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In the recent years, there has been a proliferation of wireless standards in television, 

radio and mobile communications. As a result, compatibility issues have emerged in 

wireless networks. The size, cost and competitiveness set limitations on implementing 

systems compatible with multiple standards. This has motivated the concept of software 

defined radio which can support different standards by reloading the software and 

implementing computationally intensive parts on hardware, e.g., iterative codes. In a 

typical communication system, all the processing is done in the digital domain. The 

information is represented as a sequence of bits which is modulated on an analog 

waveform and transmitted over the communication channel. Due to channel induced 

impairments, the received signal may not be a true replica of the transmitted signal. 

Thus, some error control is required which  is achieved by the use of channel coding 

schemes that protect the signal from the effects of channel and help to reduce the bit 

error rate (BER) and improve reliability of information transmission. 

Shannon gave the theoretical upper bound on the channel capacity for a given 

bandwidth, data rate and signal-to-noise ratio in 1940s but practical codes were unable 

to operate even close to the theoretical bound. Turbo codes were introduced in 1993 

where a scheme was described that was able to operate very close to the Shannon limit. 

Turbo codes are widely used in latest wireless standards e.g. UMTS and LTE. A basic 

turbo encoder consists of two or more component encoders concatenated in parallel and 

separated by an interleaver. The turbo decoder uses soft decision to decode the bits and 

the decoding is done in an iterative fashion to increase reliability of the decision.  

In this thesis, the turbo code for the UMTS standard is implemented in MATLAB.  Four 

versions of the Maximum Aposteriori Probability (MAP) algorithm are used in the 

implementation. The simulation results show that the performance of the turbo code 

improves by increasing the number of iterations. Also, better performance can be 

achieved by increasing the frame size or the interleaver size and increasing the signal 

power.  Overall, the designing of turbo codes is a trade-off between energy efficiency, 

bandwidth efficiency, complexity and error performance.  
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1. INTRODUCTION 

In the recent years, there has been a proliferation of wireless standards in television, 

radio and mobile communications. As a result, compatibility issues have emerged in 

wireless networks. Some of the most popular standards include wireless local area 

network (WLAN), i.e., IEEE 802.11; 2.5G/3G mobile communications, i.e., Global 

System for Mobile Communication (GSM), Universal Mobile Telecommunication 

System (UMTS), Long Term Evolution (LTE); digital television standards, i.e., Digital 

Video Broadcast (DVB), Advanced Television Systems Committee (ATSC) standards; 

digital radio standards, i.e., Digital Audio Broadcasting (DAB). The inconsistency 

between the wireless standards is causing a lot of problems to equipment vendors, 

network operators and subscribers. Equipment vendors face difficulties in airing new 

technologies because of short time-to-market requirements. The subscribers are forced 

to change their handsets to upgrade themselves to the new standards whereas the 

network operators face the dilemma during upgrade of network from one generation to 

another due to large number of subscribers with handsets incompatible with the new 

generation of standards [1].  

The design of highly flexible digital communication has become an area of great 

interest in the recent years as the inconsistencies between wireless standards is 

inhibiting deployment of global roaming facilities and causing problems in introducing 

new features and services. Also, there are demands of improved services and cheaper 

rates from customers. The rapid evolution of communication technology is pushing the 

service providers to keep pace with latest technology trends to survive in the market. 

Traditional wireless systems with hard-coded capabilities are no longer able to keep step 

with the rapid growth rate of communication technologies. Such devices, e.g. cell 

phones and two way radios, etc, with fixed embedded software have significant 

limitations and they become obsolete with the introduction of new services and 

technologies in market, thus requiring expensive upgrades of total replacement. 

Software defined radio (SDR) is one way to address these issues.   

1.1 Software defined radio 

In mobile wireless transmissions, size, cost and competitiveness set limitations on 

implementing systems compatible with multiple standards. This has motivated the 

concept of software defined radio which can support different standards by reloading 

the software. SDR term refers to reconfigurability and adaptability of radio modules 

using software. It is basically a collection of hardware and software technologies where 
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the radio functionalities are implemented as software modules running on generic 

hardware platforms such as field programmable gate arrays (FPGA), Digital Signal 

Processors (DSP) and Programmable System on Chip (SoC). Multiple software modules 

implementing different standards can be present in the radio system. The radio system 

can take up different personalities depending on the software module being used [2]. 

The SDR technology facilitates implementation of future-compliant systems. All the 

concerned parties, i.e. subscriber, network operator and handset manufacturer, benefit 

from this scheme. Both network infrastructure and subscriber handsets can be 

implemented based on SDR concept. It makes the system very flexible and allows easy 

migration of networks from one generation to another. In the same way subscriber 

handset can adapt to various network protocols by choosing the suitable software 

module. New software modules can be transferred to the subscriber handset using over 

the air (OTA) upload [3]. Network operator can roll out new services at a much faster 

pace by mass customization of subscriber handsets. Manufacturers can improve the 

quality of their products and remove bugs by software upgrades.  

SDR is thus a technology for building systems which support multiple services, multiple 

standards, multiple bands, multiple modes and offer diverse services to its user. 

Functional modules in a radio system such as modulator/demodulator, signal generator, 

channel coding, multiplexing and link-layer protocols can be implemented based on 

SDR concept. This helps in building reconfigurable software radio systems where 

dynamic selection of parameters for each of the above-mentioned functional modules is 

possible [4] [5]. 

1.2 Architecture of SDR 

The digital radio system is composed of three main functional blocks: Radio Frequency 

(RF) section, Intermediate Frequency (IF) section and baseband section [1]. To achieve 

the flexibility and adaptability required by SDR, the boundary of digital processing 

should be moved as close as possible to the antenna. Thus for an SDR system, the 

analog-to-digital (A/C) and digital-to-analog (D/A) wideband conversion is done in the 

IF section instead of baseband section as done for conventional radio. Figure 1.1 shows 

the block diagram of a digital radio system [1]. 
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1.2.1 The RF section 

The RF section is responsible for transmitting and receiving the RF signal and 

converting the RF signal into an IF signal. The RF section consists of antennas and 

analog hardware modules. The RF front-end on the receive side performs RF 

amplification and analog-down-conversion (from RF to IF). On the transmit side, the 

RF section performs analog-up-conversion (from IF to RF) and RF power amplification. 

The RF front-end is designed in such a way to reduce interference, multipath and noise.   

1.2.2 The IF section 

The IF section performs two tasks in either direction. On the receiver path, the analog-

to-digital converter (ADC) functional block performs A/D conversion followed by 

Digital-down-conversion (Demodulation) by the DDC functional block. On the transmit 

path, the D/A conversion is done by digital to analog converter (DAC) functional block 

and Digital-up-conversion (modulation) by DUC functional block.  Digital filtering and 

sample rate conversion are often needed to interface the output of the ADC and DAC to 

the processing hardware at the receiver and transmitter respectively.  

1.2.3 The baseband section 

In the baseband section baseband operations like channel coding, source coding, 

equalization, encryption, decryption, modulation, demodulation, frequency hopping and 

timing recovery are carried out. To allow reconfigurability and flexibility, application-

specific integrated circuits (ASICs) are replaced with reprogrammable or reconfigurable 

modules in software defined radio [3]. In this thesis, the main area of focus is the 

baseband section in which all the major tasks of a basic digital communication system 

(DCS) are performed. 

Rx 

 

 

Tx 
 

Source coding 

Encryption  

Decryption 
Channel coding 

Time Recovery 

… 

ADC DDC 

DAC DUC 

RF Section IF Section Baseband Section 

Figure 1.1 Block diagram of a digital radio system. 
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1.3 Digital communication system 

Recent progress in DCS design rests mainly upon software algorithms instead of 

dedicated hardware. In a typical communication system, all the processing is done in the 

digital domain. Digital transmission offers data processing options and flexibilities not 

available with analog transmission. The principle feature of a DCS is that during a finite 

interval of time, it sends a waveform from a finite set of possible waveforms whereas 

for an analog communication system, the waveform can take any shape. The objective 

of the receiver is to determine which waveform from a finite set of waveforms was 

transmitted. A typical DCS illustrating signal flow and the signal processing steps is 

shown in Figure 1.2 [6]. 

The upper blocks denote signal transformations at the transmitter end whereas the lower 

blocks indicate the receiver end. The information source inputs analog information into 

the system which is converted into bits, thus assuring compatibility between the 

information source and signal processing within the DCS. Source coding is then done to 

remove redundant information by quantization and compression. Encryption is done to 

prevent unauthorized users from understanding messages and injecting false messages 

and thus ensure data privacy and integrity. Next channel coding is performed by adding 

redundant bits to the data for error detection and correction. It increases the reliability of 

data at the expense of transmission bandwidth or decoder complexity. Multiplexing and 

multiple access procedure combine signals that might have different characteristics of 

different sources so that they can share the same communication source. 

 

Figure 1.2 Block diagram of a digital communication system (adapted from [6]). 
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The pulse modulate block usually includes filtering to minimize the transmission 

bandwidth. It converts the binary symbols to a pulse-code-modulation (PCM) 

waveform. For applications involving RF transmission, the next important step is band 

pass modulation which translates the baseband waveform to a much higher frequency 

using carrier wave. Frequency spreading produces a signal that is invulnerable to 

interference and noise thus enhancing privacy. The signal processing steps that take 

place in the transmitter are reversed in the receiver. 

This thesis focuses on channel coding for SDR. The thesis gives an overview of 

different type of channel codes and then narrows the research work to Turbo Codes. 

Turbo Codes are widely used in modern communication systems. In this thesis, Turbo 

Codes are implemented for UMTS system and their performance is analysed under 

various channel conditions, frame sizes, signal power and iterations.  

1.4  Thesis overview 

The first part of the thesis deals with the study of basic turbo codes. A detailed study of 

the encoder, the encoding algorithm, interleaver design and MAP decoding algorithm 

has been done.  Then the UMTS turbo code implementation has been discussed.  

The thesis is organized into six chapters. Chapter 1 discusses the essence of Software 

Defined Radio with emphasis on baseband module. The elements of the basic digital 

communication are discussed. Chapter 2 discusses the basic channel coding schemes 

and their importance. The discussion includes an overview of the performance of 

various channel codes and the need of better channel coding schemes. Turbo codes are 

discussed in detail in Chapter 3 including the encoder and decoder architecture, the 

interleaver design and decoding algorithms.  Chapter 4 concentrates on the turbo code 

for UMTS standard. The specifications of the UMTS turbo encoder, channel and 

decoder are discussed. The MATLAB implementation details and the simulation results 

are given in Chapter 5. Chapter 6 concludes and summarizes the thesis.    
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2. CHANNEL CODING 

Over the years, there has been a tremendous increase in the trends of digital 

communication especially in the fields of cellular, satellite and computer 

communications. In the digital communication system, the information is represented as 

a sequence of bits. The processing is done in the digital domain. The binary data is then 

modulated on an analog waveform and transmitted over the communication channel. 

The signal is corrupted by the noise and interference introduced by the communication 

channel. At the receiver end, the corrupted signal is demodulated and mapped back to 

the binary bits. Due to channel induced impairments, the received signal may not be a 

true replica of the transmitted signal; rather it is just an estimate of the transmitted 

binary information. The bit error rate (BER) of the received signal depends on the noise 

and interference of the communication channel. In a digital transmission system, error 

control is achieved by the use of channel coding schemes. Channel coding schemes 

protect the signal from the effects of channel noise and interference and ensure that the 

received information is as close as possible to the transmitted information. They help to 

reduce the BER and improve reliability of information transmission.  

2.1  Introduction 

Channel coding schemes involve the insertion of redundant bits into the data stream that 

help to detect and correct bit errors in the received data stream. Due to the addition of 

the redundant bits, there is a decrease in data rate. Thus the price paid for using channel 

coding to reduce bit error rate is a reduction in data rate or an expansion in bandwidth. 

2.2 Types of channel codes 

There are two main types of channel codes, block codes and convolutional codes [7]. 

Block codes accept a block of k information bits, perform finite field arithmetic or 

complex algebra, and produce a block of n code bits. These codes are represented as (n, 

k) codes. The encoder for a block code is memory less, which means that the n digits in 

each codeword depend only on each other and are independent of any information 

contained in previous codeword. Some of the common block codes are Hamming codes 

and Reed Solomon (RS) codes. RS codes are non-binary cyclic error correcting codes 

that could detect and correct multiple random symbol errors. A Hamming code is a 

linear error-correcting code which can detect up to two simultaneous bit errors, and 

correct single-bit errors. For multiple error corrections, a generalization of Hamming 

codes known as Bose Chaudhuri Hocquenghem (BCH) codes is used. 
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Block codes can either detect or correct errors. On the other hand, convolutional codes 

are designed for real-time error correction. The code converts the entire input stream 

into one single codeword. The encoded bit depends not only on the current bit but also 

on the previous bit information. The decoding is traditionally done using the Viterbi 

algorithm [8]. 

2.3 Need for better codes 

The design of a channel code is always a trade-off between energy efficiency and 

bandwidth efficiency [9]. Low rate codes having more redundant bits can usually 

correct more errors. That means that the communication system can operate at lower 

transmit power, tolerate more interference and noise and transmit at higher data rate. 

Thus the code becomes more energy efficient. However, low rate codes also have a 

large overhead and have more bandwidth consumption. Also, the decoding complexity 

of the code also grows exponentially with code length. Thus, low rate codes set high 

computational requirements to the conventional decoders.   

There is a theoretical upper limit on the data transmission rate for a given bandwidth, 

channel type, signal power and received noise power such that the data transmission is 

error-free. The limit is called the channel capacity or the Shannon capacity. The formula 

for additive white Gaussian noise (AWGN) channel is  

           
 

 
          

(2.1) 

Where W is the bandwidth, S is signal power, N is received noise power and R is the 

data transmission rate. In practical transmission, no such thing as an ideal error free 

channel exists. Instead, the bit error rate is brought to an arbitrarily small constant often 

chosen at      or     . Shannon capacity sets a limit on the energy efficiency of the 

code as it defines the lower bound for the amount of energy that be expended to convey 

one bit of information given a fixed transmission rate, bandwidth and noise power. 

Shannon gave his theory in 1940s but practical codes were unable to operate even close 

to the theoretical bound. Until the beginning of 1990s, the gap between these theoretical 

bounds and practical implementations was still at best about 3dB, i.e., the practical 

codes required about twice as much energy as the theoretical predicted minimum. 

Efforts were made to discover new codes that allow easier decoding. That led to the 

introduction of concatenated codes. Simple codes were combined in parallel fashion so 

that each part of the code can be decoded separately, thus decreasing decoder 

complexity. Also, the decoders can exchange information with each other to increase 

reliability. This lead to the introduction of near Shannon capacity error correcting code 

known as turbo code.  
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Figure 2.1 Bit error rate for iterations (1,2…18) of the rate ½ turbo code presented in 

1993 [10] . 

The first turbo code, based on convolutional encoding, was introduced in 1993 where a 

scheme was described that uses a rate ½ code over an AWGN channel and achieves a 

bit error probability of      using Binary Phase Shift Keying (BPSK) modulation at an 

      of 0.7 dB [9].  The BER curves for different iterations of rate r=1/2 turbo code 

are shown in Figure 2.1 [10]. 

The turbo codes consist of two or more component encoders separated by interleavers 

so that each encoder uses an interleaved version of the same information sequence. 

Contrary to conventional decoders which use hard decision to decode the bits, 

concatenated codes like turbo codes do not limit themselves by passing hard decision 

among the decoders. They rather exchange soft decision from the output of one decoder 

to the input of the other decoder. The decoding is done in an iterative fashion to increase 

reliability of the decision. 
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3. TURBO CODES 

The generic form of a turbo encoder consists of two encoders separated by the 

interleaver. The two encoders used are normally identical and the code is systematic, 

i.e., the output contains the input bits as well. Turbo codes are linear codes. Linear 

codes are codes for which the modulo sum of two valid code words is also a valid 

codeword. A “good” linear code is one that has mostly high-weight code words. The 

weight or Hamming weight of a codeword is the number of ones that it contains, e.g., 

the Hamming weight of codeword ‘000’ and ‘101’ is 0 and 2 respectively. High-weight 

code words are desirable because it means that they are more distinct, and thus the 

decoder will have an easier time distinguishing among them. While a few low-weight 

code words can be tolerated, the relative frequency of their occurrence should be 

minimized. 

The choice of the interleaver is crucial in the code design. Interleaver is used to 

scramble bits before being input to the second encoder. This makes the output of one 

encoder different from the other encoder. Thus, even if one of the encoders occasionally 

produces a low-weight, the probability of both the encoders producing a low-weight 

output is extremely small. This improvement is known as interleaver gain. Another 

purpose of interleaving is to make the outputs of the two encoders uncorrelated from 

each other. Thus, the exchange of information between the two decoders while decoding 

yields more reliability. There are different types of interleavers, e.g., row column 

interleaver, helical interleaver, odd-even interleaver, etc. 

To summarize, it can be said that turbo codes make use of three simple ideas: 

 Parallel concatenation of codes to allow simpler decoding 

 Interleaving to provide better weight distribution 

 Soft decoding to enhance decoder decisions and maximize the gain from 

decoder interaction. 

3.1 Turbo code encoder 

The fundamental turbo code encoder is built using two identical recursive systematic 

convolutional (RSC) encoders concatenated in parallel [9]. Convolutional codes are 

usually described using two parameters: the code rate r and the constraint length K. The 

code rate k/n, is expressed as a ratio of the number of bits into the convolutional encoder 

k to the number of channel symbols output by the convolutional encoder n in a given 

encoder cycle. The constraint length parameter K denotes the length of the 
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convolutional encoder, i.e., the maximum number of input bits that either output can 

depend on. Constraint length K is given as  

      (3.1) 

Where m is the maximum number of stages (memory size) in any shift register. The 

shift registers store the state information of the convolutional encoder and the constraint 

length relates the number of bits upon which the output depends. 

