
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JUKKA SADEHARJU

DESIGNING EXERCISE WORK FOR

Master of Science Thesis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JUKKA SADEHARJU 

EXERCISE WORK FOR SYSTEM-ON-CHIP

Master of Science Thesis 

Examiners: Professor Timo D. 

Hämäläinen, PhD 

 

Examiners and topic approved

Faculty  of Computer and Electrical 

Engineering council meeting on 

6.6.2012 

 

CHIP COURSE 

Professor Timo D. 

 Erno Salminen 

and topic approved in the 

of Computer and Electrical 

Engineering council meeting on 



  I 

TIIVISTELMÄ 
 

TAMPEREEN TEKNILLINEN YLIOPISTO  

Sähkötekniikan koulutusohjelma 

SADEHARJU, JUKKA: Harjoitustyön suunnittelu SoC-kurssille 

Diplomityö 

2012 

Pääaine: Sulautetut järjestelmät 

Tarkastajat: Timo D. Hämäläinen ja Erno Salminen 

Avainsanat: Moniprosessorijärjestelmät, Sulautetut järjestelmät, SoC alustat, Harjoitus-

työ 

 

Usean prosessorin mikroprosessorijärjestelmät ovat kasvattaneet suosiotaan jatkuvasti 

viime vuosien aikana. Tähän on johtanut ensisijaisesti tarve tehokkaille ja monimutkai-

sille sulautetuille järjestelmille joiden fyysinen koko on rajoitettu. Tällaiset järjestelmät 

vaativat monenlaisia järjestelmä- ja suunnittelutekniikoita mahdollistamaan tuotteiden 

tehokas suunnittelu ja kohtuulliset tuotantokustannukset. 

 

Tässä työssä pohditaan ”TKT-3541 SoC Alustat”-kurssiin liittyvän harjoitustyön sisäl-

töä ja rakennetta. Koko projektin tarkoituksena on luoda kurssille uusi harjoitustyö, joka 

aiempaa työtä paremmin kuvaa käytettyjä tekniikoita ja menetelmiä. Näihin nojautuen 

pyritään löytämään ratkaisut jotka parhaiten soveltuvat ajallisesti rajatun kurssin tarkoi-

tuksiin.  

 

Harjoitustyön lähtökohtana ovat tavoitteet jotka Tampereen teknillisen yliopiston tieto-

konetekniikan laitos on kurssille asettanut. Näihin tavoitteisiin pyritään vastaamaan har-

joitustyötä rakennettaessa. Kurssin yleisten vaatimusten lisäksi harjoitustyön luomisessa 

on pyritty koostamaan harjoitustyön vaiheet mahdollisimman hyvin nykyaikaisia järjes-

telmien vaatimuksia kuvaavaksi. 

 

Työssä pyritään koostamaan harjoitustyö, joka opettaa MPSoC -järjestelmien kokonais-

valtaisen rakenteen. Järjestelmiin liittyviä ratkaisuja opetetaan mahdollisimman syvälli-

sesti yhden lukukauden puitteissa. Järjestelmien rakenteen ja osien lisäksi pyritään käyt-

tämään nykyaikaisia suunnittelumalleja, kuten uudelleenkäyttö (engl. reuse) ja alustape-

rustainen suunnittelu (engl. platform based design). Harjoitustyö tehdään ohjelmoitaval-

le logiikkapiirille (FPGA), joka mahdollistaa erilaisten järjestelmäteknisten ratkaisujen 

käytön ilman laitteeseen tehtäviä fyysisiä muutoksia. 

 

Työssä pohditaan miten harjoitustyö muodostuu ja miltä osin pystyimme parantamaan 

harjoitustyötä suhteessa aiempaan harjoitustyöhön. Harjoitustyöstä saatiin edellistä pa-

remmin esiin järjestelmän alustat sekä niiden osat. Järjestelmän rakenteeseen tehtiin 

muutoksia jotka mahdollistavat paremmin todellisissa järjestelmissä käytettävien teknii-

koiden käytön. Lisäksi järjestelmän alustan ja sovellustason välinen rajapinta muodos-

tettiin järkevämmäksi. Samalla opetetaan standardien mukaisten rajapintafunktioiden ja 

laiteajurien hyötyjä. 

 

 

 

  



  II 

ABSTRACT 

 

TAMPERE UNIVERSITY OF TECHNOLOGY 

Master’s Degree Programme in Electrical Engineering 

SADEHARJU, JUKKA: Designing Exercise Work for System-on-Chip Course 

Master of Science Thesis 

2012 

Major: Embedded systems 

Examiners: Timo D. Hämäläinen ja Erno Salminen 

Keywords: Multiprocessor systems, Embedded systems, SoC Platforms, Exercise work 

 

Multiprocessor systems have become very popular system design during last decades. 

That is consequence of need for more and more efficient systems with low physical 

space. This kind of systems need several different system and design methods to give 

efficient system design and reasonable production expenses. 

 

In this thesis I consider the contents and structure of the exercise work of the course 

“TKT-3541 SoC Platforms”. The purpose of the project is creating the exercise work 

that improves from the former exercise work of the same course. Different techniques 

and approaches are considered to give the best solutions for the work with certain time 

limitations. 

 

This work tries to find the topics and content that fulfils the requirements which are set 

to it by the department of the computer sciences. Among general requirements for the 

course, the system of the exercise work tries to describe the real life systems-on-chip. 

 

This work describes the phases and content of the exercise work. That exercise work 

teaches the principal structure of multiprocessor systems-on-chip and different ap-

proaches related to those systems. The exercise work is implemented to the field pro-

grammable gate array logic which makes possible to create different platform structures 

without physical changes. 

 

The improvements to the former exercise work were numerous. Different parts of the 

platforms are more visible in new exercise work and design approaches used were 

clearer. For example, reuse is significant approach that is used better in the new exercise 

work. Also the abstractions and the interfaces are examples of the major improvements 

of the work. 

 

 

 

  



  III 

PREFACE 
 
This Thesis is written for the Department of the Computer systems of the Tampere Uni-

versity of Technology. This work is part of the project to create exercise work for 

cource TKT-3541 SoC Platforms. It is written during years 2011 and 2012.  

 

I want to thank my examiners Timo D. Hämäläinen and Erno Salminen for the com-

ments and guidance during the work. I also want to thank Jussi Raasakka for the imple-

mentation of the exercise instructions and student guidance during the spring 2012. 

Great thanks for my family for their patience and support during this work. 

 
 



  IV 

 

TABLE OF CONTENTS 

 

1 Introduction ............................................................................................................... 1 

2 Multiprocessor system-on-chip ................................................................................. 2 

2.1 Design Methodology ......................................................................................... 3 

2.2 System Specification ......................................................................................... 5 

2.3 System-on-Chip Reuse ...................................................................................... 7 

2.4 Field Programmable Gate Array ....................................................................... 8 

2.4.1 Altera Development and Education board DE2 ................................ 10 

2.4.2 Altera Quartus II ................................................................................ 10 

2.4.3 Altera Nios II ..................................................................................... 12 

3 Other SoC Cources and Exercise Works ................................................................ 13 

4 Kactus Design Environment ................................................................................... 16 

4.1 IP-XACT ......................................................................................................... 16 

4.2 MCAPI ............................................................................................................ 18 

4.3 Kactus2 Design Flow ...................................................................................... 18 

5 SoC Platforms Exercise Work ................................................................................ 20 

5.1 Objectives for the Exercise Work ................................................................... 21 

5.2 Notes from the Former Exercise Work ........................................................... 21 

5.3 Structure of the New System........................................................................... 23 

5.4 Hardware Platform .......................................................................................... 24 

5.5 Nios II processor ............................................................................................. 26 

5.6 IP Components ................................................................................................ 26 

5.7 Heterogeneous IP Block Interconnection ....................................................... 27 

5.7.1 Network Topology ............................................................................. 27 

5.7.2 IP interface ......................................................................................... 28 

5.7.3 HIBI Processing Element DMA ........................................................ 30 

5.8 Processor Design ............................................................................................. 31 

5.9 Design with Quartus II .................................................................................... 32 

5.10 Design with Kactus2 ....................................................................................... 34 

5.11 Micrium µC/OS-II........................................................................................... 34 

5.12 Driver Development ........................................................................................ 35 

5.13 Application Layer............................................................................................ 36 

6 Results and Analysis ............................................................................................... 38 

6.1 Topic comparison for the Exercise Work ....................................................... 38 

6.2 The Phases of the Exercise Work.................................................................... 40 

6.3 Time Consuming of the Exercise Work .......................................................... 43 

6.4 Reference Implementation .............................................................................. 44 

7 Conclusion .............................................................................................................. 46 

References ....................................................................................................................... 47 

Appendix 1 – Exercise work Instructions ....................................................................... 51 



  V 

 

ABBREVIATIONS AND ACRONYMS 
 

ADD Area-Driven Design 

API Application Program Interface 

BDD Block-Based Design 

BDF Block Design File 

DRAM Dynamic RAM 

DSP Digital Signal Processor 

eCos Embedded Configurable Operating System 

FPGA Field Programmable Gate Array 

HAL Hardware Abstraction Layer 

HD High Definition 

HDL Hardware Description Language 

HW Hardware 

IC Integrated Chip 

IP Intellectual Property 

IPC Inter Processor Communication 

IP-XACT Component metadata description standard in XML format 

IRQ Interrupt Request Query 

JTAG Joint Test Action Group 

LAB Logic Array Blocks 

LE Logic Element 

LED Light Emitting Diode 

LUT Lookup Table 

MCAPI Multicore Communication API 

MPSoC Multiprocessor System-on-Chip 

NoC Network-on-Chip 

PBD Platform Based Design 

PCB Product Circuit Board 

RAM Random Access Memory 

RTL Register Transfer Level 

RTOS Real-Time Operating System 

Rx Receive 

SoC System-on-Chip 

SBT Software Build Tool 

SRAM Static RAM 

SW Software 

TDD Time-Driven Design 

Tx Transmission 

UML Unified Markup Language 

VLNV Identity data including Vendor, Library, Name, and Version 



  VI 

VLSI Very Large Scale Integration 

XML Extensible Mark-up Language 

µC/OS-II Micrium Microcontroller Operating Systems Version 2 



  1 

1 INTRODUCTION 

Multiprocessor systems-on-chip (MPSoC) are getting more and more important design 

technology when high performance is required in embedded systems [1][2]. So, 

MPSoCs are taking foothold from general purpose architectures when designing high 

performance systems. They are used in systems that require multiple processing ele-

ments. MPSoCs are more specific for the designed system than general purpose proces-

sor systems. That makes possible to create more efficient and low energy systems that 

meet the certain performance requirements.  

 

This thesis describes the design of an MPSoC exercise work created for the course 

TKT-3541 SoC Platforms [3]. SoC Platforms is the course of the department of Com-

puter Systems in Tampere University of Technology. The exercise work teaches the 

latest design approaches and technologies, for example reuse of SoC designs and inter 

component communication with network-on-chip. The exercise work includes the lay-

out design flow of the MPSoC system: the design of system platform, its components, 

application layer, and HW/SW co-design. The hardware platform is implemented on 

FPGA. Hardware platform includes microprocessors and intellectual property blocks 

(IP) communicating with a network-on-chip. 

 

This Thesis also describes the challenges and prospects of the design of MPSoC system 

for giving the overall picture of the SoC platforms. Biggest challenge is limited time 

when going through this large subject. It prevents us from creating the most illustrative 

multiprocessor system. Still, the MPSoC platforms are quite easy to create with the 

tools used in this exercise work. That helps students to understand the structure of mod-

ern SoC platforms. So, the fundamental goal in this exercise work is to give the overall 

picture of SoC designs and abilities to understand more specific functions of the SoC 

and its components. 

 

Finally the thesis explains why the exercise work is constructed to the form it has. It 

explains why the selected methods are used and why structure of the system is like it is. 



