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ABSTRACT
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Major: Mathematics
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This thesis aims to present a computational fluid dynamics (CFD) model of the assist
gas flow in laser cutting. This model is intended to aid in the design of nozzles. A
brief discussion of laser cutting processes is also included in order to understand the
role of an assist gas in the laser cutting process.

Simulation was done using the CFD software Star-CCM+. Simulations were executed
using a segregated solver instead of a coupled one in order to keep the simulations
computationally inexpensive. This is particularly important when the model becomes
more complex by introduction of chemical reactions or molten metal particles. Two
different viscosity models were used, namely the Sutherland law and a constant
viscosity model. Results obtained by these two models were similar. However the
use of the Sutherland law resulted in numerical problems. Thus, it can be concluded
that the constant viscosity model is more suitable in this study case.

Comparison with the Schlieren photographs show that the developed CFD model is
adequate to predict flow of a Laval nozzle.
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Tiivistelmä

TAMPEREEN TEKNILLINEN YLIOPISTO
Teknis-luonnontieteellinen koulutusohjelma
KOLEHMAINEN, JARI TAPANI: Apukaasuvirtauksen simulointi laser leikkauk-
sessa.
Diplomityö, 81 sivuja, 2 liitesivua
Elokuu 2011
Pääaine: Matematiikka
Tarkastajat: Prof. Robert Piché ja TkT. Simo-Ali-Löytty
Avainsanat: Laser leikkaus, Laval suutin, CFD

Työn päämääränä oli esittää laskennallinen CFD-malli apukaasuvirtaukselle laser
leikkauksessa. Mallin tarkoituksena on auttaa apukaasusuutinten suunnittelussa.
Työssä käsiteltiin myös apukaasun roolia laser leikkauksessa, jotta lukija kykenisi
paremmin ymmärtämään työn päämäärää.

Simulaatiot suoritettiin Star-CCM+ CFD-ohjelmistolla. Simuloinnissa käytettiin
tavanomaista eriytettyä ratkaisijaa yhdistetyn ratkaisijan sijasta, jotta laskenta
voitaisiin pitää mahdollisimman kevyenä. Tästä on erityisesti hyötyä, kun
monimutkaisempia malleja yhdistetään kaasuvirtaukseen. Työssä vertailtiin myös
kahta eri viskositeetti mallia. Malleiksi valittiin Sutherlandin-laki ja vakio viskosi-
teetti malli. Molemmat mallit antoivat samankaltaisia tuloksia, mutta Sutherlandin-
lain käyttö aiheutti numeerisia ongelmia. Tästä syystä vakio viskositeetti malli oli
sopivampi kyseiseen ongelmaan.

Laskentatulosten paikkansapitävyyttä arvioitiin Schelieren-kuvien avulla. Vertailussa
tultiin lopputulokseen, että kyseinen malli pystyi ennustamaan kaasuvirtauksen Laval-
suuttimessa riittävän hyvin.
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Chapter 1

Introduction

As a cutting method, laser cutting has been becoming more popular. This is due to its
advantages over other cutting methods such as plasma cutting or mechanical cutting
methods. Laser cutting usually has good cut characteristics, it is fast and involves
only very small wear in parts.

On the other hand, lasers may consume high amounts of electrical power. For instance
a 100kW carbon dioxide laser may use up to 1MW electrical power. Apart from
electricity the only major running cost is assist gas consumption. In particular the
cut characteristics are improved if more assist gas, which is used to remove material
from the cut is used. However this increases the running costs due to the increased
consumption of the assist gas, which is typically nitrogen or oxygen. Hence, there is
need for nozzle design that improves cut characteristics while consuming less assist
gas.

Nozzles in laser cutting have typically been straight nozzles. Advantages of straight
nozzles are simplicity and low initial cost. However, these nozzles do not accelerate
assist gas and are far from optimal for purposes of cutting most materials. In this
thesis we consider the so called Laval nozzle design, which enables to accelerate assist
gas velocity to the supersonic domain.The high velocity provided by a supersonic jet is
a highly desirable property in thin metal plate cutting, which is a typical application
of laser cutting.

Nozzles can be designed by the so called ”trial and error” approach using laboratory
tests with physical prototypes, which gives first hand knowledge of subject, but is
slow and expensive. This is due to manufacturing difficulties involved in laser nozzle
construction. The diameter of a nozzle may be as small as 0.1 mm, hence making
precision machining slow and expensive.
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The more intelligent approach of using computational fluid dynamics (CFD) models to
test nozzles may decrease time consumption and expenses in the nozzle design process.
The small nozzle size which causes problems in the manufacturing is an advantage in
CFD due to the small Reynolds numbers. The aim of this thesis is to present the basic
theory involved in the design and testing of Laval nozzles and to explain some basic
aspects of laser cutting processes.

Chapter 2 presents the mathematical background of using partial differential equations
for modeling of physical problems. Chapter 3 explains the fundamental theory behind
lasers and gives insight to the laser processes. Chapter 4 presents the theory needed
for modeling of an assist gas flow and designing a Laval nozzle. Chapter 5 presents
numerical methods for solving the theory presented in the Chapter 4 and a brief error
analysis of these methods. Chapter 6 explains the simulation setup used in this thesis
and Chapter 8 presents conclusions of this thesis.



Chapter 2

Partial differential equations

2.1 Basic concepts

This section introduces the concepts of functions, operators and most importantly
weak derivatives. Weak derivatives are particularly interesting since solutions of fluid
dynamics may not be continuous, for instance due to shock waves. At first it is
necessary to introduce a few familiar function classes.

Definition 2.1. Let Ω ⊂ Rn. Define C(Ω) to be the set of all continuous functions
from Ω to R.

In next four definitions functions are assumed to be mappings in R.

Definition 2.2. Let Ω ⊂ Rn. We define

C0(Ω) = {f : support of f is compact.} ∩ C(Ω).

In definition 2.2 C0(Ω) is the set of all continuous functions that have compact (closed
and bounded in Rn) support (the set of values where f(x) 6= 0). It is convenient to
define the multi-index α = [α1, . . . , αn] ∈ Nn and the derivative

Dαf = Πn
i=1

∂αi

∂xαi
i

f. (2.1)

The order of derivative Dα is given by sum
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|α| =
n∑
i=1

αi. (2.2)

Definition 2.3. Let Ω ⊂ Rn. We define Cm(Ω) to be the set of all functions in Ω
that have continuous partial derivatives of order m.

It is clear from Definition 2.3 that if a function has continuous partial derivatives of
order m then all lower order derivatives must also be continuous. Let Cm

0 (Ω) denote
the set of all functions that have compact support and continuous derivatives of order
m. Another important class of function are the locally integrable functions.

Definition 2.4. Let Ω ⊂ Rn. Now Lploc(Ω) is the set of functions f that have an
integral1 ∫

Ω
|f(x)|pdV.

The next lemma is crucial for definition of weak derivatives.

Lemma 2.5. Let Ω ⊂ Rn and f, g ∈ C∞0 (Ω) then∫
Ω

∂f

∂xi
gdV =

∫
∂Ω
fg(eTi dS)−

∫
Ω
f
∂g

∂xi
dV,

where ei is the i:th coordinate unit vector and dS is the outward normal differential of
the surface ∂Ω.

Proof. Proof can be found in [4].

In particular if g vanishes in ∂Ω, lemma 2.5 implies that

∫
Ω

∂f

∂xi
gdV = −

∫
Ω
f
∂g

∂xi
dV. (2.3)

Now we can postulate the definition of a weak derivative

Definition 2.6. Let Ω ⊂ Rn and f ∈ L1
loc(Ω). Function ( ∂f

∂xi
)weak ∈ L1

loc(Ω) is a weak
derivative of the function f iff∫

Ω

(
∂f

∂xi

)
weak

φdV = −
∫

Ω
f
∂φ

∂xi
dV , for all φ ∈ C∞0 (Ω).

1Integratability is assumed to be in the Lebesque sense. However in a physical problem functions
usually have an integral also in the Riemann sense.
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It should be clear from Equation (2.3) that if f ∈ C1
0(Ω) then its weak derivative is

simply ∂f
∂xi

. Moreover weak derivatives allow derivatives of functions to have jumps.
This is an especially desirable feature in modelling problems, where the models are
partial differential equations (PDE’s), but the solutions might have discontinueties.
From this point on the subscript “weak” will be dropped and derivatives are assumed
to be weak derivatives. As we are mainly interested in those functions in L1

loc(Ω) that
have weak partial derivatives we need to define a new set, namely the Sobolov space
[22].

Definition 2.7. Sobolov space W k,p(Ω) is given by

W k,p(Ω) = {f ∈ Lploc(Ω) : Dαf ∈ Lploc(Ω) for all |α| ≤ k}.

We proceed in our discussion to operators. Operators are mappings from functions
to functions. For instace derivation is an operator, but integration is not (it is a
functional). We define inner product of two functions to be

〈f, g〉 =
∫
Rn
fgdx. (2.4)

The inner product defined in Equation (2.4) is indeed an inner product in W k,p(Ω)
and proof of this can be found in [10]. The norm of a function is given by

‖f‖ =
√
〈f, f〉. (2.5)

Continuity of an operator is defined in a similar fashion as it is for functions, as follows.

Definition 2.8. An operator T is said to be continuous iff for all f and g

‖f − g‖ → 0⇒ ‖T (f)− T (g)‖ → 0.

Moreover we define addition and multiplication for operators, which are given by the
following definitions.

Definition 2.9. Let T and L be operators. A sum operator T + L is given by

(T + L)(f) = T (f) + L(f).
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Definition 2.10. The product of operators T and L is given by

(TL)(f) = T (L(f)).

It should be noted that in definitions 2.9 and 2.10 the operators’ domains and
codomains must be the same and f, g ∈ W k,p(Ω) must hold. Moreover addition is
clearly commutative, but multiplication might not be.

As our main interest is in solving PDEs we are interested in differential operators. A
differential operator (DO) can be defined using the following recursive rule.

Definition 2.11. Let Ω ⊂ Rn and assume that Ω is compact. The set of differential
operators Γ is given by

Γ = ∩Γ′
,

where the set Γ′ is defined by the following rules.

1. Operator L (f) = φ(f) is in Γ′ for every φ ∈ C(R).
2. Operator L (f) = ∂f

∂xi
is in Γ′ .

3. If operators L and T are in Γ′ then L + T is in Γ′ .
4. If operators L and T are in Γ′ then L T is in Γ′ .

To show that an operator as defined in 2.11 is continuous we need following lemmas.

Lemma 2.12. If L (f) = φ(f), where φ ∈ C0(R) then L is continuous.

Proof. In this proof we need concept of essential suppremum. It represents a func-
tions supremum in nonzero metric sets thus disregarding any solitary peaks. Let
f ∈ W k,p(Ω) and define sets

Ma = {x : f(x) > a} and

A = {a :
∫
Ma

dx = 0}.

The essential supremum of a function is given by [8]

ess supf =
{
∞ , if A = ∅
infA , otherwise
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Suppose that ‖f − g‖ → 0. Now

‖L (f)−L (g)‖2 = ‖φ(f)− φ(g)‖2 =
∫
‖φ(f)− φ(g)‖2dx

≤
∫

ess supx‖φ(f)− φ(g)‖2dx

≤ ess supx‖φ(f(x))− φ(g(x))‖2vol(Ω)→ 0,

because the essential supremums of f and g have to approach each other as ‖f−g‖ → 0
and φ is continuous function in R.

Lemma 2.13. If L (f) = ∂f
∂xi

then L is continuous.

Proof. More general proof for arbitrary order derivatives can be found in [19].

Lemma 2.14. If L and T are continuous then L + T is continuous.

Proof. Proof is of the same form as for the real valued functions. That proof can be
found in any basic calculus books such as [18].

Lemma 2.15. If L and T are continuous then L T is continuous.

Proof. Proof is of the same form as for the real valued functions. That proof can be
found in any basic calculus books such as [18].

Now we can prove that differential operators as defined by 2.11 are continuous.

Theorem 2.16. Differential operators as defined in 2.11 are continuous.

Proof. Define the DO number as the minimum number of applied rules of definition
2.11 to acquire DO. For instance the DO number of L = ∂

∂xi
is 1 and the DO number

of L (f) = ( ∂
∂xi

)2 is 3 (one for rule 1, one for rule 2 and one for rule 4).

Define the set ΓN = {L ∈ Γ: L is not continuous }. Moreover let L ∈ ΓN be the
DO with the lowest DO number. A type of a differential operator is defined as the
last rule that is used in acquiring it.
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If L is of type one or two it leads to contradiction with lemmas 2.12 and 2.13. Moreover
if it is of type three then L = L1 + L2. On the other hand Li /∈ ΓN because L
has the lowest number. This implies that L has to be continuous by lemma 2.14 and
leads to a contradiction. Similarly if L is of type four then L = L1L2. Moreover Li

has to be continuous by a similar argument which leads to a contradiction by lemma
2.15. Thus ΓN = ∅ and all differential operators are continuous.

Now a PDE is the equation L (f) = 0, where the DO L is known. However fluid
flow is modelled using multiple PDEs not a single one. Thus we need to generalize
our definition to accommodate multiple unknown functions and multiple PDE’s. First
we define a single DO (semi generalized differential operator) with multiple unknown
functions and at last multiple DOs with multiple unknown functions.

Definition 2.17. Let Ω ⊂ Rn and assume that Ω is compact. Define the set of semi
generalized differential operators (SGDO) Γm by

Γm = {L : L (f) = φ(L1(f1), . . . ,Lm(fm)),
where f = [f1, . . . , fm] ∈ W k,p(Ω)m,
φ ∈ C(Rm) and Li ∈ Γ}.