In turbo code encoder, both the RSC encoders are of short constraint length in order to 

avoid excessive decoding complexity. An RSC encoder is typically of rate r = 1/2 and 

is termed a component encoder. The two component encoders are separated by an 

interleaver. The output of the turbo encoder consists of the systematic input data and the 

parity outputs from two constituent RSC encoders. The systematic outputs from the two 

RSC encoders are not needed because they are identical to each other (although ordered 

differently) and to the turbo code input. Thus the overall code rate becomes r = 1/3. 

Figure 3.1 shows the fundamental turbo code encoder [9]. 

The first RSC encoder outputs the systematic output c1 and recursive convolutional 

encoded output sequence c2 whereas the second RSC encoder discards its systematic 

sequence and only outputs the recursive convolutional encoded sequence c3. 

3.1.1 Recursive Systematic Convolutional (RSC) encoder 

The RSC encoder is obtained from the conventional non-recursive non-systematic 

convolutional encoder by feeding back one of its encoded outputs to its input. Figure 

3.2 shows a conventional rate r = 1/3 convolutional encoder with constraint length K=3. 

 

 

RSC Encoder 1 

Interleaver 

RSC Encoder 2 

Input  Systematic Output c1 

Output c2   

Output c3  

Figure 3.1 Fundamental turbo code encoder. 
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Figure 3.2 Conventional convolutional encoder with r = 1/2 and K = 3. 

For each adder in the convolutional encoder, a generator polynomial is defined. It shows 

the hardware connections of the shift register taps to the modulo-2 adders. A “1” 

represents a connection and a “0” represents no connection. The generator polynomials 

for the above conventional convolution encoder are given as g1= [111] and g2 = [101] 

where the subscripts 1 and 2 denote the corresponding output terminals. The generator 

matrix of the convolutional encoder is a k-by-n matrix. The element in the i
th

 row and j
th

 

column indicates how the i
th

 input contributes to the j
th

 output. The generator matrix of 

the above convolutional encoder is given in equation (3.2).  

                         (3.2) 

The conventional encoder can be transformed into an RSC encoder by feeding back the 

first output to the input. The generator matrix of the encoder then becomes  

        
  

  
   (3.3) 

Where 1 denotes the systematic output,  g2 denotes the feed forward output, and g1 is 

the feedback to the input of the RSC encoder. Figure 3.3 shows the resulting RSC 

encoder. 

 

 

D D 

+ 

+ 

Output 1 

Output 2 

Input  
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Figure 3.3 RSC encoder obtained from the conventional convolution encoder with  

r = 1/2 and K = 3. 

 

It was suggested in [11] that good codes can be obtained by setting the feedback of the 

RSC encoder to a primitive polynomial, because the primitive polynomial generates 

maximum-length sequences which adds randomness to the turbo code. 

3.1.2 Representation of turbo codes 

Turbo codes are often viewed as finite state machines and are represented using state 

diagrams and trellis diagrams. The contents in the memory elements of a coder 

represent its state. For the rate r =1/2 convolutional encoder of Figure 3.2 with 

constraint length K=3, the number of memory elements is L=K-1 =2. The input bit can 

be either one or zero so the size M of the input alphabet 2. The number of possible states 

of the coder is then M
L 

= 2
2
 =4 [12].  

The operation of a convolutional coder can be represented by a state diagram which 

consists of a set of nodes Sj representing the possible states of the encoder where j ϵ { 

0…M
L
 }. The nodes are connected by branches and are labelled by the input symbol and 

the corresponding output symbol. Figure 3.4 shows the state diagram of the rate r = 1/2 

convolutional encoder of Figure 3.2. The state diagram has four states S = { 00, 01, 10, 

11}. The arrows represent the transition from one state to other and the labelling on 

arrow gives the input bit (1 or 0) and the output of the encoder. 

D D 

Output 1 

Output 2 

Input  

+ 

+ 

+ 
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Figure 3.4 State diagram of rate r = 1/2 constraint length K = 3 convolutional 

encoder 

The state diagram can be expanded into the trellis diagram. All state transitions at each 

time step are explicitly shown in the diagram to retain the time dimension. The trellis 

diagram is very convenient for describing the behaviour of the corresponding decoder. 

Figure 3.5 shows the trellis diagram for the encoder in Figure 3.2 [13]. 

The four possible states of the encoder are depicted as four rows of horizontal dots. 

There is one column of four dots for the initial state of the encoder and one for each 

time instant during the message. The solid lines connecting dots in the diagram 

represent state transitions when the input bit is a one whereas the dotted lines represent 

state transitions when the input bit is a zero. The labels on the branch represent the 

output bits.  

 

Figure 3.5 Trellis diagram for the encoder in Figure 3.2 [13]. 
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Figure 3.6 Trellis termination for the encoder in Figure 3.2 [14]. 

Consider the trellis diagram for encoding 15 input bits as shown in Figure 3.6 [14]. The 

trellis is in state ‘00’ at the beginning. i.e., t=0. The trellis shows the next two states at 

time t=1 with input bit 1 and 0.  At the end of the 15 bit input, the encoder can be in any 

of the states. However, for better performance of the decoder, both the initial and final 

states of the encoder should be known. Thus, it is desirable to bring the encoders to a 

known state after the entire input has been encoded. For this purpose, trellis termination 

is performed by passing m=k-1 tail bits from the constituent encoders bringing them to 

all zeros state. This brings the trellis to the initial all zero state as well. This is known as 

trellis termination. 

3.1.3 Trellis termination 

Unlike conventional convolutional codes which always use a stream of zeros as tail bits, 

the tail bits of a RSC depend on the state of the encoder when all the data bits have been 

encoded [15]. Also because of the presence of interleaver between the two encoders, the 

final states of the two component encoders will be different. Thus, the trellis termination 

bits for the two encoders will also be different and an RSC cannot be brought to an all 

zero state simply by passing a stream of zeros through it. However, this can be done by 

using the feedback bit as the encoder input. This is done by using a switch at the input 

as shown in Figure 3.7.  

 

Figure 3.7 The trellis termination strategy for RSC encoder. 

+ 

Input

  

Output 1 

D D 

Output 2 

+ 

+ 

A 
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The switch is in position A while encoding the input sequence and is switched to 

position B at the end of the input bit sequence for termination of trellis. The XOR of the 

bit with itself will be zero (output of left most XOR) and thus the encoder will return to 

all zero state after m=k-1 clock cycles by inputting the m=k-1 feedback bits generated 

immediately after all the data bits have been encoded. Thus, a feedback is used for 

terminating the trellis bringing the encoder to the all zero state.  

3.1.4 Recursive convolutional encoders vs. Non-recursive encoder  

The recursive convolutional encoders are better suited for turbo codes as compared to 

non-recursive encoders because they tend to produce higher weight code words. 

Consider a rate r = 1/2 constraint length K = 2 non-recursive convolutional encoder 

with generator polynomial g1 = [11] and g2 = [10] as shown in Figure 3.8. The 

corresponding RSC encoder with generator matrix G = [1, g2 / g1] is shown in Figure 

3.9. 

 

Figure 3.8 Non-recursive r=1/2 and K=2 convolutional encoder with input and output 

sequences. 

 

Figure 3.9 Recursive r = 1/2 and K = 2 convolutional encoder of Figure 3.8 with 

input and output sequences. 
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Table 3.1 Input and output sequences for convolutional encoders of Figure 3.8 and 

Figure 3.9. 

Encoder Type Input Output 1 

c1 

Output 2 

c2 

Weight 

Non- RSC 1000 1000 1100 3 

RSC 1000 1000 1111 5 

Table 3.1 shows the output sequences corresponding to the same input sequence given 

to the two encoders. The non-recursive convolutional encoder produces output c1 = 

[1100] and c2 = [1000], thus it has a weight of 3. On the other hand, the recursive 

convolution encoder outputs c1= [1000] and c2= [1111] which has a weight of 5. Thus, a 

recursive convolutional encoder tends to produce higher weight code words as 

compared to non-recursive encoder, resulting in better error performance. For turbo 

codes, the main purpose of implementing RSC encoders as component encoders is to 

utilize the recursive nature of the encoders and not the fact that the encoders are 

systematic [16]. 

Figure 3.10 shows the state diagram of the non-recursive and recursive encoders. 

Clearly, the state diagrams of the encoders are very similar. Also, the two encoders have 

the same minimum free distance and can be described by the same trellis structure [9]. 

However, these two codes have different BERs as the BER depends on the input-output 

correspondence of the encoders [17]. It has been shown that the BER for a recursive 

convolutional code is lower than that of the corresponding non-recursive convolutional 

code at low signal-to-noise ratios Eb/No  [9][17]. 

 

(a) State diagram of the non-recursive encoder in Figure 3.8. 

 

(b) State diagram of recursive encoder in Figure 3.9. 

Figure 3.10 The state diagram of recursive and non recursive encoders.  
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3.1.5 Concatenation of codes 

In coding theory, concatenated codes form a class of error correcting codes obtained by 

combining an inner code with an outer code. The main purpose of concatenated codes is 

to have larger block length codes with exponentially decreasing error probability [18]. 

There are two types of concatenation, namely serial and parallel concatenations. In 

serial concatenation, the blocks are connected serially such that the output of one block 

is input to the next block and so on.  

An interleaver is often used between the encoders in both serial and parallel 

concatenated codes to improve burst error correction capacity and increase the 

randomness of the code. In case of serial concatenation, the output of encoder 1 is 

interleaved before being input to encoder 2 whereas in parallel concatenation, the input 

data is interleaved before being input to the second encoder. The serial concatenated 

coding scheme is shown in Figure 3.11. 

The total code rate for serial concatenation is the product of the code rates of the 

constituent encoders and is given as [18]. 

              
  

  
 

  

  
  

    

    
     

(3.4) 

For parallel concatenation, the blocks are connected in parallel. The parallel 

concatenation scheme is shown in Figure 3.12. The total code rate for parallel 

concatenation is calculated as 

 

      
   

 

  
 

 

  
   

 

    
 

 

    
  

  

 
 

  

 
   

     

 
 

         
 

     
 

 

 

(3.5) 

 

Figure 3.11 Serial concatenated code. 
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Figure 3.12 Parallel concatenated code. 

Turbo codes use the parallel concatenated encoding scheme in which the two RSC 

encoders are connected in parallel separated by an interleaver. However, the turbo code 

decoder is based on the serial concatenated decoding scheme. The performance of serial 

concatenated decoders is better than the parallel concatenated decoding scheme as the 

serial concatenation scheme has the ability to share information between the 

concatenated decoders. On the other hand, the decoders for the parallel concatenation 

scheme are primarily decoding independently. 

3.1.6 Interleaver design 

Turbo codes use an interleaver between two component encoders. The purpose of using 

the interleaver is to provide randomness to the input sequences and increase the weight 

of the code words. 

Consider a constraint length K = 2 rate r = 1/2 convolutional encoder as shown earlier 

in Figure 3.9. The input sequence xi produces output sequences c1i and c2i respectively. 

The input sequences x1 and x2 are different permuted sequences of x0. Table 3.2 shows 

the resulting code words and weights. 

Table 3.2 Input and Output Sequences for Encoder in Figure 3.9. 

 Input 

Sequence 

Output Sequence 

c1i 

Output Sequence 

c2i 

Codeword 

Weight  

x0 1100 1100 1000 3 

x1 1010 1010 1100 4 

x2 1001 1001 1110 5 

Modulator 

Channel 

Demultiplexer 

 

Demodulator 

Encoder 1 

r1 = k1 / n1 
Multiplexer 

Interleaver 
Encoder 2 

r2 = k2 / n2 

General 

Concatenated 

Decoding 
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Decoder Structure) 
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The values in Table 3.2 show that the codeword weight can be increased by permuting 

the input sequence using an interleaver. The interleaver affects the performance of turbo 

codes by directly affecting the distance properties of the code [19]. The BER of a turbo 

code is improved significantly by avoiding low-weight code words. The choice of the 

interleaver is important in the turbo code design. The optimal interleaver is the one that 

produces fewest low weight coded sequences. The algorithm shows the basic interleaver 

design concept: 

 Generate a random interleaver. 

 Generate all possible input information sequences. 

  Determine the resulting code words for all possible input information 

sequences. Determine the weight of the code words to find the weight 

distribution of the code. 

 From the collected data, determine the minimum codeword weight and the 

number of code words with that weight. 

Repeat the algorithm for a reasonable number of times. By comparison of the data, the 

interleaver with the largest minimum codeword weight and lowest number of code 

words with that weight is selected. 

A number of interleavers are used in turbo codes [20]. A few of them are discussed 

below in detail. 

3.1.6.1 Matrix interleaver 

The matrix interleaver is the most commonly used interleaver in communication 

systems. It writes data in a matrix columnwise from top to bottom and left to right 

without repeating or omitting any of the data bits. The data is then read out rowwise 

from left to right and top to bottom. For example, if the interleaver uses a 2-by-3 matrix 

to do its internal computations, then for an input of [A B C D E F], the interleaver 

matrix is  

 
   
   

  

The interleaved output is [A D B E C F]. At the deinterleaver the data is written in 

columnwise fashion and read rowwise to obtain the original data sequence. 

3.1.6.2 Random (Pseudo-Random) interleaver 

The random interleaver uses a fixed random permutation and maps the input sequence 

according to the permutation order. Consider an input sequence of length L=8 and the 

random permutation pattern be [2 3 5 6 7 4 8 1]. If the input sequence is [A B C D E F 

G H], the interleaved sequence will be [B C E F G D H A]. At the deinterleaver, the 

reverse permutation pattern is used to deinterleave the data. 
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Figure 3.13 The interleaving using random interleaver. 

3.1.6.3 Circular-shifting interleaver 

The permutation p of the circular-shifting interleaver is defined by  

                 (3.7) 

Where i is the index, b is the step size, s is the offset and L is the size of the interleaver. 

The step size b should be less than L and b should be relatively prime to L [21]. Figure 

3.14 illustrates a circular-shifting interleaver with L=8, b=3, and s=0. 

 

Figure 3.14 The interleaving using circular shifting interleaver. 

It can be seen that the adjacent bit separation is either 3 or 5. This type of interleaver is 

suited for permuting weight-2 input sequences with low codeword weights into weight-

2 input sequences with high codeword weights. However, because of the regularity of 

adjacent bit separation (3 or 5 in the above case), it is difficult to permute input 

sequences with weight higher than 2 using this interleaver [21]. 

3.1.6.4 Odd-Even interleaver design 

The code rate of the turbo code can be changed by puncturing the output sequence. 

Puncturing is the process of removing some of the parity bits after encoding. This has 

the same effect as encoding with an error-correction code with a higher rate, or less 



21 

 

 

 

redundancy. However, with puncturing the same decoder can be used regardless of how 

many bits have been punctured, thus puncturing considerably increases the flexibility of 

the system without significantly increasing its complexity. A pre-defined pattern of 

puncturing is used at the encoder end. The inverse operation, known as depuncturing, is 

implemented by the decoder. By puncturing the two coded output sequences of a rate    

r = 1/3 turbo code, a rate r = 1/2 turbo code can be obtained. However, by simple 

puncturing the two coded output sequences there is a possibility that both the coded bits 

corresponding to a systematic information bits be punctured. Due to this, the 

information bit will have none of its coded bits in the sequence and vice versa. As a 

result, the performance of the turbo decoder degrades in case of error for an unprotected 

information bit. This can be avoided by using an odd-even interleaver design. First, the 

bits are left uninterleaved and encoded, but only the odd-positioned coded bits are 

stored. Then, the bits are scrambled and encoded, but now only the even-positioned 

coded bits are stored. As a result, each information bit will now have exactly one of its 

coded bits [22]. This guarantees an even protection of each bit of information, a uniform 

distribution of the error correction capability and better performance of the code.  

3.2 Turbo code decoder  

In traditional decoding approach, demodulation is based on hard decision of the 

received symbol. This discrete value is then passed on to the error control decoder. This 

approach has some disadvantages. The decoder cannot make use of the certainty of 

information available to it while decoding [9]. 

A similar but better rule is to take into account the a priori probabilities of the input. If 

the +1 symbol has a probability of 0.9 and if the symbol falls in negative decision range, 

the Maximum Likelihood Decoder (MLD) will decide it as -1. It does not take into 

account the 0.9 probability of symbol being +1. A detection method that does take this 

conditional probability into account is the Maximum a posteriori probability (MAP) 

algorithm. It is also known as the minimum error rule [23]. 

Another algorithm used for turbo decoding is the soft output Viterbi algorithm (SOVA). 

It uses Viterbi algorithm but with soft outputs instead of hard. 

3.2.1 Map decoder 

The process of MAP decoding includes the formation of a posteriori probabilities 

(APP) of each information bit followed by choosing the data bit value corresponding to 

MAP probability for that data bit. While decoding, the decoder receives as input a “soft” 

(i.e. real) value of the signal. The decoder then outputs for each data bit an estimate 

expressing the probability that the transmitted data bit was equal to one indicating the 

reliability of the decision. In the case of turbo codes, there are two decoders for outputs 

from both encoders. Both decoders provide estimates of the same set of data bits, but in 
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a different order due to the presence of interleaver. Information exchange is iterated a 

number of times to enhance performance. During each iteration, the estimates are re-

evaluated by the decoders using information from the other decoder. This allows the 

decoder to find the likelihood as to what information bit was transmitted at each time 

instant. In the final stage, hard decisions will be made, i.e., each bit is assigned the value 

1 or 0 [24]. 

The APPs are used to calculate the likelihood ratio by taking their ratio. The logarithmic 

form of likelihood ratio is the log likelihood ratio (LLR). 

       
   

   
 

   
   

 
    

(3.8) 

           
   

   
 

   
   

 

  
(3.9) 

Where        is the likelihood ratio,        is the LLR. The term   
   

  is described as 

the joint probability that data      and state     , observed from time k =1 to N  

and conditioned on the received corrupted binary sequence   
   which has been 

transmitted through the channel, demodulated and presented to the decoder in soft 

decision form. 

