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Testing is a necessary process for verifying correct functioning of a product. When 

testing is performed manually, it consumes a lot of time and labor. In this thesis, an 

automated testing system for a solar inverter is designed and implemented into a 

software development team. The objective was to make testing more effective and 

release testers from simple and monotonous tasks to more demanding ones. At the same 

time, human mistakes in testing can be avoided. 

Options for the implementation were searched from literacy and Internet. Also 

implementations inside the organization were considered. The system was realized into 

the development team in tight time constraints leaving space for further expansion of 

the system. 

The beginning of the thesis concentrates on literature research where theories on 

software testing and on automation system are presented. Additionally, the 

characteristics of agile methods and their applicability to the automation system are 

discussed. In the end of the thesis, the design of the system is presented by explaining 

how different parts of the system were executed. Finally, the realizations of the most 

fundamental tests are presented as well as future prospects are discussed. 

The resulting automated testing system not only facilitates the testing process but 

also enables having always the latest up-to-date software under version control. In this 

manner, the software development team is always aware of the state of the product, 

which helps in avoiding massive integration work just before a large release by solving 

integration problems all along the development process. This also enables having the 

latest software version always ready to be tested. 
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TAMPEREEN TEKNILLINEN YLIOPISTO  
Automaatiotekniikan koulutusohjelma 
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testaus 
 
Testaus on välttämätön prosessi tuotteen oikean toiminnallisuuden varmistamiseksi.  

Kun testaus suoritetaan manuaalisesti, se kuluttaa paljon aikaa ja työvoimaa. Tässä 

työssä suunnitellaan ja toteutetaan ohjelmiston tuotekehitystiimiin 

aurinkosähkötaajuusmuuttajan ohjelmiston automaattinen testausjärjestelmä. Työn 

tavoite oli tehdä testauksesta tehokkaampaa ja vapauttaa testaajat yksinkertaisesta ja 

monotonisesta työtehtävästä vaativampiin työtehtäviin. Samalla vältytään inhimillisiltä 

testausvirheiltä. 

Toteutusvaihtoehtoja tutkittiin kirjallisuudesta ja internetistä. Myös organisaation 

sisäisiä toteutusmenetelmiä tarkasteltiin. Järjestelmä toteutettiin tuotekehitystiimiin 

tiiviissä aikataulussa lähtien liikkeelle aivan alusta mahdollistaen myös myöhemmin 

lisättävät järjestelmän laajennukset. 

Työn alussa sijaitsevassa kirjallisuustutkimuksessa käsitellään ohjelmistotestauksen 

ja luodun automaatiojärjestelmän teoriaa. Lisäksi käsitellään ketterien järjestelmien 

ominaisuuksia ja niiden soveltuvuutta suunniteltuun automaatiojärjestelmään. Työn 

loppupuolella esitetään järjejestelmän eri osien suunnittelu ja toteutus. Viimeiseksi 

esitetään olennaisimpien testien toteutus ja tarkastellaan järjestelmän tulevaisuuden 

näkymiä. 

Työn tuloksena toteutettu automaattinen testausjärjestelmä ei ainoastaan helpota 

testausprosessia, vaan se myös mahdollistaa sen, että viimeisin päivitetty 

ohjelmistoversio on aina versiohallinnassa. Ratkaisemalla integraatio-ongelmat jo 

tuotekehitysprosessin aikana ohjelmiston kehitystiimi pysyy aina ajan tasalla tuotteen 

tilasta, mikä auttaa välttämään massiivista juuri ennen suurta julkaisua tapahtuvaa 

integraatiotyötä. Täten viimeisin ohjelmistoversio on aina saatavilla valmiina 

testattavaksi. 

 

 

 
 
 

  



iv 

 

 

PREFACE 

 

The topic of the thesis was provided by ABB Drives. The thesis was examined by 

Professor Teuvo Suntio from Tampere University of Technology. The supervisor at 

ABB Drives was M.Sc. Terho Läärä. 

 I want to address my gradidute to Terho for the support and guiding. Also, I want 

to thank all the people at ABB Drives who provided me with any supportive 

information concerning this thesis. Furthermore, I want to thank Teuvo for the advices 

and for examining this thesis. 

 

Helsinki, November 1, 2011 

 

Janne Sjögren 

 



v 

 

 

CONTENTS 

 

 

1 Introduction ............................................................................................................... 1 

2 Software testing ......................................................................................................... 3 

2.1 Introduction ....................................................................................................... 3 

2.2 Testing techniques ............................................................................................. 4 

2.3 Software development process .......................................................................... 6 

2.4 Test-driven development ................................................................................... 9 

2.5 Regression testing ........................................................................................... 10 

3 Automation system ................................................................................................. 11 

3.1 Embedded system............................................................................................ 11 

3.2 Solar inverter ................................................................................................... 13 

3.2.1 Maximum power point tracking .......................................................... 14 

3.3 Automated testing process .............................................................................. 15 

3.4 Test automation framework ............................................................................ 15 

3.4.1 Automated tester framework ............................................................... 16 

3.4.2 Visual Studio ....................................................................................... 17 

4 Agile methods ......................................................................................................... 19 

4.1 Continuous integration .................................................................................... 20 

4.1.1 The value of continuous integration .................................................... 23 

4.1.2 Build script .......................................................................................... 24 

4.1.3 Continuous integration server ............................................................. 25 

4.1.4 Continuous integration tool ................................................................. 25 

4.1.5 Crucial practices .................................................................................. 26 

4.2 Version control ................................................................................................ 27 

4.2.1 Git ........................................................................................................ 28 

5 Design of the testing system ................................................................................... 30 

5.1 Introduction ..................................................................................................... 30 

5.2 The set-up ........................................................................................................ 31 

5.3 Continuous integration server ......................................................................... 32 

5.4 Local workstations .......................................................................................... 34 

5.5 Running the builds .......................................................................................... 35 

5.6 Feedback ......................................................................................................... 36 

5.7 Backups ........................................................................................................... 38 

6 Test realisations ....................................................................................................... 39 

6.1 Introduction ..................................................................................................... 39 

6.2 Grid simulation tests ....................................................................................... 40 

6.3 Batch scripts .................................................................................................... 43 

7 Future prospects ...................................................................................................... 45 

8 Summary ................................................................................................................. 47 

Sources ............................................................................................................................ 48 



vi 

 

 

TERMS AND DEFINITIONS 
 

ABB Asea Brown Boveri, multinational corporation operating 

mainly in power and automation industry 

AC Alternating Current 

A/D From Analog to Digital 

ASIC Application-Specific Integrated Circuit 

ATF Automated Tester Framework 

C A programming language 

C++ A programming language 

C# C sharp, a programming language 

Code refactoring Altering the structure of a code without changing its 

external behavior 

CPU Central Processing Unit 

D/A From Digital to Analog 

DC Direct Current 

EMI Electromagnetic Interference 

FPGA Field-Programmable Gate Array 

HTML Hypertext Markup Language, a markup language for web 

pages 

IEEE Institute of Electrical and Electronics Engineers, association 

that is dedicated to advancement of technology 

MHTML An archive format 

PC Personal Computer 

Sinus filter A filter for reducing peak voltages and currents 

SMS Short Message Service, text messaging service for mobile 

or web communication 

TDD Test-Driven Development, a software development process 

USB Universal Serial Bus, a standard for connection between 

computers and electrical devices 

VB.NET Visual Basic .NET, a programming language 

XML Extensible Markup Language, a set of rules for encoding 

documents 

.NET Framework A software framework 

 

SYMBOLS 

 

IMP Current in maximum power point 

PMAX Maximum power 

VMP Voltage in maximum power point 

VOC Open circuit voltage
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1 INTRODUCTION 

Automation system is an embedded system that consists of the hardware, the software 

and the connections to the environment of the system. As the systems have become 

larger, also the software has become larger and more complicated. Testing of the large 

software takes a huge amount of time, which leads to longer product development 

times. In order to succeed in the competition between the competitors, the product 

development has to be fast to get the product to the market as soon as possible. Several 

studies indicate that testing can take even a half of the product development phase. 

Proper automated testing of the software enables significant savings and competitive 

advantages. 

No matter how carefully software is believed to be generated, bugs will always 

exist due to human mistakes. It is rather a rule than an exception that comprehensive 

testing of the software requires more time than it was allocated in the development 

process. This causes temporal and financial challenges to development teams achieving 

to meet deadlines generated in the beginning of development processes. When problems 

occur in the process, it often causes delay in delivering the product to customers, 

leading to a point, where software developers have to work extra hours or more 

employees have to be hired in order to meet upcoming time limits. This is when 

discussion on creating a competent automated software testing environment for testing a 

product becomes topical. 

The idea in automation of tests is to release testers from tedious testing tasks as 

well as getting rid of human testing mistakes. Before performing this thesis, the 

software tests were used to be executed manually by a couple of testers who were 

working in a laboratory over a weekend executing tests from a certain list. By 

automating the tests, developers are able to run the set of tests automatically whenever 

they want: continuously, periodically or in both manners. The tests can be run also 

nightly, so that test reports are available in the morning when developers come to work.  

