
ANTTI LUOTO
A UML Profile Approach to Managing Open Source Software
Licensing
Master of Science Thesis

Examiners: Adjunct Professor Imed
Hammouda and Professor Tommi
Mikkonen
Examiners and topic approved in
the Faculty of Computing and Electrical
Engineering Department Council
meeting on 11 January 2012

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
LUOTO, ANTTI: UML-profiilipohjainen avoimen lähdekoodin lisenssihallinta
Diplomityö, 50 sivua, 3 liitesivua
Huhtikuu 2013
Pääaine: Ohjelmistotuotanto
Tarkastajat: dosentti Imed Hammouda ja professori Tommi Mikkonen
Avainsanat: Vapaa lähdekoodi, immateriaalioikeudet, vapaan lähdekoodin lisenssien
hallinta, UML, Papyrus, avoin arkkitehtuuri

Avoimen lähdekoodin komponenttien hyödyntämisessä komponenttipohjaisessa ke-

hityksessä on useita ongelmia, joihin kuuluvat muun muassa se, miten laillista kom-

ponenttien käyttäminen eri käyttötarkoituksiin on ja miten laillista eri lisenssejä

omaavia komponentteja on yhdistää toisiinsa. Laittomaksi toiminnan tekee lisenssien

ehtojen rikkominen ja riskien havainnointia hankaloittaa esimerkiksi komponenttien

kirjava lisensointi ja lisenssien suuri määrä, eikä ohjelmistokehittäjillä ole välttämättä

hyvää tuntemusta aihealueesta. Näihin ongelmiin pystytään osittain vastaamaan

arkkitehtuurisuunnitteluvaiheessa, mutta lähestymistapaa tukevia käytännöllisiä

avoimen lähdekoodin työkaluja ei ole saatavilla.

Tämä diplomityö kertoo avoimen lähdekoodin lisenssiongelmien hallinnasta

arkkitehtuuritasolla. Valittu lähestymistapa on UML-pohjainen. Tutkimuksen aikana

tehdyn avoimen lähdekoodin lisenssienhallintaohjelmistojen vertailun perusteella

UML-pohjainen menetelmä on uudenlainen lähestymistapa.

Tutkimuksen tuloksena syntyi uusi työkalu. OSSLI-työkalu (Advanced Tools and

Practices for Managing Open Source Software Licenses) toimii Eclipse-ympäristössä

yhteistyössä Papyrus UML-laajennuksen kanssa. Työkalu hyödyntää UML-profiileja

ja niitä käsitteleviä plugineja, joiden avulla luodaan avoimen lähdekoodin lisenssien

hallintaa tukeva ympäristö. Tässä ympäristössä UML-malleihin voidaan liittää im-

materiaalioikeuksiin liittyvää tietoa, jota on mahdollista esimerkiksi analysoida au-

tomaattisesti eri käyttötarkoituksiin sopivilla plugineilla. Kahden tapaustutkimuk-

sen tuloksien perusteella voidaan sanoa, että UML-pohjaisuus tarjoaa käyttökelpoisen

ratkaisun esitettyihin ongelmiin.

III

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
LUOTO, ANTTI: A UML Profile Approach to Managing Open Source Soft-
ware Licensing
Master of Science Thesis, 50 pages, 3 Appendix pages
April 2013
Major: Software engineering
Examiners: Adjunct Professor Imed Hammouda and Professor Tommi Mikkonen
Keywords: OSS, FLOSS, IPR, Open Source License Management, UML, Papyrus, Open
Architecture

There are multiple issues in utilizing third party open source components in

component-based development. These issues include, for example, the legality of

using open source components in different domains, or the legality of combining

various components with different licenses. Infringing the the terms of a license is

considered illegal. What makes this a problem, is that there are plenty of licenses,

components are licensed in variety of manners and software developers don’t have

very well knowledge on the topic. While the mentioned issues can be partly detected

or solved during the architectural design phase, there are not convenient open source

tools concentrating on the issues.

This thesis is about significance of open source license management on architec-

tural level. The chosen approach is UML based which is a novel method for license

management according to an open source tool comparison made during the study.

As an outcome of the study, a new tool has been developed. OSSLI (Advanced

Tools and Practices for Managing Open Source Software Licenses) tool is built on

top of Eclipse based UML platform called Papyrus. The tool uses UML profiles and

supporting plugins to create open source license management framework. Two case

studies were conducted during the study and results suggest that the tool is feasible

in the discussed problem field.

IV

PREFACE

This thesis has been written by Antti Luoto while working at Tampere Univer-

sity of Technology on Department of Software Systems during the spring 2012. I

would like to thank TUT (Tampere University of Technology) Open Source Research

Group, Adjunct Professor Imed Hammouda, colleague Salum Abdul-Rahman, re-

searcher Alexander Lokhman for ideas, advices and guidance. Thanks to Marko

Leppänen for help with proofreading. The work with HHPartners and Validos has

also been an eye-opening experience. Thank you everyone for flexible and pleasant

working environment.

V

CONTENTS

1. Introduction . 1

2. Managing Open Source Licenses in Architectural Design Models 4

2.1 Software Licenses . 4

2.2 Open Source Software . 4

2.3 Component-Based Development with Open Source Software 6

2.4 License Compliance . 7

2.4.1 Interpreting Licenses . 8

2.4.2 Component Configuration . 8

2.4.3 Interconnection Types . 9

2.4.4 Linking Types . 9

2.4.5 Other Communication Types . 9

2.4.6 Risk According to Problematic Package 10

2.5 License Modeling . 10

2.5.1 Meta-models . 11

2.5.2 Ontologies . 11

2.6 Open Source Licensing in Architectural Design 12

2.7 Need for License Compliance . 12

3. Existing License Compliance Approaches 14

3.1 Software License Management Tools 14

3.2 License Management Process . 16

3.3 Organizational Aspects . 17

3.4 Package Compliance Review . 18

4. A Profile Based Approach . 20

4.1 UML Profiles . 20

4.1.1 Stereotypes . 21

4.1.2 Tagged Values and Constraints . 22

4.2 Example UML profiles . 23

4.2.1 OSSLI profile . 23

4.2.2 CC REL profile . 26

4.3 Tool Support . 27

5. OSSLI Tool Environment . 28

5.1 Architecture . 29

5.2 Implementation . 29

5.3 User Interface . 37

6. Case Studies . 38

6.1 SOLA . 38

6.2 HOT . 40

VI

6.3 Use of the Results . 41

6.4 Evaluation . 42

7. Conclusions . 46

Bibliography . 48

A.Appendix: Licensed Package . 51

B.Appendix: Case Studies . 52

VII

ABBREVIATIONS

BSD Berkeley Software Distribution
CC REL Creative Commons Rights Expression

Language
CDDL Common Development and Distribution

License
CPL Common Public License
DSL Domain Specific Language
FW Framework
GPL GNU General Public License
GPLv2 GNU General Public License version 2
GUI Graphical User Interface
HUT Helsinki University of Technology
HOT Henkilöstön Osaamis- ja Tavoitetyökalu
IDE Integrated Development Environment
IPL IBM Public License
IPR Intellectual Property Rights
LGPLv2.1 GNU Lesser General Public License ver-

sion 2.1
LKIF Legal Knowledge Interchange Format
MIT Massachusetts Institute of Technology
OSSLI Advanced Tools and Practices for Manag-

ing Open Source Software Licenses
OMG Object Management Group
OSD Open Source Definition
OSI Open Source Initiative
OSLC Open Source License Checker
OWL Web Ontology Language
TUT Tampere University of Technology
RDF Resource Description Framework
SOLA Solution for Open Land Administration
SPDX Software Package Data Exchange
SSPL StarPound Simple Public License
UML Unified Modeling Language
URI Uniform Resource Identifier
XSL Extensible Stylesheet Language

1

1. INTRODUCTION

In the field of software engineering, interest in using third party open source compo-

nents has increased. However, there are multiple legal issues related to developing

and publishing programs that utilize third party components with various open

source licenses. A license determines the terms how the software is allowed to be

used and infringing these terms is considered illegal. These legal issues contain

technical issues such as linking between components or issues concerning on the in-

tended use of the software, for example redistributing or offering it as a service. The

main problem when working with multiple open source licenses is that they are not

necessarily compatible.

In addition to wide range of problems, software developers are not well aware

of the problems and juridical assistance and consultation often might be needed.

Because of ignorance, missing ability to identify risky situations and lack of suitable

tools, the problems are detected too late and software with possible immaterial

property right violations might be published, marketed or utilized. It is known that

detecting problems in early development phases saves time and money so it would

be useful to detect possible IPR (Intellectual Property Rights) related risks and

conflicts as early as possible when developing software that utilizes third party open

source components. From time to time, this would also help avoiding legal actions

from third party copyright holders who think their rights have been violated. A

supportive tool would at minimum cut down the manual work for license inspection

and let the developers to concentrate on actual development.

The architectural level modeling of the software is usually done in an early de-

velopment phase, so it would be natural to try to detect the discussed legal risks

and conflicts while creating package level UML (Unified Modeling Language) mod-

els. Software engineering field is lacking open source tool environments that could

support legal risk and conflict detection while working with modeling languages.

There are multiple UML tools but the supporting functionality for legal license

management is missing in these tools.

The objective of this thesis is to represent the research behind one solution to the

discussed problem and to argue the significance of the described approach. OSSLI

(Advanced Tools and Practices for Managing Open Source) tool is developed as an

example of a solution based on the approach and to actualize how the method works

1. Introduction 2

practically. The tool shows what kind of ideas are behind the discussed approach

and it also offers a working environment. The idea is to provide a framework for

visualizing and automatically detecting IPR related problems in UML environment

on an and customizable platform. A central piece of this method is a UML profile

that provides a way to attach IPR information within UML models.

The tool is built on top of Papyrus that is an integrated UML extension for

Eclipse. Openness and customizability of the OSSLI framework are achieved via

using a well-known open source software that provides plugin support as a base, in

addition to utilizing architectural design decisions that enable personal customiza-

tion for example for each organizations own license policies. There nine different

types of plugins that can be integrated to the core functionality and the tool designed

to work with basically unlimited plugin configurations.

There are related software concerning license management. For example, simi-

lar kind of functionality can be seen on Qualipso software but instead of UML, it

uses OWL (Web Ontology Language) based semantic description for modeling the

software. When compared to that approach, UML is a more popular approach for

modeling software. Therefore using an adequate UML profile and customizing UML

software should enable a convenient way to detect IPR related issues while reusing

UML models.

Two industrial case studies were conducted during the study. The objective of

the case studies was to gather experience of the functionality of the OSSLI tool

and to represent how the results of the analysis tools are seen in the case study

models. The case studies were performed to show the feasibility of the approach in

the discussed problem field. In addition, the method and the tool are evaluated in

the light of the case studies. The analysis tool found multiple risks and conflicts

from both the cases.

The experience gathered during the case studies makes a feeling that the ap-

proach and the tool are feasible in the discussed license management work at least

to some extent. There are weaknesses considering the usability of the tool and many

useful features are missing but these problems could be fixed in future development.

However, the tool might be usable and helpful when used as a supportive tool for de-

signing UML models. Existing license management tools and organizational aspects

of license management can be combined with the use of the tool.