Here the powers imply the cartesian set product, for instance
W k,p(Ω)m = W k,p(Ω)×· · ·×W k,p(Ω). Now the generalized differential operator (GDO)
is given by

Definition 2.18. Let Ω ⊂ Rn and assume that Ω is compact. Define set of generalized
differential operators (GDO) Γm,q by

Γm,q = {L : L (f) = [L1(f), . . . ,Lq(f)],where Li ∈ Γm}.

In particular Γm,1 = Γm. A PDE system can now be defined as equation L (f) = 0,
where L ∈ Γm,q is known. Moreover to restrict the PDE problem to have an unique
solution we need to add boundary constraints. This is usually done by demanding
that functions must have a certain value at the boundary, for instance

L (f) = 0 such that
f ∈ W k,p(Ω)m ∩ {f : f(x) = 0 for all x ∈ ∂Ω}.
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2.2 Introduction to FVM

2.2.1 Variation form

Suppose that we are interested in solving the PDE L (f) = 0, where L ∈ Γm,q,
f ∈ W k,p(Ω)m and f satisfies some boundary conditions, say f(x) = 0 when x ∈ ∂Ω.
Then

∫
Ω
‖L (f)‖2dx ≥ 0 for all f (2.6)

In particular if f is the solution of the PDE then

∫
Ω
‖L (f)‖2dx = 0. (2.7)

Thus the solution of the PDE f∗ is given by

f∗ = argmin
∫

Ω
‖L (f)‖2dx such that

f ∈ W k,p(Ω)m and f(x) = 0 when x ∈ ∂Ω.

This is generally known as the variation principle. It is possible to solve the optimiza-
tion problem directly using the calculus of variations which leads back to the original
PDE.

Let N ∈ W k,p(Ω)m×N be known tensor. Now estimate f by f̂ using

f ≈ f̂ = NC,where C ∈ RN . (2.8)

This estimation procedure is known as the Rayleigh-Ritz method [13]. The unknown
vector C is called the generalized coordinates. Using the basic theory of optimization
we obtain

d

dC

∫
Ω
‖L (NC)‖2dx = 0. (2.9)
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2.2.2 Method of weighted residuals

The weakness of the variation form is that evaluation of ‖L (f)‖2 is necessary. More-
over a result of Rayleigh-Ritz estimation does not usually satisfy the PDE. Another
approach to solving PDEs numerically is to introduce the weight function ω and reguire
that

∫
Ω
ωjL (f̂)dx = 0, for all ωj (2.10)

This is a very general technique to change PDEs to the so called integral form. Different
choices of weight functions lead to different numerical methods [13]. Suppose that we
have some partition of Ω, say {Ω}Mi=0. Now the Finite Volume Method (FVM) is
acquired by choosing the following weight function

ωj(x) =
{

1 , if x ∈ Ωj

0 , otherwise

With this weight function we try to satisfy the integral form of the PDE in each part of
the partition independently. However this alone does not lead to any practical method
for solving PDE’s [13].

2.2.3 Fluxes

The main idea of FVM is to change a PDE to the integral form and to divide the
domain to small parts (volumes). Moreover volume integrals are changed to surface
integrals by introducing concept of flux. Then the parts are connected by requiring
that fluxes of the neighboring parts have to be of the same order [13].

Definition 2.19. Let Ω ⊂ R and f ∈ W k,p(Ω)m. Then tensor Φ ∈ W k,p(Ω)m×n is flux
of the function f iff

f = ∇ ·Φ.

Divergence in the definition 2.19 is taken row wise. The flux of definition 2.19 is not
clearly unique. Moreover the function f might not have a flux. However as our interest
lies in fluid dynamics we don’t need to discuss existence of fluxes in general as they are
well known for properties of fluid dynamics. We also demostrate how some fluxes are
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acquired for second order PDEs in section 2.3. To change volume integrals to surface
integrals we need the divergence theorem:

Theorem 2.20. Let Φ ∈ W k,p(Ω)m×n then

∫
Ω
∇ ·Φdx =

∫
∂Ω

Φ · dS.

The dot product and divergence in theorem 2.20 are taken row wise. Now invoking
the divergence theorem 2.20 to equation (2.10) and assuming that L (f̂) has a flux Φ
we obtain

∫
Ω
ωjL (f̂)dx =

∫
Ωj

∇ ·Φdx

=
∫
∂Ωj

Φ · dS = 0.

Note first of all that L has dissapeared. Moreover as fluxes are surface specific,
opposing surfaces must have same fluxes with opposite directions. This leads to the
FVM discretization of PDEs and is the base for further development of the method.
The actual estimation of fluxes can be performed in many ways. The method used
in this work is explained in chapter 6. Moreover a partition is usually called a mesh.
There are many possible techniques to generate a mesh and we will explain the ones
used in this work in chapter 5. Meshes are usually polygonal partitions as surface sizes
of polygons are easy to evaluate [13].

2.3 Second order PDEs

This section introduces the concepts of hyberbolic, elliptic and parabolic PDEs [2, 9].
We also derive some of the most important propeties of these PDEs.

The order of a differential operator L is the highest order derivative present in the
operator. For instance the Laplace operator ∇2 is a second order operator. Differential
equations L(f) = 0, where the L is a second order operator are called second order
PDEs. The general form of second order PDE can be given as

n∑
i,j=1

Aij
∂2

∂xi∂xj
f +

n∑
i=1

Bi
∂

∂xi
f + Cf = g, (2.11)
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where Aij are constant, Bi and C are functions of x; f and g are known functions of
x. Consider a change of coordinates from x ∈ Rn to ξ ∈ Rn. In order to be a proper
change of variables the Jacobian dx

dξ
must be invertible.

If we let ξ = Fx, where F ∈ Rn×n, then the Jacobian is dξ
dx

= F and we require that
the matrix F should be invertible.

Due to the change of coordinates we have

∂

∂xi
=

n∑
j=1

∂ξj
∂xi

∂

∂ξj

=
n∑
j=1

Fij
∂

∂ξj
.

Thus in the coordinates ξ the PDE (2.11) takes the form

n∑
i,j=1

Aijχij
∂2

∂ξi∂ξj
f + · · · = g, (2.12)

where χij is given by

χij =
n∑

k,l=1
Akl

∂ξi
∂xk

∂ξj
∂xl

=
n∑

k,l=1
AklFikFjl.

Now we would like to have χij = 0 for all i 6= j, which would transform equation (2.11)
to the so called canonical form. In general this is not possible, but if Aij are constants
then we will be able to obtain the canonical form. Moreover χ can be given in the
matrix form

χ = FAF T . (2.13)

Since differentiation is assocative, the matrix A can always be required to be
symmetric. Schur decomposition is given in following theorem.
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Theorem 2.21. Let A ∈ Rn×n then there exists an unitary matrix Q and an upper
triangular matrix Λ such that

A = QΛQ∗.

Proof. Proof can be found in [5].

For symmetric real matrices

A = QΛQT

= AT = (QΛQT )T = QΛTQT .

Thus ΛT = Λ. Since Λ is always upper triangular it follows that for symmetric matrices
A it reduces to a diagonal matrix. Diagonal elements of Λ are the eigenvalues λi of A.

If all eigenvalues in equation (2.11) have same sign (i.e they are all positive or negative)
the equation is called elliptic. If one or two eigenvalues have a different sign from rest of
eigenvalues then equation is called normal hyberbolic or ultra hyberbolic, respectively.
Ultra hyberbolic equations do not arise in a natural way in mathematical physics and
will not be discussed in more detail. If one or more eigenvalues are zero then equation
is called parabolic.

Definition 2.22. Let Ω ∈ Rn and ξ ∈ C1(Ω). The characteristic surface Sβ of ξ is
defined as

Sβ = {x ∈ Rn : ξ(x) = β}. (2.14)

It should be noted that ξ in definition 2.22 presents a single coordinate. In linear case
ξ = Fx we have ξi = Fix = β. Thus characteristic surfaces are hyperplanes. However
in the nonlinear case characteristic curves might not be hyperplanes. If we limit our
attention to a single characteristic surface, say coordinate ξi is held constant and the
corresponding surface is Sβ we have

χii =
n∑

k,l=1

∂ξi
∂xk

∂ξi
∂xl

= 0, for all x ∈ Sβ. (2.15)

Hence if we solve a PDE on the characteristic curve one of the second order derivatives
vanishes. In particular this is interesting in case of two variables, where it transforms a
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PDE to an ODE (ordinary differential equation). In next sections we introduce fluxes
arising from these types of equations.

2.3.1 Hyperbolic PDEs

In this section we discuss hyberbolic PDEs. We limit our discussion to normal hyper-
bolic equations and omit ultra hyberbolic equations as they are not of great interest.
One of the most important hyberbolic equations is the (linear) wave equation given
by

∂2f

∂t2
− c2

0∇2f = 0, (2.16)

where c0 is a constant called the speed of the wave. For electromagnetic radiation it
is the speed of light and for sound waves it is the speed of sound [7].

Recall the canonical form of hyberbolic PDE

n∑
i=1

λi
∂2f

∂x2
i

+ · · · = ∂2f

∂t2
, (2.17)

where the ellipeses · · · represents the lower order derivative terms, t is used to denote
derivatives with a different sign and λi > 0 due to definition of hyberbolic equations.
We introduce a new vector valued function u ∈ W k,p(Ω)n and v ∈ W k,p(Ω). We require
that

ui = ∂f

∂xi
and (2.18)

v = ∂f

∂t
. (2.19)

Now the canonical form is changed to

n∑
i=1

λi
∂ui
∂xi

+ · · · = ∂v

∂t
, (2.20)

which is a first order PDE system. A PDE system acquired from a hyberbolic second
order equation is called hyperbolic system.
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Using divergence ∇· we may write equation (2.20) as

∇ · (Λu) · · · = ∂v

∂t
. (2.21)

Integrating both sides of the equation (2.21) over Ω yields

∫
Ω
∇ · (Λu) dx + · · · =

∫
Ω

∂v

∂t
dx. (2.22)

Invoking the divergence theorem 2.20 on the left side we obtain

∫
∂Ω

Λu · dS + · · · = ∂

∂t

∫
Ω
vdx. (2.23)

Equation (2.23) is known as the hyperbolic conservation law and is of great importance
when solving hyperbolic equations by FVM due to the presence of the flux Λu [2, 9, 15].

2.3.2 Elliptic PDEs

Elliptic PDEs are usually involved in field problems, where fields have a so called
scalar potential. Most common elliptic PDE is the Laplace equation given by ∇2f =
0. This equation arises for instance in electrostatics and in steady potential flow
(incompressible and irrotational flow) [10].

The canonical form of an elliptic equation is given by

n∑
i=1

λi
∂2f

∂x2
i

+ · · · = 0. (2.24)

Introducing a new vector valued function u ∈ W k,p(Ω)n and requiring that

ui = ∂f

∂xi
, (2.25)

we may change an elliptic equation to

n∑
i=1

λi
∂ui
∂xi

+ · · · = 0. (2.26)
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Integrating equation (2.26) over Ω and invoking the divergence theorem we obtain

∫
∂Ω

Λu · dS + · · · = 0. (2.27)

In absence of other than flux terms we have

∫
∂Ω

Λu · dS = 0. (2.28)

Equation (2.28) is a conservation principle for elliptic equations with only second order
terms ”everything that comes in has to come out” and there is ”no storing of stuff”.

2.3.3 Parabolic PDEs

One of the best known parabolic equations is the heat equation ∂f
∂t

= k∇2f . Since
parabolic equations may appear in many forms we consider only following equation
similar to the heat equation

n∑
i=0

λi
∂2f

∂x2
i

= ∂f

∂t
. (2.29)

Again introducing a new vector valued function u = ∇f we have

∇ · (Λu) = ∂f

∂t
. (2.30)

Integrating and invoking the divergence theorem we obtain

∫
∂Ω

Λu · dS = ∂

∂t

∫
Ω
fdx. (2.31)

Equation (2.31) is similar to the one in the case of hyperbolic functions. However if
there are no first order terms in the original canonical form then the right hand side
of equation (2.31) would be zero in a similar way to equation (2.28) [9].



Chapter 3

Principles of laser cutting

3.1 Electromagnetic radiation

3.1.1 General features

Lasers consist of electromagnetic radiation. Electromagnetic radiation can be
explained by two distinct theories. The first one states that electromagnetic radia-
tion is a fluctuating wave of electric and magnetic fields through space. The second
model states that electromagnetic radiation is a flow of particles called photons. The
propagation speed of electromagnetic radiation is always the speed of light c. Both
theories explain different aspects of radiation, and it can be said that electromagnetic
radiation has a dual nature.

The fundamental properties of radiation are its wavelength λ and frequency f .
Frequency and wavelength are connected by the equation (3.1)

λf = c. (3.1)

In the photon theory the momentum p of a single photon is given by

p = h

λ
, (3.2)

where h = 6.625×10−34Js is Planck’s constant. The energy of a single photon is given
by
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E = hf. (3.3)

Recall the famous Maxwell equations for electric and magnetic fields in a vacuum,
which are given by

∇ · E = 0, (3.4)
∇ ·B = 0, (3.5)

∇× E = −∂B
∂t

and (3.6)

∇×B = µ0ε0
∂E
∂t
. (3.7)

To obtain a wave equation for E and B we need following lemma.

Lemma 3.1. For f ∈ W p,q(Ω)3 the following identity holds:

∇×∇× f = ∇ (∇ · f)−∇2f .

Proof. Let f = [u, v, h]T . Also use the standard coordinate vectors i, j and k to
simplify notation. Now expanding the left side we obtain

∇×∇× f =
(
−∂

2u

∂z2 + ∂2h

∂x∂z
− ∂2u

∂y2 + ∂2v

∂x∂y

)
i

+
(
−∂

2v

∂z2 + ∂2h

∂y∂z
− ∂2u

∂x∂y
+ ∂2v

∂y2

)
j

+
(
∂2v

∂y∂z
− ∂2h

∂y2 + ∂2u

∂x∂z
− ∂2h

∂x2

)
k

=
(
∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2h

∂x∂z

)
i−

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
i

+
(
∂2u

∂x∂y
+ ∂2v

∂y2 + ∂2h

∂y∂z

)
j−

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
j

+
(
∂2u

∂x∂z
+ ∂2v

∂y∂z
+ ∂2h

∂z2

)
k−

(
∂2h

∂x2 + ∂2h

∂y2 + ∂2h

∂z2

)
k

= ∇ (∇ · f)−∇2f .
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Invoking lemma 3.1 we may write

∇×∇× E = −∇× ∂B
∂t

= ∇ (∇ · E)−∇2E = −∇2E.

