
ANTTI LAINE
User Interface Prototypes for Social Ad Hoc Networking
Master of Science Thesis

Examiners: Adjunct prof. Marko Hännikäinen
Dr. Tech. Jukka Suhonen

Examiners and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 7.11.2012

II

PREFACE

It has been very interesting to be a part in studying and also actually creating a
completely new social application and to be able to see it in use of hundreds of
people.

I would like to thank everyone who have participated on the TWIN project and
made it and this thesis possible: my coworkers at DCS and people at NRC Helsinki.
I would also like to thank Marko Hännikäinen ja Jukka Suhonen for their valuable
advice in writing this thesis.

III

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
LAINE, ANTTI: User Interface Prototypes for Social Ad Hoc Networking
Master of Science Thesis, 61 pages
December 2012
Major: Programmable platforms and devices
Examiners: Adjunct prof. Marko Hännikäinen, Dr. Tech. Jukka Suhonen
Keywords: User interfaces, prototyping, social networks, ad hoc networks

WLAN technology available in everyday handheld devices conforming to the IEEE
802.11 standard includes ad hoc networking mode. The use of ad hoc networking
enables devices to communicate directly with each other, without the need for external
infrastructure or Internet connection. The technology has not gained popularity, as
there has been a lack of a driving application.

This thesis presents user interfaces and use cases for TWIN, a social application using
mobile ad hoc networking. TWIN has been developed at the Tampere University of
Technology, Department of Computer Systems, in cooperation with Nokia Research
Center. TWIN enables users to find other physically nearby users, form social groups,
share media and send messages.

This thesis also presents methods used to accomplish fast prototyping and iterative
development to be able to experiment with new features and ideas. Problems related
to evaluation and testing of graphical user interfaces are also discussed.

The main results of the thesis are the design of use cases and user interfaces, and the
implementation of those interfaces in TWIN. Secondary results presented here are
the evaluation of the use cases and user interfaces, and the evaluation of methods
used for fast prototyping and testing of the application.

IV

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
LAINE, ANTTI: Sosiaalisen ad hoc -verkkosovelluksen käyttöliittymäprototyypit
Diplomityö, 61 sivua
Joulukuu 2012
Pääaine: Ohjelmoitavat alustat ja laitteet
Tarkastajat: Dosentti Marko Hännikäinen, TkT. Jukka Suhonen
Avainsanat: Käyttöliittymät, prototyypit, sosiaaliset verkot, ad hoc -verkot

Tavanomaisissa kämmenlaitteissa käytössä oleva WLAN-teknologia sisältää IEEE
802.11 -standardin mukaisen ad hoc -yhteystilan. Sen käyttö mahdollistaa laitteiden
keskustelemisen välittömästi toistensa kanssa, ilman tarvetta ulkoiselle infrastruk-
tuurille tai Internet-yhteydelle. Tekniikka ei kuitenkaan ole saavuttanut suosiota
johtuen hyödyllisten sovellusten puutteesta.

Tämä diplomityö esittelee TWIN-sovelluksen käyttöliittymät ja käyttötapaukset.
TWIN on Tampereen teknillisen yliopiston tietokonetekniikan laitoksella yhdessä
Nokia Research Centerin kanssa toteutettu sosiaalinen sovellus, joka käyttää hyväk-
seen kommunikaatiota ad hoc -verkkojen välityksellä. TWIN mahdollistaa käyttäjien
löytää muita välittömässä fyysisessä läheisyydessä olevia käyttäjiä, muodostaa sosi-
aalisia ryhmiä, jakaa mediaa ja lähettää viestejä toisilleen.

Tämä diplomityö esittelee myös nopeaan prototyypitykseen ja iterointiin käytettyjä
menetelmiä, jotka mahdollistivat uusien toimintojen ja ideoiden nopean kokeilemisen.
Lisäksi diplomityö käsittelee graafisen sovelluksen testaamiseen ja arviointiin liittyviä
ongelmia.

Diplomityön pääasiallinen tulos on käyttötapausten ja käyttöliittymien suunnittelu
ja toteuttaminen TWIN-sovelluksessa. Toissijaisia esiteltäviä tuloksia ovat käyttöta-
pausten ja käyttöliittymien evaluointi, sekä nopeaan prototyypitykseen ja sovelluksen
testaamiseen käytettyjen metodien evaluointi.

V

CONTENTS

1. Introduction . 1
2. Requirements and constraints for prototype application 3
2.1. Requirements for user interfaces . 3
2.1.1. Ease of use . 3
2.1.2. Scalability for large number of users 4
2.1.3. Ability to interact with other users 4
2.1.4. Ability to find other users . 4
2.1.5. Ability to share information and media 4

2.2. Constraints of the platform . 4
2.2.1. Maemo platform on Nokia N900 mobile computer 5
2.2.2. Ad hoc WLAN . 6
2.2.3. Scalability constraints from the platform 8
2.2.4. Touch screen interface . 8
2.2.5. User interface constraints . 8

2.3. Related work . 9
3. Use cases for TWIN . 11
3.1. View nearby user . 13
3.2. Follow other users . 14
3.3. Create communities . 15
3.4. Join communities . 16
3.5. Share personal information . 17
3.6. Sharing media . 19
3.7. Chat with other users . 20
3.8. Post messages . 21
3.9. Expressing mood . 22

4. Architecture of TWIN . 23
4.1. Plugin interface . 23
4.2. Core / UI separation . 23
4.3. Architecture . 25

5. Implementation . 27
5.1. Methods . 27
5.1.1. Fast iterations . 28
5.1.2. Immediate testing . 29
5.1.3. Tagging commits . 29

5.2. Tools . 31
5.2.1. Git . 32
5.2.2. Python . 32

VI

5.2.3. GTK+ . 34
5.2.4. Portability of Python and GTK+ 34

5.3. Plugins . 35
5.3.1. register_plugin . 35
5.3.2. get_plugin_by_type . 35
5.3.3. ready . 35
5.3.4. gui_init . 35
5.3.5. cleanup . 36
5.3.6. user_appears, user_disappears, user_changes 36
5.3.7. community_changes . 36
5.3.8. Example plugin . 36

6. User interface prototypes . 38
6.1. Community view . 38
6.2. Profile view . 40
6.3. Radar view . 41
6.4. Filesharing . 43
6.5. Chat . 45
6.6. Message board . 47
6.7. Summary of the prototype interfaces 48

7. Prototype testing . 49
7.1. Methods . 49
7.1.1. PC version . 49
7.1.2. Assertions . 52
7.1.3. The Python Debugger . 52

7.2. Problems . 53
7.2.1. Interpreted and dynamic . 53
7.2.2. User interface testing . 54

8. Evaluation . 55
8.1. Usability of user interfaces . 55
8.1.1. Ideas for improvement . 55

8.2. Methods . 56
9. Conclusions . 57

VII

LIST OF FIGURES

2.1. Nokia N900 mobile computer. 5
2.2. Example of a TWIN network. 7
2.3. Maemo 5 home screen. 9

3.1. Use cases for TWIN. 12
3.2. Activity diagram for viewing users use case. 13
3.3. Activity diagram for following users use case. 14
3.4. Activity diagram for creating community use case. 15
3.5. Activity diagram for joining communities use case. 16
3.6. Activity diagram for sharing personal information use case. 18
3.7. Activity diagram for sharing media use case. 19
3.8. Activity diagram for chatting with other users use case. 20
3.9. Activity diagram for posting messages use case. 21
3.10. Activity diagram for expressing mood use case. 22

4.1. TWIN core uniform plugin interface. 24
4.2. Architecture design of TWIN as a stack diagram. 25

5.1. Development flow of TWIN. 28

6.1. Community view. 39
6.2. Inside twin community. 39
6.3. Personal profile. 40
6.4. Profile editor. 41
6.5. Radar view. 42
6.6. Filesharing adding files view. 43
6.7. Filesharing view. 44
6.8. Filesharing download sequence. 45
6.9. Chat. 46
6.10. Message board. 47

7.1. Timeline for evaluation. 49
7.2. TWIN running on a PC. 51
7.3. Python debugger. 53

VIII

LIST OF TABLES

2.1. Specifications of N900. 6
2.2. Summary of related works. 10

5.1. Tags for different commit types. 30
5.2. Custom tools used in development of TWIN. 31
5.3. Most used Python Standard Library modules in TWIN. 33
5.4. Summary of used 3rd party libraries. 34

6.1. Main user interfaces implemented for TWIN. 48

7.1. Differences of automated error checking. 54

8.1. Most interesting features of TWIN according to pilot participants. . . 56
8.2. Ideas for new features and use cases gathered from the pilot. 56

IX

LIST OF PROGRAMMES

5.1. Simplest possible plugin. 37
5.2. Simplified example of plugin that vibrates the device, when a friend

joins the network or a while is received. 37
7.1. Example of detecting the run-time platform and creating a different

button widget depending of the result. 50

X

TERMS AND ABBREVIATIONS

Ad hoc Literally for this (purpose), in WLAN a technology for enabling peer to
peer communication without infrastructure

AST Abstract Syntax Tree, tree presentation of source code

Bencode A lightweight encoding for serialization of basic Python data structures

Bluetooth Short range wireless communication technology

C An imperative programming language

C++ An object oriented programming language, originated from C

CPU Central Processing Unit

DHT Distributed Hash Table, a service lookup technique using hash tables, that
are distributed between multiple peers

Duck typing Style of dynamic typing, where objects are used according to their
properties instead of their types

EDGE Enhanced Data rates for GSM Evolution, an extension for GPRS

GTK+ GIMP ToolKit, a cross-platform UI toolkit

GPRS General Packet Radio Service, a second generation packet oriented mobile
data service for cellular networks

Hop Term used to describe passing traffic between two directly connected peers in
a multi-hop network

Hop count Number of hops when routing traffic in a multi-hop network

HSPA High Speed Packet Access, a 3.5th generation mobile data service protocol

IPC Inter-process communication, set of techniques for different processes to com-
municate with each other

Interpreter A program which directly executes source code, as opposed to compiling
it to machine readable instructions

Linux An open-source operating system kernel

LOC Lines of code

Maemo A Linux-based operating system for handheld computer

XI

MeeGo An operating system for handheld computers, based on Maemo

Model–view–controller Programming pattern for separating core and user inter-
face functionality

Multi-hop routing protocol A protocol that routes traffic over multiple peers

Observer pattern See publish–subscribe

pdb Python Debugger

PPI Pixels Per Inch, the number of pixels on an 1 inches wide and 1 pixels high line

Publish–subscribe Programming pattern for asynchronously forwarding data to
receivers

Python An interpreted dynamically typed programming language

Qt An application framework

QWERTY Keyboard layout used in most computers

Reachability Usually a possibility to establish a connection. Here defined as the
possibility to establish a direct connection between two devices for the purpose
of downloading media.

