Even with a simpler 

architecture, the security considerations are complicated and must cover various 

technologies and platforms, e.g., the Windows Server OS, Domain Controller and the 

AD, BizTalk Server itself, and MS SQL Servers. When planning the environment, 

things to consider are high availability (redundancy), backups and disaster 

recoverability, management and tracking capabilities, and so on. A BizTalk 

environment is complex, and securing it requires knowledge about general information 

security concepts, quite high levels of expertise with various Microsoft technologies, 

and significant investments of time and money. 

It is not possible to introduce each of the platforms and their security aspects here, 

and it was never intended in this work. The goal is to analyse integration security in 

general, rather than to provide platform-specific details. After all, the integration 

platform used in the project is BizTalk, but it could just as well be some other product. 

The general threats to the C-I-A qualities that were discussed earlier are applicable 

to BizTalk as well. The BizTalk Server 2010 Help offers a STRIDE –model to aid in 

threat analysis. STRIDE is an acronym from: Spoofing identity, Tampering with data, 

Repudiation, Information disclosure, Denial-of-service (DoS), and Elevation of 

privileges. Some examples as well as mitigation strategies and methods are given. [96] 

On a general level, BizTalk provides all the usual countermeasures for the threats. 

Encryption (channel- and message level) can be used to prevent information disclosure 

(confidentiality of data). Digital signatures are used to ensure that data is not tampered 

with (integrity of data). Denial-of-service threats can be mitigated by only accepting 

messages from authenticated parties at receive port level (this naturally only protects the 

MessageBox, it does not protect the network generally from DoS-attacks, and thus does 

not help if the entire server is unreachable). Further, the size of the received messages 

can be limited. Various logs and BizTalk tracking capabilities help to (internally) 

provide accountability. Digital signatures can be used to identify the participants of a 

message flow. [96] 
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6 EXAMPLE ARCHITECTURE AND THE 

DEMONSTRATION ENVIRONMENT 

Earlier research indicates that certain concepts, such as service orientation and canonical 

data model, play a key role in integration. A proposed solution is to develop a service-

oriented architecture that uses an ESB as a communication backbone. The IEC 

Common Information Model is suggested for the canonical data model. In theory, the 

benefits of these concepts are very clear. The next step is to demonstrate them in 

practice with proof-of-concept solutions.  

This chapter describes first an example for DSO ICT architecture, and then the 

demonstration environment that was built as a partial implementation of the example 

architecture. As the integration is implemented gradually, the goal is that more systems 

can be added to the solution later on.  

6.1  Example DSO ICT architecture in SGEM 

Figure 6.1 shows the planned DSO ICT architecture in the scope of the entire project. It 

is essentially a specific instance of the general distribution domain architecture 

introduced earlier.  

 

Figure 6.1. Example DSO ICT architecture in SGEM project. 
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In the general DSO architecture, the systems were pictured on a conceptual level (e.g., 

an ESB, a DMS). Here, each system is a vendor-specific product that is used within the 

SGEM project (e.g., a BizTalk-based ESB, ABB DMS 600). One of the goals of the 

whole project is to provide testing environment for integration, and to test real products. 

The integration platform used here is BizTalk. The following subchapters introduce the 

various systems connected to BizTalk. 

6.1.1 ABB DMS 600 and ABB MicroSCADA 

The Distribution Management System used in this project is ABB DMS 600. It is fully 

functional, mature software system and it is widely used by DSOs in Finland and 

worldwide. ABB refers to it as a geographical DMS, as it provides geographically based 

network views in addition to the traditional SCADA functionalities [3]. MicroSCADA, 

the SCADA product used in the project, is also developed by ABB.  

The DMS 600 is deeply integrated to the MicroSCADA, and they have an 

established communication interface between them (as illustrated in Figure 6.1). 

However, the DMS 600 can also be used without SCADA, or with other SCADA 

systems using OPC DA (Open Platform Communications Data Access) interface. [3] In 

any case, these systems will communicate directly with each other, instead of through 

the ESB. Possible CIM interfaces and ESB connectivity are not considered in this 

thesis. 

 The ABB DMS and MicroSCADA products are complex software systems, and 

will not be discussed in detail. They have most of the common DMS and SCADA 

features discussed earlier, and much additional functionality as well. An overview of the 

DMS can be found, for example, in [77]. For details, refer to the product website [4], 

and product documentation and manuals (e.g., [2;3;5]). 

6.1.2 OpenEMS Aggregator 

In terms of the use cases in this work, the key functionality of aggregator is to collect 

data from customer premises through home automation systems. It then makes this 

aggregated data available to other systems through the ESB.  

 The aggregator is based on Nokia Siemens Networks’ Open EMS Suite (OES), 

an out-of-the-box software product that provides the basic capabilities of an element 

management system, EMS [106;107]. The home automation system used in SGEM is 

ThereGate, but it could be another product as well. The aggregator is shortly introduced 

in source [110] (where an in-depth analysis of the security aspects of the home 

automation system, and its connection with the aggregator, are also provided). A more 

thorough introduction is available in [118;119]. 

6.1.3 OpenCIM Calculation Engine 

The OpenCIM calculation engine is provided by InterPSS. It is described as an object-

oriented approach to the CIM information model, and as an RDF/XML file processor, 
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rather than an RDF/XML editor. It provides a framework for processing information 

stored in an RDF/XML file and transferring it into other applications. [67] OpenCIM 

uses Java and it is built on standard-based Eclipse technologies [65;67]. 

 According to InterPSS, the OpenCIM goals were to provide a tool that does not 

require high-end hardware, complicated configuration, or enterprise relational database 

software. This is necessary for keeping the software cost-effective and affordable for 

utilities of all sizes. Further, it should be possible to adapt or extend the OpenCIM to 

accommodate enhancement and customer-specific requirements, and integration with 

other power system applications should be easy. [65;68] Whether these goals were 

achieved is not analysed in this work. The OpenCIM provides much functionality, but 

here the only requirement is to perform load flow calculations based on a CIM network 

model (for the purposes of the use case A, see Chapter 7.1). Thus, the OpenCIM does 

not require further introduction. Detailed information is available in, e.g., [65;66;68]. 

6.1.4 Cybersoft Network Manager 

Network Manager is a solution used to support the traditional Network Information 

System functions. It offers tools and functionality for better and more efficient operation 

and planning of the network. This description is based on the information available at 

Cybersoft website [31]. The software is currently not available for testing purposes in 

this project. It is mentioned here, as it is part of use case A (see Chapter 7.1). 

The Cybersoft Network Manager is a collection of browser-based solutions for asset 

management and operations for both distribution and transmission domain. According 

to the company website, the solution is modular and flexible, and based on standards 

and openness. The Network Manager is based on IEC CIM standard, it is easy to 

integrate to other systems, and it is also available as a service. Some key benefits listed 

are: increased reliability of the network, increased transmission capacity, decreased 

investments, improved safety, optimized workflow, and lower overall costs. [31] 

6.1.5 Other systems 

In addition to the systems already introduced, Figure 6.1 shows a few others, such as 

workforce management systems (WMSs), and AMI (or AMR) gateway. A WMS is used 

to manage and instruct the crews that handle, for example, repairing and installation 

tasks on the field. Depending on the product, the functionality could also be part of the 

DMS.  The WMS is also referred to as Field Force Management System (FFMS). In this 

work, the terms WMS and FFMS are used interchangeably. The AMI gateway handles 

communications with the smart meters.  

There could be any number of various smaller software products in use at a DSO, 

such as the Coordinated Voltage Controller and State estimator described later in use 

case C (see Chapter 7.3), and a specific network topology conversion service. These 

systems are not available in the demonstration environment, and will not be described 

here. 
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6.2 Demonstration environment 

One of the key requirements for ESB-type integration is that it should be easy to build 

the solution incrementally. The demonstration environment (Figure 6.2) is a partial 

implementation of the proposed architecture, and the parts that were implemented are 

described here. The goal of this work was to provide a working BizTalk installation in 

the AIN (ain.rd.tut.fi) network. Various other systems in the ELE (ele.tut.fi) network 

could then be integrated using the BizTalk installation. 

 

Figure 6.2. Demonstration environment. 

The BizTalk environment can be used as a starting point for further integration. The 

environment is virtualised (see next subchapter) and it is easy to add systems into it. For 

this reason, the entire implementation of the demonstration environment currently 

resides at the AIN network. However, for future testing, the DSO ICT systems (such as 

DMS, SCADA, and OpenCIM) should be installed in the ELE network. That would be 

a more realistic installation, when all the systems are not on the same physical server. 

6.2.1 Virtualisation environment and tools 

Even a simple BizTalk testing environment can grow into complex multi-computer 

installation. Virtualising the environment offers many benefits: it is simple to add new 

machines, reconfigure the environment, or go back to an earlier state within a virtual 

machine (so-called snapshot). These are particularly useful things in test environments, 

where reconfigurations and changes are often made, and the system easily corrupts. 

Basic idea of virtualisation is that a single physical machine can run multiple virtual 

machines, as illustrated in Figure 6.3. A layer called hypervisor, or Virtual Machine 
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Manager (VMM), is added between hardware and operating system. The additional 

layer naturally does reduce performance, which should always be taken into account 

when planning to virtualise an environment. Security is also important in virtualisation: 

should the hypervisor be compromised, all virtual machines hosted within it could be 

compromised.  