Moreover the magnetic field can be simplified further by Maxwell’s laws to yield

∇× ∂B
∂t

= ∂

∂t
(∇×B) = µ0ε0

∂2E
∂t2

.

Combining equations we may write

µ0ε0
∂2E
∂t2

= ∇2E. (3.8)

Similarly for magnetic field

µ0ε0
∂2B
∂t2

= ∇2B. (3.9)

Thus E and B satisfy the wave equation. The general solution for equations (3.8) and
(3.9) is E = Êg(k · x − ct), where Ê is called amplitude, c = (µ0ε0)−1/2 and g is an
arbritary continuous function. Moreover B = 1

c
k × E.

If two or more waves overlap they interfere with each other. The new wave created
by interference is a linear combination of interfering waves. If waves have the same
frequency then interference can be constructive or destructive. Interference is construc-
tive if waves are in same phase and destructive if they are in opposite phases. Destruc-
tive interference causes wave front to diminish and constructive interference amplitude
to grow larger.

Moreover in an electromagnetic wave each point of the wave front acts as a new wave
source. This is known as the Huygens principle [20, 6].

3.1.2 Interaction with matter

Matter consists of atoms. Atoms consists of a nucleus and an electron cloud. Electrons
exist in various discrete energy states. Thus there is only a numerable set of energy
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states in which electrons may exist. When an electron absorbs energy it is excited to
an upper energy state. An excited electron may emit a photon and move to a lower
energy state. Due to conservation of energy, the energy of an emitted photon has to
be equal to the difference of the electron’s initial and final energy states. Similarly an
electron may absorb a photon and move to a higher energy state.

When radiation strikes matter it may be reflected, refracted, absorbed or scatered.
The specific forms of interaction depends highly on the wavelength of the radiation
and the phase and quality of the matter [20].

3.2 Lasers

3.2.1 Operation principle

Laser technology is based on the principle of stimulated emission. Suppose a scheme
where we have matter which is exposed to electromagnetic radiation. The matter’s
electrons can exist in a lower or an upper energy state. The upper energy state is
called excited state. Let N2 be the number of electrons in the upper excited state and
the N1 the number of electrons in the lower energy state.

As explained in section 3.1.2 excited electrons may emit photons at frequency f given
by the energy difference of the lower and upper energy states. However, if an excited
electron is disturbed by electromagnetic radiation it will emit a photon which is in
the same phase as the disturbing radiation. Thus constructive interference may occur.
This phenomenon is called stimulated emission. The gross rate of emission is governed
by the equation (3.10)

∂N2

∂t
= −∂N1

∂t
= −B21ρ(f)N2, (3.10)

where B21 is called Einstein’s B coefficient and ρ(f) is the density of the frequency f .
The first equality in equation (3.10) is due to conservation of the number of electrons.

Similarly the gross rate of absorption is given

∂N2

∂t
= −∂N1

∂t
= B12ρ(f)N1. (3.11)

Einstein showed that for stimulated emission B12 = B21. Taking into account absorp-
tion and emission of photons we obtain the net rate of emission given by
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∂Nnet
1
∂t

= B12ρ(f) (N2 −N1) = B12ρ(f)∆N. (3.12)

From equation (3.12) follows that a net power of ∂Nnet
1
∂t
× hf is added to radiation.

In order to strengthen the radiation ∆N > 0. Otherwise, stimulated emission will
weaken the radiation. The condition ∆N > 0 is known as the population inversion
and is a necessary condition for a laser to function. Name of laser originates from
stimulated emission and is an acronym for Light Amplification by Stimulated Emission
of Radiation.

Figure 3.1: Illustration of the operation principle of laser. 1: gain medium. 2: is
radiation source.3: is Reflecting mirror. 4: is partially reflecting mirror. 5: is laser
beam. Picture is taken from website http://en.wikipedia.org/wiki/Laser.

An usual laser apparatus consist of two mirrors parallel to each other and a gain
medium between the mirrors which has the polulation inversion property. One of the
mirrors is totally reflecting and the other partially. The partially reflecting mirror is
usually called the output mirror. Once electromagnetic radiation like light is supplied
to the gain medium, it starts to amplify a certain frequency of electromagnetic radi-
ation bouncing back and forth from mirrors. This amplified radiation is called the
laser beam. The efficiency of a laser is given as a ratio of output laser power to total
input electrical power. In this context total means electrical power supplied to the
gain medium as well as accessories such as cooling devices.

Output mirrors (partially reflecting mirror) can be split in two classes depending how
they alter the laser beam, namely stable and unstable designs. In a stable design the
output mirror causes the oscillating beam to converge and in an unstable design it
causes the beam to diverge. Most low power lasers use a stable design. However high
power lasers usually use an unstable design to reduce thermal stress in the mirrors.
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Another fundamental property of lasers is the Fresnel number NF given by

NF = R2

λL
, (3.13)

where R is the radius of the output mirror and L is the distance between the mirrors,
also called the cavity length. The Fresnel number indicates the number of off-axis
oscillations that may exist in the cavity. Therefore a low Fresnel number is desired
feature of laser [20, 6].

3.2.2 Carbon Dioxide laser

Carbon dioxide lasers use carbon dioxide as a gain medium. There is typically 10%−
20% of carbon dioxide, 10%−20% of nitrogen, few percent of hydrogen and xenon and
a small amount of helium. Carbon dioxide laser has its principal wavelength at 9.4 µm
- 10.6 µm. Carbon dioxide lasers are powerful and widely used lasers today. Drawback
of the carbon dioxide laser is that the carbon dioxide has to be cooled. Efficiency of
carbon dioxide lasers typically is only around 12% due to the requirement of cooling.
Figure 3.2 shows a carbon dioxide laser.

Carbon dioxide lasers can be split in two classes depending how the cooling is achieved,
namely Slow Flow Lasers (SFL), Fast Axial Flow Lasers (FAFL) and Transverse Flow
Lasers (FTFL).

Figure 3.2: Example of carbon dioxide laser. This photo is taken from website
http://en.wikipedia.org/wiki/Carbon_dioxide_laser.

In a slow flow lasers cooling is achieved through the walls of the gain medium by
conduction. Moreover there is a maximum temperature at which lasing action can
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take place. Therefore the maximum power of laser is directly connected to the cooling
power supplied.

Laser gain mediums are usually cylinder symmetric. Assuming that the temperature
is steady ( ∂

∂t
= 0) and cylinder symmetric we may write

dT

dr
= Qr

2k , (3.14)

with a boundary condition on cylinder wall

T (R) = Tc, (3.15)

where R is radius of gain medium.

Solving for temperature distribution from the differential equation (3.14) yields

T = Tc + QR2

4k

(
1−

(
r

R

)2
)
. (3.16)

The maximum temperature is obtained in the middle of the medium r = 0. Therefore
the maximum temperature is given by

Tmax = Tc + QR2

4k . (3.17)

Denoting the maximum allowed temperature by Tlim we obtain a formula for cooling
flow given by

Q = 4k
R2 (Tlim − Tc) . (3.18)

Moreover, the maximum power of laser P is connected to the heat flow Q by [20]

P = ηQ
(
πR2L

)
= 4πkLη (Tlim − Tc) , (3.19)

where L is the length of the gain medium cylinder and η the efficiency of the laser. In
particular P ∝ L. Usually Tlim = 523K, Tc = 283K and k = 0.14WmK−1 which gives
P/L = 50W/m. Due to this SFLs are either weak (less than 2kW) or very long like
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Essex University laser which was almost 70m. Long cavity also implies low Fresnel
number.

Fast axial flow lasers achieve cooling through axial gas flow through the gain medium.
Compared to SFLs, FAFLs achieve ten times greater power to length ratios, making
them more suitable for compact high power lasers.

Assuming that conduction of heat is negligible compared to heat convection we may
write

ρC (T − Tc) = Qx

u
, (3.20)

where ρ is the density of gas, Tc the initial temperature of gas, x the axial position
and u is the mean velocity of gas. The maximum temperature is achieved at the end
of the gain medium and is given by

Tmax = Tc + QL

ρuC
. (3.21)

As in the case of the SFL we obtain laser power P as

P = ηAuρC (Tlim − Tc) . (3.22)

In particular P ∝ Au. A problem with powerful FAFLs is that the fresnel number is
usually high due to

NF = R2

λL
∝ A ∝ P. (3.23)

In Transverse flow laser (FTFL) cooling is achieved with gas flow, but the flow direction
is transverse to the laser beam. This allows more efficient cooling than axial flow, but
FTFLs lack the flow symmetry present in FAFLs. There are also other flow patterns,
which are not discussed in this thesis [20].

3.2.3 Diode laser

Diode lasers are based on semiconductors for instance GaAs and GaAlAs. The wave-
length of this type of a laser depends heavily on temperature and thus cooling must
be designed carefully. Diode lasers are usually used in DVD players and function as
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low power lasers. They typically cannot be used directly for laser processes (cutting,
welding, surface hardening etc.), but recently there have been developed some more
powerful diode lasers that have enough power for the direct laser process applications.
In laser processes diode lasers usually function as a pumping source for a more powerful
Nd-YAG laser [20].

3.2.4 Solid State laser

Solid state lasers use a solid gain medium. The gain medium is typically a rod. The
essence of this type of a laser is the process of supplying radiation into the rod and
cooling of the rod.

The most widely used solid state laser is the Nd-YAG laser in which the rod consist of
neodymium-doped yttrium aluminium garnet rod. Figure 3.3 shows a typical Nd-YAG
rod. The wavelength of Nd-YAG lasers is typically 1064nm.

Nd-YAG lasers are typically pulsed. This means that instead of a continuous beam
it produces short beam pulses with a given frequency. Frequencies of the Nd-YAG
laser pulses usually range from 0 − 50kHz. This pulsing is usually done by a device
called the Q-switch or a circuit boad, which determines the pulse type. The continuous
operating power of the Nd-YAG lasers range up to 5kW lasers. The powerful Nd-YAG
lasers can be used for cutting purposes. Nd-YAG lasers also have better efficiency
than carbon dioxide lasers at 20%.

Power can be supplied by a flash lamp or by diode lasers. Flash lamps are usually
cheap, but their efficiency is not good as most of energy ends on heating the YAG rod.

Figure 3.3: Example of Nd-YAG rod. This photo is taken from website
http://en.wikipedia.org/wiki/User:Zaereth.
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On the other hand, diode laser supply does not suffer from this problem, but has a
larger initial cost [20].

3.3 Laser cutting techniques

3.3.1 General aspects

Laser cutting is nowadays a widely used as a manufacturing technique. Before
discussing the actual advantages of laser cutting, some general aspects of metal cutting
are presented.

When metal is cut there is usually a rise in temperature. The elevated temperature
causes shear stresses which may affect the structure of the surrounding metal. The
area of metal which is affected by this rise in temperature is called the Heat Affected
Zone (HAZ). It is desirable that HAZ be as small as possible. Laser cutting generally
has small HAZ due to the high energy density.

The cutting of metal is usually executed by removal of material from the cut area. The
width of this cut area is called kerf. This removed material is lost and therefore adds
to material expense. Hence it is desirable that the kerf be as thin as possible. The
kerf of laser cutting techniques is usually narrower than traditional cutting methods,
for instance plasma cutting. Laser cutting can also do very steep edges and corners
without rounding them. Cut edges are also usually very clean which makes immediate
welding possible.

As a process, laser cutting is highly flexible as similar lasers can be used to cut a wide
variety of materials including plastics, metals and wood. Moreover, there is no tool
wear because there are no contact to the material being cut.

Expenses in laser cutting consist of the initial expense of laser equipment and running
expenses of electricity and assist gas, which is usually nitrogen or oxygen. The elec-
trical expense can be high as for instance a 100kW carbon dioxide laser working at an
efficiency of η = 10% requires 1MW of electricity [20, 6, 16].

3.3.2 Vaporisation cutting

In vaporisation cutting, the laser beam is concentrated at a single point of the surface
of the metal and the metal is heated to the vaporisation point. Once metal is vaporized
high velocity gas flow is concentrated at the cut point to blow vaporisated metal out of
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the cut. In general cutting characteristics become better if more gas is used. However,
a large amount of gas flow increases expenses. This creates a need for nozzles that
improve cutting characteristics while using less gas [20].

3.3.3 Fusion cutting

Fusion cutting is similar to vaporisation cutting except metal is only melted. Molten
metal is blown out of the cut using a high speed gas flow. Fusion cutting generally
needs only 10% of the power needed for vaporisation cutting thus making it more
economical [20].

3.3.4 Reactive fusion cutting

Reactive fusion cutting uses a high speed oxygen flow to simultaneously burn and blow
away the molten metal. This method allows thicker material than fusion cutting, but
introduces striations in cut. Striations are deviations in the cut wall.

The effectiveness of reactive fusion cutting depends on material being cut. For steel,
heat added by burning of oxygen is usually 60 % of the power supplied by laser.
However, for titanium it rises to 90%. Cutting speed of reactive fusion cutting is
usually at least double compared to normal fusion cutting [20].

3.3.5 Laser assisted oxygen cutting

Laser assisted oxygen cutting, known as the LASOX process, is a variant of reactive
fusion cutting where the laser is used only to ignite oxygen. The actual cutting is
performed by oxygen burning the metal. This method enables very deep cuts.