RPC Remote Procedure Call, a method for requesting actions from a remote process

Signals and slots Publish–subscribe implementation used in Qt

Singleton Object that has exactly one instance

TWIN Although written in all capitals, TWIN is not an abbreviation

UI User interface

UML Unified Modeling Language, a standard for visually expressing structure of
software systems

WCMDA Wideband Code Division Multiple Access, a third generation packet
interface for cellular networks

WLAN Wireless Local Area Network

1

1. INTRODUCTION

Wireless links between mobile computers usually require an Internet connection
and a server. This kind of connectivity is dependent on the availability of needed
infrastructure. Devices can also communicate directly in a peer-to-peer manner. One
technology to accomplish this is the ad hoc mode of WLAN communication, defined
in IEEE 802.11 [31] set of standards.

Although ad hoc communication has been available since the first version of the IEEE
802.11 standard, it has rarely been used because of the lack of a driving application.
As there has not been much practical use for the technology, its popularity has
remained low. [27]

As connections between devices using this technology are only possible with direct
links, the devices active in the network must be at that moment in close physical
proximity. Because the connection does not depend on external infrastructure,
applications utilizing ad hoc technology can be used in any place imaginable.

In this thesis, social local ad hoc networking application is defined as a software
offering social interaction between users, and benefiting from the use of ad hoc
WLAN by using direct links between devices in the local geographical area.

This thesis presents the design of use cases and user interfaces developed for TWIN,
a social local ad hoc network application. TWIN has been developed as a prototype
for the Nokia Instant Community concept. This thesis is a part of the TWIN project
at the Tampere University of Technology (TUT), Department of Computer Systems
(DCS). TWIN project is a research project between TUT and Nokia Research Center,
started in June, 2008.

TWIN was developed for the Nokia N900 mobile device using a Linux-based Maemo
operating system. TWIN has then been published as open source with a permissible
modified BSD license with the name Proximate [52].

A social application was selected to provide a new type of useful and interesting
services which can be used to interact people. Social aspect relates naturally to the
concept of locality and physical closeness of the users.

1 Introduction 2

The scope of this thesis is to present the development of a social application from
design of use cases and user interfaces to a usable prototype and to discuss and
evaluate the methods used in the TWIN project to enable rapid prototyping without
formal specifications.

Work of the author for this thesis consists of designing the user interfaces in coop-
eration with other developers in the project, formulating the use cases from these
designs, and implementing them, partly continuing from the work of other developers.
Plugin interface presented in the thesis is work of others, and is utilized by the
interfaces. Core functionality, which is outside of the scope of this thesis, is also
work of other developers.

The thesis is divided as follows. Requirements for the prototype application dictated
by the target platform are discussed in Chapter 2. Use cases for TWIN are presented
in Chapter 3. General architecture, as well as the plugin interface architecture
are presented in Chapter 4. Methods and tools of implementation are presented
in Chapter 5. User interface prototypes are presented in Chapter 6. Methods
and problems for testing of a graphical application written in a dynamically typed
interpreted language are discussed in Chapter 7. Evaluation of the methods and
summary of user pilot is given in Chapter 8, and conclusions are given in Chapter 9.

3

2. REQUIREMENTS AND CONSTRAINTS FOR

PROTOTYPE APPLICATION

TWIN has multiple requirements and constraints, resulting from the wanted behavior
of the application, and the selected platform. The requirements and constraints
presented in this chapter are divided into two categories: functional requirements for
the user interfaces, and technical requirements caused by the target platform.

2.1. Requirements for user interfaces

Requirements for the user interfaces consist of general requirements for the func-
tionality of the application, and more specific requirements for the features of the
application. General requirements for TWIN are mainly: ease of use and scalability
for a large number of users. Feature requirements are: ability to interact with others,
ability to find who are around in the network and ability to share information and
media with others.

2.1.1. Ease of use

TWIN should be easy and attractive to use. No user manual should be needed. There
was no graphical designer in the project, but some user interface design paradigms
were taken into account when designing TWIN. These paradigms were not considered
as requirements, but as guidelines for the user interface design.

Most notably, no information should be hidden from the user. At all times, the
possible actions are visible and in the same position on the right side of the screen.
On the other hand, actions that can not be used are hidden from the user, preventing
mistakes and decreasing the need for the application and the user to recover from
those mistakes. [43]

2 Requirements and constraints for prototype application 4

2.1.2. Scalability for large number of users

As TWIN is designed to operate with users near each other, it should also function
correctly when there is a large number of users near each other, such as in a sports
or music event, or even in a lecture hall.

From the point of view of TWIN, this objective is mostly limited by the user interface.
The interface must remain usable even with large number of peers. Amount and
constant changes of the information presented in the interface must not obstruct the
user.

2.1.3. Ability to interact with other users

As a social application, the purpose of TWIN is to allow users to interact with
each other. Interaction is enabled by offering real time chat and long living textual
messages.

2.1.4. Ability to find other users

To make interaction possible, users must be able to find each other. This is done by
allowing users to create groups and to see other users in a global shared community.

2.1.5. Ability to share information and media

Sharing is an important aspect of social networking. Users must be able to share
their personal information to other users, as well as so share media they have found
or created.

2.2. Constraints of the platform

Target platform chosen for the prototype application is the Nokia N900 mobile
computer. It was chosen, because it offered WLAN, Linux operating system and a
touch screen. This platform sets some constraints for the application. While the
touch screen is good for usability, it limits the layout of the interface. N900 also offers
limited memory and computation time. The use of ad hoc WLAN sets constraints
on the protocol and usage of bandwidth.

2 Requirements and constraints for prototype application 5

Figure 2.1. Nokia N900 mobile computer, showing the touch screen and a full sliding
QWERTY keyboard.

2.2.1. Maemo platform on Nokia N900 mobile computer

Maemo [14] is an operating system for handheld computers. It was developed by
Nokia, and it is based on Debian GNU/Linux [51]. The only devices using Maemo
are the Nokia N series Internet tablets N710, N800, N810 and the latest N900.
The development of Maemo has been discontinued, and the project was merged to
MeeGo [24], a similar type Linux-based operating system for handheld computers
and netbooks. Nokia N9 has been called a Maemo 6 device [48], but officially uses
MeeGo 1.2 Harmattan as its operating system [16].

Maemo is a very flexible operating system. Majority of the applications that can run
on a desktop Linux distribution can also run on Maemo. Virtually any programming
language available for Linux can be used to develop software for Maemo. The only
officially supported development environment is the GTK+ [57] library with the C
programming language [15]. Tools for C++ and Python are funded by Nokia, but
they are not officially supported languages [39, 20].

Most of the restrictions set by the target environment of TWIN are dictated by the
N900 mobile computer, pictured in Figure 2.1. The N900 has a 600 MHz ARM CPU
and 256 megabytes of memory. Its 3.5 inch display is very small when compared to
desktop displays or tablets. On the other hand, the display resolution of 800x480
pixels is large when compared to the display area, resulting in a high pixels per
inch (ppi) ratio of 267, comparable to the current high-end mobile computers. For

2 Requirements and constraints for prototype application 6

Table 2.1. Specifications of N900.

Feature Value

Dimensions 110.9× 59.8× 18 mm
Weight 181 g
Display 3.5 inch touchscreen
Resolution 800x480 pixels (WVGA)
Permanent memory 32 GB Flash, extendable up 48 GB with a microSD

memory card
Application memory 256 MB RAM + 768 MB virtual
Processor TI OMAP 3430: ARM Cortex-A8 600 MHz,
Graphics support PowerVR SGX with OpenGL ES 2.0 support
Keyboard Full QWERTY keyboard
Network GSM, GPRS, EDGE, WCMDA, HSPA, Bluetooth

2.1, WLAN b/g
Network security WEP, WPA, WPA2
Camera 5 Mp autofocus, CMOS sensor, f/2.8-5.2
Video support H.264, MPEG-4, Xvid, WMW, H.263
Container support MP4, AVI, WMV, 3GP
Video streaming support H.264, MPEG-4, Xvid, WMV, H.263 in AVI, MP4,

WMV, ASF and 3GP containers
Music support MP3, WMA, AAC, M4A, WAV

comparison, a 22 inch high definition display with a resolution of 1920x1080 pixels
has the ratio of 100 ppi.

The N900 has extensive networking support, including GPRS [1], HSPA [50], Blue-
tooth [7] and WLAN [31]. While TWIN is network agnostic, it has been designed
with ad hoc WLAN in mind. Maemo also supports multiple media formats and video
streaming.

More extensive specifications of the N900 are shown in table 2.1. [17]

2.2.2. Ad hoc WLAN

Ad hoc is a mode of wireless LAN, in which the devices form the network with each
other in a peer to peer manner, without the help of any external access points. With
ad hoc WLAN it is possible to create high speed wireless links between two or more
devices, regardless of the location.

The limitation to using ad hoc networks is, that every device must be in the range of
all other devices it wants to connect with. The WLAN standard IEEE 802.11 does
not define routing between the peers in ad hoc mode, but all communication must
happen directly from peer to peer. To achieve communication between peers that

2 Requirements and constraints for prototype application 7

Figure 2.2. Example of a TWIN network. Users in proximity are directly connected
with each other. Users too far for a direct connection may be available through multi-hop
routing.

are not directly connected, a routing protocol that works on top of the data link
layer is needed.

In the TWIN project, a separate protocol that routes traffic over multiple peers
was used [2]. Routing over multiple peers is called multi-hop routing. Using multi-
hop routing, the range of the ad hoc network can be extended to cover the area
corresponding to the range of one peer device times the longest possible hop count
offered by the routing protocol. A hop is the passing of traffic between two directly
connected peers, thus the hop count being the number of hops in the chain of peers,
when routing traffic between two indirectly connected peers. Figure 2.2. gives an
example of the network.

When designing application for a battery operated mobile device, it is important
to conserve energy. On network level, the multi-hop protocol enforced a 1 second
transmission window in order to conserve energy. During the window, all queued
packages were sent to and received from the network. The interval between transmis-
sion windows was 5 seconds. This way the radio could be turned off for 4 seconds, or
80% of the time. In addition the saving the energy used by the radio, this technique
further reduces the number wake-ups for the CPU. The bandwidth of the network
was also limited to maximize the range and reliability of the network.

Because of the limitations on the network traffic and bandwidth, limiting the number
of packets sent to the network had to be taken in account also on the application level.
The protocol was designed to minimize overhead, maximum amount of information
was transferred in a single packet, and compression was used to fit more information

2 Requirements and constraints for prototype application 8

in packets. The network layer signaled TWIN for transmission windows, so no
unnecessary network code was run, which led to fewer wake-ups for the CPU and
thus to lower power consumption.

2.2.3. Scalability constraints from the platform

Memory and computation time available on N900 limit scalability. Other limitation
is the network layer, which is something that TWIN can not fully control. WLAN
has limited bandwidth, which will fill up when sending large amount of packets at
the same time in the same physical area. This causes collisions between the packets.

WLAN takes this into account by using backoff times and retransmissions, but if there
are too many collisions, no packets are transmitted successfully. TWIN addresses
this problem by minimizing the amount of traffic, and by sending larger but fewer
packets.