  
                  

     (3.10) 

The sequence   
  can be written as  

  
     

           
   (3.11) 

Substituting equation (3.11) in equation (3.10), we get 

  
                  

           
   (3.12) 

The Bayes’s theorem gives the conditional probabilities as 

           
          

        
 

                  

        

 
                        

        
 

 

(3.13) 

Applying the results of equation (3.13) to equation (3.12) yield, 
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(3.14) 

Equation (3.14) will now be explained in terms of the forward state metric, reverse state 

metric and the branch metric. 

3.2.1.1 The state metrics and the branch metric 

 FORWARD STATE METRIC 

Consider the first term on the right side of equation (3.14) 

    
      

             (3.15) 

For i =0,1 and time k and state      implies that the events before time k are not 

influenced by events after time k, i.e., the future does not affect the past. Thus the two 

terms   
  and      are irrelevant and     

     is independent of these terms. 

However, since the encoder has memory, the state       is based on the past so this 

term is relevant. This simplifies equation 3.15 as 

    
            

                         (3.16) 

The equation represents the forward state metric at time k as being a probability of the 

past sequence that is dependent only on the current state       induced by the 

sequence. 

 REVERSE STATE METRIC 

The second term of equation (3.14) represents the reverse state metric   
  at time k and 

state       . 

      
                       

                    
      

 (3.17) 

Where f (i,m) is the next state given an input i and state m and      
      

 is the reverse 

state metric at time k+1 and state f(i,m). Equation (3.17) represents the reverse state 

metric     
  at future time k+1 as being a probability of the future sequence which 

depends on the state at future time k+1. The future state f (i,m) in turn is a function of 

the input bit and the state at current time k. 
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 BRANCH METRIC 

The third term in equation (3.14) is defined as the branch metric   
   

at time k and state 

m. 

                  
                          (3.18) 

Substituting equation (3.16), (3.17), (3.18) in equation (3.14) yields 

  
     

  
      

      
  

    

    
  

                        
(3.19) 

Equation (3.8) and (3.9) can be expressed in terms of equation (3.19) as  

       
   

      
      

  
      

   
      

      
  

     

                       
(3.20) 

           
   

      
      

  
      

   
      

      
  

     

                 
(3.21) 

Equations (3.20) and (3.21) represent the likelihood ratio        and the LLR        of 

the k
th

 data bit respectively.  

3.2.1.2 Calculating the forward state metric 

The forward state metric in equation (3.16) can be expressed as the summation of all 

possible transition probabilities from time k-1, as follows [24] 

    
            

                       
         

 

     

                      

  
                       

                  

 

     

 

 

(3.22) 

Applying Bayes’s theorem yields 

  
        

                                                            

 

     

                                  

 

(3.23) 

As the knowledge about state m´ and the input j at time k-1 completely defines the path 

resulting in state     , so the equation can be simplified to: 
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Figure 3.15 The graphical representation for calculating the forward state metric. 

  
    

 

   

   
                                          

(3.24) 

Where b(j, m) is the state going backward in time from state m, via the previous branch 

corresponding to input j. Equation (3.24) can be simplified using equations (3.16) and 

(3.18) . 

  
       

      
      

        

 

   

 

(3.25) 

Figure 3.15 represents equation (3.25) in terms of transitions from state k-1 to state k. 

3.2.1.3 Calculating the reverse state metric 

The reverse state metric was given in equation (3.17) as  

    
      

        
                

Using this equation, the reverse state metric for state m at time k is given as: 

  
       

                       
        (3.26) 

Equation (3.26) can be expressed in terms of summation of all possible transition 

probabilities to time k+1 as follows [24] 

  
                          

       

 

     

 

 

(3.27) 
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Using Bayes’s theorem 

  
          

                        

 

     

                         

 

(3.28) 

In the first term of equation (3.28), the terms       and      define the path given 

an input j and state m resulting in state            . Thus, the term          can 

be replaced with        in the second term of equation (3.28). 

  
         

               

 

   

                 

 

(3.29) 

Using equation (3.17) and (3.18), equation (3.29) becomes 

  
     

   
    

      

 

   

 

 

(3.30) 

The equation represents the reverse state metric at time k as the weighted sum of state 

metrics from time k+1 where the weighting consists of branch metrics associated with 

transitions corresponding to data bits 0 and 1. Figure 3.16 shows the graphical 

representation of calculating the reverse state metric. 

3.2.1.4  Calculating the branch metric 

The branch metric was given in equation (3.18) as 
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Figure 3.16 The graphical representation for calculating reverse state metric. 

 



27 

 

 

 

The equation can be solved using Bayes’s rule as 

  
                                        (3.31) 

Where    is the received noisy signal and it consists of both noisy data bits    and 

noisy parity bits    .The noise affects data and parity bits independently so the current 

state is independent of the current input and can therefore be any of the    states where 

  is the number of memory elements in the convolutional code system. Thus the 

probability is given as 

             
 

  
 

(3.32) 

Solving equation (3.31) using equation (3.32) yields 

  
    

                      

  
  

                         

  
 

(3.33) 

The term         is the a priori probability of    and is given as   
  , thus equation 

(3.33)  becomes 

  
     

                                
 

  
 

(3.34) 

Now, the probability density function (pdf)    
     of a random variable Xk   is related 

to the probability of that random variable Xk taking on the value xk  as 

            
        (3.35) 

For an AWGN channel with zero mean and variance   , the probability terms in 

equation (3.34) are replaced with the pdf equivalents of equation (3.35) yielding 

  
    

  
 

  
     

 

 
 
     

 

 
 

 

    

 

    
     

 

 
 
     

   

 
 

 

     

 

(3.36) 

Where uk and vk represent the transmitted data bits and parity bits respectively. The 

parameter   
  represents data that has no dependence on state m whereas the parameter 

  
   

 represents parity which depends on the state m since the code has memory. 

Simplifying equation (3.36) gives [24]: 

  
        

      
 

  
     

      
      

(3.37) 

Substituting equation (3.37) in equation (3.8), we obtain: 
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(3.38a) 

             
   

  
   

             
(3.38b) 

Where    is the input a prior probability ratio       at time k and   
  is the output 

extrinsic likelihood. The term   
  can be considered as the correction term that changes 

the input priori knowledge about a data bit due to coding and is passed from one 

decoder to the other during iterations. This improves the likelihood ratio for each data 

bit and minimizes the decoding errors. Taking log of equation (3.38b) yields the final 

LLR term. 

                              (3.39) 

The final soft number         is made up of three LLR terms; the a priori LLR      , 

the channel measurement LLR       , and the extrinsic LLR        . 

Implementing the MAP algorithm in terms of the likelihood ratios is very complex 

because of the multiplication operations that are required. However, by implementing it 

in the logarithmic domain, the complexity is greatly reduced. 
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4. THE UMTS TURBO CODE 

Turbo codes are discussed in detail in chapter 3. This chapter will focus on the 

implementation of Turbo encoder and decoder for UMTS systems. The architecture of 

the encoder will be discussed in section 4.1. It explains the basic convolutional encoders 

and interleaver used in UMTS turbo code in detail. After coding, the systematic bits and 

code bits are arranged in a sequence, modulated using BPSK modulation and 

transmitted over the channel. The channel models and the decoder architecture are 

discussed in detail in section 4.2 and section 4.3 respectively. 

4.1 UMTS turbo encoder 

The UMTS turbo coder scheme is Parallel Concatenated Convolution Code (PCCC). It 

comprises of two constraint length K = 4 (8 state) RSC encoders concatenated in 

parallel. The overall code rate is approximately r = 1/3. Figure 4.1 shows a UMTS 

turbo encoder [26]. 

The two convolutional encoders used in the Turbo code are identical with generator 

polynomials [25]. 

g0 (D)=1+D
2
+D

3     
    (4.1) 

g1(D)=1+D+D
3 

                     (4.2) 

 

Figure 4.1 The UMTS turbo encoder [26].  
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Where g0 and g1 are the feedback and feed forward generator polynomials respectively. 

The transfer function of each constituent convolutional encoder is: 

         
     

     
  

(4.3) 

The data bits are transmitted together with the parity bits generated by two 

constituent convolutional encoders. Prior to encoding, both the convolutional encoders 

are set to all zero state, i.e., each shift register is filled with zeros.  The turbo encoder 

consists of an internal interleaver which interleaves the input data bits X1, X2 …….XK   to 

X´1, X´2 ……. X´K which are then input to the second constituent encoder. Thus, the data 

is encoded by the first encoder in the natural order and by the second encoder after 

being interleaved. The systematic output of the second encoder is not used and  thus the 

output of the turbo coder is serialized combination of the systematic bits Xk, parity bits 

from the first (upper) encoder Zk and parity bits from the second encoder Z´k  for k = 

1,2,…K. 

         
           

               
    (4.4) 

The size of the input data word may range from as few as 40 to as many as 5114 

bits. If the interleaver size is equal to the input data size K the data is scrambled 

according to the interleaving algorithm, otherwise dummy bits are added before 

scrambling. After all the data bits K have been encoded, trellis termination is performed 

by passing tail bits from the constituent encoders bringing them to all zeros state. To 

achieve this, the switches in Figure 4.1 are moved in the down position. The input in 

this case is shown by dashed lines (input=feedback bit). Because of the interleaver, the 

states of both the constituent encoders will usually be different, so the tail bits will also 

be different and need to be dealt separately. 

As constraint length K=4 constituent convolutional encoders are used, so the 

transmitted bit stream includes not only the tail bits {Xk+1, X k+2, Xk+3} corresponding to 

the upper encoder but also tail bits corresponding to the lower encoder {X´k+1, X´k+2, 

X´k+3}. In addition to these six tail bits, six corresponding parity bits {Zk+1, Zk+2, Zk+3} 

and {Z´k+1, Z´k+2, Z´k+3} for the upper and lower encoder respectively are also 

transmitted. First, the switch in the upper (first) encoder is brought to lower (flushing) 

position and then the switch in the lower (second) encoder. The tail bits are then 

transmitted at the end of the encoded data frame. The tail bits sequence is: 

                                        
       

      
       

       
       

  (4.5) 

The total length of the encoded bit sequence now becomes 3K+12, 3K being the 

coded data bits and 12 being the tail bits. The code rate of the encoder is thus                 
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r = K / (3K+12). However, for large size of input K, the fractional loss in code rate due 

to tail bits in negligible and thus, the code rate is approximated at 1/3. 

4.1.1 Interleaver 

Turbo code uses matrix interleaver [25]; [26]. Bits are input to a rectangular matrix in a 

rowwise fashion, inter-row and intra-row permutations are performed and the bits are 

then read out columnwise. The interleaver matrix can have 5, 10 or 20 rows and 

columns between 8 and 256 (inclusive) depending upon the input data size. Zeros are 

padded if the number of data bits is less than the interleaver size and are later pruned 

after interleaving. 

The input to the interleaver is the input data bit sequence X1, X2 ….. ….XK   where K 

is the number of data bits. Interleaving is a complicated process and it comprises of a 

number of steps which are described below. 

4.1.1.1 Bits input to the rectangular matrix 

1. Determine number of rows R : 

The number of rows can be either 5, 10 or 20 depending on the size of input data. If the 

input data size lies between 40 and 159, the number of rows R is five. If the input data 

size K is either between 160 and 200 or 481 and 530, the number of rows of the 

interleaver matrix R is ten. The interleaver matrix has twenty rows for size of input data 

K lying anywhere outside the range specified. 

       
 
  
  

 

             
                                                 

                            

  

 

(4.6) 

The rows are numbered from 0 to R-1 from top to bottom. 

2. Determine number of columns C : 

For determining C, first a prime root p is calculated which is later used in the intra-row 

permutations. If K lies in the range between 481 and 530 (inclusive), then both C and p 

are assigned a value 53. Otherwise, the value of p is selected from Table 4.1 such that 

the product of R and (p+1) is less than or equal to the number of input bits K. In this 

case, the number of columns C can have any of the three values p-1, p and p+1 

depending on the relation between number of data bits K,  number of rows R and prime 

root p. Like the rows, the number of columns is also numbered from 0 to C-1. 
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(4.7) 

Table 4.1 The list of prime number p and associated primitive root v. 

p v p v p v p v p v 

7 3 47 5 101 2 157 5 223 3 

11 2 53 2 103 5 163 2 227 2 

13 2 59 2 107 2 167 5 229 6 

17 3 61 2 109 6 173 2 233 3 

19 2 67 2 113 3 179 2 239 7 

23 5 71 7 127 3 181 2 241 7 

29 2 73 5 131 2 191 19 251 6 

31 3 79 3 137 3 193 5 257 3 

37 2 83 2 139 2 197 2   

41 6 89 3 149 2 199 3   

43 3 97 5 151 6 211 2   

3. Writing data in rectangular matrix: 

The data is written in the interleaver matrix row wise. The size of the interleaver matrix 

is R × C. If the size of input stream is smaller than the interleaver size, dummy bits are 

padded which are later pruned away after interleaving. The interleaver matrix is   

 
 
 
 
                                                                                       
                                                                              
                                                                                                 
                                                            

 
 
 
  

                    

                                   

Where K is the length of Input bit sequence and k =0, 1, 2…..K. 

4.1.1.2 Intra row and inter row permutations 

The permutation process consists of seven steps which have been discussed in detail 

below: 

1. For the calculated value of prime root p, corresponding primitive toot v is selected 

from Table 4.1. 
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2. The base sequence s for intra row permutation is constructed by using the primitive 

root v, the prime root p and the previous value of base sequence. The value of base 

sequence is initialized to one. 

                                                    (4.8) 

3. The prime number sequence q is found out using the value of prime root p which is 

later used for the calculations of variables for intra-row permutation. The size of the 

sequence is equal to the number of rows of the interleaver matrix. The value of q is 

calculated using the greatest common divisor (gcd). The prime integer qi (i = 1, 2,  

… R-1) in the sequence is the least prime integer such that the gcd of q and (p-1)  

equals one. The value of q should be greater than 6. Also, the next value of q should 

be greater than the previous value in the sequence. The value of q is initialized to 1. 

             

                                             

(4.9) 

4. The inter-row permutation pattern is selected depending on the number of input bits 

K and number of rows R of the interleaver matrix. The inter-row permutation pattern 

simply changes the ordering of rows without changing the ordering of elements 

within a row. If the number of rows is either five or ten, the inter-row permutation 

pattern is simply the flipping of rows or in other words a reflection around the centre 

row, e.g., if the number of rows is five, then the rows {0, 1, 2, 3, 4} are permuted to 

rows {4, 3, 2, 1, 0} respectively. Same is the case when the number of rows is ten. 

The rows {0, 1, 2, 3 ….9} become rows {9, 8, 7, 6, 5, 4, 3, 2, 1, 0} respectively. 

When the number of rows is twenty, there are two different cases based on the 

number of input bits. The rows {0, 1, 2,…19} become rows {20, 10, 15, 5, 1, 3, 6, 8, 

13, 19, 17, 14, 18, 16, 4, 2, 7, 12, 9, 11} respectively, when the number of input bits 

K satisfies either of the two conditions, i.e., 2281 ≤ K ≤ 2480 or 3161 ≤ K ≤ 3210. 

For any other value of K, the permutation pattern is {20, 10, 15, 5, 1, 3, 6, 8, 13, 19, 

11, 9, 14, 18, 4, 2, 17, 7, 16, 12}. 

5. The prime integer sequence qi is permuted to get ri  (for i = 0, 1, …. R-1) which is 

used in calculating the intra-row permutation patterns. 

                          (4.10) 

 Where T(i) refers to the i
th

  value of the inter-row permutation pattern calculated in 

the previous step.  

6. Next, the intra-row permutation is performed depending on the relation between 

number of columns C and the prime root p. The intra-row permutation changes the 
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ordering of elements within a row without changing the ordering of the rows. The i
th

  

( i = 0, 1, ….R-1)  intra-row permutation is performed as: 

                                            (4.11) 

Where       is the original bit position of the j
th

 permuted bit of i
th

 row. For 

example, the values i=3, j=4 and          means that the bit at row 3 and column 

4 now was originally at position 15 in the same row. 

If the number of columns C is one less than the prime root p, then equation 

(4.11) is used for permuting the sequence. If number of columns C is equal to the 

prime root p, then the last column of i
th

 row Ui(p-1)  is assigned a value zero. 

If the number of columns C is one more than prime root p, then Ui(p-1) is 

assigned a value zero and Ui(p) is assigned a value p. In this case, if the size of input 

bits K is equal to the interleaver matrix size R × C, then the first and last bits of the 

last row are exchanged, i.e., UR-1(p) with UR-1(0). 

7. The inter-row permutation is performed for the intra-row permuted rectangular 

matrix based on the permutation pattern T introduced in step 4. 

4.1.1.3 Bits output from the rectangular matrix with pruning 

After intra-row and inter-row permutations, data is read out from the permuted R × C 

rectangular matrix in a columnwise fashion starting with the bit in row 0 of column 0 

and ending with the bit at row R-1 of column C-1. 

 
 
 
 
    

                         
                                 

                                  
  

   
                         

                                 
                                  

  

                                                                                                                         

   
                      

                                  
                                  

              
 
 
 
 

  

The output is pruned by deleting dummy bits that were added before interleaving. 

For example, bits Y´k that correspond to bits Yk for k > K were the dummy bits and are 

removed from the output. The bit sequence obtained after interleaving and pruning is 

X´k for k ≤ K where X´1 corresponds to Y´k with smallest index k after pruning. The 

number of bits output from the turbo code interleaver is equal to the number of input 

bits K and the number of pruned bits is (R×C)-K. 