In LASOX, the laser power doesn’t need to be high, because cutting is achieved by
chemical reactions. Required laser power is typically 1kW. Lower limit to required
power is set by ignition temperature of material. For instance, steel has to be heated to
900◦C−1000◦C in order to initiate the LASOX process. This requirement is commonly
known as the LASOX condition [20].
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3.4 The effects of assist gas flow

This section discusses briefly how a assist gas flow effects the cut characteristics in
case of a laser cutting. Desired features of the gas flow depend on the quality and
shape of material. In the case of metal cutting, dross is usually formed in the back
side of the workpiece (Figure 3.4). It has been experimentally shown that the height
of dross decreases when velocity of assist gas is increased.

Figure 3.4: Formation of dross in the laser cutting of metal. Picture is taken from
website http://www.teskolaser.com/laserglossaryd.html and modified slightly.

Given a nozzle, velocity on the workpiece can be increased by increasing the pressure
of assist gas prior to the nozzle. On the other hand this technique increases costs
of assist gas flow. By suitable nozzle design velocity of assist gas can be increased
without increasing the inlet pressure. How this is done will be explained in chapter 4.



Chapter 4

Fluid dynamics

4.1 Thermodynamic relations

Thermodynamic relations relate thermodynamic properties such as density and
temperature. The ideal gas law is given by

pM = ρRT, (4.1)

where p is pressure, M is molar mass of the gas, ρ is density, R is universal ideal gas
constant and T is temperature. The ideal gas law is usually a good model for low
pressure and low density gases. It is also the most widely used gas model. It will
be used in this thesis even through pressures are rather large (10bar). The inverse of
density ν is called the specific volume. Specific properties are properties relative to
mass and are presented by small letters. For instance if U is the internal energy then
specific internal energy is given by u = U/m. The word specific is usually dropped
and both internal energies are referred to as internal energy.

The (specific) enthalpy of a gas is given by

h = u+ pν, (4.2)

where u is the (specific) internal energy. For ideal gases internal energy and enthalpy
are functions of only the temperature. The temperature of a gas can increase due to
an increase in pressure (mechanical work) or due to the heat addition. In the case of
heat addition δQ, temperature of gas will rise amount given by
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δT = 1
c
δQ, (4.3)

where c is the (specific) heat capacity. The heat capacity depends on the mechanism
of heat addition. For constant pressure processes the heat capacity is given by

c = cp = ∂h

∂T
. (4.4)

For constant volume processes the heat capacity is given by

c = cV = ∂u

∂T
. (4.5)

Moreover for ideal gases that obey the equation (4.1) we have

cp − cV = R

M
. (4.6)

Heat capacities are given by CV = mcv and Cp = mcp. Properties ρ, p and T are
called state properties. Given two state variables the third one can be calculated. In
particular state properties are independent from the way processes are excecuted. We
define new state variable, entropy as

dS = (δQ
T

)rev. (4.7)

Subscript rev implies that integration is done along a reversible path. In particular

∮
dS =

∮
(δQ
T

)rev = 0. (4.8)

For real world processes

∮ δQ

T
≤
∮

(δQ
T

)rev = 0. (4.9)

Thus entropy change is positive due to

δQ

T
− dS ≤ (δQ

T
)rev − dS = 0. (4.10)
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Thus equation (4.10) applied to a closed system yields

dS ≥ δQ

T
= 0, (4.11)

due to δQ = 0. A process is called isentropic if dS = 0. In this work by an isentropic
process we mean an adiabatic (no heat transfer) and reversible process. However
strictly saying that a process is isentropic process does not necessarily imply that it is
adiabatic and reversible. Isentropic processes conserve entropy.

Since isentropic processes are assumed to be adiabatic we have δQ = 0. Thus the
internal energy is given by

dU = dW + δQ = dW = pdV, (4.12)

where dV is the differential volume change.

Similarly enthalpy is given by

dH = pdV. (4.13)

Invoking heat capacities we have

dU = nCV dT (4.14)

and

dH = nCpdT. (4.15)

Defining a constant γ = Cp/CV we may write

dH

dU
= γ = − dp/p

dV/V
. (4.16)

The constant γ = 1.4 for diatomic ideal gases. Integrating the equation (4.16) yields

d (pV γ) = 0. (4.17)

We formulate the ideal gas law as
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p

ρ
= R

M
T = R

McV
u = cp − cV

cV
u = (γ − 1)u. (4.18)

The speed of sound c for ideal gases is given by [21]

c2 = γRT

M
. (4.19)

A flow where the flow velocity is below the speed of sound is called subsonic and
supersonic if it is above the speed of sound. The limiting case in which velocity is the
speed of sound is called transonic. Velocity relative to the speed of sound is called the
Mach number.

In particular the Mach number is interesting in nozzle flow, because a flow shows
very distinct behavior depending on wheather it is supersonic or subsonic. In addition
supersonic flows may give rise to shock effects (sudden drops or rises in pressure) which
cause discontinueties in solutions. These features are further explained in section 4.4
for nozzle flows.

For supersonic flows it is suitable to define stagnation properties. These properties
denote what the underlying properties would be if the fluid flow were suddenly stopped.
In particular stagnation pressure and temperature are given by

pS = p+ ρ‖u‖2

2 , (4.20)

where u is velocity and

TS = T
(

1 + γ − 1
2 M2

)
, (4.21)

where M is Mach number of flow and T is (static) temperature. The name stagnation
comes from the stagnation point which is the point where flow velocity is zero [14, 3,
17].

4.2 Conservation laws

Fluid flow is governed by the thermodynamic relations described in section 4.1 and
conservation laws. Conservation laws consist of five equations. The first law, conser-
vation of mass states that the mass of a system must remain constant. The Newton’s
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law of dynamics yield conservation of momentum which consists of three equations.
Moreover the first law of thermodynamics states that energy cannot be created or
destroyed which yields conservation of energy [2, 13].

4.2.1 Conservation of mass

Conservation of mass is given by

∂ρ

∂t
+∇ · (ρu) = 0. (4.22)

This equation states that a change of density at a point is due to a mass flux ρu. To
simplify the notation it is custom to use the substantial derivative given by

D(·)
Dt

= ∂(·)
∂t

+ u · ∇(·). (4.23)

The substantial derivative is also called the convective or material derivative and
presents a derivative relative to a moving point rather than to a fixed point. Using
this notation conservation of mass can be writen as

Dρ

Dt
+ ρ∇ · u = 0. (4.24)

If a fluid is incompressible such as water, the equation (4.22) can be simplified further
to yield

∇ · u = 0. (4.25)

However equation (4.25) is not a proper model for supersonic gas flows since compress-
ibility is major feature of these flows [2, 13].

In the steady case ( ∂
∂t

= 0) it is possible to eliminate the time derivative. However in a
numerical solution this is not usually done because it changes the type of equation from
hyberbolic-parabolic to hyberbolic-elliptic which causes difficulties for a numerical
solver. Thus steady problems are usually modelled using unsteady equations with a
relatively large time step [2]. This is explained in chapter 5.



CHAPTER 4. FLUID DYNAMICS 34

4.2.2 Conservation of momentum

Conservation of momentum can be writen as

∂

∂t
(ρu) +∇ · (ρuu) = ρf +∇ ·Π, (4.26)

where f presents the specific external forces and Π is the stress tensor, which is given
by the equation

Π =

 σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

 ,
where σi are normal stresses and τij are shear stresses. Shear stresses satisfy symmetry
i.e. τij = τji. Thus the stress tensor Π is symmetric.

External forces usually include gravitational forces. Moreover we need to attain a
closed form for stress tensor Π. This is done by defining a newtonian fluid.

Definition 4.1. Fluid is called newtonian if

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (4.27)

where τij is shear stress in i-j plane, i 6= j and µ is called viscosity.

Most continuum gases and liquids are newtonian fluids, but not all. For instance
some rubber compounds are not newtonian. In this work it is assumed that fluids are
newtonian.

Normal stresses are caused by fluid flow in the normal direction and the pressure forces.
We assume that normal stresses satisfy

σi = −p+ µ
′ ∂uk
∂xk

, (4.28)

where µ′ is called the second viscosity. Einstein’s tensor syntax used here is defined
by
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∂uk
∂xk

=
3∑

k′=1

∂uk′

∂xk′
. (4.29)

Now the stress tensor Π can be given as

Πij =
(
−p+ µ

′ ∂uk
∂xk

)
δij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (4.30)

where δij is the Kronecker delta function given by

δij =
{

1 if i = j

0 if i 6= j

Two viscosities are connected by the bulk viscosity given by

κ = 2
3µ+ µ

′
. (4.31)

The bulk viscosity is usually neglected except in the cases of shock wave stucture study
and accoustics. Hence it will assumed that κ = 0 which yields µ′ = −2

3µ [2].

It is common to separate stress tensor into two parts consisting of viscous terms and
pressure terms. We split Π into

Π = −pI + T, (4.32)

where T is called viscous stress tensor. For the sake of simplicity it will be writen that,
u1 = u, u2 = v and u3 = w. Moreover a standard 3-D space axis name convention
given by x1 = x, x2 = y and x3 = z will be used.

Substituting the stress tensor Π given by equation (4.30) to the general momentum
conservation equation (4.26) we obtain the famous Navier-Stokes equations given by
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ρ
Du

Dt
= ρfx −

∂p

∂x
+ ∂

∂x

(
2
3µ

(
2∂u
∂x
− ∂v

∂y
− ∂w

∂z

))

+ ∂

∂y

(
µ

(
∂u

∂y
+ ∂v

∂x

))
+ ∂

∂z

(
µ

(
∂w

∂x
+ ∂u

∂z

))

ρ
Dv

Dt
= ρfy −

∂p

∂y
+ ∂

∂y

(
2
3µ

(
2∂v
∂y
− ∂u

∂x
− ∂w

∂z

))

+ ∂

∂x

(
µ

(
∂u

∂y
+ ∂v

∂x

))
+ ∂

∂z

(
µ

(
∂w

∂y
+ ∂v

∂z

))

ρ
Dw

Dt
= ρfz −

∂p

∂z
+ ∂

∂z

(
2
3µ

(
2∂w
∂z
− ∂u

∂x
− ∂v

∂y

))

+ ∂

∂x

(
µ

(
∂u

∂z
+ ∂w

∂x

))
+ ∂

∂y

(
µ

(
∂v

∂z
+ ∂w

∂y

))
.

Using the viscous stress tensor these equations can be writen as

ρ
Du
Dt

= ρf −∇p+∇ · T. (4.33)

Viscosity µ is generally a function of temperature. Thus it varies through space if
there are temperature differences. We assume that the viscosity of a gas obeys the so
called Sutherland’s formula given by

µ = µ0
T0 + CS
T + CS

(
T

T0

)3/2
, (4.34)

where T0 and µ0 are reference values and CS is Sutherland’s constant for the gas [2, 13].

4.2.3 Conservation of energy

A differential form of the first law of thermodynamics can be writen as

∂Et
∂t

+∇ · Etu = ∂Q

∂t
−∇ · q + ρf · u +∇ · (Π · u), (4.35)

where Et is (specific) total energy, q is heat flux i.e. heat flow and ∂Q
∂t

is heat generation.
Heat generation can be caused for instance by nuclear or chemical reactions. The heat
flux q is given by the Fourier’s first law
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q = −k∇T, (4.36)

where k is the coefficient of heat conductivity.

In this work we assume that the only significant forms of energy are internal energy
and kinetic energy. This yields

Et = ρ(e+ 1
2‖u‖

2), (4.37)

where e denotes internal energy instead of u to avoid confusion with velocity.

Now equation (4.35) can be formulated as

ρ
De

Dt
+ p(∇ · u) = ∂Q

∂t
−∇ · q +∇ · (T · u)− (∇ · T) · u. (4.38)

The two last terms are called the dissipation function that is given by

Ψ = ∇ · (T · u)− (∇ · T) · u. (4.39)

The dissipation function represents the rate at which the mechanical energy of the
flow is turned to heat. Recall in the definition of enthalpy h = u + pν we may write
equation (4.38) as

ρ
Dh

Dt
= Dp

dt
+ ∂Q

∂t
+∇ · (k∇T ) + Ψ. (4.40)

It common to refer to the conservation equations (4.24), (4.33) and (4.40) as Navier-
Stokes equations [2, 13].

4.3 Turbulent flow

4.3.1 General charecteristics

Recall the definition of Reynolds number

Re = ρ‖u‖meanL

µ
, (4.41)
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Figure 4.1: Picture showing turbulent vortex created by airplane’s wing. Picture was
taken from website http://www.einztein.com/tag/Aerodynamics/.

where ‖u‖mean is the mean norm of velocity and L is the characteristic length of
problem for instance 1m for cars. The Reynolds number is a dimensionless number
that can be used to determine wheather flow is laminar or turbulent. High Reynolds
number (Re > 5000) indicate that the flow is turbulent.

A turbulent flow can be characterized by periodic oscillations of pressure and velocity
in time and space, called eddies. Eddies may be present even when external factors
are steady. Moreover the lengths of these eddies typically range from 10cm to 1cm and
frequencies can be as high as 10 kHz. Thus direct solutions of Navier-Stokes equations
would require very fine space and time meshing which makes them impractical or
impossible for most turbulent flows.

There are semi direct solution methods based on Navier-Stokes equations which try
to model only the larger eddies, namely Large Eddy Simulation (LES), but they are
computationally very expensive [2, 13].
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4.3.2 Reynolds equations

The idea of the Reynolds equations is to model mean flow and leave out any unneces-
sary information about eddies. This is done by defining the time-average of a function
by

f̄ = 1
∆T

∫ t+∆T

t
fdt

′
. (4.42)

The length of the time window ∆T should be large enough to cover the lowest frequency
eddy. Now functions can be split in two parts, namely time-avaraged part and periodic
part as

f = f̄ + f
′
, (4.43)

where f ′ is periodic part satisfying f̄ ′ = 0.