2.2.4. Touch screen interface

N900 has a touch screen, so the whole application should be controllable via tapping
the screen. The small size but large pixels per inch value of the display sets
requirements to what can be shown on the screen. The user interface elements must
be large enough to be readable from the high ppi display, and to be tappable with
even a large finger, but small enough to fit to the screen.

Dimensions of the screen are presented in Figure 2.3. Usable display area is actually
only 800× 424 px instead of 800× 480 px because of the always visible bar located
on the top of the screen.

2.2.5. User interface constraints

Maemo has user interface guidelines given on Fremantle Master Layout Guide [42].
These guidelines set requirements on how the user interface layout should be designed
and what kind of user interface elements can be used. Elements sizes, application
area, marginals, fonts, etc. are defined in the guidelines. The use of menus, tabs,
toolbars and dialogs are also defined.

Windows always take up whole screen. Multiple open windows are stacked on top
of each other, and moving between windows should be restricted to opening a new
window and closing it by tapping the back button.

2 Requirements and constraints for prototype application 9

Figure 2.3. Maemo 5 home screen presenting the dimensions available for applications.
The bar in the top of the screen is always visible, and takes up some of the display area
from the applications.

2.3. Related work

There are many similar types of applications, with many notable differences. While
all concentrate on discovering surrounding people and sharing personal information,
the related works differ considerably from each other on their implementations. A
summary of the related works in given in Table 2.2.

Serendipity [19], Wireless Rope [41], MobiSoft [36] and MobiClique [46] use Bluetooth
as their network layer.

Serendipity, Wireless Rope, WhozThat [3] and Musubi [55] depend on central servers,
and require an Internet connection to discover peers and exchange information.

Serendipity scans periodically for surrounding devices, collects their identifiers and
sends them to a central server. The identifiers are associated with user profiles, which
are then examined for a similarity score between people.

Wireless Rope also periodically scans for surrounding devices and uploads the
encounters to a central server. Encounters are counted and grouped based on the
number of encounters, or familiarity.

MobiSoft uses a combination of Bluetooth and ad hoc WLAN. It does not require
central servers to operate. The devices automatically change information about

2 Requirements and constraints for prototype application 10

Table 2.2. Summary of related works.

Application Network layer Central servers Reference

Serendipity Bluetooth Yes [19]
Wireless Rope Bluetooth Yes [41]
MobiSoft Bluetooth No [36]
MobiClique Bluetooth No [46]
WhozThat Agnostic Yes [3]
Musubi Internet Yes [55]

their users on encounters. The application evaluates the information and makes
suggestions about similar people.

MobiClique also uses a combination of Bluetooth and ad hoc WLAN, and does not
require central servers. The application implements a type of multi-hop networking
by exchanging messages and passing the along to other devices.

WhozThat periodically advertises a unique identifier to the local network by some
local area communication, e.g. Bluetooth. Identifiers are associated with social
services on the Internet. This information is used to establish a social context of the
surrounding people.

Musubi exchanges encrypted information of the users through a central server instead
of local communication, in order to not reveal private information to the public.
Users can form groups, send messages and share media.

Social networking on mobile environments has also been studied earlier in [34]. A
paper describing design solutions in TWIN from a more technical point-of-view has
been submitted for publication [37].

11

3. USE CASES FOR TWIN

As TWIN is a social application, the most important use case for TWIN is commu-
nication between people. Communication can be realized in several different ways,
as described in the following use cases. Other important use cases are finding and
following people, and sharing information with them.

These use cases described here are those which were implemented in the software.
Other use cases were thought of, but they were not implemented because the ideas
were seen uninteresting, and because of lack of time.

While developing the application, the specifications for the use cases have been very
loose. Common example of a use case specification has been a few lines in an email,
or few sentences over a phone call. Because TWIN is a prototype application, these
ideas had to be quickly transformed into a viewable, or in the best case, usable
demos. Quickly means that no formal specification could be formulated to follow the
idea, but the development was done in an iterative process.

Many of the use cases have also been further developed during the pilot. One of
the the main objectives of the pilot was to discover new use cases, and to develop
improve the existing ones. These use case definitions are thus a product of the
prototype, instead of a formal specification after which the prototype would have
been developed. Figure 3.1. presents different use cases and their actors.

Following sections present the use cases, divided in to a rationale explaining the
reasons behind the use case, description briefly explaining the use case, and scenario,
giving a user story of an example situation, in which the use case might realize.

Each use case is also presented with an Unified Modeling Language (UML) activity
diagram. In the diagrams, rounded rectangles present activities, diamonds present
choices, rectangles present messages, and ellipses present references to other use cases.
Arrows with regular heads present transitions between activities, and arrows with
filled heads present message passing. Black circles present starting points and double
circles present ending points. Concurrent actions of different actors are presented
with swimlanes, separated with a single line. Interaction between actors is presented
with a transition over the swimlanes.

3 Use cases for TWIN 12

Figure 3.1. Use cases for TWIN. There are two actor groups: user being the one using the
device and peers being people seen in the network. Arrow-headed connection indicates active
participation to the use case, while a regular connection indicates passive role, meaning
that no active actions are required from the actor, but the actor is a target of actions.

3 Use cases for TWIN 13

3.1. View nearby user

Rationale
Seeing who are near you at the moment and who belong to which communities
is one of the most important features of TWIN, as it makes possible to use all
other features.

Description
The user would like to see the people around him in a glance.

Actors
User
Peers (passive)

Scenario
The user has arrived at a location with new people, and he wants to quickly
see if there are TWIN users around him. User opens the main view of TWIN
and is presented with a list of those all communities with active peers. He
opens the ”twin” community and sees all active users in the network.

User selects one of the shown peers, and is presented with a detailed view of
that user’s personal information and communities in which she belongs to.

User then wants to see which peers are near enough so he can send files to them,
so he opens a view showing nearby users divided according to their distance in
the network. The user sees that one of the peers is close enough to receive a
file, and proceeds to send her one.

Figure 3.2. Activity diagram for viewing users use case.

3 Use cases for TWIN 14

3.2. Follow other users

Rationale
Users need a simple way of a) marking known users as friends, b) distinguishing
friends from other users, and c) knowing when friends are around.

Description
The user has previously met other users, and wants to follow what they do and
know when they come nearby.

Actors
User
Peers (Passive)

Scenario
The user finds out that he knows one of the active peers in the network
personally. User marks her as his friend. He also sets a notification about
friends joining in the settings.

Later, the same peer joins the network. User’s device gives a notification, and
user sees who has joined. There is also an icon distinguishing her as a friend
from the other peers.

Figure 3.3. Activity diagram for following users use case.

3 Use cases for TWIN 15

3.3. Create communities

Rationale
People with similar interests naturally form communities. Communities help
to find similar people, gather and filter content, or simply act as a temporary
room for exchange of information. Communities can be public – which everyone
can see and join to, or private – which are hidden and require a shared secret
for the user to be able to join them.

Description
The user wants to create a community, to which other users may join. Com-
munities can have a name, a description and an image to separate them from
other communities.

Actors
User

Scenario
User is interested in frisbee golf and he wants to find other people interested in
the same hobby. He creates a community by the name ”frisbee golf” and selects
to community to be public, so everyone can join it. User is automatically joined
to the community. The new community now shows in the community view of
TWIN and is advertised to other peers in the network by user’s device.

Figure 3.4. Activity diagram for creating community use case.

3 Use cases for TWIN 16

3.4. Join communities

Rationale
After a community has been created, users will need a simple way of finding
and joining them.

Description
If a user wants to show interest in same group, she may join an earlier created
community. After joining the community, the user will get announcements of
people in the community joining the network or sharing media.

Actors
User (passive)
Peers

Scenario
User has created a community called ”frisbee golf”. A peer in the network is
also interested in the sport and sees the community in her community view.
She selects the community and joins it. Now she will receive messages and files
published to that community, and can chat with the community members.

Figure 3.5. Activity diagram for joining communities use case.

3 Use cases for TWIN 17

3.5. Share personal information

Rationale
In a social network, it is natural to share information about one self. The
information can be genuine or made up, and consist of any number of details.
After joining the network, the user will want to see if there are other users
nearby, and some additional information of other users, such as their profile
images and nicknames.

Description
Users can add profile images and personal details, such as their real name, date
of birth, address and languages they speak.

Actors
User
Peers (passive)

Scenario
User has joined the TWIN network and wants to share his personal information
with other users. He opens his profile editor, where he can see different fields
to fill in his information. He writes in his name, date of birth and hobbies.
Then he taps on the default profile picture the change it. A dialog opens up,
where user can select to use an image from the memory of the device, or to
take a photo with the camera on the device. He selects to take a photo, and a
dialog showing the front camera view is presented. User takes his image, and
that image is automatically used as his new profile picture.

User wants to see if other users have shared their personal information. He
opens a profile viewer for a peer and is presented with a formatted view of her
shared information.

3 Use cases for TWIN 18

Figure 3.6. Activity diagram for sharing personal information use case.

3 Use cases for TWIN 19

3.6. Sharing media

Rationale
In addition to sharing personal information, users will want to share media.

Description
Files can be chosen from the device and shared to the network. The share can
be public, or directed to a community or a single user. Files can be passively
shared, or actively uploaded to other users.

Actors
User
Peers

Scenario
User has received a humorous picture, which he wants to share with his friends.
He selects their private community and opens the file sharing dialog. He then
opens the picture and selects ”upload”. The picture is sent directly to every
device on the community.

User also wants other, unknown peers to be able to find the picture. He selects
publish for the picture in ”twin” community and fills in keywords, so others can
find it more easily. The picture is now available for everyone in the network.

Figure 3.7. Activity diagram for sharing media use case.

3 Use cases for TWIN 20

3.7. Chat with other users

Rationale
Chatting, or sending short real time text messages, is the simplest way of
communicating over the network. Chatting is also very popular among the
users of different social networks.

Description
Users can chat publicly, between communities or between two individual users.
Multiple chats can be in session at the same time.

Actors
User
Peers

Scenario
User wants to chat with his friend, who he sees is active in the network. He
selects her user icon and starts a chat. A chat view opens with a tab for the
new conversation. Other users in the network will not see the chat between
the two peers.

Figure 3.8. Activity diagram for chatting with other users use case.

3 Use cases for TWIN 21

3.8. Post messages

Rationale
Users should be able to post messages that have a longer life time, as opposed
to chat messages.

Description
Message board is similar to sharing files. The messages are published and
shared to other users. Messaged can also include files.

Actors
User
Peers

Scenario
User wants to sell his old phone after purchasing an N900. He selects the ”twin”
community and opens the message board view. He writes a message and posts
it to the community. All other active peers in the network receive a notification
about a new message being posted.

One of the peers is searching for a used cell phone. She opens the message
board and searches for messages about phones. She opens the message and
sees the text posted earlier. As the phone seems interesting, she opens a chat
with the user to ask for more details.

Figure 3.9. Activity diagram for posting messages use case.

3 Use cases for TWIN 22

3.9. Expressing mood

Rationale
Displaying mood graphically gives peers an easy way of finding out what is on
other users’ minds.