This thesis consists of seven chapters. The first chapter is this introduction. The

second chapter provides theoretical background via defining general terms and prob-

lems related to managing open source licenses in architectural design models while

the third chapter provides information and a comparison on existing license com-

pliance tools and methods. The fourth chapter introduces related UML technique

and UML based approach to license management. Also, two example profiles are

1. Introduction 3

introduced in the fourth chapter. The fifth chapter elaborates the functionality of

OSSLI tool environment and the sixth chapter discusses the two conducted case

studies. The conclusions are presented in the last chapter.

4

2. MANAGING OPEN SOURCE LICENSES IN

ARCHITECTURAL DESIGN MODELS

This chapter defines the terms and context for the study while providing background

information for the developed tool. The chapter explains terms such as software

license, open source software, and license compliance. In addition, license modeling

and architectural matters related to open source licenses are discussed in it.

2.1 Software Licenses

A software license is a collection of terms, clauses, permissions and prohibitions

that are defined by a licensor to make an agreement between other parties. In

other words, in a license, the licensor explicitly tells how the other party is allowed

to utilize licensed software. Naturally different licenses have different terms and

characteristics.

According to Välimäki [25, p. 149] licenses have four types of functions.

1. License acts as a juridical contract between the copyright holder and the user,

usually so that user gains restricted rights to use the software while the copy-

right holder obtains the immaterial rights.

2. It is an economical business model for pricing or marketing.

3. It has a technical function so that it can be used to build software development

rules.

4. It publishes related information, such as the names of the developers, descrip-

tions of juridical terms or political views.

As an example of one of the most simple open source licenses, the MIT (Mas-

sachusetts Institute of Technology) license is represented in figure 2.1. The license

is represented in the text format as listed by Open Source Initiative (OSI) [17].

2.2 Open Source Software

Open source software is software that is licensed with an open source license. Open

source licenses are widely recognized as licenses that allow redistribution without

2. Managing Open Source Licenses in Architectural Design Models 5

Copyright (c) <year><copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do

so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

Figure 2.1: MIT License

cost with available public source code so that anyone could examine the code, make

modifications and even redistribute the derived work as long as it happens under the

same terms as the license of the original software. The philosophy is that the license

should allow the software to be free, open and without constraining restrictions.

A more accurate definition of open source licenses is the Open Source Definition

(OSD) by OSI which is a public benefit corporation that is actively involved in open

source community-building, education, and public advocacy to promote awareness

and the importance of non-proprietary software [17]. There is a wide range of differ-

ent open source licenses. OSI lists dozens of approved licenses that fulfill the terms

of OSD. The most important terms of the OSD are free redistribution, freely avail-

able source code and permitting to create derivative works [25, p. 203]. In addition

to licenses approved by OSI, there are multiple licenses that don’t correspond with

OSD or are very rare but still have much in common with the most popular open

source licenses.

There is huge amount of diverse open source licensed software available. The

scale goes from fully functional operating systems (Linux) and office software (Open

Office) to small library components. There are hundreds of thousands of open

source projects registered in SourceForge.net [22] which is the leading resource for

open source software development and distribution. [22] It has been estimated that

80 percent of all commercial software contains open source components in 2012 [3].

However, open source is not just about source code. Nowadays it is often seen as

a business model. Building a community around the software can be seen as one of

the primary goals of development.

2. Managing Open Source Licenses in Architectural Design Models 6

2.3 Component-Based Development with Open Source Soft-

ware

Open source software has been generally accepted to be one of the reuse methods in

developing software [3]. The usage of third party open source software components

is inviting because you don’t need to reinvent the wheel, the diversity of components

available, the acquisition of the components is free-of-cost and some components are

very commonly used, so that they are relatively well tested and actively developed

and improved by the open source community. This kind of development is called

Component-based development [7].

German & Hassan [7] define software component as any software product, includ-

ing any “glue” that might be needed for the integration or adaptation of one or more

components. Every component has a copyright holder and a license. Components

can be reused and modified.

Regardless of all the pros of open source software, not everything is free of prob-

lems. Interpreting licenses, intended usage of software, multiple licenses containing

packages and architectural level technical decisions create their own problem field

that needs both juridical and technical understanding. Perhaps the most unwanted

situation in utilizing third party open source components is to be targeted with legal

actions because of using the software in a prohibited way.

Chang et al. [3] list reasons for difficulties and ambiguity on using open source

software: lack of inspect process and guidelines on own source code, lack of a man-

agement infrastructure to support the process and guidelines, lack of comprehensive

knowledge resources for license compliances, lack of developers’ active mind-set on

open source software and the lack of guarantees on quality of some open source

software. With a proper set of license management software, these problems could

be at least partially resolved.

There are also common misconceptions in using open source that sometimes make

people to believe that open source components are harmful in a way that it not true.

For example one common myth is that open source code contaminates the company

code as if it was a virus. The idea behind that is wrong understanding of the copy-

left. Besides, all open source licenses don’t even have copyleft clause and it doesn’t

affect software that is provided as a service or used only internally in the company.

According to another myth, all the modifications need to be published, which is

false as well. Any of the known open source license doesn’t require responsibility

for publishing. However the code needs to be available for the party that obtains

the modified software. Also, a common false belief is that open source licensing is

confusing and causes risks. Actually, there are licensing in many levels and some are

more clear than others. In addition, the licensing issues can be solved with work. If

2. Managing Open Source Licenses in Architectural Design Models 7

one pays attention on the licenses, it is likely that the risks are minimal. [26].

As it can be seen, better understanding and practices for open source related

decisions are needed so that misconceptions won’t prevent in vain using open source

software. This knowledge is useful to both developers and management.

2.4 License Compliance

The license compatibility comes interesting when components with different licenses,

integrated in a way or another, compose a whole that is a new derivative work (prod-

uct) that is being, for example redistributed or offered as a service. Different licenses

have different clauses, permission and prohibitions that can violate each other. Ger-

man & Hassan [7] call the challenge of combining components with different licenses

“the license-mismatch problem”.

License compliance problems exist amongst open source licenses themselves and

not only between open source and proprietary licenses. According to Rosen [21]

“open source code licensed under one approved reciprocal license may not be used

in a project licensed under another approved reciprocal open source license.” A

typical example would be that code licensed under a license with a copyleft clause, for

example GPL (GNU General Public License), has been modified and redistributed

under BSD (Berkeley Software Distribution) license. BSD licensed software can be

re-licensed under a proprietary license which is against GPL license definition. [10].

License compliance problems exist also in situations where proprietary licensed

code is included into code under an open source license. As a consequence this

puts the open source community at risk and could also cause damage to proprietary

software company who owns the copyright. Even legal actions could be considered.

[10].

It is not easy for the users of open source components to avoid legal issues and

concerns. Multiple major software companies have been targeted with juridical

procedures because of their use of open source. It is likely that this kind of activity

can be seen in other companies as well. [3, p. 2].

License compliance issues introduce legal risks to both open source society and

proprietary software companies. The best option would be to avoid risks, which

obviously is not easy and always possible. In practice, we can try to confront and

minimize the potential risks and try to manage and cope with them. [10, p. 53].

License management software and other organization level practices can help dealing

with the the problematic situations.

2. Managing Open Source Licenses in Architectural Design Models 8

2.4.1 Interpreting Licenses

What makes it hard to understand licenses and their behavior, is that the software

licenses are written in ‘’legal languages” and are indeed difficult to read and un-

derstand. Therefore it is a task for a lawyer rather than for example a software

developer. [10]. More reasons for the complex understanding and analysis of the

licenses include the number of license types, variants, versions, and various grants

in the license texts. Alspaugh & al. [1] state that “licenses are often incomplete or

hard to understand” possibly meaning that licenses do not contain all the relevant

information to conveniently work with them. Different interpretations of the licenses

exist and are under discussion.

Even though license texts were easy to understand, it would be useful to automate

the compliance detection operation as typical software consists of multiple different

components that can be licensed individually. That could also reduce the need for

legal assistance in certain open source license decisions.

2.4.2 Component Configuration

According to Alspaugh et al. [1], the configuration of a system also affects the

overall license. For example, it makes a difference whether the components are

statically linked during the compilation or dynamically linked at run-time. Also,

other architectural and maintenance related decisions, such as alternative component

interconnections and component replacement should be noted when determining the

overall license of the system.

To give an example of possible legal incompatibilities between software compo-

nents in relation to component configuration, table 2.1 presents a number of open

source licenses and their compatibility properties categorized into three cases: mix-

ing and linking is permissible, only dynamic linking is permissible, and completely

incompatible.

Table 2.1: An example open source of licenses and their compatibility
PHP Apache 2.0 IPL SSPL Artistic

GPL 3 3 3 1 2
LGPL 2 2 2 1 2
BSD 1 1 1 1 1

1. Mixing and linking permissible

2. Only dynamic linking is permissible

3. Completely incompatible

For example, a software component under the terms of GPL cannot be directly

2. Managing Open Source Licenses in Architectural Design Models 9

linked with another under the terms of the Apache license. In this case, the main

reason is that software licensed under GPL cannot be mixed with software that

is licensed under the terms of a license that imposes stronger or additional terms,

in this case the Apache license. The Apache 2.0 license allows users to modify

the source code without sharing modifications, but they must sign a compatibility

pledge promising not to break interoperability.

2.4.3 Interconnection Types

German & Hassan [7, p. 190] claim that component can be reused in two different

usual manners: white-box or black-box. White-box reuse is described as modifying

one or more files of a component and distributing them as a part of the software,

whereas black-box reuse means using a component without modifications and not

necessarily distributing the file along with software.

White-box reuse is likely to form a derivative work but for black-box reuse, deter-

mining whether software is derived or collective work depends on the nature of the

use and the interconnection types between the component and rest of the software

[7, p. 190]. In other words, it can make a difference in license compliance, how the

components are connected to each other and how the software is used. German &

Hassan [7, p. 190-191] depict five interconnection types: linking (static or dynamic),

forking (system calls), sub-classing (inheritance), Inter-Process Communication (ser-

vice or server) and making a plugin (extending functionality via plugin-architecture).

Linking is the most notable when studying license compliance.

2.4.4 Linking Types

In static linking (white-box), after the compilation of source files into object files

has been made, a linker copies the required instructions and data of the linked

file into the executable. This happens at build time, as opposed to load time.

Build time linking means that all the components are integrated before loading

the program to memory while in load time linking some parts of the program are

integrated when the program is run. In dynamic linking (black-box), the content of

the external components is not copied into the executable. Instead, they are included

as references to those external components. These references are then resolved and

executed at load or run time. [14, p. 8,11].

2.4.5 Other Communication Types

With the other types of linking it is under varying debate whether using these types

create a derivative work. It can be questioned if programs using these methods are

2. Managing Open Source Licenses in Architectural Design Models 10

subject to licensing terms. Remote Procedure Calls are a type of Inter-Process Com-

munication and are related to client-server system architecture and communication.

Remote procedure call is a method with which a client can request services from

a server. With an interface, the method hides the inter-computer communication

aspects of a call so that the function call seems as a normal function call. Popular

technologies for remote procedure calls include CORBA, SOPAS and SunRPC. Op-

erating systems provide an interface that allows software to access the resources of

the computer. A System call is the method used by a program to request a service

from the operating system. Plugins are not necessarily a form of software interaction

but a type of component that uses software interactions to operate with other soft-

ware programs. Plugins are extensions for the host system and there is no standard

definition for plugins’ interaction with hosts system. Therefore interpreting a plugin

as a derivative work depends on the case. [14].

