
MARKO TUOMINEN

MULTI-PLAYER TACTICAL ROLE PLAYING GAME
WITH A JAVA SERVER AND AN ANDROID CLIENT

MSc thesis

Supervisors:

Prof. Tommi Mikkonen
MSc Juha-Matti Vanhatupa

Examiners and topic approved by the Faculty Council
of the Faculty of Computing and Electrical Engineering
on 7 November 2012.

i

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
TUOMINEN, MARKO: Moninpelattava taktinen roolipeli Java-palvelimella ja And-
roid-asiakkaalla
Diplomityö, 88 sivua
Joulukuu 2012
Pääaine: Ohjelmistotuotanto
Tarkastajat: professori Tommi Mikkonen ja DI Juha-Matti Vanhatupa
Avainsanat: Java, MySQL, JDBC, Apache MINA, JSON, JSON-RPC, jabsorb, Android

Tietokone- ja konsoliroolipeleissä pelaaja tavallisesti ohjaa yhtä tai useampaa hahmoa.
Hahmot tavallisesti keräävät kokemusta taistelemalla vihollisia vastaan. Kokemuksen
kautta hahmon ominaisuudet vahvistuvat ja se saa käyttöönsä uusia kykyjä. Peleissä voi
myös kerätä esineitä, kuten aseita ja varusteita.

Taktisissa roolipeleissä on myös nämä ominaisuudet, sekä taktisia elementtejä kuten
liikkuminen laajemmalla taistelukentällä. Roolipeleissä juoni on tavallisesti tärkeällä si-
jalla, samoin kuin pelimaailman tutkiminen. Myös taktisissa roolipeleissä juoni on tär-
keä, mutta tutkimista on useimmiten vain vähän. Ne eivät yleensä sisällä myöskään mo-
ninpeliä.

Työn tarkoituksena on toteuttaa aiemmin suunniteltu Mupe Force -peli: taktinen roo-
lipeli, jonka pääpaino on moninpelillä. Moninpeli toteutetaan välittämällä pelaajien
asiakaslaitteiden kommunikointi palvelimen kautta. Lisäksi palvelin tallentaa rekisteröi-
tyneiden pelaajien tiedot. Asiakkaat eivät kommunikoi toistensa kanssa suoraan.

Ennen työn aloittamista oli päätetty, että pelin palvelinohjelmisto toteutettaisiin Ja-
valla ja asiakasohjelmisto Androidilla. Tietojen tallennukseen oli päätetty käyttää
MySQL-tietokantaa ja JDBC:tä. Asiakkaiden ja palvelimen väliseen kommunikointiin
käytettävää teknologiaa ei päätetty etukäteen, vaan se valittiin työn aikana tehtyjen tut-
kimusten perusteella.

Valittu yhteysteknologia on Apache MINA, jolla toteutettiin kommunikointi sekä
palvelin- että asiakaspäässä. Viestinvälitykseen käytetty protokolla on TCP, ja viestit vä-
litetään JSON-formaatissa. Asiakkaan palvelimelle lähettämiin kutsuihin käytetään
JSON-RPC -protokollaa. Työssä tutkittiin myös useampia Java-pohjaisia JSON-RPC
-toteutuksia, joista käyttöön valittiin jabsorb. Sitä käytetään muuhunkin JSON-viestien
käsittelyyn, koska Java API ei sisällä JSON-tukea.

Aikomus oli käyttää JSON-RPC:tä tai vastaavaa protokollaa mahdollistamaan asiak-
kaan metodien kutsuminen palvelimelta. Tämä todettiin kuitenkin liian monimutkaisek-
si. Aiottu käyttötarkoitus, pelin tapahtuminen välittäminen asiakkaalle, toteutettiin
JSON-pohjaisella skriptillä. JSON-skriptiin suunniteltiin pelin tarkoituksiin sopiva syn-
taksi. Tapahtumat koodataan skriptiksi palvelimella, ja puretaan asiakkaalla animaa-
tioiksi ja paikallista tietoa muokkaaviksi käskyiksi.

ii

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master's Degree Programme in Information Technology
TUOMINEN, MARKO: Multi-player tactical role playing game with a Java server and
an Android client
Master of Science Thesis, 88 pages
December 2012
Major: Software Systems
Examiners: professor Tommi Mikkonen, MSc Juha-Matti Vanhatupa
Keywords: Java, MySQL, JDBC, Apache MINA, JSON, JSON-RPC, jabsorb, Android

In computer and console role playing games, the player usually controls one or more
characters. The characters usually earn experience by fighting enemies. Experience
causes a character's attributes to increase and enables it to learn new abilities. The
games also include collecting items, such as weapons or armor.

These properties also exist in tactical role playing games, which also include tactical
gameplay, such as movement on a larger battlefield. Plot and exploration of the game
world are important aspects of role playing games. Plot is also important in tactical role
playing games, but they usually include little exploration. They also do not usually in-
clude multi-player play.

The intent in this thesis was to implement a previously designed game named Mupe
Force. It is a tactical role playing game, whose main attribute is multi-player play. To fa-
cilitate multi-player properties, communications between client devices are transmitted
through a server. In addition, the server saves the data of registered players. Clients do
not communicate directly with each other.

It was decided in advance that the server software would be implemented with Java,
and the client software with Android. It was also decided to use a MySQL database and
JDBC for persisting data. The technology for communications between clients and the
server was not decided in advance, but chosen based on research during the project.

The selected communications technology is Apache MINA, which was used to im-
plement communications both on the server and on the client. The protocol for transmit-
ting messages is TCP, and messages are delivered in JSON format. JSON-RPC is used
for requests from a client to the server. Several Java-based implementations of JSON-
RPC were researched, and jabsorb was selected for use. It is also used for other han-
dling of JSON messages, because the Java API does not include JSON support.

The intent was to use JSON-RPC or a similar protocol to enable calling a client's
methods from the server. This was found out to be too complex. The intended use, de-
livering game events to the client, was implemented with a JSON-based script. A syntax
suitable for the game's purposes was designed for the JSON script. Events are encoded
into a script on the server, and decoded on the client into animations as well as com-
mands that modify local data.

iii

PREFACE

This thesis offered me a chance to implement a game I had been planning for some
time. Unfortunately I had to leave out many of the features I had intended for the game,
but on the other hand I never expected to be able to implement all of it with the amount
of work estimated for a Master of Science thesis. I was also able to learn JDBC and An-
droid, both of which I had been thinking of trying out, learn more about networking
technologies, and develop a working piece of software with them.

I would like to thank the supervisors Tommi Mikkonen and Juha-Matti Vanhatupa
for their advice and comments, which helped improve both the application and the the-
sis. Since the original version of this game was implemented as a course assignment for
Game Programming, fall 2007, using the MUPE environment, I would also like to thank
the people involved with the course and MUPE.

Lastly, credits to the free open source applications that I used while working on this
thesis. Linux, Ubuntu and Gnome that keep the computer running and usable,
OpenOffice.org Writer for text editing, Eclipse for programming, Dia for drawing UML
diagrams, Firefox for browsing the Internet, Gimp for image editing, MySQL and re-
lated tools for database management, and of course the Eclipse plugin, emulator and
other tools for Android programming.

Tampere 21.11.2012

Marko Tuominen

iv

TABLE OF CONTENTS

 1 Introduction...1
 2 Mupe Force: Specification..4
 2.1 Application architecture..4
 2.2 Data content...5
 2.2.1 Players...5
 2.2.2 Characters..5
 2.2.3 Abilities...6
 2.2.4 Items..6
 2.3 Logging in...6
 2.4 Initial characters..7
 2.5 The town plaza..7
 2.6 The market square...8
 2.7 The game menu...9
 2.8 The arena...10
 2.9 Fighting a battle...11
 2.9.1 Actions...11
 2.9.2 Death, experience, victory and defeat...13
 2.9.3 Character status...13
 3 Android programming...14
 3.1 Application components..14
 3.2 Component life cycle...16
 3.3 Data management..17
 3.4 Networking..18
 3.5 Graphical user interface...18
 3.5.1 Layouts..19
 3.5.2 Views...20
 3.5.3 Menus..20
 3.5.4 Dialogs...22
 3.5.5 Animations and graphics...22
 4 Networking technologies...24
 4.1 HTTP: Hyper Text Transfer Protocol..24
 4.2 Comet..25
 4.3 XMPP: Extensible Messaging and Presence Protocol......................................25
 4.4 C2DM: Cloud to Device Messaging...26

v

 4.5 JMS: Java Messaging Service...26
 4.6 Java Servlets..27
 4.7 Apache MINA: Multi-purpose Infrastructure for Network Applications..........27
 4.8 JSON: JavaScript Object Notation..28
 4.9 Remote procedure call technologies..28
 4.9.1 Java RMI: Remote Method Invocation...28
 4.9.2 XML-RPC...29
 4.9.3 SOAP: Simple Object Access Protocol...30
 4.9.4 JSON-RPC...30
 4.10 Decisions...30
 4.11 JSON-RPC implementations...31
 4.11.1 qooxdoo 2.0.1..31
 4.11.2 jabsorb 1.3.2..31
 4.11.3 jsonrpc4j 0.24..32
 4.11.4 json-rpc 1.0..32
 4.11.5 Others..32
 5 Server Java...34
 5.1 Database programming with JDBC...34
 5.2 Communications with Apache MINA...36
 5.3 JSON-RPC with jabsorb..37
 6 Server design...39
 6.1 Meta data...39
 6.2 Player-specific model..41
 6.3 Database helper...42
 6.4 The facade...42
 6.5 Communication abstraction...43
 6.6 JSON-RPC component..44
 6.7 The MINA server...44
 6.8 Battle controller...45
 6.8.1 Generating a battlefield...45
 6.8.2 Battle progress...46
 6.9 Animation scripts...48
 7 Client back end design...50
 7.1 Local cache..51
 7.1.1 Model classes...51
 7.1.2 Database operations...52
 7.2 Network client...54
 7.3 The Service..54
 7.3.1 Data retrieval...55
 7.3.2 Updates..56

vi

 7.3.3 Incoming messages from the server..56
 8 Client interface design...57
 8.1 Interface design guidelines..57
 8.2 The Town View..58
 8.3 The Battle View...59
 8.3.1 Deployment...60
 8.3.2 Observation mode..60
 8.3.3 A character's turn...61
 8.3.4 The action menu..61
 8.4 Animated views...62
 8.4.1 Basic graphics..62
 8.4.2 User controls..63
 8.4.3 Movement controllers..64
 8.4.4 Battle View implementation..65
 8.4.5 Concurrency..67
 8.5 View components..68
 8.5.1 Highlight Views...68
 8.5.2 Item and character list...69
 8.5.3 Statistics changes...69
 8.5.4 Character inventory and abilities...70
 8.5.5 Character selector..70
 8.5.6 Character slots...70
 8.5.7 Character status...70
 8.6 Activities..71
 8.6.1 The Town Activity...71
 8.6.2 The Battle Activity..72
 8.7 The action executor...73
 9 Conclusions...75
 9.1 About the project...75
 9.2 About the Android GUI API..76
 9.3 Pitfalls..77
 9.4 Further development..78

References...80

vii

ABBREVIATIONS, TERMS AND MARKINGS

Android Android is advertised as the most used and fastest growing mobile op-
erating system. It is based on Linux, uses user interface resources de-
fined in XML and utilizes Java for applications programming. [1]

API Application Programming Interface (API) is an application's interface
which allows other applications to communicate with it. [2]

APR Apache Portable Runtime (APR) intends to create and maintain a pre-
dictable and consistent interface to platform-specific implementations.
It means to assure software developers of predictable behavior regard-
less of platform, and remove the need for special-case code for plat-
form-specific features. [3]

back end The data storage and manipulation part of an application. Receives in-
put from the front end, and sends output to it. [4]

bytecode Intermediary code produced by a compiler. It is designed for efficient
translation into machine code and can be interpreted by a runtime envi-
ronment. Runtime environments can be created for different hardware
and software environments, allowing cross-platform portability. [4]

C2DM Android Cloud to Device Messaging (C2DM) is a service for sending
messages from servers to devices. [5]

Comet Comet is a term for multiple technologies whose purpose is to enable a
server to send data to a client over HTTP without a request from the
client. [6, p. 1]

deserialization The recreating of a data structure or object from serialized data. Java
has automatic deserialization which requires that a class definition for
the deserialized object is available. [7]

Flyweight A design pattern for sharing large numbers of objects efficiently. A Fly-
weight object can be used in multiple contexts simultaneously. The Fly-
weight's internal state does not depend on context, allowing the object
to be shared. Client objects are responsible for passing context-related
properties to the Flyweight as necessary. [8, pp. 195-196]

front end The part of an application which interacts with the user. Sends input to
the back end, and receives output from it. [4]

GUI Graphical User Interface (GUI) is a means for interacting with a com-
puter through graphical elements using a mouse. [9]

HTTP Hyper Text Transfer Protocol (HTTP) is an Internet communication

viii

protocol. It defines requests, which a server receives from a client, and
responses, which the server sends to the client in reply. [10, pp. 9, 30]

JSON JavaScript Object Notation (JSON) is a textual format which is easy to
read for both humans and machines. It is language independent. [11]

JSON-RPC A protocol for remote procedure calls using JSON. [12]
MUPE Multi-User Publishing Environment (MUPE) is a platform for rapid

mobile development of multi-user applications [13, p. 1].
MVC Model-View-Controller (MVC) is a design pattern for relating user in-

terface to data. The model is a representation of underlying data, the
view is a representation of the user interface, and controller represents
the connections and communication between them. [14]

MySQL The most popular open source relational database management system
in the world. [15]

Observer A design pattern that defines a dependency where multiple objects are
notified when the state of one object changes. A subject can have any
number of observers, which are all notified when the subject's state
changes. [8, pp. 293-294] The subject is implemented in the Java API
class Observable, and the observer in the interface Observer. [16]

OpenGL Open Graphics Library (OpenGL) is an API specification for rendering
graphics. It is not platform-specific, and many graphics cards have an
implementation of OpenGL. [17]

REST Representational State Transfer (REST) or RESTful web services, is a
design idiom for a stateless client-service architecture. A web service is
viewed as a resource identifier by an URL. Clients transfer content us-
ing a small set of actions: create, read, update and delete. [18]

RPC Remote Procedure Call (RPC) is a protocol for a program to call a pro-
cedure in another program remotely. The other program can be running
on another computer or in another network. The RPC protocol hides the
network details. [19]

RPG Role-Playing Games (RPG) allow a player to experience a series of ad-
ventures in an imaginary world through a character, or a group of char-
acters. Essential game elements are story and character growth, and
combat is usually required. [20]

serialization The process of converting an object into a byte stream that allows the
object to be recreated later. Java has automatic serialization. [7]

Singleton A design pattern that ensures there is only one instance of a class, and
that a global access point for the class exists. The class controls instan-
tiating and access to the Singleton instance. [8, p. 127]

SMS Short Message Service (SMS) is a means for sending short text mes-
sages from a cell phone to another, and is often referred to as texting or

ix

text messaging. [21]
SOAP Simple Object Access Protocol (SOAP) is a means for generalized

XML messaging in various environments. [22]
SQL Short for Structured Query Language. A standardized language for

managing relational databases. It can insert, retrieve, update and delete
data, and also includes schema creation and modification, as well as ac-
cess control. There are multiple versions of SQL, and in addition most
SQL database programs have proprietary extensions. All of them sup-
port at least the major commands, though. [23]

SQLite SQLite is a relational database which can be embedded in an applica-
tion, unlike most systems which are separate server processes. It uses
non-static data types for database columns, and offers several exten-
sions to the SQL language. [24]

TCP The Transmission Control Protocol (TCP) provides reliable, ordered
delivery of a byte stream from one computer to another. [25]

TRPG Tactical Role Playing Games (TRPG) combine strategic or tactical
gameplay with RPG elements. They commonly include chessboard-like
square grids, where characters are placed. Placement is vital to game-
play, and success in the game. [26, 27]

UDP The User Datagram Protocol (UDP) sends separate messages without
guarantees for the reliability or order of delivery. [25]

URI A Uniform Resource Identifier (URI) is a character string that identifies
a resource. URI can be separated to two types, URL and URN. [28, 29]

URL A Uniform Resource Locator (URL) is a type of URI which identifies
the location of an Internet resource. [28, 29]

URN A Uniform Resource Name (URN) is a type of URI which identifies a
resource by name, independent of location. [28, 29]

XML Extensible Markup Language (XML) defines rules for representing
structured information in a textual format readable for both humans and
machines. It is widely used for sharing documents, data, configurations,
books and so on. [30]

XML-RPC A remote procedure call over HTTP and with XML encoding. [31]
XMPP Extensible Messaging and Presence Protocol (XMPP), originally

known as Jabber, is a free, open standard for real-time messaging. [32]

Important terms are written in italic when they first appear.
The names of Java classes and primitives and other code is written in monospace.

Code paragraphs are separated from other text with extra space above and below.

The names of design patterns, major parts of Android and other frameworks, as well
as components of the application implemented for this thesis, are written with Capital

x

Letters.

The term user is used in reference to a real person interacting with the application
developed in this project. The term player refers to an entity in the game. A player can
be the user or another real person using a different device. Multiple players are handled
in the game, and the term player can also refer to their runtime representations as ob-
jects. This is only in the context of the application developed for this thesis, however.

1

 1 INTRODUCTION

Tactical role playing games (TRPG) blend strategic gameplay with elements from role
playing games (RPG) [27]. The intent in RPGs is to experience a series of adventures in
an imaginary world through a character, or a group of characters. Essential game ele-
ments are story and character growth, and combat is usually required. [20, pp. 453-454]
Character growth commonly occurs through earning experience points [20, p. 466].
Physical coordination challenges are rare, as the success or failure of actions depends on
a character's attributes rather than those of the player. [20, p. 455; 26] RPGs are often
turn-based, although this is not required. [33]

A purist interpretation defines RPGs by three factors: a set of statistics determines
the attributes of a character, they can increase making the character grow stronger, and
the game features a menu-based combat system that uses those statistics. Furthermore,
any game that involves a grid-based map and directly placing characters on it, and
where placement is vital for success is a strategy game, or a strategy-RPG fusion. [26]
In another interpretation, this fusion of strategy and RPG is called a tactical RPG [27].

Besides the features mentioned above, RPGs usually include equipment for charac-
ters, as well as a world that can be explored. The world can be a dungeon, but often the
game includes an open world, multiple dungeons and multiple towns. Some games aim
for a believable, working world. Common parts of the world are non-player characters
that can be talked to, as well as shops. A player's characters can collect treasure, acquire
equipment for themselves, and use magic or similar powers, as well as other sorts of
skills. [33; 34, p. 2; 35; 36]

TRPGs generally include these aspects, but also incorporate strategic gameplay,
such as tactical movement on a grid [27]. An element featured in many TRPGs is the re-
warding of experience to characters individually. Having a weaker character stay safely
away from fighting causes it to fall behind other characters in terms of development.
[35] TRPGs commonly do not include multi-player play, or exploration, which is a ma-
jor feature in standard RPGs. [37]

The goal in this thesis is the implementation of Mupe Force, a multi-player TRPG.
Multi-player play is the key aspect of Mupe Force, to the extent that exploration and
story are completely omitted. The thesis involves research for technologies and libraries
used in the implementation, as well as specification and design. The name Mupe comes
from Multi-User Publishing Environment (MUPE), an open source project which was
used to implement (a much simpler version of) Mupe Force as a course assignment.
MUPE source code was not used in this new version of Mupe Force. The MUPE project

2

has been discontinued, and its website (http://www.mupe.net) no longer exists.
The basis for implementation is Mupe Force specification, which was originally

written to be platform-independent. The plan is to use a client-server model, where the
server stores user data, and acts as a mediator between clients.

The server is implemented with Java SE 1.7, using a MySQL database for data stor-
age and JDBC for database connectivity. The client is implemented with Android 2.3.3
(API level 10).

MySQL is the most popular open source database management system in the world.
It manages a relational database, where data is described as tables with rows and col-
umns, and relations between them. [15]

Android is a Linux-based mobile operating system whose applications are pro-
grammed in Java [1]. The means of communication between the server and the client
are not decided in advance. Possible communication methods are studied in this thesis.
Application Programming Interface (API) is an application's interface which other ap-
plications can communicate with [2].

Some aspects of the application are ruled outside the scope of this project, for practi-
cal reasons. These are security, error management, player registration and sound. Graph-
ics are also limited to simple 2D sprites, with little animation.

In a client-server application, security concerns could well grow into the size of a
thesis by themselves, and likewise for handling database and network errors. Registra-
tion, on the other hand, is considered best suited for a website. Since one is not devel-
oped in this project, registration is done with a command line application which uses the
server's code to create a new player and insert his data into the database.

Chapter 2 is a shortened version of the original Mupe Force specification. Imple-
menting all of the functionality described in the specification was not plausible within
the time allotted for the thesis. Various aspects of the graphical user interface (GUI)
have also been removed, and adapted for Android in later chapters. A GUI is a means
for interacting with a computer through graphical on-screen elements using a mouse [9].

Chapter 3 introduces Android programming. It is intended to cover the structure and
main parts of an Android application, as well as techniques used in this project. Chapter
4 contains research for implementing the communication between client and server.
Several technologies were researched, although most of them were ultimately not used
in this project. Some comparison between the technologies and discussion of their appli-
cability to this project are included. Chapter 5 introduces the Java technologies used in
implementing the server.

Chapters 3-5 form the theory part of this thesis. Chapters 6-8 describe the applica-
tion's design, and how the theory was applied. Chapter 6 has the design for the server.
All of the server's design is in this one chapter, but client design was split into two chap-
ters for clarity, and because it is much longer. Chapter 7 has the design for the client
back end. Back end refers to the part of the application which stores and manipulates

3

data [4]. This means the parts which communicate with the server and the database, but
not with the user. The client's runtime data model is also described here. Chapter 8 is the
client's interface design. The design extends the interface specification in Chapter 2 with
more detail. The interface is also approached in an Android-specific way, unlike in
Chapter 2.

Chapter 9 finishes the thesis with conclusions and notes about further development.
It includes details of Android which proved important in the project, but were not appar-
ent from the documentation used as source material for Chapter 2.

4

 2 MUPE FORCE: SPECIFICATION

This chapter describes the Mupe Force game from a user's point of view. Mupe Force
uses a client-server model. Since the user only interacts with the client, there is only a
short introduction of the server's role in the application. Interface design is also left
somewhat open, so that it can be adapted to a platform's specifics. This specification
tells options available to a user in a particular view, and possibly some guidelines on
how to access the options. The form of input for the options is not specified.

The interface is intended to be comfortable to use, easy to learn, and it should also
conform to the platform's common interface design. In each view, the user must have an
option to return to the previous view, unless otherwise stated.

 2.1 Application architecture

The server holds and persists the application's data. Clients connect to the server, which
acts as a proxy for communication between clients. Clients do not communicate directly
with each other. A diagram of the application's architecture is shown in Figure 2.1. It is
intended that the server can concurrently support multiple different connection methods,
which in turn can support multiple different kinds of clients.

It is also intended that new content could be added on the server without changes to
the client. The client is designed to emphasize executing actions received from the
server over determining actions itself. Decisions made by the application, such as ran-
dom values, are done on the server, and results sent to the client. This will help in main-
taining equal state between the server and multiple clients.

The client needs to be able to send requests and notifications to the server, and re-
ceive data in response to the former. The server also needs to be able to send notifica-
tions to the client, although it does not need a response. The client must send in a way
that allows new messages to be sent and received while waiting for a response. A re-

Figure 2.1: Overall application structure.

5

quest must not block the client's communication until a response is received. The client
should not continuously poll the server in order to receive responses and notifications.

 2.2 Data content

A Mupe Force player can have money, characters and items. The currency for money is
simply called “gold”. Characters can equip and carry items. The selection of all charac-
ters owned by a player is called roster, and the selection of his items is called storage.
The set of items equipped or carried by a character is called inventory.

A player is the entry point to the game's data content. A player has characters and
items, and characters in turn have items and abilities. Abilities are specific to a charac-
ter. Items belong to a player, and a player's storage also includes any items in characters'
inventories. A diagram of the game's data content is shown in Figure 2.2.