The design and the implementation of automation tests take time. Yet, a lot of time 

can be saved in long product development processes due to the repetitive nature of 

testing. As the tests are run daily, errors can be found early. The earlier errors in the 

code are discovered, the easier they are to be fixed. Conversely, without regularly run 

automated tests, the integration phase in the end of the development cycle can expand to 

massive dimensions. When huge problems are discovered in the late integration phase, 

the delivery of the program can be significantly delayed. Sometimes the project can 

even run to a dead end.  
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This thesis is focused on designing and implementing an automated software 

testing system for a solar inverter in order to make testing more effective. The 

development process of the solar inverter was already in the maintenance phase when 

this thesis was introduced. Hence, the objective was to create an automated testing 

environment on system testing level for ensuring that malfunctions would not occur as 

new software updates are released. 

In the beginning of the thesis, theories of software testing as well as parts of the 

automation system are introduced. Further, discussion on agile methods and its 

advantages for the system take place. Especially possibilities provided by continuous 

integration and distributed version control are explained. This is followed by 

presentation of the designed system where the set-up and its parts are being introduced. 

In the end, some of the generated scripts are presented and explained. In addition, future 

prospects and development possibilities are discussed. 
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2 SOFTWARE TESTING 

This chapter concentrates on defining what is software testing, what for it is utilized, 

and what kinds of testing techniques exist. Also, software development processes such 

as Waterfall-model, V-model, and Test-driven development are introduced. Regression 

testing, which is of high importance concerning the existence of this thesis, is presented 

in the end of the chapter. 

2.1 Introduction 

 

Software testing is used for achieving empirical information on the quality of software 

in an environment in which the software is planned to work. The objective of testing is 

to find possible errors in the code by running specified tests. In this manner, the 

requirements, which determine that the software is working as expected, can be verified.  

Error is a deviation from the specifications of a product, the origins of which derive 

usually from a human mistake. Despite of testing, some errors remain in the software of 

which some may remain undiscovered. Defects can be caused to a system by defective 

execution of a part of the program. They can be fixed by another fault or functionality, 

but they can also cause a visible failure in the system. [1] 

Testing is not the same as debugging. Testing is for pointing out errors by using 

specifications, so that the starting point and the correct result are known in advance. 

Debugging is for locating an error or misconception that led to the failure of the 

program and then fixing it, without knowing the starting point or the correct result. 

Debugging demands specific knowledge about the content of the program. Therefore, 

debugging cannot be performed by an outsider unlike testing, which is performed 

according to specifications. Debugging cannot be automated. Usually, debugging 

follows testing. [2] 

Software testing provides information to the organization about how to proceed. 

Testing itself does not directly enhance the quality of the system. Nevertheless, by 

offering an aspect to detected weaknesses, it provides the organization an opportunity to 

make conscious decisions on focusing recourses for improving quality of the system. [3] 

Software testing is performed on three levels. First of the levels is unit testing, in 

which the correct functioning of the software is verified at unit or component level. 

Units can be, for instance, individual functions or programs. The programmers 

themselves often perform the unit tests. The second level is integration testing, where 

separate units are united for verifying their correct interaction between each other. 

Depending on the size of the project, the programmer or an independent tester performs 
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the integration tests. The third level is system testing, in which complete, integrated 

software is tested. The purpose is to evaluate compliance of the system with the 

specified requirements instead of structural testing. Normally, the programmer or an 

independent tester performs the system tests. [22; 23; 24] 

The two first levels are performed using white-box testing (figure 2.1), meaning 

that testing the internals of the software, such as fixing syntax and logical errors, is the 

main focus. In white-box testing, only the structure of the software is known, leaving 

unknown the operation of the program. Despite the types of tests that are executed, their 

intent is to verify that the system successfully satisfies entirely its functional 

requirements. Black-box testing is applied on the third level, which means that tester is 

aware of the entire operation of the system without knowing the structure of the 

software. It performs most parts of the system by invoking various system calls through 

user interface interaction. The focus in this thesis is the system testing. [6]  

 

 

 

Figure 2.1. White-Box and Black-Box Testing. 

2.2 Testing techniques 

In order to verify that a program is functioning properly, all the possible inputs and 

paths should be tested to perfection. Practically, this is an impossible task to perform. 

For instance, two figures from between -2
15

 and 2
15

-1 are added together. Therefore, the 

amount of possible inputs is more than four millions. In practice, testing a program by 

providing more than four million inputs at a time is not possible. In addition, different 

states, indeterminateness of the real-time systems, loops, and conditions have to be 

considered. Therefore, implicit testing of a program is not possible. [1] 

Although programs cannot be tested implicitly, they can be tested soundly and 

carefully. By choosing reasonable test data, defects of the code can be found with good 

probability. Different software testing methodologies exist which are broadly divided 

into static techniques and dynamic techniques. [20] 
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Static software techniques perform testing of a component without execution of the 

software. It is carried out via static analysis of the code. One of the most powerful static 

techniques is review, which can be performed formally or informally. Walkthrough, 

technical review, and inspection are the types of reviewing techniques. In walkthrough 

technique, the author of the document to be reviewed guides the participants through the 

document and gathers feedback. Technical review is a peer group discussion where the 

object is to achieve consensus on the technical approach taken, while developing the 

system. Inspection is also a type of peer review with the focus in the visual examination 

to detect any defect in the system. In addition, static analysis tools exist, which inspect 

coding standards, code metrics, and code structure. [20] 

In dynamic software techniques, the code is tested for finding defects. The 

technique is divided into three categories: specification based technique, structure based 

technique, and experience based technique. Specification based technique is also known 

as black-box testing. There are five main specification based testing techniques: 

equivalence partitioning, boundary value analysis, decision table, state transition testing, 

and use case testing. [20] 

In equivalence partitioning, the test cases are designed so that the test cases cover 

every partition at least once. The idea is to divide test conditions into sub groups, which 

can be considered the same. For instance, if 1 to 100 are the valid values, valid 

partitioning is 1 to 50, and 50 to 100. Therefore, 1, 50 and 100 are the values for which 

the system has to be checked. Additionally, invalid partitions, such as random values -5 

and 120 outside the boundaries, have to be checked. [20] 

Boundary value analysis concentrates on testing input or output values on the edge 

of an equivalence partition or at the smallest incremental distance on either side of an 

edge. Boundaries are tested between the partitions for both valid and invalid boundaries. 

For instance, if the valid inputs are 1 to 99, then the test cases should be designed to 

include values 0, 1, 99 and 100 in order to verify the functionality of the system. [20] 

Decision table is also known as cause-effect table. The table contains a combination 

of inputs with their associated outputs used to design test cases. The first task is to 

identify a suitable function, which has functional traits that react according to a 

combination of inputs. If there are two conditions, there are four combinations of input 

sets. If there are three conditions, there are eight combinations correspondingly. [20] 

In state transition testing, any aspect of the component can be described as a finite 

state machine. The test cases are designed to execute valid and invalid state transition. 

In any given state, one event can give rise to only one action, but the same event from 

another state may cause different action and a different end state. In use case testing, the 

test cases are designed to execute real life scenarios by identifying test cases that 

exercise the whole system on a transaction-by-transaction basis from the beginning to 

the end. These cases help to resolve integration defects. [20] 

Structure based testing is also known as white-box-testing. Test coverage 

measurements and structural test case design are the two purposes of the structure based 

testing techniques. Test coverage, statement coverage and statement testing, and 
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decision coverage and decision testing are the most utilized techniques. Test coverage 

describes the percentage, to which a certain coverage item has been exercised by a test 

suite. Statement coverage and statement testing present the percentage of the executable 

statements, which have been exercised by a test suite. Decision coverage and decision 

testing count the statements exercised like, among others, „if-statements‟, loop-

statements, and case statements.  [20] 

Experience based testing is based on knowledge, experience, intuition or 

imagination of a person. An experienced tester is often able to locate an elusive defect 

in the system. Error guessing and exploratory testing are the techniques in this category. 

In error guessing technique, the experience of a tester is tested to seek for elusive bugs, 

which may be a part of a component or a system. This technique is often brought into 

use after the formal techniques have been utilized. A structured approach is to list 

possible defects and then try to reproduce them via test cases. [20] 

Exploratory testing is also known as „monkey testing‟, where minimum planning 

and maximum testing take place as a hands-on approach. The test execution and test 

design happen simultaneously without formally documenting test conditions, test cases 

or test scripts. The approach is useful, when time at hand is exceptionally limited or the 

project specifications are poor. [20] 

Testing techniques to be utilized depend on multiple factors. The main factors are 

urgency and severity of the project, as well as available resources. Not all the techniques 

are utilized at a time in all the projects. Decisions concerning the techniques utilized 

depend on organizational policies. [20] 

 

2.3 Software development process 

Testing is a part of the software development process. Several studies state that the 

testing phase can take even a half of the time of the development process. Traditional 

way of describing software development process is the waterfall model (Fig. 2.2).  
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Figure 2.2. Waterfall Model [27] 

 

At first, all the requirements of the system that have to be developed are analyzed. 