  2 

2 MULTIPROCESSOR SYSTEM-ON-CHIP 

System-on-Chip (SoC) is a complex integrated chip (IC) that integrates different func-

tional elements into a single chip. The multiprocessor SoC (MPSoC) is a SoC that uses 

multiple programmable processors in its design. MPSoC is a very large scale integration 

(VLSI) system that incorporates most of the components used. In last decade it has be-

came more general and entered the marketplace [1][2]. The recent progress in the mi-

croelectronics has given the possibility to build processors, digital hardware and mixed-

signal circuits integrated into a single chip. However, putting multiple processors, 

memories, buses and peripherals into a single chip reduces energy consumption and 

space of the chip but brings on challenges for system designers. In Figure 1 there is an 

example composition of MPSoC system. It includes three processing units, two external 

communication components, memory controller, and embedded memory. 

 

MPSoC are used in several different applications. High end mobile phones are products 

where the high efficiency is essential. Mobile phones should be able to use relatively 

long time with one charge. For example Exynos 4210 [4] MPSoC is used in several 

Samsung mobile phones. It has CortexA9 dual core with 1.0GHz processors and 45nm 

line width. For example, it has performance to run several hours high definition (HD) 

videos with a 1650mAh battery. 

 

 
Figure 1: Basic example of MPSoC system. This system includes three processing units (GPUs), general 
purpose I/O port (GPIO), universal asynchronous receiver transmitter (UART), memory interface for external 
memory, and internal memory chip. 

 

CPU CPU CPU

Mem

IF
UARTGPIO Mem



  3 

As well as the consumer electronics the product requirements are the same in other ap-

plication fields. Portable medical devices require reliable electronics with low energy 

consumption, for example, electrocardiogram analysis, hearing aids, data compression 

or encryption [5]. For example, Icycom is a low power radio frequency DSP SoC for 

wireless sensor and body networks [6]. It has adjustable clock frequency  and 180nm 

line width. It runs at an average of 150µA/MHz. 

 

 

 

2.1 Design Methodology 

The Mix of different technologies in one chip is a great challenge for a designer, due to 

heterogeneous components in one design [7]. There are different design methodologies 

to use in a SoC design. For example, Soo Hoo Chang et al. divide these methodologies 

to area-driven design (ADD), block-based design (BBD), timing-driven design (TDD), 

and platform-based design (PBD) [8]. ADD focuses on the area of the chip. The limited 

area of the chip often leads to problems with performance. BBD is a design approach 

when the components are reused which saves work when the system design gets more 

complex. TDD is an approach to concentrate timings of signals. MPSoC systems are 

getting more and more complex besides improving technology so the BDD becomes 

very reasonable approach. PBD includes the cumulative capabilities of the timing driven 

development (TDD) and BBD and benefits of design reuse and design hierarchy [8]. 

Platform in BDD is a reusable design that can be used with several different systems.  

 

PBD is the design method used in the exercise work described in this Thesis. The sys-

tem platform includes hardware and software platforms. The hardware platform is a 

family of architectures that satisfy a set of constraints imposed to allow the reuse of 

hardware and software components [9]. The software platform is on top of the hardware 

layer and makes it possible to create more abstract and reusable application. Platform-

based design divides the system design into two phases: the platform design and the 

function design. Figure 2 shows the division to the platform and function. These two 

design parts are mapped to one design and turned into logic gates design in synthesis. 

The platform design is generated for a class of applications and the platform is adapted 

for a particular product in that application space [1].  

 

 



  4 

 
Figure 2: Platform based design include the division to platform design and functional design. These two de-

sign parts are mapped together for a synthesis. 

 

The platform design and the functional design are two different designs flows that im-

plement one common design. The PBD design process is meet-in-the-middle process 

(Figure 3). The functional design is a top-down approach where a function instance is 

mapped from the function space into an instance of the platform. The function space 

includes all possible functions that can be implemented and desired functions are se-

lected from that space. These selected functions are mapped into a platform instance. 

The platform design is a bottom-up approach where the platform instance is built by 

choosing the components from the platform space that characterizes it [10]. The plat-

form space includes all possible platforms and the desired platform is restricted from 

that space. This means that every feature in our platform is specified from the platform 

space. This composition of the designs makes the HW/SW co-design one of the most 

important technology in PBD. 

 

Functional

requirements

Platform

Design

Functional

Design

Function / Platform

Mapping

Synthesis

Non functional

requirements



  5 

 
Figure 3: PBD Triangles shows the meet-in-the-middle design approach. A function instance from the function 

space is mapped to a platform. A platform instance is exported from the components selected from the plat-
form space.  

 

If non functional requirements of different system variations are similar, it is profitable 

to create platform that can be reused in different cases. The application design enables 

the multiple system variations even when the designed hardware is same. That division 

enables a large amount of hardware production and leaves the possible product varia-

tions for the functional specification. This decreases cost of the hardware. 

 

2.2 System Specification 

In platform based design the application layer runs on a system platform. The system 

platform is divided to the hardware (HW) platform, the software (SW) platform. The 

Application layer is the functional layer on the system platform. This is shown in Figure 

4. The hardware platform includes the physical device and generated architectures 

which are implemented on that device. When designing large embedded systems the 

cost of the design is high. It is essential to reuse the system components to reduce the 

redundant work and design costs of similar projects. The purpose of the software plat-

form is to ease the reuse of software in the application layer [11]. The software platform 

makes abstractions of the hardware platform for the application layer. For example, the 

software layer includes an operating system and API. Usually the software platform and 

Common Schematic

Domain

Function Space

Platform Space

A
p

p
lica

tio
n

in
sta

n
ce

P
la

tfo
rm

in
sta

n
ce



  6 

the application layer include all of the product specialisation and the hardware platform 

is the same in several projects. 

 

 
Figure 4: Hardware platform is the physical base of a product. The application layer is always modifiable and 
includes the functionality of the product. A software platform is between these two layers and makes possible 
to create reusable applications onto the hardware platform. 

 

The system platform of MPSoC has different levels of functionality and abstractions. 

Petkov et al. [7] divide the MPSoC system to three abstraction levels; register transfer 

level (RTL); bus functional level; and system level (see Figure 5). These levels raise the 

level of abstraction, so that the application can be created without knowing the lower 

level functionality. RTL is the physical connection and design that connects the proces-

sors, memories and IP blocks together. Bus functional level includes a connection for 

software components and hardware IPs. System level includes the execution environ-

ment that uses abstract models for software and hardware components. The software 

model is for example real time operating system (RTOS) that include application pro-

gram interface (API) for higher level software components.  

 
Figure 5: MPSoC system platform hierarchy levels. Register transfer level is the lowest level and is most com-
plex in large systems. Bus functional level includes the system design components and connections between 
them. System level is the highest level and it includes the driver function interfaces for application develop-
ment. Simulation speed of the system is higher when moving towards the system level and decreasing the de-
tails of the system. 

Application Layer
Software application

Software Platform
RTOS and API

Hardware Platform
Implemented hardware architectures

System Level
Real-time operating system

Driver interfaces

Bus Functional Level
Network connection between blocks

Register Transfer Level
Physical connections

Hardware design

S
im

u
la

ti
o

n
S

p
e

e
d

D
e

ta
ils



  7 

 

 

2.3 System-on-Chip Reuse 

Reuse of IP blocks is one of the most important design techniques to get high quality 

system with good productivity and low time-to-market. Whenever some functionality 

may be needed again after the use in first target design, the reuse of a component design 

should be considered. In SoC systems, nearly all designed IP blocks should be designed 

reusable. Because the system designers use more and more software to implement their 

products the design methods have to allow the reuse of software. In platform based de-

sign the interface of hardware platform have to be abstracted so that application soft-

ware uses the higher level interface. That is called application program interface. 

 

The design of reusable blocks is more difficult in SoCs than generally in software tech-

nology because of variety of technologies to do the design [2]. Reuse of components 

increases the efficiency of system design by reducing redundant work. The designer can 

use an IP without having to worry about internal details. A system developer that uses 

IP blocks has to configure them and connect the interfaces of the components in own 

designs. In Figure 6 there is an example of two implementation variations of the same 

system. That demonstrates the advantages to use the reusable components whenever it is 

possible. 

 

 
Figure 6: Example of two system implementations. In the left-hand system all functionality is self made. On the 
right-hand side, reused components are used as parts of the system. That left less work for the system designer, 
if we assume that the functionalities and interfaces of the blocks are adequately designed. 

System without

reused IP blocks
-All functionality is made for 

the particular system

System InterfaceSystem Interface

Own

component
-Functionality that

is not reused

Reused IP
Reused

IP

Reused

IP



  8 

 

There are two possible ways to use the reusable block in the larger system. Components 

can be used as it is distributed or adapted to meet the desired SoC requirements. The 

former means that the component is fixed as it is and all system specific functionality 

should be added elsewhere in the system. In the latter, the IP include some functionality 

that can be configured when including it to a system either by setting parameters or 

modifying the source code of the IP [8]. 

 

Reused IP blocks can either be soft or hard IPs. Soft-IP is used as a model and hard-IP 

is used as a closed hardware chip. Soft-IP can be used as it is or modified. Hard-IPs 

cannot be modified. Modifications to the hard-IP functioning has to be done externally 

with an adapter block. For example, the HIBI bus that is shared as HDL files is a soft-IP 

that can be fully tailored to its target. Nios II processor is considered as firm IP as it 

works only on Altera FPGA’s. Firm IP include the characteristics from both hard-IP and 

soft-IPs. The functioning of Nios II cannot actually be modified, but there are several 

different configurations that can be used, and system can be altered that way. 

 

This kind of reuse is called internal reuse. There the IP blocks are used as a part of the 

system. Whole SoC system can also be reused externally as a part of a more complex 

system. That is more abstract reuse than IP reuse mentioned earlier [8]. There the idea 

of reuse is exactly the same, but abstraction level is different. For example the digital 

tuner could be the IP that is used in a set-top box and that can be used as a part of a me-

dia centre. 

 

 

2.4 Field Programmable Gate Array 

Hardware of the exercise work is based on the field-programmable gate array (FPGA). 

FPGA is a semiconductor device that can be configured after manufacturing. FPGA 

consist of logic elements (LE) that can perform logic operations, and connections be-

tween LEs. LE can perform complex combinatorial functions or simple logic opera-

tions. Usually logic blocks also include memory elements, such as flip-flops. 

The FPGA structure described in this work is Altera Cyclone II[12], because DE2 edu-

cation board we use includes Cyclone II chip. LE is a smallest unit of logic in FPGA 

and it can be used to implement custom logic. Each LE includes a programmable regis-

ter that can be configured. In normal mode, four inputs from the local interconnect are 

inputs for four-input look up table (LUT).  

 



  9 

 

Figure 7: Simple figure of logic element.  Main parts for the LE logic are lookup table and programmable 
register. 

 

LEs are grouped in Logic array blocks (LAB) which is connected to hierarchical inter-

connects (see Figure 8). Each LAB is connected to local interconnects which is con-

nected to row and column interconnects. Each LAB also have local interconnect to 

neighbour LABs and every LE is chained together inside each LAB as a register chain 

connections (see Figure 7). These local connections saves a capacity of local intercon-

nects, because adjacent logic can be fitted into adjacent logic elements. Interconnects 

are connected together with switches. 

 

Figure 8: Cyclone II LAB Structure [12]. LABs are connected together with register chain connections, local 
interconnections, and row and column interconnections. 

Logic Element

4-Input 

LUT
Register

Register Chain Connection

Q
D



  10 

 

 

2.4.1 Altera Development and Education board DE2 

Altera DE2 development and education board (Figure 9) is used in the exercise work 

described [13]. The board is used for teaching in several cources of the Department of 

Computer systems, so the students are probably already familiar with the board [14]. It 

includes several microchips and interface connections. The most important chip is the 

Cyclone II FPGA that is used to implement logic of the SoC. Other components that are 

used in the exercise work are buttons, LEDs and 7-segment displays for user interface 

and random access memories (RAM) for NIOS II processors that are synthesized in 

Cyclone II.  

 

 
Figure 9: Altera DE2 development and education board. 

2.4.2 Altera Quartus II 

Altera distributes Quartus II software as FPGA designing and programming software. 

Quartus II includes solutions for all phases of FPGA design flow (see Figure 11). The 

first phase of the Quartus II design flow is the design entry that includes design of the 

implemented system. The design entry includes Hardware description language (HDL) 

and block design (BDF) files that defines the system. Quartus II makes the analysis and 

synthesis of the design. Quartus II software includes block designer that can be used to 

connect blocks and simple logic to larger designs (see Figure 10). Example shows how 

phase-locked loop (PLL) is connected to the clock input. It generates two output clocks, 



  11 

one for DRAM and the other for the unnamed block. Quartus II also includes tools for 

component creation, like SOPC builder. 