 2.2.1 Players

There are registered players and guests, whose difference is that the information of
guests, and all data related to them, lasts only until the end of a session, or logging out
in other words. A registered player's data is persisted, and will be available next time the
player logs in. Each registered player has a unique name, while each guest player is
called a “Guest-” and an ordinal number to make the name unique.

Each player initially gets up to six characters for free. He also gets some money,
which can be used to buy items from shops. The player receives money from selling
items, but the primary means of earning money is fighting battles. Some money is re-
ceived as a prize, even if the player loses the battle.

 2.2.2 Characters

Each character has a name, which is randomly selected when the character is created.
The random names are checked so that a player does not get two characters with the
same name. Each character belongs to a character class, which determines its starting
statistics, and various other things.

There are six classes to select from, when a character is first created. A character

Figure 2.2: Diagram of data content.

6

starts at level one, and can have some abilities from the start. A character gains experi-
ence through fighting, and once it has reached 100 experience, its level increases. At
level up, the character's statistics increase and it can learn new abilities, depending on
its class. Experience depends on the difference in levels of a character and the opponent.
As a character becomes stronger, it will have to fight stronger enemies.

A character has ten statistics, each of which has an abbreviation to conserve screen
space in user interface. The statistics are hit points (HP), magic points (MP), attack
(Att), defense (Def), magic (Mag), resist (Res), hit (Hit), dodge (Ddg), speed (Spd) and
move (Mov). Magic points are explained in the following subsection together with abili-
ties. Other statistics are explained in Section 2.9 together with combat.

 2.2.3 Abilities

There are two types of ability, in terms of how they work: active and passive. Passive
abilities take effect as soon as they are learned, and then remain in effect. The ability
can have a permanent effect, or it can take effect at random times. Active abilities must
be used during battle in order to take effect.

Active abilities can have a cool down period, which limits how often they can be
used. If they are magical in nature, they also consume magic points. If a character has
insufficient magic points for an ability, it can not use that ability. Some active abilities
can only be used when the character is equipped with a certain type of weapon. The
weapon also determines the range of some active abilities.

 2.2.4 Items

Characters can equip items, in a similar fashion to passive abilities, and also use items
in a similar fashion to an active ability. Each character can equip a weapon, a shield, a
helmet, and an armor. Double-handed weapons also require the shield slot, and prevent
the character from using a shield. In addition to equipped items, a character can carry up
to four other items, to be used during battle.

When an item is equipped, it increases the character's statistics, although decreases
are also possible. An example of statistics changes is shown in Section 2.6. Using a mis-
cellaneous item causes a special effect, depending on item, but also consumes the item.
A character's class limits items that it can equip and use.

 2.3 Logging in

At startup, a login screen with the Mupe Force logo is shown. The screen includes login
options: log in with player name and password, or log in as guest. The client does not
include registration functionalities, so the player name and password must already exist
in the server's database.

The player is offered a choice to save the login information and automatically log in

7

in the future. This choice is not offered if the player logs in as a guest. With automatic
login, the login screen is shown only while the client's initialization and logging in is
executed.

 2.4 Initial characters

When a player first logs in, either as a registered player or as a guest, he is given the
chance to select one to six free characters. He must select at least one character, because
otherwise he would not be able to do much of anything in the game. The character se-
lection view opens after logging in, and has six character images and six empty slots.

The six character classes are fighter, knight, archer, rogue, mage and healer. Images
of them are shown in Figure 2.3. The player can place one character into each of the six
free slots, which represent their new characters. After a character has been placed, it can
still be replaced with another or removed.

At any time, the player can select a “done” option to close this screen and go to the
actual game. They can select fewer than six characters. In that case, this screen is shown
again when the player next logs in. Once all six characters are selected, this screen will
never open again. A “do not show again” is available. If it is selected, this view will not
be opened again later, even if the player has selected fewer than six initial characters.
This option is not available for guests, since they can log in only once.

 2.5 The town plaza

The town screen opens after logging in, or after selecting initial characters if they are
available. The town is a five by five grid of squares, depicting an open plaza, sur-
rounded by buildings. The player is represented by a character that can move in the
squares, and enter any building which has a door on the edge of the square where the
character is. The plaza itself is a three by three grid, which has twelve square edges
where a building entrance can be placed.

In the center square is the portal, where the player's character appears at first. At the
top center of the town screen is the way to the market square, where the shops are. At
the right center is the entrance to the arena, where the fighting takes place. At the left
center are the city gates, which do not open.

For visual effect, each square in the town view is represented by sixteen squares, a

Figure 2.3: Screen shot: character classes.

8

four by four grid. The whole town grid becomes a twenty by twenty grid. The character
on the other hand is only two by two squares. Doubling the size of the town makes the
buildings larger, so that the character is not the same size as the building it is entering.
Doubling the size of both the character and the town effectively allows the character to
move by half squares. The character can be centered in the town view, as both the town
and the character have an even width and height in terms of squares. Each building is
four squares, with a character-sized two square door and a wall square on either side.

Squares with buildings are blocked and can not be entered, except the squares with
doors. The town gate is one square wide (in the twenty by twenty grid), and blocks
movement into those squares. The rightmost squares trigger movement into the arena.
The character will walk out of the town view, and a battle will start, as soon as there is
an opponent to fight. When the user leaves the arena, the character moves back into the
town view, stopping so that the rightmost squares are empty. This re-enables user input,
which is disabled as soon as the arena entry is triggered.

 2.6 The market square

The secondary town screen, market square, is also a five by five grid. The player enters
through the bottom middle square edge, which has the way back to the plaza. Buildings
on the market square include weapon shop, armor shop and item shop.

Instead of a three by three square open area, the marketplace has three open squares
on the left, and three at the bottom. There are five open squares altogether, since the
square at the bottom left is shared. The other four squares are taken by the actual mar-
ketplace, which has no significance.

The weapon shop sells weapons and the armor shop sells protective equipment.
Other than the selection of merchandise, these shops work in the same way. The shop's
main view has a list of item categories, a list of the player's characters, an “all” option,
and a “show own items” option. By selecting an item category, or the “all” option for all
categories, the player is shown a list of merchandise and their costs. Available items de-
pend on the types and levels of the player's characters. The selection increases as char-
acters ascend to higher levels.

Selecting an item for sale highlights the characters that can equip it. After that, se-
lecting a character shows the character's total statistics and changes to them. Statistics
which increase and ones that decrease, and ones that stay the same are identified with
different colors, and the changes to statistics are also shown. The change is not shown
when the value does not change. An example is shown in Figure 2.4.

Instead of selecting an item on sale, the player can select one of his characters. Items
which the selected character can use are then highlighted. When an item is selected
from the list, a “buy” option becomes available, and a description of the item is shown.
If the player has enough money, the buy option causes the item to be bought and added

9

to the player's storage.
If a character is selected before buying, the item can be automatically equipped on

the character or placed in its inventory. The player is first asked for confirmation to
equip the item, and if he declines, he is asked for confirmation to have the character
carry the item. The carried item is placed in the first free carry slot. In case all slots are
taken, the new item replaces the item in the first slot.

The player can deselect the current item or character, which updates highlights, and
hides the statistics. The “show own items” option opens a list of the items in the player's
storage, and their costs. This is how much the shop is willing to pay for the items. The
player can select any item, regardless of shop, and sell it. There is no way to retrieve the
sold item later. The buy option is replaced by a sell option, but otherwise the items for
sale in the shop and the player's own items are handled the same way.

The item shop mostly works in the same way as the equipment shops. Since it sells
items that can not be equipped, changes to statistics are not shown. Characters that can
use an item are highlighted, and a character can be selected in order to highlight items
that the character can use, as in the other shops. The option to have a character equip an
item is not available, but a character can be selected to carry the bought item.

 2.7 The game menu

The game menu is visible on the town plaza and the market square, but not inside shops.
The game menu has the following options: characters, items, settings and log out. The
“log out” option logs out the current player, and returns the game to the login screen.
This allows a different player to log in using the same device. When the log out option
is selected, automatic login is ignored in the login screen.

The “characters” menu option opens a list of the player's characters, and allows the

Figure 2.4: Screen shot: equipping an ax increases attack, but decreases hit.

10

player to select any one of them to view its status. The status view shows the character's
name, level, experience, statistics, abilities and items.

There is also an “inventory” option. It opens an inventory screen with the character's
equipped and carried items on the left, and all of the player's items on the right. The
player can move items into, out of or between the equip and carry slots.

Items which the current character can equip or use are highlighted in the item list.
When a slot is selected, items which can not be placed in that slot are removed from the
list. Items that are equipped or carried by other characters are also removed.

The inventory screen has a character selector, which allows the player to select a dif-
ferent character's inventory without leaving the screen. When a different character is se-
lected, or the player exits the screen, changes to a character's inventory are persisted.

The “items” menu option opens a list of the player's items, which also has a list of
the player's characters. Selecting an item highlights the characters that can equip or use
the item. Selecting any character highlights the items it can equip or use. There is also
an “inventory” option, which is enabled only after a character is selected first. It opens
the character's inventory screen.

The “settings” option in the game menu opens a player settings view. Remembering
login data and automatic login can be disabled or enabled in this view. Both settings are
device-specific, not user-specific, because there is no support for saving the login infor-
mation of multiple users.

 2.8 The arena

The arena is the place where battles take place. When the player enters the arena, a re-
quest is made to battle with another player. The player will either wait for another player
to enter the arena on their respective client device, and then fight him, or immediately
start a battle with another player who is already waiting. Waiting can be canceled, but
this must be done before the battle begins.

Once a battle is started between the user and another player, there is a preparation
phase. The user is shown a preparation view, with a list of his characters, and six empty
slots. The player can move characters into the empty slots in order to have them partici-
pate in battle, and also replace and remove characters already in the slots. There is a
“done” option to continue to the next phase once the player is finished with his prepara-
tions.

When a character is selected, its status is shown. The player can also access the
character's inventory screen, just like in the character screen accessible through the
game menu. This way, the player can select items for the battle.

After the preparation view, the player is taken to the battlefield, an eight by eight
grid of squares. He can see the terrain and obstacles on the battlefield, but not the en-
emy's characters. The obstacles are placed in random positions on the battlefield, and

11

their number is random. The player can deploy his characters to the top two rows of the
battlefield. The rest of the battlefield is shadowed. Once he is ready, there is a “done”
option which starts the battle. However, both players must be ready, so one player might
have to wait for the other to finish his preparations.

Each participant in the battle sees his characters start at the top two rows, so the bat-
tlefield is actually flipped upside down for one player. Regardless of the randomly
placed obstacles, all free squares on the battlefield are reachable from any other free
square, and there are at least six free squares in each player's deployment area.

 2.9 Fighting a battle

A battle progresses in rounds and turns. Each character gets a turn during a round,
which is composed of the turns of all characters. Once all characters have had their turn,
a new round begins. The speed statistic determines turn order. Characters with higher
speed will get their turns earlier, although some randomness is involved. The character
whose turn it is is highlighted.

During its turn, a character can move, and then perform an action. Both of these are
optional, and a character can also do nothing on its turn. In practice, a “do nothing” ac-
tion, named “stay”, is performed. The move statistic determines how many squares a
character can move. Moves are made either horizontally or vertically, and diagonal
moves are not allowed. Obstacles block squares so that a character can not enter. Other
characters also block movement, even allies.

The area where the character can move is shadowed, and the character can be
moved freely around on this area. Once the player has placed the character in the square
where he wants it, he can bring up an action menu. Possible actions are “attack”, “item”,
“special”, and “stay”.

The “attack” action is a regular attack against an enemy. Most characters can attack
an enemy in an adjacent square (horizontally or vertically), but some weapons allow a
character to attack a longer distance away. The “item” action uses an item from the
character's inventory, and the “special” action uses an active ability.

 The “special” action is disabled if the character does not have any active abilities,
and replaced with an active ability if the character has only one. The action for an abil-
ity that can not be used, due to cool down period, insufficient magic points, or wrong
type of weapon, is disabled.

The “stay” action ends the character's turn without doing anything. The turn ends af-
ter any action, and the character remains in the square where it was when the action
menu was opened.

 2.9.1 Actions

Actions other than “stay” require a target. An ordinary attack's target is a hostile charac-

12

ter in an adjacent square. The user can either select a target directly, or move a cursor
between possible targets and then select the current one. Any action that requires a sin-
gle target works this way, even if the action can reach further away than the adjacent
square. Squares within the action's range are shadowed.

Some actions can affect multiple targets. A main target is selected just like one for a
single-target action, and the action will then affect other characters around the main tar-
get. Some actions can also be targeted at an empty square, and then affect characters
around that square. An example of an action that can affect multiple targets and be tar-
geted at an empty square is shown in Figure 2.5. Since the user can not move a cursor
directly from target character to another, the cursor moves like a character. It can move
across any obstacle, though. The cursor's shape and size indicates the area of effect.

Even though an empty square can be selected, the action must have at least one tar-
get which it can affect. An action can have separate types of target that it requires, and
what it actually affects. An area effect attack spell might affect all characters, but must
have at least one enemy character among its victims.

All characters are capable of basic attacks. These can miss, depending on the at-
tacker's hit statistic and the defender's dodge statistic. Chance to hit depends on the ratio
between the two.

Attacks cause damage only if they hit. The damage depends on the attacker's attack
statistic, and the defender's defense statistic. Damage is random, but close to the differ-
ence between attack and defense. Damage is more likely to be greater than the differ-
ence, than less. Damages further away from the difference are more unlikely. No matter
how high the defense, minimum damage for attacks is one.

The damage caused by magical spells depends on the caster's magic statistic and the
defender's resist statistic. Spells and special attacks are not as simple as basic attacks,
though. They can modify statistics, as well as the damage itself, in various ways.

Figure 2.5: Screen shot: a mage about to blast three enemies with a Fireball.

13

 2.9.2 Death, experience, victory and defeat

As a character suffers damage, its hit points are reduced. When hit points are reduced to
zero or negative, the character is killed and will not be able to participate in the battle
anymore. The killed character is removed from battle, but will appear again after the
battle ends, without lasting effects for having been killed. A dead character also keeps
all the experience it had before it got killed.

Characters earn experience from damaging enemies. The stronger the enemy, the
more experience is gained. Causing damage to an enemy is worth considerably less than
delivering the killing blow. Minimum experience for causing damage (greater than zero)
to an enemy is one. Sometimes using an item or an active ability is worth experience,
even if it does not cause damage. For example healing is worth experience.

Once all characters from one player's side are dead, the other player wins the battle.
Each player's characters can now gain levels, depending on the experience they gained
during battle. Both players also get reward money. The reward amount depends on the
number and levels of the opponent's characters. The winner gets a greater prize than the
loser. Draws can happen if the battle ends because of an action that kills both players'
remaining characters. After a draw, both players get a reward as if they were the loser.

 2.9.3 Character status

The user can check any character's status at any time, even during the other player's
turn. The status view is similar to that shown in the characters screen and the battle
preparations screen. Experience is only visible for the user's own characters. Abilities,
equipment and carried items are visible, but can not be changed during battle.

The status view shows the character's current hit points and magic points. They are
shown in numbers, along with the maximum values. In addition, there is a bar graphic
for each, which shows percentage of current value from maximum value.

14

 3 ANDROID PROGRAMMING

The Android mobile operating system is based on a modified Linux. It includes a light-
weight SQLite relational database for data storage, and supports multi-touch screens and
multi-tasking applications. Android applications can be written with the Java program-
ming language, using libraries provided by the Android runtime. [38, pp. 2-4] SQLite is
a relational database which can be embedded in an application [24].

Among other things, Android has the most widely accepted Java user interface class
library [39, p. 33]. Android's core libraries provide some of the Java Standard Edition
(SE) classes, but not all, since for example Swing and AWT are not available. Also,
classes specific to the Java Micro Edition (ME) are not available. [40, pp. 7-8]

Every Android application runs in its own process, with its own instance of Dalvik
virtual machine [38, p. 4]. It runs bytecode called dex [39, p. 89]. Bytecode is interme-
diary code produced by a compiler and designed for efficient translation into machine
code [4]. Dex is developed specifically for Android, and is approximately twice as
space-efficient as Java bytecode [39, p. 89].

Designed for a single-user device, Android uses Linux's multi-user support to create
separate privileges for different application vendors. An application is only allowed to
access files created by applications from the same vendor. [39, p. 89]

 3.1 Application components

The key part of an Android application's graphical user interface (GUI) is called an Ac-
tivity. They usually fill the entire screen, and are also units of execution. A single appli-
cation can contain multiple Activities, which can communicate with each other, other
parts of the application, and with other applications to execute user functions. [39, p.
77]

Communication between Activities is done with Intents, which facilitate loose cou-
pling between various components. Keeping references to Activity objects is discour-
aged and Intents should be used for communication between Activities instead. An ac-
tivity chain is composed of multiple Activities, which can reside in different applica-
tions and processes. Activity chains like these are created by dispatching Intents to other
Activities, and are called Tasks. [39, pp. 77-78]

Other important Android components are Services, Content Providers and Broad-
cast Receivers. Services perform background tasks and are not visible on the screen. A
Broadcast Receiver listens for Intents broadcast in the system. It does not have a user in-

15

terface, but can activate an Activity when an Intent is received, for example. [39, pp. 78-
79, 82]

Content Providers are similar to RESTful (Representational State Transfer) web ser-
vices. They can be found with a Uniform Resource Identifier (URI), and provide opera-
tions for creating, reading, updating and deleting data. [39, p. 79] A RESTful web ser-
vice is identified by a Uniform Resource Locator (URL), and provides four actions for
content: create, read, update and delete [18]. A URI is a string that identifies a web re-
source [28]. A URL is a type of URI that identifies a resource by location. [29]

Content Providers can be used to persist data and provide it to other applications.
The Android platform has several built-in Content Providers that allow access to user
data. A query to a Content Provider returns the content in a Cursor, which is similar to a
JDBC ResultSet. [39, pp. 80-81]

Content Providers are accessed through the ContentResolver object in a Context,

which is the super class of Activity, among others [41; 39, p. 80]. The ContentRe-

solver also contains notifyChange methods which deliver content change events to

cursors. These events can be observed by registering a ContentObserver object to a

Cursor. [39, p. 318]

The GUI components in Android are called Views. A View can contain other Views,
forming a tree structure. Views that can contain other Views are subclasses of the View-

Group class, and also handle screen layouts. [39, pp. 211-212]

A newer GUI feature is the Fragment, which was introduced in version 3.0 of An-
droid (API level 11). Fragments are aimed for larger screens, such as tablets. Fragments
are available for older versions as well, through a compatibility package. [39, p. 197]

Two important building blocks are Handler and Looper. A Looper has a task queue,
which provides messages to it in order, and in a thread safe fashion. Other threads add
work to the Looper's task queue, and the Looper simply runs in a loop executing the

work it finds in its task queue. The Android UI thread is in fact a Looper, which gets all
UI events in its task queue. A Handler receives messages and places them to the task
queue of the thread where it was created. It is the means of delivering work to a Looper.
The View class has methods for sending Runnables to the main thread Looper for exe-

cution. [39, pp. 155-156, 192]
To create a Looper, the method Looper.prepare first needs to be called in the

thread which is to be the Looper. After that, Looper.loop will process messages until

the loop is stopped. These two methods are static, and so is Looper.myLooper, which

returns the current thread's Looper object. The non-static quit method ends the loop.

Because the Looper object is needed, quitting is only possible in the Looper thread, un-

less the Looper object is passed to another thread. [42]

Handler can be extended to handle messages in its queue, but there is also an inter-
face named Handler.Callback which can be implemented instead. The Handler class

has several methods for sending Messages and Runnables, as well as a Message pool,

16

to avoid unnecessary creation of Message objects. [43]

 3.2 Component life cycle

A component's life cycle is important for memory management, which in turn is impor-
tant for multi-tasking on a device with limited memory. A component has several call-
back methods used in directing its life cycle. Among other things, there are methods for
saving and restoring an Activity's data. [39, pp. 90-91]

When the Android system is running low on memory, the first thing it does is
garbage collection. When that is not sufficient, components which are not currently visi-
ble can be destroyed. The third alternative is deleting a whole process, and all compo-
nents in it. Before being destroyed, the component's state is saved for restoration at a
later time. [39, p. 286]

An Activity can be destroyed at any time, and there is no guarantee that certain life
cycle methods get called before this happens. Before an Activity instance is destroyed,
its onDestroy method is called. After it is called, the instance will never be used again.

When a process is killed, the onDestroy method might not be called. [39, pp. 287-288]

Destroying an Activity instance does not mean the end of the application, or the
process running it. A new Activity instance can be created in order to continue the Ac-
tivity. When a new instance is created, its onCreate method is called. It is called only

once for an instance. [39, p. 288]
When a different Activity becomes visible, the old Activity stops interacting with the

user. Then its onPause method is called. The onStop method is called after that, when

the Activity is no longer visible. [39, pp. 288-289]
The onStart method is called when the Activity becomes visible to the user, after

being created, and also when a stopped Activity restarts. In the latter case, onRestart is

called before onStart. For a paused Activity, onStart is not called again without on-

Stop being called first. Instead, only a method named onResume, which signifies the

Activity starting to interact with the user, is called. It is also called after onStart for an

Activity that has just been created, or is restarting after being stopped. [38, pp. 28-29]
The onPause method is the last that is guaranteed to be called, because paused Ac-

tivities are liable to have their process killed. After onPause, onSaveInstanceState is

called to persist the Activity's data. By default, the Activity calls for all its Views to per-
sist their data, and after doing that, an Activity only needs to persist its own transient
data. [39, p. 287-289]

Zechner and Green recommend saving all data in onPause, but make no mention of

onSaveInstanceState. However, this is meant for securing persistent data before an

application ends. [40, p. 128] The onSaveInstanceState method gets a Bundle object,

whose data is passed to the onCreate method, or the onRestoreInstanceState

method [39, p. 289]. This makes it much easier to migrate transient data between Activ-

17

ity instances. In addition, onSaveInstanceState is not called when there is no need to

restore the activity's state later. [38, p. 108]
There is also one more method for saving state, which is invoked when device con-

figuration changes: onRetainNonConfigurationInstance. It returns an object, which

can be accessed later with getLastNonConfigurationInstance. [38, p. 109]

According to Komatineni and MacLean, “Content Providers do not have a particular
life cycle. They get started when needed and stay around as long as the process stays
around.” [44, p. 486] They only have one life cycle method, onCreate, which is called

in the main thread of the application that creates the Content Provider. Content
Providers are not required unless multiple applications need to share data. [45]

Like an Activity, a Service also has an onCreate method, which is called once when

the Service is created. After that, its onStartCommand method is called. Once a Service

is started, it can run in the background indefinitely, regardless of the component that
started it. Usually, a Service executes one action and then terminates. A Service does not
create its own thread, but runs in the hosting process's main thread. [46]

A Service can be bound to a client. Then the Service is created, if it is not already
running, but the onStartCommand method is not called. Instead, its onBind method is

called. A Service can be bound to multiple clients, and runs until all clients are unbound.
Regardless of bound clients, a started Service runs until stopped. Once neither condition
to keep the Service running hold, its onDestroy method is called, and the Service is ter-

minated. [46]
A Service's resources are preferably not reclaimed, and they usually run until com-

pletion once started [39, p. 79]. Even if the Service's process is killed, the Service can
be restarted later, but there still is no guarantee that the service can run to completion.
[44, p. 485]

 3.3 Data management

A Content Provider interface has methods for creating, updating, reading and deleting
content. Each of these four actions takes a URI, which identifies the affected content. In
addition, there are parameters similar to those used for SQL. [39, p. 315] SQL is short
for Structured Query Language and is a standardized language for managing relational
databases. It includes, among other things, INSERT, SELECT, UPDATE and DELETE state-

ments for data access and manipulation. [23] Content Provider method names also re-
flect the SQL database which is commonly found backing up a Content Provider: in-

sert, query, update and delete, respectively. The Android libraries provide a URI-

Matcher class, which makes parsing the identifier URIs easier, and also promotes stan-

dard URI formats. [39, pp. 315-316]
A Content Provider hides the actual location of data from clients, which do not need

to know it, and do not have to be changed if the data location changes. This is especially

18

important for files, since the Content Provider owns the files which it has created. An-
other application should not access a file directly, but request it from the Content
Provider instead. [39, p. 316]

The Linux file system used by the Android platform is much more efficient for stor-
ing large amounts of data than blobs in an SQLite database. Given a URI pointing to a
column named _data in the database, the ContentResolver class can automatically

open a file named by _data, and return an output stream for the file. [39, pp. 316-317]

A simpler alternative to using files or a database is SharedPreferences. Data is set

and retrieved as key-value pairs, which are automatically saved to an Extensible
Markup Language (XML) file. [38, pp. 203-204] XML is a format for representing
structured information in a textual format readable for both humans and machines [30].