The second step is to design the system properly before starting implementation. This 

phase contains the architectural design by defining the main blocks and components of 

the system, as well as their interfaces and interactions. The third step is the software 

design, which is based on the system architecture. In this phase, the software blocks are 

defined into code modules. A software design document, which is the base of the 

following implementation work, is the output of this phase. Next step is coding, where 

the system is developed in smaller portions, called units, which are able to stand alone 

and are integrated later to form the complete software package. The fifth step is 

software integrations and verification. This phase involves unit tests and integration 

tests. After successful integration tests, the complete system is tested against the initial 

requirements. In the last phase, the system is handed over to the customer. Possible 

modifications to the software are made to meet the demands of the customer. Often this 

phase is extended to a never-ending phase as the customer discovers new shortages in 

the software. [27] 

Waterfall method, however, has its weaknesses. It is often difficult to gather all 

possible requirements during the first phase. If not, the subsequent phases will suffer 

from it. Additionally, iterations are meant to happen within the same phase. The 

problems commonly tend to shift to the later phases, which eventually results in a bad 

system design. Thereby, instead of solving the root causes the tendency is to patch 

problems with inadequate measures. Furthermore, a large maintenance phase might 

result as the further development is squeezed into the end. [27] 

A more developed model of the waterfall model is called V-model in which the 

individual steps are almost the same. The V-shape forms as the process steps are bent 

upwards at the coding phase because the design phases and testing phases are related to 
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each other as shown in Fig. 2.3. The tests are derived from their design or requirements 

counterparts. This correlation allows verifying each of the design steps individually. 

[27] 

 

 

 

Figure 2.3. V-Model.[27] 

 

Not only the correct implements of requirements have to be checked but also if the 

requirements are correct. When the requirements have to be updated, subsequently the 

design and the coding have to be updated. This has to be treated either in a never-ending 

maintenance phase in the waterfall model, or in going over to another V-cycle. This 

kind of Multi-V-model is shown in Fig. 2.4.   

 

 

 
Figure 2.4. Multi-V-model. [27] 
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2.4 Test-driven development 

Test-driven development (TDD) is an agile software development strategy that 

addresses both design and testing [12]. The fundamental programming theory is that the 

tests are written prior to the source code. The tests are added gradually during the 

implementation process. As the tests are passed, the code is refactored to improve the 

internal structure. The cycle continues until all the functionality is implemented. [21] 

Although, TDD philosophy has existed since the 1960s, it has emerged recently as 

a novel software development approach to provide software of good quality [21]. TDD 

is considered as an essential strategy in such an emergent design because when writing a 

test prior to code, the developer deliberates and decides not only on the interface of the 

software, but also on the behavior of the software. Program 2.1 provides an example of 

a test written in C#. [12] 

 

public void testCreateEmptyWallet() 

{ 

 Wallet a = new Wallet(); 

 Assert.AreEqual(0, a.getNumMoney() ); 

} 

 

Program 2.1. A simple test for verifying that Wallet has zero money. 

 

Albeit the test is simple, it involves several design decisions including the class 

name (Wallet), the expectations of a default constructor, a new method 

(getNumMoney()) that returns an integer, and the expectation that a default Wallet has 

no money. In this manner, contemplating and writing tests before the actual code, better 

quality of software ought to be reached. [12] 

Typically in TDD philosophy, developers produce code, debug, and produce some 

more code. When testers find a defect in the code, they do not only remove the defect, 

but also write a test that reproduces it. In this manner, the same defect will be also 

discovered in the future. [19] 

Both the practice and literature indicate that the utilization of TDD yields several 

benefits. TDD leads to improved test coverage and simplifies the design by producing 

highly cohesive and loosely coupled systems. TDD also enables implementation scope 

to be more explicit. In addition, TDD improves the code quality by identifying likely 

breaking points early [19]. As a positive side effect, TDD may enhance job satisfaction 

and confidence. Also, larger teams of developers can work on the same code base due to 

more frequent integration. [21] 

Nevertheless, some contradiction against the virtues of TDD exists. Many 

researches on the subject have been performed and not all of them agree with the claims 

in the literature, especially, when the TDD users are inexperienced developers. On the 

other hand, as a positive contribution, TDD proves to improve test coverage. According 

to some literature, TDD is the only means to achieve excellent test coverage [11]. [21] 
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2.5 Regression testing 

Regression testing is quality control measure to ensure that the modified code still 

complies with the specified requirements and the unmodified code has not been affected 

by the maintenance activity. Regression testing is used for testing the impact of changes 

made in the code. Testers should obtain the input from the development team about the 

nature of the fix so that testers can check the fix first and then the effects of the fix. In 

regression testing, the test cases are run multiple times on different builds. Test cases 

include all test cases considered important for the functionality of the program. The 

objective of retesting the modified software is to ensure that all the bugs have been 

fixed and all the determined functionality is still working. [8] 

In this implementation, regression tests are executed on the system level. System 

tests encompass a complete software system and therefore require a fully installed 

system. These tests verify that external interfaces work together as designed. System 

tests tend to have lengthy runtimes and therefore their schedules demand planning. In 

this implementation, system tests are run each time a new update is committed to 

mainline of the repository, since the development team consists of only few developers 

and the set of tests is fast to run. System tests are often run in intervals in larger 

development teams with lengthy set of tests to avoid prolonged queues. [7]  
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3 AUTOMATION SYSTEM 

In this chapter, the idea is to outline the image of the automation system and the theory 

behind it. As a solar inverter is an embedded system, the concept of embedded system is 

clarified at first. Next, the basic functionality of a solar inverter is introduced, and the 

main idea of the content of the automation system is described. Finally, the concept of 

test automation framework is clarified. 

3.1 Embedded system 

Embedded system is a microcontroller based device or software, which is designed to 

execute certain task with different choices and options. It is not designed to be 

programmed by the end user. Embedded system is a generic term for a broad variety of 

systems, such as cellular phone, navigator, missile tracking system and solar inverter. 

[3; 10] 

A processor performs the designed tasks of the system. The software of embedded 

system is loaded from non-volatile memory as the system is started. In simple systems 

the software consists of few functions spinning in loops. In more complex systems, such 

as a solar inverter, scheduling is also needed. Scheduling is actualized by a scheduler or 

an operating system, which controls the execution of the program. In real-time systems 

the system has to react to certain events or inputs in definite time. Operating system is 

in interaction with the real world via sensors and actuators. It has to react to the inputs 

and events within certain time constraints of its environment. Figure 3.1 describes an 

embedded system.   

 

 

Figure 3.1. Embedded system. [13] 



 12 

 

 

Embedded systems provide functionality specific to their application. Typically 

they execute control laws, signal processing algorithms, and finite state machines 

instead of executing, for example, word processing or engineering analysis. They must 

often detect and react to faults in both computing and surrounding electromechanical 

systems, as they must manipulate application-specific user interface devices. [13] 

Figure 3.2 describes the lifecycle of an embedded system. At first, a need or an 

opportunity to deploy new technology is identified. Then a product concept is 

developed including analysis of the market trends as well as brainstorming of innovative 

ideas driven by technology trends and customer demands. This is followed by parallel 

product and manufacturing process design, production, and deployment. In order to 

create a profitable design, the designer must see past deployment and take into account 

support, maintenance, upgrades, and system retirement issues. [13] 

 

 
 

Figure 3.2. Lifecycle of an embedded system. [13] 

 

Along with the embedded system lifecycle, software testing development should 

advance side by side with the product design and development all the way until the 

software is no more developed. In this thesis, automated software testing system was 

implemented in the maintenance phase of the project, which is an advantage not only 

for the project, but also especially for the upcoming projects.  

There are several means of testing software. In this thesis, the system was designed 

by exploiting the use of agile methods, more precisely, continuous integration 

environment, which enables the software to be tested automatically and frequently, so 

that errors can be found as quickly as possible. More about continuous integration is 

discussed later in this thesis. 
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3.2 Solar inverter 

Solar inverter is used to convert DC, created by the solar generator, into AC. Most of 

the solar inverters are grid connected so they are configured to feed AC power to the 

grid. Modern solar inverters include additional functions like DC or AC parameter 

measurements, controlling solar generator, communication to user or grid and 

monitoring and protection of the complete solar system. [15] 

Figure 3.3 describes functions of a solar inverter in a bloc diagram. Power 

semiconductors (see bloc (4)) in a suitable topology constitute the heart of an inverter. 

Between power semiconductors and solar generator (1) are DC protection and switches 

(2) followed by EMI (3a) and DC filter (3b). At AC side EMI (5a) and Sinus filter (5b), 

as well as AC protection and switches (6) to the grid (7) are located. Measuring 

equipment for electrical parameters on DC and AC side ((8) and (10)) and drivers (9) 

interact between controller units and hardware components. The controller (11) acts as 

pulse pattern generator and protection, controlling, monitoring and interfacing unit. 