 

 
Figure 10: Screen capture of Quartus II block designer. It includes two inputs and two outputs that are con-
nected to blocks with wires. 

 

Analysis and synthesis examines the logical completeness and consistency of the pro-

ject. Analysis and synthesis phase also synthesizes and performs technology mapping 

on the logic in the design. Synthesis minimizes gate count, removes redundant logic and 

utilizes the device architecture as efficiently as possible. [15] 

 

 

 
Figure 11: Quartus II Design Flow [15]. Design entry includes the design of the system. Quartus II delivers 
several different tools for system designing.  Synthesis include technology mappings for the place and route. 
Place and route fits the design to timing analyzer, simulator, net list writer, or assembler.  

 



  12 

The fitter matches the logic and timing requirements with the available resources of the 

FPGA target device. That is the place and route. Fitter optimizes the logic functions to 

the best physical locations for routing and timing.  Fitter places the associated logic 

within an LAB or adjacent LABs allowing the local and register chain connections [12]. 

After fitting, the assembler module generates the programming files that can be pro-

grammed to a device. [15] 

 

2.4.3 Altera Nios II 

Altera offers a general-purpose RISC processor core for Altera’s FPGA devices. Nios II 

is a very versatile processor. It can be as small as 600 logic elements but with different 

constitutions the performance can be over 300 MIPS [16]. The versatility of Nios II 

processors is useful for our MPSoC system. Nios II allows a designer to create own 

components to the processor system, so all own components do not have to use general 

input and output pins (cp. general-purpose microcontrollers). In the exercise work de-

scribed in this Thesis, an example of own component is a processor element for HIBI 

that connects processor to a HIBI network. Nios II system saves logic elements in 

FPGA chip, because it can be constructed as needed, so unneeded features can be left 

out. One example of Nios II processor design is in Figure 12. There is Nios II processor 

core connected to four different memories, universal asynchronous receiver/transmitter 

(UART), two timers, and interfaces to other components. 

 

 
Figure 12: Example of Nios II processor system [17]. 

 

 



  13 

3 OTHER SOC COURCES AND EXERCISE WORKS 

There is a wide range of MPSoC courses in different universities. The topics of the 

courses vary between different schools, but some of the topics are focused in almost 

every related course. Courses which are taken along in this investigation are listed in 

Table 1.  

 

Table 1: List of the System-on-Chip courses. 

 

 

# Course University Course nr. Year Material Ref 

1 SOC Design Lab NTHU, Taiwan EE5255 2004 Lecture 

notes 

[18] 

2 System-on-Chip 

Design 

University of Texas EE382V 2010 Lecture 

notes and 

books for 

reading 

[19] 

3 SoC Design University of Turku ETT_2014 2010 Lecture 

notes and 

extras 

[20] 

4 System-on-Chip 

Design 

University of Cam-

bridge 

  2011 Lecture 

notes 

[21] 

5 SoC Design and 

Verification with 

System Verilog 

San Jose State Uni-

versity 

EE272 2011 Lecture 

notes 

[22] 

6 System-on-Chip University of 

Southampton 

    N/A [23] 

7 System-on-Chip 

Design for DSP 

and Communica-

tions 

University of 

Westminster 

    N/A [24] 

8 System-on-Chip 

(SoC) Design 

University of 

Twente 

121075 2011 Website 

material 

[25] 

9 Computer Hard-

ware - a System on 

Chip 

Linköping Institute 

of Technology 

TSEA44 2011 N/A [26] 

10 System-on-Chip 

Design 

University of Illi-

nois 

ECE 527 2010 Lecture 

notes 

[27] 

11 SoC-design Tampere University 

of Technology 

TKT-2431  2012 Lecture 

notes and 

books 

[28] 

12 SoC-platforms 
(Course of this 

work) 

Tampere University 

of Technology 

TKT-3547  2012 Lecture 

notes 

[3] 



  14 

Topics of these courses are listed in Table 2. Almost all of those topics are fundamental 

in every MPSoC device but are not always needed to show the clear picture of the 

MPSoC. 

 

The most common topic is the concept of SoC platforms. That is the main thing that 

separates the MPSoC from general purpose computers.  This makes the teaching of plat-

form the most significant topic in most of these courses and it is the main topic in this 

very course as well. SoC platforms are related in almost all of the other topics in the list. 

For example, SoC reuse and Network-on-Chip (NoC) cannot be fully handled without 

considering platforms. Another important topic is SoC reuse. Reuse is design approach 

that aims to lower the cost of SoC design. With reuse the IP blocks and software im-

plementations can be reused in different applications. It is more and more valuable ap-

proach when sizes of the designs get larger. That is why the topic is also an important 

topic in courses. 

 

Despite layered approach, there are always some dependencies between HW and em-

bedded SW. That means that the HW/SW co-design cannot be bypassed when designing 

MPSoC products. Hardware and software have to be designed to function together in a 

product so that the requirements and limitations of hardware have to be taken into ac-

count when designing software and vice versa.  

 

 

Table 2: Topics of the System-on-Chip courses. 

  Course 1 2 3 4 5 6 7 8 9 10 11 12 # 

T
op

ic
s 

Platform   x x x x x x x x x x x 11 

Reuse   x x   x   x   x x x x 9 

HW/SW Co-design   x x   x     x x x x x 9 

Debug/Verification x x   x x       x x     6 

NoC     x x             x x 4 

Low-Power Design     x x   x   x         4 

RTOS x x                   x 3 

# 3 5 5 4 4 2 2 3 4 4 4 5  

 

 

Debug and verification are obviously present in every real world SoC project. There are 

plenty of different tools for debug and verification that can be used when developing 

SoC. For example, logic analysers, waveform simulators, and debug systems for soft-

ware. Low-Power design is one of the most important reasons to use SoC instead of 

general purpose computers and controllers. The low-power design is still separated from 

the platform design. Most issues of low-power design are not directly depending of the 

structure of the platform. 

 



  15 

Network-on-Chip is also in important role in SoC. The structure of communication be-

tween components is important when the efficiency of the system is important. When 

there is heavy traffic in communication between components the structure of NoC is in 

important role. Real time operating system is in major role when building a reusable 

functions in MPSoC system. RTOS makes higher abstraction level for application layer. 

This abstraction makes possible to create hardware independent applications. RTOS is 

not necessary for the MPSoC function but without it the reuse would be very difficult. 

 

The exercises are in big role when teaching the SoC. Most of the courses include some 

kind of exercise work but implementations are usually hidden behind a password. At 

least two other exercise works include the SoC system implementation into the FPGA 

chip. These courses are number 8 and number 11 in Table 1. Course number 8 includes 

the audio system project that contains the use of two different processors, one for con-

trol and another for hardware acceleration. The exercise work of course number 11 is a 

video encoder with one CPU and one HW accelerator. 



  16 

4 KACTUS DESIGN ENVIRONMENT 

Kactus2 is a computer program used to design embedded products. The main purpose 

for Kactus2 is to make FPGA easier for SW engineers. It also helps to packetize IPs for 

reuse and exchange [29]. In addition to SoC, It can be used to create hierarchical de-

scription of the whole product. The design created with Kactus2 is based on IP-XACT 

XML metadata that is used to ensure the unambiguous interoperability between differ-

ent partners and tools [29]. Metadata is a formal description of the design. It includes 

the reference to component design files, but does not include the actual functionality. 

Kactus2 cannot be used to create IP blocks. Design blocks have to be written with HDL 

editors and software tools. 

 

4.1 IP-XACT 

IP-XACT is a standard for documenting of the metadata IP components for SoC in an 

extensible mark-up language (XML) format [30]. IP-XACT is standardized by IEEE 

and created by SPIRIT Consortium. An IP-XACT description is a set of XML docu-

ments referring to one another. IP-XACT includes a schema that is the core of IP-

XACT specification. That schema defines a number of document types and semantic 

rules that describes the relationship of different documents. The most important docu-

ment types are design document, component document and bus definition document 

[31]. 

 

Component document describes an IP component that can be instantiated in the design 

document. Components have a bus interfaces that are described in a separate bus defini-

tion document. Detailed interface description enables design automation, for example 

detecting and preventing illegal connections. There can also be hierarchical collection of 

IP blocks as a design for bigger IP components. IP-XACT component include following 

[29]: 

 

• Identification and general information 

• Views 

• Associated files, tools and languages 

• Ports and bus interfaces 

• Parameters and configuration 

• Addressing information. 

 



  17 

Identification and general information is the VLNV identity that includes vendor, li-

brary, name and version. For example (TUT, ip.hwp.storage, fifo, 1.0). It is unique for 

all IP components. Views are used to represent different roles of the component, for 

example RTL implementation for synthesis and behavioural model for simulation. Files, 

tools and languages are associated for different views. For example, addresses may be 

associated for bus interfaces.  

 

Design document represents the block diagram of the system. It includes component 

instances and bus connections between the components. It is like normal schematic of 

components [29].  

 

The buses connect different IP components. Bus definition document describes the type 

of the bus that connects different components. Bus definition contains a signal interface 

and constrains for those signals. This includes signal names, directions, widths and 

types of signals [31].  

 

In Figure 13 is a screen capture of an example design in Kactus2. There are interfaces 

and components connected with buses. Kactus2 helps with the connections denying 

wrong connections. The design looks clear and all multi bit bus connections are shown 

with single lines.  

 

 
Figure 13: Screen capture of Kactus2. There are five inputs in interface connections and two levels of compo-
nents. Interface connections are on the left side of designer area. 

 



  18 

4.2 MCAPI 

MCAPI provides a standardized API for communication and synchronization between 

closely distributed cores and processors in embedded systems [32]. The purpose of 

MCAPI is to capture the basic elements that are required for closely distributed embed-

ded systems. It is both an API and communication semantic specification. MCAPI 

communication is based on node and endpoint abstractions. Node is a logical concept 

that can be a process, a thread, a HW acclerator, or a processor core. Each node can 

have multiple endpoints that are socket-like communication termination points. End-

points are defined with a tuple <domain, node_id, endpoint_id>. Endpoints may have 

attributes, e.g. Quality of Service (QoS), buffers, and timeouts. In Figure 14 is an exam-

ple of MCAPI structure. 

 

 
Figure 14: Example structure of MCAPI. Application APIs are in both sides of the figure and are connected to 
MCAPI. Nodes are on the MCAPI top interface, and endpoints define the connection between nodes. [29] 

 

 

4.3 Kactus2 Design Flow 

There are three main purposes to use Kactus2. First, it can be used to draft and specify 

product, printed circuit boards (PCB), chips, SoCs and IPs. Kactus2 stores created 

specifications in IP-XACT format. Second, it can be used to create MPSoC from cre-

ated components. Third, it can be used to packetize IPs for reuse and exchange. These 

IPs can be imported to any IP-XACT standard compatible product. So, Kactus2 can be 

used to create templates and blocks from your IP components for library. [29] 

 

 

 



 

Figure 15: Place of Kactus2 in 
mented components and system design from different kind of IP components. 
to create SoC products. [29]

 

Using different components and specification files Kactus2 is used to construct a system 

design for HDL synthesis and software build. This means that

other tools Kactus2 is used to create a final product. On this design flow Kactus2 r

places other design tools that could do the same design, for example block design tool 

of Quartus II. The part of Kactus2 in MPSoC design flow is shown in 

tus2 uses IP-XACT and Multicore communications API (MCAPI) libraries to create 

design of a system. With these standard specifications the system 

structed from different kinds of components and there are high abstractions from co

nections between components. Kactus2 cannot be used to create functionality of IP 

components but only standard interfaces of those

to be created with different design tools and is not used when designing with Kactus2. 

The final product can be generated from the design created with Kactus2.

 

 
: Place of Kactus2 in an MPSoC system design flow. Kactus2 is used to generate IP

mented components and system design from different kind of IP components. These components can be used 
[29]. 