2.4.6 Risk According to Problematic Package

Even though open source package is redistributed under a license approved by OSI,

a detailed inspection might reveal such flaws that using the package in certain sce-

narios, such as redistribution or offering it as a service, might arise legal questions.

Willebrand & Partanen discuss these problems in the light of package review process.

To mention a few appearing problems, occasionally identifying the main license

of open source package is not as straightforward as one could expect. Related license

information or material might emerge as confusing or contradictory. An example

of this kind of situation is when there are unclear references to license version:

referencing to GPL when there are multiple files with license notice of GPL version

2 and multiple files with the notice of GPL version 3. Redistributed open source

packages often contain multiple sub-packages or sub-components. One question

arising from these packages is whether the sub-packages or sub-components are

compliant in relation to the main license. Additionally, information that relates to

patents or eventual export control can cause problematic questions. The introduced

problems might lead to situation where an open source component is risky to be

utilized for certain usage scenario. However, corrective measures can be used to

solve the issue or mitigate risks. [27].

2.5 License Modeling

In general, modeling is often utilized for analyzing or visualization. Modeling can

represent the same matter from a different view or abstraction level. As well as

other concrete and abstract matters, licenses can be modeled in different ways and

methods, for example with meta-models or ontologies.

2. Managing Open Source Licenses in Architectural Design Models 11

A license model is a model that expresses the relevant license information in a

way that the information is more formal and unambiguous than natural language.

This is required for modeling the licenses on computer and it also provides help with

automated license management. For example, comparing the properties of a license

with the properties of another license can be performed programmatically only if

both the licenses are adequately expressed in a license model. [1].

2.5.1 Meta-models

German & Hassan [7, p. 191] suggest that a license is a set of grants: “The conditions

for each grant to right r (Gr) can be represented as a set of m conjuncts. All

conjuncts should be satisfied for the licensor to receive such grant:

Gr(L) = p1 ∧ . . . ∧ pm (2.1)

Alspaugh et al. [1, 2] state that they have extended German’s model to include

semantic connections between obligations and rights. They discuss about a sys-

tematic approach that offers a way to analyze license interactions by adapting the

licenses to license model. They incorporate their model with an architecture de-

scription language called xADL. They also discuss automatic license management

in ArchStudio4 which is a software development environment.

In their meta-model “A license consists of one or more rights, each of which

entails zero or more obligations. Rights and obligations have the same structure, a

tuple comprising an actor (the licensor or licensee), a modality, an action, an object

of the action, and possibly a license referred to by the action.” So the structure

for the tuple would be <actor, modality, action, object, license>. Possible values

for the fields in the tuple, include for example “licensor” or “licensee” for the actor

and “may”, “must”, “must not” for the modality. Action is the verb or verb phrase

targeted to the object and license a possible reference to license. An example of a

right could be Licensee - may - distribute - all source code - under BSD. [1, 2].

2.5.2 Ontologies

LKIF (Legal Knowledge Interchange Format) is a legal core ontology which enables

the interchange of knowledge between legal knowledge systems. LKIF is an OWL

based technique which complies with Semantic Web. An ontology can help with

the process of modeling legal domains. Defining certain terms such as “liability” or

“claim” helps with the process of knowledge acquisition. [11, p. 43-44]. As licenses

contain legal knowledge, it could be possible to express the license information in

LKIF format, and therefore make use of the OWL principles such as automated

decision making and interpreting.

2. Managing Open Source Licenses in Architectural Design Models 12

Another ontology and semantic web related technique is CC REL (Creative Com-

mons Rights Expression Language) [4] which lets user to describe copyrights and

licenses in RDF (Resource Description Framework) format. The schema of the

language defines various license related concepts such as “work”, “license”, “permis-

sion”, “prohibition” etc.

2.6 Open Source Licensing in Architectural Design

Traditional quality attributes of the software have emerged from the needs of stake-

holders such as product managers, testers, users and designers whose interest have

been in quality attributes such as testability, scalability understandability and so

forth. Hammouda & al. [9, p.1] believe that there is a new emerging view to any

software system: the legal view that brings out the legal quality attributes. The

increasing use of open source components is the main reason for emphasizing this

view. Taking into account that licensing issues consequently affect the architec-

tural design of a system in addition to technical details, these architectural design

decisions can be seen as source of finding open source legality patterns.

Hammouda & al. have composed a suggestive list of legality patterns and divided

those under three main topics: interaction legality patterns, isolation legality pat-

terns and licensing legality patterns. Interaction legality patterns, which are related

to systems that are supposed to be distributed to end users, contain patterns such

as using standardized interface calls, linking dynamically instead of statically and

using data-driven communication. Isolation legality patterns in turn concentrate

on isolating part of the system so that they remain in the use of single authority.

These patterns contain such actions as isolating proprietary parts of the program to

server and adding a layer between user and open source service. Licensing legality

patterns concern on how the different components should be licensed. Examples of

these patterns include repackaging so that derived source can be distributed under

a new license, using a tier layer that is licensed under a license compatible with the

copyleft license while delegating building of the system for end-user. [9].

2.7 Need for License Compliance

As discussed, the concept of license compliance is related to multiple other concepts.

In this thesis license compliance is viewed in the light of automated license compli-

ance detection, IPR and legal issues. To represent licenses in computer environment

and to detect conflicts, formal addressing of licenses is needed. This addressing is

achieved for example by modeling the licenses with meta-models such as German

& Hassan [7] suggest. Another method is to utilize ontologies such as LKIF or CC

REL.

2. Managing Open Source Licenses in Architectural Design Models 13

There are many legal aspects associated with third party component licenses.

Technically the problems rise from integrating components with different licenses

between each other. For example, it makes a difference whether the components are

linked dynamically or statically. There are existing tools that provide different kinds

of support for different licensing issues. Some of these tools crawl through the code

detecting common license strings and some can detect conflicts between different

licenses. License detection can be performed also with organizational management

processes that employ legal expertise in co-operation with software developers. In

addition to mentioned aspects, more information on license compliance could be

built for example by performing studies, gathering experiences, developing tools,

creating communities and training developers.

Open source tools that help detecting IPR related issues while designing software

are not very common. This thesis proposes a UML based approach that supports de-

tecting IPR related issues early in the development process when modeling software

using third party components.

14

3. EXISTING LICENSE COMPLIANCE

APPROACHES

The methods for controlling the license infringements are basically technical methods

in addition juridical authorities. Different methods are used depending on what

is supposed to be controlled. Instructions and technical inspection methods can

be constructed organizationally to minimize the possibility for the infringement of

copyrights. [25, p. 229].

A usual case with an open source copyright infringement is that the copyrights

are infringed unintentionally. According to Välimäki [25, p. 230-232] there are two

different typical situations for unintentional infringement. Either the source code

has been copied in contrary to copyright law or the user has not complied with the

license terms which both are relevant to development of software with third party

open source components. Välimäki claims that these cases are difficult to detect and

therefore the infringements are often unintentional. Detecting and predicting these

problems beforehand requires that all the source code and the contained licenses are

available and identified. For one software component the required work is to analyze

the component with text or license detection tools and based on that, to create a

juridical review.

It should be noted that that with the help of this method, only restricted knowl-

edge of the possibility of a copyright infringement is obtained. Without source code

the juridical review is basically impossible to be executed. [25, p. 232] Tools and

methods that help with source code analysis are discussed next.

3.1 Software License Management Tools

In addition to developing a new tool, we introduced ourselves to several open source

license management tools. The study for other software was conducted for compar-

ing the features, learning the field and finding ideas. Proprietary software was left

out of the study. License management tools are programs that help, in a way or

another, managing software licenses. There are different kinds of tools and methods

for different kinds of purposes for open source license management. The list of stud-

ied software contains OSLC (Open Source License Checker) by Helsinki University

of Technology (HUT), Fossology, Ninka, Dependency Checker Tools, Qualipso and

LChecker.

3. Existing License Compliance Approaches 15

Table 3.1: A comparison of open source license management software

Software DCT Ninka Fossology LChecker HUT OSLC Qualipso OSSLI
Source
analysis

No Yes Yes Yes Yes No No

License
identifica-
tion

No Yes Yes Yes Yes No No

Design
analysis

No No No No No OWL UML

Conflict
detection

Yes No No No Yes Yes Yes

Some of the tools concentrate on source code analysis. They read through the

software component (package or individual files) and try to recognize licensing re-

lated common strings of characters appearing in the source code or accompanying

files. Examples of these kinds of open source programs are Fossology, HUT Open

Source License Checker and Ninka. These programs are basically used for detecting

and reporting the found license information inside a software package. LChecker

has similar functionality but slightly different approach. ‘’LChecker utilizes Google

Code Search service to check if a local file exists in an OSS project and if the licenses

are compatible.” [13] Dependency Checker Tool concentrates on detecting compli-

ance problems at static and dynamic linking level on binaries, based on predefined

linking and license policies. The source code scanning for possible matches and

confirming the origin of a license is done previously with Source Code and License

Identification Tool. [5]

Qualipso software has Semantic Web based approach. They have developed a

prototype system to support developers analyzing open source licensing issues. The

analysis is based on an ontology of open source licenses using the Web Ontology

Language (OWL). The ontology has been used to model multiple open source li-

censes, to describe software projects and to model relationships between software

entities. [20]

A comparison of these tools and their properties can be seen in the table 3.1. The

table also contains our OSSLI tool, which helps seeing the field of our study and

how OSSLI tool relates to other software. It can be seen, that from other software,

Qualipso is closest to OSSLI tool according to license management features.

Furthermore, HUT Open Source License Checker version 3.0 was partly integrated

to OSSLI tool. One implementation of Conflict Detection plugin utilizes the conflict

detection functionality and license database of the Open Source License Checker for

compliance detection. Fossology was used for getting actual practical experience on

3. Existing License Compliance Approaches 16

license compliance review method by Willebrand & Partanen [27]. Other tools were

studied more briefly.

There are also proprietary software aiming for similar but more advanced func-

tionality in source code license and compliance analysis. Black Duck Protex, Palamida

and ASLA are examples of such commercial tools. Testing these software or com-

paring our research results to proprietary software is not however included in this

study.

The feasibility of Software Package Data Exchange (SPDX) specification for our

purposes was also considered. SPDX is “a standard format for communicating the

components, licenses and copyrights associated with a software package” [23].

The problem of these open source tools is that they do not necessarily help

to detect the compliance problems in architectural design phase which is usually

performed early in the development process. Instead, these programs can be helpful

when determining the license of certain implemented or released software, which

is crucial for the juridical package review process. With Qualipso it is possible to

analyze architectural design in OWL but UML is still used commonly in software

development without proper license management support.

3.2 License Management Process

Chang et al. [3] introduce a process that can be used to improve open source software

usage difficulties. They have identified three phases in which open source software

activities should be appended:

1. Design - finding applicable open sources

2. Right after the implementation - inspecting open source software

3. Release - confirming compliances

During the design phase, the licenses of selected open source software should be

taken into account, as some of the licenses might have an effect on the later lifespan

of the program [3]. Naturally it is adequate to consider the decisions and possible

risks as early as possible to prevent future misfortunes. Inspecting open source

software and confirming compliances contains investigating the software whether

the components are properly used and whether the licenses are compliant [3]. In

each of the phases, a proper modeling of the software can help identifying stated

problems.