Dissipating components like semiconductors are connected thermally to a cooling unit, 

which is connected to the housing (12). [15] 

 

 

 
Figure 3.3. Bloc diagram of a solar inverter. [15] 

 

The most important indicators for characterizing advances in inverter technology 

are inverter costs, efficiency and losses, as well as reliability and service. By automating 

software testing, an improving impact on reliability is achieved as faults are detected as 

they occur and they are easy to repair. This is very crucial since also the safety system 
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has to work in every circumstance. The system has to be shut down safely when critical 

faults occur, without causing detriment to the environment. [15]  

 

3.2.1 Maximum power point tracking 

Maximum power point tracker is one of the most fundamental functions of a solar 

inverter. The purpose of the tracker is to run the inverter into a point in which the power 

of the solar panel and the power fed to the grid are at the maximum. Several different 

algorithms for this purpose exist. Typically, they utilize at least measurements of the 

voltage of the solar panel as well as measurements of the current produced by the 

inverter to track the maximum power point. Additionally, depending on the algorithm, 

the current of the solar panel can also be measured. Figure 3.4 illustrates where the 

maximum power point is located.  

 

 
Figure 3.4. Maximum power point. [18] 

 

 

As the intensity of the sunlight varies, also the power of the solar panel changes as 

well as the power of the solar inverter. The same power can be achieved with different 

values of current and voltage. Since the current causes losses in the conductors, also the 

efficiency of the inverter varies. Another factor that has an impact on the efficiency is 

that some parts of the solar inverter, such as the control system, consume energy 
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independent of the output power. Hence, tracking the maximum power point is very 

important. Later in this thesis, a simulation test for tracking the maximum power point 

is introduced. 

 

3.3 Automated testing process 

The automation process of testing the control board software consists of several phases 

(Fig. 3.5). At first, the source code is compiled, meaning that the executable code is 

created from the source files by using a suitable software construction tool. After the 

code is successfully compiled, binary files are uploaded on the control. Once this is 

executed, the software is ready to be tested and a comprehensive set of tests is run for 

testing the functionality and reliability of the software. The results are then published as 

reports, which provide information of the final state of the build.  

 

 

 

 

 

 

Figure 3.5. Outline of the process. 

 

In this implementation, the system tests are executed on software level, meaning 

that no real voltage is fed to the system. Instead, the voltage references are fed to the 

voltage variables of the inverter artificially by computer. In this manner, the behavior 

and functionalities of the inverter can be simulated and tested. In practice, the solar 

panel would feed the voltage to the solar inverter in which case the voltage sensors 

provide information of the voltage levels to the control system of the inverter. 

 

3.4 Test automation framework 

Test automation framework is an infrastructure, which provides a complete solution 

where different tools work together providing a common platform for the software 

testers to utilize it. With a proper test automation framework, software testers can focus 

on testing the software product instead of worrying about developing the test 

environment. A good test automation framework is general enough to provide functions 

that help a tester develop automated tests for all the different components of the 

delivered software system. It helps automate the execution and result analysis of test 

cases. Test automation framework should also be easily extensible so it can evolve as 
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the software system evolves. The objective of a test automation framework is to 

facilitate the development of automated test solutions. [4] 

 

3.4.1 Automated tester framework 

Automated tester framework (ATF) is a framework, which is developed at ABB Drives. 

Therefore, it was chosen to be used in the automated testing system created in this 

thesis. It is compatible with Visual Studio, which is a development software utilized in 

this thesis for programming tests. In other words, ATF is a template that can be used in 

Visual Studio environment. 

ATF consists of Gallio, MbUnit, and TesterAPI library. Gallio is an open, neutral, 

and extensible system for .NET framework that provides tools, runtime services and a 

common object model that any number of test frameworks can leverage. Gallio is able 

to perform not only the system tests of this thesis, but also unit tests and integration 

tests. In addition, Gallio provides appropriate interfaces that are easy to utilize. MbUnit 

is a unit-testing framework for .NET, which provides a multiple of useful features that 

make testing more practical. [9] 

Gallio provides a graphical user interface, Gallio Icarus (figure 3.6), which provides 

a practical insight to the utilization of Gallio making it is easy to realize how it 

functions. It gives detailed information about the state of the tests in real time. In 

creation of the automation system of the thesis, the command-line test runner of Gallio, 

Gallio Echo (Fig. 3.7), is deployed. It has a progress monitor that provides feedback on 

the status of a test run and a brief summarize of the result. In the end of the tests, Gallio 

provides an extensive report, which indicates all the essential information concerning 

the final status of the tests. Gallio can publish these tests in several different formats 

such as html, xml, and mhtml among others. 
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Figure 3.6. Gallio Icarus. 

 

 

 

 
Figure 3.7. Gallio Echo. 

 

3.4.2 Visual Studio 

Visual Studio (Fig. 3.8) provides a set of templates, features and integrated development 

environment. It includes a few programming languages, such as C, C++, VB.NET, and 

C#, and it provides support for multiple programming languages via language services. 

It utilizes .NET Framework as the software framework. The basic libraries of .NET 

Framework provide support to, for example, user interface, data access, database 

connectivity, and network communications. Basically, it is intended to be utilized by 

applications on Windows platform. Software developers produce software by 

combining .NET Framework and other libraries with their own source code. The 

extensibility of Visual Studio allows writing own project templates and add-ins. [16; 17] 
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Figure 3.8. Visual Studio. 
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4 AGILE METHODS 

This chapter concentrates on presenting the main concepts that have been introduced 

into the automated testing system. The objective was to create an agile and modern 

system, which provides benefits to the development team. The main concentration is 

laid on introducing the concept of continuous integration, which is considered as a 

promising solution on the vision of the future in order to improve the efficiency of the 

development team. Subsequently, the concept of version control system is introduced in 

the end of the chapter. 

Agile methods provide a method of programming based on iterative incremental 

development with each iteration taking few weeks of time and resulting in executable 

fraction of the complete product [19]. Agile methods are well suited for embedded 

systems development since they enable reducing of cycle times. They provide solutions 

for organizations involved in the lifecycle of embedded systems, which have to manage 

the growing operational and environmental complexity that these systems face. The 

more volatile the requirements, and the more experimental the technology, the more 

agile methods increase the odds of success. However, their utilization has not become a 

widespread practice. [25]  

Finding the right tools and techniques to support test-driven development without 

compromising on the efficiencies already gained with homegrown tool suites is the 

challenge for organizations attempting to utilize agile methods. The development team 

is more effective when it can decrease the cost of moving information between people, 

and if the time elapsed between decision making and seeing the consequences of the 

decision is minimized. It is also claimed that agile development relies heavily on 

socialization through communication and collaboration to share and access tacit 

knowledge within the team. [25] 

Technical issues, such as testing and requirements, as well as organizational issues, 

such as knowledge transfer, process tailoring, culture change and support infrastructure 

development, have to be prepared to effectively adopt agile methods in the subject of 

embedded systems development. Agile methods require the development of the right 

organizational infrastructure, including appropriate tools to support the software 

lifecycle, as well as creating an environment that supports collaboration and 

communication. This means taking advantage of the latest technology, which often 

leads to changing software requirements. One of the greatest challenges associated with 

agile adoption is integrating them with the existing environment. Agile methods 

represent a radically different fashion of performing the work associated with systems 

development. Basically, agile methods are about continuous way of developing the 
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product efficiently by using a testing method that provides frequent feedback of the 

state of the product. Figure 4.1 provides the idea of the loop that is performed 

repeatedly when working with agile methods. It means that possible sections of 

improvement are continuously searched. Therefore, constant development is 

continuously pursued. [25] 

 

 

Figure 4.1. Agile methodology. 

 

 

Agile methods enable delivering working and useful software rapidly. Speed is 

essential because delivering software is always cost-associated. Delivering software fast 

is also important because it allows verifying whether the new features and bug fixes are 

useful. The customer creates hypotheses about which features and bug fixes are useful 

to users. They remain hypotheses until they are in the hands of users who vote by 

choosing to utilize the product. Therefore, minimizing cycle time, so that an effective 

feedback loop can be created, is extremely important. [11]  

 

4.1 Continuous integration 

Continuous integration offers a fast feedback providing method for software 

development. The reason for pursuing rapid feedback is in achieving an opportunity to 

find and fix problems fast throughout the development cycle. This helps in reducing 

assumptions on a project. Continuous integration is not literally continuous, but more 

likely continual. Frequency of the testing can be defined as wanted, for example, every 

five minutes or each time a new software update is available. In this manner, continuous 

integration enables automated tests constantly and repeatedly from the deployment until 

the end of the project. [7] 

Developing software requires planning for change, continuously observing the 

result, and incrementally correcting the code based on the results. This is when 

continuous integration provides remarkable assistance. Immediate feedback is provided 

to the developer immediately when the build is executed. This method encourages 
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developers to make changes in the code, since even when the build breaks, immediate 

feedback is provided. Sending information of the latest build results to the right persons 

is vital. In addition, it has to reach them fast with correct information (Fig. 4.2). 