Using different components and specification files Kactus2 is used to construct a system 

design for HDL synthesis and software build. This means that 

other tools Kactus2 is used to create a final product. On this design flow Kactus2 r

places other design tools that could do the same design, for example block design tool 

of Quartus II. The part of Kactus2 in MPSoC design flow is shown in 

XACT and Multicore communications API (MCAPI) libraries to create 

design of a system. With these standard specifications the system 

structed from different kinds of components and there are high abstractions from co

nections between components. Kactus2 cannot be used to create functionality of IP 

components but only standard interfaces of those and packetizing. The fun

to be created with different design tools and is not used when designing with Kactus2. 

The final product can be generated from the design created with Kactus2.

 19 

MPSoC system design flow. Kactus2 is used to generate IP-XACT docu-
These components can be used 

Using different components and specification files Kactus2 is used to construct a system 

 together with several 

other tools Kactus2 is used to create a final product. On this design flow Kactus2 re-

places other design tools that could do the same design, for example block design tool 

of Quartus II. The part of Kactus2 in MPSoC design flow is shown in Figure 15. Kac-

XACT and Multicore communications API (MCAPI) libraries to create 

design of a system. With these standard specifications the system design can be con-

structed from different kinds of components and there are high abstractions from con-

nections between components. Kactus2 cannot be used to create functionality of IP 

. The functionality has 

to be created with different design tools and is not used when designing with Kactus2. 

The final product can be generated from the design created with Kactus2. 



  20 

5 SOC PLATFORMS EXERCISE WORK 

The exercise work of the course TKT-3547 SoC Platforms introduces the concepts and 

design phases of an MPSoC platforms and applications. Realistic platforms and applica-

tions are very complex and require long time and large development team. Therefore, 

the course work must be lighter version that still highlights the most important concepts 

and design phases. The product of the work is the reaction game. It is played with but-

tons and LEDs. The game is played with four push buttons, which player tries to press 

in correct order in increasing game speed. The order to press buttons is indicated with 

LEDs. The amount of correctly pressed buttons equals the score of the game. Such a 

simple function is desired because the focus of the exercise work is in the platform and 

design layers, not in some specific application.  

 

The topics of the course are listed in Table 3. The content of the lectures and the exer-

cises are similar, but in different form and order. In the lectures, the topics are con-

cerned wider but not as extensive as in the exercises.  More of the topics of the exercises 

are discussed in chapter 6.2.  

 

Table 3: Topics of the lectures and the exercises in the cource. [33] 

Lectures Lecture topics Exercises Exercise topic 

1 SoC architectures 1 SoC specification 

2 SoC design 2 Altera SOPC design 

3 Parallel computing 3 IP-Block HW design 

4 SoC interconnections 4 Driver design 

5 HW dependent SW 5 Tasks and synchronization 

6 RTOS and multitasking 6 IPC and messaging 

7 Task scheduling and synchronization 7 Game design 1 

8 Task communication 8 IP-XACT basic HW design 

9 IP-XACT part 1 9 IP-XACT game HW design 

10 IP-XACT part 2 10 IP-XACT SW design 

11 Multiprocessing API 11 MCAPI design 

12 Review 12 Game design 2 

 

 

The exercise work is divided into two phases. In the first phase students get familiar 

with three layers of the system and the basic system design flow with the Alteras tools. 

The second phase teaches how to create reusable hardware and software components. 



  21 

That is done with Kactus2. The multiprocessor platform gives experience for concurrent 

software developing beside the main objectives. 

 

5.1 Objectives for the Exercise Work 

The exercise work of the course TKT-3547 SoC Platforms gives the practical view from 

the main topics of the course and supports learning objectives of the course. The study 

guide of the Tampere University of Technology describes the learning outcomes of the 

course [34]. 

 
“The student learns basic concepts of System-on-Chip and its division to hardware platform, soft-

ware platform and application layers. Logical layers, standards and implementation of layers and 

interfaces are studied in detail. A practical view is given by exercises, in which a multiprocessor 

system is created on FPGA and used as platform for an example real-time application.” 

 

This means that students learn the structure and design flow of SoC. They learn differ-

ent design layers of the MPSoC system and how different layers are actually connected. 

Students familiarize with the MPSoC levels from RTL to application level. The system 

of the exercise work shows the basic structure of MPSoC. It includes multiple proces-

sors and IP components that students have to create. Students also create software driv-

ers for those own created IPs. The major objectives to teach in this exercise work are 

structure of MPSoC, abstraction layers, design reuse and HW/SW co-design. 

 

5.2 Notes from the Former Exercise Work 

The course had also an exercise work before this version [35]. The former exercise 

work had the same DE2 development board to implement the system. That system had 

Nios II processors connected to each other with HIBI network and the Avalon intercon-

nect fabric. HIBI network was used for inter processor communication (IPC) and all 

peripherals were on the Avalon switch fabric. Figure 16 shows the basic composition of 

platform of the former exercise work. That system was quite good for teaching MPSoC 

platform. There were two processors communicating with each other via network. 

However, IP reuse was not covered. One important thing that this structure does not 

show for students is the reuse of IPs. All peripherals were by the system interconnect 

fabric and that design is not reusable on a system without system interconnect fabric. 

 



  22 

 
Figure 16: Platform of the former exercise work taken from first part of the exercise. It included most of the 
components that is also in the new exercise work. But as a hint of the future, there is IP blocks drawn con-
nected to the HIBI network. Those components weren’t the part of the actual former exercise work. 

 

As described, the basis of the exercise work was quite good. The major problems were 

on the implementation of the work. Students didn’t actually construct the platform of 

the system. It was created by the course personnel and given to the students. The con-

struction of a hardware platforms wasn’t practical because students studied it with 

documents and questions. That moved the focus of the exercise work towards the appli-

cation. So, the biggest thing to change for the new work is to move the focus more to 

the HW platform and its composition. After this improvement the IP reuse and wider 

vision to the NoC can be handled properly in exercises. This makes possible for stu-

dents to create their own reusable IPs.  

 

Software platform used eCos operating system [36]. That was also given to the students 

by the course personnel. The students didn’t configure the SW platform and didn’t 

touch the application program interface. The SW platform was another black box com-

ponent in addition to the platform.  

 

Biggest things to improve from the former exercise work are shown in Figure 17. HW 

platform should be implemented on the exercises; functions for hardware should be put 

to the API; peripheral components should be done by using reusable design; and net-

work functions should be in API as well. 

 



  23 

 
Figure 17: Main things to improve for the new exercise work. HW platform should be implemented on the 
exercises; functions for hardware should be put to the API; peripheral components should be done by using 
reusable design; and network functions should be in API as well. Avalon PIO means the peripheral I/O con-
nections of the Avalon bridge which are replaced with HIBI and HW components. 

 

5.3 Structure of the New System 

 

During the exercise work, students learn the three layers of the SoC design described in 

the study guide: hardware platform, software platform and application layers. The 

hardware platform is a multiprocessor system, which is used to the base for the software 

platform. The application layers are the top layers of the system. These are the three 

layers of the system explained in the study guide (shown in Figure 18).  

 

 

HW Platform
Pregenerated

Functions
All functions are in

CPU application code

Peripherals
Avalon PIO connections

Network
Direct use of the network

functions

HW Platform
Students implement

own platform

Functions
Reusable IP blocks and CPU 

application code

Peripherals
HIBI Network communication

Network
Developed API drivers for HIBI



  24 

 
Figure 18: The three layers of the system implemented in the exercise work. 

 

The hardware platform includes the physical components of the DE2 education board 

and hardware implementation that is synthesized for FPGA chip. Physical peripherals 

are also on the DE2 education board. This platform is selected to the exercise work, 

because the FPGA is fast and easy technology to create the system from a scratch. Be-

cause the Department of Computer Systems has already DE2 boards for education there 

is not easier way to implement MPSoC system on this course. FPGA chip of the DE2 

board is Altera Corporations Cyclone II Altera distributes several designing tools and 

with the board. There are tools for all phases in this system design. All this makes easy 

to select DE2 and FPGA for the platform of the exercise work. The system that is im-

plemented for FPGA chip includes the main functionality of the product. The main parts 

are microprocessors and IP blocks. 

 

The software platform of this exercise work is the Micrium µC/OS-II real time operat-

ing system [37]. It includes all that we need for operating systems. There are several 

other operating systems that we could have chosen. µC/OS-II was selected for our 

RTOS because its version for Nios II is distributed with the Nios II Embedded Design 

Suite (EDS). 

 

Application layer is software to be run in microprocessors. With custom made IP blocks 

these processors include the actual functionality of the product. IP blocks takes care for 

the driving of peripheral components, all other application functionality is in the codes 

for processors. 

 

5.4 Hardware Platform 

The hardware platform in the exercise work is generated into the FPGA circuit of DE2 

education board. DE2 provides FPGA and the user interface needed to the system i.e. 

LEDs, buttons and 7-segment displays. The hardware platform is the set of architectures 

that makes possible to use these peripherals as a part of the system application. Nios II 

Application Layer
C-language application

Software Platform
µC/OS-II real-time operating system

Hardware Platform
DE2 Education board

Generated FPGA hardware



  25 

Soft-core processors, IP blocks, and HIBI network are the components which are used 

to construct our hardware platform. 

 

 
Figure 19: Structure of the hardware platform. Two Nios II processors and IP blocks for systems user inter-
face is connected to the HIBI network. In the implementation made with kactus2, Nios II processors are differ-
ent blocks and are not connected to each other via Avalon system interconnect fabric. That disables also 
shared timer that is drawn in the picture. 

 

All of the components of the hardware platform, expect the external memories, are syn-

thesized to the FPGA as well. The designs are written in hardware description language 

(HDL). Peripheral interface is connected to IP blocks. These IP blocks are the interface 

blocks that connects used peripheral components to the HIBI network. Processing units 

are used to create the functions of the system and use peripheral components via HIBI 

network. HIBI is used to communication of the final product, but in exercise work also 

Avalon mailboxes are implemented to give a comparative technique for IPC. Composi-

tion of the components used in hardware platform is shown in Figure 19.  

 

 

There are shown three hardwired IP components, Nios II CPUs, HIBI network, memo-

ries for CPUs, timers and mailboxes. Components are reusable HDL designs that are 

included into the system. In the exercise work this system is constructed two times with 

different designer tools, first with Altera Quartus II block designer and later with Kac-

tus2. Both designers are used to connect various reusable parts together to construct the 

complete HW platform. Quartus II block designer II is used in the work because it is 

simple tool and easy to use beside other Quartus II tools i.e. SOPC builder and pro-

grammer. Kactus2 is used because of its good reuse properties. It has better support for 

hierarchy and allows multiple interconnection types. This leads to easier and clearer 

DE2 Development and Education board

Cyclone II FPGA

Nios II

Nios II

H
IB

I N
e

tw
o

rk

D
R

A
M

S
R

A
M

B
u

tto
n

IP
LE

D
 IP

7
-se

g
m

e
n

t 

d
isp

la
y

IP

T
im

e
r

T
im

e
r

MailboxShared timer

P
u

sh
b

u
tto

n
s

G
re

e
n

 le
d

s
7

-se
g

m
e

n
t 

d
isp

la
y

s



  26 

designing of the system, especially connections. Kactus2 is also used to packetize IP 

components for sharing and reuse. Both designers generate the same functionality and 

are used in different phases of the exercise work. 

 

5.5 Nios II processor 

The processors of the system are Nios II processors [16]. Nios II is used because of the 

ease of the design with free SOPC builder or Qsys software. The processors use static 

RAM (SRAM) and dynamic RAM (DRAM) chips as a program and data memory. Both 

of these memory chips are on the DE2 education board. All other components of the 

processors are synthesized in FPGA. There are three processor core configurations that 

can be used in Nios II. These are economy (/e core), standard (/s core) and fast (/f core). 

It is not necessary to force students to use some specific core, because all of them in-

clude all needed properties.  

 

Both processors have their own memories for data and instruction memory. Processors 

have also own interval timers as system timers. There is also a shared timer for proces-

sors that is used as timestamp timer. Timestamp timer is used as a timing device when 

comparing time usage of different design solutions. 

 

Processors are connected to HIBI network with DMA processing [38] for data transmis-

sion. There are also Avalon mailboxes for IPC. In this work, mailboxes are used only to 

compare the data transmission performance against HIBI. This shows the superiority of 

the DMA transmission against mailbox when transmitting larger data amounts. Students 

have to use HIBI to all data transmission of the game software in the exercise work. 