 

Figure 6.3. The concept of virtualisation [144]. 

The BizTalk environment was built on top of a VMware ESXi virtualisation 

platform, provided by the Automation and Information Networks (AIN) research group. 

ESXi is a Type 1 hypervisor; often called native or bare metal hypervisor, because it 

runs directly on the host hardware. Type 2 (hosted) hypervisor runs as a program within 

an OS, an option which is not discussed here. For detailed information about 

virtualisation with VMware tools and products, see, e.g., [139;143]. 

6.2.2 Configuration of the environment 

Figure 6.4 shows a more detailed view of the environment that was presented in Figure 

6.2. The components in the AIN network, that is, the virtualised BizTalk environment 

and the management server, are installed as shown. In Figure 6.4, the DMS, OpenCIM, 

and other DSO systems are pictured in the ELE network. However, these are currently 

installed in the ESXi platform along with BizTalk. Future development need is to move 

the DSO systems from the AIN servers to other machines. These could be located in the 

ELE network, or they could reside somewhere else entirely (e.g., public cloud-based 

services accessible in the internet).  

The AIN Server A has VMware ESXi 5.0 hypervisor platform installed and it hosts 

the BizTalk environment. The ESXi itself offers only the runtime environment for the 

hosted virtual machines. The Server B is used for managing and configuring the virtual 

environment and administering the virtual machines within Server A. VMware vSphere 

is installed on a virtual machine running on the Server B. The vSphere software is used 

for e.g., creating new virtual machines and configuring the virtual networks within the 

ESXi platform. It is recommended to separate the management traffic and the traffic of 

the actual virtual machine operations, thus, two separate physical network interface 

cards (NICs) are used. 
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Figure 6.4. Detailed view of the demonstration environment. 

The benefits of this virtualisation configuration are that it provides a securely accessible 

platform that can be easily configured and changed, and has sufficient performance. 

6.2.3 BizTalk 2010 environment 

A test installation of BizTalk 2010, illustrated in Figure 6.5, had been performed and 

was in place when starting this work. This is a Windows Workgroup environment. The 

BizTalk Server 2010 is installed on a virtual machine running Windows Server 2008 R2 

operating system. For simplicity, the MS SQL Server is installed on the same machine. 

This can be done when testing BizTalk, but it is not recommended in a production 

environment. The free test version, SQL Server 2008 Express Edition is used here. 

 

Figure 6.5. BizTalk 2010 demonstration environment. 
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To perform initial testing for BizTalk solutions, two virtual machines with Windows 

7 were installed. These test clients had no specific software running; only purpose was 

to test that data could be transmitted between machines. To gain understanding of how 

BizTalk works, example scenarios from Microsoft’s BizTalk material and various 

BizTalk books were implemented. These were not Smart Grid –related integrations. 

One goal was to test BizTalk’s ESB capabilities, but installing the ESB Toolkit into 

this environment proved to be problematic. It would have required a change into a 

domain environment. This would have altered the name(s) of the machine(s), causing 

problems with the SQL Server, and thus with BizTalk. With virtualisation, it proved to 

be simpler to build an entirely new environment, and the BizTalk 2010 environment 

could also coexist with the new solution. Another reason to perform a new installation 

was the release of the new BizTalk Server 2013 Beta.  

6.2.4 BizTalk 2013 beta environment 

Microsoft launched new versions (the “2012” line) for its core server products, its 

database servers, and Visual Studio development environment. A beta version of the 

new BizTalk was also released. In Microsoft’s naming convention, new major versions 

are named according a year (e.g., Windows Server 2008). Smaller, yet still significant 

updates add a revision number (e.g., Windows Server 2008 R2). This indicates that the 

release of the new “2012” line was important. Before the beta release, the new BizTalk 

was unofficially referred to as “2010 R2”. The fact that it was eventually named “2013” 

indicates that it has significantly changed. 

The BizTalk 2013 beta environment was built from the ground up, and the result is 

pictured below in Figure 6.6. This is a Windows Domain environment.  

 

Figure 6.6. BizTalk 2013 demonstration environment. 
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The BizTalk environment is formed by the Domain Controller (DC), the SQL Server, 

and the BizTalk Server itself. These are all running Windows Server 2012. As a 

recommended best practice, the DC acts only as a domain controller and has no 

additional roles. The SQL Server is installed on one (virtual) machine, and the BizTalk 

Server on another. This kind of installation is sort of a minimum realistic configuration 

for BizTalk (without any redundancy measures). 

The ABB DMS and Test client machines shown in Figure 6.6 are not required for 

BizTalk, they are specific to this testing environment. Originally, the plan was that the 

AIN environment only hosts the BizTalk installation. All the systems to be integrated 

should reside on other environments. However, no outside systems were available 

during this work. In order to test the BizTalk, the ABB DMS and Test client machines 

were created within the virtualisation environment. For future work, these should be 

installed within the ELE laboratory. 

The DMS 600 is installed on a Windows Server 2008 R2 virtual machine. It also 

requires a SQL database, and in this case MS SQL Server 2008 R2 SP1 Express Edition 

is installed on the same virtual machine. It is possible to export the network model from 

the DMS database and produce a CIM-formatted XML file. However, this functionality 

was not officially part of the DMS. It was offered as an additional tool that is still under 

development.  

The test client is a Windows 7 machine that has the OpenCIM calculation engine 

installed. This client is used for testing file transfers between different machines, and it 

represents the OpenCIM system. Other software can be installed on this machine when 

necessary. It is also possible to add more client machines to the environment, if and 

when needed. 
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7 SGEM SMART GRID USE CASE EXAMPLES 

Three example use cases served as the starting point for demonstrating the integration in 

practice: network model exchange, fault repairing, and active voltage control. The cases 

are based on the SGEM research paper “Examples of inter-application communications 

in a DSO” [89]. 

The use case starts with a textual description as given in [89]. The analysis starts 

with the creation of data flow diagrams (DFD) for the purpose of analysing the 

information exchange between the systems and the information security requirements 

for each use case. Most of the participating systems listed in the use cases are not yet 

part of the demonstration environment, and the ones that are do not yet have (fully 

functional) CIM interfaces. Thus, implementation is possible only in a very limited way; 

however, implementing is discussed and guidance for further development is provided.  

The detailed analysis and the implementation efforts of the use cases clearly show 

that there are still challenges to solve. Defining and implementing use cases is an 

iterative process, and for the cases discussed here, the work had just begun. The key 

issues are collected under the heading “lessons learned” for each use case.  

7.1 Case A: Network model exchange 

The first use case is network model exchange, where the static network model is 

exchanged between DMS and an external load flow calculation engine. A network 

manager operates as a proxy between the two systems. This case is based mainly on the 

IEC 61970 profiles (61970-452 and 456), unlike the two other cases. The data exchange 

is described as follows: 

1. DMS exports the network model to Network Manager. 

2. Network Manager exports the network model to OpenCIM. 

3. OpenCIM calculates load flow and exports the results to Network Manager. 

4. Network Manager forwards the load flow analysis result to DMS. [89]  

In another paper by the same authors, the use case is described as follows: “The first 

use case is to integrate ABB DMS 600 with a calculation engine based on OpenCIM: 

DMS exports the whole network model and some measurements to the calculation 

engine; the calculation engine then performs load flow calculation, and exports the 

result to DMS.” [88] 

The authors observe an issue in the use case, namely, how to model the load flow 

calculation result in the CIM format. This is required for exporting them to other 

applications. The paper suggests two solutions. One is to choose an existing 

standardised profile (e.g., ENTSO-E model exchange profile or IEC 61970-456), the 
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other is to define a context-specific CIM profile, possibly by taking an existing profile 

as a starting point and extending it for this particular use case. [88] This issue remains 

unsolved. 

7.1.1 Data flows 

The network model exchange use case was chosen as the starting point for the 

integration analysis, as it only has a few endpoints and data flows. The only data 

moving in the use case are the network model and the calculation results, as illustrated 

by the DFD in Figure 7.1. The unsolved problems related to the use of CIM are 

irrelevant for this data flow analysis. 

  

Figure 7.1. DFD for the network model exchange use case. 

A core idea of the pub-sub messaging pattern is that the publisher does not need to 

be aware of the subscribers; it only publishes data to the message hub. For example, the 

OpenCIM publishes the calculation results, but from its viewpoint it makes no 

difference whether there are subscribers or not. Either the DMS or network manager, or 

both, may subscribe to that information (and for future use cases, other systems as well). 

If the network manager will not actually process the data prior to sending it to the 

DMS, there is no reason to use it “as a proxy”, as this adds no value. The network 

manager may update its internal network model, and may also have need for the 

calculation results. However, if it does not publish any results of its internal processing, 

it is only a data sink. Thus, in this use case, it can subscribe to the data, but that does not 

affect the operation of the DMS or OpenCIM. The DFD in Figure 7.2 illustrates a 

simplified version of the use case where the network manager is subscribed to both the 

network model and calculation results, but does not alter them in any way. 
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Figure 7.2. Simplified DFD for the network model exchange use case. 

If the network manager processes neither the network model nor the calculation 

results, it can be entirely removed from the use case. This does not affect the operation 

of the DMS or OpenCIM. The further simplified use case is illustrated in Figure 7.3. 

 

Figure 7.3. Simple DFD for network model exchange use case (w/o Network Manager). 