4.2 Channel 

After encoding, the entire n bit turbo codeword is assembled into a frame, modulated, 

transmitted over the channel, and then decoded. The input to the modulator is assumed 

to be Uk where Uk can be either systematic bit or parity bit and it can have a value either 
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0 or 1. The signal passing received after passing through the channel and demodulation 

is Yk which can take on any value. Thus, Uk is a hard value an Yk is a soft value. 

The modulation scheme assumed for the proposed system was BPSK and the 

channel model can be either AWGN or flat fading channel. For a channel with channel 

gain ak and Gaussian noise nk, the output from the receiver’s matched filter is               

Yk = ak Sk + nk where Sk is the signal after passing through the matched filter. For 

systematic data bits, Sk = 2Xk  - 1. For upper and lower encoder parity bits Sk = 2Zk  - 1 

and Sk = 2Zk´ - 1 respectively. For an AWGN channel, channel gain ak equals one 

whereas for a Rayleigh flat fading channel, it is a Rayleigh random variable. The 

Gaussian noise nk has a variance σ
2
 = 1/(2Es / No)  where Es is the energy per code bit 

and No is the one sided noise power spectral density. For a coderate r = K/ (3K+12), the 

noise variance in terms of energy per data bit Eb becomes   

   
 

         
  

       

           
 

(4.12) 

           The input to the decoder is in the log likelihood ratio LLR form to assure that the 

effects of the channel .i.e. noise variance nk and channel gain ak have been properly 

taken into account. The input to the decoder is in the form 

      
            

            
  

(4.13) 

By applying Bayes’s rule and assuming that P[Sk=+1] = P[Sk =-1] 

                                                   

                                        

                                                               

                                             

                                           (4.14) 

where  fY(Yk|Sk) is the conditional pdf of receiving Yk given code bit Sk, which is 

Gaussian with mean akSk and variance σ
2
 [27]. Thus, for decoding the bit, we need both 

the code bit as well as knowledge of the statistics of the channel.  

Substituting the expression for Gaussian pdf and simplifying yields: 

    
    

  
    

(4.15) 
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The expression shows that the matched filter coefficients need to be scaled by a 

factor 2ak /σ
2 

in order to meet the input requirements of the decoder where Rk shows the 

received LLR for both data and parity bits. The notation R(Xk) denotes the received LLR 

corresponding to systematic data bits Xk, R(Zk) is the LLR corresponding to the upper 

encoder parity bit Zk and R(Zk´) corresponds to the lower encoder parity bit Zk´. 

4.3 Decoder architecture 

The architecture of the UMTS decoder is as shown in Figure 4.2. It operates in an 

iterative manner as indicated by the presence of the feedback path [26] [27]. 

The decoder uses the received codeword along with the knowledge of the code 

structure to compute the LLRs. Because of the presence of the interleaver at the encoder 

end, the structure of the code becomes very complicated and it is not feasible to 

compute the LLR by using a single probabilistic processor. It is rather feasible to break 

the job of achieving a global LLR estimate in two iterations. As a result, each iteration 

of the Turbo decoder consists of two half iterations, one for each constituent RSC 

decoder. As indicated by the sequence of arrows, the timing of the decoder is such that 

the RSC decoder 1 operates during the first half iteration and RSC decoder 2 operates 

during the second half iteration.  

Both the decoder structures compute LLR using a soft-input-soft-output processor 

(SISO). Although the data bits used by the second decoder are interleaved, the two 

SISO processors are producing LLR estimate of same set of data bits in different order. 

 

Figure 4.2 The UMTS turbo decoder architecture [26]. 
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The performance of the decoders can be greatly improved by sharing the LLR 

estimates with each other. The first SISO decoder calculates the LLR and passes it to 

the second decoder. The second decoder uses that value to calculate LLR which is fed 

back to the first decoder. These back and forth exchange of information between the 

processors make turbo decoder an iterative decoder. This also results in an improved 

performance as after every iteration, the decoder is better able to estimate the data. 

However as the number of iterations increase, the rate of performance improvements 

decreases [27]. 

 The value w(Xk)  for 1 ≤ k ≤ K, is the extrinsic information produced by RSC 

decoder 2 and fed back to the input of RSC decoder 1. Prior to the first iterations, the 

value of w(Xk) is initialized to all zeros as decoder 2 has not yet decoded the data. After 

each iteration, the value of w(Xk) is updated to a new non zero value to reflect the 

beliefs regarding the data and are propagated from decoder 2 to decoder 1 which uses 

this information as the extrinsic information. As both RSC encoders at the transmitter 

end are using independent tail bits so only the information regarding actual information 

bits will be exchanged between the two encoders. For the value of k in range K+1 ≤ k ≤ 

K+3, w(Xk) is undefined or in other words zero after every iteration. 

Decoder 1 must use the extrinsic information while decoding. Figure 4.2 gives a 

detailed understanding of the steps being followed. The following sequence of steps is 

followed: 

1. The extrinsic information w(Xk) is added to the received systematic LLR R(Xk) 

forming a new variable  V1(Xk).  

                   (4.16) 

As the extrinsic information w(Xk) is non zero for 1 ≤ k ≤ K  so the input to the RSC 

decoder 1  is the received parity bits in LLR form  R(Zk) and a combination of the 

systematic data R(Xk)  and extrinsic information w(Xk), i.e., V1(Xk). For                 

K+1 ≤ k ≤ K+3 (tail bits) no extrinsic information is available, i.e., w(Xk) equals 

zero. In this case, the input to RSC decoder 1 is the received and scaled upper 

encoder’s tail bits V1(Xk) = R(Xk) + 0 = R(Xk), and the corresponding received and 

scaled parity bits R(Zk). 

2. The RSC decoder 1 uses this information to decode the data and outputs the LLR 

 1(Xk) for 1 ≤ k ≤ K as only the LLR of data bits is shared with the second encoder. 

                                 

                                                

 

(4.17) 

3. The extrinsic information w(Xk) is subtracted from  the first encoder’s LLR  1(Xk), 

to obtain a new variable V2(Xk) which is to be used by the second encoder. Similar to 

V1(Xk),        contains both the systematic channel LLR and the extrinsic 

information produced by decoder 1. 
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                      (4.18) 

 

4. The sequence         is interleaved to obtain      
    which is input to decoder 2. 

     
                       (4.19) 

This is done so that the sequence of bits in      
   matches that of the input to the 

second decoder R   
 ), the bits which were bits interleaved before convolutional 

coding. 

5. For 1 ≤ k ≤ K, the input to the decoder is      
  , i.e., the interleaved version of  

       and     
  , the channel’s LLR corresponding to second encoder parity bits. 

The decoder uses this input to generate the LLR        . 

     
                   

        
     

                    
                         

                     
                               (4.20) 

 

6. The LLR      
   is deinterleaved to form        with the sequence of bits now 

same as the original bits. 

                         
    (4.21) 

7. The sequence        is fed back to obtain the extrinsic information       by 

subtracting        from it. This value of       will be used by decoder 1 during 

the next iteration. 

                     (4.22) 

8. When the number of iterations are completed, a hard bit decision is taken using 

       to obtain the decoded bit     such that     equals one when        is 

greater than zero and vice versa for 1≤ k ≤ K. 

                           

                            

(4.23) 

4.4 RSC decoder 

The heart of the turbo decoder is the algorithm used to implement the RSC decoder. The 

RSC decoders use a trellis diagram to represent all possible transitions between the 

states along with their respective outputs. As the RSC encoder used by UMTS has three 

shift registers, the number of distinct possible states is   , i.e., eight. The trellis diagram 
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not only shows the state for a particular bit k but also shows the permissible state 

transitions leading to next state [26][27]. 

While decoding, each of the two RSC decoders sweep through the code trellis 

twice, once in the forward and once in the backward direction. The sweep is 

implemented using MAP algorithm which is a modified version of the Viterbi algorithm 

to compute partial branch and path metrics. Although it is somewhat more complex than 

the Viterbi algorithm but it has the advantage that it outputs the APPs of the information 

and the channel [29]. The presented algorithm uses a version of the classical MAP 

algorithm in the log domain. 

4.4.1 Max* operator 

The MAP algorithm poses technical difficulties because of a high number of additions 

and multiplications. MAP algorithm if implemented in the log domain [30] [31] 

significantly reduces the computational complexity. The log-MAP algorithm is based on 

the Viterbi algorithm with two key modifications [31]: 

 Trellis should be swept in both forward and reverse directions. 

 Jacobi algorithm also known as max* operator should be used instead of the 

add-compare-select (ACS) operation of the Viterbi algorithm. 

The log-MAP algorithm is implemented twice during each half iteration; once in the 

forward and once in reverse direction. It constitutes a dominant portion of the decoder 

complexity and thus, the manner in which it is implemented is critical in determining 

the performance and complexity of the decoder. Four versions based on four different 

max* operations have been considered in the implementation [26]. 

4.4.1.1 Log MAP algorithm  

The logarithm version of the MAP algorithm is the log MAP [31] algorithm. It has 

reduced complexity as multiplication operations are transformed into additions. 

                                                          

                                              

                                                            

 

 

(4.24) 

Thus, max* operator in this case be calculated by taking the maximum of the two input 

arguments x and y and then adding a correction function fc to it. The correction function 

is simply a function of the absolute difference between the two arguments of the max* 

operator. The correction function fc can be computed using log and exponential 

functions or it can be pre-computed and stored in a look-up table to decrease  
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Figure 4.3 The correction function fc used by log-MAP, constant-log-MAP and 

linear-log-MAP algorithm. 

complexity. The log-MAP algorithm is the most complex of all the four algorithms but 

it offers the best BER performance. The correction function fc used by log MAP 

algorithm is illustrated in Figure 4.3 along with the correction functions used by 

constant-log MAP and linear-log MAP algorithms. 

4.4.1.2 Max-log MAP algorithm   

In the max-log MAP algorithm, the log MAP algorithm is loosely approximated by 

setting the correction function fc to zero in equation (4.24), i.e., it is not used at all [27]. 

                   (4.25) 

The max-log MAP algorithm is the least complex of all the four algorithms but it has 

still twice the complexity of the Viterbi algorithm. It can be implemented using a pair of 

Viterbi algorithm, one that sweeps through the trellis in the forward direction and one in 

the reverse direction [31]. It offers the worst BER performance of all the four variants of 

MAP algorithm. It has however the additional benefit of being intolerant of imperfect 

noise variance estimates while operating in an AWGN channel.  

4.4.1.3 Constant-log MAP algorithm 

The constant-log MAP algorithm was first introduced by W. J. Gross and P. G. Gulak in 

1998 [33]. It uses a lookup table with only two entries of the correction function, thus 

decreasing the complexity. 
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(4.26) 

 

The values of T and C used in the implementation are 1.5 and 0.5 respectively [26] [34]. 

The performance and complexity of constant-log MAP algorithm lies between log MAP 

and max-log MAP however, it is more susceptible to noise variance estimation errors 

than log MAP.  

4.4.1.4 Linear –log MAP algorithm 

In the constant-log MAP algorithm, the correction function was approximated by a set 

of lookup tables. This implies the need of a high speed memory. To avoid the need of 

high-speed memory, a linear approximation can be used. The linear-log MAP algorithm 

is also based on using a linear approximation of the Jacobi algorithm [35]. 

                      
                                    

                                 
                                         

  
(4.27) 

For a floating point processor, the parameters a  and T used by the linear approximation 

are chosen to minimize the total squared error between the exact correction function and 

its linear approximation [26]. 

                           
 

 

                 
 

 

   

 

(4.28) 

To minimize the function, partial derivates w.r.t a and T are set to zero. The partial 

derivated of equation (4.26) w.r.t a is 
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(4.29) 

 

Where K1 and K2 are constants : 

    
       

  

 

   

 

 

    
       

  

 

   

 

 

Now taking partial derivative of         of equation (4.28) with respect to T 

 

       

  
                      

 

 

       

                                                                      

                                            
 

 

 

                                        
 

 

 

                                         
 

 

   
 

 

 

                       

 
       

 

 

   
       

 
      

 

   

 

 

 

                     
    

 
  

       

 
       

 

 

 

   

 

                      
    

 
  

       

  
        

 

   

 

   
       

  
  

   

 
     

       

  
    

 

   

 
 

(4.30) 

 

Adding 3/2 times equation  (4.29) and 2T times equation (4.30) yields 
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(4.31) 

 

By solving g(T) which is momotonically increasing function of T, we arrive at the 

optimal value of T. An iterative approach is used by first choosing T1 and T2 such that 

g(T1) < 0 and g(T2) > 0. The mid point between T1 and T2 is T0. If g(T0)< 0, T1 is set 

equal to T0, otherwise T2 is set equal to T0. The iterations are repeate until T1 ans T2 

become very close. In the implementaion, the upper limit of the summation is set to 30 

as with this value an error of 10
-10

 can be achieved. By iteratively solving  equation 

(4.29) for g(T) and setting the upper value of summation to 30, the value of T and a 

come out to be 2.50681640022001 and -0.24904181891710 respectively. For the 

simulation, the value of T and a are approximated to 2.5068 and -0.24904 respectively. 

The complexity and performance of linear-log-MAP algorithm lies between that of log-

MAP and constant log-MAP algorithms however it converges much faster than the 

constant-log-MAP algorithm. 

4.4.2 RSC decoder operation 

As discussed earlier, each of the two RSC decoders sweep through the trellis twice, 

once in forward and once in reverse direction. However, it does not matter in which 

direction the sweep is performed first, i.e., one can sweep in either the forward or the 

reverse direction first. Also, the partial path metrics for only the entire first sweep must 

be stored in memory. The partial path metrics for the entire second sweep need not be 

stored as the LLR values can be computed during the second sweep. Thus, partial path 

metrics for only the current state and the previous state must be stored during the second 

sweep. It is recommended to perform the reverse sweep first and save partial path 

metrices for each node in memory. Then the forward sweep is performed and LLR 

estimates of data are produced. If the forward sweep is performed first, the LLR 

estimates are produced during the reverse sweep and are thus in reverse order [26]. 
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Figure 4.4 A trellis section for the RSC code used by the UMTS turbo code [26]. 

The trellis structure used by the RSC decoder is shown in Figure 4.4. Each state has two 

branches leaving it, one corresponding to an input one and one for input zero. Solid 

lines indicate data one and dotted lines indicate data zero. The branches indicate which 

next state can be reached from a particular state. The branches are labelled with branch 

metrics  . Every distinct codeword follows a particular path in the trellis [27] [26] 

The branch metric connecting state Si (previous state, on left) and state Sj (present 

state, on right) is denoted as    . The branch metric depends on the data bit        as 

well as the parity bit        associated with the branch. The branch metric is given as: 

                            (4.32) 

The RSC encoder being rate r=1/2, only four distinct branch metrics are possible: 

                                                               

                                                          

                                                         

                                              

 

 

 

(4.33) 

where       and        are the inputs to the RSC decoder. In Figure 4.2, for the first 

(upper) RSC decoder,       equals        and for the second (lower) decoder,       

equals      
  . Also for the lower decoder, the second input is the parity bits 

corresponding to the second encoder, i.e.,      
   instead of      . 
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4.4.2.1 Backward recursion  

The simulated decoder sweep through the trellis in the backward direction first. The 

normalized partial path metrics at all the nodes in the trellis are saved in memory. These 

normalized partial metrics denoted by   are later used to calculate LLRs during the 

forward recursion [26]. The partial path metrics at trellis stage k with 2 ≤ k ≤ K+3 and at 

state Si for (0 ≤ i ≤ 7) is denoted as       . The backward recursion starts at stage K+2 

and proceeds through the trellis in the backward direction until stage 2 is reached. The 

recursion is initialized with           equal to zero and rest all states initialized to 

negative infinity. 

                                       (4.34) 

The partial path metrics for the current state k are found using the partial path metrics 

for the next (previously calculated) k+1 state and the associated branch metrics    . 

                      
      

           
      

   (4.35) 

Where         indicates the unnormalized partial path metric. The states    
 and    

 

indicate the two states at stage k+1 that are connected to state    in trellis at stage k. The 

partial path metrics are normalized after the calculation of         to obtain normalized 

partial path metrics. 

                       (4.36) 

The purpose of normalization is to reduce memory requirements. As after normalization 

       equals zero, so only the other seven normalized partial path metrics        for 

1≤ i ≤ 7, need to be stored. As a result, there is a 12.5% saving in memory compared to 

when no normalization was used. 

4.4.2.2 Forward recursion and LLR calculation 

Once the backward recursion is complete, the trellis is then swept in the forward 

direction. Unlike the backward recursion where the partial path metrics for all states at 

all stages need to be stored in memory, for the forward recursion only the partial path 

metrics for two stages of the trellis need to be stored in memory, i.e., the current stage k 

and the previous stage k-1. The forward partial path metric for state Si at trellis stage k is 

denoted as        with the stages k ranging from 0 to K-1 and all possible states 0≤ i≤ 

7. The forward recursion is initialized by setting the value of forward partial path metric 

for stage zero, α0 initialized to zero for state S0 and negative infinity for all other seven 

states.  

                              (4.37) 
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The forward recursion begins with stage k=1 and the trellis is swept in the forward 

direction until stage K is reached. The un-normalized partial path metrics         are 

calculated as  

                      
                 

         (4.38) 

 Where    
 and    

are the two states at stage k-1 that are connected to state    at stage k. 

The partial path metrics         are normalized to        after the calculation of         

                       (4.39) 

Using these values of normalized partial path metrics        are computed for stage k 

along with the LLR estimate for data bit Xk. For LLR calculation, first the likelihood of 

the branch connecting state Si at stage k-1 to state Sj at stage k is calculated. It is denoted 

by        . 

                            (4.40) 

The likelihood of data 1 or 0 is then the Jacobi algorithm of the likelihood of all the 

branches corresponding to data 1 or zero. 

          

            
              

            
          (4.41) 

The      operator is computed recursively over the over the likelihoods of all the data 

one branches                or data zero branches               . Once 

      is calculated,          is no longer needed and may be discarded. 