The open source software inspection process by Chang et al. [3] requires two

different working roles for the 7-step-workflow: an inspector and a developer. The

process contains the following activities:

3. Existing License Compliance Approaches 17

1. Analyzing source code

2. Confirming license identification

3. Approving licenses

4. Informing inspection result

5. Informing software release

6. Confirming open source compliances

7. Releasing software

Steps 1, 3, 4 and 6 are executed by inspector while steps 2, 5 and 7 are executed

by developer. The flow bounces from inspector to developer according to transitions

between the steps.

As can be seen, the flow is relatively complex and progresses without concurrency.

With a help of pre-inspected software database and automated compliance detection

algorithms, some parts of the 7-step-workflow could possibly be bypassed or least

lightened. If the developer can identify risky design decisions by himself without

the assistance of the inspector during the modeling, it would require less employee

resources and time. Therefore it could create the process faster and cheaper. Chang

et al. [3] describe a system that takes into account reused code so that it would not

require re-inspection and they claim that the inspection efficiency can be improved

that way.

3.3 Organizational Aspects

For organizational level support, Chang et al. [3] represent a model with three

groups: a software development team, an open source support team and an open

source management team. The management team works on the upper level and the

support team acts as a link between the development team and the management

team. The support team is responsible for the role of the inspector in the inspection

process. The working field of the support team also contains defining instructions,

strategies, check lists and other knowledge for open source software release. The

management team provides overall management view on open source software. If a

support team detects an issue on the inspections, the management team provides

expert assistance for example on legal interpretation.

Both developers and inspectors can also be trained and educated in open source

software issues. For example, topics for training could be general understanding

of open source licenses, detailed education on certain licenses, introducing example

cases and lessons on using open source licenses. [3].

3. Existing License Compliance Approaches 18

3.4 Package Compliance Review

Willebrand & Partanen [27] discuss a method called package compliance review that

is a part of open source software compliance process that is used for identifying IPR

and other related details, in order to report compliant ways to use a certain software

component. Their document about review process concentrates on using open source

packages in relation to redistribution. In addition to redistribution, other general

usage scenarios for open source software include providing a commercial service,

using the software as development tool or utilizing it for internal use inside the

company.

Package compliance review gives information that can be either generic or related

to specific situation. The generic information refers to identifying information such

as copyright holder and stated main license whereas specific information results from

situations such as linking with other software. [27].

For a package, the review process returns a compliance value that can be one the

three possible values: compliant, possibly incompliant and incompliant. Alternative

values are also used: valid, possible risk and clear risk. Compliant means that no

risks were identified whereas possibly incompliant means an interpretation question

has been found. Incompliant indicates that a found risk cannot be interpreted in a

way that would not include the risk has been found.

Willebrand & Partanen [27] state that “we have deemed that certain typical situ-

ations are considered compliant, if certain defined criteria are fulfilled and contrary

indications are not found.” In their review part of the process, the goal is to collect

all relevant information for the compliant use of the package and analyze the arising

legal questions. Source code analysis software is helpful when gathering and report-

ing the collected information. In addition, project web pages and documentation

are analyzed as they often contain useful information.

Table 3.2: An example software components and their risk levels

Component License Redistribution Service
offering

Development
tool

Internal
use

Agent++ Agent++
license

3 3 2 1

SwingX LGPL 3 3 3 3
Libxml2 MIT 1 1 1 1

Cglib Apache 2 1 1 1

1. Valid

2. Possible risk

3. Clear risk

3. Existing License Compliance Approaches 19

There are three main outcomes of the analysis: the clarity of the main license, the

compliance of sub-components and other elements such as patent or export control

related information. This gathered detailed information is used to compose a report,

along with other helpful data that can be reused. [27]. Table 3.2 presents an example

categorization according to discussed method. The table includes software mapped

in relation to four identified usage scenarios and three different compliance values.

For wider understanding of the problem field, and to obtain practical experience,

the package compliance review method by Willebrand & Partanen was applied for

validating multiple open source packages during the study. Fossology (version 1.4.1),

also used by Willebrand & Partanen, was utilized during the study to help detecting

the license information on software packages. This kind of package compliance

review is a method that could be a part of such license management processes as

introduced in the previous sections. Our experience suggests that a part of the

validation process can be done by software developer with slight understanding of

open source licensing. However, legal advice is often needed for verification on

problematic situations. An example of such a situation could be when a new license

is encountered or the software package’s license information doesn’t seem consistent.

20

4. A PROFILE BASED APPROACH

UML (Unified Modeling Language) is a standardized and popular way of model-

ing object-oriented software. UML standard is defined by OMG (Object Modeling

Group). The current version of UML is version 2. UML is a visual language that

contains multiple diagram and element types for different abstraction levels and is

it applicable for re-use and automatic code generation. Even though UML is usable

hand-drawn also, usually it is most efficient when using particular UML drawing

software. UML can be extended with profile mechanism.

Out from the software and methods introduced in the previous chapter, we have

chosen a UML based approach as it takes the architectural design into account in the

early phase of the development. This study discusses two UML profiles developed

to support license and other IPR management within UML. Both the profiles use

stereotypes to add information to UML package elements. This information is then

analyzed automatically with supporting tools in Papyrus environment. Papyrus and

analysis tools are discussed later in the thesis.

With a UML profile and a supporting tool environment, it is possible to create a

DSL (Domain Specific Language) that is tailored for a certain purpose. This is a way

to use UML conveniently for narrow-scaled problem field and to remove not-needed

extra features.

4.1 UML Profiles

The generality of UML constrains its applicability for modeling narrow-scaled do-

mains or problem fields. However, UML offers mechanisms for expanding the lan-

guage. [16]. With the help of these mechanisms, it is possible to create an extension

that adds more expression power to UML on a certain field or environment. In addi-

tion, traditional UML can be hidden on a lower level so that only relevant properties

are displayed.

One of the extension mechanisms in UML is the light-weight profile mechanism

which is based on meta-modeling. Profiles are packages that contain stereotypes,

tagged values and constraints. Stereotypes are a special kind of meta-classes while

tagged values are meta-attributes of those classes. [16]. Meta-class is a type defined

by UML specification. Based on these features, it is possible to define a DSL for

certain application field. Profiling is a mechanism of UML and thus the definitions

4. A Profile Based Approach 21

don’t necessarily reflect the actual implementation of the problem but provide a way

to express issues conveniently. For example it is difficult to say how stereotyped

class is implemented in real life but as a modeling tool it is a convenient way to

visualize information. A profile must be based on a meta-model, which is in this

case UML, and is not very useful standalone [16]. According to UML specification

by OMG, profiles should be interchangeable between different tools. It should be

noted that profile mechanism doesn’t allow changing existing UML meta-model but

allows extending it. However, UML offers another extension mechanism that doesn’t

have such restrictions [16]. This topic is not discussed in this thesis in more detail.

Figure 4.1: An example of a simple profile

Profiling in Papyrus is executed via the graphical interface similar to usual UML

modeling interface. Papyrus offers a specific Profile Diagram for that purpose. Tool

palette for Profile Diagram is customized for profiling purposes. A profile is imple-

mented inside a profile stereotyped package. A clarifying example of a profile and

how to use it can be seen in the figures 4.1 and 4.2. In the figure 4.1 there is a

simple profile definition with one stereotype extending UML class, whereas in the

figure 4.2 there are two classes with the stereotype applied. In Papyrus, to be able

to use a profile, it has to be applied to the base model first.

4.1.1 Stereotypes

Stereotype is a class that extends other classes. It tells how the meta-class is ex-

tended and how it can be utilized with terminology and notation targeted on a

4. A Profile Based Approach 22

Figure 4.2: An example of utilizing a profile

certain domain. As a normal class in UML, a stereotype can contain attributes with

values. These attributes are called tagged values. A stereotype definition class uses

the same notation as a usual class with the difference that the stereotype is marked

with keyword “<<Stereotype>>”. When the stereotype is applied to a model ele-

ment, the name of the stereotype is shown between “<<” and “>>” notation. [16].

In Papyrus, stereotype that extends meta-class is visualized with Extension rela-

tionship. Figures 4.1 and 4.2 show the notation. The black arrow is the Extension

relationship.

As an example of a situation where a stereotype can be utilized, we could think of

a clock. A clock can be defined as a class according to object modeling and clock’s

attributes could be starting time and ending time. It is known, that all the clocks

in our example domain have those attributes. Therefore, we would like to define

a stereotype “clock” that extends the standard UML class to contain the starting

and ending times. After the definition, it is relatively easy to apply the “clock”

stereotype to classes wanted with the clock properties. In addition, the classes still

have the normal features of UML class, and therefore more methods and attributes

can be added. This example is also visualized in the figures 4.1 and 4.2. We can

also see that in the figure 4.1 the standard UML class is actually stereotyped with

“metaclass” stereotype.

4.1.2 Tagged Values and Constraints

Tagged values are attributes defined by stereotypes, which are added for the elements

extended by the stereotype [16]. For example, in the figures 4.1 and 4.2, the starting

and ending times of the defined stereotype are called tagged values. The tagged

values can also be set to default values if needed.

Occasionally defining constraints is useful for making valid models. The UML

definition states that “A constraint is an assertion that indicates a restriction that

4. A Profile Based Approach 23

must be satisfied by a correct design of the system.” The constraint specification

must evaluate to a Boolean value. One recommended mechanism for defining con-

straints in UML is Object Constraint Language (OCL). [16]. In the clock example,

one could restrict starting time to be bigger or equal than one by stating “starting-

Time: Integer {startingTime >= 1}”. OCL is not used in this study however. Any

constraints related to profiles have been expressed in natural language which is an

alternative way.

4.2 Example UML profiles

During the study, two example UML profiles were developed to present the idea of

attaching IPR related information to UML models and to show how that information

can be analyzed in automated methods. One should be able to create profiles with

any UML software that has profiling features. OSSLI profile provides a stereotype

LicensedPackage that contains for example the name of license as a string. CC

REL profile takes a step further and references the licenses with RDF technology.

Comparing RDF descriptions of licenses enables a way to tell the reason why licenses

are incompatible. One of the reasons for developing two profiles was to show that

the tool can work with different profiles and it is not dependent on only one UML

profile. The profiles are not meant to be complete but they should provide an idea

for the approach. Note that both the profiles are customizable and interchangeable

between different tools.

4.2.1 OSSLI profile

OSSLI profile is a UML profile developed for adding license and other IPR related

information to a UML model and to support automated analysis of the model making

use of the profile. The profile is based on ideas from SPDX [23], OSI [17] and Package

Compliance Review [27]. The profile is represented in the figure 4.3. An example

imaginary model using the profile can be seen in the figure 4.4. The example consists

of four software packages, of which two are owned packages (Package0, Package1) and

two are third party packages (Apache Xalan C++, Apache Xalan Java). Package0

is linked to all the other packages.