This further simplified use case is applied in the implementation. This is necessary 

as the network manager software is not currently available for testing. However, it is 

one of the benefits of a dynamic integration solution (and the pub-sub messaging 

pattern) that it is easy to later add the network manager to the solution. If the network 

manager does have a role other than a mere data sink, however, then the entire use case 

needs to be implemented as it was illustrated in the first DFD (Figure 7.1). 

7.1.2 Information security 

The goal is to analyse the information security requirements of each data flow in a use 

case. This use case consists of only two data flows: the network model and the 

calculation results.  

A starting point for security analysis is to define the information content of the 

flows (e.g., the network model or calculation results). Then, the analysis is about asking 

questions such as: Is this information confidential? Who might benefit from access to it? 

What happens if the data is wrong or incorrect? Is there a way to know if the data 

received is incorrect? How can the sender/receiver be authenticated? What if this data is 

not available 1) in a given timeframe or 2) at all? These are just a few examples of 
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relevant questions. There are plenty of well-established methods and sample question 

lists for a risk analysis or threat model analysis (TMA). Naturally, these need to be 

applied to the domain, the environment, and the specific case at hand. This requires 

collaboration between information security experts, who have the knowledge and mind-

set to ask the right questions, and domain experts, who understand how the system 

works and what it is intended to do, and thus have the expertise to answer the questions. 

Table 7.1 provides an example of how the contents of a data flow could be analysed 

from the information security point-of-view. The example may not be comprehensive. 

Table 7.1. Example data flow security analysis. 

Information content: 

Network model 

Confidentiality Integrity Availability 

Priority/value Low  High  Medium 

To whom is this 

valuable? (Owner, 

user, systems, 

attackers, etc.) 

The confidentiality is not 

critical. The model changes 

over time, and even if the 

confidentiality is 

compromised, the data 

acquired is soon invalid. 

Integrity is highly valuable 

for anyone who will use this 

Availability is generally 

important, but the network 

operator participates in this 

use case, so real-time aspects 

are “human-time”. 

What are possible 

consequences if 

compromised 

Unlikely mission-critical if 

confidentiality is 

compromised. 

Consequences can be 

severe. For example, all the 

calculation results based on 

the model are incorrect, if 

integrity is compromised. 

Depends on the timeframe. 

Immediate availability is not 

critical. Extended periods of 

unavailability will start to 

cause problems in network 

operation. 

Who might attack, 

how, why? 

Attacks against 

confidentiality possible, but 

unlikely the most 

significant issue. 

Malicious party who wants 

to disrupt the operation 

might target this. Attacks 

involving an insider may 

easily affect integrity. Non-

malicious aspects probably 

even more significant issue. 

A denial-of-service attack is 

possible; would probably be 

targeted more generally 

against the system. There are 

likely use cases with more 

demanding real-time 

requirements. 

Unintended, non-

malicious aspects that 

can cause problems 

(errors etc.). 

Misconfigured systems or 

human errors could lead to 

loss of confidentiality. 

Error in transmission, 

human error, outdated data 

etc. more likely an issue. 

The data could be erroneous 

to begin with (before the 

transmission begins), but 

this is not an information 

security issue. 

Many types of system 

failures might affect this 

(e.g., the service is 

unavailable, there are 

problems with the DMS, or 

with the database that stores 

the network model). 

Countermeasures, 

how can this be 

protected (on a 

general level).  

Channel-level security can 

be used during 

transmission. Generally, 

encryption unlikely 

necessary. 

Checksums, timestamps, 

etc. to prove integrity and 

correctness (to a degree).  

Redundancy at some level. 

Real-time performance is not 

critical, so using e.g. 

resending to assure 

successful transmission is 

applicable. 

While this kind of an analysis for each data flow is important, but in the end of the 

day, information security is a money matter. There is always the cost-benefit ratio to 

consider. For example, if one data flow from a certain system needs to be confidential 

but others need not, it may be simpler to encrypt all data flows (channel-level) rather 

than analyse them in detail. Or, building of a redundant transmission channel that will 
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ensure data availability in case another channel is unavailable would provide improved 

availability for all the flows between the systems, even though only some would require 

it. In general, the analysis can be simplified by considering security measures that have 

a more widespread coverage than a single data flow (e.g., channel-level security 

methods instead of message-level, whenever appropriate). 

A crucial aspect of the analysis is to define the security (trust) boundaries. Even 

though the current environment may be mostly (or even fully) under the direct control 

of the DSO, it is unlikely to remain so in the future. Building security based on the 

assumption that data remains within an organisation’s control will probably lead to 

issues later on. It is safe to assume that, in the future, most data flows may cross 

organisational borders, due to the increased use of service outsourcing and cloud-based 

solutions. In SOA, the organisational borders are unclear or even non-existent. This 

makes it much harder to implement information security, as the content may be 

processed and transmitted in very different environments. 

In addition to this detailed (flow-by-flow) method of analysis, it is important to 

understand the bigger picture. In general, what happens if this use case cannot be 

implemented or there are information security related issues? It is hard to analyse this 

without understanding, in general, what is done in the use case and why. This indicates 

that a more abstract, conceptual model is needed. 

7.1.3 Implementation with BizTalk 

The use case could be implemented in various ways using BizTalk. The following 

extremely simple scenario is provided as a starting point. The DMS can export a 

network model in CIM format, but this functionality is not yet officially part of the 

DMS, it is offered as a custom tool that is under development. Currently, there is no 

interface that would make the model available for other systems or users. The custom 

tool outputs an XML file generated on the basis of the network model data stored in the 

DMS database.  

Some BizTalk functionality can be demonstrated with a very simple file transfer 

based messaging solution. The solution is, in fact, so simple that it can be entirely 

constructed with the administration console; it is not necessary to use Visual Studio.  

The file transfer is implemented as follows: BizTalk picks up the network model 

(XML file) from a shared folder on the DMS machine. A pass-through pipeline is used, 

meaning that the XML file is not processed in any way. No mapping is used either, the 

network model is a payload in the message. It is technically possible to map the file into 

an internal BizTalk format, but, in this case, it would make no sense. Internally, BizTalk 

does not use the network model for any purpose. Moreover, the XML file is very large, 

with an arbitrary number of fields. Thus, it is more reasonable for BizTalk to handle it 

as a payload, rather than process it in any way. 

The routing is based on the information about the receive port. The send port that 

sends the network model to the calculation engine simply subscribes to messages 

received from a given receive port. When a network model arrives at the receive port, it 
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is routed to the send port that sends it to OpenCIM. Now, if the model should 

additionally be sent to, say, the Network Manager, it only requires the addition of 

another send port that subscribes to this same receive port. This is a really simple 

configuration task.  

Returning the load flow results to DMS is still a question mark. The issue is 

twofold: 1) how to model the results using the CIM and 2) how to export the results 

from the OpenCIM for other systems to use. This clearly shows that there are still issues 

in the use of the CIM.  

Even this simple scenario shows some of BizTalk’s capabilities. Building this kind 

of a solution is easy, and BizTalk automatically provides reliability, error and exception 

handling, tracking, and so on. This type of message exchange between various 

endpoints is exactly what BizTalk was originally designed for, and it does this very 

well. Yet, it has very little to do with using an ESB or being service-oriented. The 

solution is essentially a point-to-point type of link between the two endpoints (even 

though here implemented using a hub). It does not embrace the key ideas of service 

orientation or promote such goals as reusability and service composition.  

7.1.4 Lessons learned 

Clearly, the implementation efforts did not lead to an ESB-based SOA, and the 

accomplished implementation remains very limited. Many issues were recognised while 

analysing and implementing the use case. First, the data flow analysis showed there 

were some issues with the pub-sub messaging pattern. Second, the information security 

analysis brought up the need for a more abstract model that states in general terms what 

the use case is all about. Finally, the implementation phase showed that the way the use 

case is currently defined does not necessarily lead to a service-oriented solution. An 

ESB is not required for such an implementation. 

Currently, the use case description starts at a fairly technical level. The whole 

purpose of exchanging a network model and performing load flow calculations is 

probably clear to a person with a background in electrical engineering. For an 

information security or integration professional, what is done (on a conceptual level) 

and why it is done, is likely to remain vague. Building secure integration within the 

Smart Grid requires expertise from many fields. Everyone participating should have an 

accurate idea of what a use case is all about, why it is done, what benefit it bears, and 

what happens if it, for some reason, goes wrong.  

Among the first steps, an essential model of the use case should be developed. It 

explains the use case in general terms, defining what is done without going into 

technical details. Figure 7.4 shows a DFD illustrating an essential model for network 

model exchange.  
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Figure 7.4. Essential model for the network model exchange use case. 

The essential model shows that the network operator initiates the case by requesting 

a load flow analysis. The network model is required to perform the analysis, and the 

results are then returned to the network operator. A textual description should be added 

to further explain, for example, why this is done, how often it would happen, 

consequences if it cannot be done (at all, or within a timeframe), what if the results are 

erroneous, and so on. 

In order to move towards service-orientation, certain services are obviously needed. 

A good example is a service that would perform the load flow calculation, based on a 

network model given as an input. The DMS could invoke this service, and provide the 

CIM formatted network model as an input. The load flow analysis service would then 

return the calculation results to the caller (the DMS). In this case, the transaction would 

be initiated and orchestrated by the DMS.  