 

 

5.6 IP Components 

There are three peripheral devices that are used in the exercise work; four push-buttons, 

eight LEDs and two 7-segment displays. The components are connected also to physical 

components on DE2 and to HIBI Network. All of these would be easy to connect the 

processors as the parallel input/output (PIO) signals, but the designs would not be 

highly reusable. The better solution to include these peripheral devices into the system 

is make IP blocks to control them. IP blocks controls the peripherals and are connected 

to the HIBI. Blocks can be reused in the systems that include the HIBI. Moreover, any 

processor connected to HIBI can access them. Figure 20 shows the connections of IP 

block between HIBI network and peripherals. Students create packetize these compo-

nents in the exercise phase 9 described in section 6.2. 

 



  27 

 
Figure 20: IP block connects the system to the peripheral components. For example IP block gets messages 
from network and controls the LEDs. 

 

7-segment and LED components are similar. They can be used by sending them packet 

via HIBI network. For example: to light numbers in the 7-segment display would be as 

easy as sending one word to the component. IP for buttons functions to other direction. 

When a button is pressed the IP sends a packet to the destination component. 

 

IP blocks are HDL components that can be used in Quartus II and Kactus2 as simple 

components that have interface to a HIBI wrapper. Students create drivers for HIBI PE 

DMA to Nios II hardware abstraction layer (HAL). Then the HIBI Network and IP 

blocks can be used as a file mode device. 

 

5.7 Heterogeneous IP Block Interconnection 

Heterogeneous IP Block Interconnection (HIBI) is a communication network for SoC. 

HIBI can be used to connect processors and IP blocks in the SoCs. It has an application 

independent interface to allow reuse components [39]. In this exercise HIBI connects all 

IPs and processors because this allows us to design reusable components for LED and 

button interfaces. 

5.7.1 Network Topology 

The network topology of the HIBI is not fixed. It can be built with the wrappers, bus 

segments and bridges. The topology of our system is shown in Figure 21. Our imple-

mentation of HIBI network includes only one bus segment. That is the simplest form of 

the bus and is good in our case. More segments could be connected to the bus with 

bridge components to construct a hierarchical bus. Use of multiple bridges increase la-

tency, but multiple segments allows parallel transmissions in different segments. HIBI 

network includes a wrapper for every IP block. Wrapper connects the IP to the network. 

Wrapper follows the traffic of the segment and can act either as a slave or as a master. 

Masters can initiate transfers and slaves can only response to the transfer. Each wrapper 

has an address region that can be used to receive data. Different addresses in that region 

FPGA components

Peripheral

components
IP block

HIBI 

Network



  28 

can be used to separate different kind of transmission. Each address can be used as a 

channel. For example, data from buttons pressed can be sent to one channel and data 

from a processor can be sent to another channel. 

 

 
Figure 21: IP blocks and processing units connected to HIBI network. 

 

5.7.2 IP interface 

There are two FIFO buffer memories in each wrapper, one for data to transmit and an-

other for received data. Each IP component controls the data transmission by reading 

and writing those two FIFO buffers. Figure 22 illustrates the logical steps of the trans-

mission procedures. Before sending word to network, IP have to be sure that the Tx 

FIFO is not full in the connected wrapper and before reading data from network, IP 

have to be sure that Rx FIFO is not empty. 

 

 

 
Figure 22: Logical flow of sending and receiving data to HIBI. [39] 

 

ButtonIP

HIBI Wrapper

LED IP

HIBI Wrapper

7-seg IP

HIBI Wrapper

CPU 0

HIBI Wrapper

CPU 1

HIBI Wrapper

HIBI Segment

HIBI PE HIBI PE



  29 

Figure 23 and Figure 24 shows example timing of the signals used in transmitting data 

between an IP and a HIBI network.  

When sending data to network, IP block has to wait that buffer is not full. If that buffer 

is full IP block have to wait that the wrapper sends earlier words to the network. When 

buffer is not full the IP can write a word by setting command and data signals correct 

and raising WE signal high as a start of transmission. 

 

 

 
Figure 23: Needed signals between IP and wrapper in send operation and example timing of sending word 
0x08 from IP to HIBI address 0x10.  Full_in shows if the buffer is full and cannot accept new data. Comm_out 
is the operation command (0x02 is command for send). Data_out is the data to be sent. Av_out is address valid 
signal that shows it the data to be sent is an address. We_out will be set to start the transmission. Wrapper 
controls the full_in signal and IP controls all other signals. 

 

The reception of data is also controlled with the signals between IP and wrapper. IP 

have to wait that there is a data to receive. Then IP checks that the command and data is 

correct and receives the data by setting read enable (RE) signal high. The wrapper re-

ceives to the FIFO only the data for correct HIBI address space. IP have to check that 

the HIBI address is correct before reading data from wrapper. 

 

 
Figure 24: Needed signals between IP and wrapper in receive operation and example of timing in receive of 
word 0x08 from HIBI network. When empty_in, comm_in, data_in and av_in are desired IP can receive the 
data by setting re_out signal high. 

 

full_in

av_out

comm_out

data_out

0x00 0x02 0x00

0x00 0x10 0x000x08

we_out

empty_in

av_in

comm_in

data_in

0x00 0x02 0x00

0x00 0x70 0x000x08

re_out



  30 

5.7.3 HIBI Processing Element DMA 

HIBI PE DMA allows connecting processor systems compatible interface to the HIBI 

network. Processing element is connected to HIBI PE DMA with Avalon memory 

mapped interface (Avalon-MM). Also a dual port memory is needed between processor 

and DMA. DMA is connected to the HIBI network with a wrapper. Processing element 

is connected directly to the HIBI PE DMA to access its registers. Data is transmitted via 

dual port memory which is used as a buffer. The structure of the HIBI PE DMA and 

connections to processor and HIBI is shown in Figure 25. 

 

 

 
Figure 25: HIBI PE DMA connects the processing element to the HIBI wrapper. Dual port memory is used to 
store the transmitted data. 

 

 

HIBI PE DMA uses either packet or stream channels for transmission. In this exercise 

work we use it with packet mode. There is a C language drivers designed for the proces-

sor. Drivers are the set of pre-processor macros which are used for the HIBI PE DMA 

and HIBI wrapper configurations and commands. With these macros the desired amount 

of packets can be sent to another IP. 

 

Multiple channels can be used to receive data with HIBI PE DMA. All channels have to 

be initialized to receive the packets. Amount of incoming data have to be known when 

initializing a channel to receive. Data reception can be done either polling the registers 

or using interrupts. 

 

HIBI Wrapper

Dual Port RAM

AS

Processing Element
AM

HIBI PE DMA

HTx

HTx

HRx

HRx

AM

AS AS

AM

HTx

HRx

AM

AS

= Avalon Master

= Avalon Slave

= HIBI Tx

= HIBI Rx



  31 

5.8 Processor Design 

Processors of the exercise work are processing elements which are designed with the 

Altera SOPC Builder tool (Figure 27). Both two processors contain the components 

shown in Figure 26. Processors in the system are Nios II processors. External SRAM 

and DRAM are used as data and instruction memories. These two memories are located 

on the DE2 education board and Altera offers the memory controllers for both types of 

the memories. Use of external memories leaves more FPGA logic elements for other 

functionality. JTAG UART is used to ease the software development. It is used as a 

character device to make possible to send text to connected terminal. 

 

 

 
Figure 26: Composition of the SOPC builder system in the exercise work. 

 
Figure 27: Screen capture from SOPC builder tool. Components are connected with Avalon bridge. 

SOPC builder system

Memory

Controller

SRAM / 

DRAM

S
ys

te
m

 I
n

te
rc

o
n

n
e

ct
Fa

b
ri

c
Nios II

Timer

JTAG UART

HIBI PE 

DMA

DPRAM

HIBI 

Wrapper



  32 

 

Avalon system interconnect fabric connects the read, write and data signals. Each con-

nection to interconnection fabric is either master or slave. Each bus master requests con-

trol from an arbiter. The arbiter controls that two bus masters do not drive the bus si-

multaneously.  

 

5.9 Design with Quartus II 

Design of the hardware platform of the exercise work is done with two system design-

ing tools. First of the designs is done with Quartus II design tool. Quartus II gives the 

design tools to implement the HDL system into FPGA chip. The components are in the 

design as blocks and are connected to each other with signals (as in Figure 28).  

 

Nios II processors can be in same SOPC component or different SOPC components. 

The design is little clearer if processors are in different components and it makes system 

simulation simpler. On the other hand the Avalon mailboxes can be used only if the 

processors are in common SOPC component. This makes possible to compare the per-

formance of HIBI bus and Avalon mailboxes, so we leave both processors in same 

SOPC component. Also button and LED IPs can be together or separated. There is no 

difference between these implementations because button IP only sends data and LED 

IP only receives data from HIBI bus. Again, it might be clearer if we separate these IP 

blocks. 

 

 



 

Figure 28: Screen capture
when there are lots of components.

capture from the Quartus II block designer.  As can be seen, the signals are complicated 
when there are lots of components. 

 33 

 
from the Quartus II block designer.  As can be seen, the signals are complicated 



  34 

5.10 Design with Kactus2 

Hardware platform will be also designing with Kactus2. In Kactus2 the designing of 

system is easier if all components and buses are already defined. The components are 

simple to connect and whole system looks clear, as can be seen from Figure 29. It shows 

an example design in Kactus2 designer window. Due to detailed interface descriptions 

the connections are shown with single lines that represent predefined buses. Interface 

descriptions also prevents from making illegal connections. The function of the system 

is same as made earlier with Quartus II block designer. 

 

 
Figure 29: Screen capture of Kactus2 design layout.  There are five I/O pins, HIBI network component, PLL, 
and two Nios II processors. 

 

5.11 Micrium µC/OS-II 

The software platform of the system is the Micrium µC/OS-II real time operating sys-

tem which is delivered with complete ANSI C source code. It was chosen as it is deliv-

ered with the Nios II software build tool (SBT), because it is easy to configure, and 

Micrium also offers free licensing for universities. µC/OS-II includes tasks that we use 

in our software. It also allows multi-threaded programming. µC/OS-II has also interrupt 

requests (IRQ) but we use the interrupts which are in Nios II HAL. The memory foot-

print of the µC/OS-II can be scaled between 5 Kbytes and 24 Kbytes. 

 



  35 

5.12 Driver Development 

Device driver development is an important thing in HW/SW interface design. Driver is 

the software between hardware platform and application layer. That makes possible to 

generalize the application software for different kind of hardware implementations and 

makes possible to create software without knowing the structure of hardware. So, it in-

creases the abstraction level of the device usage and makes possible to create hardware 

independent software applications. 

 

In this exercise work the drivers are developed so that they utilize HIBI PE DMA. The 

drivers to be developed are HAL API device drivers and function as a file mode device. 

The driver functions are embedded to the Nios II HAL and driver interface functions 

that are not implemented are inherited from HAL API. Driver interface is shown in Fig-

ure 30. There are seven function prototypes for different API functions. The functions 

that should at least be implemented for IP components are open(), close(), read() and 

write(). These are the UNIX-style POSIX API functions. The open-function is called 

when the HW is wanted to use. A call to open() creates a new open file description. 

Read() and write() functions are used to the data transmission to the file device.  

 

 
Figure 30: Nios II HAL driver functions for file mode device. 

 

The drivers are automatically initialized to Nios II HAL with the alt_sys_init() function 

during boot. It is an automatically generated function that calls INIT and INSTANCE 

macros for each component found in the hardware design [40].  Automatic generation 

requires that the driver implementation is in correctly named files that are in certain file 

structure. 

 

Custom device driver needs hardware access macros and HAL function files included to 

the component file system. Hardware access macros are in a _regs.h-ending file. That 

file includes the entire hardware interface used in the driver codes. 

 

typedef struct {

alt_llist llist;     /* for internal use */

const char*  name; 

int (*open)  (alt_fd* fd, const char* name, int flags, int mode);

int (*close) (alt_fd* fd);

int (*read)  (alt_fd* fd, char* ptr, int len);

int (*write) (alt_fd* fd, const char* ptr, int len); 

int (*lseek) (alt_fd* fd, int ptr, int dir);

int (*fstat) (alt_fd* fd, struct stat* buf);

int (*ioctl) (alt_fd* fd, int req, void* arg);

} alt_dev;



  36 

HAL functions are implemented to the HAL files .h and .c files. HAL functions for file 

device are listed in Figure 30. These are the files where the POSIX API functions are 

implemented. 