4.5 Stopping criteria for UMTS turbo decoders 

The complexity of the decoder increases with the increase in the number of iterations 

whereas the performance of the decoder improves. There is always a trade-off between 

the performance of the decoder and its complexity. Standard turbo code 

implementations use a fixed number of iterations specified before starting the coding 

process. However, the computational complexity can be decreased by keeping the 

number of iterations variable [37].  

Different iteration control criterions are available for Turbo codes. The code keeps on 

iterating until a certain rule or stopping condition is satisfied. The stopping condition is 

computed based on the information available during decoding and it determines when 

the iteration process will be terminated. At the time of termination, the data block is 

either successfully decoded or it cannot be decoded at all. After every iteration, the 

decoder checks the stopping condition. If true, the code terminates. Otherwise it 

continues to the next iteration [37].  
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The main code termination criteria used in the simulation is the average mutual 

information of LLR after each iteration. If the mutual information measurement has 

worsened in the iteration as compared to the previous iteration, the code will terminate 

early [38]. 
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5. MATLAB IMPLEMENTATION AND ANALYSIS OF 

RESULTS 

The UMTS Turbo code was explained in detail in Chapter 4. For the thesis, the turbo 

code was implemented in MATLAB.  

5.1 MATLAB implementation 

The input data frame size is between 40 and 5114 bits as is the size of the UMTS 

interleaver. The turbo encoder consists of two main blocks, i.e., the recursive 

convolutional encoder and the interleaver. The convolutional encoded data is arranged 

in the sequence described in equations (4.4) and (4.5). The encoded data frame is BPSK 

modulated and sent over the channel. The channel models used in the simulation are 

AWGN and Rayleigh flat fading channel. After adding noise to the data, the LLR is 

calculated as in equation (4.15). The control flow graph of the implemented code is 

shown in Figure 5.1. 

The decoder implementation is complex and computationally extensive. It includes 

processing using a number of loops. A limit is set on the maximum number of bits to be 

encoded and maximum allowable error for early termination of the code. The decoder 

decodes iteratively checking the number of errors after every iteration. If the number of 

errors is zero for an iteration, the code will not execute the next iteration to decrease 

processing load. If the error exists, the average mutual information is checked. If there 

is an improvement, the code goes into next iteration. If the mutual information average 

fails to improve for a specified number of times, the decoder is terminated at that 

iteration. It then goes back to the loop and checks if the number of data bits to be 

encoded has reached the maximum limit or error is less than maximum allowable error. 

If true, it repeats the steps described above. Otherwise, it increments the SNR and 

performs the encoding and decoding [36] [37] [34].  
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Figure 5.1 Control flow chart of UMTS turbo code MATLAB implementation. 
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5.2 Turbo code error performance analysis 

Turbo codes are capable of producing low error rates at astonishingly low SNRs if the 

frame size K is kept large and permutations are selected randomly. Turbo codes are 

iterative codes and the exchange of mutual information between the constituent 

decoders results in better performance of the code. The more is the number of iterations; 

more is the exchange of information between the constituent encoders. As a result, the 

code can perform better. However, when the number of iterations is made too high, 

there is not much improvement in performance. Thus, upper bounds need to be 

specified for the number of iterations and SNR for optimal performance of the code.  

As the turbo code decoding is computationally very intensive so most of the simulated 

performance results are for small frame lengths. 

5.2.1 BER performance for frame size K = 40 

The turbo code program was simulated for frame size K = 40 over a Rayleigh fading 

channel. To keep the simulation fast, the number of frames for each SNR was taken as 

500. Thus, for a frame size 40, 20000 bits were sent at each SNR value to get the BER. 

The SNR range was used from 0 to 5 dB. The number of decoder iterations was chosen 

to be 10. The BER for the iterations is shown in Figure 5.2. 

 

Figure 5.2 BER for frame size K = 40 UMTS turbo code over Rayleigh channel. 
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Table 5.1 BER for K = 40 UMTS turbo code over Rayleigh channel. 

Iteration BER Iteration BER 

1 0.005 6 1.338 x 10
-4

 

2 4.886 x 10
-4

 7 1.339 x 10
-4

 

3 2.285 x 10
-4

 8 1.339 x 10
-4

 

4 1.655 x 10
-4

 9 1.34 x 10
-4

 

5 1.418 x 10
-4

 10 1.34 x 10
-4

 

The BER values at the end of each iteration are given in Table 5.1 BER for K = 40 

UMTS turbo code over Rayleigh channel. The turbo code was able to achieve BER of a 

0.5 x 10
-2 

after first decoder iteration. The BER improved to 1.34 x 10
-4 

after the 10
th

 

iteration. It can be seen that as the number of iteration increases, the BER performance 

improves. However, the rate of improvement decreases. This is depicted by the 

overlapping curves after 5
th

 iterations. The BER after 5 iterations is 1.418 x 10
-4

. The 

BER does not show significant improvement after 5
th

 iteration. Thus, the number of 

iterations should be kept such as to avoid extra computations.  

The BER curve for frame size K = 40 over an AWGN channel is shown Figure 5.3 BER 

for frame size K = 40 UMTS turbo code over an AWGN channel. The BER after the 

first decoder iteration is 3.628 x 10
-4

. The BER decreases with the increase of iterations 

and at the end of tenth iteration; the BER is 1.152 x 10
-5

. 

 

Figure 5.3 BER for frame size K = 40 UMTS turbo code over an AWGN channel. 
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5.2.2 BER performance for frame size K = 100 

Turbo code performance can be improved by increasing the frame size K. The code can 

achieve higher BER with the increase of frame size. This is because the interleaver 

permutes the data and the decoder is better able to decode the data. The simulation for 

the turbo code was run with frame size K = 100 keeping the number of iterations 6. The 

BER for the iterations is given in Table 5.2. 

The BER curve for frame size K = 100 UMTS turbo code is shown in Figure 5.4. The 

figure shows an improvement in the BER performance as compared to the frame size K 

40. The BER decreases with the increase in the number of iterations. This behaviour is 

similar to the case with frame size 40. However, the frame size K 100 is able to achieve 

BER of almost 10
-4 

at SNR of 2.5 dB. The frame size K 40 was able to achieve such 

BER at SNR 5 dB. Thus, we can conclude that by increasing the frame size K, the code 

can achieve the same BER at much lower SNR. 

Table 5.2 BER for frame size K = 100 UMTS turbo code. 

Iteration BER Iteration BER 

1 1.07 x 10
-2

 4 1.472 x 10
-4

 

2 5.662 x 10
-4

 5 1.245 x 10
-4

 

3 2.1518 x 10
-4

 6 1.246 x 10
-4

 

 

Figure 5.4 BER for frame size K = 100 UMTS turbo code after 6 decoder iterations. 
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5.2.3 BER as a function of frame size K (Latency) 

The performance comparison of turbo code can be done by plotting the BER for 

different frame sizes K as in Figure 5.5. The figure shows that by increasing the frame 

size K, the BER performance of the code improves. As a result, lower BER can be 

achieved by keeping the SNR constant. The BER values for frame size K 40, 100 and 

320 is given in Table 5.3. It can be seen in the figure that for frame size K 320, BER of 

1.75 x 10
-5 

is achieved at SNR 1.5 dB. However, frame size K 100 and 40 achieve only 

a BER of 0.76 x 10
-2 

and 0.0212 respectively for the same SNR. Larger frame sizes 

mean more latency as the encoding and decoding is done per frame. Thus, the 

performance improvement is achieved at the cost of increased latency. 

Table 5.3 BER for frame size K = 40, 100 and 320. 

Frame size K BER SNR (dB) 

40 1.152 x 10
-5

 4.5 

100 7.745 x 10
-6

 3 

320 1.75 x 10
-5

 1.5 

 

 

Figure 5.5 Performance comparison of UMTS turbo code after 10 decoder iterations. 
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5.2.4 BER performance over AWGN channel for max* algorithm 

The turbo code program was simulated for frame size K = 40 over an AWGN channel. 

The number of frames for each SNR was taken as 500 and the code was executed for 10 

decoder iterations. Decoding was done using all four variations of the max* algorithm.  

i.e., log MAP, max-log MAP, constant-log MAP, linear-log MAP. For performance 

comparison, the BER after 10 iterations is plotted in Figure 5.6. The BER values after 

10 decoder iterations are given in Table 5.4. 

Table 5.4 BER for frame size K = 40 after 10 decoder iterations. 

Algorithm BER 

Log MAP 1.1519 x 10
-5

 

Max-log MAP 1.8967 x 10
-5

 

Constant-log MAP 0.7137 x 10
-5

 

Linear-log MAP 1.0358 x 10
-5

 

 

 

Figure 5.6 BER for frame size K=40 UMTS turbo code after 10 decoder iterations 

over an AWGN channel. 
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The figure shows that the code was able to achieve BER as low as 10
-5

 for the input bits. 

The log MAP, linear log MAP and constant log MAP algorithms show indistinguishable 

performance for the specified frame size K=40. However, in practice the performance 

of the log MAP algorithm is the best of all. This also hold true in our simulation when 

the frame size K is increased. However, the code has been simulated for K=40 as larger 

frame sizes take much longer time for the simulations to run.  

 It can be seen that performance of the max-log MAP algorithm is significantly worst of 

the four algorithms. However, it has the least complexity and it takes the smallest time 

to simulate. Thus, there is a trade off between complexity and performance.  

In the figure, it is observed that the performance of linear-log MAP and constant-log 

MAP is sometimes slightly better than log MAP. This is an interesting and unexpected 

phenomenon. The reason for this is that the two constituent decoders are optimal in 

terms of minimizing the local BER but the overall turbo decoder does not guarantee 

minimizing the global BER [26]. This is because of the random perturbations due to 

approximation in computing the partial path metrics and LLRs in constant log MAP and 

linear-log MAP algorithm. These perturbations are minor and the results of constant-log 

MAP and linear-log MAP are very close to the log MAP algorithm. 

5.2.5 BER performance over Rayleigh channel for max* algorithm 

The turbo code program was simulated for frame size K=40 over a Rayleigh fading 

channel. The specifications were kept similar to the previous simulation. The BER after 

10 iterations is plotted as a function of SNR in Figure 5.7. 

After 10 decoder iterations, the log MAP algorithm achieved BER of approximately   

0.74 x 10
-3

 at SNR 4.5 dB. In case of AWGN channel, the BER achieved was 

approximately 10
-5

. As seen earlier, the performance of the turbo code over Rayleigh 

channel for a specified SNR is worse as compared to AWGN channel. Also, the BER 

for max-log MAP is the highest of all and that of log MAP is the lowest of all. Thus, the 

log MAP algorithm shows the best performance at the cost of highest complexity and 

max-log MAP shows the worst performance but it is also the least complex of all. The 

complexity and performance of constant-log MAP and linear-log MAP are between the 

log MAP and max-log MAP algorithms. 

Table 5.5 BER for K = 40 over a Rayleigh fading channel after 10 decoder iterations. 

Algorithm Log MAP Max-log MAP C-log MAP Linear-log MAP 

BER 0.74 x 10
-3

 0.14 x 10
-2

 0.82 x 10
-3

 0.84 x 10
-3 
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Figure 5.7 BER for frame size K=40 UMTS turbo code over a Rayleigh fading 

channel after 10 decoder iterations. 

5.2.6 Performance comparison over Rayleigh and AWGN channel 

For comparison, the BER curves for AWGN and Rayleigh fading channels are plotted 

together. Figure 5.8 shows the comparison. The plots are shown for SNR range 0 to 4.5 

dB.  The code is able to achieve much lower BER at a specified SNR over an AWGN 

channel as compared to Rayleigh fading channel. The BER of approximately 10
-2

 was 

achieved over Rayleigh fading channel at SNR 3 dB. For an AWGN channel, the same 

BER was achieved at SNR 1.75 dB. Thus, higher SNR or more number of iterations is 

required to achieve the same performance of AWGN channel over Rayleigh fading 

channel. 
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Figure 5.8 BER for frame size K=40 UMTS turbo code after 10 decoder iterations. 
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The turbo code performance improves with the increase in the number of iterations. 

However, after a specific number of iterations, the BER stays constant and does not 

decrease any further. For achieving lower BER either the SNR or frame size K needs to 

be changed. By increasing the SNR, the signal power increases. As a result the a priori 

information of the data available improves and it results in better decoding of the data. 

Thus, lower BER can be achieved. Similarly, when frame size K increases, the 

interleaver adds more randomness to the data. This also results in better decoding and 
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Figure 5.9 The evolution of BER as a function of number of iterations. 

Figure 5.9 shows the evolution of BER as a function of number of iterations at SNR 0 

dB. It can be seen that for frame size K 40, the BER is much higher as compared to the 

frame size K 320. These plots show that the decoder is well implemented as the BER is 

evolving after every iteration. Also the BER decreases exponentially and approach a 

very low value as the number of iteration increases. 

5.3 EXIT chart analysis 

The BER chart for iterative decoding has three parts; 

 The region with negligible BER reduction. 

 The turbo cliff with persistent BER reduction over many iterations. 

 The BER floor where low BER can be reached after just few iterations. 

Although bounding techniques are used to terminate the code and avoid extra 

computations, still BER analysis is not enough for performance analysis of the code. 

This is because the bounding techniques are not perfect and they have some limitations 

[39]. 
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EXIT chart is used to visualize the flow of information transfer through the constituent 

decoders. It is useful for performance analysis of turbo decoder in low BER regions 

where the BER curve was staying constant. For doing so, the mutual information is 

plotted between the extrinsic information at the output of the constituent decoder and 

the input message with respect to the mutual information between the a priori 

information at the input of the constituent decoder and the message.  

To account for the iterative nature of the suboptimal decoding algorithm, both decoder 

characteristics are plotted into a single figure. For doing so, the transfer characteristics 

of the second decoder the axes are swapped. This diagram is referred to as EXIT chart.  

The exchange of extrinsic information can be visualized as a decoding trajectory 

between the two curves. The exit chart for frame size K 320 at SNR 0 dB is shown in 

Figure 5.10. The simulation was run for 100 frames and then the mean extrinsic 

information was plotted. The dotted lines show the standard deviation of the extrinsic 

information about the mean.  

 

 

Figure 5.10 EXIT chart showing mean and standard deviation of turbo code. 
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5.3.1 Extrinsic information as a function of a priori information 

Extrinsic information was plotted expressed as a function of a priori information for 

different SNR values in Figure 5.11. It can be seen that as the SNR increases, the 

extrinsic information IE increases. As a result, we obtain higher values of extrinsic 

information IE even when IA is null. When the channel is good .i.e., SNR is high; the 

data is less corrupted after passing through the channel. As the input to the decoder now 

contains lesser errors, so even if the a priori information is 0, the decoder can still 

output a message that makes sense. Thus, the decoder is able to perform better with 

lower BER. On the contrary, when the channel is noisier, the decoder fails to estimate 

the message without efficient a priori information. 

 

Figure 5.11  Extrinsic information expressed as a function of a priori information. 
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Figure 5.12 The Extrinsic information plot as a function of SNR. 

The EXIT chart for SNR 0 and 1 dB is shown in Figure 5.12. The figure shows that for 

SNR 1 dB the extrinsic information is higher as compared to a priori information. Thus, 

as discussed earlier, decoder is better able to decode the data. 

5.3.2 Decoder trajectory  

The decoder trajectory gives the visualization of the exchange of extrinsic information 

in the EXIT chart.  The trajectory of the decoder for frame size K 40 turbo code is 

shown in Figure 5.13. It can be seen that with 4 iterations, the trajectory of extrinsic 

information and a priori information reaches the point approx (0.7, 0.65) on the graph. 

As the number of iterations is increased from 4 to 10, the trajectory reaches the point 

approx (0.85, 0.85). Increasing the decoder iteration further to 20, there is not much 

improvement in the a priori and extrinsic information. An increase of 10 decoder 

iterations result only in a very small improvement in the extrinsic information and the 

trajectory is not moving any further to (1, 1) point. It is rather oscillating around the 

same point. Thus, the iterations need to be chosen keeping in mind the trade-off 

between complexity and system performance. 
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Figure 5.13 Decoder trajectory for frame size K=40 for different number of iterations. 

 

Figure 5.14 Decoder trajectory for frame size K=40 turbo code after 10 iterations. 
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The decoder trajectories for frame size K 40 after 10 decoder iterations for different 

SNRs is shown in Figure 5.14. As the SNR increases, the a priori information to 

decoder 1 increases. This also results in increased extrinsic information. There is an 

improvement in system performance shown by the improvement in extrinsic 

information 2 at the end of the iterations. As the SNR increases from 0 to 2 dB, the 

extrinsic information of decoder 2 at the end of the 10
th

 iteration improves significantly 

from 0.65 to 0.9. On further increase in SNR from 2 dB to 3 dB, the extrinsic 

information shows very little improvement. The decoder trajectory for frame size K 320 

after 20 decoder iteration shows similar results as shown in Figure 5.15. 

It can be seen that with the increase in SNR from 0 to 2 dB, the extrinsic information 

after 20 iterations improves from 0.65 to 0.85 approx. However, the later iterations 

don’t show much improvement in the performance.  Thus, there is a trade-off between 

energy efficiency, complexity and performance of the system. 

 

Figure 5.15 Decoder trajectory for K=320 turbo code after 20 decoder iterations. 
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5.4 Comparison with simulation results from MATLAB coded 

modulation library (CML) 

CML is an open source toolbox for the simulation of capacity approaching codes in 

MATLAB. It is available at the iterative solutions website [40]. It mainly runs in 

MATLAB but the computationally intensive parts are simulated in C. It thus uses c-mex 

files for simulations. A large database of previously simulated results is also available at 

the website in the form of MAT files. These results are the result of many hours of 

simulation run time. New simulations can be done using the CmlSimulate command in 

MATLAB. A number of scenarios are given in the UmtsScenarios.m specifying the 

frame size, number of iterations, channel model, etc. For better performance 

comparison, the CML library code and the MATLAB implementation done in the thesis 

were run for similar input parameters. The results of the CML library are stored in MAT 

file and are plotted using the CmlPlot command along with the scenario number.   