Making the network model available for other users is another prime example of a 

possible service. Both of these services deal with rather complex things, so it might be 

necessary to have a few different variants of these services (for example, a service that 

provides the entire network model, and another that provides the changes done after a 

specified time).  

This is a starting point, but merely wrapping a few functionalities to be offered as 

services does not make the architecture service-oriented. Similarly, connecting these 

services using BizTalk does not yet constitute an ESB.  

An ESB-based, service-oriented solution would operate differently. The request to 

perform load flow analysis enters the ESB. The request can be initiated by the network 

operator, happen automatically as a part of some other use case, or it can be time-based, 

for example. The ESB would dynamically solve which itinerary to use, and attach it to 

the request, in order to invoke the right services. First, a service that provides the 

network model is invoked. The next step is to send the original request and the network 

model to a service that performs the load flow analysis. Finally, the results of the 

analysis are routed back to the original requestor. Optionally, the load flow analysis 

service could invoke the network model service and request for the model, if it was not 

attached to the input. In the original description of the use case, pub-sub messaging was 

mentioned. This sort of itinerary based scenario does not require (or even support) the 

use of pub-sub messaging. 
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7.2 Case B: Fault repairing 

The second use case concerns fault repairing. The data exchange is described as 

follows:  

1. Smart meter captures a problem at a customer’s residence. The Automatic 

Meter Reading (AMR) gateway raises an alarm, which is received by DMS.  

2. DMS locates the fault and prioritises the problem by consulting CIS for the 

customer data.  

3. DMS issues a work order by sending commands to Field Force Management 

System, which then dispatches the order to a correct work group.  

4. Work group reports repairing work status. This is done by Field Force 

Management System sending a report to DMS. [89] 

The described data exchange is implemented with an ESB, and as illustrated in 

Figure 7.5, all the messages travel through the ESB. The messages are constructed 

based on the IEC 61968 profiles. [89]  

 

Figure 7.5. Data exchange in the fault repairing use case, adapted from [89]. 

The idea is that when a smart meter alarms about a problem, the DSO systems can 

automatically locate and prioritise the issue, and assign a field crew for repair work. 

7.2.1 Data flows 

The data flows in this use case are more complex than in the network model exchange, 

as Figure 7.6 illustrates. 
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Figure 7.6. DFD for the fault repairing use case. 

There are some points worth considering in the use case description. The first steps of 

the use case indicate that some point-to-point way of thinking may still affect how the 

message exchange is defined. In the description, one point-to-point link is when the 

AMR Gateway alarms the DMS, another when the DMS consults the CIS for customer 

information. The CIS then replies with the requested customer information. 

However, when using pub-sub messaging, the AMR gateway does not send the 

alarm directly to the DMS (or any other system). Instead, it publishes it to the hub or 

bus. The alarm originating from the smart meter probably already has some sort of 

customer ID, as well as location data, attached to it. The CIS should subscribe to all 

these alarms coming from AMR gateways. When an alarm is published, the CIS 

receives it, and then adds customer information based on the customer ID. The CIS then 

(re)publishes the message (which contains both the alarm and added customer data) to 

the ESB. This scenario is illustrated in Figure 7.7. 

 

Figure 7.7. Simplified DFD for the fault repairing use case. 

As the DFD shows, the DMS can, in fact, be subscribed both to the alarms coming 

directly from the AMR gateway (so it can immediately start to process them) and the 



 78 

“customer data (alarm)” coming from the CIS. This way, there is no need for the DMS 

to specifically request the customer data. The point is not that requesting the data would 

be a huge effort. This has more to do with fully embracing the idea of pub-sub 

messaging. However, building an ESB solution that uses itinerary-based routing will 

change the nature of the entire messaging. This will be discussed in the lessons learned 

section. 

7.2.2 Information security 

This use case brings up more interesting information security issues, as it is dealing with 

metering data and other things outside the control centre (BizTalk) domain, and also 

with data from service providers. 

Thus, the flows that move across the security/trust boundaries of the DSO, to and 

from the partner systems, are of specific concern. The flows originating from there, e.g., 

manipulated metering data can cause disturbances in the system, if widespread 

misinformation infiltrates the system. Otherwise, the data flow analysis is essentially 

similar as in the use case A, and detailed analysis for flows will not be discussed here.  

7.2.3 Implementation with BizTalk 

It is not possible to implement this use case with the available demonstration 

environment. Apart from the DMS, the endpoint systems are not available for testing. 

 This case is more complicated than the previous one, with more endpoints and 

data flows, and analysing it further points out the difference between an EAI type 

message broker and an ESB solution. Implementing the case as originally described 

leads to an EAI type of solution: the process is largely controlled by the DMS, with the 

middleware only handling the messaging. The DMS carries out most of the decision-

making and interacting with the user, consulting other systems when necessary. 

Consulting can be implemented so that the systems provide service interfaces, and the 

DMS can access the required functionality and information through them. The message 

flows shown in the DFDs can be implemented as a messaging-only solution in BizTalk, 

or an orchestration can be used (although not required). Parts of the business logic can 

be implemented in the orchestration as well. However, in such implementation, the 

middleware acts as a traditional message broker, and DMS controls the process. 

In an ESB solution, the process is initiated by an alarm message that enters the bus 

(a BizTalk ESBT on-ramp). The appropriate routing steps are first solved, then attached 

to the message as a routing slip, and then executed. Based on the itinerary, an alarm 

message first needs to get customer and/or location information. The ESB routes the 

message (alarm) to a service handling the task (this service is provided by the CIS). 

Once the required customer data is attached to the message, the alarm needs to be 

prioritised, so the message is routed to a service handling that task (this service is 

provided by DMS). The prioritisation service’s output is a work order message, which 

leaves the ESB through an off-ramp and is sent to the WMS.  
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The status reports sent back from the WMS initiates another messaging process. 

The WMS could, for example, offer an estimate how long it will take for the crew to 

repair the fault. Systems that are interested in the updated status will receive the 

information. This could include, e.g., an SMS notification system that notifies the 

customer that the fault has been acknowledged and a repair crew is on its way. 

However, these are options for future research and not discussed here. 

7.2.4 Lessons learned 

The analysis of this case brought up some of the same issues as the first case. However, 

this case is more complex than the first one, and additional concerns were identified as 

well. Creating an essential model should again be the first step. Generally, the idea is 

that a smart meter raises an alarm, and the DSO information systems can automatically 

assign a field crew to repair the problem. Once the essential model (the “what”) is 

provided, it can be decomposed in order to show the sub-processes that define in more 

detail how the use case is carried through. An example is given in Figure 7.8. 

 

Figure 7.8. Essential model decomposition in the fault repairing use case. 

This type of detailed analysis defines the use case explicitly, but does not yet specify the 

technical details. The key design decisions after this step are: 1) which of the data flows 

are internal to systems, and which are inter-system flows (i.e., implemented by the 

middleware), and 2) which system will manage the orchestration of the process. 

 If the orchestration logic resides within one of the existing systems (e.g., the 

DMS in this use case), the middleware’s role is to act as a messaging component. In an 

ESB solution, much of the logic is implemented in the form of an itinerary. In a 

message broker scenario, the endpoints can be implemented as services, in alignment 

with the SOA design principles, but this is not necessary. If an ESB solution with 

itinerary-based routing is used, the endpoints should have well-defined service 
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interfaces. The services can be built by wrapping the functionalities of the existing 

systems into services. 

7.3 Case C: Active voltage control 

The third use case concerns active voltage control. The message flow, described in [89], 

is as follows: 

1. SCADA collects measurement data and status information from the network and 

large generation units and publishes the data on the ESB. 

2. Home Energy Management Systems (HEMSs) measure distributed energy 

resources (DERs) such as small-scale generation and demand response at 

customers’ homes. 

3. Aggregator collects all the measurement data from HEMSs, and then publishes 

the available DERs for distribution management on ESB.  

4. DMS updates the distribution network topology based on status information and 

the amount of available DERs based on HEMS information gathered from ESB. 

5. State Estimator retrieves the measurement data from ESB and executes state 

estimation. The state estimation results (e.g., maximum and minimum voltages 

in the network) are forwarded to Coordinated Voltage Controller via ESB.  

6. CVC determines whether control actions are needed. In the case of control 

action for DERs, DMS determines which customers are able to adjust their 

consumption or generation, and sends control command towards correspondent 

HEMSs via Aggregator. In the case of control action for the network, CVC 

calculates new set points for Automatic Voltage Regulator (AVR) of primary 

transformer tap changer and power factor controller of large generation unit, and 

sends the new set points to SCADA via ESB. [89] 

Figure 7.9 illustrates the systems participating in the use case.  

 

Figure 7.9. Systems participating in the active voltage control use case [89]. 
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The substation automation components, e.g., the AVRs, Intelligent Electronic Devices 

(IEDs), and Remote Terminal Units (RTUs), are not directly communicating with the 

ESB. The SCADA controls the substation components and handles the communication 

with the ESB. Similarly, the HEMSs only connect to the ESB via an Aggregator. 

7.3.1 Data flows 

Among the three use cases, this is the most complicated one. It is somewhat different 

from the two other cases. For example, many of the processes are “housekeeping 

routines” that run continuously and constantly, instead of having a distinguishable 

beginning and end. The data flows are illustrated in Figure 7.10.  

 

Figure 7.10. DFD for the active voltage control use case. 