The Reynolds averaged Navier-Stokes (RANS) equations are obtained from the Navier-
Stokes equations (4.24), (4.33) and (4.40) by substituting equation (4.43) and invoking
the time-averaging process for both sides of the equations. Before doing an actual time-
avaraging there are some things that should be pointed out. We will use Ω ⊂ Rn as
the domain of the PDE.

Lemma 4.2. Let f ∈ W k,p(Ω), then

f̄ = f̄ and

f ′ f̄ = 0.

Proof. The first equation is obtained easily by

f̄ = 1
∆t

∫ t+∆t

t
f̄(x, t)dt′

= f̄
1

∆t

∫ t+∆t

t
dt

′ = f̄ .

The second equation is obtained by
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f ′ f̄ = 1
∆t

∫ t+∆t

t
f

′
f̄(x, t)dt′

= f̄ f̄ ′ = f̄ · 0 = 0.

However in general f ′g′ 6= 0. Recall the conservation of mass equation (4.24)

D(ρ̄+ ρ
′)

Dt
+ ρ∇ ·

(
ū + u′) = 0.

Assuming that fluctuations of viscosity and thermal conductivity are negligible taking
time-averages on both sides yields

∂ρ̄

∂t
+ ∂ρ̄′

∂t
+∇ ·

(
ρ̄ū + ρ′u + ρ̄u′ + ρ′u′

)
= 0. (4.44)

Invoking lemma 4.2 on equation (4.44) gives

∂ρ̄

∂t
+∇ ·

(
ρ̄ū + ρ′u′

)
= 0. (4.45)

In general only mixed fluctuating terms like ρ′u′ remain in the RANS equations.
Invoking similar time-averaging on the conservation of momentum equations (4.33)
and the conservation of energy equation (4.40) yields

∂

∂t

(
ρ̄ū + ρ′u′

)
+∇·

(
ρ̄ūū + ūρ′u′

)
= −∇p̄+∇·

(
T̄− ūρ′u′ − ρ̄u′u′ − ρ′u′u′

)
(4.46)

and

ρ
∂h̄

∂t
+ ρ′ ∂h

′

∂t
+ ρ̄ū · ∇h̄+ ρ̄u′ · ∇h′ + ρ′ū · ∇h′ + ρ′u′ · ∇h̄+ (4.47)

ρ′u′∇p′ = ∂p̄

∂t
+ ū · ∇h̄+ u′ · ∇p′ +∇ ·

(
k∇T̄

)
+ ∂Q

∂t
+ Ψ. (4.48)

Here the time-averaged viscous stress tensor T̄ is given by
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T̄ij = µ

((
∂ūi
∂xj

+ ∂ūj
∂xi

)
− 2

3δij
∂ūk
∂xk

)
. (4.49)

Moreover the time-averaged dissipation function Ψ is given by

Ψ = ∇ ·
(
Tu + T′u′

)
− (∇ · T) · ū− (∇ · T′) · u′ . (4.50)

The fluctuating viscous stress tensor is given by an equation similar to equation (4.49)

T′

ij = µ

((
∂u

′
i

∂xj
+
∂u

′
j

∂xi

)
− 2

3δij
∂u

′
k

∂xk

)
. (4.51)

It should be clear that RANS equations are far more complex than original Navier-
Stokes equations. Moreover they introduce new unknown functions (21 new functions
from fluctuating time-averaged cross terms), which makes computation more expen-
sive. However RANS equations allow a sparser mesh to be used than the Navier-Stokes
equations and therefore ease the computational load. In practice the advantage of
sparser mesh outweight the disadvantage of the new unknown functions. Another
disadvantage in introducing new unknown functions is that they make the underlying
equation system (RANS equations) underdetermined. Therefore in order to solve these
equations new equations must be added.

These additional equations are usually called turbulence models. In this thesis we will
use so called k-ε turbulence model explained in section 4.3.3. In general turbulence
models can be split into two categories, those that rely on the Boussinesq assumption
and those that do not. Methods relying on the Boussinesq assumption are called
turbulent viscosity models. Usually turbulent viscosity models are computationally
less expensive. Another class of methods that don’t rely on Boussinesq assumption
are usually called Reynold’s stress models. These models are computationally more
expensive and usually position themselves between turbulent viscosity models and LES
[2, 13, 1].

4.3.3 k-ε turbulence model

The k-ε turbulence model is based on the Boussinesq assumption mentioned before.
The Boussinesq assumption is given by

ρ̄u
′
iu

′
j = µT

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
− 2

3δij
(
µT
∂ūk
∂xk

+ ρ̄k
′
)
, (4.52)
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where k̄ is the kinetic energy of turbulence and µT is the turbulent viscosity. The
kinetic of energy of turbulence is given by

k
′ = u

′
ku

′
k

2 . (4.53)

Boussinesq assumption states that turbulent shearing stresses are connected to time-
averaged velocity gradients by turbulent viscosity. The k-ε model is one way to model
the turbulent viscosity µT . Kolmogorov-Prandtl equation states that the turbulent
kinetic energy and the turbulent viscosity are connected by

µT = C1ρ̄
√
k′L∗, (4.54)

where C1 is a constant and L∗ is the characteristic length of turbulent eddies, called
the turbulent length scale.

The dissipation rate of kinetic energy is given by

ε = ε+ ε
′ = 2µD ·D. (4.55)

The k-ε model consists of two equations governing kinetic energy conservation and the
dissipation rate of kinetic energy given by

1
√
g

∂

∂t

(√
gρk

′)+ ∂

∂xj

(
ρujk

′ −
(
µ+ µT

σk

)
∂k

′

∂xj

)
=

µT (P + PB)− ρε′ − 2
3

(
µT
∂ui
∂xi

+ ρk
′
)
∂ui
∂xi

+ µTPNL (4.56)

and

1
√
g

∂

∂t

(√
gρε

′)+ ∂

∂xj

(
ρujε

′ −
(
µ+ µT

σε

)
∂ε

′

∂xj

)
=

Cε1
ε

′

k′

(
µTP −

2
3

(
µT
∂ui
∂xi

+ ρk
′
)
∂ui
∂xi

)
+

Cε3
ε

′

k′ µTPB − Cε2ρ
ε

′2

k′ + Cε4ρε
′ ∂ui
∂xi

+ Cε1
ε

′

k′ µTPNL, (4.57)

where
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P = ρu
′
iu

′
j

∂uj
∂xi

, (4.58)

PB = −βgi
µT
Prt

∂T

∂t
, (4.59)

where gi is i:th gravitational component, PrT = 0.85 is the Prandtl number and β the
coefficient of thermal expansion given by

β = −ρ−1
(
∂ρ

∂T

)
p

, (4.60)

where the subscript p denote that derivation is done assuming constant pressure and

PNL = − P

µT
−
(
P − 2

3

(
∂ui
∂xi

+ ρk
′

µT

)
∂ui
∂xi

)
. (4.61)

Moreover k-ε model connects turbulent viscosity to k′ and ε′ by

µT = fµ
Cµρk

′2

ε′ . (4.62)

The values of the coefficients are described in the following Table 4.3.3 [13, 1].

Name Value
Cµ 0.09
σk 1.0
σε 1.22
σh 0.9
σm 0.9
Cε1 1.44
Cε2 1.92
Cε3 0.0 or 1.44 1

Cε4 −0.33

In addition it is customary to use a wall model close to a solid boundary. This is due
to fast property changes near solid boundaries. In this work we will present the All
y+ wall treatment, which is usually used in high Reynolds number flows.

1If PB > 0 then 1.44 and zero otherwise
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We begin by introducing new dimensionless properties, namely u+ and y+, which are
given by equations

u+ = u− uw√
τw/ρ

(4.63)

and

y+ =
y
√
τw/ρ

ν
, (4.64)

where u is the tangential velocity, uw the wall velocity, τw the shear stress at the wall,
ν the dynamic viscosity given by µ/ρ and y the distance from the wall. Assuming a
newtonian fluid and that shear stress remains almost constant near the wall, we may
write the shear stress at the wall as

τw = µ
∂u

∂y
. (4.65)

Combining equations (4.63)-(4.65), assuming that uw = 0 and thus tangential velocity
vanishes at the wall we obtain

u+ = y+. (4.66)

In light of measurements equation (4.66) is accurate when y+ < 5 [12]. Farther away
from the wall turbulent stresses grow larger and equation (4.66) is no longer feasible.
Assuming that viscosity is negligible compared to turbulent viscosity we may write

τw = ρκuτy
∂u

∂y
, (4.67)

where uτ =
√
τw/ρ. Substituting equations (4.67) to equations (4.63) and (4.64) we

obtain

u+ = 1
κ

ln
(
y+
)

+ C, (4.68)

where κ is a constant, usually set to 0.4 and C is also a constant, which is usually taken
to be 5.5. Measurements imply that the equation (4.68) is applicable when y+ > 30
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[12]. There are also models for 5 < y+ < 30, such as the Van Driest turbulence model,
which are not discussed in this thesis.

4.4 Nozzle flow

4.4.1 Basic properties

In this section we will discuss the general features of nozzle flow. We derive some
principal features of nozzle flows from simplified Navier-Stokes equations. Simplified
Navier-Stokes equations are used because explicit formulae for nozzle flow can be
obtained. If we ignore friction i.e. set viscosity µ = 0 in equation (4.33) we obtain the
Euler equations which govern inviscid flow. The Euler equations are given by

ρ
Du
Dt

= ρf −∇p. (4.69)

A nozzle is a device that is used to accelerate fluid flow without external power input as
opposed to for instance a pump. Nozzles are usually pipes whose cross section varies.
Pressure at the inlet of a nozzle is called inlet pressure and pressure at the outlet is
called back pressure. The most narrow section of the nozzle is called the throat.

Since fluid flow in the normal direction of a pipe is usually small compared to the
principal direction we assume that velocities in the normal directions are negligible. We
also omit external forces such as gravitation. Thus only the Euler equation governing
flow in the principal direction is meaningful. Moreover assuming that flow is steady
i.e ∂

∂t
= 0 and that principal flow is symmetric at cross section we obtain

ρu

(
∂u

∂x
+ ∂u

∂y

)
= −

(
∂p

∂x
+ ∂p

∂y

)
. (4.70)

Assuming constant flow over a cross section i.e ∂
∂y

= 0 equation (4.70) yields in diffe-
rential form

udu+ dp

ρ
= 0, (4.71)

which is the famous Bernoulli equation for compressible flow. The Bernoulli equation
is commonly used to calculate pressure from a velocity field even through it is only
valid for inviscid flow.
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Moreover conservation of mass can be written in integral form as

∫
A(x1)

ρudy =
∫
A(x2)

ρudy. (4.72)

Assuming constant flow over a cross section i.e ∂
∂y

= 0 yields

A1ρ1u1 = A2ρ2u2, (4.73)

where subscripts one and two refer to different cross sections. Thus

u1

u2
∝ A2

A1
. (4.74)

In light of the equation (4.74) it follows that a converging nozzle will accelerate the
flow. This is true for subsonic flows. However for supersonic flows a converging nozzle
decelerate the flow.

Let c be the speed of a sound wave in fluid. Recall that the speed of sound in a fluid
is given by

c2 = ∂p

∂ρ
. (4.75)

Conservation of mass for nozzle flows with constant velocity over a cross section can
be writen as

d (ρuA) = 0. (4.76)

Dividing equation (4.76) by ρuA and denoting M = u/c yields

dρ

ρ
+ du

u
+ dA

A
= 1

c2

(
c2dρ

ρ

)
+ dM

M
+ dA

A

= 1
c2
∂p

ρ
+ dM

M
+ dA

A

= −MdM + dM

M
+ dA

A
= 0.

Thus we may write
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(
M − 1

M

)
dM = dA

A
. (4.77)

If a flow is subsonic (M < 1) decreasing cross section (dA < 0) accelerates flow.
However if it is supersonic (M > 1) decreasing cross section dA < 0 decelerates flow.
Hence in order to accelerate fluid flow to supersonic level a single divergencing nozzle
is not enough and flow velocity will be stuck at transonic speed (M = 1).

In order to accelerate compressible flow to supersonic speeds one must employ a
diverging-converging nozzle called Laval nozzle or DC-nozzle. In a Laval nozzle it
is crucial that the flow speed be at transonic level when it enters the throat. Other-
wise the converging section of nozzle will start to slow it down as equation (4.77)
predicts. Fluid could pass through throat at a supersonic speed, but experience a
shock wave which slows it down to the subsonic level. Shock waves can be observed
as a sudden rise of a pressure. Shock waves are usually modelled as discontinuities in
solution due to very narrow time frame of whole event. They also result in a loss of
stagnation pressure, therefore transforming pressure and kinetic energy of the gas to
heat. Shock waves can be split to oblique shock waves proceeding in the principal flow
direction and normal shock waves taking place in normal directions. A more detail
discussion of shock waves and nozzle design will be presented in section 4.4.2.

Figure 4.2: Picture showing Mack shock discs in jet stream of afterburning turbojet
engine. Picture is taken from website http://en.wikipedia.org/wiki/Shock_diamond.

Another major factor in nozzle is back pressure. If the back pressure of gas leaving the
nozzle is less than (greater than) the ambient pressure, nozzle jet is called overexpanded
(underexpanded). Incorrect expansion of a jet will cause Mach shock discs in the jet
stream. Figure 4.2 shows an example of a Mach shock discs.
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The physical explenation of Mach shock discs is that incorrect expansion will create
normal flow velocities due to existence of a normal pressure gradient. These normal
flows give rise to periodic compression of the jet stream which appears as Mach shock
discs. As the pressure of a Mach shock disc is larger than its surroundings it will cause
gas to flow out of the Mach shock disc and create a low pressure area beneath it due
to the inertia of the gas which then repeats the shock disc. Creation of Mach shock
discs are explained in Figures 4.3 and 4.4.