A SharedPreferences object is retrieved with an Activity's getSharedPref-

erences method. It takes a name for the preferences file, and a privacy mode. An Edi-

tor object from the SharedPreferences.edit allows the preferences to be changed,

and the commit method saves the changes. Using another getSharedPreferences

method which does not take a file name, the preferences are restricted to the Activity
that created them. [38, pp. 207-209]

 3.4 Networking

The Android platform supports sending Short Message Service (SMS) messages and e-
mails programmatically, although the application needs a permission to send SMS [38,
pp. 264, 267, 281]. Permissions are declared in a manifest, and shown to the user before
installation, which can not proceed unless the user grants the permissions [38, pp. 280-
281]. An SMS can also be sent through the built-in Messaging application, without the
need for a permission [38, pp. 269-270]. SMS allows sending short text messages be-
tween cell phones, and is often referred to as texting or text messaging. [21]

The SMS manager can also be given an Intent to be invoked when the SMS is sent,
and another to invoke after the SMS has been delivered [38. p. 267]. A Broadcast Re-
ceiver can listen for received SMS messages [38, p. 270].

Android libraries include the java.net package for basic socket and Hyper Text

Transfer Protocol (HTTP) handling, as well as org.apache.* packages for advanced

HTTP networking [47]. The Android platform supports many other networking-related
Java packages as well, but not all [48]. HTTP is introduced in Section 4.1.

 3.5 Graphical user interface

Android UIs are defined as a hierarchy of View and ViewGroup nodes [49]. A UI is typi-

cally defined in an XML file in the project's res/layout/ folder [38, p. 81]. The XML

offers a human-readable structure for a UI layout, where each XML element is either a

19

View or a ViewGroup. Views are leaves in the hierarchy tree and ViewGroups are

branches [49].
The res/ folder can also include other types of resources besides layouts. Each re-

source receives a unique identifier in an automatically generated class named R. [39, pp.

87-88] In order to load a layout and put it to use, an Activity must call its setCon-

tentView method, and pass the UI layout reference from the R class [38, p. 25]. Layouts

can also be included in other layouts using the <include> element [50].

Externalizing resources like this make them easier to maintain independent of the
code. Specially named resource folders also allow providing different resources for dif-
ferent device configurations. Among other things, there can be different layouts and im-
ages for different screen sizes, and different strings for different languages. A resource
identifier can also be an alias for another resource. [51]

An XML layout file is “inflated” into a View object. Usually this happens automati-
cally, as an Activity gets an identifier for its layout through setContentView, inflates

the layout, and adds inflated top-level View or Views to itself. Layouts can also be in-
flated with a LayoutInflater, or by using shortcut methods in View. [52; 53; 54]

 3.5.1 Layouts

View groups determine the order of their child Views, and implement layouts. A View
group can also include other View groups in order to create nested layouts. [49] Prede-
fined View groups include (up to version 2.3) LinearLayout, TableLayout, Frame-

Layout, RelativeLayout and AbsoluteLayout, as well as ScrollView, which enables

scrolling a single child View [38, pp. 83-96].
A linear layout arranges Views in a single line, which can be either horizontal or

vertical [38, p. 83]. An absolute layout places its children in exact locations, specified in
pixels. It does not scale well to different resolutions and has been deprecated since An-
droid 1.5. [38, pp. 87-88] A table layout groups Views into rows and columns. The
width of each column depends on the widest of the Views in that column. [38, p. 89] A
relative layout specifies the positions of its children relative to each other [38, p. 91].
Views in a frame layout overlap each other, and can have gravities that determine their
position on the screen [55].

The Views in a table layout can span multiple columns, and the table can also have
empty cells between Views. A column can be shrinkable, meaning that it can be nar-
rowed to fit the table inside the parent View. A column can also be stretchable, and ex-
pand to fill excess space. A column can be both shrinkable and stretchable. [56]

All Views are required to define layout_width and layout_height attributes in

XML. View dimensions can be defined using exact values, but more commonly one of
two constants, wrap_content and match_parent, are used. The former makes the View

just wide or high enough to contain its content, and the second makes it as wide or as
high as its parent allows. [57]

20

There are also various other layout attributes which can affect a child's size and po-
sition within its parent. An important one is weight, which determines how excess space
is distributed, but it is not available for all layouts.

 3.5.2 Views

An XML element depicts a Java object of a class whose name is the same as that of the
element, without package [49]. Custom Views have the entire package name in the
XML element's name, in addition to the class name. An inner class requires yet another
notation: a <view> element with a class attribute whose value is the inner class's name,

with package and the parent class's name. As usual in Java, the parent class's name is
followed by a '$' character, then the inner class's name. [58]

Each View has several callback methods for events, such as onClick. A View can

react to events by overriding these methods, but it is more convenient to attach a listener
to a View without having to extend the View class. There are nested event listener inter-

faces for a number of different events. [59]
A user can navigate Views using navigation keys, a trackball, or a similar device,

causing different Views to be focused. From here, any such navigation device will be re-
ferred to as navigation keys. Pressing the selection key causes the focused View to be
clicked, triggering an onClick event. With a touch screen, the user can simply touch a

View to trigger an onClick event. For this reason, Views are by default not focusable

after the device enters touch mode when the user touches the screen. [59]
The device exits touch mode when navigation keys are pressed. After that, Views are

again focusable. It is also possible to make Views focusable in touch mode. Focus
changes with navigation keys are handled automatically, and changes for Views becom-
ing unavailable are also handled. A View can be set focusable or not focusable, and fo-
cus can be requested for a particular View. [59]

There are various attributes for Views in XML, and these also have method and vari-
able counterparts for runtime access. A View can have layout attributes, which depend
on its parent, attributes inherited from the View base class or another super class, as well

as its own attributes. [57]
An important attribute available for all Views is the identifier. It is assigned as a

string in the XML, and becomes available as an integer of that name in the R class. Iden-

tifiers in XML are preceded by the '@' character. When a new identifier is created, it

must have a '+' character after the '@' character. Views with an identifier can be ac-

cessed programmatically using the findViewById method, and the identifier from R.

[57]

 3.5.3 Menus

In applications targeted for older Android versions, up to 2.3 (API level 10), an options
menu is opened with the device's Menu button. It appears at the bottom of the screen,

21

and can have up to six items. Additional menu items can be made available with a More
button in the menu. It is automatically included together with the first five menu items
when there are more than six menu items. Since Android 3.0 (API level 11) a Menu but-
ton is no longer required on Android devices, and Android applications are recom-
mended to migrate from the traditional six-item menu panel to an action bar. [60]

The action bar API was added in Android 3.0. Its primary goals are identifying ap-
plication brand and user location, providing consistent navigation and View refinement,
and making key actions prominent and accessible. The action bar also includes an
“overflow menu” button, which can be used to show actions that do not fit in the action
bar. It performs the same function as the device Menu button. [61]

Like other GUI components in Android, a menu can be created as an XML resource,
and doing so is recommended. Menu resources reside in the res/menu/ folder, and their

root element is <menu>. It can include <item> and <group> elements, where the latter

groups items so that menu items share properties. An <item> element can also include a

<menu> element in order to create a sub-menu. [60]

The callback for creating the options menu is onCreateOptionsMenu. On newer

Android platforms, this is called when the Activity is started in order to create the action
bar. On older platforms, it is called when the user opens the menu for the first time. The
menu object is retained once it has been created, and onCreateOptionsMenu should not

be used to modify the menu. Instead, there is a method that is called every time the user
opens the menu, named onPrepareOptionsMenu. On newer platforms which have an

action bar, the invalidateOptionsMenu must be called first, since the options menu is

always considered to be open. When the user selects a menu item, the onOptionsMenu-

ItemSelected method is called. [60]

In addition to options menus, there are context menus and pop-up menus, which af-
fect a specific item. A context menu can be provided for any View, but most often they
are used for View collections. A View that has a context menu is first registered using
registerForContextMenu. After that, the onCreateContextMenu method is called

when the View is long-clicked. The onContextMenuItemSelected method is called

when the user selects a menu item. [60]
Android 3.0 replaces the traditional context menu with a contextual action mode.

When the user selects an item, the action mode is enabled, and a contextual action bar
replaces the usual action bar. The user can then select multiple items and perform ac-
tions on all of them at once. [60]

The aforementioned pop-up menu is similar to a context menu, but is meant for ac-
tions that “relate” to specific content, while the context menu is meant for actions that
“affect” the content. It was added in Android 3.0. [60]

Menu items can be grouped, making the items in a group share properties. The items
can be shown or hidden, enabled or disabled, as well as checked or unchecked all at
once. Menu items can also be made into check boxes or radio buttons. The group's

22

checkable behavior is used for this. [60]

 3.5.4 Dialogs

Android API Guide recommends not instantiating the Dialog class directly, but instead

using AlertDialog and other predefined subclasses. An AlertDialog has an optional

title, a content area which can have a message, a custom layout or other things, as well
as action buttons. The AlertDialog.Builder class can be used to configure and create

AlertDialogs. In order to set a custom View for an AlertDialog's content, it must first

be inflated from XML into a View object using a LayoutInflater. [62]

An Activity's onCreateDialog callback creates a dialog, which the Activity will

then retain. The dialog is created only once, but the onPrepareDialog callback can up-

date the dialog every time before it is shown. In order to show a dialog, the showDialog

method is called. Its argument is an int identifier, which is passed to onCreateDialog,

if necessary, and onPrepareDialog. In a similar fashion, dismissDialog will close a

dialog depending on identifier, and removeDialog will delete a Dialog object from the

Activity. All of these methods are deprecated, in favor of the FragmentManager class,

which was introduced in Android 3.0 (API level 11). [52]
A dialog can be canceled with the Back button, touching the screen outside the dia-

log, or by the Dialog.cancel method. This indicates that the user explicitly interrupted

the dialog's task. [62] Listener interfaces for dialogs include onCancelListener, which

is called when a dialog is canceled, and onDismissListener, which is called when a

dialog is dismissed [63].

 3.5.5 Animations and graphics

Android has three methods of animation: Property Animation, View Animation and
Drawable Animation. Property Animation was introduced in Android 3.0, but the other
two are available in older versions as well. Drawable is an abstraction for “something
that can be drawn” in Android terminology, and Drawable Animation involves display-
ing Drawable resources, such as bitmaps, as frames in an animation. There is also the
Canvas class for custom 2D rendering, and support for Open Graphics Library
(OpenGL). [64, 65] OpenGL is a platform-independent API specification for rendering
graphics [17]. Property Animation and OpenGL are outside the scope of this text.

View Animations can perform a series of simple transformations, such as reposition,
resize and rotate, on the contents of a View. An animation sequence can be defined in
XML or Android code. The instructions define what transformations are to occur, when
they will occur, and how long they will last. They can be sequential or simultaneous.
Regardless of how transformations alter a View's content, they do not affect the View's
bounds. Content can be drawn outside a View without clipping, but content drawn out-
side the View's parent will be clipped. [66]

There are two ways of drawing 2D graphics onto a View: use the system's normal

23

View hierarchy drawing process, or draw graphics directly onto a Canvas in a separate

thread. The system drawing process is preferable when the graphics are simple and do
not need to change dynamically. The View.invalidate method can be called to cause

it to be redrawn, and the actual drawing happens in View.onDraw. Drawing happens in

the system main thread, which also executes other UI operations. [67]
The separate thread option allows the thread to draw as fast as it can. For this ap-

proach, a class which extends the SurfaceView class is needed, as well as an imple-

mentation of the SurfaceHolder.Callback interface. It is recommended that the Sur-

faceView subclass also implements SurfaceHolder.Callback, and includes the draw-

ing thread. The callback interface is used for notifying when the surface is created,
changed or destroyed. [67]

The Canvas used for drawing is retrieved with SurfaceHolder.lockCanvas. It has

various drawing methods, such as drawBitmap and drawText. It is also a parameter for

the draw method of a Drawable, which draws itself. When drawing is finished, the Can-

vas is sent back to the system with SurfaceHolder.unlockCanvasAndPost. The Sur-

faceHolder can be retrieved with SurfaceView.getHolder. The Canvas retains its

state from the previous pass, and the entire surface must be re-painted to properly ani-
mate the graphics. [67]

24

 4 NETWORKING TECHNOLOGIES

This chapter contains information about several networking-related technologies which
were researched for this thesis. Some of them were used in implementation, others were
abandoned. Explanations include benefits for the implementation of this project, as well
as reasons for not using certain technologies.

Since the server is written in Java, it is preferable to use a Java-based connection
with a client. When that is not possible, the communication is abstracted so that it can
be used with a variety of different platforms. In that case, messages can not contain any-
thing Java-specific, but only the necessary information in the simplest plausible form.

 4.1 HTTP: Hyper Text Transfer Protocol

HTTP is a widely used protocol on the Internet. It implements a synchronous stateless
request-response model. A client sends an HTTP request to a server, which sends back
an HTTP response. Hence, a request-response model. Being synchronous means that the
client connects to the server, and waits while the server processes the request. [10, pp. 9,
30]

The HTTP protocol specifies request and response structure, and certain request
types [10, p. 30]. A message includes a start line, zero or more header lines, an empty
line to signify the end of the headers, and possibly a message body [68].

Request types include GET, which is meant to be read-only and not modify any data
on the server, and POST, which can send information to the server, and enable responses
based on the sent information and some business logic on the server. [10, pp. 15, 32]

Version 1.1 of HTTP adds six new request types: HEAD, OPTIONS, PUT,
DELETE, TRACE and CONNECT [10, p. 32]. HEAD is identical to GET, except that
the response must not have a message body. OPTIONS requests information about
available communication options. PUT sends a resource which is to be stored with the
request's URI as its identifier. DELETE requests the deletion of a resource identified by
URI. TRACE invokes a loop-back, receiving the same request as the request's actual re-
cipient. CONNECT is reserved for proxies that can dynamically become a tunnel. [69]

HTTP is programming language independent. It is also stateless, meaning that a new
connection is opened for each request, and there is no built-in way to map requests to
clients, or to save state between requests. Several solutions exist to overcome this defi-
ciency. One way is attaching a token to each request, and using that token to identify a
client and manage state. Using a solution like this, the server can create and maintain a

25

session with a client. [10, pp. 36-37]
HTTP is suitable for simple data retrieval and updates in Mupe Force. In other

cases, the server should make information available only to a logged-in player whom
that information concerns. For those, as well as updates, the client needs to be identified
for data integrity.

Because HTTP is synchronous, it would be necessary to create multiple threads in
some situations, to avoid blocking. This is still plausible, but a larger problem is that
HTTP has no support for server sending a message to a client, except in answer to a re-
quest. HTTP is an integral part of several of the following technologies, and is not dis-
cussed further on its own.

 4.2 Comet

The term Comet encompasses multiple technologies, and it is also known by several
other names. The Comet technologies enable an HTTP server to send data to a client
without the client requesting it. [6, p. 1] There are two types of implementation: stream-
ing and long polling. [70]

Streaming involves opening a persistent connection from the client to the server. The
server uses it to send events to the client, which handles the events. Neither side closes
the connection. [70]

Long polling requires the client to poll the server for events. The polling connection
is kept open until the server has some data to send to the client. After the client receives
the data, it opens a new long polling connection. [70]

Comet technologies are aimed for use with web browsers, over HTTP, and using
common browser technologies and standards such as HTML, JavaScript and Ajax [70].
As such, Comet technologies are not well-suited for use in a non-browser Android ap-
plication. Similar techniques can be utilized with different technologies.

From the point of view of Mupe Force, streaming would be a favorable connection
method over long polling. During a battle, messages will be frequently transmitted back
and forth between client and server. Therefore, the persistent streaming connection
would be more efficient than constantly opening new connections for long polling.
Long polling also presumably blocks the communication thread until an answer is re-
ceived. Since HTTP needs a new connection for each request, it does not allow stream-
ing, but long polling is possible. This is an important consideration in deciding the tech-
nology for this project's networking.

 4.3 XMPP: Extensible Messaging and Presence Protocol

Extensible Messaging and Presence Protocol (XMPP), originally known as Jabber, is an
XML-based open standard for real-time messaging. Anyone may implement an XMPP

26

service and communicate with other implementations. There is no centralization, no
royalties, and no single vendor. XMPP may be isolated from the public network, and its
specifications include robust security features. [32] XMPP has an HTTP binding, which
uses long polling to receive messages as soon as they are sent. [71]

An example of XMPP implementations for Android is AsmackService [72]. It is
lightweight and specially designed for smart phones. It does not support a wide range of
features, but only basic messaging features are required for this project [73]. As for
Java-based XMPP servers, an example is Apache Vysper [74]. These were researched
with the intention of using them in the project, but ultimately abandoned. Vysper de-
pends on Apache MINA [75]. It is introduced later in this chapter.

 4.4 C2DM: Cloud to Device Messaging

Android Cloud to Device Messaging (C2DM) is a service for sending notifications from
application servers to devices. It handles message queuing and delivery, but makes no
guarantees about delivery or message order. It is not designed for sending a lot of user
content. [5]

Messages can also be delivered to applications that are not currently running. As
long as a suitable Broadcast Receiver and permissions exist, the Android system can
start up the receiver application as needed. It requires users to set up their Google ac-
count on the device. [5]

The Mupe Force client needs to communicate with the server only while it is run-
ning. Therefore direct communication is preferred, and a third-party messaging service
is unnecessary. If future developments include notifications to a user while the applica-
tion is not running, C2DM is worth considering.

 4.5 JMS: Java Messaging Service

Java Messaging Service (JMS) implements an asynchronous communication model. It
allows messaging directly from a client to a receiver, as well as from a publisher to any
and all registered subscribers. A sender can put a message in a queue, and does not need
to wait until the receiver gets the message. The receiver can pick up the message any
time, once it has been placed in the message queue. [10, pp. 42-47]

Outside of battle, updates to server data in Mupe Force can be done asynchronously.
The client can notify the server of the change, but does not need to wait until the server
update is completed. Likewise, it can post a request for data, which the server sends
when it is ready. The amount of time needed for server communication is shortened. In
some cases, the data update can affect later data queries, so the update notifications need
to be processed in order.

Internet discussions uniformly agree that JMS does not work on Android, and no

27

claims to the contrary were found. The recommended solution is transferring messages
from JMS to XMPP on the server, and communicating between the XMPP server and
the Android client [76]. This solution is suitable when there is a need to communicate
with an existing JMS server. Since no server for this project exists yet, this solution has
no merit over using XMPP without JMS.

 4.6 Java Servlets

Servlets were created for serving dynamic content for HTTP requests. Later versions in-
troduced session management. An HTTP servlet receives an HTTP request and an
HTTP response, and can create content for the latter. Details of the HTTP protocol are
hidden from the programmer. Each request is handled in its own thread. [10, pp. 80-82]

The HTTP servlet base class has default implementations of methods for HTTP
GET and POST, as well as other types of requests. These can be overridden as neces-
sary. The servlet container also manages sessions transparently, and allows the program-
mer to save key-value pairs in the session. There is also a context where data for the en-
tire application can be saved, and data can be associated with an individual HTTP re-
quest. [10, pp. 82-84]

Since servlets are a server side means of HTTP communication, they have the prob-
lems associated with HTTP. There is no way of sending messages from server to client,
except long polling. Therefore servlets were not used in this project.

 4.7 Apache MINA: Multi-purpose Infrastructure for Network
Applications

Apache MINA is a network application framework which provides an abstract event-
-driven asynchronous API over various transports [77]. MINA is an acronym for Multi-
purpose Infrastructure for Network Applications. It currently supports TCP, UDP and
transports based on Apache Portable Runtime. It can be used for creating both client and
server applications, and implementing protocols that keep the connection alive. [78]

The Transmission Control Protocol (TCP) provides reliable, ordered delivery of a
byte stream from one computer to another. It is connection-based, and data can be sent
both ways once connection is established. The User Datagram Protocol (UDP) sends
separate datagrams without guarantees for reliability or order. It is faster than TCP, since
there is no error checking. [25] Apache Portable Runtime (APR) intends to create an in-
terface which allows software developers to be assured of predictable behavior regard-
less of platform [3].

MINA has an implementation for a low-level TCP transport server and client,
among other things. These provide sufficient communication capabilities, and MINA
was selected for use on both the server and the client. It is covered in more detail in Sec-

28

tion 5.2.

 4.8 JSON: JavaScript Object Notation

JavaScript Object Notation (JSON) is derived from JavaScript for representing objects
in a text-based, human-readable and language-independent fashion [11]. Its primary use
is exchange of structured data. JSON is commonly used for the same purposes as XML,
but is promoted as simpler and more suited for mapping objects. JSON also does not
need new tags or attributes to be defined for data representation. [79]

JSON describes objects, which contain named values, and arrays, which contain or-
dered values. A value can be a string, a number, a boolean, a null, a JSON object, or a
JSON array. Nesting of objects and arrays is therefore possible. [11] JSON is discussed
further later, in the context of XML-RPC and JSON-RPC.

The Android core libraries include support for JSON objects. They are implemented
as key-value pairs with get and put methods for various data types, each with a String

key for a parameter. [80] There is also support for JSON arrays, which have similar get
and put methods to those of JSON objects. The difference is that indices are used in-
stead of keys. Put methods append an element to the end of the array without a key. [81]

 4.9 Remote procedure call technologies

Remote Procedure Call (RPC) protocols allow a program to call another program's pro-
cedure remotely, abstracting network details [19]. They can be used to invoke actions on
the server, but the primary need for them is the implementation of battle actions. An ac-
tion, when used, does not cause a simple value to be returned. Rather, it returns a set of
commands that need to be executed on the client side.

The intuitive way is to have the server remotely call methods on the client. Besides
actions, RPC technologies can be used for other messaging as well. It is a simple matter
of remotely calling methods on the server.

 4.9.1 Java RMI: Remote Method Invocation

Java Remote Method Invocation (RMI) implements a synchronous request-response
model. It allows a client to invoke methods on remote applications, and receive return
values. Exceptions can also be thrown from remote methods. As with local methods, the
client waits until it receives a response. [10, pp. 16, 19]

The client needs a reference to the remote object before it can call its methods. In
practice, the client has a reference to a stub, which implements the same interface as the
remote object, called a remote interface. The stub delegates method calls to a skeleton,
which resides at the same location as the remote object. The skeleton takes the place of
the client for the remote object. [10, pp. 17-19]

29

The stub and the skeleton implement the required networking, and neither the client
nor the remote object need to know about it. Method parameters, return values and ex-
ceptions are also handled transparently. Remote references can be passed by reference,
but any other objects and primitives need to be passed by value. Their state is converted
to a raw format, which is transferred to a remote location, and converted back to the
original format. These conversions are called marshalling and unmarshalling, although
they are in practice Java serialization and deserialization. [10, pp. 19-21] Serialization
converts an object into a byte stream that allows a copy of the object to be created. Cre-
ating a copy from serialized data is called deserialization. Java has automatic serializa-
tion and deserialization. [7]

RMI is a pure Java environment [10, p. 22]. Because of that, it is an attractive solu-
tion for communications between a Java server and Android, which is also a Java envi-
ronment. RMI is an excellent solution for implementing actions, since they all share the
same interface, and the client has no need to know about the implementing object.

The client needs to retrieve the correct action object, and call methods in its remote
interface. The action object also requires some remote interfaces from the client, in or-
der to execute its effects and visualizations.

Unfortunately, Android does not support RMI, as its libraries do not include the
RMI packages, java.rmi and javax.rmi [48]. Including standard Java APIs to an An-

droid application may be possible through repackaging the Java API, though [82]. Still,
no reliable record of successfully incorporating RMI into an Android application was
found.