[7] 

 

 

Figure 4.2. Continuous feedback. [7] 

 

Most software developed by large teams spend a remarkable proportion of its 

development time in an unstable state. This is because the system and acceptance testing 

are not performed until the end the project. As a result, lengthy integration phases are 

scheduled at the end of development to allow the development team to get the branches 

merged and the application working. These integration periods can take a vast amount 

of time, which is often difficult to predict. In the worst case, teams can find that their 

software does not fit for purpose. [11] 

The objective of continuous integration is that the software is always in a working 

state. When working most efficiently, continuous integration requires that each time a 

change is committed to the version control system, the entire application is built and an 

extensive set of automated tests are run to test its functionality. The development team 

should immediately fix any problem occurred if the build or test process fails. In this 

manner, the software is proven to work with the new changes when sufficiently 

comprehensive set of automated tests is run. By using continuous integration efficiently, 

software can be delivered faster and with fewer bugs than without it. With this practice, 

bugs are caught earlier in the delivery process when they are easier and cheaper to fix, 

providing cost and time savings. [11] 

Certain prerequisites exist to start efficiently with continuous integration. First, a 

version control system is required for storing data. In the literature, all the files 

including code, tests, scripts and all the other files needed to create, run, install, and test 

the application, and basically everything that can change, should be stored in the 
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repository. The second prerequisite is to be able to run a build in an automated fashion 

from the continuous integration environment. A build may consist of the compilation 

and testing among other things. It acts as the process for putting source code together 

and verifying that the software works as cohesive unit. Thirdly, commitment from the 

developers is required, since continuous integration is a practice, not a tool. Every 

developer has to check in small incremental changes frequently to mainline and agree 

that fixing changes that break the application are the highest priority. Continuous 

integration will not lead to the desired improvement in quality if the developers do not 

adopt the commitment. [11; 7] 

The basic idea of using continuous integration is simple. The integration tool needs 

to know where to find the source control repository, what script to run in order to 

compile, and run the automated commit tests for the application, and how to report if 

the latest changes cause tests to fail. The continuous integrations software polls the 

version control system for new possible commits. Commits can be made to source code, 

configuration files or other files included in the repository of the project. If new 

commits are found, the continuous integration tool checks out the latest version of the 

software, runs build script to compile the software, performs the tests, and notifies of 

the results in a way described in advance. In addition, it provides access to test reports. 

Figure 4.3 describes this process. In the implementation of this thesis, the version 

system repository and the continuous integration server are located on the same 

computer. [11] 

 

Figure 4.3. The components of continuous integration system. [7] 

 

In practice, the integration cycle consists of few repeatable phases. If the last build 

is running, a developer must wait until it is completed. If it fails, the whole team should 

work to make the build successful again, since getting broken code is forbidden. When 
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the build is successful, the developer updates his code in his development environment 

from the version control repository and makes his changes. If there were unit tests, they 

would be run on local development machine in this phase to verify that everything 

functions correctly. Often a personal build is programmed to execute this feature, but 

only for unit tests, since they are quick to run and they do not require the entire 

automation system. When the personal build completes successfully, the code can be 

committed into the version control repository. In system tests, code is committed 

directly to the repository. The continuous integration tool runs the build with the new 

code automatically after noticing new changes in the repository. If the build fails, the 

developer should start fixing the problem immediately and should continue until the 

build completes successfully. [11] 

Frequent check-ins to mainline of the repository is the most important practice for 

continuous integration to work accordingly. Consequently, changes stay smaller and 

they are less likely to break the build. When a mistake is done, a recent functioning 

version of the software always exists. Also, it is important to run a comprehensive set of 

automated tests, which verify that the application is working properly. A passed build 

should provide confidence on the program, not only satisfaction of a successful run. 

[11] 

In unit tests, the build process has to be kept short. Otherwise developers will check 

in less often due to the frustrating waiting time caused by queues. In unit tests, ten 

minutes should be maximum time for a complex test. If not, then the tests should be 

optimized. Normally time of one or two minutes is pursued. [11] 

In system tests, build process durations are longer, since they require a fully 

installed system. In large development teams with multiple committers, running system 

tests with every commit could lead to lengthy queues and disorder. If the delay is too 

long, developers move to other activities and one of the primary benefits of continuous 

integration is not realized. Therefore, these types of tests are often run with periodic 

builds. As the software development team in the project, in which this thesis is written, 

consists of only few developers, the system tests are run with each commit. As more 

developers become related to the software development over the time, using periodic 

build should be considered. Especially, as the code base increases during the project, 

running all written tests can take an extremely long time for a build to complete. [11] 

 

4.1.1 The value of continuous integration 

There are several reasons for deploying automated software testing by using continuous 

integration on a project. First of all, it helps in reducing risks. Defects are detected and 

fixed early and health of the software is always known. Secondly, the use of continuous 

integration enables reducing repetitive processes. In this manner, time, costs, and effort 

can be saved. In addition, it can be assured that the process runs the same way every 

time. In this manner, human mistakes can be avoided as well. Thirdly, deployable 

software can be generated at any point in time. Furthermore, continuous integration 
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enables better visibility for the project, since a recent status is always available. Also 

trends in builds success or failure are possible to notice. Overall, by using continuous 

integration practices efficiently, improved confidence in the quality of the software is 

achieved since the impacts of the code modifications are indicated. [7]  

 

4.1.2 Build script 

A continuous integration server requires a command script to execute tests in an 

automated manner. This is called a build script. A build script is a single or a set of 

scripts used for, for instance, compiling, testing, inspecting, and deploying software. 

They do not provide continuous integration themselves, but they can be used for 

automating the software build cycle. Build scripts define what is done and in which 

order in a build. They can be written in many programming languages. In this thesis, 

windows batch files were used as build tools since the programming language is well 

known and easy to identify. Fig. 4.4 provides examples of what can be performed via 

build scripts.  [7]  

 

 

Figure 4.4. Build script. 

 

In this thesis, all the other tasks of the figure above are executed by the build scripts 

except of running inspections due to time constraints. Running inspections would be a 

useful task to include in the continuous integration process. In this manner, the style of 

the code, code duplication, code complexity can be inspected as well as code coverage 

can be assessed. Code coverage signifies the percentage of the code, which the written 

tests cover. This is extremely useful knowledge as tests are written to verify that the 

product functions properly. Deploying software means basically making the software 

available for use, for instance, releasing or installing and activating the software. [7]  
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4.1.3 Continuous integration server 

Continuous integration server is dedicated to execute the integration builds. It has all the 

necessary software components installed to perform the automated test cycle in created 

environment. Assumptions about environment and configuration can be declined, when 

a separate machine, a continuous integration server, is dedicated to integration builds. 

Typically, it is common that workstations have slightly different dependencies and 

configurations. This is when a dedicated integration build server provides an effective 

solution to the problem. Additionally, the fact that the computer is only used for 

integration tasks is a major advantage. The better the performance of the dedicated 

integration build computer is, the faster it can perform its tasks. [7]  

 

4.1.4 Continuous integration tool 

Continuous integration tool is running on the continuous integration server. Typically, a 

continuous integration tool is configured to check for changes in a version system 

repository every few minutes. When it detects changes, it retrieves the source files and 

runs a build script or scripts accordingly. Complete build jobs are then published on a 

dashboard. Continuous integration tool can also be scheduled to build on regular 

intervals, such as every two hours, but then it would not be according to the terms of 

continuous integration. In addition, it can be manually triggered from the dashboard. [7] 

Continuous integration tools have several additional features. They provide 

different kinds of feedback mechanisms, for example, e-mail and SMS. Basically plenty 

of feedback mechanisms are available via plug-ins for keeping developers updated of 

the states of the builds. Continuous integration tools display also a history of previous 

builds. In addition, they offer support for multiple version control systems and build 

scripting tools via plug-ins. [7]  

 

4.1.4.1 Jenkins 

 

In the system designed in this thesis, an open source program called Jenkins is used as 

the continuous integration tool. After stating Jenkins as an easy-to-use program, and 

compatible program with the chosen version control system, it was chosen to be the 

integration tool utilized in this implementation. 