Description
Users can set their mood with an icon and a status text. The icon will be
shown on their user icon.

Actors
User

Scenario
User feels bored and wants someone to cheer him up. He opens the mood
changing dialog and is presented with a list of different mood icons. He selects
bored and writes a status text asking for someone to cheer him. The mood
icon will show to other peers on the user’s icon.

Figure 3.10. Activity diagram for expressing mood use case.

23

4. ARCHITECTURE OF TWIN

TWIN is divided into plugins to separate different functionality into distinct parts. By
using plugins, it is easy to add new features without changing the core functionality
of the program.

4.1. Plugin interface

TWIN core offers a uniform plugin interface, through which the core of the application
and plugins can communicate. Figure 4.1. visualizes this technique. The interface
consists of functions used to register and initialize new plugins, retrieve instances of
registered plugins, and use services offered by these plugins. The services selected
were those seen to be the most often used. In addition to the main plugin interface,
plugins offer their own interfaces for other plugins to use.

Plugins receive messages using a publish–subscribe pattern. Publish–subscribe [5]
(also called observer pattern or signals and slots) is a programming pattern where
the listening part subscribes to only the data it is interested in, and the publishing
part sends the data only to the subscribed parties.

There are several different ways of implementing this pattern (e.g. Qt’s signals and
slots mechanism [6]), but in TWIN it was implemented as a simple callback mapping,
where the plugins subscribe to data by registering a function, and core then calls the
registered functions when data is available.

4.2. Core / UI separation

As a result of the plugin architecture, it was simple to separate core functionality
and user interfaces (UI). This allowed to develop core and interfaces separately,
and to make changes in them without affecting others. This in turn allowed the
development tasks to be efficiently divided to different developers. Especially user
interface changes were simple to make, as they did not involve changes to core
functionality, but only to the appearance and features of the user interface. The user
interfaces were also simpler to develop, as common functionality between different

4 Architecture of TWIN 24

Figure 4.1. TWIN core connects to plugins through a uniform plugin interface to allow
easy development of new features while being independent of other plugins and changes to
the core.

user interfaces could be moved to a lower lever plugin, so that the code needed for
that functionality was written only once, and then exposed to use of other plugins
through the plugin interface.

Although core functionality and user interfaces are separated, they depend on each
other through the plugin interface. When developing the application without specifi-
cations, the interface tended to change, sometimes very rapidly and dramatically.
This caused some problems with the core / user interface interaction.

The separation was not fully complete. Because of imperfect interfaces, user interface
plugins had to keep track of some of the information that was retrieved from the
application core. Thus the solution was not a pure implementation of model–view–
controller pattern (MVC) [8], which is a design pattern to separate user interface
from the core functionality.

In MVC pattern, model would be the core – the representation of all of the data and
state information in the application; view would be the graphical presentation of the

4 Architecture of TWIN 25

state through the user interface; and controller would be parts of the user interface
that take input from the user and send the back the model.

In TWIN, this separation is partly overlapping, as the user interfaces contain some of
the functionality reserved for model. Management of user lists in the user interface
code is the most notable example of this.

4.3. Architecture

The modular plugin system of TWIN enables the application to have only few
dependencies between modules. Figure 4.2. presents the architecture design of
TWIN as a stack diagram. Modules in the upper layers of the diagram use services
from the lower level modules. There are also dependencies between the modules
in the same layer, but no lower level module has dependencies on any upper level
module. Dependencies between plugins have been kept one-directional to avoid
cross-dependencies. If common functionality was found, it was moved away to lower
levels.

Figure 4.2. Architecture design of TWIN as a stack diagram. Upper layers use the
services from the lower layers. This diagram does not include small utility plugins that are
not part of the main functionality of TWIN.

4 Architecture of TWIN 26

Modules developed for TWIN are on the layers 4–7 of the diagram. On layer 4 are
the core modules bencode, RPC (remote procedure call), and the local database.
RPC module uses the communication platform to send messages over the network.
These messages are encoded with bencode [13], which is a light-weight serialization
format for basic Python data structures. Local database module offers services for
serializing data to the persistent memory on the device.

On layer 5 are first level plugins file sharing, community and configuration. File
sharing implements functionality needed to share and download files. This function-
ality is implemented using the RPC layer with bencode. Community holds the data
about users and the state of the network, and stores its data to the local database.
Configuration offers an interface for application-wide settings database.

On layer 6 are second level plugins message board and chat. Message board uses
file sharing plugin to share messages. Chat is implemented as a separate plugin, but
uses services of bencode and RPC layer.

On layer 7 are user interface plugins for radar, community, message board and chat.
Radar plugin consists of only a user interface with no state information of its own.
It visualizes the state of community plugin. Community user interface plugin offers
the main user interface from TWIN. Message board and chat user interface plugins
implement interfaces to their respective second level plugins.

27

5. IMPLEMENTATION

This chapter presents the methods and tools that were used to implement TWIN.
Implementation of the plugin interface is also presented. Tools and languages
presented here were selected mainly on the principle of being easy, and thus fast to
use, to develop prototype software.

5.1. Methods

No formal agile methods, such as Scrum [49], Extreme Programming [4] or Feature-
driven development [45] were followed during the development.

Scrum uses an iterative method for project management. It enforces roles, such
as Scrum Master, who is responsible for the deliverables of the team. Scrum uses
sprints, which are time-restricted cycles of development with fixed goals.

Extreme Programming also uses time-restricted development cycles. It enforces
programming in pairs and unit testing of all written code among other things.

Feature-driven development requires features lists to be built before the development
is started. These features are then split into small groups, which are developed in
time-restricted cycles.

These methods would not have been suitable to use in the TWIN project, because
the developers had no previous experience in them, and because the methods would
not have fit to the irregular working hours in the project. All of them require
timely cycles and fixed deliverables, which do not fit to the principle of prototyping
ideas. Feature-driven development requires that the features are planned before
the development starts, which does not fit the goal of recognizing new ideas during
development.

Instead, some custom methods were agreed to help the development flow: Every
change should be tested by the developer who wrote the code before making a
commit; commits should be tagged to ease code review; every commit should be
reviewed before merging them into developers own branch; every commit should

5 Implementation 28

Figure 5.1. Development flow of TWIN. Ideas are made into prototypes, which are then
evaluated. This may lead into new ideas or new code. Finally, results are documented.

leave the source tree into a usable state; and fast iteration of features should be
preferred over completeness of the commits.

An outline of the development flow is presented in Figure 5.1. First, the idea is
formulated. Then the first prototype code is written, and it is evaluated for the
implementation of the idea, code quality and possible bugs. This evaluation may
lead into new ideas, or needs to improve the code. New code is then again evaluated.

5.1.1. Fast iterations

As the requirements and features of TWIN were constantly changing along with the
progress of the research, it was important to be able to prototype ideas fast. To
make this possible, no specifications were written in any point. New features were
tried by implementing them and evaluating the outcome. Bad design decisions were
simply reverted, and good decisions were developed further.

To be able to experiment with new features as fast as possible, fast iteration of
features was needed. This required many small changes to the code instead of few
large ones. This way the possibly needed changes could be done sooner.

We also used a bottom-up approach on new features: first, the most basic functionality
is added and tested, and after that the feature is iterated to add more functionality,
polished looks and cleaner code.

5 Implementation 29

5.1.2. Immediate testing

With no specifications for the prototype, it was hard to verify that the implementation
is valid. To mitigate this problem, it was agreed that the developer who writes a
feature will first test it and, only after being convinced of its functionality, commit it
to the version tree.

Because the writer of the code is in many times blind to one’s own mistakes, it was
agreed that before other developers merge code to their own branches, the code must
be reviewed. This way all code will be reviewed by every developer.

If a bug is found, usually the founder would report it to the writer of the code. But,
if the writer is not present, the founder is free to fix the bug. Thus the code is not
owned by its writer, contrary to what is customary in heavily managed projects.

While fast prototyping of new features was important, keeping the code functional
was even more so. If a bug was found, it was crucial to first fix the bug, and only
then carry on writing new code.

5.1.3. Tagging commits

To help reviewing the code, every commit was tagged according to its intended
effect. Nine different tags were used: perfective, corrective, cleanup, preventive,
documentation, security, adaptive, workaround, and breakage. These tags follow
those described in [38], with the addition of some custom ones to better describe the
commit. The usage of these tags in TWIN are explained in Table 5.1.

5 Implementation 30

Table 5.1. Tags used to mark different commit types, not accounting for merge commits.

Commit type Description # of commits % of commits

Perfective Adding or improving
functionality

1195 43.0

Corrective Fixing incorrect function-
ality

759 27.3

Cleanup Improving quality of code
without changing func-
tionality

302 10.9

Preventive Preventing incorrect func-
tionality

168 6.1

Documentation Only adding missing com-
ments, no changes to
functionality

27 1.0

Security Preventing security holes 17 0.6
Adaptive Adding support for differ-

ent target platforms
15 0.5

Workaround Temporary or low-quality
solution to a problem due
to problems presented
from elsewhere in the
code or 3rd party libraries

12 0.4

Breakage Workaround that breaks
some other functionality

1 <0.1

of tagged commits 2496 89.9
of commits 2775 100

5 Implementation 31

5.2. Tools

Multiple tools were needed to implement TWIN. These tools consist of programming
languages and interpreters, libraries and a version control system.

Most of the tools were readily available to reuse. We also needed few custom tools,
for assuring the quality of the code and to make trying out changes easier. These
tools were written in Perl [12] and Bourne Shell [40] languages for their suitability
for using other programs as a part of a new program and easy access to regular
expressions. Table 5.2. lists the most important tools used.

Adhoc-up tool was needed to quickly set up ad hoc network on the device. It
deconfigures the current network and sets up an ad hoc network with the SSID ”twin”.
It removes the need to set up network parameter by hand, which is time consuming
and error prone.

Find-unused-imports, find-unused, and find-unused-python-functions are scripts to
maintain code quality by removing unused code, which could lead into bugs. They
search for unused imports, modules and methods inside modules, respectively.

Make-release tool creates an encrypted package of the source code, while upload tool
uploads the code to the device. The purpose of these tools is simply to automate
often repeating tasks and to cut down development time.

Table 5.2. Custom tools used in development of TWIN.

Tool Description Language

adhoc-up Setting up ad hoc network on
N900

sh

find-unused-imports Finding unused Python imports
in modules

perl

find-unused Finding unused modules perl
find-unused-python-functions Finding unused Python methods

in modules
sh

make-release Packaging current version to an
encrypted file

sh

upload Uploading the source files to an
N900 device

sh

5 Implementation 32

5.2.1. Git

The version control system used when developing TWIN was Git [10]. It was chosen
based on two criteria: 1) it was familiar to the developers; and, more importantly
2) it is distributed.

Distributed version control means that the version control system does not dictate a
central master repository to which every developer must commit their changes, but
instead every repository features its own branch of the source tree, and holds a full
version history for the project.

A branch is a distinct copy of the source tree, which differs in some way (at least by
its name) from other source trees. Branches can be modified in parallel, and their
changes can be merged together to either form a single branch with changes from
the merged branches, or to just keep the branches synchronized.