 

The easiest option for the directory structure for the driver is following: 

 

The IP is located <my_design>/IP/<component_folder>. 

The device driver files are placed to the component folder as follows: 

- /inc/<component>_regs.h 

- /HAL/inc/<component>.h 

- /HAL/src/<component>.c. 

 

5.13 Application Layer 

Application layer is the software that is written in C and runs on Nios II processors. In 

this exercise the main application is the reaction game. The application is divided for 

multiple processors and multiple tasks. The game is so simple that it does not actually 

require the performance of multiple processors, but simplicity is advantageous when 

multiprocessor programming is taught in short time. 

 

In the exercise work the application has to be programmed with two processors. One 

that runs the game logic and another that uses the HW components. µC/OS-II tasks are 

free to be used in both processors but are not required.  HIBI is used for all communica-

tion between processors and hardware components. HIBI network is used with functions 

in the self developed driver. 

 

The software is easiest to create with Nios II software build tool (SBT) that is distrib-

uted by Altera Corporation. µC/OS-II for Nios II is also distributed with Nios II SBT. 

Application programs can be debugged with Nios II terminals (see Figure 31) that are 

connected to the board via Joint Test Action Group (JTAG) test and development con-

nection. In the figure, the application of the right-hand side terminal sends eight data 

values (from 20 to 27) to the left-hand side application. These are received to the inter-

rupt channel 0. The left-hand side application also receives the messages from button IP 

that are received to interrupt channel 1. 

 



  37 

 
Figure 31: Screen capture from two Nios II terminals. Nios II terminals can be used as a character devices 
from the applications. It can be used for debug and development. In this view right-hand side process sends 
data to another process. These are received to IRQ channel 0. Left-hand side process also receives two mes-
sages from button IP (IRQ channel 1). Both processes also send and receive a mailbox messages (data values 
101 and 202). 



  38 

6 RESULTS AND ANALYSIS 

The result of this Thesis project is not directly the MPSoC product but the specifications 

for exercise work to create MPSoC. The most important topics are considered in this 

chapter. Here is also discussed the phases of the exercise work. 

 

6.1 Topic comparison for the Exercise Work  

To decide what to include to the exercise work it is important to consider worth of the 

different phases and possible topics. Biggest topics and alternatives are listed in Table 4. 

The topics listed are either the topics included to work or alternative solutions. The fig-

ures of benefits and workloads are for the students.  

 

Table 4: Benefits and workload of different topics. Topics are divided to platform structural topics and topcis 
related to multiprocessor programming. Table includes the benefit, workload, and their ratio of all topics. 
Column “used” shows if the topic is taken with to the exercise work. 

Topic Benefit Workload Benefit/Workload Used 

Structure of MPSoC system        

Quartus II design 3 2 1.5 x 

Kactus2 design 4 3 1.3 x 

Communication via NoC 5 3 1.7 x 

Communication via mailboxes and 

direct peripheral connections 1 1 1  

Processing unit design 3 1 3.0 x 

Pre-generated processing units 1 0.5 2.0  

IPs for peripherals 5 3 1.7 x 

Avalon peripherals 2 2 1.0  

Multiprocessor programming        
Compare of communication tech-

niques 2 1 2.0 x 

Threads 2 2 1.0 x 

µC/OS-II implementation 2 0.5 4.0 x 

eCos implementation 2 3 0.7  

Driver to API 4 2 2.0 x 

Normal functions for HW 2 1.5 1.3  

Real-life application 7 5 1.4  

Reaction game application 3 2 1.5 x 

Average 3.0 2.0 1.69 10/16 

 

 



  39 

The benefits are estimated to show the significance for the students learning. The fig-

ures of workload are also for students. The benefits of the topic usually grow when 

workload grows. For example, the workload is high if students create some part of the 

system completely but then they also learn it completely. The benefit/workload –ratio 

tries to make easier to compare this kind of problems. The topics taken to the exercise 

work are considered to give the best benefit with the workload that can be bear. For 

example, some real-life application would give much more benefit than reaction game 

application, but the workload would be too high for the time limits of exercise work. So, 

the selected application is the reaction game. 

 

The amounts of worth and workload are approximated analytically. So, comparison of 

all figures is difficult because of the difference of their nature. E.g. the benefits of 

µC/OS-II are hard to compare against the benefits of Quartus II design. The different 

topics should be compared to similar solution. E.g. reaction game application should be 

compared to other applications. Another way to think the worth and workload is to ana-

lyze if the topic is even worth teaching. 

 

The benefits and workloads of designs with Quartus II and with Kactus2 have to be 

evaluated. Which one is more valuable and why should we use both. Design with Quar-

tus II is easier than Kactus2 when the components of the whole system are not already 

created. Most of the students have also some experience of Quartus II from prerequisite 

courses. The workload of Quartus II design should be six hours at maximum. That 

means that it should easily fit in the time reserved for one week. The benefits in using 

Quartus II are easy design method and fast implementation of the system top level.  

 

The workload of Kactus2 is bigger than Quartus II when designing a system this small. 

Different component and bus definitions take time and are used only in this one system. 

Use of Kactus2 is still reasonable, because its benefits are bigger than in Quartus II as 

well. Main benefit is in the design of reusable and hierarchical systems. These reasons 

show that even these design tools result the same system, they have different reasons to 

take along to the exercise work. Both of these design tools have much worth and could 

be both used in this exercise work. 

 

In large real-life products the communication is done via network on chip. That is the 

reason we want to use it in this work as well. NoC as IPC can be compared to Avalon 

mailboxes. Network is much faster than mailboxes when transmitting large amounts of 

data. When we include NoC to the system we get also the benefit of NoC reuse proper-

ties. IPC and peripheral communication can be done via NoC. If IPC would be done via 

mailboxes the peripheral connections have to be created separately. That would lead to 

single-use design. So, even if NoC takes little more time to implement, the benefits lead 

us to select it as the method for communication.  

 



  40 

Processing units are essential components of the MPSoC. In former exercise work the 

processor design was pre-generated and given to students. That saved little time but left 

hidden important part of the system. The implementation of the processors in SOPC 

builder system should take four hours at maximum, so there are really no reasons to 

leave that out of the work. In this case students can reproduce and modify the whole 

design in their other projects as well. 

 

The RTOS to be used is also considered. The features we need from RTOS are included 

in almost all operating systems. So, the requirements of the RTOS are not in the major 

role. The easiest RTOS to include to the system is µC/OS-II as it is delivered with Nios 

II SBT. The reference system we get from the former exercise work, which was eCos. 

Because both of these operating systems include all we need, the µC/OS-II is chosen to 

get less workload. 

 

The selection of the application is probably the most difficult part to compare. The best 

application to multiprocessor systems would be the application that actually requires the 

multiple processing units. That kind of application would be best to motivate the 

MPSoC platform. The problem of this kind of application in exercise work is the work-

load. It would need much familiarization and work. In the short exercise work the solu-

tion has to be light but still include the purpose for multiprocessor programming. This 

dilemma leads to think possible applications that require reasonable amount of work but 

would still motivate the MPSoC. The reaction game is the application selected to the 

work, because it is easy to understand but still can be divided for multiple processors. 

This is the part of exercise work that can be improved in future. 

 

6.2 The Phases of the Exercise Work 

The exercise work is divided to twelve different parts that are listed in Table 5. The in-

structions of all exercises are in appendix 1. These exercises have all own deadlines. 

One exercise has at least one week time to be finished. The exercise work is divided by 

the topics that takes different time to do. Some of the exercises need more work than 

others, which is the downside of the splitting. Sometimes weekly workload is high and 

sometimes low. The reason why the exercise is split is still the spreading of workload. 

Without several deadlines some of the students would leave the work to the last weeks. 

So, ultimately this arrangement serves the students. The exercise work will be done in 

groups of two students to spread the workload.  

  



  41 

Table 5: The parts of the exercise work. 

# Topic Tasks 
Time / 
hours 

1 SoC Specification 

SoC specification writing; Introduction to top-

ics of the exercise work 14.1 

2 Altera SOPC Design Get familiar with Altera design flow 3.3 

3 IP-Block HW Design Creation of IP blocks; vhdl block verification 6.0 

4 Driver Design Drivers of HIBI network to HAL 15.3 

5 Tasks and Synchronization 

Using multiple tasks; application logic imple-

mentation 6.5 

6 IPC and Messaging 

Comparing usage and performance of different 

messaging methods 6.8 

7 Game Design 1 

Implementation of game design specified in 

exercise 1 11.6 

8 IP-XACT Basic HW design Getting familiar with Kactus2 2.0 

9 

IP-XACT Game HW De-

sign 

IP packetizing; HW platform implementation 

with kactus2 3.8 

10 IP-XACT SW design 

SW packetizing; Getting familiar with Kactus2 

SW design features 2.1 

11 MCAPI Design 

Getting familiar with Kactus2 MCAPI design 

features 1.5 

12 Game design 2 

Final game design with the platform created 

with Kactus2 3.5 

 

 

First exercise is to generate the specification of the SoC system. Students create the 

specification of their plan for the product. This exercise gives big picture of the upcom-

ing tasks of the exercise. Students create their plan according to a given user require-

ments. Students are encouraged to create unified markup language (UML) diagrams to 

the specification. This exercise gives already some understanding of the parts of 

MPSoC. 

 

Main purpose of the exercise two is to get familiar of the Altera design flow. Students 

generate two Nios II processors and create a hello world program for them. In this exer-

cise, students use different tools to create the system and get familiar with the design 

flow described in section 2.4.2. They create CPUs with NIOS II and create the design of 

the system with Quartus II block design tool. This design is compiled to the DE2 board 

and hello world software is implemented to the CPUs with the Nios II embedded design 

suite. It is important that students get a working template system running on FPGA al-

ready in the beginning. 

 

In exercise three, students create their own IP components in HDL to use the peripherals 

via HIBI. This structure increases the amount of reuse in this exercise work and re-

freshes students HDL design skills. All of these components can be used also in differ-

ent system that is implemented in HDL. System generated in exercises two and three is 

shown in Figure 19 on page 25. 



  42 

 

In the exercise four, the hardware component abstractions are made for the CPU appli-

cations. Students write the driver functions for the HIBI network and IP components. 

The functions are written as the file mode devices that can be used to control IP blocks 

over HIBI network. The functions use PE DMA interface. The development of the driv-

ers is handled more in section 5.12.  

 

In exercises five, the game is created with one processor and several tasks. These tasks 

implements different functions that have to be synchronized to work together as a game. 

Four tasks is minimum in the exercise and students can implement the communication 

between the tasks as they want. The students are advised to create four tasks, one for 

game logic and one for each peripheral device. Students learn some of the features of 

µC/OS-II such as tasks, mailboxes, and message queues. This exercise sets the stage for 

the multiprocessor programming. The final game application is done with two proces-

sors in exercise seven. 

 

Exercise six contains the inter-processor communication with HIBI network and with 

Avalon mailboxes. These two methods are compared with different amount of data and 

different packet sizes. The difference in performance between HIBI and Avalon mail-

boxes can be seen in reference implementation of the system in section 6.4. 

 

In exercises from eight to twelve the system is created again, but now with Kactus2 de-

sign tool. In this phase the platform is done with Kactus2 software and it teaches mainly 

reuse.  The design created with Kactus2 is more abstract than the design created with 

Quartus II. The signals between components are also abstracted. So, the composition of 

system couldn’t be easier. In exercise eight the SoC is designed again. Its purpose is to 

get familiar with the Katcus2 design software with the basic design (see Figure 13). 

 

In exercise nine, students create IP-XACT components for their own HDL designs. 

These components are packetized with the component editor. These components are 

integrated to the design created in exercise eight. In exercise ten, the software is pack-

etized with Kactus2. Applications and software platform is packetized into IP-XACT 

metadata objects and SW are mapped to the underlying HW platform. This way also 

two SW is better reusable and documented. 

 

The exercise eleven handles the MCAPI and Kactus2 MCAPI design features. MCAPI 

is an alternative way to implement communication between processing elements via 

HIBI. Students create MCAPI endpoints for processing elements and map them to the 

HW IP blocks.  