A fundamental concept in the profile is the stereotype LicensedPackage which ex-

tends the standard UML package. LicensedPackage has multiple tagged values that

have been described in table 4.1. The table has been represented in more detail in

appendix A. Tagged values with the type Validity are based on package compliance

review by Willebrand & Partanen and proper values require review process or can

be left unknown. Enumeration Validity is defined by four values: Valid, Possible

Risk, Clear Risk and Unknown. The supported licenses are listed in LicenseType

4. A Profile Based Approach 24

enumeration which includes Unknown for packages with unknown license or license

that is not wanted to be expressed. OwnershipType is defined in the profile as an

enumeration with three values: Own, ThirdParty, PublicDomain and Unknown. No

analysis tool supports Ownership at the moment but it can be used to mark the

origins of the package. A one application could be that possibly some analysis is

not wanted to be targeted on owned packages.

The profile shows that LicensedPackage is composed of classes that are stereo-

typed as Files. Files have tagged values as well but at the moment functionality

related to files is not available. However, File stereotyped class can be added inside

a package to represent notable or problematic files, for example files with noncom-

pliant license.

Figure 4.3: OSSLI profile

4. A Profile Based Approach 25

Figure 4.4: OSSLI profile used in a model

The profile defines three dependency stereotypes. At the moment, only one of

those is supported by the tool functionality. Linking stereotype consists of one

tagged value named Type which tells whether the linking between packages is static

or dynamic. The type is defined by enumeration LinkingType with values Static or

Dynamic. Other dependency stereotypes are not yet supported by analysis tools and

therefore not described in detail. Control stereotype describes control type between

packages, such as if the packages use each other as API or remote procedure calls.

Compatibility is a stereotype designed to support automated tools that can mark

whether or not packages can be for example mixed and linked to each other without

restrictions.

Table 4.1: Tagged values of LicensedPackage

Tagged value Type Description
Copyright String Copyright information in free text format.
Description String Description of the package in free text for-

mat.
License LicenseType One or more licenses.
Redistribution Validity Validity for redistributing the package.
Development Tool Validity Validity for using the package as a develop-

ment tool.
Service Validity Validity for offering functionality as a service.
Internal Use Validity Validity for using the package internally.
ID Integer Identification for the package.
Ownership OwnershipType Ownership of the package.

4. A Profile Based Approach 26

4.2.2 CC REL profile

CC REL profile is another example profile supported by OSSLI tool. As OSSLI

profile, CC REL profile is designed to demonstrate the chosen profile based approach.

CC REL profile supports the use of CC REL, a semantic ontology for modeling

licenses. The profile not only takes concepts from CC REL description but it also

defines attributes and stereotypes not found from the original CC REL. The profile

makes use of RDF descriptions for modeling the licenses. The naming practice of

the profile takes namespaces into account. “cc:” namespace references to CC REL

concepts and “ossli” namespace to concepts developed during the study. The profile

can be seen in figure 4.5.

Figure 4.5: CC REL profile

The profile defines a stereotype named “cc:work” that corresponds to CC REL

class Work. The class is defined as “a potentially copyrightable work” in CC REL

description [4]. Table 4.2 elaborates the tagged values of “cc:work”.

As can be seen in the figure 4.5, the profile defines one stereotype for dependen-

cies. The stereotype is named “ossli:linksTo” and it contains one tagged value called

“ossli:LinkType”. The tagged value’s range is defined in enumeration “ossli:LinkType”.

With this tagged value, it is possible to choose a linking type from multiple common

types such as static, dynamic, remote procedure call etc.

4. A Profile Based Approach 27

Table 4.2: Tagged values of cc:work

Tagged value Type Description
rdf:about String A standard way in RDF for defining the

resource being described. URI.
cc:license String URI to RDF definition of the license.
cc:attributionName String The name the creator of a Work would

prefer when attributing re-use.
cc:attributionURL String The URL the creator of a Work would pre-

fer when attributing re-use.
ossli:copyright ossli:copyright Copyright status of the package defined by

enumeration ossli:copyright.

The profile might seem more compact and simpler than OSSLI profile but it en-

ables usage of a license model with RDF reference and thus it allows more advanced

functionality than OSSLI profile in many situations. For example, with the help of

CC REL profile, it is possible to tell why two licenses are conflicting by examining

the RDF definition of the license. In other words, it is possible to analyze licenses

according to their properties and therefore express issues in more detail. Unfor-

tunately, OSSLI tool lacks support for CC REL profile when compared to OSSLI

profile. CC REL profile was not used in the case studies discussed later in the thesis.

The profile also requires an available RFD description of a license to be usable.

4.3 Tool Support

To be practically useful, a profile needs to be defined in UML software after which it

can be applied to models and the stereotypes can be used. OMG states that profiles

should be interchangeable between tools [16]. In addition to actualizing the profile

in software, other supportive functionality can be implemented programmatically.

With legal matters, customizability can be a relevant need as different legislations

and organizational policies exist. Supportive functionality can contain for example

automated analysis tools such as conflict or risk detection. Information databases

can be also helpful when reusing license data. Learning and decision making func-

tionality might save resources as well. Customization also relates to developing a

usable DSL. User interface can be stripped from all the possible extra features to

make simple environment for personal or organizational purposes.

28

5. OSSLI TOOL ENVIRONMENT

OSSLI tool environment has been developed to help with open source license man-

agement on UML level. It makes use of UML profiles that enable possibility to

attach IPR related information to UML models. In addition to utilizing profiles, it

runs on open source platform and it is designed with open and customizable plugin

architecture.

The development and running platform of the OSSLI tool is Eclipse Indigo Mod-

eling Tools expanded with Papyrus UML [19] extension that provides a graphical

UML working environment for Eclipse. The platform was chosen because it is en-

tirely open source and known to be customizable. In addition, OSSLI tool has

been developed on 32 bit Windows XP. Presumably, the software will run on any

environment capable of running Eclipse at least with minor customization.

Open source distributed programming Integrated development environment (IDE)

Eclipse is known for its extensibility and customizability. A part of the extensibil-

ity is based on plugins that associate oneself to Eclipse core via extension points.

Eclipse provides a Java API, with which it is possible to create integrated plugins

running on Eclipse. Contributing to user interface is also well supported.

Papyrus project including the projects version control provides some documen-

tation that was useful during the research project. Unfortunately, at least some

of the documentation is obsolete and has a great variety on quality. Still, most of

the Papyrus related problems were solved though not necessarily in very convenient

way. One of the most important sources of information was Papyrus Forum hosted

by Eclipse. Most of the questions asked by us were answered on the forum and

there seem to appear Papyrys related posts daily. Some other parts of the Eclipse

Community Forums were useful as well. As Papyrus and Eclipse take advantage

of Eclipse Modeling Framework, Graphical Modeling Framework, Standard Widget

Toolkit and UML2 styled components, studying them and reading the documen-

tation was part of the process. Generally those components are relatively easy to

utilize in the Eclipse environment. Papyrus mailing list is considerable source of

information as well.

5. OSSLI Tool Environment 29

Figure 5.1: OSSLI tool architecture

5.1 Architecture

OSSLI tool implementation consists of nine different types of plugins: Conflict De-

tection, Problem resolution, Package Database, Risk View, License Model, Logger,

Reporting, Profile and Help. In addition to these nine plugins, there is a Core plugin

that binds the other plugins together. Each of these plugins’ roots can be seen on

the table 5.1 which describes the scientific background behind these components.

A part from Core, each component is associated with an extension point. The ar-

chitecture is made extensible so that the tool is able to work with different plugin

configurations. The overall architecture of the main components can be seen in the

figure 5.1.

5.2 Implementation

A DSL can be created by using the profile mechanism of UML [16]. The profiling

in Papyrus is utilized with model based approach that is similar to drawing nor-

mal UML diagrams. Because of this, creating a profile is relatively straight-forward

for those familiar with Papyrus GUI (Graphical User Interface). Basically creat-

ing a profile requires dragging the stereotype elements to diagram, naming them,

adding tagged vales and enumerated values, and describing the dependencies and

constraints. In other words, it is about defining semantics.

5. OSSLI Tool Environment 30

Component Description Resource
Core Handles interactions between the application

model, licensing information and the user.
License Profile A UML extension to include license informa-

tion.
[23, 17, 27]

License Model It describes in computable format the clauses,
restrictions, rights and the interdependencies
of a license.

[1, 2, 11]

Package Database A repository containing a list of packages with
license, copyright and other IPR related infor-
mation

[22, 23]

Risk View Assess legal risks related to use of component
for variable purposes re-licensing, sale, inter-
nal use etc.

[1, 11, 8, 27]

Conflict Detection Analysis whether license terms of different li-
censes conflict when linked or interconnected
with another way into the same software.

[1, 24, 6, 18]

Problem Resolution Suggests operations that can be performed to
remove license conflicts from model.

[7, 9, 15]

Learning Agent Records user actions so that they can be later
used to improve program performance.

[9]

Reporting The analysis results from the different compo-
nents can be output in different formats.

[6, 24, 18]

Documentation Provides a way to linking to internal and ex-
ternal documentation on open source licensing
concerns.

[12]

Table 5.1: Scientific background of OSSLI tool components

To make a profile redistributable and more usable, an own plugin for launching

the profile is needed. With the help of this plugin, the profile can be automatically

loaded every time Papyrus is started, which allows easy and effective use. Exclusive

instructions for defining a profile are located in a document called “Draft Tutorial

for Profile usage in Papyrus”. When taking the profile in use, it must first be applied

to model. After that, the defined stereotypes and other properties can be used on

the model elements.

As a proof of concept, two profiles were defined during the OSSLI tool develop-

ment. The first one is based on concepts by SPDX [23], OSI [17] and Open Source

Legality Patterns [9] while the second one is based on CC REL [4] and is designed

for supporting OWL techniques. Both of these profiles are described more in detail

in chapter 4.

Tool palette is located on the right-hand side in Papyrus GUI. The palette con-

tains the possible addable UML elements, for example classes, packages and asso-

ciations, that can be drag & dropped to a certain type of UML diagram. OSSLI

tools are designed to work at least with class diagrams so the basic tool set for class

diagrams is recommended to be visible.

Papyrus provides a special tool for palette customization but it turned out to be

5. OSSLI Tool Environment 31

Figure 5.2: OSSLI database loaded to palette

insufficient for the needs of loading and visualizing large package databases auto-

matically. The palette also needed to be extended so that the tools could provide a

way to add elements with predefined values. In other words the built-in customiza-

tion tool is only helpful for simple manual palette customization. Therefore, the

database plugin needed some programmatic support for the implementation of the

features.

As a proof of concept, two Package Databases were implemented during the devel-

opment of the OSSLI tool. Both databases are XML (Extensible Markup Language)

databases. The first one is entirely developed by us with similar concepts to OSSLI

profile. The second one utilizes SPDX file with multiple package definitions. Both

of these database plugins are associated with OSSLI profile.

When “load database” action is executed from the upper OSSLI-menu, the user

is prompted with a dialog asking for selecting a component database. After the

selection, a Package Database is then loaded and it adds a new tool drawer to the

default tool palette. The figure 5.2 shows the location of the drawer which contains

the packages loaded from XML database file showing their names. These packages

can then be drag & dropped to a diagram as normal tool palette elements. The

added package will appear as a UML package stereotyped as “LicensedPackage”

that contains predefined license information etc. Using these databases is much

faster than adding the licensed package information manually by hand every time.

This is especially efficient with database that contains often used packages.

License Model plugins are designed for giving a license a form that allows it

to be processed by computers. Modeling a license contains work such as dividing

the clauses and prohibitions and presenting them in a certain data structure. This

5. OSSLI Tool Environment 32

Figure 5.3: An example of risk view

enables for example comparing the properties of a license with each other and making

different kinds of interpretations: same license can be modeled in multiple ways.