Jenkins has a very simple interface (Fig. 4.5). The dashboard displays build jobs 

one on the other and provides practical information about their states. A blue sign 

indicates that the previous job was run successfully and a red sign indicates that the last 

job was failed. Jenkins utilizes a weather metaphor to provide an idea of the stability of 

the build. Essentially, the more the jobs fail, the worse the weather becomes. In 

addition, Jenkins indicates when the last successful and failed jobs were run, and what 

was the duration of the last job. 
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Figure 4.5. Jenkins dashboard. [14] 

 

4.1.5 Crucial practices 

There are some crucial practices that are mandatory for continuous integration to work 

properly when there are several developers developing the same software. First practice 

is to not check in on a broken build. Developers are always responsible to fix the 

problem immediately when a problem occurs. Otherwise there is a chance that the 

failure is compounded with more problems. In that case, much more time is required to 

fix the problem. Additionally, developers might get used to see the build always broken, 

meaning that the build remains broken at all times. [11] 

Second practice discusses on unit tests. As mentioned before, the practice is to run 

all commit tests locally before committing to the mainline. It is a way to ensure that the 

generated changes actually work. The local copy of the project is refreshed through 

updating it from the version control system. Then the local build should be initiated and 

the commit tests performed. When the build is successful, the developer is ready to 

commit the changes to the version control system on the continuous integration server. 

Two reasons for this exist. First, someone else might have checked in before the other 

one and the combination of these changes cause tests to fail. Secondly, an artifact is 

forgotten to update to the repository causing tests to fail. Checking out and committing 

test locally in advance can avoid these problems and breaking the build. Modern 

continuous integration tools provide this feature as, for example, personal build. By 

using personal build, continuous integration tool takes the local changes and runs a 

build on the continuous integration grid, instead of doing it by hands. If the build fails, 

continuous integration server notices the developer, and if the build passes, integration 

server checks in the changes automatically. This practice works best when using 

distributed version control system, since it allows the users to store commits locally 

without pushing them to the central server. [11] 
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Third practice is to commit code early and often in order to achieve the benefits of 

continuous integration. Committing after each small task is preferable. By doing small 

changes only, a lot of effort can be saved when errors occur. The benefits of the version 

control improve when committing regularly. It is impossible to safely refactor an 

application unless the changes are committed frequently to the mainline. In this manner, 

the changes stay small and manageable and they are also visible for the other 

developers. Naturally, committing and getting broken code should be avoided. [7; 11] 

Basically, the developers who check in the changes are responsible for monitoring 

the progress of the build until it passes its commit tests. If it fails, they should fix the 

problem with another check-in or revert to the previous version in version control. 

Fixing the code is always the desirable solution. The name of the committer stays in the 

version control system, which makes developers deliberate their changes. For instance, 

it might give bad reputation to the committer if a broken build is left, for example, over 

a weekend, and some other developers would have to solve the problem. [11] 

When creating new pieces of functionality or fixing a bug, the developers should 

first create a test that is an executable specification of the expected behavior of the code 

to be written. These tests verify the design of the application and operate as regression 

tests as well as documentation of the code. As mentioned before, this is called test-

driven development. [11] 

 

4.2 Version control 

Version control system is a mechanism that enables keeping multiple versions of all the 

files of your software, so that after modifying a file the previous versions are still 

accessible. It gives developers the freedom to modify and delete, which is useful in 

creating new and getting rid of old ideas. Additionally, through version control people 

involved in software development are able to collaborate across space and time since 

they all can access to the version control system. [11] 

Version control system maintains the complete history of every change made to the 

application. It indicates what was done when, by whom, and for what reason. The new 

changes have to be always commented when committing to the repository. These are 

valuable information when something goes wrong in the development process. 

Basically, not only the source code should be stored in the version control system, but 

also every single artifact related to the creation of the software should be stored there, so 

that a new member of the software development team can start working from scratch. In 

addition to source code, this means that also tests, database scripts, documentation, 

build and deployment scripts, libraries and configuration files for the application, 

compiler and collection of tools and so on, should be under version control. The 

objective is to store everything that can possibly change at any point of the life cycle of 

the project in controlled manner. [11] 
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As the aim of the thesis is to automate software testing process and thereby save 

time and enhance the quality, everything is depended on having a well-operating 

version control repository. When changes are checked into version control, they 

instantly become public and available to everybody on the team. Further, with 

continuous integration, it is possible to automatically execute testing every time changes 

to the software are performed. [11] 

 

4.2.1 Git 

Git is an open source distributed version control system. What separates distributed 

version control system from the other version control systems, is the fact that each user 

keeps a self-contained, first-class repository on their own computer, effectively, creating 

their own branch. This enables many characteristics, for instance; commits can be easily 

modified, reordered, or batched up locally before sending changes to anybody else; 

having multiple copies of master repositories; pushing updates to a selected group 

without forcing them to take them; pulling updates individually from other users. 

Changes to the local working copy must be checked in to the local repository of the 

developer before they can be pushed to other repositories, and updates from other 

repositories must be reconciled with the local repository of the developer before 

updating the working copy. Figure 4.6 presents some of the most important Git-

commands graphically as it describes the basic construction of Git. [11] 

 

 
Figure 4.6. Git data transport commands and the construction of Git. [26] 
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Continuous integration works exactly the same with distributed version control 

system as with centralized version control system. Still the central repository is used as 

the mainline for developing the application. Distributed version control, however, 

provides several other possible workflows when preferred. [11] 

In distributed version control system, like Git, developers can publish their own 

version for others to experiment with, instead of having to submit their patches to the 

project owner for committing them back to the repository of the project. This will lead 

to more experimentation, faster delivery of features and bug fixes, and faster evolution 

of projects. This means that commit access is not a bottleneck to developers creating 

new functionalities or fixing bugs. Repositories can be accessed via Git protocol or they 

can be published on Internet without any special web server configuration. Git also 

comes with several tools for visualizing and navigating a non-linear development 

history. [11; 5] 
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5 DESIGN OF THE TESTING SYSTEM 

This chapter discusses on the facts how the system was created. First, the set-up is 

introduced. Then further details of the parts of the system are presented. Also, the 

execution of running builds on Jenkins is explained. Finally, feedback and backup 

mechanisms of the system are declared. 

5.1 Introduction 

 

The designing of the system contains both hardware and software design. At first, 

different options for software design were researched. Only programs working on 

Windows platform were considered. From the beginning it was clear that solutions or 

parts of solutions, implemented within ABB, would be under closer investigation, since 

knowledge and experience concerning these solutions should be reasonably available. A 

few solutions were examined. Also some external program options were considered for 

the continuous integration tool. Shortly, conclusion resulted in trying to exploit the 

promising software environments utilized at ABB Drives, thereby making ABB Drives 

more cohesive. The settings and configurations were supposed to be created, as it would 

provide the best benefits to the working team in the enabled circumstances. 

As the object was to verify, that all the features of the solar inverter software 

remain functional when new updates take place, the automated testing environment has 

to be designed accordingly. Especially time concerned questions, like how often tests 

have to be run, how much does it take time, and when should they be run, needed to be 

solved. 

By implementing continuous integration into the automation testing system, the 

possibility to run tests whenever new changes of the code are made to the mainline is 

realized. In this manner, the functionality of the software can be always verified. Most 

importantly, the developers of the software receive feedback immediately about the 

state and the functionality of the software. Thereby, the developers can work 

accordingly. When a build is run unsuccessfully, repairing the software is of the highest 

importance in order to remake the software well functioning for the other developers to 

work on. Hence, continuous integration was considered as a useful tool for improving 

the development of the software. 

A version control system is one of the priorities for a decent automation system 

when it comes to conserving the software. It provides safety to the development team by 

offering a way to reverse to a previous functioning version after noticing that 

unfavorable changes to the code have been made. However, the main objective is to fix 
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problems instead of reversing to the previous version. Even so, it provides more courage 

within the development team to commit changes to the code. 

The core in automated testing system is naturally the test framework. It provides 

capabilities that enable a tester to create tests, execute tests, and analyze test results. The 

framework provides a collection of tests services that testers can use to develop 

automated tests. These services are software functions that can be called on for 

simplifying the common tasks that testers encounter when testing software. 

In order to create an automated system for software testing, all the components 

have to work together properly. Continuous integration cannot be introduced if the 

continuous integration tool does not work together with the version control system. 

Additionally, the continuous integration tool has to be able to call on the test runner in 

order to execute the set of tests. Other factor that has to work properly is the connection 

between the control board and the continuous integration server as well as the 

connections between the developers and the continuous integration server. 

The design of the testing system was started by using as simple tests as possible to 

verify that the complexity of the tests does not inhibit the testing of the automation 

system in the beginning of the implementation. Therefore, the best option was to 

commence by running only one functioning test at a time until the system is stated to 

operate correctly. Otherwise, the faults and defects in the tests would have complicated 

the testing of the system. 

5.2 The set-up 

A simplified set-up of the automation system is illustrated in the Fig. 5.1. The 

developers commit their changes from their local workstations via network to the 

mainline of the repository, which is located on the continuous integration server. 

Whether the continuous integration tool is preset to poll for the changes in the 

repository or on periodical basis, it performs the specified tasks to the control board via 

USB-cable, which utilizes a proprietary communication protocol that is developed at 

ABB Drives. In the beginning, problems in functionality of the protocol were known to 

exist. Since then, software updates to solve the problem have been performed and 

improvements have been noticed. 
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Figure 5.1. The set-up of the automation system. 

 

In order to function, the control board demands a power source with two different 

voltage levels. The communication section of the board is supplied with 24 volts and the 

processor section with 5 volts. The control board usually needs a load, for example the 

control panel, to awake after being shut down. 