Because of this distributed nature of Git, every developer is able to make independent
changes to their working tree. Unlike with centralized version control systems,
developers do not have to fetch changes committed by other developers before
committing their own changes. This way new features can be developed without
considering changes made by others. After the feature is completed and tested, it can
be merged by other developers. This gives a great deal of freedom in development.

5.2.2. Python

The Python programming language [23] was used to write all of the main program
and plugins. Python is a dynamically typed, interpreted language.

Dynamic typing means that there are no compile-time types checks, but the types
are checked when the variables are used in run-time. In addition, Python does not
enforce variables to be certain types before they can be used. Instead, if variable
must merely hold the member it was asked for in order to be used. This is called
duck typing [9] in Python.

Python features a very extensive standard library. The library includes modules to
interact with e.g. the operating system, file system and network. It also includes
basic data structures, such as lists and hash tables, or key-value dictionaries as the
structure is called in Python. Table 5.3. lists the most important Python library
modules used, and TWIN modules using them.

In addition to Python’s standard library [28], five different Python libraries were
used: PyGTK [47], python-dbus [26], python-hildon [32], python-gst [29], and

5 Implementation 33

Table 5.3. Most used Python Standard Library modules in TWIN.

Module Description Used by

StringIO In-memory file like object twinawarenet, twinconfigparser
copy Methods to deep copy

Python objects
filesharing, meta, twinstate

datetime Date and time related
classes

scheduler, statistics, utils

dbus Interprocess messaging bus vibra, wlancontrol
errno Standard error symbols community, filesharing, ioutils, listener,

ossupport, statistics, twinawarenet
fcntl File descriptor control ioutils
mimetypes MIME guessing filesharing_gui, openfile
os System dependent OS

routines
community_gui, content, feedback,
filesharing, filesharing_gui,
filetransfergui, gui_user, guihandler,
guiutils, ioutils, keymanagement,
keymanagement_gui, messageboard_gui,
messaging_gui, notification_gui,
openfile, options, ossupport, ossupport,
pathname, pic_choose_dlg, radar,
scheduler, sendfile, sendfile_gui,
simple_tracer, splash, statistics,
twinawarenet, twinawarenet_gui,
twinconfigparser, twinstate, watches_gui

random Random number
generation

community, fetcher, filesharing,
keymanagement, main, messageboard,
messaging, tcpfetcher, twinawarenet,
utils

shutil File copying methods ossupport
signal POSIX signal support ossupport
socket Socket support community, ioutils, listener
struct Conversion methods

between C and Python
data structures

ioutils

subprocess Process spawning and I/O openfile, ossupport
sys Python interpreter related

methods
main, options, simple_tracer, support,
twinawarenet, twinstate, twintracer

time Time manipulation community_gui, communitymeta,
feedback, messageboard,
messageboard_gui, messaging, scheduler,
statistics, user, utils,

zlib Fast data compression twinawarenet, utils

5 Implementation 34

Table 5.4. Summary of used 3rd party libraries.

Library Purpose Reference

PyGTK Graphical user interface library [47]
python-dbus Message bus system [26]
python-hildon Application framework for Maemo [32]
python-gst Multimedia framework [29]
bencode Data encoding [44]

bencode [13]. Table 5.4. describes these libraries. Python-dbus library is for using
the D-Bus [25] inter-process communication (IPC) library. It is mainly used to
control the peripherals on the device, such as the vibra. Python-hildon contains
Maemo specific user interface widgets. Python-gst is a binding for GStreamer [53],
a library for handling media, for example playing music or video on the device.
Bencode is a serialization library. PyGTK is discussed in the next sections.

5.2.3. GTK+

GTK+ is a user interface toolkit, originally designed for the X11 desktop environment
for use in Linux-based operating systems. It includes user interface widgets to build
interfaces from reusable pieces, such as windows, buttons, text fields, images, tabbed
interfaces, and containers to organize the widgets.

GTK+ also includes a lower level utility library called GLib. It includes several data
structures missing from C, such as dynamic arrays and binary trees. As we used
Python, which implements these basic tools, they were not used in the prototype
development. GLib also offers tools for timers, function callbacks and waiting for
input/output events from the operating system. These tools were used in TWIN. [57]

5.2.4. Portability of Python and GTK+

A great benefit from using Python and GTK+ was their portability between different
platforms. Both are available for x86 PC architecture, as well as for the ARM
architecture used in N900.

This allowed us to develop and test the prototype on a regular PC. Only after a
feature was found to be ready, it was tested on the target device. As Python is an
interpreted language, no actions were needed other than transferring the program to
the device.

5 Implementation 35

N900 has limited calculation capacity when compared to an average desktop PC,
and executing the program on the device has a noticeable delay of around 20 seconds.
Thus the possibility to test to prototype on a fast PC saved a great deal of development
time. The delay is no issue when using the program, as it is designed to be always
on.

5.3. Plugins

Plugin interface offers the plugins methods to register services they offer to other
plugins, use services offered by other plugins and subscribe to data coming from the
core. To the application core the interface offers methods to initialize and cleanup
plugins, and to publish data to them.

The following sections present the main methods of the plugin interface.

5.3.1. register_plugin

Method register_plugin allows a plugin to register itself for use of other plugins.
Plugins are recognized simply by their type. Other plugins can then use services from
registered plugins by retrieving their instance using get_plugin_by_type method.

5.3.2. get_plugin_by_type

This method retrieves a plugin registered earlier with the register_plugin method.
It returns an initialized instance of the retrieved plugin. Plugins are singleton objects,
so every call to this method will return the same instance.

5.3.3. ready

This method is called by the core after every non-UI plugin has been initialized. The
purpose of this method is to offer a place for the plugins to initialize services needed
from other plugins. If services would be initialized before the plugins were ready,
some plugins might be in an undefined state.

5.3.4. gui_init

The ready method was called after initialization of non-UI plugins. This gui_init
method is then called by the core to initialize UI plugins. The purpose of this method
is to ensure that the state of the plugin is finalized, including all of the services used
from other plugins, before any information is presented to the user.

5 Implementation 36

5.3.5. cleanup

Method cleanup is called by the core when TWIN is terminated. In this method,
plugins should save any persistent data, close open network connections and free any
reserved resources.

5.3.6. user_appears, user_disappears, user_changes

There methods are called by the core when a user appears, disappears, or when the
state of a user changes, respectively. These methods publish information about the
network to the plugins.

5.3.7. community_changes

This method is called by the core when community information is changes. This
means a change in communities profile or icon.

5.3.8. Example plugin

The simplest possible plugin for TWIN could be implemented in 11 physical lines
of code, including white space for good readability. Example of this is shown in
Programme 5.1. The simplest plugin that was actually implemented, vibration, is
shown in Programme 5.2. Vibration plugin alerts the user by vibrating the device,
when a friend joins the network or a file is received.

First, core calls init function of the plugin module, which creates the plugin object.
Python then calls the initializer method of the plugin object, __init__. In this
method, the vibra of the device is initialized, and the plugin is registered, so other
plugins may use services offered by it, mainly the method vibrate. Then ready
method is called by the core. There the plugin registers a callback function to sendfile
plugin. This callback function, file_receive, simply calls vibrate method of the
plugin the vibrate the device and alert the user. Another method that calls vibrate
is the user_appears method, which is part of the plugin interface. When a user
appears in the network, this method is called by the core. If the appeared user has
been marked as a friend, vibrate is again called to alert the user.

5 Implementation 37

Programme 5.1. Simplest possible plugin.
1 from p lug in s import Plugin
2
3 class NewPlugin (Plugin) :
4 def __init__(s e l f) :
5 s e l f . r e g i s t e r_p lug in (’new−plugin−name ’)
6
7 def user_appears (s e l f , use r) :
8 print ’ { n ick }␣ appears ! ’ . format (n ick=user . get (’ n ick ’))
9
10 def i n i t (opt ions) :
11 NewPlugin ()

Programme 5.2. Simplified example of plugin that vibrates the device, when a friend
joins the network or a while is received.

1 class Vibra_Plugin (Plugin) :
2 def __init__(s e l f) :
3 # code to i n i t i a l i z e phone v i b ra
4 # . . .
5 s e l f . r e g i s t e r_p lug in (PLUGIN_TYPE_VIBRA)
6
7 def ready (s e l f) :
8 s e n d f i l e = get_plugin_by_type (PLUGIN_TYPE_SEND_FILE)
9 s e n d f i l e . rece ive_cb . append (s e l f . f i l e_ r e c e i v e)
10
11 def get_vibra_enabled (s e l f , p r o f i l e) :
12 # code to check phone−wide v i b ra s e t t i n g s
13 # . . .
14
15 def prof i le_changed_handler (s e l f , foo , bar , p r o f i l e , ∗ args) :
16 s e l f . get_vibra_enabled (p r o f i l e)
17
18 def v ib ra t e (s e l f) :
19 i f s e l f . enabled :
20 s e l f . mce . req_vibrator_pattern_act ivate (
21 ’ PatternChatAndEmail ’ ,
22 dbus_inter face=’com . nokia . mce . r eque s t ’)
23
24 def f i l e_ r e c e i v e (s e l f , cb , user , fname) :
25 s e l f . v i b r a t e ()
26
27 def user_appears (s e l f , use r) :
28 i f user . get (’ f r i e nd ’) :
29 s e l f . v i b r a t e ()
30
31 def i n i t (opt ions) :
32 Vibra_Plugin ()

38

6. USER INTERFACE PROTOTYPES

User interfaces were specifically designed to be used with the touch screen of the
N900. This required the UI elements to be large enough to be used with a finger.
On the other hand, the small size of the display set limit to how much information
can be displayed at the time.

Because of limited display area, some UI elements had to be hidden to menus and
tab pages. This is against the Maemo user interface guidelines, but was seen as a
necessary action to be able to accommodate all of the actions in the application.
Actions hidden were the ones that were most seldom needed: settings, plugin actions
and additional information. Core functionality is always visible on the views.

6.1. Community view

Community view shows all those communities that have at least one active user at
that time – including the user of the application. Example of the community view is
shown in Figure 6.1. On the upper left corner is always the main community named
”twin”. It is a special community to which all the peers in the network belong to, and
its default community icon differs from other communities. Like other communities,
that icon can be changed, but the name of the community can not, and the user
can not leave the twin community. After the twin community come all the other
communities.

On the right side are the community action buttons. A community can be selected
by tapping it once. Then an action can be performed on the community by tapping
one of the action buttons.

Community button lets the user create new communities and join the existing ones.
Chat button opens a chat to the selected community. Filesharing button lets the
user publish and search files from the community and msg board button lets the user
read and write persisting messages. Text on the message board button had to be
shortened because of limited display space.

After opening a community, a list of active users is shown. User listing of ”twin”
community is shown in Figure 6.2. The action bar on the right is modal, and now the

6 User interface prototypes 39

Figure 6.1. Community view showing twin community, which is common for all users,
and two other communities, Tampere and Hervanta.