It seems probable that RMI would require native code which is not present in An-
droid. In addition, the marshalled Java objects would need to be converted to dex byte-
code format for the Dalvik Virtual Machine. Therefore, no actual attempt at integrating
RMI into the application was made.

 4.9.2 XML-RPC

XML-RPC uses the HTTP protocol as a transport mechanism, and XML for encoding
the calls. It enables a client to call a single method in a remote system, pass multiple in-
put parameters, and receive one return value. Larger structures can be transported by us-
ing data structures and arrays. [31]

XML-RPC is criticized as “worse than all of its competitors”. Compared to RMI, it
is limited in transmittable data types and has large message size. Because it is tied to
HTTP, it lacks statefulness. [83] An open source library named aXMLRPC implements
XML-RPC for Android. It does not depend on any Android-specific libraries so the li-
brary works also for regular Java [84].

Possible parameter types for an XML-RPC method call include numbers, strings,
booleans, dates, binary data, structures or arrays. Structures contain named members,
each of which belongs to one of the above types. Arrays are similar, but members are

30

not named. [85]
A method returns either a single value, or a fault, which is described by a structure

containing an integer and a string. The return value can have any of the same types as
the method parameters. A string allows all characters except “<” and “&”, which are en-

coded as “<” and “&”, respectively. [85] XML-RPC is compared to SOAP and

JSON-RPC in the following subsections.

 4.9.3 SOAP: Simple Object Access Protocol

Simple Object Access Protocol (SOAP) uses XML for its message format, and HTTP,
among other alternatives, for transmissions. A SOAP message can be sent to a service
which returns an XML-formatted document. [22]

There is no built-in SOAP library in Android. Speculations in on-line discussions of-
fer such explanations as Google's preference for RESTful web services, the high over-
head of SOAP, and JSON's better efficiency. An open source library named ksoap2-an-
droid exists for using SOAP on Android [86].

Because of its apparently heavy overhead and lack of support, SOAP was not used
in this project. There is no clear advantage over XML-RPC and JSON-RPC, which are
promoted as more light-weight.

 4.9.4 JSON-RPC

JSON-RPC is a protocol for remote procedure calls with JSON encoding. It can be used
to send notifications which do not require a response, and a batch of multiple requests
which can be answered in a different order. A JSON request is a call to a single method
in the remote system using any suitable transport. The request can pass multiple param-
eters, and receive a return value. [12]

An open source JSON-RPC, version 2.0, library named android-json-rpc exists for
Android. It currently supports only JSON-RPC calls over HTTP. [87] There are numer-
ous JSON-RPC implementations for Java.

A JSON-RPC method invocation request is a JSON object that includes the
method's name, a request identifier, and an array of parameters for the method. The
method response is a JSON object that includes the request identifier, and either an ob-
ject returned from the method, or an error object. [12]

In addition to regular method calls, there are notifications. A notification is a single
JSON object, similar to a method invocation object, but without a request identifier. No-
tifications do not get a response. Parameters can be omitted from a request. JSON-RPC
2.0 request and response objects contain an extra member that signifies version. [12]

 4.10 Decisions

JSON-RPC was selected as the means for invoking server methods from the client. As

31

for invoking client methods from the server, although possible, a different method was
used. The server sends a script, which the client interprets and executes. This has a simi-
lar effect, but the script is better suited for use on different client platforms than the RPC
method.

Along with the decision to use JSON-RPC, JSON was selected as the application's
data transfer format. It is unambiguous, simple, light-weight, has built-in support in An-
droid, and its platform independence makes it usable for different kinds of client. Unfor-
tunately, there is no support for it in Java SE 1.7 API, which will be addressed in the
next section.

 4.11 JSON-RPC implementations

In order to use JSON-RPC to call server methods, a JSON-RPC implementation is nec-
essary for the server. Numerous JSON-RPC implementations for Java were studied, and
will be described in this section.

As implementations are introduced, problems in using them for this project will be-
come apparent. Most of these problems will also appear in other implementations, caus-
ing them to be rejected on the same basis as one or more prior implementations.

 4.11.1 qooxdoo 2.0.1

The qooxdoo RPC is based on JSON-RPC as the serialization and method call protocol,
and provides a Java server back end, among others. There is no mention of any front
end besides JavaScript, remotely callable Java methods need to implement a special in-
terface, and the Java back end is implemented as a servlet. [88] Front end means the part
of an application which interacts with the user. [4]

The fact that the front end is JavaScript is not a major issue, since Android's built-in
JSON support can be used for creating JSON-RPC messages, and MINA was intended
for transportation use anyway. It would, however, be necessary to separate JSON-RPC
handling from the servlet in order to use it with MINA, and the need for implementing
an interface reduces code reusability and makes it more difficult to replace qooxdoo.

 4.11.2 jabsorb 1.3.2

A major part of jabsorb is a Singleton JSONRPCBridge object, which unmarshalls JSON

objects in JSON-RPC request format, invokes a Java method, and marshalls the re-
turned Java objects into JSON objects. A Java object's public instance methods can be
registered for JSON-RPC calls, as well as public static methods of a Java class. [89,
JSONRPCBridge]

The jabsorb download package includes a servlet JSON-RPC implementation, as
well as some JavaScript files. With some experimentation, these were found to be un-
necessary for the operation of JSONRPCBridge, which was successfully used together

32

with a MINA server.
It was also ascertained that custom marshalling was possible with jabsorb's serializa-

tion framework, making it possible to transform Mupe Force objects into language-in-
dependent descriptors.

 4.11.3 jsonrpc4j 0.24

The jsonrpc4j project uses another library, named Jackson, for Java/JSON transforma-
tions, and includes a client and several server implementations for JSON-RPC [90]. Its
streaming server accepts a JSON-RPC message sent by the client, handles it, and returns
the results [91, StreamServer]. No way for sending messages from the server to the

client was found.
JSON-RPC handling is separated from the transport server, and implemented in the

JsonRpcServer class [92, JsonRpcServer]. It should be possible to use it separately, as

with the jabsorb JSONRPCBridge before, but this would be pointless. The interface for

registering callable methods is more difficult to use than the one in jabsorb, and the
Jackson library is very large in comparison. The Jackson library was not researched
thoroughly enough to determine how to implement custom Java-to-JSON transforma-
tions.

 4.11.4 json-rpc 1.0

This implementation requires a client interface and its server side implementation [93].
The server side implementation is then bound to an executor, which determines a Java
method matching a JSON-RPC request, and executes it using a transport which reads
the request and sends the response. [94, JsonRpcExecutor, JsonRpcServerTransport]

On the client side, an invoker creates a proxy instance of the client interface. It uses
a transport which calls the server and returns its response. It uses a library named
google-gson to convert JSON objects to Java objects and the other way around. [95,
JsonRpcInvoker; 94, JsonRpcClientTransport]

MINA can be used together with json-rpc by implementing the transport interfaces
JsonRpcServerTransport and JsonRpcClientTransport. However, the invoker uses

a default Gson object for transformations between Java and JSON [95, JsonRpcIn-

voker]. Therefore it prevents the use of custom JSON serializers, and because of that,

this implementation was not used in this project.

 4.11.5 Others

By now, several limitations in the JSON-RPC implementations have been introduced. In
order to be applicable for this project, the library must be usable without servlets, it
must either be usable together with MINA or have a suitable server of its own, it must
be able to handle existing Java objects without changes to the code, and it must support
custom marshalling.

33

The other libraries that were studied, but failed to meet these requirements, are
shown in Table 4.1. In the end, the only implementation that meets the above require-
ments is jabsorb, which was selected for use in this project. It is covered in more detail
in Section 5.3.

jpoxy 1.0.17 Implements JSON-RPC in a servlet class [96].

JSON Service 1.0.0 Requires annotations for classes and methods that can be called
remotely [97]. Adapting for this project would also be difficult
because of bindings to servlets and the Spring framework, and
use of the Jackson library.

JSON-RPC 2.0 Requires callable methods to be introduced in a class that imple-
ments the library's RequestHandler interface [98]. Uses yet an-

other library for JSON encoding and decoding: JSON Smart. It
is limited to only a few Java types: Boolean, Number, String,

List and Map, as well as null. [99]

Java-json-rpc A servlet implementation using Jackson [100].

libjsonrpc 1.1.2 Server side must implement an interface, and a client side proxy
that implements the same interface is created. Needs annotations
to determine classes and properties available for RPC invoca-
tion. [101]

simplejsonrpc 0.1.1 A servlet implementation using Jackson [102].

Table 4.1: Other JSON-RPC libraries that were researched.

34

 5 SERVER JAVA

This chapter introduces the technologies used on the server. Server side software is
mostly written in common Java Standard Edition (SE), but that will not be introduced
here. Rather, Java DataBase Connectivity (JDBC) is introduced, and the Apache MINA
communications library and jabsorb JSON-RPC library, which were introduced in the
previous chapter, are explained in more detail.

JDBC is a part of the standard Java API, and its package is java.sql. It needs a

separate database driver depending on the database in use. The Mupe Force server uses
a MySQL database, so the appropriate JDBC driver is MySQL Connector/J [103].

MINA can be downloaded from Apache's web site. The download includes multiple
JAR packages, but only the core package is necessary for this project. MINA needs
some other libraries which come with the download package: Apache's Commons Log-
ging and Simple Logging Facade for Java (SLF4J) [104, 105].

A download package for jabsorb is available at Google Project Hosting [106]. It
needs Apache's HTTP Components HttpClient and JCP Servlet Specification 2.5 API,

because of its servlet and HTTP ties [107, 108].

 5.1 Database programming with JDBC

An SQL script file is used for creating the database schema. After that, the Mupe Force
server also requires a user access to its database, mupe_force_server. User name and

password, as well as database URL were hard-coded into the main method. The proce-

dure for communicating with a database using JDBC is as follows [109, p. 1293]:
1 Import the necessary classes.
2 Load the JDBC driver.
3 Identify the data source.
4 Allocate a Connection object.

5 Allocate a Statement object.

6 Execute a query using the Statement object.

7 Retrieve data from the returned ResultSet object.

8 Close the ResultSet object.

9 Close the Statement object.

10 Close the Connection object.

The JDBC driver can be identified in a system property, “jdbc.drivers”, which

35

makes it possible for the JDBC Driver Manager to load it automatically. Setting a sys-
tem property might be prevented by security policy, but the driver can also be loaded
explicitly using a static method in Class, and the driver class's fully qualified name:

[109, p. 1295-1296]

Class.forName(“com.mysql.jdbc.Driver”)

Once the driver is loaded, the Driver Manager can provide connections for data
source identifiers [109, p. 1296]. The data source identifier is a String URL, which

identifies both the driver and the data source. Its format depends on the driver [109, s.
1297]. The MySQL Connector/J has the following format (somewhat shortened) [110,
19.3.5.1]:

jdbc:mysql://[host][:port]/[database]

Square brackets indicate optional parts. The Mupe Force server database is named
mupe_force_server, and runs on localhost, which is the default host, at the default

port, so its URL is:

jdbc:mysql:///mupe_force_server

An open Connection can create Statements, which can be used for compiling and

executing SQL queries and query batches, which will provide the results in a Result-

Set [109, p. 1303]. Queries can be executed with executeQuery(), added to a batch

with addBatch(), the batch can be executed with executeBatch(), and cleared with

clearBatch(). A batch can produce multiple result sets, which can be retrieved using

getResultSet(), and iterated using getMoreResults(). [109, p. 1304] Queries which

do not return results, such as data manipulation, can be executed with executeQuery(),

but also with executeUpdate(). It does not produce a result set, but a number of af-

fected rows. [109, p. 1343]
A connection can also provide a more complex PreparedStatement. It pre-com-

piles an SQL statement with placeholders where parameter values can be inserted later.
These are especially good when a statement is executed multiple times. [109, p. 1304]

Placeholders are marked with question marks, and indexed from left to right, start-
ing at one. There are numerous setters for the values of a placeholder. Each takes a pa-
rameter of a certain data type, and an index to the placeholder. [109, p. 1346]

A result set contains rows, which can be navigated using next(), previous(),

first(), last(), beforeFirst(), afterLast(), isFirst() and isLast(). As in a

database, each row contains columns with varying types of data. A column can be iden-
tified by its name, or its index in the result set. There are various getters for each, with
different data types, such as int or InputStream. [109, p. 1305]

Meta data about a result set is available through the getMetaData() method, which

returns an object of type ResultSetMetaData. It can provide, among other things, the

number of columns in the result set (getColumnCount()), and the name and type of a

column (getColumnName() and getColumnType(), respectively), using a column in-

36

dex. [109, p. 1308]
MySQL is by default in auto-commit mode [110, 13.3.1]. The Connection interface

has methods for enabling or disabling auto-commit, as well as executing manual com-
mit and rollback [111].

 5.2 Communications with Apache MINA

A MINA application has three layers: I/O Service, I/O Filter Chain, and I/O Handler.
The I/O Service performs actual input and output. I/O Filter Chain filters or transforms
data from bytes to data structures and back. The I/O Handler has the application's busi-
ness logic. Several I/O Services and Filters for the I/O Filter Chain are available. The
I/O Handler is application-specific, and needs to be implemented. [112]

A server has an I/O Acceptor, which listens on a port for incoming connections or
packets. A new session, specific to an IP-address and a port, is created for a new con-
nection. Subsequent requests are handled in that session. All received data traverses the
I/O Filter Chain, allowing Filters to modify the content. The final destination for the
data is the I/O Handler. [113]

Sending data from a client works in the opposite order. The client has an I/O Con-
nector, which connects to the server and creates a session. Data comes from the client's
I/O Handler, through its I/O Filter Chain, and is sent to the server. The response then
traverses from the I/O Connector through the I/O Filter Chain to the I/O Handler, like
on the server. [114]

In order to transport data in text format, the server and client both need a Protocol-

CodecFilter using a TextLineCodecFactory [115]. This is not a very efficient or

practical format for transporting data, but creates human-readable messages that are use-
ful for testing.

In order to connect to the server from the client, the method IoConnector.connect

is used. This returns a ConnectFuture object, which indicates connecting is an asyn-

chronous task and may not be complete when the connect method returns. The connect
future has a method named awaitUninterruptibly, which returns once the connection

is complete. After that, the connect future provides an IoSession object. Messages be-

ing sent to the server are written to the session object. [116]
The IoHandler interface has several callbacks for tracking events: sessionCre-

ated, sessionOpened, sessionClosed, sessionIdle, exceptionCaught, mes-

sageReceived and messageSent. The sessionCreated event is executed in a thread

that handles multiple sessions, while the sessionOpened is called in a session-specific

thread, depending on thread model. A session is “opened” after it has been “created”.
[117] An adapter class, named IoHandlerAdapter, can be extended to selectively over-

ride methods in the IoHandler interface [115].

MINA has four types of Acceptor: NioSocketAcceptor, NioDatagramAcceptor,

37

AprSocketAcceptor and VmPipeAcceptor. The first is a non-blocking socket Acceptor,

the second a non-blocking UDP datagram Acceptor, the third a blocking socket Accep-
tor, and the last one is for communications inside the Java Virtual Machine. There are
corresponding Connectors, as well as a few others. [118]

The unreliable nature of UDP makes NioDatagramAcceptor unsuitable for this

project. The VmPipeAcceptor is, of course, useless for communications over a network.

Of the two socket Acceptors, the NioSocketAcceptor is better since it is not blocking.

The client does not require an immediate response to a request sent to the server, but can
send other requests and handle responses and incoming messages while waiting.

To match the NioSocketAcceptor on the server side, NioSocketConnector is used

on the client side. Nothing was found in the documentation about the sending of mes-
sages from the server to the client. However, it is important to note that the socket re-
quest is non-blocking, meaning that the response from server is sent asynchronously.
The method of sending the response is writing it to the server side session object [115].
An experiment showed that sending a message in this fashion caused a messageRe-

ceived event in the client's IoHandler, just like sending a message from the client to

the server the same way.
As for concurrency, the default mode of NioSocketAcceptor is “multiple thread

model”. In case more control is required, the Acceptor can be constructed with any im-
plementation of the java.util.concurrent.Executor interface. [119] Same is true

for the NioSocketConnector [120].

 5.3 JSON-RPC with jabsorb

The jabsorb class which unmarshalls JSON-RPC requests, invokes methods and mar-
shalls results into JSON-RPC responses is JSONRPCBridge. It has a global Singleton,

and can also be instantiated. The global bridge allows objects and classes to be exported
for use by all clients. Object methods are exported with registerObject(Object key,

Object o) and classes with registerClass(String name, Class clazz). [89]

The former is overridden, and can get an extra Class parameter, which determines

exported interface. All instance methods defined in the interface Class parameter are

exported, while without it, all public instance methods in the object are exported. For a
class, public static methods are exported. The method's name for JSON-RPC is the key
or name, plus a dot, and the method's name. [89]

Once methods are exported, they can be invoked using the JSONRPCBridge.call

method. Its parameters include a context, documented as HttpServletRequest and

HttpServletResponse in the case of HTTP transport. According to experimentation,

the call method works fine with a null for context. Besides the context, there is another

parameter, which is a JSON object containing a JSON-RPC method invocation. [89,
JSONRPCBridge]

38

Exceptions can be transformed to JSON using implementations of the Exception-

Transformer interface, and setting it to the bridge using setExceptionTransformer.

An ExceptionTransformer can transform a Throwable into any Object. [89, Excep-

tionTransformer, JSONRPCBridge] Besides exceptions, the public entry point for jab-

sorb's framework for marshalling Java objects is JSONSerializer. It is a global object

with a setter and getter in JSONRPCBridge. [89, JSONSerializer, JSONRPCBridge]

Default serialization can be extended by adding Serializer implementations to the

JSONSerializer. More specific serializers should be added after less specific serializ-

ers. The serializers available in jabsorb handle primitives, JSON types, common objects
such as Strings, various collections, arrays, and some others. [89, Serializer, JSON-

Serializer, org.jabsorb.serializer.impl]

A Serializer implementation needs to return the Java classes it can marshall from

or unmarshall into, and classes for JSON objects it can marshall into or unmarshall
from. It also has a more specific test for serialization from a Java class into a JSON
type, a setter for the owning JSONSerializer, and of course methods for marshalling

and unmarshalling objects. In order to check if a JSON object can be unmarshalled,
there is a method named tryUnmarshall. A class named AbstractSerializer imple-

ments setting the owner, and a basic test of what can be serialized, based on returned
classes. [89, Serializer, AbstractSerializer]

39

 6 SERVER DESIGN

The server is built around the database, with the network connection layer as its front.
Between them is a model of game contents, which provides data for the connection
layer. It also handles changes that originate from the connection layer, and returns the
results of the changes. There is also the battle controller and related classes.

The database can be divided into two parts: meta data and player-specific data. Meta
data is loaded when the server starts up, and stays in memory until the server shuts
down. Each meta data object is essentially a Singleton Flyweight, which contains the
unchangeable state it was created with. Player-specific data is instantiated when a player
logs in, and it remains in memory until the player logs out. It can also be altered.

Singleton is a design pattern that ensures there is only one instance of a class, and
there is a global access point to it [8, p. 128]. Flyweight is a design pattern for sharing
objects. A Flyweight object contains context-independent state, and receives context-re-
lated properties from clients. [8, pp. 195-196]

The communication layer is abstracted, so that the model and battle controller can
work with any kind of communication implementation. The abstraction also allows the
communication implementation to use a changeable component for transforming re-
sponses and outgoing messages.

 6.1 Meta data

The meta data module has four classes, which correspond to database tables. A diagram
of meta data tables is shown in Figure 6.1. All of the tables are not represented, though.
These classes are: AbilityTypeDB, CharacterClassDB, ItemCategoryDB and Item-

TypeDB. In addition, there is StatisticsDB, which only contains static methods for sav-

ing statistics to the database and reading them back. It can not be instantiated. Statistics
belong to neither meta data nor player-specific data, or to both, depending on interpreta-
tion.

The basic operation of a meta data class consists of loading all data for that class,
getting a list of String identifiers for the content, getting an object corresponding to an

identifier, and reloading the content from database. These are all static methods, which
create an encyclopedia-like interface for the meta data. Each class also has non-static
getters and setters, as well as save and delete methods. Only the getters are needed in-
-game, since the meta data is not changed. The other methods are for internal use and
content editing.

40

A group of proxy classes separates the database meta data classes from the rest of
the application. These are named AbilityType, CharacterClass, ItemCategory and

ItemType, Each of them contains a link to a database object, and implements the Ob-

server design pattern in order to receive a notification when the database objects are
reloaded. In the Observer pattern, multiple observers can be notified of the state of a
subject changing [8, pp. 293-294].

The proxies enable reloading the meta data at run time, since each database object is
referenced in a single place, at most. The proxy classes have a similar static interface to
the database classes. They also have getters, including some that are more specialized
than those in the database classes, which only provide database data as it is stored at
runtime.

All database identifiers are kept in the runtime objects for saving and deleting.
When multiple operations are done during saving or deleting, they are done in a single
transaction and rolled back if any of the operations fails. Rather than failing completely,
individual objects can be left out during database reading, in order to cope with database
errors.

Figure 6.1: Meta data tables in database (colored).

41

 6.2 Player-specific model

A diagram of database tables for player-specific data is shown in Figure 6.2. Along with
a player, all of that player's characters and items are created. If an item is equipped or
carried by a character, it is placed to the character's inventory in the appropriate slot.
Characters also have abilities, which depend on their level and class. The character class
meta data object will provide a list of abilities the character has learned. New ability ob-
jects are created and added to the character.

When player-specific data objects are created, they are set with references to the ap-
propriate meta data classes. A character belongs to a class, and an item or an ability has
a type. Player-specific data objects can be added, modified and deleted at runtime. The
changes are also saved to the database, if the player is registered. The data of guests is
not saved, but only the runtime objects are updated. When the guest logs out, those ob-
jects are forgotten. Classes are Player, Character, Item and Ability.

A player is identified by a unique user name, and an ability's type name is required
to be unique for a character. Characters and items require a means for a client to unam-

Figure 6.2: Player-specific data tables in database (white).

42

biguously refer to them. For a character or item which belongs to a registered player, its
database identifier can be used. Auto-increment integer primary keys in MySQL with
default settings are positive integers starting from one [110, 3.6.9].

Another means of generating identifiers is needed for characters and items belong-
ing to guests. Each new guest gets a number from one to the maximum 15-bit value, or
in other words the maximum value of short. Each character or item for a guest also

gets a number from one to the same maximum value.
These are then combined with the guest number in the 16 most significant bits and

the character or item number in the least significant 16 bits of a 32-bit int. The result's

opposite is used for the identifier. Therefore, negative numbers are identifiers for the
characters and items of guests, positive values for those of registered players, and zero
is neither. Zero is the identifier for “no character” or “no item”.

 6.3 Database helper

The database helper is a utility class for handling database operations. It wraps an open
JDBC connection. It also has a list of ResultSet objects, and a list of Statement ob-

jects. When called to do so, it will close all ResultSets and Statements. ResultSets

and Statements can be added. The helper also has methods for creating Prepared-

Statements, which add the new statement to the list, and methods for executing

queries, which add the query ResultSets. The query execution method uses a State-

ment, which the helper creates internally when necessary. The same Statement can also

be used to execute updates, which do not return a ResultSet.

The helper does not handle transactions, but provides access to the connection it
wraps. Therefore the connection's auto-commit can be disabled, and changes committed
manually. The helper has a rollback method for easier exception handling.

The Observer system for database meta data is implemented in the DBHelper class.

It has a static Observable, and static methods to attach observers to it, remove ob-

servers, and notify observers.

 6.4 The facade

The runtime model is accessed through a facade, which has three classes: Character-

Actions, ItemActions and PlayerActions. Each has a set of static methods for ma-

nipulating the model and getting data from it and the meta data classes. The facade
classes hold the JDBC connection necessary for persisting changes. Each static method
encapsulates one game action and affects only the objects it gets as parameters, as well
as the database.

A second facade layer acts as a proxy between a non-Java client and the facade. It
takes parameters as Strings and primitives, matches them to Java objects, and delivers

43

those objects to the real facade. The proxy facade methods are also static, and affect
only those objects identified by the parameters. Any method in either facade layer can
throw an SQLException, if the action changes database content.