 Some systems that are part of the use case are omitted from Figure 7.10, as they 

are irrelevant from the ESB point-of-view. For example, SCADA and Aggregator need 

to gather the data from lower-level network components and customer premises. 

However, the ESB is only aware of the SCADA and Aggregator; the substation 

components and HEMSs are unknown to it. Within the SGEM project, both the SCADA 

and DMS are ABB products. These products are quite tightly coupled to each other. 

They communicate using a direct link rather than through the ESB. 

7.3.2 Information security 

The flow-based security analysis approach is similarly applicable to this use case as to 

the previous two cases. What makes this case interesting is that it has more of the 

aspects of a control system than the other two. The control actions have direct 

consequences in the physical realm (whether controlling the substation level equipment 
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or DERs at customer premises). This case also has probably the strictest requirements 

for timeliness.  

Depending on how fast the control actions should occur, it may not make sense to 

implement this case using an ESB. Fluctuations in the voltage may require extremely 

fast, deterministic, and reliable corrective measures. Enterprise integration platforms are 

not designed for this sort of communication, and it is unlikely that they can meet the 

requirements. However, there may additionally be need for a slow-paced (more of 

trend-based or statistical) control of DERs and substation devices. The real-time 

requirements for this type of use are likely less demanding, and an ESB could provide 

sufficient performance. Optionally, two types of middleware solutions could be used: 

one for lower-level real-time critical systems and use cases, another for higher-level 

data and control actions. 

7.3.3 Implementation with BizTalk 

Similar to the use case B, it is not possible to implement this case with the available 

equipment. Apart from the DMS, the endpoint systems are not available for testing. 

 Logically, the use case description forms a single sequence. However, the 

implementation can be divided into sections. The updates coming from SCADA and 

Aggregator could be their own elements. They are essentially status update messages 

happening constantly at the background.  

 The measurement data coming from SCADA could optionally trigger a sequence 

that can be implemented using an itinerary. The first step in the sequence is a service 

that performs the state estimation. The results of the state estimation go to a voltage 

control service, which outputs the required control actions, routed to the DMS or 

SCADA, depending whether controls are for DERs or AVR. Whether it makes sense to 

implement this using an ESB depends on the possible hard real-time requirements. 

7.3.4 Lessons learned 

In this case, a lot of the processes are “housekeeping routines”, performed constantly 

and automatically in the background. They are constantly on-going, i.e. there is no clear 

beginning or end point, like in the other cases. This changes the way that the entire 

process should be coordinated. The implementation is easy if each status update can be 

treated as an individual message that is simply published into the ESB. If the process 

requires constantly on-going coordination that links various updates together, the 

implementation logic is more complicated.  

However, the main lesson of this case is the possible introduction of hard real-time 

requirements. If the processing of a status update, and a resulting control action, require 

deterministic performance, it is unlikely that an ESB-based, loosely coupled, service-

oriented solution is an optimal choice. Using two different buses for communication, 

based on real-time requirements of the messages may be an option. However, it will 

make the environment more complex. 
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8 THE DESIGN AND IMPLEMENTATION OF 

SECURE INTEGRATION 

The guideline presented here aims to combine the lessons learned from the use case 

analysis, and to point out things to consider in the design of new use cases and 

improvement of the existing ones. In order to create a more universal approach, the 

guideline combines the issues that surfaced during this work and generalises some of 

the main points that were learned.  

There are a few important things to keep in mind. First of all, the guideline is very 

general and primarily offers food for thought. These suggestions do not cover 

everything or provide any definite answers. The guideline is not implementation-

specific; it can be applied to any middleware platform. It is formatted as a list of steps, 

but the steps are not always separate or discrete. They are intertwined, and it is difficult 

to categorise a certain task to a specific step on the list. The guideline process is 

iterative: it is unlikely that the first version of design is optimal. It is also a haphazard 

approach to analyse just one case and start to implement it. Analysing more than a few 

cases first is beneficial, as the functionalities that will be needed in many scenarios are 

probably optimal candidates for services. On the other hand, there is no definite answer 

as to how many cases are sufficient. 

8.1 Create an essential model through business analysis 

Defining use cases should begin at a high level of abstraction. This is called business 

modelling, also known as abstract or essential modelling. The aim of the analysis is to 

answer the question what is done or will be done, omitting the details of how it is done. 

[19] A high-level definition of what is done also answers why it is done, in other words, 

it serves to determine the purpose for the use case.  

It is very common for technically oriented people to skip this step and start from a 

point that is closer to the implementation details (the “how” part). It is a natural 

tendency to think in terms of technology before explicitly defining the objective and the 

drivers behind the scenario. In fact, this is unfortunately what happened in this project 

as well. Both the use case definitions and the integration work started without an 

explicitly defined essential model. Another reason to exclude this step is that the 

essential model is often so seemingly simple that it is difficult to grasp its value.  

The essential model should focus on the concepts and ignore all the technological 

details. The same “what” can be achieved with many different technologies, and the 

“how” is likely to change more frequently than the “what” as technologies develop. 
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Moreover, the essential model establishes a common ground, an explanation of the 

purpose of the system, in a language that different stakeholders and technology experts 

can all understand. Feasible tools for essential modelling are, for example, data flow 

diagrams and UML use case diagrams. An example of an essential model illustrated 

with a DFD is given in Figure 8.1. In order to create an accurate essential model, it is 

crucial to understand exactly what the business objectives of the system are (i.e., what 

its purpose is, why it is being done). [19] 

 

Figure 8.1. Sample essential model DFD for the fault repairing use case. 

 The model could also include a short textual description that defines, on a 

conceptual level, the state of the system when the use case starts, what triggers the start 

of the use case, and the desired end result (i.e., the state of the system when the use case 

is finished). For example, the drop of voltage in the network below a threshold would be 

the starting point. The use case would be to correct the voltage, and this should happen 

automatically. The desired end state would be that the voltage is returned to an 

acceptable value. All this should be expressed using general terms. Technical details are 

not important yet. This step should also include security requirements (and possible 

real-time and reliability requirements). 

 The results of this phase:  

1. An essential model describing the purpose of the use case, why it is done. This is 

given in a common language that is easily understandable for experts in different 

domains, e.g., a simple DFD representation or UML use case diagram, possibly 

accompanied by a textual description.  

2. General security and priority requirements, i.e. what happens if this use case 

cannot be performed as intended, or within a specified time limit. 

8.2 Define the use case explicitly 

The essential modelling describes, in general terms, what is done. The next step is to 

describe the details of how things are done. The three use cases used as the starting 

point of this work signify this level of detail. They include technical details about the 

system (e.g., identify the systems that participate in the message exchange). 

 This step can include both a description of how the current system works, and a 

plan for how the system should work in the future. The scope of coverage depends on 
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the use case. Many of the smart grid functions are entirely new and something that the 

current system cannot do at all.   

 This phase should not yet specify the integration architecture or the use of 

middleware. Instead, focus should be on identifying the required processes and 

information. It can be achieved, for example, by using data flow diagrams and ignoring 

how the flows will be implemented. Figure 8.2 illustrates an example DFD.  

 

Figure 8.2. Sub-processes in the fault repairing use case. 

In essence, during this step it is assumed that there is an ideal way for each system 

to communicate, but its implementation is not yet defined. It is not yet necessary to 

specify which data flows are internal to the systems and which require inter-system 

communication (that is, middleware). This supports the creation of an optimal situation, 

where middleware works as invisible glue between the systems. 

This step can greatly benefit from utilising the UML use case modelling principles, 

rules, and diagrams. Questions that should be answered are, for example, the following: 

Who or what initiates the use case? (It could be triggered by an event, a user action, or it 

could be time-based or a continuous housekeeping routine.) What is the degree of 

automation? Does the process require user intervention? What type of coordination or 

orchestration is required? (This varies depending on how complex the case is. At this 

point, it is not necessary to determine which system will take care of the coordination or 

orchestration; it could be one of the existing systems or the middleware). 

The result of this phase: a detailed model that specifies the internal processes in 

more detail than the essential model, but does not define how the data flows are 

implemented (i.e., ignores the technical details of message exchange and possible use of 

middleware). 
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8.3 Determine the participating systems 

This is a simple and very logical step, and tightly intertwined with the previous step. 

Once the use case is defined in detail, it should be clear which systems will participate. 

However, it is important to actually list them. This helps to ensure that all the required 

systems are identified, and that there are no systems mentioned that are not necessary.  

The use case definition shows what information and functionality is required. Based 

on that, it is easy to see which systems contain the necessary information and can 

perform the required functions. The result of this phase is a list of systems that 

participate in the use case. 

8.4 Define the orchestration of the process 

The general use case definition specified what type of orchestration is needed to 

manage the entire transaction. This step will concentrate on how the orchestration is 

implemented. Simple data transfers require very little or no orchestration, as contrasted 

to more complex, long-running transactions calling for more complicated orchestration.  

It is important to define explicitly how much the transaction is orchestrated by the 

ESB middleware, and what is required from the participating systems (or services). This 

is a design decision: Should the middleware handle the orchestration, or does the 

intelligence reside within the endpoint systems? The decision has major consequences 

to the implementation of the integration. If an endpoint system (e.g., the DMS) handles 

the orchestration, the integration solution’s role is mainly to function as a message 

broker. In order to build a service-oriented solution, the endpoint systems should only 

offer the required functionalities as services and the ESB should handle the 

orchestration. 