Figure 6.2. View inside the twin community, showing author with the nickname Antti
Alien, and other members of the research team.

6 User interface prototypes 40

actions are performed to users, not communities. User’s own profile icon is always
shown on the upper left corner, with a bold formatted text, prepended with ”(me)”.
All other users are added to the view in the order of appearance to the network.

As users joined and left the network, it was noticed that the user list is very restless
and hard to use when icons change their places. This was solved by making the list
stable: when a user leaves the network, user icons do not change place, but there
will be a hole in the place of the user who left.

Community view holds its own version of the user and community databases, which
must be kept synchronized with the core. This is done by using the user_appears,
user_disappears, user_changes and community_changesmethods from the plugin
interface. Users are added and removed, and their information is changed in these
methods. Communities are drawn according to the number of users they have: after
the last user (accounting the local user) has left the community, it is no longer drawn
in the community view. Only references to users and communities are held in the
database. All additional information is retrieved from the community plugin when it
is needed.

6.2. Profile view

By tapping a user, their profile is shown. Example of a profile view is shown in
Figure 6.3. The profile is formatted from the personal data shared by the user. Again

Figure 6.3. Personal profile of user with the nickname Smith.

6 User interface prototypes 41

Figure 6.4. Profile editor for sharing personal information.

the action bar is shown on the right. The ”More actions” tab contains additional
actions, and actions added by plugins. From the tab, user can be invited to a
community and the profile information can be refreshed. The ”User communities”
tab contains a list of all of the communities the user is in.

Profile editor view allows the user to share personal data. Possible fields include
name, age, gender, place of residence and a free form description. Nickname used
in the network along with the profile picture can also be changed from the profile
editor view. All fields are freely formatted, allowing the user to input any data in
them. Profile editor is shown in Figure 6.4.

These dialogs hold no information of their own per se, but they still must be
synchronized with the community plugin. This is because there is no interface to
fetch possible profile fields from the community plugin. This again is because the
field names displayed to the user are user interface specific information. Possible
fields and their names must therefore be upheld by the developer in order for them
to be displayed. Information to fill these fields is retrieved using an interface offered
by the community plugin.

6.3. Radar view

Radar view was the most popular user interface feature on TWIN in the pilot [56].
It allows users to easily see peers who are nearby. The view is divided into circle

6 User interface prototypes 42

sectors, which indicate the peers’ distances in the network from the user in terms
of hop count. Radar view visualizing hop counts on ”twin” community is shown in
Figure 6.5.

First circle indicates that the hop count is 1, meaning that there is a direct connection
between the user and the peer. Second circle indicates that the connection is
established through one of the peers in the first circle, and the third circle indicates
that the user is further than 2 hops away.

Because of how the underlying network works, these distances roughly equal real
world distances. Peers on the first circle are in most cases closer to those in outer
circles. There were occasional exceptions to this, likely resulting from the network
layer dividing work required for routing. Walls and other objects blocking and
reflecting the wireless signal also affects the outcome.

On the other hand, the view does not distinguish distances between peers on the same
circle. Depending on the circumstances on the network and on the surroundings, two
peers on the same circle might be even one hundred meters apart from each other.

Radar view receives references to users with user_appears, user_disappears and
user_changes methods. Using these methods it holds a list of users and their
coordinates on the radar. Only pieces of information of the user used by the radar
view are nick, profile picture and hop count. There is no underlying non-UI plugin
for radar to hold more state information. Radar view is a pure UI plugin.

Figure 6.5. Radar view with many users.

6 User interface prototypes 43

The view was not implemented in a very sophisticated way, but only used GTK+
library’s drawing functions. This led to the view taking up a lot of CPU time, which
led to using large amounts of energy. With 10 peer on the view, 40% of CPU time
was used for updating. This would be a problem if the view is used for long times,
but if the view is not visible on the display, no drawing functions will be called and
no CPU will be wasted.

6.4. Filesharing

Filesharing view allows user to publish media, browse and search content published
by others, upload media directly to peers and stream media directly from other
devices.

Media can be published to the network by selecting ”Filesharing” and then ”Publish”.
The content will be published to the selected community. If no community is selected,
the content is targeted to everyone, that is, to the ”twin” community. Adding
published content is presented in Figure 6.6.

Shares can be browsed by selecting the ”Browse” alternative from the filesharing
dialog. Again a community or a user can be selected to filter the browsing results.
Browsing content is shown in Figure 6.7.

Figure 6.6. Filesharing view, for adding files, showing metadata of an added file being
edited.

6 User interface prototypes 44

Figure 6.7. Filesharing view, showing one file ready for download.

Media can be downloaded, or streamed directly, if the file type is suitable for
streaming. Streamable file types include music and videos supported by the device.

Published media may include metadata, such as title, author, file type, description
and keywords. This metadata is used when published content is searched.

When downloading media, the devices must be directly linked to each other. Down-
loading is not possible with multi-hop networking. Browsing results are not filtered
to only show published files from those, who are near enough. Instead, an icon to
present reachability is shown. Reachability is here defined as meaning the likelihood
of the file transfer succeeding. If the devices are more than one network hop away
from each other, a warning icon is shown to inform the user, that the download
may fail. Because there is the possibility of the network not routing optimally, the
download may still succeed, so trying is not prevented.

Content can also be uploaded directly to other users, by selecting ”Send file” from the
filesharing dialog. Targets work also with this option: files can be sent to everyone
in the network, to a certain community, or to a single user. Uploading requires one
connection per targeted user, so uploading files to large communities is limited by
the WLAN bandwidth.

Interfaces for the filesharing view are implemented in two parts: one module imple-
ments browsing and publishing shares, and another module implements an interface
for following the status of the transfers. The views use interfaces from the filesharing

6 User interface prototypes 45

Figure 6.8. Filesharing download sequence. User first queries shares and gets a list of
results. Then a share is selected to be downloaded. After the download is completed, user
is informed.

plugin to publish, download and receive shares. The filesharing plugin holds all of
the state information regarding the transfers, which is then used by these views.
State of the user interface is changed using callback functions, which are called by
the filesharing plugin.

Sequence diagram of downloading a share showing interaction between filesharing
plugin and the user interface is presented in Figure 6.8. User first initiates to activity
by clicking the ”Browse” button on the user interface. A list of results is asked
from the filesharing plugin with query method. Nothing is returned, but the call
includes a callback function download_results, which is used to pass the results
after the query has been made. Then the user selects a file to download. Filesharing
view user get_files method to download the share. Again a callback function,
download_complete, is given. After the download is completed successfully, or the
download failed, the callback function is called, and the user if informed of the status.

6.5. Chat

TWIN supports public group chats and private one-to-one chats. Group chats take
place in communities, while private chats are between two users. Type of the chat
is determined automatically by the selected target. A group chat in the ”twin”
community is shown in Figure 6.9.

6 User interface prototypes 46

Chats are divided into tabs in the user interface. When a new chat message occurs,
the tab will turn red to alert the user.

As chats usually occur in real time with short intervals between messages, chat feature
was very vulnerable to the problems caused by unreliable transfer layer. Transmission
delay of several seconds was immediately noted by the users, and missing messages
caused a lot of irritation.

Some user interface features were designed to mitigate this. Unsent messages are
marked, so that the user knows what messages from him the others have seen.
Because of the functionality of the network layer, however, this is only a guess. For
example, the message might have been delivered successfully, but the acknowledgment
response was dropped.

Chat user interface module holds all of the state information for active chats. Mes-
saging plugin, which is the underlying layer for the chat plugin, has no concept of a
”chat”. It only knows how to send and receive messages. New active chat is created
when a message with a previously inactive target is received. Chats are closed only
by the user. Messages are received through new_message_cb method, which is called
by messaging plugin for every new message.

Figure 6.9. Chat in the public twin community, with a private chat open in the background.

6 User interface prototypes 47

6.6. Message board

The message board acts as personal bulletin board that every user carries with them.
Purpose of it is to permanently hold text messages, which can then be viewed by
other users at any time. This is as a contrast to chat messages, which can not
retrieved again after they have been sent to the network. Example of the message
board is shown in Figure 6.10.

Message board functions so, that the messages users write to it are stored to their
own device. New messages are advertised to those who are currently active in the
network. Older messages can be retrieved by querying messages from other devices.
Every device replies to the query with the list of their messages. Every device also
holds a cache of earlier seen messages. This speed up searching and browsing of the
messages by reducing network round-trips.

Messages can be marked to belong to a certain community to limit the intended
audience of the message. Messages are public, and every message is always published
to all other users, but messages are filtered in the user interface based on which
community the message is marked to belong.

The user interface plugin simply displays messages received from the network, and
offers an interface to write new ones. Messages as retrieved from the messageboard

Figure 6.10. Message board with an advertisement of an N900 and an invitation to a
party.

6 User interface prototypes 48

plugin with query_messages method. New messages are published to other users
with publish method of the messageboard plugin.

6.7. Summary of the prototype interfaces

Almost half of the code written for TWIN was used to create user interfaces. While
the views must hold some duplicate information with their underlying plugins, most of
the displayed information is retrieved through different interfaces, reducing duplicate
work and data.

This chapter presented the user interfaces that implement use cases developed for
TWIN. In addition to these, there is much user interface code to implement additional
parts of the application, such as dialogs, settings, helper code for graphics etc.

Table 6.1. gives a summary of the prototype interfaces in terms of lines of code
(LOC).

Table 6.1. Main user interfaces implemented for TWIN.

View name Module # LOC % LOC Description

Community
view

community_gui 2326 16.6 Visualize communities
and users

Profile view gui_user 515 3.7 Profile visualization and
editor

Radar view radar 243 1.7 Visualize network dis-
tance of users

Filesharing
view

filesharing_gui 821 5.8 Browsing and download-
ing shares

filetransfergui 255 1.8 Monitoring transfers
Chat messaging_gui 354 2.5 One-on-one and group

chats
Message
board

messageboard_gui 407 2.9 Persistent messages

Total 4921 35.0

Additional UI code 1490 10.6
Total UI code 6411 45.7
Total lines of code 14043 100

49

7. PROTOTYPE TESTING

Even with a prototype program, checking of the correctness of the code and evaluating
usability is crucial. While developing, only the code could be checked. Evaluation of
usability in terms of does the program do what the user thinks it does, rather than
does to program function as it was intended, requires a large enough group of test
users.

7.1. Methods

We used a number of methods to help test the software. We created a PC version of
the application to be able to move the evaluation task from the device to the PC
where the development was done. We used assertions to ensure that the assumptions
made were holding. We used linting software to find common sources for bugs, and
lastly, a debugger software specialized for Python was used to track the source of
the bugs to be able to fix them.

7.1.1. PC version

At first, TWIN was developed for and tested only on the N900 device. This was
soon found to be very time consuming. Copying the software from the workstation
to the device and running the program on the device took around 30 seconds for
each try. Figure 7.1. illustrates this. As normal debugging workflow usually requires
constant retries, this time penalty was too long.

Figure 7.1. Timeline for initial steps of testing a new version on the device.

7 Prototype testing 50

Programme 7.1. Example of detecting the run-time platform and creating a different
button widget depending of the result.