5.4.1 Turbo code performance comparison for frame size K = 40 

using log MAP algorithm 

The turbo code is simulated for frame size K 40 using log MAP algorithm. The number 

of iterations was set to 10. The SNR range was specified from 0 to 4.5 dB. The 

maximum trials and the minimum BER was kept 10
6
 and 10

-6 
respectively for the CML 

simulation. The turbo code implementation was also run for similar conditions. The 

BER curves for 10 decoder iterations for CML simulation are shown in Figure 5.16. 

The results from the implemented code are shown in Figure 5.17.   

 

Figure 5.16 BER curves for frame size K 40 using log MAP obtained from CML 

simulation. 
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Figure 5.17 BER curves for frame size K 40 using log MAP obtained from simulated 

Turbo code. 

The CML simulation achieved a BER between 10
-3 

and 10
-4 

at 4.5 dB after first decoder 

iteration. The BER decreases with the increase in number of iterations. At the fourth 

iteration, the BER reaches 10
-5 

but after that the BER change is very small for the next 

iterations. After the tenth iteration, the BER is close to 10
-5

. The turbo code 

implementation done in the thesis also shows similar results. Figure 5.17 shows that the 

BER for turbo code after first iteration is 5 x 10
-3 

at SNR 4.5 dB. The BER falls with the 

increase in number of iterations and at the end of tenth iteration the BER is 1.34 x 10
-5

. 

This is very close to the BER achieved by the CML simulation. Thus, the implemented 

turbo code performance is very close to the CML simulation. 

5.4.2 Turbo code performance comparison for frame size K = 40 

using max-log MAP algorithm 

The turbo code simulation was run for frame size K = 40 over an AWGN channel using 

10 decoder iterations. The decoding algorithm used was max-log MAP. The simulation 

results for the CML and the simulated code are shown in Figure 5.18 BER for frame 

size K = 40 using max-log MAP obtained from CML simulation.Figure 5.18 and Figure 

5.19 respectively. The CML simulation achieves a BER of 10
-5 

at SNR 4.5 dB. The 

turbo code simulation was able to achieve a BER of 0.1896 x 10
-4

. Once again, the 

results of the simulation are very close to the CML simulated results. 
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Figure 5.18 BER for frame size K = 40 using max-log MAP obtained from CML 

simulation. 

 

Figure 5.19 BER for frame size K = 40 using max-log MAP obtained from simulated 

Turbo code. 
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5.4.3 Turbo code performance comparison for frame size K = 40 

over Rayleigh channel 

The CML simulation and MATLAB turbo code were run for frame size K = 40 over 

Rayleigh fading channel. The decoding algorithm was log MAP and the number of 

decoder iterations was chosen as 10. The results of the CML code and the turbo code 

simulation are shown in Figure 5.20 and Figure 5.21 respectively. The BER for both the 

simulations is approximately 10
-4

 at SNR 5 dB. 

 
Figure 5.20 BER for frame size K = 40 over Rayleigh channel obtained from CML 

simulation. 

 
Figure 5.21 BER for frame size K = 40 over Rayleigh channel obtained from 

simulated turbo code. 
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5.4.4 Turbo code performance comparison for frame size K = 100 

The turbo code was simulated for frame size K = 100 over an AWGN channel using log 

MAP algorithm. The number of decoder iterations was chosen as 10. The code was run 

for maximum trials 10
6 

and minimum BER 10
-6

. The results obtained from the CML 

simulation are shown in Figure 5.22. The turbo code simulation was run with similar 

parameters. The results are shown in Figure 5.23. The curves show similar trends and 

the BER at different SNRs are also close enough. Some variations are due to the fact 

that the input was generated randomly and was different for both the simulations. 

 

Figure 5.22 BER for frame size K = 100 using log MAP from CML simulation. 

 

Figure 5.23 BER for frame size K = 100 using log MAP from simulated turbo code. 
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5.4.5 Turbo code performance comparison for frame size K = 320 

The turbo code was simulated for frame size K = 320 over an AWGN channel using 10 

decoder iterations.  The results obtained from the CML code and the simulated turbo 

code are shown in Figure 5.24 and Figure 5.25 respectively. The BER for the CML 

simulation was between 10
-4

 and 10
-5

 at SNR of 1.5 dB. The simulated turbo code 

achieved a BER of 1.75 x 10
-5

. Thus, the performance of the simulated turbo code is 

very close to the CML simulation.  

 

Figure 5.24 BER for frame size K = 320 over AWGN channel from CML simulation. 

 

Figure 5.25 BER for frame size K = 320 using simulated Turbo code. 
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6. SUMMARY AND CONCLUSIONS 

The thesis aims at studying and analysing the performance of turbo codes. In the thesis, 

turbo codes used in the UMTS standard were implemented in MATLAB. This chapter 

summarizes the work done and then draws the conclusion based on the obtained 

simulation results. 

6.1 Summary 

Turbo codes are a class of high performance error correction codes with error 

performance close to the Shannon limit.  They make use of the parallel concatenated 

recursive coding to provide enough error protection with reasonable complexity. The 

basic turbo code encoder consists of two RSC encoders connected in parallel. The RSC 

encoders produce higher weight code words as compared to the non RSC encoders and 

are thus better suited for turbo codes. An interleaver is used between the two encoders 

to introduce randomness as random codes achieve better channel capacity. The output 

of the encoder consists of systematic bits as well as encoded bits from the two encoders. 

The decoder takes into account the received codeword along with the knowledge of the 

code structure to compute the LLRs. Decoding is performed in an iterative fashion with 

the information exchanged among the constituent encoders for better performance. The 

decoder first computes the branch metrics for all the nodes of the trellis. The next step is 

to compute the reverse path metric for the received frame of data and the result is stored 

in memory.  After that, the forward path metrics are calculated. At the end the LLR of 

the data for the whole frame is calculated and the information is passed to the other 

decoder. After the end of the iterations, a hard decision is taken on the LLR to get the 

received data bits.  

The RSC decoder uses a modified Jacobi algorithm for sweeping through the trellis. 

Four versions of the Jacobi algorithm .i.e., log MAP, max-log MAP, c-log MAP and 

linear-log MAP, were considered in the implementation. Performance comparison was 

also done based on the BER curves. The algorithm is implemented twice in every half 

iteration, and thus constitutes a major portion of the decoding complexity. 
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6.2 Conclusions 

Turbo codes are being used in 3G and 4G mobile telephony, WiMAX and satellite 

communication systems. They show extraordinary performance at low SNRs 

approaching the Shannon limit. However at higher SNRs, the BER curve begins to 

flatten and hinders the ability to achieve extremely small bit error rates. The simulation 

results showed that the performance of the turbo code depends on a number of 

parameters including the frame size K, number of decoder iterations, the SNR and the 

choice of log MAP algorithm.  

Turbo codes are iterative codes and the performance improves with the increase in the 

number of iterations. Typically 5 to 10 iterations produce most of the improvement. In 

the simulated results, the BER dropped significantly from the first to the fifth iteration. 

However, there was not much improvement from the fifth to the tenth iteration. Thus, 

we can conclude that as the number of iterations increases, the rate of performance 

improvement decreases. For achieving lower BER either the SNR or frame size K needs 

to be changed.  

When the signal power is increased, the SNR increases. As a result the a priori 

information of the data available improves. As the input to the decoder now contains 

lesser errors, the decoder can still output a message that makes sense thus, lower BER can 

be achieved. 

The performance of the turbo code profoundly depends on the randomness introduced 

by the interleaver. An increased interleaver size K results in higher probability of higher 

weight code words, thus resulting in better decoder performance. This was shown in the 

simulation as the BER after 10 decoder iterations dropped from 10
-2

 to 10
-5 

by 

increasing the frame size K from 40 to 320.  Thus, by increasing the frame size K, lower 

BER can be achieved by keeping the SNR constant but at the cost of increased latency. 

Also, the code is able to achieve much lower BER at a specified SNR over an AWGN 

channel as compared to Rayleigh fading channel. 

The four variations of the classical log MAP algorithm were implemented. It was seen that 

the performance of the max-log MAP algorithm was significantly worst of the four 

algorithms and the log MAP algorithm had the best performance. However, the max-log 

MAP has the least complexity and it takes the smallest time to simulate. Thus, there is a 

trade off between complexity and performance. Although the log MAP algorithm is more 

complex but it can achieve similar BER performance as that of the max-log MAP algorithm 

using less iteration. 

Thus, we can conclude that in designing turbo codes there is a trade-off between energy 

efficiency, bandwidth efficiency, latency, complexity and error performance. 
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Appendix:  MATLAB code 

 

 Main program for UMTS turbo code  

 
% The main Program for generating the UMTS Turbo code in MATLAB 
clear all 
close all 
clc 

  
K=100;                           % Specify frame size between 40 and 

5114 bits. 
iter_cnt = 10;                   % Specify the maximum number of 

decoding iterations to perform. 
symbols_per_frame=K*3+12;        % Symbols in frame after encoding. 
rate=K/symbols_per_frame;        % Code rate of the Turbo code (ratio 

of number of input bits to output bits) 
frame_count_max=500;            % Maximum number of frames to be 

passed to the code 
bit_count_max=frame_count_max*K;              % Maximum bits at a 

given SNR 
error_max=10;                    % maximum number of errors (to be 

used in condition later) 
count_SNR=1;                     % counter for number of SNR values 
results=[];                      % The ouput results matrix defined 

  
channel_type=1;                  % channel_type can be 1 or 2(for AWGN 

and Rayleigh fading respectively) 
sterric=1                    % sterric can be 1 to 4 (for LogMAP, max-

logMAP, constant-logMAP, linear-logMAP) 

  
max_fail_count = 3;                     % Specift the number of 

iterations that should fail to improve the decoding before the 

iterations are stopped early 
err_out=[];                      % error count matrix 

  
% specifying the SNR starting value, step size and the range. 
SNR_start=0; 
SNR_delta=0.5; 
SNR_stop=4; 

  
BER=1; 
data=randint(1,K);    % generate random data 
results=[zeros(1,iter_cnt+1) 1]; 
for SNR=SNR_start:SNR_delta:SNR_stop   % for loop for SNR 

     
    error_counts=zeros(1,iter_cnt);     % initialize error count 

matrix 
    bit_count=0; 

     
    % Keep running the code until enough errors observed or enough 

bits encoded. 
    while bit_count < bit_count_max || error_counts(iter_cnt) < 

error_max 

         
        % function call for turbo code 
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        [turbo_encoded]=turbo_enc(data); 

         
        %function call to bpsk modulate the turbo coded signal 
        [mod_signal]=bpsk_mod(turbo_encoded); 

         
        % Function call to pass through the channel 
        % channel type needs to be passed as function arguments 
        [symbol_likelihood]= channel ( mod_signal , SNR 

,channel_type,symbols_per_frame,rate); 
        w_xk=zeros(1,K+3);    % feedback from second component encoder 

to first component encoder. It is initialized to zero before first 

iteration. 

         
        avg_IA = 0;         % initializing the mutual information 

averaging value to zero 
        iteration_index = 1; % iteration index is initialized to 1 
        fail_count = 0;          % number of times the code has failed 

         
        % Run the simulation while the number of failed iterations 
        % is less than max_fail_count and iteration index is less than 
        % maximum ietartions 
        while fail_count < max_fail_count && iteration_index <= 

iter_cnt 
            % function call to turbo decode the data 
            

[tilda2_xk,xk_hat,errors,w_xk]=turbo_dec(symbol_likelihood,1,data,w_xk

,sterric); 
            % The turbo code gives the error after each iteration. 
            % if all the errors have been corrected in the 
            % iteration, no need to carry on 
            if errors == 0 
                error_iter = 0; 
                fail_count = max_fail_count; % set fail count to max 

to terminate the iterations 
            else 
                % Calculate the mutual information average to check 

the performance of code in the iteration. 
                mutual_info = avg_mutual_inf(tilda2_xk); 

                 
                % If IA is improved assign best_errors as errors 
                % otherwise increment the number of chances 
                if mutual_info > avg_IA 
                    avg_IA = mutual_info; % if improved, assign new 

value 
                    error_iter = errors; 
                else 
                    fail_count = fail_count + 1; % increment the 

number of failures 
                end 
            end         % end of if-else loop 

             
            % Accumulate the number of errors and bits that have been 

simulated so far. 
            error_counts(iteration_index) = 

error_counts(iteration_index) + error_iter; 

             
            % Increment the iteration_index counter for next iteration 
            iteration_index = iteration_index + 1; 
        end       % end of while loop for iterations 
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        % If the code is terminated early, assign the value of 
        % error of last iteration before termination to the next 
        % all iterations 
        % if error(iter)=0,  assign zero to err(iter+1)... 
        % if error(iter)=10, assign 10 to err(iter+1)..... 
        while iteration_index <= iter_cnt 
            error_counts(iteration_index) = 

error_counts(iteration_index) + error_iter; 

             
            iteration_index = iteration_index + 1; 
        end 

         
        bit_count = bit_count + length(data);  % add the number of 

bits encoded so far 

         
        % Store the SNR and BERs in a matrix and display it. 
        results(count_SNR,1) = SNR; 
        results(count_SNR,2) = bit_count; 
        results(count_SNR,(1:iter_cnt)+2) = error_counts 
        %   BER=results(count_SNR,iter_cnt+2)./results(count_SNR,2); % 

calculate the BER 
    end         % end of while loop for erro and bit count 

     
    count_SNR = count_SNR + 1;      % Increment the SNR counter 
end     % end of for loop for SNR 
results 

 
% plotting the results 
figure 
for iteration_index = 1:iter_cnt 
    semilogy(results(:,1),results(:,iteration_index+2)./results(:,2)); 
    hold on 
end 

 

  
% saving data in mat file 
filename = 

['AWGN_',num2str(K),'_',num2str(SNR_start),'_',num2str(SNR_stop),'.mat

']; 
save(filename, 'results', '-MAT'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function for turbo encoder implementation 

 
function [output]=turbo_enc(xin) 

  
% Function to turbo encode the data 
% xin is the input data 
% output is the coded data containing both data and flush bits 

  
num=length(xin);   % size of input data 

  
[enc_out,flush1]=conv_enc(xin,1);   % function call for convolutional 

encoder 

  
% interleaving 
output=[];                   % defining output matrix 
num_blocks=ceil(num/5114);   % determining number of data blocks 
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out_inter=[];                % interleaver output matrix 
xin2=xin; 
if num_blocks>1 
    for cnt_block=1:num_blocks-1 
        % interlevaing data block by block 
        [y]=interl(xin ((((cnt_block-1) *5114) +1):cnt_block*5114));   

% function call fot interleaver 
        [enc_out_inter,flush]=conv_enc(y,0);                           

% convolutional encoding the interleaved data 
        for cnt=1:length(y) 
            output=[output xin2(cnt) enc_out(cnt) enc_out_inter(cnt)]; 

% storing encoded data in output matrix Xk,Zk ,Zk' 
        end 
        xin2=xin2(cnt+1:end); 
        enc_out=enc_out(cnt+1:end); 
    end  % end of cnt_block loop 
end     % end of num_block loop 

  
% interleaving the last block of data 
input_interl = xin((( (num_blocks-1) *5114)  +1) :end);  % input to 

interleaver 
[y,interleaved]=interl(input_interl);                   % function 

call to interleaver 
[enc_out_inter,flush2]=conv_enc(y,1);               % convolution 

encode the interleaved data 

  
% storing encoded data in output matrix Xk, Zk, Zk' 
for cnt=1:length(y) 
    output=[output xin2(cnt) enc_out(cnt) enc_out_inter(cnt)]; 
end     % end of for 

  

  
% appending flush bits Xk+1, Zk+1, Xk+2, Zk+2, Xk+3, Zk+3, 
% X'k+1,Z'k+1,X'k+2, Z'k+2, X'k+3, Z'k+3 

  
out=[]; 
m=length(xin);   % length of input data 
% loop for writing flush bits from upper encoder  Xk+1, Zk+1, Xk+2, 

Zk+2, Xk+3, Zk+3, 
for cnt1=1:length(flush1) 
    out=[out enc_out(m+cnt1) flush1(cnt1)]; 
end     % end of for 

  
% loop for writing flush bits from lower encoder  X'k+1,Z'k+1,X'k+2, 

Z'k+2, X'k+3, Z'k+3 
for cnt1=1:length(flush2) 
    out=[out enc_out_inter(m+cnt1) flush2(cnt1)]; 
end     % end of for 

  
output=[output out]; 

  
end     % end of fuction 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 Function for constituent convolutional encoder 
 

function [enc_out,flush]=conv_enc(xin) 

  
% constraint length 4 convolutional encoder 
% Input data is xin 
% output is encoded data enc_out 
% Flush bits are flush 

  
% intilaize the states to zero 
data_in=[0 0 0]; 
s1=0; 
s2=0; 
s3=0; 

  
enc_out=[];   % defining the output matrix of encoded data 

  
for cnt=1:length(xin) 
    input=xin(cnt);  % input bit to convolutional encoder 

        
    out_back=xor(s2,s3);   % feedback data 

     
    % new states of the convolutional encoder 
     s3_new=s2; 
     s2_new=s1; 
     s1_new=xor(input,out_back); 

      
     % output encoded bit 
     out1=xor(xor(s1_new,s1),s3); 

      
     % storing data in output array 
     enc_out=[enc_out out1]; 

      
     % update the states 
     s1=s1_new; 
     s2=s2_new; 
     s3=s3_new; 
end     % end of for loop 

  

  
% trellis termination 
% switch go in down position 
flush=[];   % initializing the flush matrix 
for cnt=1:3     % loop for number of flush bits 
     out_back=xor(s2,s3);   % feedback data 