PlayerActions is the entry point onto the server because it has actions for logging

in and creating new players. Registered players have a create action, which performs an
initial database save and then logs the new player in. Guests are only logged in, and re-
main in existence only until logged out. All logged in players are stored in a map keyed
by name, and removed from it when logged out.

When a guest is logged in, a new name is generated. A new player's name is ex-
pected as a parameter. Either way, the names of players that are already logged in are
checked, as well as those saved in the database. The new player's name must be differ-
ent from all registered players whose data exists in the database, and all active guests. In
the case of guests, a new name is generated until an unclaimed one is found. For a new
registered player, the user must provide a different name.

A Player object has either direct or indirect references to all the model objects spe-

cific to that player. The Player object can be retrieved from PlayerActions. This is

the first thing to do for most data requests and updates coming from a client.

 6.5 Communication abstraction

The primary abstraction for separating the communications from other parts of the
server is an interface named ServerMessageHandler. It contains a method for handling

incoming messages from the client, and several methods for sending messages to the
client. There is also an abstract class named PlayerHandler, which implements the

server messaging interface, and is in addition tied to a player.
The incoming message handler has an Object parameter, allowing for any format of

message from the client, and an Object return type, allowing any type of response. Pa-

rameters for the messages to be sent to the client are Mupe Force model objects, and re-
turn type for each is Object. The interface can be implemented for transforming mes-

sages, returning them in any type, or for actually transmitting the messages to a client,
in which case there is no need for returning anything.

The player handler holds the name of the player it is associated with, and has a static
interface for registering player handlers. This registry provides the player handler when
there is need for sending a message to a player. The player handler also provides an Ac-

tionExecutor, which is used for executing actions in battle.

One player handler is implemented for this project: MinaPlayerHandler. It is cre-

ated with an instance of ServerMessageHandler, and one of ActionExecutor, which

are used for the actual handling of messages and actions. The Mina player handler sim-
ply gets and returns a response to an incoming request, or writes an outgoing message
into a MINA IoSession.

44

 6.6 JSON-RPC component

An instance of JSONRPCBridge is used for JSON-RPC invocations, with custom excep-

tion transformer and custom serializers in addition to default ones. The exception trans-
former extracts a Throwable object's message, which is sent to the client. The client is

notified when errors occur on the server, but there is no need to send stack trace or other
information contained in the Throwable.

The custom main serializer marshalls Mupe Force model objects into JSON objects.
The point here is not to serialize them in a manner that allows the objects to be recreated
on the client, but to send only the necessary data. This way, the JSON-RPC server is us-
able with a wider variety of clients, the amount of transferred data is reduced, and the
client can use different classes for its model.

The built-in ListSerializer in jabsorb serializes a list into a JSON object with key

“javaClass” for the object's class name (although this can be turned off with serializer

settings) and key “list” for a JSON array with the list's contents. [89, JSONSerial-

izer; 121, ListSerializer] For this project, the list's content in a JSON array is suffi-

cient and preferable for its simplicity. The same things apply to jabsorb's MapSerial-

izer and SetSerializer [121, MapSerializer, SetSerializer]. Custom serializers

are implemented for lists, maps and sets.
The custom serializers do not unmarshall anything. This is because the data ex-

pected from clients is in the form of Strings and primitives, which have different

meanings depending on context. Instead of attempting to unmarshall them with jab-
sorb's framework, the proxy facade introduced in Section 6.4 handles them depending
on action. This is much simpler, and also more reusable, since the facade can be used
with other protocols besides JSON-RPC.

With the custom serializers and exception transformer in place, the only configura-
tion left is registering the proxy facade for JSON-RPC invocations. The JSONRPCBridge

can then find the method matching an incoming message, which it receives from the
JSON message handler, which implements the ServerMessageHandler interface. The

JSON message handler then returns the call's result which has been automatically mar-
shalled into JSON format.

The server-to-client messaging methods each create a JSON object, and put the mes-
sage name into it with the key “message”. Parameters for the message are also placed

into the JSON object and marshalled using the jabsorb serialization framework. The
JSON handler returns the messages in JSON format, and knows nothing about sending
them to the client.

 6.7 The MINA server

The MINA server has the main method for the server application. It creates the MySQL

45

Connector/J JDBC driver, loads meta data from the database, initializes the facade with
a JDBC connection, and binds a MINA NioSocketAcceptor to a port. The acceptor

will then service incoming requests.
The MinaServer class also extends the MINA IoHandlerAdapter, and handles in-

coming requests. When a session is opened, the server creates a new MinaPlayerHan-

dler with JSON message handler and action executor. The server does not read the con-

tents of a message, but expects it to be in JSON format and checks the message for a
“userName” parameter. That user name is used for registering the player handler. A new

player handler can also replace an existing one, if the session is interrupted and recre-
ated. The player handler is unregistered when the session is closed.

The server main class is the only one that uses both MINA classes and JSON. This
is because of the need for connecting player handlers to user names. The message han-
dler could get the user name from the JSON object, but does not get a reference to the
IoSession. Rather than tie any message handlers with MINA, the IoHandler is tied to

JSON.

 6.8 Battle controller

The battle controller has a static method for starting battles. A new battle controller ob-
ject is created for a player looking for battle. When another player starts looking for a
battle, the new player is added to the waiting battle controller, and a battle is started.
The next player again gets a new battle controller instance and waits for an opponent. In
a multi-player environment, multiple battle controller instances can exist at a time, so
there is a static method for getting the appropriate instance for a player.

Starting a battle involves randomly generating a battlefield, and creating a battle
player handler for each participant. The handler's main purpose is transforming coordi-
nates between the battle controller's system and a player's system. The first player uses
the same coordinates as the battle controller, and the second has the coordinates flipped
upside down. A battle player handler receives a coordinate transformer object from the
battle controller. It is used to reverse transform coordinates from the client to battle con-
troller coordinates, and transform coordinates from the battle controller to player coor-
dinates.

 6.8.1 Generating a battlefield

The first step in generating a battlefield is setting a random terrain identifier for each
square, after which obstacles are placed. Each square has a 20% chance of getting an
obstacle. Placing obstacles randomly can cause the battlefield to be split into multiple
areas that are not connected with each other. This is not wanted, so any separate areas
are connected.

First, the number of separate areas is counted. If there is more than one, squares

46

blocked by obstacles are checked to find cut points, where removing the obstacle con-
nects two separate areas. Blocked squares are checked in random order. If clearing all
cut points does not connect the battlefield's open squares into a single area, obstacles are
removed randomly.

The random clearing algorithm ignores squares which have all their neighbors
blocked by obstacles. Other than those, squares with the most obstacles in surrounding
squares are favored. One of those squares is selected at random, then cleared, and its
blocked neighbors checked to find more cut points. Any cut points are cleared, and the
random clear process is repeated until open squares form a single area.

Another problem that can arise from randomly placing obstacles is that a player's
deployment area might not have enough squares for their characters. To clear sufficient
area, random blocked squares are cleared on each deployment area until there are at
least six free squares. The maximum size of a battle force is used here, not the number
of characters the player actually selected for battle.

Deployment areas are cleared first, before clearing cut points, for two reasons. First,
randomly clearing squares in the deployment areas can cause disconnected open areas.
Second, in an extremely unlikely case (probability of one in approximately 5.4*1044) ev-
ery single square on the battlefield can be blocked by an obstacle. In that case, the cut
point algorithm would fail.

 6.8.2 Battle progress

The battle controller waits for messages from clients, reacts to them, and sends results to
both participating players. At first, it waits for deployment positions for each player's
characters. These must come from the battle handlers, because of coordinate transfor-
mations. In fact, anything that has to do with coordinates must come through the battle
handlers and not directly from a client. A battle facade gets calls from clients, finds the
appropriate battle controller and battle player handler, and delegates calls to the latter.
The facade, like the ones introduced before, has static methods for receiving Strings

and primitives from a client and finding the corresponding server-side model objects.
The true start signal for the battle controller is an “end deployment” message. Once

both players have finished deployment, the battle controller notifies each that the battle
is about to start for real, and immediately progresses to the first turn.

At the beginning of each turn, the battle controller first checks if its turn order list is
empty. If yes, a new round begins. The battle controller selects a random speed modifier
for each of the characters that were deployed on the battlefield earlier. The characters
are then placed into the turn order list, and sorted in descending order by the product of
speed and speed modifier.

The first character in the turn order gets the next turn, and is removed from the turn
order. Both players are notified that a new turn begins, and also get the character whose
turn it is. The handler for the character's owner creates a movement radius through the

47

owner's battle handler, and sends it to the client.
Movement radius generation starts in a character's current position. All unblocked

neighbors are added to the movement radius. The same is then repeated to their neigh-
bors, except that squares which have already been added to the movement radius are ig-
nored. Squares whose distance to the starting square is greater than the character's
movement statistic are also ignored.

On the client side, the player decides where the character will move, what it will do,
and where the action is targeted. These are then sent back to the server and, through a
battle handler, to the battle controller. The battle controller moves the character, and
calls the action to determine its results. Those results are then sent to each player, using
action executors. This sequence is depicted in Figure 6.3.

After the action, the character's turn ends. The battle controller will now begin the
next turn, as explained before. There is also the chance that the action ended the battle,
and the players are notified of that instead of a new turn. The battle controller object is
destroyed when the battle is over.

A battle controller's last functions are determining reward money for each player and
leveling up their characters. The Character class has a level up method, which checks

if the character has enough experience. If yes, it gains one or more levels. Statistics in-
creases are then randomly selected for each level, and the appropriate CharacterClass

object is checked to determine if the character has learned any new abilities. Changes
are then saved to the database, which is why the level update is actually done by the
CharacterActions facade. The battle's result, reward money and level up data are sent

to the players in the end battle message.

Figure 6.3: Sequence diagram for executing a character's action (simple getters are
omitted).

48

 6.9 Animation scripts

During battle, the server sends the effects of a character's action to each player, in the
form of a script. The script defines an animation the client is to show, and updates to lo-
cal model. The animation script is similar to the XML-definitions of View Animations
in Android, although a simpler subset is sufficient.

Defining the animations in Android format reduces the server's usefulness for differ-
ent clients, and is also contrary to the JSON format of other messages. Furthermore, the
XML animation files are loaded through Android's resource system, requiring them to
exist in files in the application's installation package. Methods for creating animations
from dynamically created XML were not researched, as there was no intention of creat-
ing the scripts in Android format, or in XML. Android's animation XML files are a use-
ful template for defining a JSON-based script language, though.

An animation file must have a root element, which is either <alpha>, <scale>,

<translate> or <rotate>, for transformations of the same name, an interpolator, or a

<set>, which can contain a group of elements, including other <set> elements. An in-

terpolator determines how a transformation is applied over time. [66]
The Mupe Force animation script has a single root element, named “animations”,

which is a key for a JSON object of animations. An animation has an identifier, which is
its key in the animations object. Its type, one of the above transformations, is the value
for a key named “animation”. Other parameters depend on the type of animation, in-

cluding “set”, which has a JSON array of animation identifiers. The animation XML

elements' attributes, defined in [122], become keys in a JSON object, without name
space.

Animation XML only defines transformations, though. The JSON script also needs
to define what is being transformed. For this, Android's Canvas class is used for a tem-

plate. It has a large number of drawing methods, as well as ones for clipping and trans-
formations [123]. A subset of these actions is used for the animation script.

Coordinates in the script are defined using square grid columns and rows, and rela-
tive positions within a square, rather than absolute coordinates. The size of squares de-
pends on client's resolution, but the number of squares and their content does not.

Similar to animations, animatable graphics are in an object whose key is “graph-

ics”. Each graphic has an identifier, which is its key in the graphics object. A graphic is

defined as an array of drawing operations which are to be executed in order. These in-
clude setColor, drawText, and so on. Each drawing operation can have a position,

which is defined relative to square dimensions.
In addition to animations and graphics, there are interpolators. They determine the

speed of an animation's change, such as constant speed, acceleration or deceleration. In-
terpolators are in a JSON object, whose key in the script object is “interpolators”.

Each interpolator has an identifier, which is its key in the interpolators object. Each one

49

also has a type, whose key is “interpolator”, and parameters depending on type.

Any animation can have an interpolator, whose key is “interpolator” in the ani-

mation's JSON object. Other properties common to all animations are “duration” and

“offset”. The latter determines the time from the animation's start time to the time

when it actually begins and becomes visible.
Often a character will move to a different square before executing the action which

ends its turn. Therefore the script has a “moveCharacterTo” JSON object, which has

the character's identifier and destination square column and row. This movement is
meant to be executed before the action.

The action itself is a series of operations, a JSON array whose key is “action-

Queue”. The action queue can contain such operations as altering a character's current

hit points or magic points, or removing a character from the battle. Each operation has a
type, whose key is “action”, and parameters depending on the operation.

Visual effects are controlled by “startAnimation” and “wait”. Starting an anima-

tion needs the identifier of one of the animations that was defined elsewhere in the
script. It can be a set, for executing multiple animations simultaneously. It also needs an
identifier for a graphic, which is animated, and the drawing area in terms of square grid
columns and rows. A graphic defines its position within that area, and an animation can
move it from its default position. Any animation, graphic or interpolator can be used
multiple times when the script is executed. Each operation in the action queue is exe-
cuted only once.

A “wait” operation of course makes the execution wait for a specified amount of

time. Without it, the action queue's execution will continue without waiting for an ani-
mation to complete. Wait times can therefore be used to control simultaneous anima-
tions, or prevent beginning next character's turn while an animation is still active.

50

 7 CLIENT BACK END DESIGN

Client design is mostly based on “Network MVC” by Mednieks et al [39, pp. 329-334].
Model-View-Controller (MVC) is a design pattern for relating user interface to data.
The model is a representation of the application's data, the view is a representation of
the user interface, and the controller is a representation of the connections and commu-
nication between them. [14]

The key element in Network MVC is a Content Provider which returns cached data
at first, then retrieves more data from the network asynchronously, updates the cache,
and notifies clients when new data is available. The view and controller parts do not
make network requests directly, but only through the Content Provider. [39, p. 331] This
chapter is about the part of the Mupe Force project which has the Content Provider's
role.

Perceived performance is increased, since the UI thread never waits for a network
request to complete. Data is cached in a local database as soon as it is received from the
network, minimizing the risk of data loss. The platform's built-in capabilities are used
for update notifications, and there is no need to write custom systems for polling and
updates. Since the Content Provider handles network responses on the background, the
risk of results being dropped because there is no active Activity to receive them is re-
moved. Also, thread safety and encapsulation are improved, applications are easier to
write, and server load is reduced. [39, p. 333]

Since Mupe Force does not provide its data to other applications, a Content Provider

Figure 7.1: Network MVC for Mupe Force

51

is unnecessary, and is replaced with a Service. Because most of the data is connected,
the Service maintains a model instead of just providing database cursors to Activities. A
copy of player data is kept in the local cache, and notifications about changes are sent to
the server in the background. A sequence diagram for retrieving data from the “Network
MVC” Service for Mupe Force is shown in Figure 7.1.

Each Activity requests the data it is going to use. Cached data is used initially, and
data from server becomes available later. For example in a shop, the player at first sees
the same items that were available last time he was in the shop. New items might have
become available since then, and they become visible after an asynchronous server re-
quest completes. Once an item has become available, it will remain available, so the
player can buy items without having to wait for the server request to complete.

 7.1 Local cache

Being a cache, the client side database is smaller and simpler than the server database.
Especially meta data tables are much simpler. Schemata for player-specific data are
closer to those on the server, but the amount of data is less. Most database tables have a
corresponding model class.

The client database is designed so that a data set can be read with a single SQL
query, and preferably from a single table. Data is read from the database into a cursor,
which is then returned. It would be more complex to handle a situation where it would
be necessary to read data from one table, and then another based on that. Nested queries
and joins have their limits.

 7.1.1 Model classes

The model classes generally have a JSONObject constructor for data received from the

server, and a Cursor constructor for data read from the database. All of them have a

method for putting their data in a ContentValues object for saving to the database.

These methods are meant to be used only by the database handler, which resides in the
same package as the model classes, and are therefore package private. The Cursor con-

structor and the ContentValues method keep the mapping between object properties

and database columns inside the class.
Public methods include getters for other object properties, some data manipulation

utilities, and very few setters. Most of the time, the objects are not changed except when
new data is received from the server, and then a new object is created. This does not in-
clude relations between instances of the model classes.

Statistics have their own model class, but no database table, as statistics are saved in
character, character type and item type tables instead. Instead of a JSONObject, a Sta-

tistics object is constructed using a JSONArray. Statistics are not named, but instead

rely on their order in the array. Statistics are optional for character types and item types,

52

but that is not an issue. If the model object does not have statistics, then they are not
saved, and when they are read back later, the Cursor will give zeros for their values.

Unlike regular model classes, the Statistics class has a constructor without parame-

ters. It constructs a set of statistics with zero values, and can be used in calculations.
The Statistics class also includes various methods for calculations, as well as static

fields and methods for identifying, ordering and displaying statistics.
Meta data tables and model classes include character type, item category and item

type. Other classes save meta data references as a string, which is required to be unique.
The string can be displayed to a user in some places, without needing the meta data ob-
ject, and the string can be sent to the server as an identifier. Other classes need to get
meta data objects for the names, so the meta data classes maintain static maps of exist-
ing objects, and have a getter that maps a name to an object.

A character type has an extra difficulty in its variable length usable item category
and statistics increase arrays. The item categories are saved as a single string, with cate-
gory names separated by newline characters. Statistics increases are saved as a byte ar-
ray, with each increase in four bits. Each statistic's bytes start with a count of increases,
also in four bits, followed by the increases themselves. If a statistic has an even number
of increases, the second four bits in its first byte are ignored for easier bit arithmetics.

Item categories form a hierarchy, which is difficult to manage if objects are created
as needed, like most model objects. Instead of constructors, the ItemCategory class has

static factory methods for JSONObject and Cursor. They will find an existing Item-

Category object, update it with the given data, and return it, or if one does not exist,

create a new object. Each object has references to its parent and children, and the fac-
tory methods also update those relations.

Besides the classes described above, all cached data is player specific. A player ob-
ject is the root of a tree of characters, items and other model objects. The player object
includes lists of the player's characters and items, as well as characters selected for bat-
tle.

A character object has references to equipped items, carried items, actions and abili-
ties. The character class has some methods for calculating the character's statistics with
equipped items. It can also calculate new statistics after changing equipment, without
actually changing it.

The client implementation of a character action uses data from the server to deter-
mine if the action can be used and to find targets. This involves deciding its range dy-
namically depending on an item or the host's weapon, but does not have other function-
ality. The client-side action is only a representation for showing to the user and selecting
targets. Actual execution of the action happens at the server.

 7.1.2 Database operations

The client database uses an SQLiteDatabase object for lower level SQL operations, and

53

has getters for various types of data, an insertion method for each model class except
statistics, and some update and delete methods. Statistics do not have an insertion
method because they are inserted as part of another object.

Objects are inserted simply by placing their data in a ContentValues object, and us-

ing the SQLiteDatabase.replace method. The name column in meta data tables is de-

fined as unique in the database creation SQL script. When inserting data with the same
name, it will replace the existing data. A player's user name is similarly unique, and so
are the server identifiers of characters and items.

An action's name is unique among the actions of a character. An action can also be-
long to an item type, when the item can be used. Therefore, the character's identifier, the
item type's name and the action's name together create a unique identifier for the action.
Either of the first can be null, but not both. On experimentation, it was discovered that
SQLite allows three column primary keys, but allows multiple rows to have the same
primary key in this case. Because of this, a key is generated by appending a new line
character and the action's name to either character identifier or item type name.

An ability's name is unique among a character's abilities. Therefore, primary key is
the combination of character identifier and ability name. As with actions, SQLite did not
maintain unique primary keys. The cases where it did not enforce uniqueness are not al-
lowed in game data, however, so the two-column primary key is used.

Each of the database's getter methods returns a Cursor with the requested data. In

many cases, getting the data only needs a simple query. The more complex ones include
character type and item type getters whose parameter is a list of names of the types to
get. For these, an “OR” clause is added for each name, using a StringBuffer. The

names are then inserted to the query using SQLiteDatabase's selection argument mech-

anism.
Getting the items or actions for a group of characters works the same way, except

that instead of names, server identifiers are used. They are added directly to the
StringBuffer, as integers do not have the security issues of strings, and they would

otherwise have to be converted into a string array.
The getter for item types by category is the most complex one, because of the hierar-

chical form of item categories. This getter creates a list of string arrays, which initially
has category names received as parameters. For each string in each array, it gets the cor-
responding ItemCategory object, and adds the names of its children. The names are

then used like the character type names before. This way, all items are retrieved recur-
sively from subcategories.

Other methods include updating a player's last on-line date, and some purge meth-
ods. A purge method intended for use after a battle removes all players who have logged
in from a different device, as well as all their data. Another purge method is intended for
use when the application shuts down. It deletes guests and all of their data.

54

 7.2 Network client

A MINA NioSocketConnector is used for connecting to the server. The client class has

methods for connecting and disconnecting, extends IoHandlerAdapter for handling

network events, and implements Handler.Callback for handling local messages.

The handler callback gets a message, which includes the name of a server remote
method, and its parameters. If the current session is not connected, the client attempts to
reconnect, and when it has a connection, sends a message to the server. The client cre-
ates the JSON-RPC request, and converts parameters to JSON format. It also adds an
extra value to the JSON-RPC request object: user name.

When the client receives a message from the server, it forwards it to a Handler ob-

ject. The message for the Handler has the server remote method's name, which is used
as the request identifier in the JSON-RPC request, and the result JSON object. Re-
sponses have the same identifier as the request, but incoming messages do not have any
identifier.

The client has identifiers for JSON-RPC messages and notifications, and expects to
get one of them in the incoming local messages. The only difference in their handling is
that the request identifier field is left out from notifications.

There is also a quit identifier, which can replace remote method name in the incom-
ing local message. When the client receives a quit message, it disconnects, forwards the
quit message to the outgoing local message handler, and ignores subsequent incoming
messages, both network and local ones.

 7.3 The Service

The Service is the connection point between the user interaction classes, the database
and the network client. It takes data requests from the front end, relays them to the
server via the client and returns cached data to the front end. It also receives incoming
data from the server, puts it in the cache, and notifies the front end about new data.

When it is created, the Service creates its own thread, and a client. It then creates a
Looper for its thread, and directs the client to try and connect to the server. If a connec-
tion can not be made, the Service broadcasts the error. There is little the Service can do
without a server connection, but it can not do anything about the error either. Errors in
server responses and messages are also broadcast.

The Service creates a Handler with the client as its callback, and makes itself the
handler for the client's outgoing local messages. Both Handlers are created in the Ser-
vice thread, so sending messages to server and handling messages from the server are
both handled in the Service thread. Only the actual receiving of a server message hap-
pens in the client's thread.

It would make more sense to both send and receive messages in the client's thread,

55

and the use of Handlers would easily facilitate this. However, the client thread, created
by MINA, is not easily accessible, can change on reconnect, and causes a need to use
the client's Handler before it can be created. There is also no particular need for sending
and receiving messages in the same thread.

The Service has methods for logging in and out. When the user successfully logs in,
a player object is created to represent them. It is maintained until the user logs out. The
current player has a getter, since it provides an access point to all of the user's charac-
ters, items and so on. A successful login is broadcast.

When the Service is being destroyed, in the onDestroy method, it logs out the user

and waits until the logout is complete. Then it sends a quit message to the client. When
the client forwards it to the Service's message handler, the Service quits the Looper.
This is because the Looper can only be accessed from its own thread, while the onDe-

stroy method is executed in the Android main thread. Meanwhile, the onDestroy

method waits for the Service thread to die, which happens after the Looper quits.

 7.3.1 Data retrieval

The Service has various getters, which will send a request for up-to-date data to the
server and provide cached data in the return value. Each getter takes a ContentOb-

server as a parameter. It is notified when the Service gets new data from the server,

and its absence signifies that there is no need to get new data from the server. Whether
or not the Service sends a request for new data, it retrieves available data from the
cache, creates model objects from it, and returns them.

The Cursor from the database is used for the notifications. The Cursor gets a notifi-

cation URI, depending on the data being retrieved, and the ContentObserver is regis-

tered to it. When new data is received, the Service inserts it into the cache and sends a
notification with the appropriate URI through the ContentResolver.