1 import gtk
2
3 have_hildon = True
4 try :
5 import h i ldon
6 except ImportError :
7 have_hildon = False
8
9 def new_button (l a b e l) :
10 i f have_hildon :
11 button = hi ldon . Button (
12 gtk .HILDON_SIZE_AUTO_WIDTH | gtk .HILDON_SIZE_FINGER_HEIGHT,
13 h i ldon .BUTTON_ARRANGEMENT_HORIZONTAL)
14 button . s e t_ t i t l e (l a b e l)
15 else :
16 button = gtk . Button (l a b e l)
17 return button

As both Python and GTK+ are available for both x86 and ARM architecture used
on N900, it was decided that the prototype will be made functional on the PC. This
effort required only minor changes to the source code, mainly taking into account the
Hildon desktop environment on the N900. The source code used on both platforms
is the same, but some run-time decisions on execution path must be made differently
on each platform. Example session of the PC version running on 64 bit x86 hardware
and a regular Linux desktop is shown in Figure 7.2.

Hildon uses custom widgets to create a touch screen enabled user interface. The
widgets that had to be fitted for TWIN were file chooser, scroll area, text view,
button and text entry. Programme 7.1. gives an example of how to create a different
button widget depending on the platform.

PC version introduced also some problems to the development. While the target
platform was N900, the functionality of the PC version was crucial to the development.
Also, we did not want to maintain different versions of the code apart from the
few wrapper utility functions. Because of the differences between pure GTK+ and
Hildon, some compromises had to be made to the user interface design.

Other problem was that, when developing on the PC, evaluation of the user interface
appearance on the device was sometimes forgotten. Changes that seemed minor on
the PC sometimes had major effects on the device.

7 Prototype testing 51

Figure 7.2. TWIN running on a PC under 64 bit Gentoo Linux and Openbox window
manager.

7 Prototype testing 52

7.1.2. Assertions

One tool used to automatically evaluate the correctness of the code were assertions.
Assertions are logical predicates, which should always hold true when the expression
is ran. If the assertion fails, meaning that the value of the expression is false, the
program will be immediately terminated, and the offending line is reported.

Most bugs found with the use of assertions involved parameters with wrong types
being passed to methods. In Python, there is no type checking, but a variable is
considered suitable, if it possesses the member it was asked for. Also, in many cases
in TWIN, functions can take multiple types by design. This reduces copying code
and inventing new method names, which can introduce bugs to the code, and makes
the code harder to maintain.

Another situation where assertions were found very usable was refactoring code.
When interface changes are made, every piece of code calling the changed functions
must be changed correspondingly. Assertions helped to locate unchanged code.

7.1.3. The Python Debugger

The Python Debugger (pdb) [22] is an interactive debugger for Python. It has a
similar command line interface as the GNU Project Debugger [21]. Pdb includes
features for settings breakpoints, stepping the program line by line, printing stack
frames and running Python code using the variables under current scope.

Pdb is used to help trace bugs. Normal workflow for pdb is to make an intelligent
guess about the origin of the bug, and set a trace to a suitable place before the
bug is expected to occur. The code can then be stepped line by line to check to
behavior. Another way of using pdb is to inspect the circumstances that led into
the termination of the program. Pdb can print the stack trace and last values of the
variables in the scope of the stack frame.

IPython [18] is a replacement shell for the regular Python shell, with more features,
such as completing words by pressing tabulator key, syntax coloring, better support
for writings inline python code blocks, and pdb. IPython’s pdb integration can be
used by simply importing ipdb instead of pdb. This way all of the IPython’s features
will be made available when the debugger is executed. Example session with IPython
and pdb is shown in Figure 7.3.

7 Prototype testing 53

Figure 7.3. Python debugger running on iPython shell, showing the last file and the last
function call, a NameError exception caused by a missing letter, and the correct form found
from the current namespace.

7.2. Problems

Problems complicating evaluation were mostly related to the fact that Python is an
interpreted programming language. Because of that, most bugs can be found only
on run-time.

Other major problem was, that there are no well established methods to automatically
test graphical user interface of the software. As most of the user interface bugs relate
to rendering wrong information, automatic unit tests and regression testing is hard.

7.2.1. Interpreted and dynamic

Interpreted language means, that the source code is taken as such and ran by an
interpreter software, taking expressions and translating the into operations or system
calls. This is as contrast to compiled languages, where the source code must first by
compiled into machine code, which is then ran directly by the CPU.

The lack of compilation process, and thus the lack of compile time checks, introduces
problems to testing. Only syntax checking is done before run-time, or as the abstract
syntax tree (AST) is being constructed from the source code. Table 7.1. lists some

7 Prototype testing 54

Table 7.1. Differences of automated error checking between an interpreted language with
dynamical typing and a compiled language with static typing.

Check type Interpreted Compiled

Type checking Run-time Compile-time
Name checking Run-time, or with a linting

tool
Compile-time

Range checking Run-time Run-time
Syntax checking Before run-time or with lint-

ing tool
Compile time

of the differences between dynamically typed interpreted languages and statically
typed compiled languages.

Dynamic typing means, that the types are evaluated on run-time. This leads to the
situation, where the correctness of the types must be checked by the programmer.
In many places, the source code of TWIN is knowingly written to use multiple types
of variables. These kind of situations can not be checked even with a linting tool
able to infer types from the code path.

A linting tool is a program that does static analysis to the source code, i.e. without
actually running it, to find common mistakes and bad quality code. Pylint [54] is a
linting tool for Python. It checks the source code for style, bugs, and code structures
prone to create bugs.

7.2.2. User interface testing

Testing graphical user interfaces proved hard. There are few tools for testing interfaces
automatically, e.g. LDTP [33], Dogtail [30], and Sikuli [11]. These tools have many
restrictions and require special techniques, such as accessibility enabled interfaces, to
be able to run tests. Some of the tools, LDTP and Sikuli, work mainly by comparing
screenshots taken of the application.

These techniques do not fit well for testing complex multi-user network software,
where the interactions between user initiated events cause a great deal of randomness
to the program flow. Events could be simulated to to remove this randomness to
some extent, but that would not correspond to the real use cases.

Because of these difficulties, automated tools were not used to evaluate TWIN.
Instead user interface code was evaluated by hand with repeated attempts to induce
and repeat bugs. Still, many of the user interface bugs were only found during the
user pilot with 250 people using the application.

55

8. EVALUATION

Results for this thesis consists of two parts. First the usability of the user interfaces
is evaluated using using the experiences received from the TWIN pilot [56]. Then
the effectiveness of the methods used in development is evaluated by comparing the
amount of work taken to develop TWIN to the approximation given by the amount
of source code lines.

8.1. Usability of user interfaces

In the pilot, 250 users used TWIN for two months. Users were asked to give feedback
on the functionality and usability of the application. User interfaces seemed to be
well accepted, based on the notice that there were little complaints about them.
Two main complaints were about the unclear purpose of radar interface, and about
messages being missed due to TWIN giving no notice at all when being left to the
background, or when the phone was not actively used.

Latter was fixed during the pilot. The vibration plugin introduced in Chapter 5
was added. The plugin vibrates the phone when a new private chat message is
received, or when a user marked as a friend appears in the network. Radar view was
left as it was, as according to feedback, most users seemed to like it. Better user
documentation could have helped with the issue. Radar view was mentioned as the
most interesting single user interface feature in TWIN.

Users were asked to mention the most interesting feature in TWIN. Use cases
mentioned most often were the ability to communicate with the people physically
nearby, sharing content with then and seeing who is around you. The most often
mentioned user interface feature was the radar. Most interesting features according
to TWIN pilot are listed on Table 8.1. [56]

8.1.1. Ideas for improvement

During the pilot, the participants for able to give ideas for improvements through
various ways. These ideas were gathered together, and the most often mentioned
ones are presented in Table 8.2.

8 Evaluation 56

Table 8.1. Most interesting features of TWIN according to pilot participants.

Features Mentioned by %

Communication with nearby people 21
Content sharing 19
Seeing who are around you 15
Radar view 12

Most ideas were related to the social aspect of the program. Three most often
mentioned ideas were short games to play with strangers, more features that would
help use TWIN for dating, and support for features that could be used by large
crowds of people, such as a message wall, where visitors could post their messages in
public events, or a collaborative painting canvas.

8.2. Methods

The methods used to develop TWIN were seen as functional. Prototypes could be
completed fast without any formal specifications, and new ideas arising from them
could be implemented through an iterative process. We were able to make many bugs
fixes according to the given feedback by the pilot participants. Seven new versions
were released during the pilot in addition to the original one.

It is hard to give numeric values for the methods. Constructive Cost Model [35] can
be used to estimate the development effort that should have been needed to create
TWIN. The model uses the amount of source code lines to estimate needed effort by
using coefficients discovered by examining software projects of different sizes.

According to this method the needed development effort in order to create TWIN
would be 3.3 person years. This is close to the realized development time.

Table 8.2. Ideas for new features and use cases gathered from the pilot.

Feature Mentioned by # Description

Games 37 Quick games to play with unknown people
Dating 29 More support for meeting new people,

more content on profile pages
Happenings 26 More crowd features, e.g. a message wall
Advertisements 26 Location-based advertisements for compa-

nies
Localized info 10 E.g. warnings about traffic

57

9. CONCLUSIONS

This thesis presented use cases and user interfaces to implement those use cases in a
social mobile ad hoc network application TWIN, as well as tools used to implement
and evaluate the application, and problems that were faced during the development.

The main result of the project and this thesis was the application itself, including
the user interfaces. Secondary results were the use cases, and experiences from tools
and methods to rapidly prototype different ideas.

Objectives of the project were to create user-friendly user interfaces, which scale
to hundreds of users, while taking into account the limited resources of the N900
mobile computer. The resource objective was met in the sense, that the bottleneck
was the network layer, not the application. There were at most 150 people visible in
the network to each other at once, with no observable problems to the application.
User friendliness was studied in the pilot, and the users seemed to accept the user
interfaces well.

Methods for testing and evaluation of the user interfaces were insufficient. While the
PC version and its portability to the device helped to reduce the time spent for testing,
there were no automated methods to test the user interfaces. Trying the application
by hand is inadequate to find bugs. Interactions between the actions initiated by
multiple users locally and over the network also complicated the evaluation process.

The project raised multiple ideas for future work. These have in part already been
implemented in following projects. Some of the ideas include integration of TWIN into
the phone, and usage of other social networks as a source for additional information
of the users. New use case ideas from the pilot have not been implemented, and they
should be studied in the future.

58

BIBLIOGRAPHY

[1] 3GPP. General packet radio service (gprs); service description. 2000.

[2] A. Ahtiainen, K. Kalliojarvi, M. Kasslin, K. Leppanen, A. Richter, P. Ruuska,
and C. Wijting. Awareness networking in wireless environments. Vehicular
Technology Magazine, IEEE, 4(3):48–54, September 2009.