     
    % new states 
     s3_new=s2; 
     s2_new=s1; 
     s1_new=xor(out_back,out_back); 

      
     % output encoded bit 

      
     out1=xor(xor(s1_new,s1),s3);   %output  
     enc_out=[enc_out out1];    % storing encoded bit in output array 
     flush=[flush out_back];    % flush bit 
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     % update ths states 
     s1=s1_new; 
     s2=s2_new; 
     s3=s3_new; 
end     %end of foor loop for flush bits 

  
end     % end of function 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function for interleaver main 

 
function[y,interleaved]=interl(Input_data)   % input data 
%   40 <=k<=5114 
% function for interleaving the data 
% Input is Input_data 
% Output is interleaved data y and interleaving matrix interleaved 

  
 K =length(Input_data);  % length of input data 
 [interleaved]=interleave(K);    % function call for generating 

interleaved matrix array of specific size accoring to size of input 

data 

  
if length(interleaved) > K 
% If length of input data is smaller than interleaver matrix, pad 

zeros 
pad_bits=length(interleaved)-K;  
Input_data=[Input_data zeros(1,pad_bits)]; 
end        % end of if loop 

  
% Interleaving the data 
for cnt=1:length(interleaved) 
    y(cnt)=Input_data(interleaved(cnt)); 
end     % end of for loop 

  
y=y(1:K);   % removing padded bits from the interleaved data 
end     %end of function 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function to generate the interleaver matrix 

 
function [interleaved,R,U,C,T]=interleave(K) 

  
% function for generating the interleaver matrix based on the size of 

data 
% input is size of the data K 
% output is interleaver matrix interleaved 
% number of rows of the matrix R 
% number of columns of matrix C 
% Factor determing the intra row permutation U 
% Factor determining the inter row permutation T 

  
% determine number of rows of the interleaver matrix 

  
if  (K >= 40 ) && ( K<= 159) 
    R=5; 
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elseif  ((K >= 160 ) && ( K<= 200) ) ||  ((K >= 481) && ( K<= 530) ) 
    R=10; 
else 
    R=20; 
end     % end of if loop 

  
% determine number to be used in intra permutation p and number of 

columns C 
prim_num=primes(260); 
prim_tab=[3 2 2 3 2 5 2 3 2 6 3 5 2 2 2 2 7 5 3 2 3 5 2 5 2 6 3 3 2 3 

2 2 6 5 2 5 2 2 2 19 5 2 3 2 3 2 6 3 7 7 6 3]; 
prim_num=prim_num(4:end); 
cnt=1; 

  
if  ((K >= 481) && ( K<= 530) ) 
    p=53; 
    C=p; 
    V=2; 
else 
     p=prim_num(cnt); 
    while K > R *(p+1) 
        cnt=cnt+1; 
        p=prim_num(cnt); 

         

         

         
    end % enf of while loop 
  V=prim_tab(cnt); 

    
if  K<=  R*(p-1) 
    C=p-1; 
elseif    ((R*(p-1)) < K ) && (K <=( R*p)) 
    C=p; 
elseif    K > R*p 
    C=p+1; 
end  % end of inner ifelse loop 

  
end     % end of outer if else loop 

    
% generating array of data from 1 to size of matrix 
x=1:(R*C); 

  
% writing X in matrix form row wise 
X=[]; 
cnt_r=0; 
while cnt_r < R 
    X=[X ; x((cnt_r*C)+1 :((cnt_r+1)*C))]; 
    cnt_r=cnt_r+1; 
end     % end od while loop 

  
% inter row and intrarow permutations 
% step 1  primitive root v 
% step 2  construct base sequence for intra row permutation 
s=1; 
for cnt_s=2:p-1 
    s=[s mod((V*s(cnt_s-1)),p)]; 
end 

  
% step 3 assign q0 
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q=1;   % qo=1 
cnt_prim=1; 
prim_gen=primes(1000); 
prim_gen=prim_gen(4:end); 
prim=prim_gen(cnt_prim); 
cnt_q=2; 
while cnt_q<=R 
    mid_q=gcd(prim,p-1); 
    if mid_q==1 
        q(cnt_q)=prim; 
        cnt_q=cnt_q+1; 
    end 
    cnt_prim=cnt_prim+1; 
    prim=prim_gen(cnt_prim); 
end 

 
% step 4 permute q to get r 
if  R==5 
    T=fliplr([1:5]); 
elseif  R==10 
    T=fliplr([1:10]); 
elseif (R==20) && (((2281 <= K) && (K <= 2480)) || ((3161 <= K) && (K 

<= 3210))) 
    T=[20 10 15 5 1 3 6 8 13 19 17 14 18 16 4 2 7 12 9 11]; 
else 
    T=[20 10  15  5  1  3  6  8  13  19  11  9  14  18  4  2  17  7  

16 12]; 
end 

  
r=zeros(1,R); 
for cnt_i=1:R 
    r(T(cnt_i))=q(cnt_i); 
end 

  
% step 5 intra row permutation 
U=zeros(R,C); 
for cnt_i=1:R 

     
    if C == p 
        for cnt_j=0:p-2 
            U(cnt_i,cnt_j+1)= s( (mod((cnt_j*(r(cnt_i))) ,(p-1) ))+1); 

             
        end 
    end 

     
    if C== (p+1) 
        for cnt_j=0:p-2 
            U(cnt_i,cnt_j+1)= s(( mod((cnt_j*(r(cnt_i))) ,(p-1) ))+1); 

             
        end 

         
        U(cnt_i,p+1)=p; 

         
        % exchanging first and last row 
        if   K== (R*C) 
            new_U=U; 
            U(R,C)=new_U(R,1); 
            U(R,1)=new_U(R,C); 
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        end 
    end 

     
    if C== (p-1) 
        for cnt_j=0:p-2 
            U(cnt_i,cnt_j+1)= (s(( mod((cnt_j*(r(cnt_i))) ,(p-1) 

))+1))-1; 

             
        end 

         
    end 

     
end 

  
U=U+1; 

  
% performing intra row permutation 
intra_row=zeros(R,C); 
for cnt_row=1:R 
    for cnt_col=1:C 
        intra_row(cnt_row,cnt_col)=X(cnt_row,U(cnt_row,cnt_col)); 

         
    end 
end 

  
% % (6) Perform the inter-row permutation for the rectangular matrix 

based on the pattern ( ) i?{0,1, ,R?1} 
inter_row=zeros(R,C); 

  
for cnt=1:R 
    inter_row(cnt,:)=intra_row(T(cnt),:); 
end 

  
Y=[]; 
for cnt_y=1:C 
    Y=[Y (inter_row(:,cnt_y))']; 
end 
interleaved=Y; 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function for bpsk modulation 

 
function [mod_signal]=bpsk_mod(turbo_encoded) 
%bpsk modulate the data 

  
mod_signal=zeros(1,length(turbo_encoded)); 
for cnt=1:length(turbo_encoded) 
    if turbo_encoded(cnt)==0 
    mod_signal(cnt)=-1; 
    else 
    mod_signal(cnt)=1; 
    end 
end 

  
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 Function to simulate channel models 

 
function [symbol_likelihood]= channel ( 

input,SNR,channel_type,symbols_per_frame,rate) 

  
% converting from db to linear scale 
EbNo =  10.^(SNR/10); 
EsNo = rate.*EbNo;      % energy of symbol to noise 
variance = 1/(2*EsNo);  % variance of noise 
N0=2*variance;          % noise spectral density 

  
% create the fading coefficients ,generate noise 
if  (channel_type==1)  % AWGN channel 
    a = ones(1,symbols_per_frame); 

    
elseif (channel_type==2)  % Rayleigh fading 
    a = sqrt(0.5)*( randn( 1,symbols_per_frame) + j*randn( 

1,symbols_per_frame) ); 
   % noise = 

sqrt(variance)*(randn(1,symbols_per_frame)+i*randn(1,symbols_per_frame

)); 
end 

  
% add noise to the signal 
noise = sqrt(variance)*(randn(1,symbols_per_frame)); 
r = abs(a).*input + noise; 
symbol_likelihood = -2*r.*abs(a)/variance; % This is the LLR 

  
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function to simulate the turbo decoder  
 
function 

[tilda2_xk,xk_hat,err,w_xk]=turbo_dec(rx_signal,iter,data,w_xk,sterric

) 
% main function for the decoder 
% rx signal =received LLR 
% iter=number of turbo code iterations to perform 
% data = original data bits that will be used for calculating errors 
% w_xk = feedback from 2nd decoder to 1st decoder 

  
% the received signal rx_signal is in the form 
% X1, Z1, Z1', X2, Z2, Z2', . . . , XK, ZK, ZK',XK+1, ZK+1, XK+2, 

ZK+2, XK+3, ZK+3, XK'+1, ZK'+1, XK'+2, ZK'+2, XK'+3, ZK'+3, 

  
length_data= length(rx_signal);      % checking length of the signal 

received 
data_bits=rx_signal(1:end-12);       % Seperating data bits from 

received signal X1, Z1, Z1', X2, Z2, Z2', . . . , XK, ZK, ZK' 
parity_bits=rx_signal(end-11:end);   % parity part   XK+1, ZK+1, XK+2, 

ZK+2, XK+3, ZK+3, XK'+1, ZK'+1, XK'+2, ZK'+2, XK'+3, ZK'+3 
K= (length_data-12)/3;               % length of the input signal 

  
% separating data and encoded bits  Xk, Zk, Zk' 
r_xk=data_bits(1:3:length_data-12); 
r_zk=data_bits(2:3:length_data-12); 
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r_zk_dash=data_bits(3:3:length_data-12); 

  
% appending flush bits Xk+1, Zk+1, Xk+2, Zk+2, Xk+3, Zk+3, 
r_zk=[r_zk parity_bits(1:2:6)]; 
parity1=parity_bits(2:2:6); 
% appending flush bits X'k+1,Z'k+1,X'k+2, Z'k+2, X'k+3, Z'k+3 
r_zk_dash=[r_zk_dash parity_bits(7:2:12)]; 
parity2=parity_bits(8:2:end); 
r_xk1=[r_xk parity1]; 
out=[]; 
% loop for iteration 

  
for k_loop=1:iter 
     % call for upper decoder 
    v1_xk=r_xk1+w_xk;  % input 1 
    r_zk;              % input 2 
    [tilda1_xk]=dec_recursion(v1_xk,r_zk,sterric);    % output of 1st 

decoder 
    tilda1_xk=tilda1_xk(1:length(r_xk));  %  removing parity bits 

before passing infor to 2nd decoder 
    w_xk=w_xk(1:length(r_xk));            % 
    v2_xk=tilda1_xk-w_xk; 

     
    % Interleaving 
    % dividing data into blocks for interleaving 
    len_bits=length(r_xk); 
    num_blocks=ceil(len_bits/5114);   % determining number of data 

blocks 
    data_in=v2_xk;                       % data to be interleaved 
    interl_out=[];                       % interleaver output 
    if  num_blocks>1 
        for cnt_block=1:num_blocks-1 
            input_interl=(data_in((((cnt_block-1) *5114) 

+1):cnt_block*5114)); 
            interl_out=[interl_out interl(input_interl)]; 
        end 
    end 
        % inetrleaving the last block 
    input_interl = data_in(  (    (   (num_blocks-1) *5114)  +1) 

:end); 
    [y]=interl(input_interl); 
    interl_out=[interl_out y];     % all data blocks interleaved 
       v2_xk_dash= [interl_out parity2];     % interleaved data + 

parity 

         
    % call for 2nd decoder 
    [tilda2_xk_dash]=dec_recursion(v2_xk_dash,r_zk_dash,sterric);    % 

output of 2nd decoder 
    tilda2_xk_dash=tilda2_xk_dash(1:length(r_xk)); 

   
    % deinterleave the output 
    % number of blocks=num_blocks 
    deinterl_in=tilda2_xk_dash;            % data to be deinterleaved 
    deinterl_out=[];                       % deinterleaver output 
    if  num_blocks>1 
        for cnt_block=1:num_blocks-1 
            deinterl_in((((cnt_block-1) *5114) +1):cnt_block*5114); 
            mid_dein=deinterl(deinterl_in((((cnt_block-1) *5114) 

+1):cnt_block*5114)); 
            deinterl_out=[deinterl_out mid_dein] 
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        end 
    end 

     
    % inetrleaving the last block 
    deinterl_last = deinterl_in(  (    (   (num_blocks-1) *5114)  +1) 

:end); 
    [y]=deinterl(deinterl_last); 
    deinterl_out=[deinterl_out y];     % all data blocks deinterleaved 
    tilda2_xk=deinterl_out; 
    % updating w_xk for next iteration 
    w_xk=tilda2_xk-v2_xk; 
    w_xk=[w_xk zeros(1,3)]; 

     
end 

  
tilda2_xk=tilda2_xk+tilda1_xk ; 

  
% perform hard decision to check for errors 
xk_hat=[];  % initializing output 

  
for count_check=1:length(tilda2_xk) 
    if tilda2_xk(count_check) > 0 
        xk_hat(count_check)=1; 
    elseif tilda2_xk <=0 
        xk_hat(count_check)=0; 
    end 

     
end 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function to deinterleaver the data 

 
function[output]=deinterl(xin)   % input data 
% fucntion call for deinterleaver 

  
K=length(xin); 
[interleaved,R,U,C,T]=interleave(K); % function calll for calculating 

the required parameters 

  
% writing data in matrix form 
size_matrix=R*C; 

  
if K< size_matrix         % if data smaller than matrix size,padding 

required 
    xin=[xin (K+1):(size_matrix)]; 
end 

  
% writing X in matrix form 
X_out=[]; 
mid_in=xin; 
for cnt_c=1:C 
    X_out=[X_out (mid_in(1:R))']; 
    mid_in=mid_in(R+1:end); 
end 
% X is now in matrix form  
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% reverse of inter row permutation 
Inter_row=zeros(R,C); 
for cnt=1:R 
    Inter_row(T(cnt),:)=X_out(cnt,:); 
end 

  
%reverse of intra row permutation 
Intra_row=zeros(R,C); 
for cnt_row=1:R 
    for cnt_col=1:C 
        Intra_row(cnt_row,U(cnt_row,cnt_col) 

)=Inter_row(cnt_row,cnt_col); 
    end 
end 

  
% writing data in array 
out_array=[]; 
for cnt_y=1:R 
    out_array=[out_array (Intra_row(cnt_y,:))]; 
end 

  
output=out_array(1:K); 

  
end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function to implement the constituent RSC decoder 

 
function [LLR,LLR_coded] = dec_recursion(input1,input2,sterric) 
% Function call for the component decoder 
% Input 1 is the uncoded LLR 
% Input 2 is the coded LLR 
% Sterric defines the type of jacobian algorithm used 

  
% The outputs from the code are: 
% LLR= extrinsic LLR of the data bits  
% LLR_c= estrinsic LLR of the coded bits 

  
% The trellis structure is described by the trans_matrix. 
% It gives the initial state,the final state, parity bit Z(i,j) 

generated 
% and the data bit X(i,j) input 

  
    %               FromState,  ToState, ParityBit Z(i,j), DataBit 

X(i,j) 
   trans_matrix =  [1,          1,          0,          0;  
                    2,          5,          0,          0;  
                    3,          6,          0,          1;  
                    4,          2,          0,          1;  
                    5,          3,          0,          1;  
                    6,          7,          0,          1;  
                    7,          8,          0,          0;  
                    8,          4,          0,          0;  
                    1,          5,          1,          1;  
                    2,          1,          1,          1;  
                    3,          2,          1,          0;  
                    4,          6,          1,          0;  
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                    5,          7,          1,          0;  
                    6,          3,          1,          0;  
                    7,          4,          1,          1;  
                    8,          8,          1,          1]; 

                 
    % count the number of total states 
    state_cnt = max(trans_matrix(:,1)); 

     
    data_size=length(input1);                % size of the input data 
    K=data_size-3;                           % data is from k=1...K+3 
    num_transition= 2*state_cnt;             % number of transitions 

     
    % calculating the state transition metrics or gammas 
    % there are four distinct state transition metrics as marked on 

the 
    % trellsi diagram 
    % gamma0 = 0 
    % gamma1 = V(Xk) uncoded 
    % gamma2 = R(Zk)  encoded 
    % gamma3 = V(Xk)+R(Zk) 

     
    % Two gamma matrices with V(Xk) and R(ZK) values and zeros 

     
    gamma1=zeros(size(trans_matrix,1),data_size);  % matrix for V(Xk) 
    gamma2=zeros(size(trans_matrix,1),data_size);  % matrix for R(Zk) 
    for bit_cnt = 1:data_size 
       for trans_cnt = 1:size(trans_matrix,1) 
          if trans_matrix(trans_cnt, 3)==0          % when Z(i,j)=0 

then gamma=X(i,j)V(Xk) 
              gamma1(trans_cnt, bit_cnt) =input1(bit_cnt);  
          end         % end of if 
           if trans_matrix(trans_cnt, 4)==0         % when X(i,j)=0 

then gamma=Z(i,j)R(Zk) 
              gamma2(trans_cnt, bit_cnt) = input2(bit_cnt);  
           end      % end of if 
       end          % end of for for trans_cnt 
       gamma=gamma1+gamma2;      % the state transition matrix gamma 

?_ij=V(X_k )X(i,j)+R(Z_k )Z(i,j) 
    end         % end of bit_cnt for loop 

      
    %            Backward recursion 

     
    betas=zeros(state_cnt,data_size); 
    betas=betas-inf;                    % initializing beta to -  Inf 
    betas(1,data_size)=0;               %  B(k+3)(S0)=0 

     
    % starting from k= K+2 and going to k=1 

     
    for bit_cnt = data_size-1:-1:1 
        if (bit_cnt<=K) 
            app_in = input1(bit_cnt); 
        else 
            app_in = 0; 
        end 

             
        beta_mid=zeros(state_cnt,1); 
        for trans_cnt = 1:state_cnt 
            beta1=betas(trans_matrix(trans_cnt,2),bit_cnt+1) 