Figure 4.3: Illustration of the birth of mach shock discs
due to over expansion. Picture is taken from website
http://www.aerospaceweb.org/question/propulsion/q0224.shtml.

Figure 4.4: Illustration of the birth of mach shock discs
due to under expansion. Picture is taken from website
http://www.aerospaceweb.org/question/propulsion/q0224.shtml.

The equations and some assumptions presented here are not applicable to actual simu-
lation of flow. They were merely presented to show some fundamental properties of
the nozzle flow. In particular the velocity profile in a cross section of a nozzle is never
constant [21].
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4.4.2 Wave propogation in fluids.

We begin our discussion with sound waves. Sound waves are propagating pressure
oscillations in a medium. Since a single oscillation of sound waves takes place in a
very narrow time window it is customary to assume that it is isentropic dS = 0.

For isentropic ideal gas processes we have

d (pV γ) = 0. (4.78)

By differentiating equation (4.78) we obtain

dp

dρ
= γ

p

ρ
= γRMT = c2. (4.79)

We proceed by introducing the linearized Navier-Stokes equations. The linearized
conservation of mass equation is given by

∂ρ

∂t
+ ρ0∇ · u = 0, (4.80)

where ρ0 is a typical value for density and taken to be constant. The linearized
conservation of momentum equation is given by

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇p+∇ · T. (4.81)

Linearization of Navier-Stokes equations can be justified if changes in density are small
relative to other variables. Differentiating equation (4.80) with respect to time gives

∂2ρ

∂t2
= −ρ0∇ ·

(
∂u
∂t

)
. (4.82)

Taking the divergence on both sides of equation (4.81) we obtain

ρ0∇ ·
(
∂u
∂t

)
= −∇2p− ρ0∇ · (u · ∇u) +∇ · ∇ · T. (4.83)

Combining equations (4.82) and (4.83) we obtain
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∇2p = ∂2ρ

∂t2
− ρ0∇ · (u · ∇u) +∇ · ∇ · T. (4.84)

Assuming inviscid flow (µ = 0) we obtain

∇2p = ∂2ρ

∂t2
− ρ0∇ · (u · ∇u) . (4.85)

Since sound waves cause only a minor disturbance to speed in comparison to pressure
we have u · ∇u� ∇p. Hence we may drop last term from equation (4.85) and obtain

c2∇2p = ∂2p

∂t2
, (4.86)

which justifies our use of c as a speed of sound [7].

Pressure disturbations give rise to sound waves. Suppose a object launched at the
origin and moving with speed of u in the direction of the positive x-axis and trans-
mitting sound waves. This is usually modelled by adding a source term on the right
hand side of wave equation

c2∇2p− ∂2p

∂t2
= s(t)δ3(x− ut), (4.87)

where s(t) is a source function and δ3 is Dirac’s delta function having the property of

∫
Rn
δndx = 1, (4.88)

and

δ3(x) =
{
∞ if x = 0
0 otherwise

Moreover we set boundary constraints as

p(x, t) = 0, for all x, (4.89)

∂p(x, 0)
∂t

=
{

ds(0)
dt

if x = 0
0 otherwise
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Solution to the single disturbance δ3(x− η) is given by

pη(x, t) =
{
H ((ct)2 − ‖x− η‖2) if t ≥ 0
0 otherwise

Here H is called the Heaviside function and is given by

H(x) =
∫ x

−∞
δ(x)dx. (4.90)

The general solution to problem (4.87) is acquired by taking a linear combination of
these solutions and shifting time and place to match the source term. For simplicity
we set s(t) = 1. The general solution is given by

p(x, t) =
∫ t

0
put′ (x− ut, t− t′)dt′

. (4.91)

Our interest lies in finding the boundary of the pressure wave. In case of u = 0 this
boundary is a circle centered at the wave source. As speed increases the boundary of
wave starts to bend and at transonic speed u = c forms a sharp edge at wave source.

Figure 4.5: A figure showing formation of wave front from spherical shock waves.

Since each wavefront (solutions of equation (4.4.2)) is circle centered at ut with radius
of ct, boundaries of these circles must lie between two lines at a given moment. If
u ≥ c these lines must intersect at the wavesources’ present location. Each point of
the wave front (the line) is part of the unique circular wave (4.4.2). These lines are
called the Mach lines or the Mach waves. The angle between x-axis and the Mach
wave is called the Mach angle and is given by

sin(µM) = M−1, (4.92)
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where M−1 is the Mach number of the wave source. The same phenomenon takes
place if the wave source is at a standstill and the fluid is moving at supersonic speed
relative to the wave source [21].

4.4.3 Prandtl-Meyer expansion fans

In this section we discuss the concept of Prandtl-Meyer flow. We also explain why a
smoothly expanded flow is isentropic and derive the connection between velocity and
turn of flow. We begin our discussion with normal shock waves and the changes that
they cause in pressure, velocity and entropy.

Normal shock waves may cause sudden rises in pressure. However this pressure rise
has to conserve energy and mass. Moreover stagnation temperature has to remain
constant during a shock wave. This is because there are no external addition of heat
or work in a shock wave. Let subscript 1 denote the properties before the shock wave
and 2 after the shock wave. Due to the constant stagnation temperature we have

T1

(
1 + γ − 1

2 M2
1

)
= T2

(
1 + γ − 1

2 M2
2

)
, (4.93)

where M1 and M2 are Mach numbers. It should be noted that since the shock wave
under discussion is a normal shock wave, velocities are normal to the shock wave front.

The ideal gas law (4.1) yields

T2

T1
= p2ρ1

p1ρ2
= p2u2

p1u1
= p2

p1

c2

c1

M2

M1

= p2

p1

(
T2

T1

)1/2 M2

M1
= p2

p1

(
1 + γ−1

2 M2
1

1 + γ−1
2 M2

2

)1/2
M2

M1
.

Thus the pressure ratio between before and after the normal shock wave is given as

p2

p1
=
(

1 + γ−1
2 M2

1

1 + γ−1
2 M2

2

)1/2
M2

M1
. (4.94)

Omitting external forces like gravitation, conservation of momentum yields

p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (4.95)
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Solving for pressure ratio from equation (4.95) yields

p2

p1
= 1 + γM2

1
1 + γM2

2
. (4.96)

Combining equations (4.94) and (4.96) we obtain

M2
2 = (γ − 1)M2

1 + 2
2γM2

1 − (γ − 1) . (4.97)

Thus a normal shock wave may change the Mach number of a flow only by a certain
amount depending on the Mach number before the shock wave. Moreover combining
equations (4.94) and (4.97) we get

p2 − p1

p1
= 2γ
γ + 1

(
M2

1 − 1
)
, (4.98)

which states that relative pressure change depends only on the Mach number before
the shock wave. Also a measure of entropy change during a shock wave is needed.
Entropy change of an ideal gas is given by

s2 − s1

R
= γ

γ − 1ln
(
ρ1

ρ2

)
+ 1
γ − 1ln

(
p2

p1

)
, (4.99)

where R is the universal ideal gas constant. Substituting equation (4.97) into equation
(4.99) and invoking ideal gas law to the ratio of densities we obtain

s2 − s1

R
= ln

(1 + 2γ
γ + 1

(
M2

1 − 1
))1/(γ−1) ( (γ + 1)M2

1
(γ − 1)M2

1 + 2

)−γ/(γ−1)
 . (4.100)

For simplicity we define a new variable m = M2
1 − 1. Recall that the logarithm has a

Taylor series expansion given by

ln (1 +m) = m− m2

2 + m3

3 −
m4

4 + · · · . (4.101)

Invoking this Taylor series expansion to equation (4.100) we obtain



CHAPTER 4. FLUID DYNAMICS 54

s2 − s1

R
= 2γ

3 (γ + 1)2m
3 +O(m4), (4.102)

where O(m4) is an O-function having the property that O(m4) ≤ km4, when m → 0
for some constant k.

Now assume a nearly transonic flow M1 ≈ 1 near a solid boundary which turns
suddenly by an angle θ. In this arrangement the edge can be thought of as a wave
source and shock waves are travelling downstream as explained in previous section.
Equations (4.98) and (4.100) hold for the normal component of this Mach shock wave.

Figure 4.6: A figure demostrating conservation of the tangential velocity, when the
flow is turned an angle of dθ due to a shock wave. The shock wave is shown as the
dashed line.

It should be noted that the shock wave cannot change velocity tangential to the wave
front. If the angle of the shock wave front is θ and flow is turned by an angle β and
the Mach number of flow is M1 before and M2 after the shock wave front then the
angles are connected by

tan θ = 2 cot β (M2
1 sin2(β)− 1)

M2
1 (γ + cos 2β) + 2 . (4.103)

Since M1 sin β is the normal component of the velocity relative to the wave front we
have m = M1 sin β. We may write the relative pressure change as

p2 − p1

p1
= 2γ
γ + 1

(
M2

1 sin β − 1
)
. (4.104)

When θ → 0 we have β → µM and tan θ → θ. Thus the pressure change is proportional
to the angle given by
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∆p ∝ p2 − p1

p1
∝ θ (4.105)

and entropy change to third power given by

∆s ∝ s2 − s1

R
∝ θ3. (4.106)

In case turn is made in n turns each turn being θ/n we may write total entropy change
and total pressure change as sums of pressure and entropy changes of one turn. The
total pressure change is given by

∆ptotal =
∑

∆psingle ∝
∑ θ

n
= θ. (4.107)

However the entropy change is given by

∆stotal =
∑

∆ssingle ∝
∑ θ3

n3 = θ3

n2 → 0, (4.108)

when n → ∞. Thus a smooth turn is isentropic. Moreover since it is adiabatic it
follows that it has to be also reversible and hence doesn’t involve energy loss through
shock waves. This kind of isentropic expansion or compression is called a Prandtl-
Meyer flow.

When turning is executed smoothly and flow is isentropic the actual relationship
between the angle of the entire turn and the final Mach number is of great interest. We
consider an infinitesimal turn dθ and assume that it changes velocity by du. A positive
angle is thought to correspond with expansion. A shock wave front generated by an
infinitesimal turn must have Mach angle µM to the initial velocity. Like before it may
not change the tangential velocity relative to the shock wave front. This conservation
of tangential velocity yields in differential form

dθ = cotµM
du

u
=
√
M2 − 1du

u
. (4.109)

Knowing that u = Mc. Thus invoking c2 = γRT we obtain

du = d (Mc) = cdM +Md
(√

γRT
)

= cdM + M

2

√
γR

T
dT.
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Combining equations we get

du

u
= dM

M
+ dT

2T . (4.110)

Recalling the definition of stagnation temperature and that it remains constant during
the expansion we obtain

dTS = dT
(

1 + γ − 1
2 M2

)
+ T (γ − 1)MdM = 0. (4.111)

Combining equations (4.109), (4.110) and (4.111) we get

dθ = (M2 − 1)1/2

1 + γ−1
2

dM

M
. (4.112)

Integrating the equation and setting that when θ = 0 we have M = M0, we get

θ(M) =
∫ M

M0

(M2 − 1)1/2

1 + γ−1
2

dM

M
, (4.113)

which is called the Prandtl-Meyer function and connects the total turn angle in
Prandtl-Meyer flow to final velocity [21, 14, 3, 17].

This explains how much nozzle has to be expanded to get certain Mach number, but
does not describe how it should be expanded i.e. shape of nozzle wall. To answer this
we have to consider reflections of shock waves.

The principal idea of designing a nozzle wall shape is to eliminate shock wave reflec-
tions. Once a shock wave front hits a wall it is reflected from it at some angle. If the
angle of attack i.e. the angle of the shock wave front and the wall is suitable then
wave is reflected at the same angle as wall exists and nullfied at wall. Wall should be
designed in such a way that it nullfies shock waves and hence avoids interference to
form a strong shock wave, which could slow velocity to subsonic mach numbers.

In general this can be done by solving the wave equation. However due to machining
limitations only piecewise linear nozzle surfaces can be machined. Hence modelling is
usually executed by a finite number of wave fronts. Each wavefront defines a certain
piece of a nozzle.



Chapter 5

Numerical solutions of Reynolds
equations

This chapters explain how RANS equations can be solved numerically. As explained
before the most important details are in the evaluation of fluxes. Moreover time is
handled differently from space dimensions.

5.1 Discretization

5.1.1 Fluxes in fluid dynamics

A general conservation equation can be given as

∂ψ

∂t
+∇ ·Φ = qψ, (5.1)

where ψ denotes a quantity, Φ is the flux of the quantity and qψ is the source of the
quantity. Following Table 5.1 shows formulae for each symbol and each conservation
equation (except the turbulence models)

Integrating equation (5.1) over domain Ω and invoking the divergence theorem we
obtain

∂

∂t

∫
Ω
ψdV +

∫
∂Ω

Φ · dS =
∫

Ω
qψdV. (5.2)
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Equation ψ Φ qψ
Con. mass ρ ρu 0

Con. momentum ρu ρuu + T ρf
Cons. energy ρe ρeu− k∇T +∇ · (pu) +∇ · (T · u) ρf · u + ∂Q/∂t

Table 5.1

If Ω is polyhedrons with n faces and we approximate functions and fluxes by average
values at each face we obtain

∂

∂t
(ψV )− qψV +

∑
∂Ωi

Φ · ∂Ωj = 0. (5.3)

Moreover if Ω1 and Ω2 are two adjacent polyhedron (we will refer to such polyhedrona
as cells from now on) and ∂ΩC is the common face between two cells, fluxes Φ12 and
Φ21 through the face must satisfy

Φ12 = −Φ21. (5.4)

Sign of the flux is assumed to be positive if it is out of the cell. The volume and face
areas of the cell are obtained by vector calculus [13].

5.1.2 Flux evaluation

Since fluxes are connected to the values of variables inside the cell we need some way
to evaluate them in terms of these variables. We consider a so called cell-centered
scheme, where the values are cell specific. There is also scheme called the cell-vertex
scheme, where the values are specified at each vertex of cell.