License models don’t provide any straight user communication features but license

models are used by other plugins. Many OSSLI tool operations can be executed

without license models as well. In OSSLI tool there is a license model developed

with concepts of CC REL that is extended with a few additional clauses. For tools

taking advantage of this model, using CC REL profile is required.

Risk View plugins’ purpose is to detect risks that are related to single licensed

packages whereas Conflict Detection plugins are more concentrated on detecting

conflicts by taking the dependencies into account. Found risks are shown on overview

dialog and indicated with colors on the diagram. In an overview dialog, the user is

prompted with an option to create an XML report. A result of risk view analysis

on a simple example can be seen in figure 5.3. In the figure, “Package0” has been

analyzed as risky while all the others are valid and therefore without risks.

Our team developed two Risk View plugins; OSSLI Risk Evaluator and CC REL

Patent Risk View. The first one is accompanied with OSSLI profile and needs infor-

mation of the intended use of the software that is being analyzed. For example user

can choose whether to analyze in terms of redistribution, acting as a service, acting

as a development tool or being in internal use. The analysis is based on informa-

tion included with OSSLI profile’s LicensedPackage stereotype’s tagged values. The

results of the analysis are shown on different colors on the model. Red indicates

risk, yellow indicates possible risk, green indicates clear of risks and gray indicates

unknown. This information is based on manual work by for example package review

process.

5. OSSLI Tool Environment 33

Figure 5.4: An example of conflict detection

The latter plugin (CC REL Patent Risk View) is designed for CC REL profile

and it analyzes and visualizes whether packages have patenting risks. For example

Apache 2.0 license contains patent claim and therefore there is risk trying to patent

Apache 2.0 licensed packages. After the analysis, the risky package is presented

in red and free-of-risks package is presented in gray. With both the plugins, the

analysis can be performed on selected elements only or for whole the model, and

they can be executed via upper OSSLI menu, OSSLI GUI or right-click popup menu.

Conflict Detection plugins are designed to recognize license conflicts that occur

when connecting components to each other. In other words, these plugins detect

components’ interconnection related licensing issues. Found conflicts are reported

on overview dialog similar to Risk View with question about generating a report.

Finally detected conflicts are visualized with colors on the diagram as can be seen

on figure 5.4 which represents an example of conflict detection analysis results. In

the figure “Package0” conflicts with packages “Apache Xalan C++” and “Apache

Xalan Java”. Compatibility stereotype with value Incompatible has been added to

conflicting dependencies along with red color.

Four different Conflict Detection plugins were developed during the study: SoberIT,

CC REL Detective, CopyleftChecker and OSLC 3.0. Similar to Risk View plugins,

the conflict analysis can be performed on selected elements only, or for the whole

model. Plugins can be also executed via multiple GUI elements similar to Risk View

plugins.

SoberIT conflict detection is based on license compliance matrix developed by

SoberIT [18]. The plugin works with OSSLI profile. Basically it reads all the de-

pendencies on the diagram, checks if a dependency has Linking stereotyped applied

5. OSSLI Tool Environment 34

and whether the linking type is static or dynamic. Then it reads the license data of

supplier and client LicensedPackages which is then compared to compliance matrix.

CC REL Detective, which works with CC REL profile, has two running modes;

Linking-level and Package-level rule detection. Linking-level analysis detects copy-

left compatibility on adjacent linked licensed packages while Package-level analy-

sis detects copyleft compatibility within packages wrapped inside other packages.

Conflict color coding in this plugin is different from OSSLI profile based conflict

detectors, so that the conflicting packages are marked with red and the dependency

related to that conflict is marked with yellow. The reason for this functionality is

more clearly seen in Copyleft Checker plugin, as it shows paths that contain multiple

packages and dependencies. When compared to SoberIT or OSLC detectors, this

plugin has greater power of expression, as it can tell the reason for conflict based on

the properties found from the license model. That benefit is obtained via the RDF

characteristics of the profile.

Copyleft Checker, also accompanied with CC REL profile, examines the whole

tree of linked components taking into account the transitivity of the copyleft clause.

This is an enhancement when compared to CC REL Detective that only detects

one-step linking conflicts. Therefore it is easier to visualize the conflicting path by

coloring the path-end packages red and the dependency path yellow. In other words,

red marks the causing packages and yellow marks the path between packages.

OSLC 3.0 (Open Source License Checker) conflict detection plugin is the logic

of tool developed in HUT integrated to our system. The integration shows that

it is possible to attach third party components to OSSLI tool, which is a proof of

expandability. A flaw in OSLC is that it doesn’t take dynamic linking into account

as the logic is designed for analyzing source code where detecting dynamic linking

is not so straightforward.

Conflict Resolver is a plugin that first runs a Conflict Detection plugin and then

suggests solutions for correcting found conflicts. Finally, the plugin automatically

implements the chosen correction. In other words, Conflict Resolver in a way contin-

ues the flow after conflict detection. It also saves the effort of implementing correc-

tions manually, of course assuming that the solution is reasonable and suitable. An

example scenario could be that if a Conflict Detection plugin detects that Apache

2.0 licensed package is statically linked to LGPL 2.1 licensed package, one possible

solution would be to change the linking type to dynamic. Conflict Resovelver sug-

gests this action (among other possible solutions) and if the user confirms, then the

linking type is changed to dynamic and conflict disappears from the diagram. This

topic is discussed also in relation to Learning Agent and the figure 5.5.

OSSLI resarch project has implemented two conflict resolvers. Simple Conflict

Resolver is a plugin that reads a log file created by Learning Agent and then suggests

5. OSSLI Tool Environment 35

Figure 5.5: Learning Agent and Conflict Resolver in action

all the possible solutions for similar conflict situation found from the log. The plugin

works with OSSLI profile. CC REL Copyleft Noncompliance Resolution in turn

utilizes CC REL profile to suggest solutions for correcting copyleft related conflicts

detected by CC REL Detective. These solutions are fixed, so no learning is connected

to this plugin. Similar to Risk View and Conflict detection plugins, the analysis can

be performed on selected elements only, or for the whole model. These plugins can

be also executed via multiple GUI elements.

Learning Agent supports a Conflict Resolver by logging conflict correction actions

made by user and thus providing growing database for solutions suggested by Con-

flict Resolver. Example of both of these plugins can be seen on the figure 5.5. In the

background of the figure Learning Agent has first logged a detected conflict between

components “Barcode 4J” and “Jasper Reports”. Then it shows that linking type

of dependency named “9” was changed from static to dynamic. After that action,

the logger can see that the conflict disappeared. Afterwards in the top window, a

Conflict Resolution plugin suggests solution for another detected conflict. The first

one of the suggestions is the one that was logged by Learning Agent. The other

suggestion has been learned earlier. Only one Learning Agent was developed during

the study.

Reporting plugin is a special kind of plugin. It is accompanied with analysis

plugins and its purpose is to generate reports of the analysis into files. The only

plugin developed during OSSLI study writes XML reports. When the analysis plugin

shows the overview dialog, there is an option for generating reports. The idea is to

provide a simple XML file that can be for example transformed to more readable

format via Extensible Stylesheet Language (XSL).

5. OSSLI Tool Environment 36

Figure 5.6: User interface

The purpose of Documentation is to provide internal and external links to relevant

documentation resources while acting as a help. Documentation is implemented by

utilizing the help mechanism provided by Eclipse. Every plugin providing help

documentation should contain folder named docs that contains XML file that is

used for generating table of contents for the help and subfolder named “html” that

contains the actual documentation. Documentation is decentralized so that every

plugin contains only documentation of itself. Documentation can be opened from

any plugin selection dialog by clicking the question mark on the left-hand lower

corner. Under Contents tab, there is node named OSSLI that contains OSSLI tool

documentation. Various topics are discussed there.

5. OSSLI Tool Environment 37

5.3 User Interface

OSSLI contributes to Papyrus or Eclipse user interface in multiple ways. The figure

5.6 shows a general view on the user interface and its elements. In the figure there

is an imaginary example model where OSSLI profile has been applied to, so that

IPR related information can be attached on the model.

Contributions to Papyrus GUI by OSSLI include OSSLI menu placed in main

tool bar. The menu provides a way of executing Risk Views, Conflict Detectors,

Conflict Resolution tools and loading package database. The menu appears on

Eclipse’s Recourse view. For more convenient user interface, other GUI elements

were implemented as well. A separate panel for Conflict Detection, Risk Views,

Conflict Resolution, Logging and Reporting can be opened to the bottom of the

screen which can be seen on bottom of the figure 5.6. In the figure, Risk View

tab, OSSLI Risk Evaluator and analysis for Redistribution has been selected and

run. A general procedure for executing a analysis tool follows these three actions:

selecting type of the plugin, selecting the plugin and choosing options and running.

However Conflict Detection and Risk View plugins can be executed via left-clicking

the diagram and choosing OSSLI menu actions.

On the right-hand side of the figure 5.6 in the tool palette there is OSSLI Database

that lists predefined licensed packages (four packages in the figure) which can be

drag & dropped on the model. For visualizing the results of the analysis, some tools

change the colors of the diagram elements. Both packages and dependencies can be

colored during the analysis to indicate results. After multiple analysis there can be

a situation where mixed colors are difficult to understand. That is why there is a

button for reseting the colors present.

38

6. CASE STUDIES

Feasibility of OSSLI tool in the discussed problem field was tested with case studies.

The first one was SOLA (Solution for Open Land Administration) case and the

second one was HOT (Henkilöstön Osaamis- ja Tavoitetyökalu) case. The purpose

of both the case studies was to test the feasibility of the tool in real life software

model examples. This target was supposed to be achieved by demonstrating the

functionality and analysis results of the tools which were then represented in a

form of tables. The demonstrated functionality consists of running risk analysis and

conflict detection plugins. In addition to modeling the cases in Papyrus and running

analysis tools, the case studies introduce the possibility of performing simulated

scenarios of possible alternative license configurations.

In addition to OSSLI profile, instances of Risk View, Conflict Detection, Conflict

Resolution, Package Database, Reporting and Logger plugins could be tested with

the case study models. For more detailed view on the models, they are found from

appendix B.

6.1 SOLA

As a case study, SOLA software, a research project by TUT, was analyzed with

OSSLI tool. SOLA software contains 16 third party Open Source components and

five components developed by TUT linked statically to each other. Third party

components are licensed under various Open Source licenses, such as LGPLv2.1,

Apache 2.0, BSD, GPLv2, CDDL 1.0 (Common Development and Distribution Li-

cense) and PostgreSQL License. Components developed by TUT are licensed under

BSD. OSSLI didn’t support PostgreSQL License at the time of the study, so it

needed to be treated as unknown license. The package diagram of the case study

can be seen in the appendix B in the figure B.2. Components developed by TUT

don’t have license information visible because of readability. All the linking is static.

For worthwhile Risk View analysis for a model using OSSLI profile, some package

review needed to be done. The package review database by Validos contained three

of the third party components used in SOLA at the time the study was conducted.

Validos performs package reviews for open source packages with the method by

Willebrand & Partanen [27].