The Service keeps open Cursors which have registered ContentObservers, and has

a public method for unregistering a ContentObserver. After unregistering, the Cursor

is closed. If a Cursor already exists for a ContentObserver, the old Cursor is closed

first, and then the ContentObserver is registered to the new Cursor, which is kept.

Without a ContentObserver, the Cursor is simply closed.

Activities should notify the Service to get the necessary data, and should not rely on
other Activities having readied the data in advance. Each Activity extends a custom Mu-

peForceActivity, which has utilities for binding to the Service. Once the Service is

bound, the Activity will be notified, and can start readying the data it needs.
The Activity first sends a ContentObserver to the Service, and gets cached data in

response. It can then use the cached data, and will later receive a notification for new
data. It will then request the data, without a ContentObserver since the data is now

cached locally. If the data does not need to be updated later, the ContentObserver can

be unregistered and destroyed.

56

Before the Service returns cached data, it will also make connections between the
new model objects, and existing ones. The new model objects will replace older in-
stances of the same data. The model will retain the new objects, and there is no need to
get the data again from the server, unless it changes.

 7.3.2 Updates

Updating the server data only needs the sending of a message to the server. In some
cases, no response is needed. In others, the server sends back updated data, which is
then cached. Many of the battle updates are notifications, because the server responds to
them by sending the next battle event to both participating players.

When the user buys an item, its cost is first deducted from the player's money, so
that it is shown correctly in Activities. If the buy action fails for some reason, the Ser-
vice puts the item's cost back to the player's money. After a successful buy, the player's
updated money is saved. Selling an item works the same way, except that money is of
course added instead of deducted.

 7.3.3 Incoming messages from the server

When the Service gets a message from the server, it will act almost the same as it does
with responses. Any data that comes with the message is inserted to the cache, and the
front end is notified. Since there is no dedicated ContentObserver for the notification,

the Service broadcasts the message. The broadcast Intent also includes the data from the
server, or a suitable identifier to retrieve it through the Service.

Before a battle, the server sends the opposing player's data. The opponent is made
available in the same way as the logged in player. The server also sends the other
player's battle force, which is put to the player object. Any items and abilities retrieved
for the other player's characters are also added to the character objects.

57

 8 CLIENT INTERFACE DESIGN

This chapter is about the design for the client's user interface and the implementation of
the user interface classes. The interface was described in Chapter 2, but this chapter ex-
pands on that description in an Android-specific manner. Android's requirements for in-
puts are studied briefly, and then the more complex interfaces are designed based on
that. Parts of the user interface which can be implemented by simply placing ready-
-made Android Views on the screen and reacting to the user's interaction with them are
omitted.

This chapter is mostly about the animated Town View and Battle View. Another ma-
jor part is a set of GUI components that combine Android Views with a class that con-
trols their behavior. Activities are also outlined, although they have little functionality
beyond retrieving data from the Service, which was introduced in Section 7.3, and
transmitting user input between components. Lastly, there is the design of the action ex-
ecutor, which executes the action scripts received from the server. The scripts were in-
troduced in Section 6.9.

 8.1 Interface design guidelines

Interface design relies on inputs specified in Android's Compatibility Definition Docu-
ment (CDD). A device must provide at least one software keyboard, even if it has a
hardware keyboard. A hardware keyboard is optional, but if present, must be one of
specified formats. A non-touch navigation option (such as a d-pad or trackball) is op-
tional. [124, pp. 18-19]

The Home, Menu and Back functions must be provided, but are not necessarily
bound to physical buttons. CDD for the latest Android version (4.1) states that they
“may” be physical buttons [124, p. 19]. The CDD for the target Android version (2.3.3)
states they “should” be physical buttons. In addition, there is a requirement that even if
they are not physical buttons, they must always be accessible and may not obscure ap-
plication display, or interfere with it. [125, p. 16]

In the newer CDD, this requirement has been expanded. Even if the Home, Menu
and Back keys are shown on the screen, the remaining screen area must meet the CDD's
requirements for screen configuration. These keys must be visible for applications
which do not specify a system UI mode. The Menu key must be available to applica-
tions whose target version is 2.3.3 or less. [124, p. 19] The system UI mode (system UI
visibility) was introduced in version 3.0 [54]. All devices must have a pointer input sys-

58

tem, either mouse-like, or touch [124, pp.18-19]. In version 2.3.3 CDD, a touch screen
is mandatory [125, p. 16].

Despite differences between versions, a pointer system is mandatory. Also, the
Home, Menu and Back keys are guaranteed to be always available, and not interfere
with the application's screen area. Non-touch navigation might not be always available,
but at least some sort of keyboard will be. Non-touch navigation is considered to in-
clude direction keys and a selection key. Based on this, three guidelines for the user in-
terface were decided on. They are explained in Table 8.1.

1. Guideline: The client software must be fully usable with only the mandatory
pointer input system, except for text input. Text input is left to the un-
derlying software and hardware.

2. Guideline: Home, Menu and Back keys are supported. The Home button will per-
form its default function and will not be interfered with. The function
of the Menu button will depend on current Activity, and can be omitted.
The Back button will also perform its default function, except that es-
caping from battle is not allowed. Some Activities are also removed
from the current Task and can not be reopened with the Back button.
Altering the Task in this fashion does not affect the Back button's be-
havior, which depends on Activities in the Task. [126, 127]

3. Guideline: Non-touch navigation is supported. The user must be able to navigate
Views in a sensible order, focus on Views which can be clicked, and ex-
ecute a click using the non-touch navigation. Clicking with the non-
touch navigation will cause the same effect as clicking by touching.
Views which can not be clicked can not be focused, either. When a fo-
cusable View is touched, it will also gain focus, despite touch mode.

Table 8.1: User interface design guidelines.
Using a pointer system is called touching from here, even if the system is not actu-

ally a touch screen. Keyboards are not used, except for text input and in the context of
non-touch navigation. Other inputs or sensors are not used.

 8.2 The Town View

The user can move the character in the town by touching or with the navigation keys.
Touching directs the character to a square, and it will move there automatically. The
character can be given a new destination while it is moving, and will start moving to-
wards it without going to the old destination first.

Navigation keys move the character towards the direction of the key. It stops mov-
ing when the key is released. When multiple keys are held down, the character moves
according to the one that was pressed last. If movement towards that direction is

59

blocked, the character moves according to the second last key press, and so on.
Movement according to touch control takes precedence over keys that were pressed

before the touch. If the keys are still pressed when the character reaches the destination
set by touching, it will again move according to the keys. Pressing a key while the char-
acter is moving towards a touched destination cancels the destination, and the character
will start moving according to the pressed key.

The character does not have to follow square columns and rows, meaning that it can
move partially in one and partially in another. It can not stop its movement that way,
though. Releasing the navigation keys can leave the character between squares. It will
then move to center itself according to squares, preferring the direction where it was
moving before the user released the navigation keys. This also means that a single short
key press will move the character exactly one square, assuming the direction is not
blocked.

Using navigation keys in this fashion prevents moving focus to another View in the
normal way. Instead, the town's menu is focused by pressing the selection key or the
Menu key. Once focus is moved away from the Town View, the character can still move
towards a touched destination, or to automatically center itself to a square, but move-
ment according to navigation keys stops.

 8.3 The Battle View

The Battle View's main part is the battlefield. There are other Views as well, depending
on the battle's mode and current character. There are six modes to the battle: deploy,
wait, observation, turn, targeting and execution. The Battle View is initially in deploy
mode, and goes to wait mode when the user finishes deploying his characters. Wait
mode ends when the other player has finished deploying, and observation mode is acti-
vated. When a character belonging to the user gets a turn, the Battle View goes to turn
mode, and then to targeting mode when an action is selected. When the action's target is
selected, the Battle View goes to execution mode. On an opposing character's turn, the
Battle View is in observation mode. The user can also switch to observation mode in de-
ploy mode and turn mode, and back. Targeting mode can be canceled, returning to turn
mode.

Each mode has something that moves on the screen according to the user inputs. In
most cases, key controls work in the same way as in the Town View. Touching, on the
other hand, mostly puts the moving thing directly to the touched square, rather than hav-
ing something moving from its former square to the touched square. The selection key
can still be used for focusing a menu in some modes, but it has other uses as well. The
usage of the Menu and Back keys varies as well. The Back key is not used for its default
purpose because escaping from a battle is not allowed.

60

 8.3.1 Deployment

In deploy mode, the user controls a focus cursor, and can select squares. Touching a
square will select it, and move the focus cursor to it. The selection key will select the
square where the focus cursor is, and a selection cursor is shown on the selected square.
Squares with battlefield obstacles can be focused, but not selected. The focus cursor can
not move onto the shadowed area, and shadowed squares can not be selected. The focus
cursor is hidden when focus moves out of the Battle View.

A set of slots with the user's characters participating in the battle is shown outside
the battlefield. They can also be focused and selected in the same way as battlefield
squares. When a selection is made, if there is already a selection, the characters in the
selected slots or squares switch places. After that, the selection is removed.

There is also a “done” button, which becomes visible when all characters have been
moved onto the battlefield. It will be hidden again if characters are removed from the
battlefield. Pressing it will finalize deployment, and the user can not change it later. The
Battle View now goes to wait mode, which is similar to observation mode, except that
the shadow is still present and limits selections and cursor movements as before.

If the other player has not finished deployment, the user is shown a message to wait
for it. When the opposing player also finishes deployment, the shadow is removed and
the battle starts in earnest. The battlefield is mirrored vertically so that each player sees
their own characters starting at the top two rows.

 8.3.2 Observation mode

The user can toggle between deploy mode and observation mode by pressing the Back
button, or a View button outside the battlefield. Toggling between turn mode and obser-
vation mode can be done the same way when one of the user's characters has a turn. On
the turns of opposing characters, observation mode can not be exited, and the toggle

Figure 8.1: State diagram of battle modes.

61

button is hidden. The done button in deploy mode will remain visible if the user goes to
observation mode, if it was visible in deploy mode.

In observation mode, the user controls a selection cursor, and can select squares in
the same way as in deploy mode. Unlike in deploy mode, the selection does not remain,
but moves according to the navigation keys. Selecting a character shows a status dialog
of it. Selecting a square without a character does nothing. Long-clicking a character will
show its status in any mode other than the execution mode.

 8.3.3 A character's turn

Turn mode is activated when one of the user's characters gets a turn. The user is also
shown a message about the character's turn beginning. Movement control works like in
the town, except that the character can not move outside its movement radius.

Pressing the selection key or the Menu key both move focus to an action menu.
When the user selects an action which requires a target, targeting mode is activated.
Each action has minimum and maximum range, counted in squares, and the squares
within range are shadowed. Movement radius shadow is not shown in targeting mode.
The player controls a selection cursor.

The selection cursor and selecting a target work in the same way as in observation
mode, if the action can be targeted at empty squares. The cursor can be moved to
squares where there are no targets, but not outside the target radius.

Most actions can not be targeted at empty squares, and for them the navigation keys
move the cursor directly from one viable target to another. They can also be selected by
touching, but touching a square without a target has no effect.

Once a target is selected, the action is executed, and the character's turn ends. The
stay action does not require a target. Then the action is executed as soon as it is selected
from the action menu, and targeting mode is not activated.

When an action is executed, the battle goes to execution mode and shows the ac-
tion's effects. User input is ignored. Once the action is executed, the Battle View goes to
either turn mode or observation mode, depending on whether the next character belongs
to the user or the other player. It is also possible that the action ends the battle.

The user can cancel targeting by pressing the Menu key or the Back key. A cancel
button is also shown outside the battlefield. In targeting mode, the action menu is shad-
owed, can not gain focus, and touching it has no effect.

Key-controlled movement in the Battle View stops when the Battle View loses fo-
cus. Automatic and touch-controlled movement can continue. In that case, targeting
mode is delayed until the movement is finished. It depends on the character's position
after it stops moving.

 8.3.4 The action menu

At the top is “attack”, the basic way of damaging enemies and winning battles. At the

62

bottom is “stay”, which ends the character's turn without doing anything. On the left is
“special”, whose workings depend on the character's abilities. On the right is “item”,
which allows a character to use items from its inventory. Selecting the item action opens
a dialog with the character's inventory. The user can select an item to use. Items that can
not be used are shadowed and can not be selected.

The special action is disabled if the character has no active abilities to use. If there is
only one, it is shown as the special action on the left of the action menu. If there are
more, the special action opens a sub-menu with all of the character's active abilities. An
ability which can not be used is disabled.

 8.4 Animated views

The animated Town View and Battle View are each a large and important part of the ap-
plication. They are created using Android's SurfaceView, in order to gain control of

frame rate and provide better support for dynamic changes. The TownView class, which

is used for walking a character around the town, follows the 2D graphics animation
guidelines introduced in Subsection 3.5.5, as it extends SurfaceView, implements Sur-

faceHolder.Callback and includes an animation thread which extends Thread. The

BattleView extends the TownView.

The Town View's function is providing a configuration interface for other classes,
and relaying user input to the animation thread. It also provides its subclasses and the
animation thread with access to its configuration. Configuration options include making
any squares inaccessible, and setting a movement listener. The movement listener im-
plements the TownView.MovementListener interface and is notified when the moving

character moves into or stops in an active square.
Movement listener events are transferred from the animation thread to another

thread using a Handler. The movement listener's actual function in the animation thread
is only to determine if a square is active and there is cause for sending an event. This re-
duces the number of messages delivered by the Handler.

 8.4.1 Basic graphics

For initialization, the Town View needs the number of squares in the grid, and the avail-
able screen size. The grid is square, so the smaller of width and height is used. A single
square's width and height are equal to the smaller view dimension divided by the num-
ber of squares. The View's size is the product of square count and size, which can be
less than the screen dimension.

The number of squares is set by the Activity which includes the View, while the
screen dimensions are received through the SurfaceHolder callback. The View does

not rely on the order in which square count and screen dimensions are received. When
either one becomes available, the View will attempt to configure itself, but postpone the

63

initial configuration if the necessary properties are not yet available. This solution also
allows the View to reconfigure itself later, if the number of squares or the size of the
screen is changed. It is used in various other parts of the animation framework as well,
when necessary configuration options are received from multiple sources.

For actually drawing anything, the Town View needs background and character
graphics. Interfaces for background animations and character animations are created,
and the animation thread starts with an instance of each. In addition, it has a separate de-
fault animation for each. A temporary animation can be inserted, and gets replaced by a
default animation once it finishes. Each animation returns a boolean, which indicates
whether or not the animation will continue. A default animation can always return false,
since it will just get replaced by itself.

Other configuration options include character size, background image and character
image. These will be used for creating the default background and character animations.
They too depend on screen size, which determines how big squares are. Therefore an at-
tempt is made at animation configuration every time any of those properties changes.

The animation thread checks that both default animations are ready and the surface
has been created before it can be started. Once started, it will redraw the view at a rate
of 25 frames per second. Redrawing involves updating the moving character's position.
If after the redraw the character is not moving and no animations are active, the anima-
tion thread sleeps until it receives something new to draw. A default animation which
actually draws a static image must return false, so that the animation thread does not
keep redrawing the view needlessly.

 8.4.2 User controls

Updates to the character's position depend on user input via touching and the navigation
keys. Interfaces are created for handling touch and key input. The Town View creates a
default touch handler, and a default key handler. They can be changed, but the Town
View itself only uses the default input handlers.

An interface is created for movement controllers, as well. The Town View creates a
default movement controller, which can not be changed. However, it can have three
movement controllers of its own, and they can be changed. They are, in order of prefer-
ence, automatic movement, touch movement and key movement. The default movement
controller also implements centering the character to a square, which is used when none
of the others move the character. Pressing a key will cancel the touch destination, so this
order implements the precedence described in Section 8.2.

The default touch movement controller finds a path to a destination square, which it
gets from the default touch handler. The default key handler keeps track of what keys
are currently held down, and the times when they were pressed. The key press times are
stored in an array, and movement direction preference is decided by order from highest
to lowest, ignoring zeros. The key handler sets the preference order of directions to the

64

default key movement controller. It tries each direction in order of preference until it
finds a direction where movement is not blocked, if there is one.

The touch and key handlers keep the latest user input. Before an animation frame is
drawn, they are prompted to update the state of the movement controllers. Synchroniza-
tion on the animation thread is used to prevent this state update from occurring simulta-
neously with user input. After drawing and before going to sleep, the animation thread
synchronizes again and checks if new user input has been entered, if there is no ongoing
movement or animation. When user input is received, the animation thread is notified in
case it has gone to sleep. The TownView holds the animation thread's monitor while the

touch and key handlers process input events.
Pressing the Menu key or the selection key clears key states, because that will move

focus away from the Town View. The View would not receive events for key releases,
and would keep moving according to the keys that were held down at the time focus
was lost. Of course, the character's movement according to navigation keys should stop
anyway, when the navigation keys start affecting another View.

User input can be disabled and is so when the View is constructed. The Activity
which configures the Town View needs to enable user input once it has finished all nec-
essary configurations. Touches are ignored while input is disabled, but keys are not, be-
cause key controls depend on maintaining a record of key presses and releases. Instead,
key movement is ignored while input is disabled. Regardless of the setting, input is dis-
abled for automatic movement and certain animations.

An interface named AccessibleSquares is used to determine which squares can be

entered and which can not. An instance of it is placed in the Town View configuration,
and it can also be replaced with another.

 8.4.3 Movement controllers

The Town View uses four movement controllers: preferred directions, movement paths,
automatic movement, and the default controller, which controls the order of preference
among the others, and centers the character to a square. The preferred directions move-
ment controller is the simplest of these. It gets an order of preference for directions,
which does not need to include all four directions. It then tries to move the character to
the most preferred direction first. If movement to that direction is blocked, it will be ig-
nored and the direction with the next highest preference is searched, and so on. It will
not move the character if movement is blocked in all directions that have a preference.

The path move controller finds a path from the character's current position to a des-
tination square. If a path exists, the character will move along it to the destination. The
path search algorithm is a fairly simple depth-first search that starts from the character's
position and progresses to all neighbors. The search will continue to the square with the
shortest distance to the destination. It also prefers squares that are on the same row or
column as the destination, in order to create paths with less turns to them.

65

Each square has a path data object with the length of the path from the starting
square to that square, and distance to the destination. The previous path square for each
searched square is added to a 2D-array corresponding to the square grid. This approach
reduces the creation and disposal of path data objects, but prevents the storage of multi-
ple paths to any single square. Given the simplicity of the square grid and character
movement, that is not an issue. The character might not always move along the path a
human would find most sensible, but it gets to its destination.

The automatic movement controller implements walking out of the view, and walk-
ing in from outside of it. Touch destination is cleared when these automatic movements
are activated. The controller determines the direction to walk out, or the entry point
when walking in, depending on the character's position.

The automatic movement parameters are set in the main thread, by the current Ac-
tivity. The Town View puts them to the automatic movement controller in its synchro-
nized update phase. This way, internal changes can not override external input, and ex-
ternal input can not interfere with the drawing of an animation frame.

The default movement controller centers the moving character into a square when
no user controls are in effect. The character will continue to move to the direction where
it was moving before. It will stop so that its leading edge is along a square edge.

It might be that the character needs to be centered both horizontally and vertically.
The default movement controller tracks the character's movements, and records last sys-
tem time when it has moved to each direction. These times are then used to decide pref-
erence in the same way as key press times.

 8.4.4 Battle View implementation

The Battle View provides support for multiple characters and various battle graphics. It
does not use an existing image for a background, but instead generates a new bitmap us-
ing terrain data from the server. In order to draw the background, it implements the
background animation interface and sets itself as the default background animation.

There are six mode objects in the Battle View, each implemented in a subclass of a
Mode class, which extends Observable, and implements the touch and key handler in-

terfaces, as well as AccessibleSquares. The Battle View replaces the superclass's in-

put handlers with its current mode. Modes also affect graphics. There is no object for
wait mode, which is simply observation mode with deployment shadow.

Deploy mode sets a focus cursor as the default character animation, and allows it to
move only in the top two rows. The Battle View knows nothing of the deployment mode
character slots, and can only move characters between squares. It has methods for set-
ting a character in the selected square, and removing the character in it. These methods
can only be used in deployment mode.

The Battle View remembers the square which has been selected, and draws it sepa-
rately from the moving focus cursor. The selection is used for moving characters be-

66

tween squares, and for the setter and getter introduced above. The selection is only used
in deploy mode.

When a square is selected, the deploy mode notifies its observers without data, and
when characters are moved, it notifies with those characters. The data can be either a
character object, or an array of two character objects.

The second mode is observation mode, which is activated as soon as the user has
finished deploying the characters. The deploy mode object is removed, and it can not be
activated again. The deployment shadow still exists, until the server notifies that the
other player has also finished deployment. While it remains, the observation mode
makes the squares below the first two rows inaccessible.

The default character animation in observation mode is a selection cursor. Clicking
selects a square. If that square has a character, observers are notified with it as data. The
observation mode also notifies its observers whenever it becomes the current mode, or
is replaced by another mode.

The third mode is turn mode. The default character animation for it is a BattleOb-

ject, which draws the image of the active character, as well as a highlight. The move-

ment controls from the superclass are used, since the character moves the same way as
the character in the town. Squares outside the character's movement radius are not ac-
cessible, including all squares with an obstacle.

The fourth mode is the targeting mode. The default character animation for it is a
targeting cursor, whose size and shape depends on the action. The targeting mode cre-
ates a list of squares within the action's range, and then narrows it down into another list
which has squares with valid targets. The former is used for drawing shadows on the
squares, as well as determining where the targeting cursor can move. The latter is used
for determining where the cursor moves if it should move directly between targets, and
checking if a selected square has targets.

The direct targeting mode is an extension of the targeting mode for controlling cur-
sor movements when it moves directly from target to target. The cursor does not move
at all if there is only one target. Touch control moves the cursor directly to the touched
square, if it has valid targets.

The direct targeting tracks key presses through a default key handler, which does not
have a movement controller attached. When a direction key is pressed, the direct target-
ing mode sets itself as character animation. It does not draw animations itself, but up-
dates the state of a direct movement animation, which calculates coordinates for a selec-
tion cursor, which handles the drawing.

The direct movement animation first gets the next target square as its destination. It
calculates movement speed so that the movement from one target to the next takes the
same amount of time as a character moving one square. It then animates movement
from the starting square to the destination, and can also recalculate its properties and
switch animation direction on the move.

67

The latter capability is used when a key is pressed while the animation is going on.
No update is made if the user presses to the same direction where the animation is al-
ready moving. Otherwise the animation's direction is reversed.

Once the animation reaches its target, the direct targeting mode will end the anima-
tion if no keys are pressed. While a direction key remains pressed, the animation is
given the next target square as its new destination. Selecting a target by touch clears key
states and stops key movement, until next time a key is pressed.

 8.4.5 Concurrency

Many of the Town View's configuration properties are used in the animation thread, as
well as animations. Updates to them, on the other hand, mostly happen in the Android
main thread, which handles user input. All variables that can be set in both threads are
marked with the keyword volatile, but that is insufficient by itself.

In the main thread, updates to animations and other properties are done while hold-
ing the animation thread's monitor. Before drawing a frame, the animation frame ac-
quires its monitor and updates its state. It will then use that state for the next frame, ig-
noring state changes in objects related to the main thread. Synchronizing on the anima-
tion thread allows multiple changes to be done atomically, which is necessary especially
when changing battle modes.

Variables are divided into four groups according to their intended use. The first
group is written in the main thread, and read in both the main thread and the animation
thread. These are placed in a configuration object, which has getters, setters and some
utility methods, including copying. They are changed while holding the animation
thread's monitor, and the animation thread then copies them to a different object while
holding the same monitor. The second group can be set in both threads, but is only read
in the animation thread. They are handled like the first group.

The third group is set in the animation thread, and read in both threads. Actually, this
group only includes the moving character's position, which can be set in the main thread
as well. However, it is not necessarily possible to set the position, because View config-
uration may be incomplete. The position is saved, and then set in the animation thread,
which does not start before all necessary View configurations are complete. Both getters
and setters are synchronized in order to prevent concurrent reads while the animation
thread is updating the current position.