Depending on the existing solution, this step may indicate that significant 

restructuring is required. If the objective is to build an ESB-based SOA solution, 

restructuring cannot be avoided. For example, if the use case is not new, a lot of the 

orchestration capabilities may already be implemented in one of the systems. It may be 

possible to use the existing functionality for orchestration, and use the middleware only 

for message routing. This way, less change is required, but the result will not be an 

ESB. The entire orchestration logic should be assigned to the ESB (implemented as an 

itinerary), or to a separate orchestration service accessed via the ESB.  

Possible error conditions and situations should also be considered within this step. 

How will exceptions be handled and by which system? What if a certain service or 

system is unavailable? If security will be offered as a service, this is the point for 

considering its functionality and implementation. 

The result of this step is the design decision that determines the role of the 

middleware. It will be either a simple message broker, or an ESB offering the 

foundation for an SOA. Based on this decision, the orchestration logic will be explicitly 

defined and assigned to a specific system that will implement it. 
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8.5 Define and implement services 

Generally, services can either be built starting from scratch, or the functionality of 

existing systems can be exposed as services in order to let other systems access them. 

Further, the service “wrapper” can be built into the endpoint system, or it could be 

implemented by the middleware (e.g., in cases where a legacy system cannot be 

altered). In a truly service-oriented world, the “participating systems” would instead be 

“participating services”. Any required information or any needed functionality would be 

built as a well-defined service, accessible through the ESB. The use cases could be 

implemented by merely combining the required services. This is the fundamental idea 

of SOA. However, due to the historical weight of monolithic software, the reality is 

very different in most domains. Most important software products within the utilities 

industry (e.g., the DMS) probably remain to exist as large, monolithic structures for the 

foreseeable future. Thus, exposing their existing functionality as services is a good 

starting point for a move towards SOA. 

This step is, again, intertwined with the previous one. The more service-oriented the 

environment becomes, the better fit an ESB is to handle the overall orchestration. The 

earlier design decision, along with the appropriate definition of services during this step, 

largely determines how service-oriented the environment will be. Knowing the 

guidelines of what makes a good service, it is important to analyse the use case and the 

participating systems and their functions. The analysis of a variety of use cases will 

reveal functionality and information that is repeatedly used. These are good candidates 

for services. 

A vital part of this step is to determine whether the service interfaces will offer data 

and functionality in a CIM format. The goal is that each interface would use CIM. The 

systems can use legacy formats internally, but the interface should hide this. If the 

service cannot offer a CIM interface, then the ESB must transform the data between 

CIM and the provided format, and vice versa. 

There are no exact definitions how to specify and construct a service. It is a process 

that improves along with experience and requires knowledge and understanding of both 

service orientation and the solution domain (i.e., electric utilities). The process of 

identifying and defining the services, let alone the various implementation possibilities, 

will not be discussed in detail here. Most books covering SOA offer details on this 

topic. 

The result of this step: 1) Recognition of information and functionality that should 

be offered as services. 2) Definition of the services and the interfaces offered. Interfaces 

should be CIM-based in order to gain full advantage of the integration. 3) 

Implementation of the services (this is not a trivial task; it requires many design and 

implementation level decisions, these will not be discussed here). 
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8.6 Define data flows to be implemented by middleware 

The earlier diagram (Figure 8.2) defines many data flows between processes and 

information storages. Some flows are internal to the endpoint systems, and some are 

inter-system flows. The latter are the ones that the middleware platform will need to 

handle, and this step defines how those are implemented. 

The earlier design decisions regarding orchestration and services determine largely 

how this step will be carried out. For an EAI type message broker, as in Figure 8.3, one 

of the endpoint systems (e.g., the DMS) will orchestrate the process, and the 

middleware will merely route messages between the systems. However, such a message 

broker is not necessarily service-oriented, and is definitely not an ESB.  

 

Figure 8.3. EAI type message broker implementation. 

In a truly service-oriented ESB solution, a message enters the ESB and is then 

routed through a set of services to produce the desired end result. An ESB type 

implementation is illustrated in Figure 8.4.  

 

Figure 8.4. ESB type implementation. 
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In the example case, an alarm message enters the ESB, and is routed through the 

various services necessary to implement the use case. The necessary services provide, 

for example, fault location, fault prioritisation based on customer information, etc. The 

end result is a repair order message that exits the ESB and is routed to the WMS (the 

repair status update message coming back from the WMS will initiate another, similar 

routing process).  

This step clearly shows the way the earlier design decisions regarding orchestration 

and service-orientation significantly affect how the integration will be implemented. 

The objective is to build service-oriented environment, and accordingly, this step should 

define how the ESB routes a message between the appropriate services in order to 

implement the use case. Regardless of the implementation, a DFD like the one in Figure 

8.3 illustrates clearly which data travels through middleware. It is recommended to draw 

such diagram, as it will be helpful in the next steps.  

The result of this step is a concrete definition of which data flows need to be 

implemented by the middleware and how this will be done. The outcome depends 

largely on the decisions made earlier.  

8.7 Define the information content of data flows 

Similar to the third step, this step is simple and logical, yet highly important. Based on 

the data flows defined in the previous step, it is a straightforward task to define what 

information each flow contains. Each flow translates into a message that the middleware 

needs to process.  

The content should be in CIM format whenever possible. This is not always easy to 

implement, but it will greatly increase the interoperability of the entire solution. The 

result of this step is a listing of the information content of each flow to be handled by 

the middleware. 

8.8 Define information security requirements 

The platform security of the participating systems and the middleware itself are 

extremely important. However, they are outside the scope of this process. Here, the goal 

is to define information security requirements for the data flows handled by the 

middleware platform. It is important to observe that the trust boundaries within the 

environment might change, for example, if a certain service is offered by an external 

party. Moreover, this process only discusses a small portion of the overall security of 

the environment: the security of the data while it is moving between systems (i.e., 

transmitted by the middleware). 

Based on their information content, each data flow has specific security 

requirements (i.e., requirements for confidentiality, integrity, and availability). This step 

should define those requirements. This is also a logical step to consider the overall 

quality of service (QoS) requirements for each data flow. Further, it should be analysed 
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whether the combined requirements for the flows are sufficient to meet the general 

information security requirements for the case as a whole (as defined during the first 

step, while creating the essential model). Collaboration between a domain expert and an 

information security professional is strongly recommended for this step. Information 

security experts have the mind-set and knowledge to ask the right questions that will 

bring up security requirements. Domain experts understand the system and know how to 

answer these questions. 

The result of this step is the specification of the requirements for the information 

security of each message. This is achieved by analysing the information content and 

determining how and why it is valuable. 

8.9 Choose information security implementation 
methods 

Once the security requirements are defined, appropriate security implementation 

methods should be used. This includes both general decisions (e.g., “this data flow 

needs to be encrypted to provide confidentiality”) and implementation-specific details 

(e.g., “this middleware offers this type of technologies for encryption”).  

If the middleware functions as a conventional message broker, this step is rather 

straightforward and based on the information content of the data flows. However, the 

situation may be more complicated for a service-oriented ESB solution. Just as service-

orientation itself is a paradigm shift, it implies a paradigm shift in security as well. 

 The results of this step include the appropriate methods selected to ensure that the 

information security requirements are met. Based on the requirements defined in the 

previous step, the selection is first done on a general level, and it can then be further 

specified, depending on what methods are available on a selected middleware platform. 

8.10 Implement the solution 

All the necessary information has now been gathered. The final step is to implement the 

actual orchestration into the selected middleware. Proper technologies available in the 

middleware platform should be used to ensure that the security requirements are met. 

The design decisions made earlier will largely determine whether the solution will be 

more of a traditional EAI message broker, or a truly service-oriented ESB.  

A more detailed description of how to apply BizTalk to implement use cases as 

defined using this guideline would require much more space, and it is not discussed 

here. However, the BizTalk introduction, together with the demonstration environment 

that was built, provides a good starting point for the implementation of new use cases 

using the BizTalk platform. 

 The result of this step is a functional solution implemented by means of a specific 

middleware platform. 
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8.11 Further considerations: testing, maintenance, and 
modifications  

The guideline presented here offers an example process for analysing a use case and 

serves as a starting point for implementing it on a selected middleware platform. 

However, it does not offer comprehensive guidance. It is obvious that integrating the 

various systems in the given environment is a more complex issue than just 

implementing a few use cases, and there are additional things to consider. 

Although the environment is changing at a rather slow pace compared to some other 

environments, it is not entirely static. The guideline does not take into account how to 

prepare for these changes. What the correct measures are depends largely on whether 

the final solution is more of a static EAI message broker, or a truly dynamic ESB 

solution. However, in both cases, maintenance of the implemented solution should be 

planned for. Future modifications are inevitable in any environment, and they should be 

as easy to implement as possible. Another important aspect omitted from the guideline 

is the testing of the working solution. These further considerations emphasise the fact 

that the guideline is exactly what the name says: merely guidance.
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9 GENERAL RESULTS AND DISCUSSION 

The use-case specific results were described as “lessons learned” for each case. The 

guideline presented in Chapter 8 was a combination of these lessons, provided in a more 

universally applicable format. This chapter sums up the more general results.   

 As a concrete result of this work, a demonstration environment now exists. It 

offers a BizTalk based integration component, which can be used for integrating various 

DSO ICT systems. The installed environment can be used as a starting point for future 

use case implementations. The BizTalk introduction provided in this thesis, along with 

the references, hopefully helps to lower the somewhat steep learning curve of BizTalk.  