In the beginning of the thesis, the system was set up on a work desk. However, the 

objective was to find a decent location for it in a restricted space. The location should be 

close enough to the developers so that they could work with the system if any problem 

occurs. Additionally, the system is likely to be expanded in the future to cover not only 

simulation tests, but also tests using the operational set-up with real physical 

magnitudes.  

 

5.3 Continuous integration server 

A dedicated server enables a proper approach to introduce continuous integration in a 

software development team since it can concentrate only in running automated tests. A 

desktop computer was chosen for the purpose to prevent temptations of carrying it away 

from its location. In addition, it had a decent performance and it was quickly available. 

To ensure that all the programs are functioning on the computer, Windows platform was 

chosen to be installed on it. 

Jenkins was installed on the continuous integration server as a Windows service 

(Fig. 5.2). In this manner, Jenkins starts always whenever the server reboots and can be 
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managed using the standard Windows administration tools. Hence, the continuous 

integration is always in operation whenever continuous integration server is on. 

 

 

Figure 5.2. Jenkins installed as Windows service. 

 

Version control system, Git, is installed on the continuous integration server for 

reserving data. In addition to the source code files, also test files, and batch files were 

included in the repository. In this manner, the continuous integration cycle is triggered 

also when test files or batch scripts are modified. This is practical, since also these files 

contain errors as likely as the source code files.  

By using Git, a bare repository on the continuous integration server is created. A 

bare repository in Git contains only the version control information without any 

working files.  This bare repository functions as the repository, from where the 

developers pull the changes of the code to their local „non-bare‟ repository. In 

proportion, it also functions as the repository, to where the developers push their 

changes from their local repository. The „non-bare‟ repository on the continuous 

integration server is then updated from the bare repository automatically, after which 

the code is ready for the compiling process. 

In order to prepare the integration server for compiling the code, a proper 

environment has to be created on it. Basically, the environment requires the same tools 

that the software developers utilize for developing and checking the software. At first, a 

source code editor is required, which is utilized to create and modify the code of the 

software. Also, a construction tool is needed for generating final binary executables as 

well as a static code analysis software for analyzing the code. Additionally, a scripting 

tool is required to execute Python script files.   

Next phase is to prepare the continuous integration server for uploading the code on 

the control board. The code is uploaded into the flash memory of the control board. 

Instead of attaching the control panel to its place, an USB-cable is connected to the 

control board with an adapter enabling the connection between the continuous 

integration server and the control board. To enable the data transfer, USB-driver has to 

be installed on the continuous integration server. 
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Two options exist for uploading the code to the control board. Both of them are 

realized by running a specified batch file, which calls certain tools included in the 

source code directory to install the software of the solar inverter on the control board. 

The first option is to upload a simulator software, that simulates the functions of the real 

operating situation. In this manner, the real measured variables can be replaced by 

artificial variables, which imitate the real behavior of a real operation of a solar panel. 

Additionally, natural variation can be eliminated, which enables pure software tests. In 

this implementation, this was the utilized procedure, since the system was performed in 

a simulated environment. The second option is to upload the real operational software of 

the solar inverter to the control board. This is the same software that is included in the 

commercial product which functions in real circumstances. In this software, the 

functioning of the product is not based on simulation, but on the real physical 

magnitudes. 

In order to run system tests, ATF is installed on the continuous integration server. 

Basically, the idea is very simple; the test framework is needed for running tests and 

generating reports. Also, new tests can be created with the same environment. The test 

realizations are discussed in more detail in chapter six. 

  

5.4 Local workstations 

In general, developers have programs for developing and debugging the software. They 

may also have the control board with the power source and the connection for checking 

out certain issues. What they do not want to have are the plenty of performance and 

time requiring tasks of running the tests on their local computers. This is one reason 

among others why the devoted continuous integration server is implemented within the 

development team. 

Since only the most novel code is suitable for development, the code is conserved 

in the git repository of the continuous integration server, where all the developers of the 

software have access. Hence, having Git installed on the local computer is a necessary 

requirement for all the developers. As a developer commences to develop the software, 

the first task is to clone the git repository from the continuous integration server to the 

local workstation to get the most recent software. The cloning of the repository on the 

local computer is only required once, since in the long term only the changes of the 

code are pulled from the continuous integration server. As all the developers have their 

local repositories, they have free hands to develop the software as long as they 

remember to push their changes back to the mainline of the repository on the continuous 

integration server for making it available for the other developers and, of course, for 

running the tests. 

Developers can access Jenkins, which is run by the continuous integration server, 

from their own local workstation via a web browser. Naturally, the permissions have to 

be provided first. In this manner, they can easily view the state, history and other details 



 35 

 

of the build from the Jenkins dashboard. Figure 5.3 presents the history of a Jenkins 

build job. Successful and failed build job are indicated with different colors. 

 

 
Figure 5.3. History of a Jenkins build job. [26] 

 

5.5 Running the builds 

Jenkins runs the build automatically when new changes are committed to the mainline 

of the repository located on the continuous integration server. It is scheduled to poll the 

repository every minute for changes. Three build jobs that form the build, are created to 

be run one after another. When Jenkins notices changes in the mainline of the 

repository, the first build job is triggered. The first build job executes a batch file, which 

compiles the source code and generates final binary files. Only if the compiling job is 

run successfully, the next build job for uploading is triggered automatically. It executes 

a batch file, which uploads the compiled software to the control board. The files that are 

uploaded to the control board can be specified by parameters in the batch file. For 

instance, the files intended only for the production version or the files intended only for 

uploading firmware version can be provided. When the build job for uploading is run 

successfully, the build job for running system tests is triggered automatically. This job 

executes a batch file that calls Gallio Echo test runner and provides it with parameters 

from the command line of Jenkins where the batch file is being called. These parameters 

are given when only certain test categories are intended to be run. Additionally, plenty 

of other parameters are given to Gallio Echo in the batch file. Closer introduction to the 

batch file is presented in Section 6.2.  
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The build process was divided into three job sections, since some advantages were 

noticed. At first, the failed job is easy to be recognized on the Jenkins dashboard since a 

red sign next to the failed job indicates it. Secondly, it improves the modularity of the 

process. In this manner, if the situation demands, only one job can be executed instead 

of the whole chain, since the jobs can be also triggered manually. The Jenkins 

dashboard including these build jobs is presented in Fig. 5.4. 

 

 
Figure 5.4. Jenkins dashboard with the created build jobs. 

 

The daily build job is run every morning. At first, the job executes a batch file, 

which cleans the build-folder from the repository. This folder contains the generated 

binary files constructed by the former compiling process. The next compiling process 

will then regenerate the binary files. In this manner, the binary files are completely 

regenerated daily. The cleaning process is included only in the daily build but not in the 

continuous integration test process, since it is a time consuming process. 

The daily build job runs the whole set of system tests by triggering the compile-job, 

which is the first job of the chain. In this manner, the whole chain will be run again. 

Especially, when a multitude of system tests exist and plenty of time is required to run 

the whole set of tests, the system tests are normally run only on a daily basis. 

5.6 Feedback 

The test process is considered as successful only if all the tree jobs are run successfully. 

In other words, all the jobs remain or become successful. This is when no feedback is 

sent via any feedback mechanism, since everything should be working as intended. All 

the jobs are configured to send an e-mail notification when they fail. Also, an e-mail 

notification is sent, when a job becomes successful after being failed. The e-mail 

addresses of the receivers are defined in advance. Also, separate e-mails can be sent to 

the developers who broke the build. 
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Various methods for providing feedback exist. The message can be provided via, 

for instance, text message, e-mail, or social network services. It is essential to reach the 

developer and provide information of the broken build. In this implementation, e-mail 

was the chosen method for delivering the message to the developers. The Fig. 5.5 

presents a received e-mail from Jenkins after a failed build. 

 

 

Figure 5.5. A received e-mail from Jenkins due to a failed build. 

 

Gallio generates a report of every executed test. The report includes detailed 

information that helps developers repair possible defects. All the reports are saved on 

the hard disk of the continuous integrations server in Mhtml-format. The permission to 

this folder is shared to all the software developers so that the reports can be remotely 

analyzed. Figure 5.6 presents a test report generated by Gallio. 
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Figure 5.6. Gallio test report. 

5.7 Backups 

Backups are required to prevent loosing data when a critical fault occurs due to, for 

instance, broken hard disk or a computer virus. Hence, backups from the bare repository 

located on the continuous integration server are taken periodically. The process was 

realized by creating a Windows scheduled task, which runs a certain batch file. The 

batch file generates a zip-file of the bare repository and a script called in the batch file 

moves it to a location on a network drive reserving five backups: backups from last 

three days, a one-week-old backup, and a two-week-old backup. The script for 

conserving these files was introduced from another project. The backups are taken every 

night. 
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6 TEST REALISATIONS

In this chapter, the created tests and the ideas behind them are declared. The purpose 

was not to write automated tests for all the tests that were performed manually before. 