+gamma(trans_cnt, bit_cnt+1);     % zero state connected to state S 
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            beta2=betas(trans_matrix(trans_cnt+8,2),bit_cnt+1)+ 

gamma(trans_cnt+8, bit_cnt+1); % one state connected to state S 
            

beta_mid(trans_matrix(trans_cnt,1))=max_sterric(beta1,beta2,sterric);               

% max_sterric of both the betas 
             betas(trans_matrix(trans_cnt,1),bit_cnt) = 

max_sterric(beta1,beta2,sterric); 
        end         % end of for loop for trans_cnt 
     beta_mid=beta_mid-((ones(state_cnt,1))*(beta_mid(1,1)));     

nomalizing Beta(Si)-Beta(S0) 
        betas(:,bit_cnt)=beta_mid;                                  % 

saving values in beta matrix 

         
    end             % end of for loop for bit_cnt 
 

    %               Forward recursion 

                 
    alphas=zeros(state_cnt,data_size); 
    alphas=alphas-inf; 
    alphas(1,1)=0;                  % alpha0(so)=0 
    for bit_cnt = 2:data_size       % statring from state 2 and going 

till the end 
        if bit_cnt <= K 
            app_in=input1(bit_cnt-1); 
        else 
            app_in=0; 
        end 

         
       for trans_cnt = 1:num_transition 
            if alphas(trans_matrix(trans_cnt,1),bit_cnt-1) ==0 
                app_in=0; 
            end 
            alpha1=alphas(trans_matrix(trans_cnt,1),bit_cnt-1) 

+gamma(trans_cnt, bit_cnt-1); 
            %sterric=1; 
            

alphas(trans_matrix(trans_cnt,2),bit_cnt)=max_sterric(alpha1,alphas(tr

ans_matrix(trans_cnt,2),bit_cnt),sterric); 

             
       end      % end of for loop for trans_cnt 
        alpha_mid=alphas(:,bit_cnt);  % normalizing alphas 
         alpha0=alpha_mid(1,1); 
         alpha_mid=alpha_mid-alpha0; 
         alphas(:,bit_cnt)=alpha_mid  ; 
    end         % end of for loop for the bit_cnt 

         

   
     % LLR estimate for data bit Xk.  
    lamdas=zeros(num_transition,data_size); 
    for bit_cnt = 1:data_size 
       for trans_cnt = 1:size(trans_matrix,1) 
           lamdas(trans_cnt, bit_cnt) = 

alphas(trans_matrix(trans_cnt,1),bit_cnt) + gamma(trans_cnt,bit_cnt) + 

betas(trans_matrix(trans_cnt,2),bit_cnt); 
       end 
    end 

  
    % Calculating likelihood of data 1      
    LLR = zeros(1,data_size); 
    for bit_cnt = 1:data_size   
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        % initializing the probability variables of -Inf 
       lamda_0=-inf; 
       lamda_1=-inf; 
       for trans_cnt = 1:size(trans_matrix,1) 
           lamda_mid=lamdas(trans_cnt,bit_cnt); 
           if trans_matrix(trans_cnt,3)==0   % Z(i,j)=0 ----> 

?_ij=V(X_k )X(i,j) 
               lamda_0 = max_sterric(lamda_0,lamda_mid ,sterric);   % 

max* of all lamdas for Xi=0 
           else 
              lamda_1 = max_sterric(lamda_1, lamda_mid,sterric);    % 

max* of all lamdas for Xi=1 
           end       
       end 
       LLR(bit_cnt) = lamda_0-lamda_1;         % LLR of bit being zero 

or one 
    end 

     

     
    % extrinsic LLR estimate for coded bits 
     % LLR estimate for code bits.  
    lamdas2=zeros(num_transition,data_size); 
    for bit_cnt = 1:data_size 
       for trans_cnt = 1:size(trans_matrix,1) 
           lamdas2(trans_cnt, bit_cnt) = 

alphas(trans_matrix(trans_cnt,1),bit_cnt) + gamma2(trans_cnt,bit_cnt) 

+ betas(trans_matrix(trans_cnt,2),bit_cnt); 
       end 
    end 

  
    % Calculating likelihood of data 1      
    LLR_coded = zeros(1,data_size); 
    for bit_cnt = 1:data_size   
        % initializing the probability variables of -Inf 
       lamda_0c=-inf; 
       lamda_1c=-inf; 
       for trans_cnt = 1:size(trans_matrix,1) 
           lamda_mid2=lamdas2(trans_cnt,bit_cnt); 
           if trans_matrix(trans_cnt,4)==0   % Z(i,j)=0 ----> 

?_ij=V(X_k )X(i,j) 
               lamda_0c = max_sterric(lamda_0c,lamda_mid2 ,sterric);   

% max* of all lamdas for Xi=0 
           else 
              lamda_1 = max_sterric(lamda_1c, lamda_mid2,sterric);    

% max* of all lamdas for Xi=1 
           end       
       end 
       LLR_coded(bit_cnt) = lamda_0c-lamda_1c;         % LLR of bit 

being zero or one 
    end 

     
end 

     

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 Function to compute the max* algorithm 

 
function out=max_sterric(x,y,sterric) 
% function for calculaing the Jacobian algorithm 
if (x== -Inf && y== -Inf) 
    out= -Inf; 
elseif sterric==1   % compute log MAP 
    ab=abs(x-y); 
    fc=(log(1+exp(-ab)))/log(2); 
    max_s=max(x,y)+fc; 
    [out]=max_s; 

     
elseif sterric==2   %comput max-log MAP 
    max_s=max(x,y); 

     
elseif sterric==3   % comput constant-log MAP 
    ab=abs(y-x); 
    T=1.5;          % values as specified in text 
    C=0.5; 
    if ab > T 
        fc=0; 
    elseif ab <= T 
        fc=C ; 
    end 
    max_s=max(x,y)+fc; 
    out=max_s; 

     
elseif sterric==4   % compute linear-log MAP 
    ab=abs(y-x); 
    T=2.5068;       % constant values as specified in text 
    alpha=-0.24904; 
    if ab > T 
        fc=0; 
    elseif ab <= T 
        fc=alpha*(ab-T) ; 
    end 
    max_s=max(x,y)+fc; 
    out=max_s; 
end 

  
end 

  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function for hard decision decoding 

 
function [xk_hat]=hard_decision(tilda2_xk) 
% input is the LLR sequenct tilda2_xk 
% output is the hard decoded bit sequence xk_hat 

  
xk_hat=[];  % initializing output 

  
for count_check=1:length(tilda2_xk) 
    if tilda2_xk(count_check) > 0 
        xk_hat(count_check)=1; 
    elseif tilda2_xk <=0 
        xk_hat(count_check)=0; 
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    end 
end 

 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function for calculating average mutual information 

 

 
% llrs is a 1xK vector of LLRs 
% mutual_information is a scalar in the range 0 to 1 
function mutual_information = avg_mutual_inf(llrs) 

 
    P0 = exp(llrs)./(1+exp(llrs)); 
    P1 = 1-P0; 
    entropies = -P0.*log2(P0)-P1.*log2(P1); 
    mutual_information = 1-   

sum(entropies(~isnan(entropies)))/length(entropies); 

 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Main function for plotting the EXIT chart 

 
% The main Program for generating exit chart for the UMTS Turbo code 
clear all 
close all 
clc 

  
K=40;                          % Specify frame size between 40 and 

5114 bits. 
SNR =0;                        % Choose the SNR 
frame_count_max = 100;         % Choose how many frames to simulate 
IA_count = 10;                 % Choose how many points to plot in the 

EXIT functions 
channel_type=1;    % AWGN channel 

sterric=1; 
symbols_per_frame=K*3+12;        % Symbols in frame after encoding. 
rate=K/symbols_per_frame;        % Code rate of the Turbo code (ratio 

of number of input bits to output bits) 

  
% Calculate the MIs to use for the a priori LLRs 
IAs = (0:(IA_count-1))/(IA_count-1); 
IE_means = zeros(1,IA_count); 
IE_stds = zeros(1,IA_count); 
% Determine each point in the EXIT functions 

  
for IA_index = 1:IA_count       % loop for IA count 
    IEs = zeros(1,frame_count_max);     % initializng IE to all zeros 

     
    % This runs the simulation long enough to produce smooth EXIT 

functions. 
    for frame_index = 1:frame_count_max 

         
        data=randint(1,K);    % generate random data 
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        % function call for turbo code 
        [turbo_encoded]=turbo_enc(data); 

         
        %function call to bpsk modulate the turbo coded signal 
        [mod_signal]=bpsk_mod(turbo_encoded); 

         
        % Function call to pass through the channel, demodulate and 
        % generate LLRs 

         
        [symbol_likelihood]= channel ( mod_signal , SNR 

,channel_type,symbols_per_frame,rate); 
        w_xk=generate_llrs(data, IAs(IA_index));    % generate random 

LLRs to use as reference 
        rx_signal=symbol_likelihood; 
        data_bits=rx_signal(1:end-12) ;      % data part 
        parity_bits=rx_signal(end-11:end);   % parity part   XK+1, 

ZK+1, XK+2, ZK+2, XK+3, ZK+3, XK'+1, ZK'+1, XK'+2, ZK'+2, XK'+3, 

ZK'+3, 
        length_data=length(data_bits); 

         
        % seperating the systematic bits and coded bits 
        r_xk=data_bits(1:3:length_data); 
        r_zk=data_bits(2:3:length_data); 
        r_zk_dash=data_bits(3:3:length_data); 

         
        % appending flush bits Xk+1, Zk+1, Xk+2, Zk+2, Xk+3, Zk+3, 
        % X'k+1,Z'k+1,X'k+2, Z'k+2, X'k+3, Z'k+3 
        r_zk=[r_zk parity_bits(1:2:6)]; 
        parity1=parity_bits(2:2:6); 
        r_zk_dash=[r_zk_dash parity_bits(7:2:12)]; 
        parity2=parity_bits(8:2:end); 
        r_xk1=[r_xk parity1]; 

         
        % loop for iteration 
        w_xk=[w_xk 0 0 0];   % extrinsic information 
        v1_xk=r_xk1+w_xk;    % apriori information 

         
        [tilda1_xk]=dec_recursion(v1_xk,r_zk,sterric);          % 

function call for RSC decoding 
        IEs(frame_index) = avg_mutual_inf(tilda1_xk);           % 

calculate the mutual info of the decoder output.This is the extrinsic 

information. 

         
    end 

     
    % Store the mean and standard deviation of the results 
    IE_means(IA_index) = mean(IEs); 
    IE_stds(IA_index) = std(IEs); 
end 

  
figure; 
axis square; 
title('EXIT chart for BPSK modulation in an AWGN channel'); 
ylabel('I_E'); 
xlabel('I_A'); 
xlim([0,1]); 
ylim([0,1]); 

  
hold on; 
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% Plot the EXIT function for component decoder 1 
plot(IAs,IE_means,'-'); 
plot(IAs,IE_means+IE_stds,'--'); 
plot(IAs,IE_means-IE_stds,'--'); 

  
% Plot the inverted EXIT function for component decoder 2 
plot(IE_means,IAs,'-'); 
plot(IE_means+IE_stds,IAs,'--'); 
plot(IE_means-IE_stds,IAs,'--'); 

  
% saving data in mat file 
filename = 

['AWGN_',num2str(K),'_','logMAP_','exit_chart_',num2str(SNR),'.mat']; 
save(filename, 'IAs','IE_means', '-MAT'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Function call for the decoder trajectory in EXIT chart 

 
% The main Program for generating the UMTS Turbo code in MATLAB 
clear all 
close all 
clc 
figure 
K=320;                              % Specify frame size between 40 

and 5114 bits. 
iter_cnt = 20;                      % Specify the maximum number of 

decoding iterations to perform. 
symbols_per_frame=K*3+12;           % Symbols in frame after encoding. 
rate=K/symbols_per_frame;           % Code rate of the Turbo code 

(ratio of number of input bits to output bits) 
frame_count_max=10;                 % Maximum number of frames to be 

passed to the code 
bit_count_max=frame_count_max*K;    % Maximum bits at a given SNR 
error_max=10;                       % Maximum number of errors (to be 

used in condition later) 
count_SNR=0;                        % Counter for number of SNR values 
results=[];                         % The ouput results matrix defined 
SNR=0; 
channel_type=1;                     % channel_type can be 1 or 2(for 

AWGN and Rayleigh fading respectively) 
sterric=1  ;                        % sterric can be 1 to 4 (for 

LogMAP, max-logMAP, constant-logMAP, linear-logMAP) 
max_fail_count = 3;                 % Specift the number of iterations 

that should fail to improve the decoding before the iterations are 

stopped early 

  
% calculating Lc 
EbNo =  10.^(SNR/10); 
EsNo = rate.*EbNo;                  % energy of symbol to noise 
variance = 1/(2*EsNo);              % variance of noise 
Lc=2/variance; 

  
% Initiazing the output arrays 
IA1mean=zeros(1,iter_cnt); 
IE1mean=zeros(1,iter_cnt); 
IA2mean=zeros(1,iter_cnt); 
IE2mean=zeros(1,iter_cnt); 
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figure; 
axis square; 
title('BPSK modulation in an AWGN channel'); 
ylabel('I_E'); 
xlabel('I_A'); 
xlim([0,1]); 
ylim([0,1]); 
hold on; 

  
for frame_index = 1:frame_count_max 
    err_out=[];                      % error count matrix 
    BER=1;                           % initializig BER to max i.e. 1 
    data=randint(1,K);               % generate random data 
    results=[zeros(1,2)]; 
    error_counts=zeros(1,iter_cnt);  % initialize error count matrix 
    bit_count=0; 

     
    % function call for turbo code 
    [turbo_encoded]=turbo_enc(data); 

     
    %function call to bpsk modulate the turbo coded signal 
    [mod_signal]=bpsk_mod(turbo_encoded); 

     
    % Function call to pass through the channel 

     
    [symbol_likelihood]= channel ( mod_signal , SNR 

,channel_type,symbols_per_frame,rate); 
    extrinsic2=zeros(1,K);    % feedback from second copmponent 

encoder to first component encoder.It is initialized to zero before 

first iteration. 

     
    avg_IA = 1;               % initializing the mutual information 

averaging value to zero 
    iteration_index = 1;      % iteration index is initialized to 1 
    fail_count = 0;           % number of times the code has failed 
    IA1 = 0; 
    IE1 = 0; 
    IA2=0; 
    IE2=0; 

     
    % Run the simulation while the number of failed iterations 
    % is less than max_fail_count and iteration index is less than 
    % maximum ietartions 

     
    % seperating the data and parity bits from the received signal 
    rx_signal=symbol_likelihood; 
    length_data= length(rx_signal);      % checking length of the 

signal received 
    data_bits=rx_signal(1:end-12);       % data part 
    parity_bits=rx_signal(end-11:end);   % parity part   XK+1, ZK+1, 

XK+2, ZK+2, XK+3, ZK+3, XK'+1, ZK'+1, XK'+2, ZK'+2, XK'+3, ZK'+3, 
    K= (length_data-12)/3;             % length of the input signal 

     

     
    % separating data and encoded bits  Xk, Zk, Zk' 
    r_xk=data_bits(1:3:length_data-12); 
    r_zk=data_bits(2:3:length_data-12); 
    r_zk_dash=data_bits(3:3:length_data-12); 
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    % appending flush bits Xk+1, Zk+1, Xk+2, Zk+2, Xk+3, Zk+3, 
    % X'k+1,Z'k+1,X'k+2, Z'k+2, X'k+3, Z'k+3 

     
    r_zk=[r_zk parity_bits(1:2:6)]; 
    parity1=parity_bits(2:2:6); 
    r_zk_dash=[r_zk_dash parity_bits(7:2:12)]; 
    parity2=parity_bits(8:2:end); 

     

     
    while  iteration_index <= iter_cnt 

         
        w_xk=extrinsic2;        % extrinsic information 2 
        apriori1=extrinsic2;    % apriori information 1 
        IA1 = avg_mutual_inf(apriori1); 
        % function call to turbo decoder. Ouputs are extrinsic 

information 
        % for decoder 1 and 2 and apriori information for decoder 2. 
        

[extrinsic1,extrinsic2,apriori2]=turbo_dec_traj(r_xk,r_zk,r_zk_dash,Lc

, K, apriori1,sterric); 

         
        % calculate IAs and IEs 
        IE1 = avg_mutual_inf(extrinsic1); 
        IA2 = avg_mutual_inf(apriori2); 
        IE2 = avg_mutual_inf(extrinsic2); 

         
        % store the results in output arrays 
        IA1mean(1,iteration_index)=IA1mean(1,iteration_index)+IA1; 
        IE1mean(1,iteration_index)=IE1mean(1,iteration_index)+IE1; 
        IA2mean(1,iteration_index)=IA2mean(1,iteration_index)+IA2; 
        IE2mean(1,iteration_index)=IE2mean(1,iteration_index)+IE2; 

         
        iteration_index = iteration_index + 1;   % increment the 

iteration index 

         
    end       % end of while loop for iterations 

     
end         % end of for loop for frame count 

  
% calculating means of IAs and IEs 

  
IA1mean=(IA1mean)./frame_count_max 
IE1mean=(IE1mean)./frame_count_max 
IA2mean=(IA2mean)./frame_count_max 
IE2mean=(IE2mean)./frame_count_max 

  
% plotting the trjectory 
j=0; 
figure 
for i=1:length(IA1mean) 
    j=j+1; 
    traj(j)=IE1mean(i); 
    indices(j)=IA1mean(i); 
    j=j+1; 
    traj(j)=IA2mean(i); 
    indices(j)=IE2mean(i); 
end 
plot(indices,traj,'k.-') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