9.1 Integration and service-orientation 

A major aim of this work was to gain understanding of integration architectures (such as 

EAI and ESB), and their differences. The gathered information is provided as a 

background theory in this work, but it is useful when considering what type of 

integration is required for a project. Such basic understanding is crucial and offers a 

starting point for the comparison of various vendor offerings. It is difficult to choose a 

proper integration platform without knowledge of what distinguishes an ESB from EAI, 

for example.  

 This work does not specify any definite criteria for selecting middleware 

products. In fact, middleware products are often so complex that it is usually cost-

prohibitive to evaluate or test them in detail. However, the basic concepts of, for 

example, what constitutes an ESB, should be clear when choosing a platform. 

Otherwise, the comparison cannot really be based on facts, and decisions will be 

uninformed. Choosing an unsuitable integration platform may cause irreparable damage 

and make it very difficult to achieve the overall integration goals. Table 9.1 shows the 

differences between the key properties of integration architectures. 

Table 9.1. Key properties of different integration architectures. 

 Point-to-point EAI/Hub-and-Spoke ESB 

Scalability Does not scale well. Useful 

only in very simple 

environments with a 

limited number of nodes. 

Scalable design, easier to 

add more endpoints. Dep-

loyment scalable usually 

only in large increments/ 

decrements (add/remove 

hub instances). 

Scalable design, easy to 

add more endpoints.  

Scalable deployment, can 

be incremented/decremen-

ted gradually. Internally 

service-oriented. 

Routing Not applicable (end points 

directly connected). 

Static, content or topic 

based. 

Dynamic, itinerary based. 

Architecture Usually ad hoc. Monolithic Service-based 
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 The proposed move towards a service-oriented architecture is described as a 

paradigm shift, and it truly is the case. Fundamental changes are required; SOA is not 

something that can be “glued on” or attached to the existing architecture. At least, it is 

unwise to expect major benefits from such an approach. The fact is that the massive 

software products offered by the largest vendors are inherently monolithic in nature. 

They represent years (or decades) of development work. The positive aspect is that the 

products are time-tested with a lot of experience built into them. The negative side is 

that the massive structures will not turn into flexible, service-oriented products 

overnight.  

This generally holds true for the EAI type message hubs as well. In the integration 

field, many experts consider these solutions outdated. However, the utilities industry is 

conservative and slow to change (mainly for good reasons, after all, it is not a called 

critical infrastructure for nothing). This is probably not the right field to experiment 

with innovative software architectures. Being considered outdated does not matter if, 

along with maturity, comes tried and tested reliability. Additionally, many of the EAI 

platforms are produced by the largest software companies, thus the products are backed 

up with vast resources, expertise, and product support. The business and product 

continuity are better guaranteed than in the case of a small company and a novel 

product. The benefits of an ESB, compared to EAI, also depend a lot on the 

environment. The DSO ICT environment does change, but it is much more static than, 

for example, the ICT environment of a retail business, with hundreds or thousands of 

constantly changing suppliers and business partners. In a rather static environment, the 

disadvantages of a traditional EAI become less significant, or completely insignificant. 

However, this should not be interpreted as a recommendation to ignore the concepts 

of SOA and ESB. The utilities industry is slow in its movements, but it cannot avoid 

change. The adoption of the principles of service-orientation and more dynamic 

software solutions should be constantly developed. Massive products may internally 

never become fully service-oriented, and it may not be necessary either. However, 

exposing their key functionality as services, for other systems to use, should be 

considered. It is worth noting that promoting service-orientation is not necessarily in the 

interests of the established software vendors, as it would lower the entry barriers and 

likely increase competition in the field. 

An observation that raises some concerns is the possible need for two different 

middleware platforms. It is quite likely that a higher-level integration solution (that 

usually aims for maximal throughput) is incapable of matching the most demanding 

hard real-time requirements. These platforms are not designed or optimised to provide 

latency that is consistently low (i.e., fast, deterministic responses). 

 The critical role of a Canonical Data Model has been recognised and well 

understood for a long time. A CDM is crucial for achieving high levels of 

interoperability. Without a CDM, the integration will not scale well, and each 

implementation will always be specific to a certain environment. A CDM will help 
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solve the problem of exponential growth in the number of data transformations between 

systems.  

The CIM appears to be the best solution available for the utilities industry. 

However, this is only an assumption, based on the fact that there is a growing 

momentum for developing and applying the CIM and it is backed by major players in 

the field. Again, legacy systems and large software products will probably not use CIM 

as their internal data format for a long while, if ever. Yet the development of most 

important CIM based (service) interfaces should be a key trend. The use of CIM is not a 

trivial task; the main problem is the size and complexity of the model. It is hard to 

overcome this issue, because, by definition, the CIM needs to be applicable to numerous 

tasks. 

9.2 Information security 

Information security has a crucial role in the Smart Grid. It is vital to take it into account 

from the start, and build it into the system. As an environment, the Smart Grid is 

different than any existing system. It combines traditional IT systems, Industrial Control 

Systems, and home automation, all in an unprecedented scale.  

 In order to achieve sufficient levels of information security, experts from various 

fields need to work in close collaboration. Expertise is required in three major fields: the 

electrical utilities (especially distribution), systems integration, and information security 

(both in IT and ICS information security). 

In general, there are still major challenges in the move towards SOA, but the 

fundamental changes in the security aspects should be taken into account early on. SOA 

signifies a paradigm shift in itself, but it also changes the way of approaching 

information security. Many approaches that work well with traditional applications are 

ineffective or even counterproductive in a service-oriented environment.  

 The data flow based security analysis is one approach towards analysing the risks 

and appropriate security methods. It is particularly suited for a traditional hub-and-

spoke integration. It is also useful in terms of an analysis for an ESB solution, but 

service-orientation and itinerary-based routing requires additional and other types of 

security analyses.  

 Performing a comprehensive information security analysis for a few use cases 

could be beneficial, even if such detailed analyses for all possible cases may be cost-

prohibitive. It is obvious that the Smart Grid is fundamentally a domain for the 

electricity experts. However, co-operation with security experts could help them to 

increase security awareness and build a security-oriented mind-set. As a result, when 

designing and implementing new Smart Grid features and usage scenarios, the domain 

experts would increasingly pay attention to information security aspects as well. 

Applying even a basic security analysis at an early stage of the process would be highly 

beneficial; this is promoted by the above guideline. 
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9.3 BizTalk 

The goal of this work was not to qualify or disqualify the use of BizTalk as an 

integration solution. Properly testing BizTalk (or any middleware platform) against 

well-defined criteria is beyond what is achievable in one thesis. In this work, most 

results regarding BizTalk are based on literature, not experiments. 

 It is impossible to compare BizTalk with other similar products without 

experience of using those products as well. BizTalk is a complex platform, requiring 

quite high levels of expertise. With limited experience, it is possible to build BizTalk 

solutions that work as intended, but they may be far from optimal in terms of 

performance or other aspects. This is not to say that BizTalk is any more or less 

complicated than other similar products. In general, BizTalk offers many graphical and 

relatively easy-to-use tools to assist in otherwise laborious tasks. However, middleware 

products are complex simply because the field of enterprise integration inherently is 

complex.  

 There are two things that may cause problems when considering BizTalk for this 

type of integration. First, if there are challenging hard real-time requirements, BizTalk 

may not be the right solution. This is probably true for all IT enterprise integration 

platforms in general. These platforms are not optimised for that sort of communication. 

Another possible problem is scalability: compared to a fine-grained service-based 

deployment of an ESB, BizTalk represents a sort of an “all or nothing” deployment. 

However, the environment is somewhat static, so this may not be a major problem. 

 The fact that BizTalk is internally a monolithic hub is the main argument used to 

disqualify it as an ESB. Further, even though the BizTalk ESB Toolkit offers itinerary-

based routing, each step in the itinerary still passes through the MessageBox. In this 

sense, the hub is still a single point of failure, which could be used as another argument 

claiming that BizTalk is not an ESB. However, more important than this debate is to 

understand what is required from the integration solution, and how well a given 

platform can fulfil the requirements. 

 Within the scope of the current work, it is not possible to give a detailed, 

complete guideline for implementing use cases with BizTalk. This may not be practical 

at all, as the implementation techniques vary so much on depending on the use case. 

However, the general guideline helps in designing use cases, and the BizTalk chapter 

provides basic information about the tools that BizTalk offers for implementation. 

These, and the preinstalled and configured BizTalk environment, will make the task of 

designing and implementing future use cases easier. 

9.4 Discussion 

The main goal of this thesis work was to provide concrete examples and guidance on 

how to integrate DSO ICT systems. Some results were achieved, but much remains to 

be done. Implementing the use cases was not a straightforward thing to do. As even the 
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environment lacks so many parts, the use cases still require a lot of work. It could also 

be argued that the implementation of a few use cases would not have proved that the 

architecture or implementation platform was well designed (i.e., it is a necessary but not 

sufficient proof). In more pessimistic terms, one might say that the use case analysis and 

implementation efforts could provide sufficient proof that there are still flaws, unsolved 

issues, and challenges. And so it did. 