The fourth group includes the animations, which have their own properties class.
They can be set in both threads, but are only read in the animation thread. Most of the
time, they are set in the main thread as a response to user input, events from the server,
or View configuration. Movement and animation events are also transferred to the main
thread. All of those make their changes to a main thread properties object. The anima-
tion thread copies the changes to its own object, and then clears the relevant fields in the
main thread object. If there are no changes for a variable waiting in the main thread ob-

68

ject, the animation thread can do automatic changes to it.
The boolean for enabling or disabling user input belongs to the first group. Regard-

less of its setting, the animation thread can disable input due to automatic movement
and ongoing animations.

The animation properties class has a ReentrantLock, which the animation thread

holds while drawing a frame. It is meant for changes to the internal states of animation
objects. Changes should be made while holding the lock, to prevent concurrent reads in
the animation drawing methods.

In addition to the main thread and the animation thread, the Battle View deals with
an action executor thread. Its purpose is to control animations and delays associated
with them, while leaving the main thread and the animation thread free. It transfers mes-
sages from the main thread to its own thread using a Handler.

The Battle View has some variables which are set in the main thread and accessed in
both threads. They are copied for the next draw as in the super class. Properties related
to the square grid battlefield have their own class, Battlefield. The properties which

are accessed by both the action executor thread and the main thread are synchronized.

 8.5 View components

Several View components can be reused between different Activities, or are separated
from a single Activity in order to promote encapsulation and clarity. These components
are made of one or more Android Views, as well as code to control the components'
functionalities.

The user interface description of a component is written as an Android XML layout,
which can be included in other XML layouts. The controller part is written in Java, and
needs the Java object inflated from the XML. In many cases, a component also includes
custom sub-components, which are written in their own XML layout files. Any number
of sub-components can be inflated dynamically at runtime.

 8.5.1 Highlight Views

These add an additional state besides those already available in Android Views: high-
lighting. The View will change its background drawable according to its highlight state.
Highlighting does not affect any of the default states, and a View can be both selected
and highlighted, for example. There are two of these Views: a highlight button, which
only adds highlighting to default button behavior, and a list View.

A list View is a linear layout with text Views for name and price, as well as two im-
age Views. It can be configured to show or hide any of the others, but name is always
visible. Clicks on the name are handled as if the whole View was clicked, and the other
sub-Views are not clickable.

Both the button and list View override the callback method which handles touches.

69

By default, a View which is focusable in touch mode will request focus when touched,
and trigger a click only when it already has focus. If the highlight View does not have
focus, it requests it, and then lets the superclass continue from there. The View will get
focus, the superclass will acknowledge that it is focused, and trigger a click.

 8.5.2 Item and character list

Shows a list of items and a list of characters, as well as an item description. An item and
a character can be selected separately. The item and character list is Observable, and

notifies observers when selected item or character changes. The item list can be config-
ured to show or hide item prices, and can have a multiplier for them. Item category icon
is shown on the left of each View. The list can also have a filter to hide some of the
items in the list, and both the item list and the character list can be hidden separately.

Items are shown in a linear layout of list Views, and characters in a linear layout of
highlight buttons. When a user clicks on an item or character, it is selected. Selecting an
item highlights characters that can use the item, and the other way around. A selected
item's description is shown. When a user clicks on an item or character which is already
selected, it is unselected. If item or character is set programmatically, its selection state
is not changed. Unselecting characters can be disabled. A character will always be se-
lected, and clicking the selected character again has no effect.

The item list can have either individual items or item types. Changing the list of
items or item types does not change the selected item, unless the new list does not in-
clude the selection. Then the selection is removed. The same is true for characters. Se-
lected item is also unselected if it is hidden because of the filter.

 8.5.3 Statistics changes

Shows changes to a character's statistics in a table of 40 cells, which are by default or-
dered in ten rows and four columns. The first column has a label text, the second has the
original value of a statistic, the third has the statistic's changed value, and the fourth col-
umn has the difference between the two. Statistics which increase are shown in green
and statistics which decrease are shown in red.

The grid can also be put to a wide mode, with five rows and eight columns. The sta-
tistics are then ordered so that the first five statistics are in the first four columns, and
the other five statistics are in the last four columns.

Statistics changes are initially invisible, and are shown only when the component
has a character, as well as statistics changes to show. Changes can be for an item or item
type to equip, with an equipment slot, or a set of changes to the statistics as an integer
array. If the character can not equip the item or item type, the statistics will remain in-
visible to indicate this.

70

 8.5.4 Character inventory and abilities

The character inventory component shows slots for equipped and carried items. It has a
setter for the character, whose items are immediately shown when set. Besides display-
ing the character's items, the component has methods for changing equipment and car-
ried items. These are delegated to the character class, but the inventory also updates it-
self according to changes. The inventory also tracks changes to the character's items,
and can be queried to determine if the character's items have changed since the charac-
ter was set.

A user can select item slots, which causes the selected item's (if any) description to
be shown below the item slots. The inventory is Observable, and notifies observers of

the item slot selection changing. The inventory is a linear layout of list Views. It can al-
ternately show a list of the character's abilities.

 8.5.5 Character selector

Shows a character, and arrow buttons to the left and right. These can be used to select
the previous or next character, respectively. The left arrow is disabled for the first char-
acter, and the right arrow for the last character.

Once given a list of characters, the character selector handles changing the character
when the buttons are clicked. It is an Observable, and notifies observers with the new

character when selection changes. It has no means of deselecting a character, unless the
character list is empty.

 8.5.6 Character slots

Shows six character types in a row, a title and six characters in another row. The compo-
nent can be set to allow or prevent user from removing characters from the slots. If al-
lowed, characters can be removed by long-clicking. Similarly, it can allow or prevent
selecting empty slots. The character type row and title can be hidden. Any slot can be
disabled, so the user can not select it.

The character slots component is Observable, and notifies observers when a char-

acter is removed, or the selection changes otherwise. It handles moving characters from
slot to slot, and also has utilities for counting the characters on the character row and
getting the names of their classes.

 8.5.7 Character status

Shows character's picture, name, level, experience, statistics, items and abilities. Also
includes a button for opening the character's inventory. The character's hit points and
magic points can be shown either like the other statistics, with a label and a value, or in
an alternate mode that shows current hit points and magic points.

A label is shown for current values, and another text View shows them as “current
value slash maximum value”. There is also a graphic bar which shows the percentage of

71

current from maximum. The bar is originally hidden, and shown only when the current
value mode is enabled. The bar gets horizontal space left over from the text Views.

Since they are hidden at first, the image Views for the bars are sized 0x0 pixels. The
bars need to be drawn after layout completes, and the bar's width has been determined.
There is no event to respond to layout being completed, but instead the character status
component is made a Runnable, and posted to be run in the main thread.

A layout is scheduled first, when the image Views' visibility is changed, and the
Runnable is posted after that. Therefore it is in the main thread's queue after the layout.

The layout schedules a screen update, which is queued after the Runnable. The

Runnable can therefore draw bitmaps for the image Views using their dimensions after

layout, but before the updated Views are shown on the screen.

 8.6 Activities

Most of the functionality of any Activity resides in the ContentObservers, Observers

for the components it uses, and event-handling methods for clicking components. There
is very little anything else.

Each Activity binds itself to the Service using the MupeForceActivity superclass.

When binding is completed, the Activity sends requests for data it needs. After a server
update, the Service sends notifications through ContentObservers, and the Activity

makes new requests based on the new data. This is repeated until all necessary data is
available.

The Login Activity, being the first Activity in the application, is the first to bind to
the Service. The Login Activity also starts the Service, so that it remains running after
the Login Activity is exited. The Login Activity destroys itself on exit, so the Service
would also stop if it was only bound.

The Login Activity saves user name, password and login settings to shared prefer-
ences after a successful login. Of course, user name and password are only saved for a
registered user, and they are not saved if the remember login setting is disabled. User
name and password are private to the Login Activity, but the Settings Activity can
change the other settings.

The Shop Activity requires two parameters in its starting Intent: shop title and root
item category. These are set in the Town Activity, because the shops are entered from
the town. The title becomes the Activity's title, and the root item category determines
what the shop sells. The Shop Activity determines items on sale by that category's child
categories.

 8.6.1 The Town Activity

The Town Activity has an animated View for the town itself, and an action bar. The ac-
tion bar buttons start new Activities, and new Activities are also started when the char-

72

acter is moved to town locations.
The marketplace is not a separate Activity. The Town Activity only uses an anima-

tion in the Town View to transition from one background image to another, and replaces
AccessibleSquares and MovementListener implementations in the Town View's con-

figuration. The Town View has a nested class for each of the town plaza and the market-
place, implementing the above interfaces.

The background transition animates the character walking from one section of town
to the other. When moving to the marketplace, the town plaza image is moved down and
off the screen, while the marketplace image moves in from the top. When leaving the
marketplace, the animation's direction is reversed. The background transition uses an
Android TranslateAnimation to move the graphics. The character graphic gets the

same translation as the old background, making the character move along with it. When
starting the animation, the Town View disables user input and also starts an automatic
walk out move, which causes the character to move onto the new background. When the
background transition stops, the Town View moves the character's position to coordi-
nates matching the new background, and starts an automatic walk in move. The charac-
ter moves further onto the new background, leaving one empty row of squares between
it and the town edge. Then it stops, and user input is enabled again.

When new Activities are started, the town Activity remains in the background, and
is activated again when the user returns from the other Activity. Since the Login and Ini-
tial Character Selection Activities do not remain in history, the town Activity is the root
of the application's Task. When it is closed, the application ends. Therefore the town Ac-
tivity, when destroyed, logs out the user and then shuts down the Service.

Logging out through the action bar also destroys the town Activity, but does not stop
the Service. The town Activity starts the login Activity, but first adds an override to the
shared preferences, so that automatic login is not executed.

 8.6.2 The Battle Activity

Battle modes are implemented in the Battle View where they concern the Battle View it-
self, and in the Battle Activity where they concern other Views. The Battle Activity up-
dates other Views and components depending on mode changes in the Battle View, and
they do not need to know about current mode.

Besides the Battle View, the Battle Activity includes character slots for deployment,
two action menus, a done button, a cancel button, and a mode toggle button. These are
all placed in a frame layout outside the Battle View, one on top of the other. Visible
Views change depending on mode and other things, and it does not matter if Views that
can not become visible at the same time are overlapping.

The done button is visible in deploy mode when all characters are on the battlefield.
It will remain visible if the player switches to observation mode during deployment, but
be hidden if characters are removed from the battlefield. Pressing it hides the done but-

73

ton itself, as well as the character slots, and sends the battlefield positions of the player's
characters to the server. The Battle Activity then notifies the battle View to end deploy
mode.

The mode toggle button is visible in deploy mode, observation mode and turn mode,
except during opponent's turns. It will switch from deploy or turn mode to observation
mode and back. The cancel button is visible in targeting mode. It causes a return to turn
mode.

The Battle Activity also has a Broadcast Receiver for incoming messages from the
server. These are used to update the Battle View's state, and execute the actions of both
players. Actions are of course executed in the action executor thread, and it is also used
to schedule events. When a battle end message is received, the Battle Activity starts the
Battle Results Activity, which shows reward and level ups. The Back button finishes
this Activity, and returns to the Town Activity.

 8.7 The action executor

The Battle Activity creates the action executor, which starts its own thread as a Looper,
and creates a Handler for transferring messages to it. When starting up, it waits until it
has both created its Handler and received a notification from the Battle Activity that the
battle is ready to start. This is to ensure that the Battle Activity can not send messages to
the Handler before it exists, and that the first begin turn event is delayed until all prepa-
rations for the battle are completed.

After that, the action executor receives notifications for beginning turns and execut-
ing actions, which it places to a queue through the Handler. The queue ensures that the
next turn does not begin before the previous turn's action has been completed. Eventu-
ally the action executor receives a battle end notification and stops its Looper.

When the action executor receives an action script, it will first move the character
whose turn it is to the location in the script. If the character belongs to the user, it is al-
ready in the given position, but if the character belongs to the opponent, it needs to be
moved. The path move controller, which is also used for touch-controlled movement,
handles the move. It is set as automatic movement, and the action executor waits for the
movement to complete. The Battle View is now in execution mode, which decides the
accessibility of squares based on obstacles and characters, preventing the character from
moving across them.

The action executor interprets action scripts into ActionDraw objects which draw

graphics, as well as Interpolators and Animations. Then it executes the script's ac-

tion queue, which involves starting animations, waiting for them to complete, and mak-
ing changes to the local model.

A script-based animation is drawn over anything else in the Battle View. A class is
implemented to draw the graphics using the ActionDraw objects, but interpolators and

74

animations are provided by Android. An Android Animation can only be applied to a

View, which is not how they are used here. Instead, the Animation's Transformation

object and alpha value are copied to the Canvas and Paint used for drawing the ani-

mated graphic.

75

 9 CONCLUSIONS

The Mupe Force project can be called a success in that a functional application was de-
veloped. Unfortunately, it includes only the properties which were selected as the mini-
mum set from the original specification. It was intended to implement more of the
game's planned features, but development took too much time for that.

There was some unnecessary (in a manner of speaking) tweaking of the user inter-
face, as was expected in the early stages of this project. The biggest difficulties that
slowed down the project, however, were difficulties in the concurrency and graphics of
the Town and Battle Views, certain less informed decisions regarding the client-side
data model, and the peculiarities of Android layouts. These will be discussed in more
detail later in this chapter.

The next section discusses the technologies used in the project. After that, more de-
tail about GUI programming with Android is included. These are things learned during
development, in contrast to Chapter 3, which is based on documentation. At the end of
this chapter, there are some mistakes which were repeatedly made during development,
and some points about developing Mupe Force further.

 9.1 About the project

Networking for the project was considerably easier than expected, even though Java-
-based technologies JMS, RMI and Servlets were found to be ill suited for this project.
After that, several networking technologies were studied, starting from HTTP and pro-
gressing into more complex ones like XMPP. In the end, something as basic as TCP was
found to be sufficient. Also, this was learned through the discovery of Apache MINA,
which implements TCP communication for both the server and the client.

The initial idea of having the server remotely call methods on the client to execute
character actions was found to be unnecessarily difficult. An RPC-type solution would
have required much longer messages than the script solution which was decided on. The
JSON server's cross-platform compatibility would also have suffered, and it would have
placed more requirements for theoretical future client implementations.

As for Android, which was the primary technology studied in this project, it is good
but has its quirks. The life cycle of an Activity is very important to learn, but can be dif-
ficult to understand. The same can also be said of the entire structure of Activities, In-
tents, Content Providers and so on. The structure promotes modularity, and the easy
navigation between Activities from different applications is very interesting. Even

76

though it was not needed in this stand-alone project.
After studying Android, the initial plan was to have each Activity retrieve only the

model objects it needed, and then discard them. This idea turned out to be the biggest
mistake in the project, as it produced multiple problems.

First, it became obvious that additional meta data was required to properly connect
different model objects to each other. A solution compliant with the original idea would
have been to include meta data in object data, but this would have caused considerable
redundancy and made the JSON messages much bigger. Instead, in addition to player-
-specific data, each Activity also retrieves the meta data for making connections in the
model. This led to redundancy and copy-paste programming as more Activities were
implemented.

Each Activity retrieves all the data it needs, requesting updates from the server for
all of it. At first, data is read from the cache and new model objects are created. When
data is received from the server, new objects are created for insertion into the cache, the
data is read back, and new model objects are created from it. Although not erroneous,
this behavior causes a lot of unnecessary database reading and writing, as well as server
communication and object creation. Updating Activities with the new model objects
also becomes a problem in many cases.

 9.2 About the Android GUI API

A recurring issue during the project was Android's incomplete documentation. There
were mistakes, such as discrepancies between the common layout tutorial and detailed
documentation for the layouts. All in all, these did not pose major problems, but extra
work was certainly required.

A more difficult but less common problem is the calculation of view dimensions.
None of the layouts in Android supports setting view dimensions proportionally to the
parent view group. The closest alternative is creating zero-sized views in a linear layout
and using weights to distribute extra space between them.

There were also several situations where a “wrap content” text View would not use
available horizontal space to fit the text. Instead, the text would be folded to a second
line or cut completely depending on settings. Image Views, in contrast, would occasion-
ally reserve much more space than needed, even with a static pixel size, or a zero size.
These are likely due to layouts that calculate View dimensions and distribute space.

Out of the five available layouts, and excluding the deprecated AbsoluteLayout,

only LinearLayout can be used to constrain a View's size. TableLayout can be used to

some extent, but only horizontally, as its rows extend LinearLayout. This becomes vis-

ible at times, when columns are different widths on different rows. The table layout sup-
posedly supports column spanning [56]. The XML attribute for that was treated as an in-
valid parameter, though. Also, margins and paddings for table cell Views were ignored

77

in several cases.
The relative layout does not support layout weight or any similar mechanism. In

case the children are too large to be positioned within the available space, which is often
the case, they are simply placed one on top of the other. Also, according to experimenta-
tion, a relative layout with “wrap content” dimensions would spread to cover all of the
available area, and stretched the child views accordingly. In other words, it makes no
distinction between “wrap content” and “match parent”.

The GridView was found to be very difficult to understand. Depending on settings,

it would for example make columns too narrow to fit their content, while leaving excess
empty space for another, wider, column. Focus for the grid was shown as an orange box,
much larger than the focused View. None of the settings changed in attempt to make the
grid and its cells not focusable had any effect.

Despite all of the above, Android's GUI API was found to be preferable to Swing
and lwuit (Lightweight UI Toolkit for Java ME). The program structure, Activities, Ser-
vices and so on, as well as various mechanisms for doing things behind the scenes, such
as Content Observers and Handlers, are great. With a better understanding of them at the
beginning of this project, the biggest difficulties in the client's model and animated
Views would have been greatly reduced.

 9.3 Pitfalls

Here are a few things which repeatedly caused mistakes and annoyances during the
project. First the most common one, which was routinely corrected later in the project:
Eclipse's automatic features for managing import statements can not manage a class

named Character because of the class java.lang.Character.

The Java editor in Eclipse is not meant for editing “xml_style” names. The XML
editor, on the other hand, is not meant for editing “JavaStyle” names. Both types of
names appear in both types of files, making text editing noticeably clumsier than it
needs to be.

The XML editor could also benefit from tighter integration with the Java side. For
example, an Android application could not be launched directly from Eclipse's Run and
Debug buttons when an XML file was open. Instead of the Android application being
launched, an XSL transformation was done on the XML file. This caused an error report
and generated an empty result file, which Android could not compile. The output file
had to be removed before the project could be compiled. Automatic refactoring also
does not carry between Java and XML very well.

Android expects colors in a four-byte ARGB (alpha, red, green, blue) format. There-
fore, setting a background or text color, for example, programmatically in RGB (red,
green, blue) format makes the color invisible. This is because the alpha component in a
three-byte number is zero and the color is fully transparent. In XML, colors can be writ-

78

ten in RGB format.
The JSONObject defined in jabsorb automatically converts an int array into a

JSONArray of integers. Android's JSONObject, on the other hand, simply uses

toString to convert the array into a String, and therefore it is necessary to manually

convert the int array into a JSONArray.

An important aspect of Android GUI programming is finding views by identifier.
Views are searched with a depth-first search, rather than a breadth-first search. In prac-
tice, if a layout includes other layouts from other files, the view identifiers set in the in-
cluded files can override view identifiers in the including higher-level layout. This can
be avoided by using different identifiers, but it still requires a knowledge of what identi-
fiers appear in the included files.

 9.4 Further development

Before any further development, the data retrieval model should be improved. The Ser-
vice should take more control of the data, and only access the server when necessary.
Except in battle, any change at runtime begins in the client, and it would be sufficient to
retrieve each data item once, and then only react to changes from the user. The Service
could also take control of preparing the meta data for connecting model objects that an
Activity has requested.

The Service returns cached data when an Activity asks for it, then contacts the
server, and notifies the Activity to get the new data from the server. This causes redun-
dancy in the Activity, because the same data is handled when it is first retrieved, and
then again when a Content Observer notifies. Instead, the Service should be modified to
return nothing, and only notify Content Observers about available data, which would
then be retrieved through the model. This goes well together with the previously men-
tioned improvement.

Since Activities call for data in the main thread, and the Service handles incoming
data in its own thread, there is a risk of concurrent modification of the model. Such
problems were avoided by designing data requests to be sequential, but that hinders the
usage of cached data while the Service gets new data from the server. Concurrency
should be better handled in the Service and inside the model so that Activities would not
have to take it into consideration.

As for new features, there is much room for improvement in the game itself. Many
of the features in the original specification were left out due to time constraints. Graph-
ics could obviously be improved by quite a bit, and sounds could be added.

It was initially intended to create a Content Provider for images. All of the images
are now packaged with the client and resized as necessary. The plan was to get the im-
ages from the server, which would also allow them to be replaced by new ones without
having to re-install the client.

79

Considering the addition of new character classes, items, abilities and so on, it is un-
necessary to store a growing number of images on the client. Instead, the Content
Provider could retrieve necessary images for example before a battle, and delete images
that have become unnecessary.

An important aspect in downloading images from the server was to be re-coloriza-
tion of character images. Currently, all characters of the same class look the same, and
they can not be told apart during battle without checking their status. It would be much
better if each player could set a color scheme for their characters. It would add personal-
ization possibilities to the game, and make it possible to recognize which player a char-
acter belongs to.

80

REFERENCES

1 Android Developers. Android, the world's most popular mobile platform.
[WWW]. [Referenced: 13.11.2012]. Available:
http://developer.android.com/about/index.html.

2 Kashyap, V. MakeUseOf. 2010. What Is An API & What Are They Good For?
[Technology Explained]. [WWW]. [Referenced: 13.11.2012]. Available:
http://www.makeuseof.com/tag/api-good-technology-explained/.

3 Apache Portable Runtime Project. 2012. Welcome! - The Apache Portable Run-
time Project. [WWW]. [Referenced: 5.8.2012]. Available: http://apr.apache.org/.

4 Daintith, J., Wright, E. A Dictionary of Computing. 2008. Oxford University
Press. 608 p.

5 Google Code. Google Projects for Android: C2DM. [WWW]. [Referenced:
31.3.2012]. Available: http://code.google.com/android/c2dm/.

6 McCarthy, P., Crane, D. Comet and Reverse Ajax: The Next Generation Ajax
2.0. 2008. Apress Media. 100 p.

7 The JavaTM Tutorials. Serializable Objects. [WWW]. [Referenced: 15.11.2012].
Available: http://docs.oracle.com/javase/tutorial/jndi/objects/serial.html.

8 Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. 1994. Addison Wesley Longman, Inc. 395
p.

9 Rouse, M. SearchWinDevelopment. 2006. GUI (graphical user interface).
[WWW]. [Referenced: 13.11.2012]. Available:
http://searchwindevelopment.techtarget.com/definition/GUI.

10 Allamaraju, S. 2001. Java Server Programming: Principles and Technologies.
[PDF]. [Referenced 13.11..2012]. Available:
http://www.subbu.org/articles/j2ee/java_server_programming.pdf.

11 JSON. Introducing JSON. [WWW]. [Referenced: 31.3.2012]. Available:
http://www.json.org/.

12 JSON-RPC. 2011. JSON-RPC 2.0 Specification. [WWW]. [Referenced:
17.11.2012]. Available: http://www.jsonrpc.org/specification.

13 Suomela, R., Räsänen, E., Koivisto, A., Mattila, J. Open-Source Game Develop-
ment with the Multi-User Publishing Environment (MUPE) Application Plat-
form. [PDF]. [Referenced: 13.11.2012]. Available:
http://scholar.google.com/scholar_url?
hl=fi&q=http://pdf.aminer.org/000/464/326/open_source_game_development_w

81

ith_the_multi_user_publishing_environment.pdf&sa=X&scisig=AAGBfm0pxA
sCdRrptRfr3QvIDSQoIMJ0VQ&oi=scholarr.

14 Rouse, M. WhatIs.com. 2011. model-view-controller (MVC). [WWW]. [Refer-
enced: 13.11.2012]. Available: http://whatis.techtarget.com/definition/model-
view-controller-MVC.