Now let Ω1 and Ω2 be adjacent cells with a common face ∂Ωi. The flux Φ in the
common face may be evaluated by the cell 1 as Φ1 or by the cell 2 as Φ2. Thus it is
natural to evaluate the flux as the avarage value given by

Φ = 1
2 (Φ1 + Φ2) . (5.5)

We will discuss the magnitude of errors caused by this scheme in section 5.1.4 [13].
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5.1.3 Time discretization

Space dimensions are discretized by introduction of fluxes and avarage values. Time
derivatives are usually approximated through finite differences. The specific finite
difference scheme should be chosen according to the steadiness of the problem. For
steady problems accuracy in time is not important as it is for unsteady problems,
thus a less accurate scheme can be used. In this section we introduce the finite differ-
ence schemes used in this work and show the actual discretization of the underlying
equation.

Partial derivatives can be approximated by the forward difference formula given by

∂ψ

∂t
= ψ(t+ ∆t)− ψ(t)

∆t +O(∆t). (5.6)

Similarly the backward difference formula is given by

∂ψ

∂t
= ψ(t)− ψ(t−∆t)

∆t +O(∆t). (5.7)

Combining equations (5.6) and (5.7) we obtain central difference formula [2]

∂ψ

∂t
= ψ(t+ ∆t)− ψ(t−∆t)

2∆t +O(∆t2), (5.8)

which has second order accuracy instead of first order.

Now let i, j, k denote cells space indexes and n time. For instance unijk is the velocity
at the n:th time step in cell i, j, k. We will omit O functions for the rest of this section
and discuss accuracy considerations in section 5.1.4. Substituting forward difference in
time to equation (5.3) and assuming that cell volumes and areas are steady we obtain

ψn+1
ijk − ψnijk

∆t V − qnijkV +
∑
∂Ωm

Φn
m∂Ωj = 0, (5.9)

where summation is over the faces of cell i, j, k and Φm is the flux normal to face ∂Ωm.
Similarly substituting backward difference in to equation (5.3) we obtain

ψn+1
ijk − ψnijk

∆t V − qn+1
ijk V +

∑
∂Ωm

Φn+1
m ∂Ωj = 0. (5.10)
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The difference between equations (5.9) and (5.10) is that fluxes and source terms are
evaluated at different time. The first scheme (5.9) is also explicit as it does not involve
equation solving at each step, because fluxes are known at time step n. The second
scheme (5.10) is called implicit as opposed to explicit as fluxes are evaluated at the
following time step n+ 1 and need to be solved.

Now combining the equations (5.9) and (5.10) we obtain

ψn+1
ijk − ψnijk

∆t + 1
2

− (qnijk + qn+1
ijk

)
+
∑
∂Ωm

(
Φn
m + Φn+1

m

) ∂Ωm

V

 = 0. (5.11)

Equation (5.11) is known as the Crank-Nicolson scheme. If cell faces have equal area
and the ratio of cell face area to cell volume is constant we may write

V

∂Ωm

= ∆x, (5.12)

where ∆x is constant.

If the underlying problem is thought to be steady less accurate methods in time like
(5.9) can be used instead of Crank-Nicolson scheme. However even in the steady case
time derivatives are not usually omitted and problem is solved as a nonsteady problem,
marching time onward until solution converges in time. This is due to a change of the
problem type from parabolic to elliptic.

The main problem with the Crank-Nicolson scheme is that it may give rise to numerical
oscillations in time referred to as numerical dispersion, which are undesirable. First
order methods do not show this behavior, but give less accurate answers due to a lower
order of convergence.

A discretization routine replaces the original PDE with a system of equations
connecting the values of functions in different cells. If the underlying PDE is linear
then this equation system is linear. However if the PDE is nonlinear then the equation
set is nonlinear. Since RANS equations are nonlinear the obtained system of equations
after FVM discretization is nonlinear [2, 13].

5.1.4 Error analysis

In this chapter we derive O-functions for each finite difference formula and discuss
briefly the numerical stability of different schemes.
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Recall that any function ψ ∈ C∞(R) has a Taylor series expansion given by

ψ(x+ ∆x) =
∞∑
n=0

ψn(x)
n! ∆xn, (5.13)

where ψn(t) is the n:th derivative at point t.

Using a Taylor series expansion for the forward difference formula we obtain

ψ(t+ ∆t)− ψ(t)
∆t =

∑∞
n=1

ψn(t)
n! ∆tn

∆t = ∂ψ(t)
∂t
−O(∆t).

Thus the local error which is also called truncation error caused by this discretization
is of order O(∆t). For the central difference formula we obtain

ψ(t+ ∆t)− ψ(t−∆t)
2∆t =

∑∞
n=0

ψn(t)
n! ∆tn −∑∞n=0

ψn(t)
n! (−∆t)n

2∆t

= ∂ψ(t)
∂t

+
∑∞
n=3 (1− (−1)n) ψn(t)

n! ∆n

∆t = ∂ψ(t)
∂t
−O(∆t2),

which has second order accuracy due to O(∆t2). To obtain the truncation error of the
Crank-Nicolson scheme we need to consider PDE

∂ψ

∂t
= F, (5.14)

where F is a function of x,t,ψ and spatial derivatives of ψ. Invoking Taylor expansion
at time t to forward difference formula we obtain

ψ(t+ ∆t)− ψ(t)
∆t − F (t) =

∑∞
n=1

ψn(t)
n! ∆tn

∆t − F (t). (5.15)

Similarly invoking Taylor expansion at time t+ ∆t to the backward difference formula
we obtain

ψ(t+ ∆t)− ψ(t)
∆t − F (t+ ∆t) =

∑∞
n=1

ψn(t+∆t)
n! (−∆t)n

∆t − F (t+ ∆t). (5.16)

Summing equation (5.15) and (5.16) we obtain
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2ψ(t+ ∆t)− ψ(t)
∆t − (F (t+ ∆t) + F (t))

=
(
ψ1(t+ ∆t) + ψ1(t)

)
− (F (t+ ∆t) + F (t)) +

∞∑
n=2

(ψn(t+ ∆t)− (−1)nψn(t)) ∆n−1

= 0 + 0 + ∆t
( ∞∑
k=1

ψk(t)∆tk
)

+
∑
n=3

(ψn(t+ ∆t)− (−1)nψn(t)) ∆tn−1 = O(∆t2),

thus the Crank-Nicolson scheme has a second order time accuracy. Next we consider
accuracy in space. Let Φ be normal of flux to of certain face. Let ∆x be distance from
the middle of a cell to the face. Invoking Taylor series expansion to the flux we obtain

Φ(x+ ∆x) =
∞∑
n=0

Φn(x)
n! ∆xn. (5.17)

We may write a similar expansion for the adjacent cell obtaining

Φ(x−∆x) =
∞∑
n=0

Φn(x)
n! (−∆x)n . (5.18)

As we evaluate fluxes by averages we get

Φ(x+ ∆x) + Φ(x−∆x)
2 = 1

2

( ∞∑
n=0

Φn(x)
n! ∆xn +

∞∑
n=0

Φn(x)
n! (−∆x)n

)

= Φ(x) + 1
2

( ∞∑
n=2

(1 + (−1)n) Φn(x)
n! ∆xn

)
= Φ(x) +O(∆x2).

Hence the central-cell scheme yields a second order space accuracy.

Another important property of a method is stability. Discretization introduces some
error to solution as discussed earlier. Another source of error is the round-off error
caused by the floating point presentation of computers. Stability concerns involve
growth of error over time. If these errors grow without limit over time a method is
considered unstable. If a method does not show this kind of behavior it is considered
stable. Stability depends on the problem, the solution method and properties of the
mesh.

Recall discretized equation (5.11) and multiply both sides by ∆t we obtain
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ψn+1
ijk − ψnijk + 1

2

− (qnijk + qn+1
ijk

)
∆t+

∑
∂Ωm

(
Φn
m + Φn+1

m

) ∆t
∆x

 = 0. (5.19)

The ratio of the time step and the space step (cell length) multiplied by velocity is
called the Courant number. The Courant number is given by

Cν = u∆t
∆x . (5.20)

A sufficient condition for stable simulation in case of RANS equations is that Cν ≤ 1 [2].
Physically Courant number presents the ratio of space discretization to the distance
that fluid particle can travel in single time step. Thus it demands that fluid should
not be able to cross multiple cells in one time step. Similarly if the Courant number
is very small it takes multiple time steps to cross a single cell and space accuracy is
unnecessarily fine. For this reason Courant number for hyberbolic PDEs should be
close to one, which secures optimal performance.

It should be noted that some methods like Crank-Nicholson are unconditionally stable
and do not require the Courant number to be less than 1. Implicit schemes such
as backward difference are also more stable than explicit schemes such as forward
difference and give more freedom in choosing the time step [2, 13, 15, 1].

5.2 Equation linearization

As discretization of RANS equations leads to nonlinear equations it is customary to
use some linearization procedure to transform them into linear equations. There are
currently many different ways to achieve this and how linearization should be done
depends on the nature of the problem, mainly whether the problem is considered to
be steady or unsteady and if the problem is compressible or incompressible. In this
section we will look at linearization techniques designed for compressible flows.

Most commonly used methods (SIMPLE, SIMPER, SIMPLEC, PISO,...) consist
of Predictor-Corrector schemes employed between timesteps. We will present the
SIMPLE and PISO algorithms for compressible flows.

Conservation of mass and momentum coupled with a state equation for instance the
ideal gas law, enables solution for pressure, density and the velocity field if a temper-
ature distribution is given. Similarly if pressure, density and velocity are given we
may solve the temperature distribution from the energy conservation equation. This
splitting of equations is known as a segregated solution. If temperature is solved



CHAPTER 5. NUMERICAL SOLUTIONS OF REYNOLDS EQUATIONS 64

simultaneously with velocity and other values than solution is called coupled. In the
segregated case each iteration begins with solution of velocity, pressure and density
from the previous time steps temperature distribution. After this the temperature is
solved from the energy equation using the current velocity, pressure and density.

Superscript notation for time and subscript for cell will be used. For instance uni is
velocity component in cell i at time n.

The discretized conservation of momentum equation in a implicit case is given by

ACu
n+1
C +

∑
k

Auku
n+1
k = Qn+1

u −
(

∆pn+1

∆x

)
C

, (5.21)

where u is some velocity component, C is the index of cell for which equation is writen,
x is a coordinate in the same direction as u and ∆/∆x refers to the spatial discretiza-
tion scheme of derivative. Summation ∑k is done over neighboring cells. Coefficient
matrices Auk may depend on u and thus equation (5.21) is nonlinear. Moreover source
matrix Qn+1

u may depend on u in a nonlinear way. However if we treat coefficient
matrices Auk as constants equation (5.21) is linearized.

In the case of backward difference conservation of mass is given by

ρmC − ρnC
∆t + ∆ρmum

∆x = 0. (5.22)

Solution of linearized equations typically consists of two kinds of iterations, namely
outer and inner iterations. In outer iterations the coefficient matrices Ak and the
source matrix Qn+1

u are updated. In inner iterations linear equation obtained from
equation (5.21) is solved.

Let um∗i be the solution of the present (outer) iteration. The present solution has to
satisfy equation (5.21) with a given tolerances. Solving um∗C from equation (5.21) we
obtain

um∗C = −A−1
C

(∑
k

Auku
m∗
k +

(
∆pm−1

∆x

)
C

−Qm−1
u

)
, (5.23)

where m− 1 refers to the previous outer iteration. Velocity um∗ can be thought as a
predicted velocity in a Predictor-Corrector scheme.

However um∗ does not generally satisfy the conservation of mass equation. Our aim
is to introduce corrections to involved variables u, ρ and p such that after the correc-
tion(s) they do satisfy both the conservation of mass and conservation of momentum
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equation (5.21). We will denote correction with a comma ′. For instance um = um∗+u′ ,
where u′ is the correction.

5.2.1 SIMPLE

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method is one way
to correct velocity, pressure and density to satisfy conservation of mass equation. The
SIMPLE method is usually used only in steady calculations, where time accuracy is
not crucial.

The main idea of SIMPLE is that a correct velocity can be obtained by correcting
pressure alone. Thus SIMPLE is omitting the effect of neighboring cell velocities and
their corrections. This allows us to write

umC = −A−1
C

(∑
k

Auku
m∗
k +

(
∆pm
∆x

)
C

−Qm−1
u

)
. (5.24)

Substracting equation (5.23) from equation (5.24) yields

u
′

C = −A−1
C

(
∆p′

∆x

)
C

. (5.25)

Moreover pressure correction p
′ is connected to density correction ρ

′ by equation of
the state. Hence

ρ
′ =

(
∂ρ

∂p

)
T

p
′ = Cρp

′
, (5.26)

where Cρ is a coefficient depending on the temperature T . Before any correction
present solution of momentum equations um∗i satisfies

ρm−1
C − ρnC

∆t + ∆ρm−1um∗

∆x = ∆ṁ, (5.27)

where ∆ṁ presents imbalance in the conservation of mass equation. Invoking the
definition of correction and subtracting equation (5.27) from equation (5.22) we obtain

ρ
′

∆t +
(
ρm−1u

′ + ρ
′
um∗ + ρ

′
u

′

∆x

)
C

+ ∆ṁ = 0. (5.28)
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Corrections are usually small, hence it is customary to omit the product term ρ
′
u

′ .
Substituting density correction (5.26) and velocity correction (5.25) to equation (5.28)
we obtain the pressure correction formula of the compressible SIMPLE method

Cρp
′
C

∆t +
(

∆(Cρum∗p
′)

∆x

)
C

+ ∆
∆x

(
A−1
C ρm−1

(
∆p′

∆x

))
C

= −∆ṁ. (5.29)

Equation (5.29) can be used to the solve pressure correction at each outer iteration.
Moreover pressure correction can be used to correct velocity and density and other
properties.