[3] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishimoto, B. Ray,
S. Razgulin, K. Sundaresan, B. Surendar, M. Terada, and R. Han. WhozThat?
evolving an ecosystem for context-aware mobile social networks. Network, IEEE,
22(4):50–55, July 2008.

[4] Kent Beck. Extreme Programming Explained: Embrace Exchange. Addison-
Wesley Professional, October 1999.

[5] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems.
In Proceedings of the eleventh ACM Symposium on Operating systems principles,
SOSP ’87, pages 123–138, New York, NY, USA, 1987. ACM.

[6] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 4
(2nd Edition). Prentice Hall, February 2008.

[7] SIG Bluetooth. Specification of the bluetooth system, version 1.1. 2001.

[8] Steve Burbeck. Applications Programming in Smalltalk-80: How to Use Model-
View-Controller (MVC). Softsmarts, Inc., 1987.

[9] Vern Ceder. The Quick Python Book. Manning Publications, second edition,
January 2010.

[10] Scott Chacon. Pro Git. Apress, August 2009.

[11] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. Project sikuli. http://sikuli.
org/, 2012.

[12] Tom Christiansen, Brian D Foy, Larry Wall, and Jon Orwant. Programming
Perl. O’Reilly Media, 4th edition, February 2012.

[13] Bram Cohen. The BitTorrent protocol specification. http://www.bittorrent.
org/beps/bep_0003.html, June 2009.

[14] Nokia Corporation. Maemo. http://www.maemo.org, April 2011.

http://sikuli.org/
http://sikuli.org/
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.maemo.org

BIBLIOGRAPHY 59

[15] Nokia Corporation. Maemo Software Development Kit. http://wiki.
maemo.org/Documentation/Maemo_5_Developer_Guide/Development_
Environment/Maemo_SDK, April 2011.

[16] Nokia Corporation. Nokia N9 touch screen smartphone – Specifi-
cations. http://europe.nokia.com/find-products/devices/nokia-n9/
specifications, November 2011.

[17] Nokia Corporation. Nokia N900 Tech Specs. http://maemo.nokia.com/n900/
specifications/, April 2011.

[18] IPython development team. Ipython. http://ipython.org/, 2012.

[19] Nathan Eagle and Alex Pentland. Social serendipity: Mobilizing social software.
IEEE Pervasive Computing, 4:28–34, April 2005.

[20] Daniel Elstern et al. Maemomm. http://maemomm.garage.maemo.org/, April
2011.

[21] Free Software Foundation. Gdb: The gnu project debugger. http://www.gnu.
org/software/gdb/, 2012.

[22] Python Software Foundation. pdb – the python debugger. http://docs.python.
org/library/pdb.html, 2012.

[23] Python Software Foundation. Python programming language. http://docs.
python.org/library/, September 2012.

[24] The Linux Foundation. MeeGo. http://www.maemo.org/about, April 2011.

[25] freedesktop.org. D-bus. http://www.freedesktop.org/wiki/Software/dbus,
September 2012.

[26] freedesktop.org. Dbus bindings. http://www.freedesktop.org/wiki/
Software/DBusBindings, September 2012.

[27] Magnus Frodigh, Per Johansson, and Peter Larsson. Wireless ad hoc networking
– The art of networking without a network. Ericsson Review, 4(4):249, 2000.

[28] Doug Hellmann. The Python Standard Library by Example. Addison-Wesley
Professional, June 2011.

[29] Edward Hervey. Gstreamer python bindings. http://gstreamer.freedesktop.
org/modules/gst-python.html, November 2012.

[30] Vitezslav Humpa. Dogtail. https://fedorahosted.org/dogtail/, 2012.

http://wiki.maemo.org/Documentation/Maemo_5_Developer_Guide/Development_Environment/Maemo_SDK
http://wiki.maemo.org/Documentation/Maemo_5_Developer_Guide/Development_Environment/Maemo_SDK
http://wiki.maemo.org/Documentation/Maemo_5_Developer_Guide/Development_Environment/Maemo_SDK
http://europe.nokia.com/find-products/devices/nokia-n9/specifications
http://europe.nokia.com/find-products/devices/nokia-n9/specifications
http://maemo.nokia.com/n900/specifications/
http://maemo.nokia.com/n900/specifications/
http://ipython.org/
http://maemomm.garage.maemo.org/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://docs.python.org/library/pdb.html
http://docs.python.org/library/pdb.html
http://docs.python.org/library/
http://docs.python.org/library/
http://www.maemo.org/about
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/DBusBindings
http://www.freedesktop.org/wiki/Software/DBusBindings
http://gstreamer.freedesktop.org/modules/gst-python.html
http://gstreamer.freedesktop.org/modules/gst-python.html
https://fedorahosted.org/dogtail/

BIBLIOGRAPHY 60

[31] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification. (802.11), 2007.

[32] INdT. Pymaemo. http://pymaemo.garage.maemo.org/, November 2009.

[33] Eitan Isaacson and Nagappan Alagappan et al. Linux desktop testing project.
http://ldtp.freedesktop.org/wiki, 2012.

[34] Bishal Raj Karki, Arto Hämäläinen, and Jari Porras. Social Networking on
Mobile Environment. In Proceedings of the ACM/IFIP/USENIX Middleware
’08 Conference Companion. ACM, December 2008.

[35] Chris F Kemerer. An empirical validation of software cost estimation models.
Communications of the ACM, 30(5):416–429, May 1987.

[36] Steffen Kern, Peter Braun, and Wilhelm Rossak. MobiSoft: An agent-based
middleware for social-mobile applications. In Robert Meersman, Zahir Tari, and
Pilar Herrero, editors, On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, volume 4277 of Lecture Notes in Computer Science, pages
984–993. Springer Berlin / Heidelberg, 2006.

[37] Janne Kulmala, Antti Laine, Marko Hännikäinen, and Heikki Orsila. Design
for device-to-device communication for social networking. 2012. Submitted for
publication.

[38] B.P. Lientz and E.B. Swanson. Software maintenance management: A study
of the maintenance of computer applications software in 487 data processing
organizations, 1980.

[39] Anderson Lizardo et al. PyMaemo. http://pymaemo.garage.maemo.org/,
April 2011.

[40] Cameron Newham and Bill Rosenblatt. Learning the bash Shell. O’Reilly Media,
2th edition, January 1998.

[41] Tom Nicolai, Eiko Yoneki, Nils Behrens, and Holger Kenn. Exploring social
context with the Wireless Rope. In Robert Meersman, Zahir Tari, and Pilar
Herrero, editors, On the Move to Meaningful Internet Systems 2006: OTM 2006
Workshops, volume 4277 of Lecture Notes in Computer Science, chapter 112,
pages 874–883. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[42] Nokia Corporation. Fremantle Master Layout Guide, October 2009.

[43] Donald A. Norman. The design of everyday things. Basic Books, 2002.

http://pymaemo.garage.maemo.org/
http://ldtp.freedesktop.org/wiki
http://pymaemo.garage.maemo.org/

BIBLIOGRAPHY 61

[44] Petru Paler, Ross Cohen, and Bram Cohen. Bittorrent-bencode. http://
bittorrent.com/, July 2007.

[45] Stephen R. Palmer and John M. Felsing. A Practical Guide to Feature-Driven
Development. Prentice Hall, February 2002.

[46] A-K Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot. Mobiclique:
Middleware for mobile social networking. In WOSN’09: Proceedings of ACM
SIGCOMM Workshop on Online Social Networks, August 2009.

[47] The GNOME Project and PyGTK Team. Pygtk. http://pygtk.org/, April
2011.

[48] Ryan Paul, Ars Technica. Nokia’s new MeeGo-based N9 is set
up for failure. http://arstechnica.com/gadgets/news/2011/06/
nokias-new-meego-based-n9-is-set-up-for-failure.ars, June 2011.

[49] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press, March
2004.

[50] E. Seidel. Technology of high speed packet access (hspa). NOMOR Research
White Paper, 2006.

[51] Software in the Public Interest, Inc. Debian GNU/Linux. http://www.debian.
org/, April 2011.

[52] SourceForge.net. Proximate. http://sourceforge.net/projects/
proximate/, November 2011.

[53] GStreamer Team. Gstreamer. http://gstreamer.freedesktop.org/, October
2012.

[54] Sylvain Thenault. pylint. http://www.logilab.org/project/pylint, 2012.

[55] Ian Vo, T. J. Purtell, Ben Dodson, Aemon Cannon, and Monica S. Lam. Musubi:
A mobile privacy-honoring social network. http://mobisocial.stanford.edu/
papers/musubi.pdf, September 2011.

[56] Kaisa Väänänen-Vainio-Mattila, Petri Saarinen, Minna Wäljas, Marko Hän-
nikäinen, Heikki Orsila, and Niko Kiukkonen. User Experience of Social Ad Hoc
Networking: Findings from a Large-Scale Field Trial of TWIN. In MUM’10, 9th
International Conference on Mobile and Ubiquitous Multimedia. ACM, December
2010.

[57] Matthias Warkus. Official GNOME 2 Developer’s Guide. No Starch Press, Inc.,
April 2004.

http://bittorrent.com/
http://bittorrent.com/
http://pygtk.org/
http://arstechnica.com/gadgets/news/2011/06/nokias-new-meego-based-n9-is-set-up-for-failure.ars
http://arstechnica.com/gadgets/news/2011/06/nokias-new-meego-based-n9-is-set-up-for-failure.ars
http://www.debian.org/
http://www.debian.org/
http://sourceforge.net/projects/proximate/
http://sourceforge.net/projects/proximate/
http://gstreamer.freedesktop.org/
http://www.logilab.org/project/pylint
http://mobisocial.stanford.edu/papers/musubi.pdf
http://mobisocial.stanford.edu/papers/musubi.pdf

	Introduction
	Requirements and constraints for prototype application
	Requirements for user interfaces
	Ease of use
	Scalability for large number of users
	Ability to interact with other users
	Ability to find other users
	Ability to share information and media

	Constraints of the platform
	Maemo platform on Nokia N900 mobile computer
	Ad hoc WLAN
	Scalability constraints from the platform
	Touch screen interface
	User interface constraints

	Related work

	Use cases for TWIN
	View nearby user
	Follow other users
	Create communities
	Join communities
	Share personal information
	Sharing media
	Chat with other users
	Post messages
	Expressing mood

	Architecture of TWIN
	Plugin interface
	Core / UI separation
	Architecture

	Implementation
	Methods
	Fast iterations
	Immediate testing
	Tagging commits

	Tools
	Git
	Python
	GTK+
	Portability of Python and GTK+

	Plugins
	register_plugin
	get_plugin_by_type
	ready
	gui_init
	cleanup
	user_appears, user_disappears, user_changes
	community_changes
	Example plugin

	User interface prototypes
	Community view
	Profile view
	Radar view
	Filesharing
	Chat
	Message board
	Summary of the prototype interfaces

	Prototype testing
	Methods
	PC version
	Assertions
	The Python Debugger

	Problems
	Interpreted and dynamic
	User interface testing

	Evaluation
	Usability of user interfaces
	Ideas for improvement

	Methods

	Conclusions