Such concepts as service-orientation, publish subscribe messaging, and dynamic 

routing require certain, sometimes fundamental, changes in thinking. This work offers 

some ideas how to apply these concepts to the given use cases, which is not always 

obvious. Thus, this work serves as a sort of a second round of iteration for the use cases 

(first round being the definitions in [89]). The first iteration represented more the 

viewpoint of domain experts, that is, how electrical engineers approach the use cases. 

This analysis hopefully offers a peek into the integration viewpoint, without forgetting 

the security aspects. 

Regarding the guideline for the design and implementation of secure integration, it 

should be extremely clear that it is what the name implies: no more than guidance. 

Provision of a definite, comprehensive list of steps, or a very concrete architecture 

definition, is beyond the scope of a single thesis. This work merely offers some food for 

thought of what things may be important to consider. The guideline is formatted so as to 

be understandable for experts from different domains.  

The theoretical background part of this work should help to understand some of the 

integration concepts. The IT world is rapidly and constantly changing, and it is the 

breeding ground for endless new and innovative concepts, each improving the previous 

ones (or, at least, marketed to do so). The concepts are often more or less abstract and 

vague, and vendors usually have somewhat differing definitions for them. This sort of 

an environment can be extremely confusing. 

It is difficult to offer guidance for the selection of a middleware platform. Any 

organisation in need of integration functionalities is likely to face a choice. Choosing an 

enterprise integration platform is different from choosing, e.g., an anti-virus software 

for a home computer. There are not many reviews and test results available that would 

objectively consider the various options. The products are complex, and evaluating each 

one would require lots of resources. Thus, a buyer may have to rely on guidance and aid 

from solution providers and integration consultants. To further add to the problem, 

vendors may have very different ideas of what some new buzzword means and how 

their product fits in that description. Given the complexity of the products and the 

vagueness of the concepts, it is no wonder there are many differing opinions. Finally, 

the buyer may not thoroughly know their own requirements. For these reasons, it is very 

challenging to say which integration platform would be the best option for a given case. 

This work does not even try to do that. However, it does offer basic knowledge of the 

integration concepts, and this will hopefully help in making informed decisions. 

As regards BizTalk, it has been called the most complex software product from 

Microsoft. That is to say: the most complex software product from the biggest software 
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company on the planet. BizTalk has an installation base of more than 12 000 systems, 

making it the most widely used middleware platform. Against this background, one 

thesis probably has very little new to offer. A failed implementation of the test 

environment should not lead to a decision to reject the use of BizTalk. On the other 

hand, one more successful case would not offer much additional proof either.  

The installation of BizTalk within the scope of this work is not necessarily a realistic 

one and the workload it handles much less so. Thus, no realistic performance 

predictions or analysis can be done on the basis of this work. However, as a result of 

this work, the environment is actually installed and running, and a lot of material has 

been gathered and some guidance is provided to help continue the work with BizTalk. 

There are points to consider and limitations regarding the use of BizTalk as an ESB, but 

there are no obvious reasons to argue that it could not be used.  

Throughout the work, information security aspects are emphasised. In addition of 

the flow-based approach to analysing risks and information security requirements, the 

theoretical part of the work provides valuable information. The second chapter points 

out the reasons why the Smart Grid differs from any other environment, and why its 

information security is extremely challenging. The third chapter concerns the security of 

SOA, and shows that many of the tried and tested security methods are not applicable in 

a service-oriented environment. As part of the theoretical background, this information 

is not new as such. However, the chapters are valuable because the main points are 

collected in them, and familiarising oneself with them is a good introduction to the 

topic.  

One important result of this work is the emphasis placed on creating proper essential 

models right in the beginning, in order to provide all participants with the same overall 

picture. It is very expensive to take experts, for example, in the fields of electricity, 

information security, and integration, away from their day-to-day work and bring them 

to the same table. Thus, it is tempting to skip doing this step properly (or at all). It 

seems that integration results are achieved by getting the integrators engaged and 

starting their work as soon as possible. However, good planning is nowhere more 

important than in the world of software engineering. Comprehensive analysis, planning, 

design and similar steps at the early stages will likely pay off manifold at the end of the 

project. There is nothing new in saying this, but these steps are still easily neglected. 

Essential modelling helps to ensure that all aspects are taken into account from the 

ground up. The temptation to get started and achieve concrete results is great. However, 

creating software is different from creating something physical or tangible, and the 

concrete results can fall off as it becomes clear that the wrong thing was being built. 

Software projects are notorious of going overtime and over-budget, or even failing 

entirely. As impossible as it may seem, the situation may be even worse with the 

middleware or integration projects. The guideline for the design and implementation of 

secure integration, as presented in this work, does not claim to offer new or exhaustive 

solutions, but hopefully it will contribute to future efforts in building secure Smart Grid 

integration.    



 98 

10 CONCLUSION 

During the course of this work, it became clear that the electrical utilities industry is 

conservative and changes slowly. This is understandable, as the reliability of the electric 

grid is critically important. Customers have grown accustomed to a constant supply of 

electricity, and the modern society relies on it. However, new models of producing and 

consuming electricity are required, and this calls for a smarter grid. 

Efficient and secure integration of information systems, especially in the distribution 

domain, is vital for the Smart Grid. A service-oriented architecture that facilitates an 

ESB as the communication backbone is a potential option for such integration. 

However, ESB or SOA are no silver bullets. Neither are they something that can be 

attached or added to the existing environment, so as to solve all the integration issues. 

They are concepts that call for a paradigm shift. In order to be implemented 

successfully, they require detailed analysis and design. Further, they will change some 

of the assumptions that many of the commonly used information security methods rely 

on. Consequently, a change in the information security thinking is required as well.  

The development of the Common Information Model is critically important in 

enabling scalable integration in the Smart Grid. The work is well underway, but it is not 

trivial to use the CIM in practice. The main challenge, which is hard to overcome, is 

that the model is so complex. 

As part of this work, a demonstration environment was built, in order to test these 

concepts in practice. The BizTalk integration component now exists, but many other 

parts of the environment still need to be implemented. The limitations of the 

environment made it difficult to implement the test use cases. However, the analysis 

indicated that there are other fundamental issues that should be clarified before 

proceeding with implementation. 

Based on the lessons learned from analysing the use cases, a general guideline was 

created. It does not aim to be a comprehensive set of rules, and the aspects presented are 

not necessarily new as such. However, the guideline should make clear what a secure 

integration based on modern integration paradigms means and requires. It points out 

what needs to change within the current environment in order to move towards service-

orientation and ESB based integration. Moreover, it emphasises the importance of 

information security in the Smart Grid.  

The installed platform, along with the guideline, should make the task of improving 

the demonstration environment and implementing more use cases easier. As a general 

recommendation, such work should include experts from various fields and requires 

their close collaboration. 
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APPENDIX A 

Table A.1. Future vs. today’s grid, combined from [32;42, p.514;74;100]. 

Comparison between today’s grid and the Smart Grid 

Goal Current grid Smart Grid 

Self-heals Responds to prevent further damage. 

Focus is on protection of assets 

following system faults. 

Automatically detects and responds to 

actual and emerging transmission and 

distribution problems. Focus is on 

prevention. Minimizes consumer impact. 

Motivates and 

includes the 

consumer 

Consumers are uninformed and non-

participative with the power system. 

Informed, involved and active consumers. 

Broad penetration of demand response. 

Resists attacks 

and disasters 

Vulnerable to malicious acts of terror 

and natural disasters. 

Resilient to attack and natural disasters with 

rapid restoration capabilities. 

Provides power 

quality (PQ) for 

twenty-first 

century needs 

Focused on outages rather than power 

quality problems. Slow response in 

resolving PQ issues. 

Quality of power meets industry standards 

and consumer needs. PQ issues identified 

and resolved prior to manifestation. Various 

levels of PQ at varying prices. 

Power flow One-directional power flow. Controllable, multi-directional power flow. 

Real-time 

operations on all 

levels  

Operation based on historical 

experience (MV-LV distribution 

networks) 

Operation based on real-time data. 

Accommodates 

all generation and 

storage options 

Relatively small number of large 

generating plants. Numerous 

obstacles exist for interconnecting 

distributed energy resources. 

Very large numbers of diverse distributed 

generation and storage devices deployed to 

complement the large generating plants. 

Plug-and-play convenience. Significantly 

more focus on and access to renewables. 

Enables and 

improves 

markets, both 

wholesale and 

small-scale 

Distributed 

Generation (DG) 

markets 

Limited wholesale markets still 

working to find the best operating 

models. Not well integrated with each 

other. Transmission congestion 

separates the buyers and sellers. 

Weak market integration for DG. 

Mature wholesale market operations in 

place; well integrated nationwide and 

integrated with reliability coordinators. 

Retail markets flourishing where 

appropriate. Minimal transmission 

congestion and constraints. DERs are 

integrated into energy market and power 

systems. 

Optimises assets 

and operates 

efficiently. 

Minimal integration of limited 

operational data with asset 

management processes and 

technologies. Siloed business 

processes. Time based maintenance. 

Greatly expanded sensing and measurement 

of grid conditions. Grid technologies deeply 

integrated with asset management processes 

for the most effective management of assets 

and costs. Condition based maintenance. 
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Figure B.1. The IEC Reference architecture [70;71]. 
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Figure C.1. BizTalk 2010 features and core dependencies [94]. 
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Figure D.1. Highly distributed BizTalk architecture with defence-in-depth [96]. 