Due to omission of neighboring velocities, pressure corrections calculated via the
SIMPLE method are too large. This defect can be corrected by employing an under-
relaxation scheme. The main idea of under-relaxation is to only use a fraction of the
correction. This can be expressed as

pm = pm−1 + αpp
′
, (5.30)

where αp ∈ [0, 1].

Moreover velocity has to be under-relaxed. This is usually done implicitly by modifying
the momentum equation (5.21) to

AC
αu

um∗C +
∑
k

Auku
n+1
k = Qn+1

u −
(

∆pn+1

∆x

)
C

+ (1− αu)
AC
αu

um−1
C . (5.31)

Under-relaxation factors should be chosen such a way that they allow as fast a conver-
gence as possible. For given αu optimal αp is given by

αp = 1− αu. (5.32)

Interestingly for given αu it is possible to change values of αp over some range of values
without affecting the convergence of the method [15, 1].

5.2.2 PISO

The PISO (Pressure Implicit with Splitting of Operators) method is another way of
calculating pressure corrections. The main difference between the PISO method and
the SIMPLE method is that the PISO method employs multiple correction stages.
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Moreover as SIMPLE is used mainly in steady calculations, the PISO method is usually
used in unsteady calculations.

The first step of the PISO method is same as in the SIMPLE method. Pressure
correction is calculated by equation (5.29). However after this the PISO method
employ a number of additional correction stages.

Additional correction stages take account the effect of neighboring cells by

u(m−1) + u(m) = −A−1
C

(∑
k

Aku
(m−1)
k +

(
∆p(m−1)

∆x + ∆p(m)

∆x

)
C

)
, (5.33)

where (m) and (m− 1) refer to correction stages, i.e. u(1) = u
′ and p(2) is the second

correction term of pressure.

Invoking equation (5.25) to equation (5.33) and solving for present correction we obtain

u
(m)
C = −A−1

C

(∑
k

Aku
(m−1)
k +

(
∆p(m)

∆x

)
C

)
. (5.34)

Assuming that after correction (m), velocity and density satisfy conservation of mass
equation and omitting the mixed correction term ρ(m)u(m) we obtain

Cρp
(m)
C

∆t + ∆(um−1
C Cρp

(m)
C

∆x − ∆
∆x

(
A−1
C ρm−1

C

∑
k

Aku
(m−1)
k

)
(5.35)

− ∆
∆x

A−1
C ρm−1

C

∆p(m)
C

∆x

 = 0.

In the original paper of Issa [11] only one additional correction step (5.35) is employed.
However in present CFD software the correction step (5.35) is used in an iterative
fashion until correction terms converge to zero under some tolerances. Moreover
the PISO method does not need under-relaxation like the SIMPLE method. This
is because the PISO method is taking into account velocity corrections of neighboring
cells which are omitted in SIMPLE [15, 1].
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5.3 The algorithm

In this section we discuss briefly how the actual algorithm proceeds. We restrict
our discussion to the segregated case. Segregated solvers are more widely used than
coupled solvers as they are computationally less expensive. The main advantage of
coupled solver lies in supersonic flows, where temperature is strongly coupled to flow
velocity.

In the very beginning of the simulation the domain is partitioned into a mesh, solution
fields (pressure, velocity, etc.) are initialized and boundary conditions are set. With
initializion we mean initial values before any time steps. In the steady case velocity
and pressure values can be set to zero or to some ambient value. However this may
create discontinueties in gradients, which may become problem if they grow too large.

After initialization time is marched onward and values at each time step are deter-
mined from previous values. Each time step consists of outer and inner iterations. As
discussed in section 5.2 first equations are linearized. Events taking place in the outer
iterations are described in the following list [15]:

1. Solve the linearized momentum equation and obtain updated velocity (inner
iterations).

2. Correct velocity, pressure and density using the pressure correction method
(SIMPLE, PISO, etc.).

3. Solve the temperature from the linearized energy equation.

4. Solve the k − ε turbulence model and update turbulence viscosity.

5. Update coefficients of linearized equations by using the latest properties.

6. Return to step 1 until all corrections become small (under some tolerance).

7. Advance to the next time step.

Most of the computation time is spend in solving linear equations. Linear equations
arising from PDEs are typically very large, but sparse. Thus special methods are
needed to solve these equations efficiently. Sparse linear equation solvers are typically
iterative in contrast to gaussian elimination, which is a direct algorithm. Most widely
used algorithms are the algebraic multigrid method (AMG) and the conjugate gradient
method [15, 1].



Chapter 6

Simulation of nozzle flow

6.1 Boundary conditions

In the nozzle simulation, there are three different types of boundaries: solid bound-
aries, pressure inlet and outlets and symmetry. Solid boundaries are surfaces that
do not permit any fluid flow through themselves. However, in fluid dynamics, it is
customary to also require that velocity vanishes at these boundaries, in contrast to
electromagnetism where it is usually required that only the normal component of the
electric field vanishes at the surface of the conducting material. This difference can be
explained by the presence of viscous forces which slow fluid flow near the solid bound-
aries. Sometimes the heat flux through a solid boundary is modelled by specifying
a temperature distribution on the wall, but in this thesis we assume that the heat
flux through these boundaries is negligible and omit it. This assumption can be justi-
fied by the very short operation time of lasers, which leads to a very small heat flux
through the nozzle walls. Moreover it is essential that the nozzle walls are modelled
in simulation exactly as they are modelled in the CAD model. This means that the
mesh must be cut in the same shape to satisfy the CAD model. This requirement is
due to sensitivity of the flow to variations of the nozzle throat.

Symmetry planes are boundaries where fluid flow is assumed to continue as the same
after the boundary. The main advantage in using this kind of boundaries is in making
the computational domain smaller. This saves computation time and increases the
reliability of the solution. A symmetry boundary can be modeled by taking the normal
velocity and normal gradients of all variables to be zero.

A pressure inlet is a kind of free flow boundary, where sufficient fluid properties are
given. These properties usually include pressure, temperature and velocity, but other
combinations are also possible. These combinations may consist of for instance, some
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combination of stagnation properties or a requirement for the overall mass flux through
the inlet. A pressure outlet is also a free flow boundary in which the gradients of all
variables along the flow direction are taken to be zero and the exit mass flow is fixed
to satisfy overall conservation of mass [1].

Figure 6.1: Figure illustrating the increase of pressure during the simulation.

Pressure was increased slightly at each iteration at the inlet in order to avoid large
pressure gradients. Pressure was set as 0Pa at beginning and increased to 0.8MPa
by the 5000th iteration by increasing pressure by 160Pa at each iteration. This is
illustrated in Figure 6.1.

6.2 Meshing routines

We use two different types of meshes: a prism layer mesh near the solid boundaries
and a polyhedral mesh elsewhere. A prism layer mesh consists of thin slices near the
wall that stretch when moved farther from the boundary. It is common to use a wall
model in this type of a mesh. There are typically one to five layers of prism layer mesh
in solid boundaries.

A polyhedral mesh consists of volume divided into polyhedrons. As FVM allows
considerable freedom in meshing it is customary to make the mesh finer (smaller
cells) in some domains. In this thesis finer mesh was used at the nozzle and at the
symmetry plane. Because the symmetry plane was also the observed plane and the
throat is crucial region for whole flow. Meshing parameters of this thesis can be found
from appendix A.



CHAPTER 6. SIMULATION OF NOZZLE FLOW 71

6.3 Methods

The simulation results were obtained by a segregated solver. Computation was
executed in nonsteady fashion with a 1st order in time discretization method. Space
discretization was 2nd order.

Moreover the under-relaxation factors were changed over time in a ramp fashion similar
to pressure. This is because using a large under-relaxation factor at the early iterations
seemed to have the effect of crashing the simulation. However if the under-relaxation
factors were kept small, the simulation usually resulted in a crash at the later stages
of simulation. In this context the crash should be understood as a floating point
exception which halted the simulation.

We used two viscosity models, namely the Sutherland law and a constant viscosity
model. This was due to difficulties associated with the Sutherland law. The gas was
modelled as an ideal gas.

Parameters associated with the computation algorithms can be found at appendix A.

6.4 Simulation results

The simulated nozzles diameter was 1.0 mm. Used parameters can be found at
appendix A.

Figure 6.2 shows the velocity distribution of the laval nozzle. We computed the velocity
profile both using the Sutherland law and without the Sutherland law.

Figure 6.3 shows the density distribution of the laval nozzle. We computed velocity
profile both using the Sutherland law and without the Sutherland law.

Figure 6.4 and Figure 6.5 shows the residuals of both computations. Iterations in the
figures include outer and inner iterations.
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(a) Laval nozzle with the Sutherland law. (b) Laval nozzle without the Sutherland
law.

Figure 6.2: Pictures of the velocity profiles of the laval nozzle. In first picture (A)
solution is obtained using the Sutherland law and in second picture (B) without the
Sutherland law.
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(a) Laval nozzle with the Sutherland law. (b) Laval nozzle without the Sutherland
law.

Figure 6.3: Pictures of density profiles of the laval nozzle. In first picture (A) solution
is obtained using the Sutherland law and in second picture (B) without the Sutherland
law.
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Figure 6.4: A picture showing residual convergence when the Sutherland law was used.
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Figure 6.5: A picture showing residual convergence when the Sutherland law was not
used.



Chapter 7

Measurements

7.1 Theory of Schlieren photography

Schlieren photography is an experimental setup to observe density gradients. It is
based on the fact that the refractive index of a gas depends on its density. Thus
density gradients can be observed from the refraction difference of collimated light.
The light is focused using a lens and a knife edge is placed at the focal point of the
focused beam. Figure 7.1 shows a schematic picture of a Schlieren system.

Succesfull knife edge blocks around half of the focused light. In an uniform flow this
will only cause the brightness of image to decrease. However if there are density
gradients present in the flow, the knife edge will cause beams to focus imperfectly and
block parts of light focused in the knife edge. The result is that there are darker areas
at positive and negative density gradients in the direction normal to the knife-edge
[21].

Figure 7.1: Schematic picture of a Schlieren system.
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7.2 The Schlieren photographs

In this thesis a He-Ne laser was used as a illumination source. Figures 7.2 and 7.3
show Schlieren images of the nozzle at 0.80MPa. The nozzle was rotated between each
photograph, which explains the different positions of the shock waves. The nozzle
diameter was 1.0 mm.

In a perfect nozzle all of the photographs should have the same shape of jet. However
due to an imperfect machining and a turbulent eddies already present in the inlet of
the nozzle, the nozzle shape is distorted.

(a) (b) (c)

Figure 7.2: Schlieren photographs of the nozzle.
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(a) (b)

Figure 7.3: Schlieren photographs of the nozzle.



Chapter 8

Conclusions

In this thesis the theoretical basis of modeling high speed assist gas flow was presented.
The Star-CCM+ CFD software was evaluated for simulating such a model. We omitted
the effect of removed metal particles and chemical reactions of the assist gas in the
kerf. The simulation results were compared to a measurements. The measurements
were done by a Schlieren photography and pressure on workpiece. The Schlieren
photography can be mainly used to observe the jet shape and the shockwave positions,
but lack any accurate information about the actual velocities. Pressure on workpiece
can be used to determine if the simulated pressure is close to the actual pressure. The
measurements can be found from section 7.2.

Comparing simulation results to the Schlieren photographs and pressure on workpiece,
it can be concluded that software achieved sufficient accuracy.

Moreover it was concluded that using a simple segregated solver instead of a compu-
tationally more expensive coupled solver was sufficient to achieve correct shape of
jet, which can be observed from the Schlieren photographs. This feature is especially
desirable when the model is made more complex by addition of molten metal particles
or by presence of chemical reactions of oxygen with metal in the kerf.

We also simulated dynamic viscosity with the Sutherland law and with a constant value
model. The Sutherland law introduced oscillations in the residuals. Moreover the two
solutions were very close to each other, which suggests that use of the Sutherland law
may be unnecessary.
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Appendix A

Simulation parameters

This chapter explains the parameter values. Each parameter is accompanied by a short
explanatory note. Table A.1 describes parameters associated with mesh generation.

Parameter name Description Value
Base size Reference value to all mesh lengths 0.3mm

Numb. Prism layer meshes Layer number in the prism layer mesh 2
Prism layer stretching Ratio of consecutive layers thicknesses 1.5
Prism layer thickness Percentage of base size 20%

Surface curvature Percentage of base size 36%
Surface growth rate Number of cell layers grown next to boundary 1.3

Rel. min. size Percentage of base size 25%
Rel. target size Percentage of base size 100%

Wrap. feat. angle Max. angle of surface features 15◦
Wrap. scale factor Scaling of surface 15%

Table A.1

Moreover in the nozzle throat and the nozzle outlet custom values were used. These
custom values are given in the following Table A.2.

82
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Parameter name Description Value
Base size Percentage of default base size 10%

Rel. min. size Percentage of base size 10%
Rel. target size Percentage of base size 20%

Table A.2

Table A.3 describes parameters associated with numerical solvers.

Parameter name Description Value
Inner iteration Max. Numb. of inner iterations 100

Time step Time step between outer iterations 0.004s
Velocity un.-rel. factor Final value of under-relaxation factor 0.15
Pressure un.-rel. factor Final value of under-relaxation factor 0.7

Energy un.-rel factor (fluid) Enthalpy for fluid 0.5
Energy un.-rel factor (solid) Enthalpy for solids 0.99

k-ε turb. un.-rel factor Turbulence model under relaxation 0.8
k-ε turb. visc. un,-rel factor Turbulent viscosities under relaxation 0.99

Table A.3

The ramps used in this thesis are described in the Table A.4.

Property name End iteration Initial value Final value
Pressure 5000 0 800kPa

Velocity under-rel. factor 1000 0.01 0.15
Pressure under-rel factor 1000 0.01 0.7

Table A.4