 



  43 

Finally in exercise twelve, students create the whole system with hardware implemented 

with Kactus2. The hardware and software is already created in previous exercises, so 

the task of this exercise is simply put them together. 

 

6.3 Time Consuming of the Exercise Work 

The reported total time to complete this exercise work was approximately 75 hours. It is 

the time used by the groups of two, so the work of one student is smaller. The workload 

is little too big because it is planned to be approximately 60 hours on a 5 credit unit 

course. That is 5 hours/exercise for 12 exercises. Completion times of different exer-

cises are listed in Table 5 and in Figure 32. There are average times spent from groups 

in first implementation of the exercise work in spring 2012. Figure 32 shows that exer-

cises two, four and seven are significantly more time-consuming than other exercises. 

That imbalance can be easily equalized by dividing these exercises for two exercise 

weeks.  

 

 
Figure 32: Time usage of different phases of the exercise work. Realized average time for exercise was 6.8 
hours and targeted average is 5 hours. 

 

In Figure 33 is weekly average time used for the exercises. The planned amount is 5 

hours per exercise, so two groups managed to complete the exercises faster than that. 

Other groups used time over the planned time and one group used double time com-

pared to 5 hours average. To decrease the average time on future course implementa-

14.1

3.3

6.0

15.3

6.5 6.8

11.6

2.0

3.8

2.1
1.5

3.5

0

2

4

6

8

10

12

14

16

18

A
v

e
ra

g
a

e
 t

im
e

 u
se

d
 /

 h
o

u
rs

Exercise topics

time used

realized avg

target avg



  44 

tions, the exercises should be changed slightly. The options are to modify tools, exercise 

instructions, or contents of the exercises. 

 

 
Figure 33: Time usage of exercise groups. Times are average times of all finished exercises. Planned average 
time for one exercise is 5 hours. 

 

6.4 Reference Implementation 

Reference implementation of the system created with Quartus II used 16,736 / 33,216 

(45%) logic elements from the FPGA chip. The amount of logic elements used for com-

binational logic was 12,741 elements and for dedicated logic registers 9,279 elements.  

Total number of registers was 9380 registers. That includes two processing units, two IP 

blocks, and HIBI network. The frequency of the system was 50 MHz. 

 

The size of IP block designs, written in VHDL, was 350 lines of code. The size of ap-

plication codes, written in C, was approximately 4000 lines. 

 

The reference implementation was used to compare the performances of two different 

IPC methods: HIBI and Avalon mailbox. Measured time was time usage of data sending 

to other processor and back. Size of one mailbox message is one word. That leads to 

several messages when sending more than one word. Sending with HIBI was always 

with one sending. Figure 34 shows the performance difference when amount of sending 

data is large. For example, mailboxes require 40X time when transfer size is 100 words. 

Mailboxes uses approximately 1150 clock cycles for one word transmission and DMA 

4.9

4.2

7.8

6.8 6.9

10.0

0

2

4

6

8

10

12

1 2 3 4 5 6

A
v

e
ra

g
e

 t
im

e
 u

se
d

 p
e

r 
w

e
e

k

Exercise group

time used

average



  45 

uses 26 clock cycles. This shows the advantage of DMA especially with very high 

amount of data. 

 

 
Figure 34: Used time to sending data between processors. The transmission time of mailboxes grows linearly 
when size of data grows, because each word is always sent separately. The transmission time of DMA grows 
just a slighly when data amount is incresing, because DMA sends all data at once and  the spent time was due 
the memory operations.  

 

0.04
0.13

0.25

2.3

0.04 0.04 0.05 0.05
0

0,5

1

1,5

2

2,5

1 5 10 100

T
im

e
 [

m
s]

Size of data [words]

Mailbox-ping-pong

DMA-ping-pong



  46 

7 CONCLUSION 

This Thesis presented design of an exercise work related to system-on-chip platforms.  

 

The real life MPSoCs are big and complex systems that have strong requirements. The 

real life projects lasts much longer than this exercise, and have much more people in-

volved. When deciding the most important topics for the exercise work we have to keep 

an eye on the trends of embedded systems. One of the trends is that embedded systems 

have gained the market share from general purpose computers. This have became possi-

ble because of the increased performance of embedded systems during last few years. 

Following this trend the MPSoCs are getting more complex, and design solutions have 

to be considered carefully. The increased complexity of MPSoC designs is increasing 

the requirements of design as well. Very large systems cannot be designed from scratch 

because the cost and time-to-market of the product would rise too high. The reuse has 

become one of the most important techniques to help with this difficulty. Techniques to 

increase the amount of reuse are considered as a side of the each phase of the MPSoC 

development. 

 

The exercise work demonstrates different phases of MPSoC design flow. Students learn 

the abstractions of MPSoC from HW platform to applications, from RTL, through ab-

stractions, to application level. This Thesis handles the topics related to the exercise 

work. Value of different topics was considered and different design methods were com-

pared. This thesis explains why the exercise work is constructed to the form it has. It 

also describes how different phases and parts of the exercise work supports the objec-

tives described in study guide. 

 

The implementation of the new exercise work succeeded. We got improvements to most 

of the topics handled. We managed to remove the black box parts of the former work, so 

the whole design flow is now visible for students. 



  47 

REFERENCES 

[1]  W. Wolf, A. A. Jerraya and G. Martin, “Multiprocessor System-on-Chip 

Technology,” in Transactions On Computer-Aided Design of Integrated Circuits 

and Systems, IEEE, 2008, pp. 1701-1713. 

[2]  W. Wolf, “The future of multiprocessor systems-on-chips,” in DAC '04 

Proceedings of the 41st annual Design Automation Conference, New York, 2004.  

[3]  Tampere University of Technology, “TKT3541/3547 SoC platforms,” 2012. 

[Online]. Available: http://www.tkt.cs.tut.fi/kurssit/3541/. [Accessed 26 4 2012]. 

[4]  Samsung Corporation, “Samsung Exynos 4 dual 45nm brochure,” Samsung 

Corporation, [Online]. Available: 

http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/ex

ynos4_dual_45nm.pdf. [Accessed 26 4 2012]. 

[5]  D. Manic, D. Severac, M. Morgan and J.-P. Dan, “System-On-Chip Solutions For 

Portable Medical Devices,” 1 3 2008. [Online]. Available: 

http://www.emdt.co.uk/article/system-chip-solutions-portable-medical-devices. 

[Accessed 26 4 2012]. 

[6]  E. Le Roux, N. Scolari, B. Banerjee, C. Arm, P. Volet, D. Sigg, P. Heim, J. 

Perotto, F. Kaess, N. Raemy, A. Vouilloz and D. Ruffieux, “icycom 

characteristics,” CSEM, [Online]. Available: 

http://www.csem.ch/docs/Show.aspx?id=12168. [Accessed 14 3 2012]. 

[7]  I. Petkov, P. Amblard, M. Hristov ja A. Jerraya, ”Systematic Design Flow For 

Fast Hardware/Software Prototype Generation From Bus Functional Model For 

MPSoC,” tekijä: RSP '05 Proceedings of the 16th IEEE International Workshop 

on Rapid System, Washington, 2005.  

[8]  S. H. Chang and S. D. Kim, “Reuse-based Methodology in Developing System-

on-Chip (SoC),” in Fourth International Conference on Software Engineering 

Research,Management and Applications (SERA’06), 2006.  

[9]  A. Nandi ja R. Marculescu, ”System-Level Power/Performance Analysis for 



  48 

Embedded Systems Design,” Department of Electrical and Computer 

Engineering, Pittsuburgh, 2001. 

[10]  A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the Trends and 

Challenges of System Level Design,” in Proceedings of the IEEE (2007), vol. 95, 

IEEE, 2007, pp. 467-506. 

[11]  K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey and A. Sangiovanni-

Vincentelli, “System-level design: Orthogonalization of Concerns and Platform-

Based Design,” IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, vol. 19, no. 12, p. 29, 12 2000.  

[12]  Altera Corporation, “2. Cyclone II Architecture,” in Cyclone II Design Handbook, 

2007, pp. 2.1-2.62. 

[13]  Altera Corporation, “DE2 Development and Education Board,” Altera 

Corporation, [Online]. Available: 

http://www.altera.com/education/univ/materials/boards/de2/unv-de2-board.html. 

[Accessed 29 3 2012]. 

[14]  O. Vainio, E. Salminen ja J. Takala, Teaching Digital Systems Using a Unified 

FPGA Platform, Tampere: TUT, 2010.  

[15]  Altera Corporation, Introduction to the Quartus II Software, San Jose: Altera 

Corporation, 2010, p. 126. 

[16]  Altera Corporation, ”Nios II Processor: The World's Most Versatile Embedded 

Processor,” Altera Corporation, [Online]. Available: 

http://www.altera.com/devices/processor/nios2/ni2-index.html. [Haettu 10 2 

2012]. 

[17]  Altera Corporation, Nios II Processor Referenece Handbook, San Jose: Altera 

Corporation, 2011.  

[18]  National Tsing Hua University, “EE5255 SOC Design Lab,” 2004. [Online]. 

Available: http://larc.ee.nthu.edu.tw/~hp/EE5255/. [Accessed 26 4 2012]. 

[19]  University of Texas, “EE382V: SYSTEM-ON-CHIP DESIGN,” 2010. [Online]. 

Available: http://www.ece.utexas.edu/~gerstl/ee382v_s10/. [Accessed 26 4 2012]. 

[20]  University of Turku, “SoC Design, 5 ECTS,” 2010-2011. [Online]. Available: 

https://nettiopsu.utu.fi/opas/opintojakso.htm?id=6284&lang=en&uiLang=fi. 

[Accessed 26 4 2012]. 



  49 

[21]  University of Cambridge, “Computer Laboratory,” 2010-2011. [Online]. 

Available: http://www.cl.cam.ac.uk/teaching/1011/CST/node79.html. [Accessed 

26 4 2012]. 

[22]  San Jose State University, “EE272 - SoC Design and Verification with 

SystemVerilog,” 2011. [Online]. Available: 

http://www.engr.sjsu.edu/tle/272syl.pdf. [Accessed 26 4 2012]. 

[23]  University of Southampton, "System on Chip: University of Southampton," 

[Online]. Available: http://www.enqa.net/electrical-engineering/system-on-chip-

university-of-southampton/view-details.html. [Accessed 26 4 2012]. 

[24]  University of Westminster, “System-on-Chip Design for DSP and 

Communications,” [Online]. Available: 

http://www.mastersportal.eu/students/browse/programme/6912/system-on-chip-

design-for-dsp-and-communications.html. [Accessed 1 2 2012]. 

[25]  University of Twente, “System-on-Chip Design (121075),” 2011. [Online]. 

Available: http://wwwhome.cs.utwente.nl/~gerezsh/soc/index.html. [Accessed 26 

4 2012]. 

[26]  Linköping Institute of Technology, “Computer Hardware - a System on Chip,” 

2011. [Online]. Available: http://kdb-

5.liu.se/liu/lith/studiehandboken/action.lasso?&-

response=enkursplan.lasso&op=eq&k_budget_year=2011&op=eq&k_kurskod=T

SEA44. [Accessed 26 4 2012]. 

[27]  University of Illionois, “ECE 527 SoC Design,” 2011. [Online]. Available: 

http://courses.engr.illinois.edu/ece527/. [Accessed 26 4 2012]. 

[28]  Tampere University of Technology, “TKT-2431 SoC-suunnittelu,” 2012. 

[Online]. Available: http://www.tkt.cs.tut.fi/kurssit/2431/. [Accessed 26 4 2012]. 

[29]  L. Matilainen, A. Kamppi, J.-M. Määttä, E. Salminen and T. D. Hämäläinen, 

“KACTUS2: IP-XACT/IEEE1685 Compatible Design Environment for 

Embedded Multiprocessor System-on-Chip Products,” TUT, Tampere, 2011. 

[30]  IEEE, IEEE 1685: Standard for IP-XACT, Standard Structure for Packaging, 

Integrating, and Reusing IP Within Tool Flows, New York: IEEE, 2009, p. 360. 

[31]  ARM Limited, IP-XACT Components reference manual, 2007.  

[32]  Multicore Association, “MULTICORE COMMUNICATIONS API WORKING 



  50 

GROUP,” [Online]. Available: http://www.multicore-

association.org/workgroup/comapi.php. [Accessed 24 4 2012]. 