The results of the risk analysis in SOLA case can be seen on table 6.1. In all the

6. Case Studies 39

usage scenarios, Package iText 2.1 can be seen risky, package Glassfish Metro can be

seen possibly risky while package PostgreSQL can be seen valid. Owned packages

were treated as valid as they supposedly don’t contain third party code and other

packages without package review data were treated as unknown. Risk information

was manually annotated to the model while the other way would have been to make

package database, load it and then drag & drop packages to the model.

Table 6.1: SOLA risk analysis results

Component License Redistribution Service
offering

Development
tool

Internal
use

iText LGPL 3 3 3 3
Glassfish

Metro
CDDL 2 2 2 2

PostgreSQL Unknown 1 1 1 1
1. Valid

2. Possible risk

3. Clear risk

In SOLA case, Conflict Detection (SoberIT and OSLC 3.0 plugins) analysis found

one conflict between JasperReports (LGPLv2.1) and Barcode 4J (Apache 2.0) when

the components were statically linked. Results can be seen in table 6.2. The table

lists conflicts detected by the analysis by placing the two conflicting packages on

a table row. “Client” refers to the package from which the dependency arrow is

leaving and “Supplier” refers to the package that the arrow is pointing to. In the

table, package and its license are placed in same cell. Note that LGPL and Apache

components can be dynamically linked without conflict but in this model they were

linked statically.

Table 6.2: SOLA BSD conflict detection results

Client - License Supplier - License
Jasper Reports - LGPL Barcode 4J - Apache

As there was only one conflict and the results are not that interesting, SOLA

model was changed so that the components developed by TUT were licensed under

GPLv2. With that kind of simulated configuration, multiple conflicts were found.

For example, all the dependencies between GPLv2 licensed packages and Apache 2.0

licensed packages resulted as conflicting dependencies. In addition, GPLv2 licensed

package was found conflicting with a package licensed under CDDL 1.0. Table 6.3

represents the results.

6. Case Studies 40

Table 6.3: SOLA GPL conflict detection results

Client - License Supplier - License
SOLA Desktop Client - GPL Hibernate Validator - Apache
SOLA Desktop Client - GPL Dozer - Apache
SOLA Desktop Client - GPL Sanselan Image Library - Apache
SOLA Business Logic - GPL Sanselan Image Library - Apache
SOLA Business Logic - GPL MyBatis - Apache
SOLA Web Services - GPL Dozer - Apache
SOLA Web Services - GPL Glassfish Metro - CDDL

Jasper Reports - LGPL Barcode 4J - Apache

According to table 6.3, the simulation with TUT components licensed under

GPLv2, the analysis found more conflicts when compared to previous analysis with

BSD license. The number of conflicts was eight. Several components were involved

with more than one conflict. Examples of these components include SOLA Desktop

Client and Dozer. Naturally, the conflict between Jasper Reports and Barcode 4J

was detected again as their licenses were not changed.

6.2 HOT

Another case study, that utilizes a model of HOT software, was also conducted.

The documentation and source code of the software was obtained from Wapice Oy,

a finnish software company. HOT was developed as a course work by students from

TUT. The model, constructed by us with the help of the tool documentation, con-

tains 14 packages of which nine are third party and five are developed by students.

Third party components are licensed under licenses such as MIT, CPL (Common

Public License), Apache 2.0 and LGPLv2.1. The license of the software itself was

unknown, so BSD and GPLv2 were used in simulations. A central piece of the soft-

ware is Spring Framework that wraps most of the other components. This wrapping

was treated as statical linking.

The case study model can be seen in appendix B in the figure B.1. Six of the third

party components used in HOT case were found from the package review database

maintained by Validos. In HOT case, within the same usage scenario as in SOLA

case, the results of the performed risk analysis can be seen in table 6.4. In the table

Framework is abbreviated as FW. Easymock and Hibernate are risky in all the usage

scenarios while all the other packages are valid. Owned packages were treated as

valid and other packages without package review data were treated as unknown.

As the table 6.5 shows, when owned packages were licensed under BSD, Conflict

Detection (SoberIT and OSLC 3.0 plugins) analysis found two conflicts. Conflicting

dependencies were found between Spring Framework (Apache 2.0) and Hibernate

6. Case Studies 41

(LGPLv2.1) and again between Spring Framework (Apache 2.0) and Junit (CPL).

In both the cases, all the linking was considered static. Results are represented in

table 6.5. For instructions on reading the table, see the previous case.

Table 6.4: HOT case study risk analysis results

Component License Redistribution Service
offering

Development
tool

Internal
use

Easymock MIT 3 3 3 3
Hibernate LGPL 3 3 3 3

Junit CPL 1 1 1 1
Jquery MIT 1 1 1 1

Spring FW Apache 1 1 1 1
Spring FW
dispatcher

Apache 1 1 1 1

1. Valid

2. Possible risk

3. Clear risk

Similar to the actions performed in SOLA case, a simulation with owned packages

licensed under GPLv2 was conducted. In such configuration all the dependencies

between GPLv2 licensed packages and Apache 2.0 licensed packages resulted as

conflicting which is equal to results seen also in SOLA case GPL simulation. Results

are represented in table 6.6.

Table 6.5: HOT BSD conflict detection results

Client - License Supplier - License
Spring FW - Apache Hibernate - LGPL
Sprint FW - Apache Junit - CPL

As can be seen, licensing under GPLv2 causes again more conflicts than BSD. The

number of conflicts detected by the analysis is 12. Similar to SOLA case, multiple

packages are involved in more than one conflicts, Spring Framework being the most

conflicting component.

6.3 Use of the Results

Both the discussed cases were industrial cases. The results were used to evaluate the

usefulness of the environment. With the results it is possible to estimate whether

the functionality is valid. According to manual inspection and available knowledge,

the analysis processes produced valid information. At the time of writing this, it is

6. Case Studies 42

Table 6.6: HOT GPL conflict detection results

Client - License Supplier - License
Spring FW - Apache Hibernate - LGPL
Sprint FW - Apache Junit - CPL
Spring FW - Apache Model - GPL
Spring FW - Apache DAO - GPL
Spring FW - Apache Service - GPL
Spring FW - Apache Controller - GPL
Spring disp. - Apache JSP - GPL
Spring disp. - Apache Controller - GPL

DWR - GPL Service - Apache
JSP - GPL Sitemesh - Apache
JSP - GPL DWR - Apache

Service - GPL Junit - CPL

not known whether the results had any impact on the future usage or development

of discussed software, HOT and SOLA. However, next few paragraphs show some

possible reactions to the results.

The conflict detection results of SOLA case shown by tables 6.2 and 6.3 suggest

that GPLv2 might cause legal problems more probably than BSD as there is more

conflicts with GPLv2. Results of risk analysis on table 6.1 indicate that the SOLA

contains some packages that could be risky in multiple usage scenarios so caution

and preventing actions should be carried out with those packages.

Similar reactions can be adopted to HOT case. The conflict detection results on

tables 6.5 and 6.6 show that the model turns out to be more challenging legally

when licensing owned packages under GPLv2 instead of BSD. The main conclusions

of table 6.4 showing risk analysis results of HOT case suggests that more package

review should be conducted on multiple packages which validity was treated as

“unknown” on all the usage scenarios. In addition, two packages are clearly risky

and in need of caution and supportive actions.

6.4 Evaluation

The objective of the study was to represent the significance of the discussed UML

profile based approach. The results achieved via using the environment and the case

studies prove that the UML based approach can be utilized for discussed license

management work. OSSLI could presumably reduce the burden of developers with

automatic IPR related analysis tools and as well reduce the need for legal assistance.

Usually UML modeling is done in an early design phase and detecting possible legal

risks at the same time would save from troubles in the future. The comparison to

other open source license management tools reveals that UML based approach can

6. Case Studies 43

be regarded as a novel method.

The developed tool was able to detect multiple conflicts and risks from two in-

dustrial case study models. Successful simulations with different licenses on case

studies argue that the tool can be used as a helpful aid on decision making. License

configuration with fewer conflicts might indicate a configuration with less IPR re-

lated problems in the future. The supporting features were considered helpful or

profitable for future development. Regardless of all the weaknesses of the tool, one

could consider the approach convenient and useful in multiple license management

occasions. Naturally, the suitability of the case studies can be as well under debate.

Package review is a task that needs some effort and expertise. A proper pack-

age review of every third party package in the models requires resources occupied

for conducting such a task. Risk analysis of the case studies is therefore partially

insufficient, as all the third party packages were not reviewed. In SOLA case only

three out of sixteen while in HOT case six out of nine third party components were

package reviewed. Still the situation is similar to real world as there is not always

enough resources available for everything.

Another problem related to package review is that can it be trusted that the

package used in the software is similar enough to the one found from the package

review database. In some situations the version number found from the case study

model was not exactly the same as the one found from the package review database

but still the IPR information gathered from different version was used. This action

was performed because the main idea was to demonstrate the functionality of the

approach and not necessarily to execute a comprehensive analysis of the model.

As can be seen from the case study models, a clear advantage from the profile

based approach is that the license information can be attached to UML elements

while re-using package diagram. Naturally this saves time and effort. However, in

these case studies the package diagram needed to be generated separately only for

this purpose. A more descriptive and efficient case would be one where a package

diagram has already been made during the software development and possible found

risks and conflicts could be fixed before the implementation. However, the results can

be useful as well after the development for example for learning risk free practices.

Another successful matter is that the visualization of the results seems clear and

suitable for the intended purpose. While risk view only shows manually annotated

information in different form than text, it is useful to combine the information

straight to UML model so that it can be visualized among the other license data.

In connection with different plugins’ visualization, a diagram can contain results of

multiple analysis for evaluation.

HOT case study model was constructed primarily according to documentation

and secondarily according to source code. Therefore there are assumptions such as

6. Case Studies 44

everything is statically linked. Even though the model presumably doesn’t repre-

sent the exact configuration, it is closely related and could represent some software

model in theory. There were not similar problems with SOLA case and model was

constructed according to very similar model picture. One weakness with both the

case study models is that they include only static linking and no dynamic linking. A

case study with dynamic linking would have been more comprehensive as dynamic

linking is a different situation from the perspective of conflict analysis tools.

As a platform, while Papyrus is a UML tool, it is not the most convenient one

for this kind of purpose. Annotating packages and dependencies feels burdensome

because of the amount of clicking and usability of Papyrus GUI. In other words,

stereotyping packages and dependencies and attaching all the related information is

not as straightforward as one would expect. Some usability features were developed

for OSSLI but still the platform itself causes multiple problems.

It was noted that using a package database for adding packages to diagram can be

a faster method than manually annotating packages with the help of Papyrus GUI.

Therefore package database can be seen as useful tool. One weakness of package

databases is that they cannot be used vice versa. It would be convenient to be able

to add manually annotated packages from the diagram to a package database. That

would enhance the reutilization of the modeled packages. A shortcut for adding

stereotyped dependencies would also improve using experience. At the moment user

needs to add dependency and stereotype individually which is connected to the way

UML software often work.

One drawback in the current development level is that not all needed licenses

are modeled. For example PostgreSQL license needed to be treated as unknown

license and therefore the analysis wasn’t as successful partially as one could expect.

PostgreSQL license is not one of most common licenses. However, many of the most

often used licenses are modeled in the context of OSSLI tool. This problem will be

a difficult task to overcome completely as new licenses will be found from time to

time. Naturally there are ways to add new licenses to profiles and analysis tools.