15 MySQL. Why MySQL? [WWW]. [Referenced: 15.11.2012]. Available:
http://www.mysql.com/why-mysql/.

16 Paul, J. Javarevisited. 2011. Observer design Pattern in Java with Real world
code Example. [WWW]. [Referenced 3.11.2012]. Available:
http://javarevisited.blogspot.fi/2011/12/observer-design-pattern-java-
example.html.

17 OpenGL.org. 2012. FAQ. [WWW]. [Referenced: 13.11.2012]. Available:
http://www.opengl.org/wiki/FAQ.

18 Tyagi, S. Oracle Technology Network. 2006. RESTful Web Services. [WWW].
[Referenced 13.11.2012]. Available:
http://www.oracle.com/technetwork/articles/javase/index-137171.html.

19 Rouse, M. SearchSOA. 2009. Remote Procedure Call (RPC). [WWW]. [Refer-
enced: 13.11.2012]. Available:
http://searchsoa.techtarget.com/definition/Remote-Procedure-Call.

20 Adams, E. Fundamentals of Game Design. 2010. New Riders. 675 p.
21 Fendelman, A. About.com. Definition of SMS Text Messaging: What is SMS

Messaging, Text Messaging? [WWW]. [Referenced: 13.11.2012]. Available:
http://cellphones.about.com/od/phoneglossary/g/smstextmessage.htm.

22 Skonnard, A. MSDN. 2003. Understanding SOAP. [WWW]. [Referenced:
13.11.2012]. Available: http://msdn.microsoft.com/en-us/library/ms995800.aspx.

23 W3Schools. Introduction to SQL. [WWW]. [Referenced: 15.11.2012]. Avail-
able: http://www.w3schools.com/sql/sql_intro.asp.

24 SQLite. Distinctive Features of SQLite. [WWW]. [Referenced: 16.11.2012].
Available: http://www.sqlite.org/different.html.

25 Diffen. TCP vs UDP. [WWW]. [Referenced: 17.11.2012]. Available:
http://www.diffen.com/difference/TCP_vs_UDP.

26 RPGFan. The Definition of a Role-Playing Game! [WWW]. [Referenced:
13.11.2012]. Available: http://www.rpgfan.com/editorials/old/1998/0007.html.

27 Everything2. 2003. tactical RPG. [WWW]. [Referenced: 13.11.2012]. Available:
http://everything2.com/title/tactical+RPG.

28 Connolly, D. W3C Architecture domain. 2006. Naming and addressing: URIs,
URLs, … [WWW]. [Referenced: 13.11.2012]. Available:
http://www.w3.org/Addressing/.

29 W3C. 2001. URIs, URLs, and URNs: Clarifications and Recommendations 1.0.
[WWW]. [Referenced: 13.11.2012]. Available: http://www.w3.org/TR/uri-

82

clarification/.
30 W3C. XML Essentials. [WWW]. [Referenced: 16.11.2012]. Available:

http://www.w3.org/standards/xml/core.
31 Tutorialspoint. XML-RPC Introduction. [WWW]. [Referenced: 17.11.2012].

Available: http://www.tutorialspoint.com/xml-rpc/xml_rpc_intro.htm.
32 XMPP Standards Foundation. XMPP Technologies Overview. [WWW]. [Refer-

enced: 13.11.2012]. Available: http://xmpp.org/about-xmpp/technology-
overview/.

33 Komppa, J. Adventure Classic Gaming. 2006. How to design an ideal computer
role playing game? [WWW]. [Referenced: 19.11.2012]. Available:
http://www.adventureclassicgaming.com/index.php/site/features/118/.

34 Barton, M. Gamasutra. 2007. The History of Computer Role-Playing Games
Part 1: The Early Years (1980-1983). [WWW]. [Referenced: 18.11.2012]. Avail-
able:
http://www.gamasutra.com/view/feature/3623/the_history_of_computer_.php.

35 Sinister Design. 2011. What makes an RPG an RPG: a universal definition.
[WWW]. [Referenced: 19.11.2012]. Available: http://sinisterdesign.net/?p=785.

36 Doucet, L. Gamasutra: Lars Doucet's Blog. 2011. Rebooting the RPG. [WWW].
[Referenced: 18.11.2012]. Available:
http://www.gamasutra.com/blogs/LarsDoucet/20110309/7182/Rebooting_the_R
PG.php.

37 Encyclopedia Gamia. Tactical role-playing game. [WWW]. [Referenced:
19.11.2012]. Available: http://gaming.wikia.com/wiki/Tactical_role-
playing_game.

38 Lee, W-M. Beginning Android Application Development. 2011. Wiley Publish-
ing, Inc. 428 p.

39 Mednieks, Z., Dornin, L., Meike, G. B., Nakamura, M. Programming Android.
2011. O'Reilly Media, Inc. 482 p.

40 Zechner, M., Green, R. Beginning Android 4 Games Development. 2011. Apress
Media. 677 p.

41 Android Developers. 2012. Content Providers. [WWW]. [Referenced:
31.3.2012]. Available:
http://developer.android.com/guide/topics/providers/content-providers.html.

42 Android Developers. 2012. Looper. [WWW]. [Referenced: 7.10.2012]. Avail-

able: http://developer.android.com/reference/android/os/Looper.html.
43 Android Developers. 2012. Handler. [WWW]. [Referenced: 7.10.2012]. Avail-

able: http://developer.android.com/reference/android/os/Handler.html,
44 Komatineni, S., MacLean, D. Pro Android 4. 2012. Apress Media. 1020 p.
45 Android Developers. 2012. ContentProvider. [WWW]. [Referenced

26.3.2012]. Available:

83

http://developer.android.com/reference/android/content/ContentProvider.html.
46 Android Developers. 2012. Services. [WWW]. [Referenced 27.3.2012]. Avail-

able: http://developer.android.com/guide/topics/fundamentals/services.html.
47 Ableson, F. IBM developerWorks. 2009. Networking with Android. [WWW].

[Referenced 27.3.2012]. Available:
http://www.ibm.com/developerworks/opensource/library/os-android-
networking/.

48 Burnette, E. ZD Net. 2008. Java vs. Android APIs. [WWW]. [Referenced
27.3.2012]. Available: http://www.zdnet.com/blog/burnette/java-vs-android-
apis/504.

49 Android Developers. 2012. User Interface. [WWW]. [Referenced: 8.5.2012].
Available: http://developer.android.com/guide/topics/ui/index.html.

50 Android Developers. 2012. Layout Resource. [WWW]. [Referenced: 8.5.2012].
Available: http://developer.android.com/guide/topics/resources/layout-
resource.html.

51 Android Developers. 2012. Providing Resources. [WWW]. [Referenced:
8.5.2012]. Available:
http://developer.android.com/guide/topics/resources/providing-resources.html.

52 Android Developers. 2012. Activity. [WWW]. [Referenced: 7.10.2012]. Avail-

able: http://developer.android.com/guide/topics/ui/dialogs.html.
53 Android Developers. 2012. LayoutInflater. [WWW]. [Referenced:

10.10.2012]. Available:
http://developer.android.com/reference/android/view/LayoutInflater.html.

54 Android Developers. 2012. View. [WWW]. [Referenced 26.3.2012]. Available:

http://developer.android.com/reference/android/view/View.html.
55 Android Developers. 2012. FrameLayout. [WWW]. [Referenced: 8.5.2012].

Available:
http://developer.android.com/reference/android/widget/FrameLayout.html.

56 Android Developers. 2012. TableLayout. [WWW]. [Referenced: 8.5.2012].

Available:
http://developer.android.com/reference/android/widget/TableLayout.html.

57 Android Developers. 2012. XML Layouts. [WWW]. [Referenced: 8.5.2012].
Available: http://developer.android.com/guide/topics/ui/declaring-layout.html.

58 Android Developers. 2012. Custom Components. [WWW]. [Referenced:
8.5.2012]. Available: http://developer.android.com/guide/topics/ui/custom-
components.html.

59 Android Developers. 2012. Input Events. [WWW]. [Referenced: 8.5.2012].
Available: http://developer.android.com/guide/topics/ui/ui-events.html.

60 Android Developers. 2012. Menus. [WWW]. [Referenced: 8.5.2012]. Available:
http://developer.android.com/guide/topics/ui/menus.html.

84

61 Android Developers. 2012. Action Bar. [WWW]. [Referenced: 8.5.2012]. Avail-
able: http://developer.android.com/guide/topics/ui/actionbar.html.

62 Android Developers. 2012. Dialogs. [WWW]. [Referenced: 7.10.2012]. Avail-
able: http://developer.android.com/guide/topics/ui/dialogs.html.

63 Android Developers. 2012. DialogInterface. [WWW]. [Referenced:

7.10.2012]. Available:
http://developer.android.com/reference/android/content/DialogInterface.html.

64 Android Developers. 2012. Animation and Graphics Overview. [WWW]. [Refer-
enced: 13.11..2012]. Available:
http://developer.android.com/guide/topics/graphics/overview.html.

65 Android Developers. 2012. Drawable. [WWW]. [Referenced: 13.11.2012].

Available:
http://developer.android.com/reference/android/graphics/drawable/Drawable.ht
ml.

66 Android Developers. 2012. View Animation. [WWW]. [Referenced: 22.8.2012].
Available: http://developer.android.com/guide/topics/graphics/view-
animation.html.

67 Android Developers. 2012. Canvas and Drawables. [WWW]. [Referenced:
21.8.2012]. Available: http://developer.android.com/guide/topics/graphics/2d-
graphics.html.

68 Fielding et al. HTTP/1.1: HTTP Message. [WWW]. [Referenced: 8.10.2012].
Available: http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html.

69 Fielding et al. HTTP/1.1: Method definitions. [WWW]. [Referenced:
8.10.2012]. Available: http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

70 Gravelle, R. Webreference. Comet Programming: Using Ajax to Simulate Server
Push. [WWW]. [Referenced: 13.11.2012]. Available:
http://www.webreference.com/programming/javascript/rg28/index.html.

71 XMPP Standards Foundation. 2010. XEP-0124: Bidirectional-streams Over
Synchronous HTTP (BOSH). [WWW]. [Referenced: 13.11.2012]. Available:
http://xmpp.org/extensions/xep-0124.html.

72 Treffer, R. github. 2011. AsmackService. [WWW]. [Referenced: 12.5.2012].
Available: https://github.com/rtreffer/AsmackService.

73 stackoverflow. 2011. Android and XMPP: Currently available solutions.
[WWW]. [Referenced: 12.5.2012]. Available:
http://stackoverflow.com/questions/4769020/android-and-xmpp-currently-
available-solutions.

74 Apache MINA. 2011. Welcome to Apache Vysper Project!. [WWW]. [Refer-
enced: 12.5.2012]. Available: http://mina.apache.org/vysper/index.html.

75 Apache MINA. 2011. Dependecies – Apache Vysper. [WWW]. [Referenced:
5.8.2012]. Available: http://mina.apache.org/vysper/dependencies.html.

85

76 Hachicha, N. 2012. XMPP client with Android. [WWW]. [Referenced:
5.8.2012]. Available: http://nhachicha.wordpress.com/2012/03/14/xmpp-client-
with-android/.

77 Apache MINA. 2011. Welcome to Apache MINA Project! [WWW]. [Refer-
enced: 13.11.2012]. Available: http://mina.apache.org/.

78 Apache MINA. 2011. FAQ. [WWW]. [Referenced: 5.8.2012]. Available:
https://mina.apache.org/mina/faq.html.

79 JSON. JSON: The Fat-Free Alternative to XML. [WWW]. [Referenced:
17.11.2012]. Available: http://www.json.org/xml.html.

80 Android Developers. 2012. JSONObject. [WWW]. [Referenced: 30.3.2012].

Available: http://developer.android.com/reference/org/json/JSONObject.html.
81 Android Developers. 2012. JSONArray. [WWW]. [Referenced: 4.8.2012]. Avail-

able: http://developer.android.com/reference/org/json/JSONArray.html.
82 Dalvik. 2010. Including additional javax.* packages in your Android App.

[WWW]. [Referenced 27.3.2012]. Available:
http://code.google.com/p/dalvik/wiki/JavaxPackages.

83 Mertz, D. IBM developerWorks. 2001. XML Matters: XML-RPC as object
model. [WWW]. [Referenced: 20.11.2012]. Available:
http://www.ibm.com/developerworks/xml/library/x-matters15/index.html.

84 Roes, T. GitHub. 2012. aXMLRPC. [WWW]. [Referenced: 30.3.2012]. Avail-
able: https://github.com/timroes/aXMLRPC.

85 Winer, D. XML-RPC.com. 2003. XML-RPC Specification. [WWW]. [Refer-
enced: 30.3.2012]. Available: http://xmlrpc.scripting.com/spec.html.

86 Google. 2011. ksoap2-android. [WWW]. [Referenced: 30.2.2012]. Available:
http://code.google.com/p/ksoap2-android/.

87 android-json-rpc. 2012. Getting Started. [WWW]. [Referenced: 13.5.2012].
Available: http://code.google.com/p/android-json-rpc/wiki/GettingStarted.

88 qooxdoo 2.0.1 documentation. 2012. RPC (Remote Procedure Call). [WWW].
[Referenced: 4.8.2012]. Available:
http://manual.qooxdoo.org/current/pages/communication/rpc.html.

89 jabsorb 1.3.2 API. 2009. [ZIP/HTML]. [Referenced: 4.8.2012]. Available:
http://code.google.com/p/jabsorb/downloads/detail?name=jabsorb-1.3.2-
javadoc.zip&can=2&q=.

90 JSON-RPC for Java – Google Project Hosting. 2012. jsonrpc4j. [WWW]. [Ref-
erenced: 4.8.2012]. Available: http://code.google.com/p/jsonrpc4j/.

91 jsonrpc4j-0.24-sources. 2012. [JAR/Java]. [Referenced: 4.8.2012]. Available:
http://jsonrpc4j.googlecode.com/svn/maven/repo/com/googlecode/jsonrpc4j/0.2
4/jsonrpc4j-0.24-sources.jar.

92 JSON-RPC for java 0.24 API. 2012. [JAR/HTML]. [Referenced: 4.8.2012].
Available:

86

http://jsonrpc4j.googlecode.com/svn/maven/repo/com/googlecode/jsonrpc4j/0.2
4/jsonrpc4j-0.24-javadoc.jar.

93 json-rpc - Easy to use JSON-RPC Client/Server – Google Project Hosting. 2012.
Usage. [WWW]. [Referenced: 4.8.2012]. Available:
http://code.google.com/p/json-rpc/wiki/Usage.

94 JSON-RPC 1.0 API. 2011. [ZIP/HTML]. [Referenced: 4.8.2012]. Available:
http://code.google.com/p/json-rpc/downloads/detail?name=jsonrpc-
1.0.zip&can=2&q=.

95 jsonrpc-1.0-sources. 2011. [ZIP/JAR/Java]. [Referenced: 4.8.2012]. Available:
http://code.google.com/p/json-rpc/downloads/detail?name=jsonrpc-
1.0.zip&can=2&q=.

96 jpoxy - Simple JSON-RPC framework for Java apps – Google Project Hosting.
2011. RPC.java. [WWW]. [Referenced: 4.8.2012]. Available:
http://code.google.com/p/jpoxy/source/browse/trunk/jsonrpc/src/main/java/org/j
poxy/RPC.java.

97 GitHub. 2012. stefaniuk/com.code4ge.json.service. [WWW]. [Referenced:
4.8.2012]. Available: https://github.com/stefaniuk/com.code4ge.json.service.

98 JSON-RPC 2.0. 2012. Java Server Framework. [WWW]. [Referenced:
5.8.2012]. Available: http://software.dzhuvinov.com/json-rpc-2.0-server.html.

99 JSON-RPC 2.0. 2012. Base Java Classes. [WWW]. [Referenced: 5.8.2012].
Available: http://software.dzhuvinov.com/json-rpc-2.0-base.html.

100 Java-json-rpc library. [WWW]. [Referenced: 5.8.2012]. Available: http://java-
json-rpc.sourceforge.net/.

101 json rpc on java. - Google Project Hosting. 2010. libjsonrpc. Available:
http://code.google.com/p/libjsonrpc/.

102 Google Project Hosting. 2011. UsageGuide – simplejsonrpc. [WWW]. [Refer-
enced: 5.8.2012]. Available:
http://code.google.com/p/simplejsonrpc/wiki/UsageGuide.

103 MySQL. 2012. Download Connector/J. [WWW]. [Referenced: 6.8.2012]. Avail-
able: http://dev.mysql.com/downloads/connector/j/.

104 Commons Logging. 2008. Overview. [WWW]. [Referenced: 6.8.2012]. Avail-
able: http://commons.apache.org/logging/.

105 SLF4J. 2012. [WWW]. [Referenced: 6.8.2012]. Available: http://www.slf4j.org/.
106 Google Project Hosting. 2012. Downloads – jabsorb. [WWW]. [Referenced:

6.8.2012]. Available: http://code.google.com/p/jabsorb/downloads/list.
107 Apache HttpComponents. 2012. HttpComponents Downloads. [WWW]. [Refer-

enced: 6.8.2012]. Available: http://hc.apache.org/downloads.cgi.
108 JAR Search. 2010. servlet-api-2.5-6.1.6.jar. [WWW]. [Referenced:

6.8.2012]. Available: http://www.findjar.com/jar/org/mortbay/jetty/servlet-api-
2.5/6.1.6/servlet-api-2.5-6.1.6.jar.html.

87

109 Horton, I. Ivor Horton's Beginning JavaTM 2, JDKTM 5 Edition. 2005. Wiley Pub-
lishing Inc. 1470 p.

110 MySQL 5.0 Reference Manual. 2012. [WWW]. [Referenced 18.2.2012]. Avail-
able: http://dev.mysql.com/doc/refman/5.0/en/.

111 JavaTM Platform, Standard Edition 7 API Specification. 2012. Connection.

[WWW]. [Referenced: 6.8.2012]. Available:
http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html.

112 Apache MINA. 2011. MINA based Application Architecture. [WWW]. [Refer-
enced: 5.8.2012]. Available: http://mina.apache.org/mina-based-application-
architecture.html.

113 Apache MINA. 2011. Server Architecture. [WWW]. [Referenced: 5.8.2012].
Available: http://mina.apache.org/server-architecture.html.

114 Apache MINA. 2011. Client Architecture. [WWW]. [Referenced: 5.8.2012].
Available: http://mina.apache.org/client-architecture.html.

115 Apache MINA. 2011. Sample TCP Server. [WWW]. [Referenced: 5.8.2012].
Available: http://mina.apache.org/sample-tcp-server.html.

116 Apache MINA. 2011. Sample TCP Client. [WWW]. [Referenced: 5.8.2012].
Available: http://mina.apache.org/sample-tcp-client.html.

117 Apache MINA. 2011. Chapter 7 – Handler. [WWW]. [Referenced: 5.8.2012].
Available: http://mina.apache.org/chapter-7-handler.html.

118 Apache MINA. 2011. Chapter 8 - Acceptor. [WWW]. [Referenced: 5.8.2012].
Available: http://mina.apache.org/chapter-8-acceptor.html.

119 Apache MINA 2.0.4 API Documentation. 2011. NioSocketAcceptor. [WWW].

[Referenced: 5.8.2012]. Available:
http://mina.apache.org/report/trunk/apidocs/index.html?
org/apache/mina/transport/socket/nio/NioSocketAcceptor.html.

120 Apache MINA 2.0.4 API Documentation. 2011. NioSocketConnector.

[WWW]. [Referenced: 5.8.2012]. Available:
http://mina.apache.org/report/trunk/apidocs/index.html?
org/apache/mina/transport/socket/nio/NioSocketConnector.html.

121 jabsorb 1.3.2 source code. 2009. [ZIP/Java] [Referenced: 6.8.2012]. Available:
http://code.google.com/p/jabsorb/downloads/detail?name=jabsorb-1.3.2-
src.zip&can=2&q=.

122 Android Developers. 2012. Animation Resources. [WWW]. [Referenced:
27.8.2012]. Available:
http://developer.android.com/guide/topics/resources/animation-resource.html.

123 Android Developers. 2012. Canvas. [WWW]. [Referenced: 27.8.2012]. Avail-

able: http://developer.android.com/reference/android/graphics/Canvas.html.
124 Android Compatibility Program. 2012. Android 4.1 Compatibility Definition.

Revision 1. [PDF]. [Referenced: 7.8.2012]. Available:

88

http://source.android.com/compatibility/4.1/android-4.1-cdd.pdf.
125 Android Compatibility Program. 2010. Android 2.3 Compatibility Definition.

[PDF]. [Referenced: 7.8.2012]. Available:
http://source.android.com/compatibility/2.3/android-2.3.3-cdd.pdf.

126 Android Developers. 2012. Tasks and Back Stack. [WWW]. [Referenced:
7.8.2012]. Available: http://developer.android.com/guide/components/tasks-and-
back-stack.html,

127 Android Developers. 2012. <activity>. [WWW]. [Referenced: 7.8.2012].

Available: http://developer.android.com/guide/topics/manifest/activity-
element.html.

	1 Introduction
	2 Mupe Force: Specification
	2.1 Application architecture
	2.2 Data content
	2.2.1 Players
	2.2.2 Characters
	2.2.3 Abilities
	2.2.4 Items

	2.3 Logging in
	2.4 Initial characters
	2.5 The town plaza
	2.6 The market square
	2.7 The game menu
	2.8 The arena
	2.9 Fighting a battle
	2.9.1 Actions
	2.9.2 Death, experience, victory and defeat
	2.9.3 Character status

	3 Android programming
	3.1 Application components
	3.2 Component life cycle
	3.3 Data management
	3.4 Networking
	3.5 Graphical user interface
	3.5.1 Layouts
	3.5.2 Views
	3.5.3 Menus
	3.5.4 Dialogs
	3.5.5 Animations and graphics

	4 Networking technologies
	4.1 HTTP: Hyper Text Transfer Protocol
	4.2 Comet
	4.3 XMPP: Extensible Messaging and Presence Protocol
	4.4 C2DM: Cloud to Device Messaging
	4.5 JMS: Java Messaging Service
	4.6 Java Servlets
	4.7 Apache MINA: Multi-purpose Infrastructure for Network Applications
	4.8 JSON: JavaScript Object Notation
	4.9 Remote procedure call technologies
	4.9.1 Java RMI: Remote Method Invocation
	4.9.2 XML-RPC
	4.9.3 SOAP: Simple Object Access Protocol
	4.9.4 JSON-RPC

	4.10 Decisions
	4.11 JSON-RPC implementations
	4.11.1 qooxdoo 2.0.1
	4.11.2 jabsorb 1.3.2
	4.11.3 jsonrpc4j 0.24
	4.11.4 json-rpc 1.0
	4.11.5 Others

	5 Server Java
	5.1 Database programming with JDBC
	5.2 Communications with Apache MINA
	5.3 JSON-RPC with jabsorb

	6 Server design
	6.1 Meta data
	6.2 Player-specific model
	6.3 Database helper
	6.4 The facade
	6.5 Communication abstraction
	6.6 JSON-RPC component
	6.7 The MINA server
	6.8 Battle controller
	6.8.1 Generating a battlefield
	6.8.2 Battle progress

	6.9 Animation scripts

	7 Client back end design
	7.1 Local cache
	7.1.1 Model classes
	7.1.2 Database operations

	7.2 Network client
	7.3 The Service
	7.3.1 Data retrieval
	7.3.2 Updates
	7.3.3 Incoming messages from the server

	8 Client interface design
	8.1 Interface design guidelines
	8.2 The Town View
	8.3 The Battle View
	8.3.1 Deployment
	8.3.2 Observation mode
	8.3.3 A character's turn
	8.3.4 The action menu

	8.4 Animated views
	8.4.1 Basic graphics
	8.4.2 User controls
	8.4.3 Movement controllers
	8.4.4 Battle View implementation
	8.4.5 Concurrency

	8.5 View components
	8.5.1 Highlight Views
	8.5.2 Item and character list
	8.5.3 Statistics changes
	8.5.4 Character inventory and abilities
	8.5.5 Character selector
	8.5.6 Character slots
	8.5.7 Character status

	8.6 Activities
	8.6.1 The Town Activity
	8.6.2 The Battle Activity

	8.7 The action executor

	9 Conclusions
	9.1 About the project
	9.2 About the Android GUI API
	9.3 Pitfalls
	9.4 Further development

	References