[33]  Tampere University of Technology, ”POP portal,” [Online]. Available: 

http://www.tut.fi/pop. [Haettu 9 5 2012]. 

[34]  Tampere University of Technology, “Study guide of TUT - POP portal,” 2011-

2012. [Online]. Available: https://pop-portal.tut.fi/portal/page/portal/POP-

portaali/20Opinnot/23Opinto-opas. [Accessed 25 1 2011]. 

[35]  Department of Copmuter Systems, TUT, ”TKT-3541/TKT-3547 SoC platforms 

Exercises,” 2011. [Online]. Available: 

http://www.tkt.cs.tut.fi/kurssit/3541/K11/Ex/. [Haettu 14 5 2012]. 

[36]  eCos Community, ”eCos,” [Online]. Available: http://ecos.sourceware.org/. 

[Haettu 9 5 2012]. 

[37]  Micrium, “Micrium - µC/OS-II Kernel,” Micrium, [Online]. Available: 

http://micrium.com/page/products/rtos/os-ii. [Accessed 8 5 2012]. 

[38]  E. Salminen, L. Matilainen, J. Arvio, A. Alhonen and L. Lehtonen, “Funbase IP 

libarary,” OpenCores, [Online]. Available: 

http://opencores.org/project,funbase_ip_library. [Accessed 26 4 2012]. 

[39]  E. Salminen and T. Hämäläinen, Heterogenerous IP Block Interconnection (HIBI) 

Reference Manual, Tampere: TUT, 2011, p. 41. 

[40]  Altera Corporation, Guidelines for Developing a Nios II HAL Device Driver, San 

Jose: Altera Corporation, 2011.  

[41]  Altera Corporation, ”FPGAs,” Altera Corporation, [Online]. Available: 

http://www.altera.com/products/fpga.html. [Haettu 10 2 2012]. 

 



  51 

APPENDIX 1 – EXERCISE WORK INSTRUCTIONS 

Exercise 1: SoC Specification 
The purpose of this exercise if to learn how to write specifications for a System on a 

Chip. 

You're given a ready made specification, which is missing parts that you need to fill. 

The parts that you need to modify are marked with yellow color. For the diagrams you 

can use Microsoft Visio 2010 which is installed in the Windows class (TC419). 

 

We recommend you to use many UML diagrams in the specifications. There is a re-

quirement that you use at least three UML diagrams in the specification. Some 

hints/requirements of the UML diagrams are presented in the specification template.  

What to specify 
During the exercise sessions a game is developed for the Altera DE2 board. Basic idea 

of the game is to press buttons according to flashing LEDs. The game will eventually 

get harder as the flashing rate will increase. Points are being awarded for each correct 

press. Incorrect press will end the game. To get more familiar with the game logic you 

can try to play web version of the game found in the links at the bottom of this page. 

There is also link to a Youtube video of gameplay if you are unfamiliar with the subject. 

 

SoC specification must comply with given user requirements to be acecptable. Before 

returning the SoC specification double check that your specification complies with these 

requirements or it will be rejected.  

It is required that you create documentation of your HW architecture using Kactus2 

software (Kactus2 pictures of the HW architecture are required in the SoC specifica-

tion). For this exercise Kactus2 software is used only for documentation purposes. Dur-

ing the later exercises we'll make use of the Kactus2 software more extensively so it's 

very important that you learn the basics during the first exercise. In the materials section 

you'll find tutorial howto create hierarchical systems using the Kactus2 software, which 

introduces the necessary features required to create documentation for the exercise 1.  

 

Material for the exercise 
- SoC Specification Template(16 pages) 

- User Requirements (5 pages) 

- Kactus2 hierarchical design tutorial (15 pages) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E01.zip, where gg is 

your group number.  

1. Completed SoC system specification document   



  52 

2. Kactus2 created documentation files (html+pngs) in compressed zip file named 

kactus2_document.zip  

3. Your time usage on this exercise written in the body section of the return email  

 

Exercise 2: Altera SoPC Design 
The purpose of this exercise is to get familiar with the Altera design flow. After this 

exercise you should be familiar with Quartus2, SoPC-builder, and Nios2 EDS tools.  

 

To complete this exercise, complete the Altera SoPC-builder tutorial and return the re-

quired files.  

 

Make sure that you are confident in using these tools, as they are used extensively in 

later exercises.  

 

Material for the exercise 
- Altera SoPC-builder tutorial (8 pages) 

- SRAM Controller IP (5 files) 

- DE2 pin assignments (1 file) 

- SDC file for Timequest timing analyzer (1 file) 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E02.zip, where gg is 

your group number.  

1. Fitter Summary (Located in Quartus project folder with file extension 

.fit.summary) 

2. System.h files (Located in Software BSP project folder)  

3. terminals.png, which is a screenshot of the two nios2-terminals showing hello 

world programs running on nios2 terminals 

4. Your time usage on this exercise written in the body section of the return email  

 

Exercise 3: IP-Block HW Design 
The purpose of this exercise is to create own custom IP-block that can read pushbuttons 

and drive leds/7-segment display. IP-block is connected to HiBi network so it can com-

municate with Nios2 processors. Detailed instructions can be found from the Exercise 

instructions pdf.  

 

Material for the exercise 
- HIBI.zip (several files) 

- Exercise Instructions (3 pages) 

- HiBi Datasheet (42 pages) 

What to return 



  53 

Compress the following files into zip file named TKT-3541-Ggg-E03.zip, where gg is 

your group number.  

1. IP-block VHDL code(s) 

2. IP-block test bench VHDL code(s) 

3. Your time usage on this exercise written in the body section of the return email  

 

Exercise 4: Driver Design 
The purpose of this exercise is to create driver for the HIBI_PE_DMA block and inte-

grate it to Altera HAL. You are given a skeleton which already contains most of the 

stuff needed to implement the driver functionality. Detailed instructions on how to do 

this exercise can be found from the exercise instructions pdf.  

 

Material for the exercise 
- Exercise Instructions (8 pages) 

- HIBI_PE_DMA.zip (several files) 

- HIBI.zip (several files) 

- Simple Test Program (1 file) 

- HIBI_PE_DMA Reference Documentation (13 pages) 

- HIBI_PE_DMA Introduction (23 slides) 

- Building HIBI_PE_DMA System (17 slides) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E04.zip, where gg is 

your group number.  

1. Screen capture of your top level design, or top level vhdl code (if you are using 

vhdl as a top level) 

2. hibi_pe_dma_read.c  

3. hibi_pe_dma_write.c  

4. hibi_pe_dma_ioctl.c  

5. hibi_pe_dma_lseek.c  

6. hibi_pe_dma_close.c  

7. All other files that you have modified/added to the driver 

8. Your custom test program (if you have used custom test program and not the 

given one)  

9. Your time usage on this exercise written in the body section of the return email  

Exercise 5: Tasks and Synchronization 
In this exercise we're going to make the game logic working on a single processor. But-

tons and other peripherals are emulated using dedicated tasks so we can easily verify the 

correctness of the game logic itself. After this exercise you should be quite familiar with 

uCos-II features such as tasks, semaphores, mailboxes, and message queues. See more 

detailed exercise instructions from the link below.  

 



  54 

Material for the exercise 
- Exercise Instructions (3 pages) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E05.zip, where gg is 

your group number.  

1. Code file(s) of the test program and tasks 

2. Your time usage on this exercise written in the body section of the return email  

Exercise 6: IPC and Messaging 
In this exercise we're going try two different methods on transferring messages/data 

between two processors. First method is to use the HiBi network to transfer the data. 

Second method is Alteras mailbox core. We are going to use performance counter to 

measure the time between the transfers. See more detailed exercise instructions from the 

link below.  

Material for the exercise 
- Exercise Instructions (2 pages) 

- Measurement Table (1 sheet) 

- HIBI PE DMA HW + DRIVERS (several files) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E06.zip, where gg is 

your group number.  

1. Filled measurement table (doc/pdf)  

2. Your time usage on this exercise written in the body section of the return email  

 

Exercise 7: Game Design 1 
In this exercise you need to implement the whole game functionality using the specifi-

cation that you created in the exercise 1. 

You need to demonstrate working game to the assistant!  

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E07.zip, where gg is 

your group number.  

1. Hardware configuration file (.sof)  

2. All software files to build the game application  

3. Demonstration of the working game to the assistant  

4. Your time usage on this exercise written in the body section of the return email  

 



  55 

Exercise 8: IP-XACT Basic HW design 
In this exercise we're going to implement again simple SoC design using Kactus2 soft-

ware. The goal of this exercise is just to get more familiar to Kactus2 software. In later 

exercises we're going to implement the full SoC game design.  

 

Material for the exercise 
- Exercise Instructions (4 pages) 

- Library Files (several files) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E08.zip, where gg is 

your group number.  

1. Your vendor library (Gxx folder)  

2. Generated Top Level VHDL code  

3. Generated Quartus Project file  

4. Your time usage on this exercise written in the body section of the return email  

 

Exercise 9: IP-XACT Game HW Design 
In this exercise you packetize your own IPs (led and button) to IP-XACT format used 

by the Kactus2 tool. After this exercise you should have the game HW implemented 

using Kactus2 software. See exercise instruction for further details. 

Download new library files (these ones have the timer included for uCos-II). Replace 

the previous exercise library contents with these so you can use uCos-II OS.  

 

You must also edit nios__ii_sram component. It is missing its hibi interface port maps. 

Double click component to open it. Edit hibi_if Port maps so that assignments are cor-

rect. 

Hibi segment component has bad default value which you must edit for it to work cor-

rectly. Click on the component on your soc design view and on the right hand pane you 

should see Configurable element values list. Double click on the list and select num-

ber_of_r4_agents_g. Assign value 4 to it. In case you can't see the configurable element 

values list you can also edit the component itself. In this case you can find this option 

under Model Parameters.  

After this you are missing two source files, named fifo.vhd and multiclk_fifo.vhd. You 

can manually add these files to the Quartus project or edit hibi component to include 

these files. These source files can be found from your previous exercises or download 

from HIBI.zip found in exercise 3.  

 

Material for the exercise 
- Exercise Instructions (5 pages) 

- Library Files  (several files) 

 



  56 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E09zip, where gg is 

your group number.  

1. Your vendor library (Gxx folder)  

2. Your time usage on this exercise written in the body section of the return email  

 

Exercise 10: IP-XACT SW design 
In this exercise you packetize your SW using Kactus2 software.  

Purpose of this exercise is to get familiar with Kactus 2 SW design features. Packetize 

application codes and SW platform into IP-XACT metadata objects and map SW com-

ponents to the underlying HW platform. Current version of Kactus does not support 

autogeneration of makefile i.e. it is used for documentation and project source code 

management purposes.  

 

Material for the exercise 
- Exercise Instructions (4 pages) 

- Library Files (several files) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E10zip, where gg is 

your group number.  

1. Your vendor library (Gxx folder)  

2. Your time usage on this exercise written in the body section of the return email  

 

Exercise 11: MCAPI Design 
Purpose of this exercise is to get familiar with Kactus 2 MCAPI design features and 

MCAPI itself. MCAPI is alternative way to implement communication between pro-

cessing elements via HIBI. In this exercise you design MCAPI communication between 

all PEs in your HW platform including HW accelerators. Current version of Kactus does 

not support autogeneration of makefile i.e. it is used for documentation and project 

source code management purposes. See exercise instructions for further details.  

 

Material for the exercise 
- Exercise Instructions (3 pages) 

- Library Files (several files) 

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E11.zip, where gg is 

your group number.  



  57 

1. Your vendor library (Gxx folder)  

2. Your time usage on this exercise written in the body section of the return email  

 

Exercise 12: Game design 2 
The purpose of this exercise is to create the game application using Kactus2 created 

HW. By now you should already have the hardware (exercise 9) and software (exercise 

7) ready so the only thing left to do is to simple put everything together once more and 

fix any remaining bugs.  

 

What to return 
Compress the following files into zip file named TKT-3541-Ggg-E12.zip, where gg is 

your group number.  

1. Your vendor library (Gxx folder)  

2. Your top level vhdl code (Created with Kactus2)  

3. Demonstration of the working game 

4. Your time usage on this exercise written in the body section of the return email. 