It can be under debate if the analysis tools are trustworthy logically or do they

work correctly in OSSLI environment. Used conflict detection tools are based on

compliance studies made by SoberIT and package review behind risk analysis tool

is done by Validos. Therefore trustworthiness of these methods goes beyond our

study. According to manual inspection the results seem correct. Utilization and

co-operation of other existing methods and theoretical background supports the

applicability of the method and tool.

XML reports alone are not necessarily very convenient for humans but it was

noted that reporting functionality is working and useful especially in basis of fu-

ture development. Reports can be re-used for example in connection with XSL

6. Case Studies 45

transformation to generate a report in a different form. This can be beneficial for

organizational redistribution of information.

All the plugins as well as CC REL profile weren’t tested during the case studies.

CC REL profile could be more useful in some cases, as utilizing it could provide more

detailed information on the conflicts but modeling even the most popular licenses

for the profile in RDF would have required too much of resources.

It was also studied that Logger plugin can record found and fixed conflicts during

the analysis and Conflict Resolution plugin can suggest solutions for similar conflicts

according to recorded log file. An example scenario was when the conflict between

JasperReports and Barcode 4J was found, the logger was turned on when changing

the linking type between the components from static to dynamic. After re-analysis

of the original model with a conflict resolution plugin, the plugin suggested the

correction and could fix it as well. Still, Logger has somewhat minimal functionality

and requires more work to be useful.

46

7. CONCLUSIONS

The objective of the study was to represent the significance of the discussed UML

profile based approach. As a proof of concept, a new open source license management

software utilizing the approach was developed. Two cases studies were conducted

during the study to demonstrate the features of the tool and to prove the approach

to be convenient in the discussed license management work. Other existing license

management methods and tools can be used in co-operation with the approach. One

example is the package review process by Willebrand & Partanen with which it is

possible to provide a database for the tool.

During the study, a new open source license management software called OSSLI

was developed. The main idea was to provide a framework utilizing UML profiles

to extend certain UML elements with IPR information and to implement support-

ing plugins for advanced functionality. OSSLI is built on top of Eclipse based UML

software Papyrus. The approach of OSSLI is UML based with supporting customiza-

tions and contributions for Papyrus environment.

OSSLI tool consists of nine different types of plugins bound together by Core plu-

gin. The tool is built to work with different kinds of plugin configurations so that

there can be simultaneously multiple implementations of all types of plugins avail-

able. Apart from Core, other plugin types implement features such as risk view and

conflict detection analysis. These features and analysis results were demonstrated

in the case studies. Executing and development of multiple independent plugins

suggests that the tool architecture provides a way to customize the tool for personal

needs.

Two different profiles were developed. OSSLI profile utilizes the idea of attaching

IPR related information to UML models while CC REL profile that supports RDF

is more advanced but still lacks analysis tool support when compared to OSSLI

profile. OSSLI profile was used in both the case models, whereas CC REL profile

wasn’t applicable at the current development phase as it lacked proper tool support

and RDF modeled licenses.

The two case studies, SOLA and HOT, both contained multiple third party open

source components. OSSLI analysis tools found risks and conflicts from both the case

study models. These results claim that OSSLI is a beneficial tool to some extent.

OSSLI turned out to be able to detect and visualize IPR related conflicts and risks

7. Conclusions 47

from both the case study UML models. Successful execution of the simulations with

different licenses, gives an impression that the tool could be useful aid with decision

making in license management. The suitability for case studies can be under debate

for example as the models didn’t contain dynamic linking and multiple third party

packages were left without package review.

What makes UML based approach and OSSLI different from other software, is

that other license management software are not necessarily meant for analyzing

software models but rather automatically searching for licenses from implemented

software or detecting conflicts from software that already exists. From other soft-

ware, Qualipso is the most similar to OSSLI but it uses OWL based technique for

modeling the software. The approach used by OSSLI, helps detecting IPR related

problems early while developing the software model. UML is a popular way of

modeling software.

OSSLI still lacks many useful features and much of content. Usability should be

also taken into account more for example by reducing the amount of clicking around

the GUI. However, the framework can be seen functional and convenient, as the two

case studies suggests. OSSLI tool could be seen useful for organizations working

with third party open source components in component based development. An

open and plugin based structure of OSSLI enables the tool to be customizable for

the needs of each organization.

Main ideas for future development include developing a better support for auto-

matic and learning problem resolution by implementing functionality for utilizing

open source legality patterns introduced by Hammouda & al., providing wider pack-

age review database, implement possibility for adding packages to database directly

from GUI, providing a better support for CC REL profile and enhancing GUI us-

ability. Building a community around the software would be an important task

in making the software useful and getting more coverage. It is good to bear in

mind that caution should be considered always when working with legal matters

and automatic decision making.

48

BIBLIOGRAPHY

[1] Alspaugh, T. A., Asuncion, H. U. & Scacchi, W. Analyzing Software Licenses in

Open Architecture Software Systems. FLOSS ‘09 Proceedings of the 2009 ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research

and Development. IEEE Computer Society Washington, DC, USA, 2009. pp.

54-57.

[2] Alspaugh, T. A., Asuncion, H. U. & Scacchi, W. Intellectual Property Rights

Requirements for Heterogeneously-Licensed Systems 2009 17th IEEE Interna-

tional Requirements Engineering Conference, Atlanta, Georgia, USA, Septem-

ber 31, 2009. pp. 24-33.

[3] Chang, S., Lee, J., & Yi, W. A Practical Management A Practical Frame-

work for Commercial Software Development with Open Sources. IEEE 7th In-

ternational Conference on e-Business Engineering (ICEBE), Shanghai, China,

November 10-12, 2010. IEEE Computer Society Conference Publishing Services

2010. pp. 164-171.

[4] Describing Copyright in RDF. [WWW]. [Cited 28/5/2012]. Available at:

http://creativecommons.org/ns

[5] Linux Foundation. Dependency Checker Tool Overview and Discussion. White

Paper. [WWW]. [Cited 28/5/2012]. Available at:

http://www.linuxfoundation.org/sites/main/files/publications/

lf foss compliance dct.pdf

[6] FOSSology. [WWW]. [Cited 28/5/2012]. Available at:

http://www.fossology.org/

[7] German, D., Hassan, A. License Integration Patterns: Addressing License Mis-

matches in Components-Based Development. IEEE 31st International Confer-

ence on Software Engineering, Vancouver, Canada, May 16-24, 2009. pp. 188-

198.

[8] Gomez, F. P., Quinoñes, K. S. Legal Issues Concerning Composite Software Sev-

enth International Conference on Composition-Based Software Systems, 2008.

ICCBSS 2008, Madrid, Spain, February 25-29, 2008. IEEE Computer Society

Conference Publishing Services 2010. pp. 204-214.

[9] Hammouda, I. , Mikkonen, T., Oksanen, V., Jaaksi, A. Open Source Legal-

ity Patterns: Architectural Design Decisions Motivated by Legal Concerns In

BIBLIOGRAPHY 49

Proceedings of the 14th International Academic MindTrek Conference: Envi-

sioning Future Media Environments (2010), Tampere, Finland, October 6-8,

2010. ACM Press. pp. 207-214.

[10] Helander, N., Aaltonen, T., Mikkonen, T., Oksanen V., Puhakka, M.,

Seppänen, M., Vadén, R. & Vainio, N. Open Source Management Framework.

Tampere 2007, eBRC Research Reports 38. 44 p + Appendixes 48 p.

[11] Hoekstra, R., Breuker, J., Di Bello, M., Boer, A. The LKIF Core Ontology of

Basic Legal Concepts. Proceedings of the Workshop on Legal Ontologies and

Artificial Intelligence Techniques LOAIT, Stanford, USA, June 4, 2007. pp.

43-64.

[12] International Free and Open Source Software Law Review. [WWW]. [Cited

28/5/2012]. Available at: http://www.ifosslr.org

[13] lchecker A License Compliance Checker. [WWW]. [Cited 28/5/2012]. Available

at: http://code.google.com/p/lchecker/

[14] Working Paper on the legal implications of certain forms of Software Interac-

tions (a.k.a linking). 2010. Free Software Foundation Europe, Working Paper.

49 p.

[15] Malcolm, B. Software Interaction and the GNU General Public License. Inter-

national Free and Open Source Software Law Review, 2(2), pp 165-180.

[16] OMG Unified Modeling Language (OMG UML), Infrastructure.

2009, Object Management Group. 214 p. [cited 2012.1.17]. Available:

http://www.omg.org/cgi-bin/doc?formal/2009-02-04.pdf

[17] Open Source Initiative. [WWW]. [Cited 28/5/2012]. Available at:

http://www.opensource.org/

[18] Open Source License Checker Wiki. [WWW]. [Cited 28/5/2012]. Available at:

https://wiki.ow2.org/oslcv3/

[19] Papyrus. [WWW]. [Cited 28/5/2012]. Available at:

http://www.eclipse.org/modeling/mdt/papyrus/

[20] Qualipso. A Protype Decision Support System for OSS License

Compatibility Issues. [WWW]. [Cited 28/5/2012]. Available at:

http://www.qualipso.org/licenses-champion

[21] Rosen, L. 2004, Open Source Licensing: Software Freedom and Intellectual

Property Law. Prentice Hall PTR, Upper Saddle River, NJ, 2004

BIBLIOGRAPHY 50

[22] SourceForge. [WWW]. [Cited 28/5/2012]. Available at: http://sourceforge.net/

[23] Software Package Data Exchange. [WWW]. [Cited 28/5/2012]. Available at:

http://spdx.org/

[24] Tuunanen, T., Koskinen, J. & Kärkkäinen, T. Automated software license anal-

ysis. Automated Software Engineering 16 (3-4), 455-490, December, 2009. pp.

455-490.

[25] Välimäki, M., P. 2009. Oikeudet tietokoneohjelmistoihin, 2. painos. Helsinki,

Talentum. 267 p.

[26] Willebrand, M. 10 myyttiä avoimen lähdekoodin juridiikasta ja riskeistä, Open

Solutions 2010, Meripuisto, Espoo 2010. 11 p.

[27] Willebrand, M. & Partanen, M. 2010. Package Review as a Part of Free and

Open Source Software Compliance. International Free and Open Source Soft-

ware Law Review 2, 1, pp. 39-60.

51

A. APPENDIX: LICENSED PACKAGE

Tagged value Type Description
Copyright String Copyright information in free text for-

mat. For example, name of the copy-
right holder and year.

Description String Description of the package in free text
format. For example additional licens-
ing information.

License LicenseType One or more licenses chosen from Li-
censeType enumeration. There can be
multiple licenses for example in cases of
dual-licensing.

Redistribution Validity Validity for redistributing the package
chosen from the enumerated type Va-
lidity.

Development Tool Validity Validity for using the package as a de-
velopment tool chosen from the enu-
merated type Validity.

Service Validity Validity for offering functionality as a
service chosen from enumerated type
Validity.

Internal Use Validity Validity for using the package interally
chosen from enumerated type Validity.

ID Integer Identification for the package as an in-
teger. For example unique identifier
used by organization.

Ownership OwnershipType Ownership of the package chosen from
enumated type OwnershipType. For
example, for marking the package as
owned by the author or third party.

Table A.1: Tagged values of LicensedPackage

52

B. APPENDIX: CASE STUDIES

Figure B.1: HOT case study

B. Appendix: Case Studies 53

Figure B.2: SOLA case study