Yet, some tests were created to test some basic functionalities of the software and to 

modify some configurations of the product. Moreover, certain tests were created to 

simulate the basic operations of the product when the inverter is connected to the grid. 

6.1 Introduction 

In general, the black-box-method is utilized as the principle when writing automated 

system tests. Certain inputs are entered and the outputs are verified. Program 6.1 

presents an example of a test created for verifying if resetting the „reset fault‟ parameter 

also resets the „active fault‟ parameter to a state where no fault is on.  

 

//==================================================================== 

        /// <summary> 

        /// Test script for resetting fault. 

        /// </summary>       

//==================================================================== 

[Test(Order = 2), Category("setup"), Author("Janne Sjögren")] 

public void Reset_Fault() 

{ 

    //-------------------------------------------------------- 

    // Check if the ‘Reset Fault’ bit resets the ‘Active Fault’ 

    //-------------------------------------------------------- 

    byte group = 4;   // location for Active Fault 

    byte index = 1; 

    int fault = 0; 

    testerAPI.ReadParameterValue(group, index, out fault); 

    if (fault != 0) 

    { 

        group = 20;    // location for Reset Fault 

        index = 9; 

        TestLog.WriteLine("Fault was on in the beginning."); 

        testerAPI.WriteParameterValue(group, index, 1); 

    } 

    group = 4; 

    index = 1; 

    int fault_finally = 0; 

    // fault finally can be 0 (fault is off) or 1 (fault is on) 

    testerAPI.ReadParameterValue(group, index, out fault_finally); 

    // successful if the Active Fault bit is 0 

    Assert.AreEqual(0, fault_finally, "The fault is on." ); 

} 

 

Program 6.1. A test script for resetting active fault. 
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ATF enables the use of multiple attributes that facilitate writing and running tests. 

To name some of those, as noticed in the program above, the test order can be 

determined for all the tests. Also, all the tests can be divided into categories. This is 

useful when instead of running the whole set of tests, only specified test categories are 

intended to run. The author-attribute becomes useful when tracking down details of a 

test, since the authors often know the ideas behind them.   

ATF enables to write values directly to the parameters of the solar inverter software 

as well as reading from its parameters, which makes testing of the software possible. 

The locations of the parameters are the same than the ones found from the control panel 

of the solar inverter. The values are verified with the assert-command, which provides 

tens of different conditions for comparing values to the correct ones. In Program 6.1, the 

fault_finally-variable is inspected to be zero. If it is zero, the test returns a success. 

Otherwise, a failure is returned and a failure message: “The fault is on.” is printed. If 

any test returns a failure when running the set of tests, the Jenkins build returns a red 

sign indicating an unsuccessful build, ending up with a feedback e-mail sent to the 

specified developers. This is when the developers should realize, that something did not 

function as designed, and the code should be urgently improved. 

6.2 Grid simulation tests 

Two tests for verifying some of the most fundamental features were created by 

simulating the connection of the solar inverter to the grid. Connection to the grid, 

disconnection from the grid, and maximum power point tracking were considered as 

some of the most essential features of the solar inverter.  

The connection to the grid and the disconnection from the grid were written in the 

same test case. As the intensity of the sunlight increases, the solar inverter connects to 

the grid when the DC-voltage exceeds a sufficient level, which is defined by the 

amplitude of the grid voltage. In this test, values are written directly to the variables of 

the solar inverter, which is enabled by the algorithms of ATF. The variable for the 

intensity of the sunlight is an iq16-number, which is a 32-bit fixed-point figure 

consisting of 16 integer bits and 16 fraction bits, created by the manufacturer of the 

processor of the control board. To ensure that the solar inverter connects to the grid, the 

simulated intensity is increased to 800 W/m
2
. In order to write new values for the 

intensity, the values have to be converted to iq16-numbers. Shifting a 32-bit integer left 

by 16 executes that. Some delays are programmed in the simulation test, since the 

operation of the solar inverter has some delay. These delays were noticed from a 

separate simulator program. When the intensity has been increased, the connection is 

verified from a state-parameter. After the connection has been verified, the intensity is 

decreased back to 100 W/m
2
 and the disconnection is verified again from the state-
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parameter. If the connection and disconnection have been confirmed as successful, the 

test returns success. Otherwise failure is returned. Program 6.2 presents this test. 

 

 

//==================================================================== 

        /// <summary> 

  /// This test verifies that the inverter connects to the grid 

  /// and disconnects from the grid. 

        /// </summary>           

//====================================================================  

[Test(Order = 1), Category("connection"), Author("Janne Sjögren")] 

public void GridConnectionTest() 

{ 

    //-------------------------------------------------------- 

    // Grid connections simulations and verifications 

    //-------------------------------------------------------- 

 

    // set inverter Enable off 

    testerAPI.Write32("u32_phndl_InverterEnable", 0); 

    SleepMs(500); 

    // Sunlight intensity 100 in the beginning 

    testerAPI.Write32("iq16TestG", 100 << 16); 

    SleepMs(500); 

    // set InverterEnable on 

    testerAPI.Write32("u32_phndl_InverterEnable", 1); 

    SleepMs(500); 

    uint CP_state = (uint)testerAPI.Read16("eCPSMState"); 

    Assert.AreEqual((uint) 2, CP_state, "CP state machine is not in 

    Ready-state. Its value is {0}.", CP_state); 

    // increase intensity 

    testerAPI.Write32("iq16TestG", 300 << 16); 

    SleepMs(1000); 

    testerAPI.Write32("iq16TestG", 600 << 16); 

    SleepMs(3000); 

    testerAPI.Write32("iq16TestG", 800 << 16); 

    SleepMs(8000); 

    // verify that the inverter is connected to the grid 

    CP_state = (uint)testerAPI.Read16("eCPSMState"); 

    Assert.AreEqual((uint) 6, CP_state, "CP state machine is not 

    connected to the grid. Its value is {0}", CP_state); 

    SleepMs(1000); 

    // decrease intensity 

    testerAPI.Write32("iq16TestG", 100 << 16); 

    SleepMs(3000); 

    // verify that the inverter disconnects from the grid 

    CP_state = (uint)testerAPI.Read16("eCPSMState"); 

    Assert.AreEqual((uint)2, CP_state, "CP state machine is not 

    disconnected from the grid. Its value is {0}", CP_state); 

    // set inverter Enable off 

    testerAPI.Write32("u32_phndl_InverterEnable", 0); 

} 

 

Program 6.2. A test script for grid connections. 

 

Maximum power point tracking test commences by increasing the sunlight intensity 

to 1000 W/m
2
. The maximum power point is defined to be reached when the intensity is 

1000 W/m
2
 and the output current is nominal. This is indicated by the average power 
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correction variable, which should be greater than one when the desired maximum power 

point is reached. Since the maximum power point is not found immediately due to some 

delays caused by the tracking algorithm, the maximum power point is verified to be 

found every two seconds during one minute. The test return success if the maximum 

power point is reached. Otherwise failure is returned. The test for tracking the 

maximum power point is presented in program 6.3.  

 

        

//==================================================================== 

        /// <summary> 

        /// This test verifies that the inverter sets to the maximum 

        /// power point. 

        /// </summary>            

//====================================================================  

[Test(Order = 2), Category("connection"), Author("Janne Sjögren")] 

public void MPPT_test() 

{ 

//-------------------------------------------------------- 

// Grid connections simulations and verifications 

//-------------------------------------------------------- 

// set inverter Enable off 

testerAPI.Write32("u32_phndl_InverterEnable", 0); 

SleepMs(500); 

// Sunlight intensity 100 in the beginning 

testerAPI.Write32("iq16TestG", 100 << 16); 

SleepMs(500); 

// set InverterEnable on 

testerAPI.Write32("u32_phndl_InverterEnable", 1); 

SleepMs(500); 

// intensity is increased 

testerAPI.Write32("iq16TestG", (Int32)(300 << 16)); 

SleepMs(6000); 

testerAPI.Write32("iq16TestG", (Int32)(600 << 16)); 

SleepMs(2000); 

testerAPI.Write32("iq16TestG", (Int32)(1000 << 16)); 

// g_iq24PgAvgCycleCorr is used for checking if the MPPT is working 

// It should be > 1 when MPP is reached 

Int32 MPPT_check = testerAPI.Read32("g_iq24PgAvgCycleCorr"); 

// MPP is the int value of the MPPT_check 

// It should be > 100% when MPP is reached 

int MPP = 0; 

// wait 2 seconds max 30 times to wait if the MPP is reached 

for (uint i = 1; i <= 30; i++) 

{ 

    SleepMs(2000); 

    MPPT_check = testerAPI.Read32("g_iq24PgAvgCycleCorr"); 

    // g_iq24PgAvgCycleCorr should be > 1 when the MPP is reached 

    if (MPPT_check > (Int32)(1 << 24)) 

    { 

        MPP = (MPPT_check * 100) >> 24; 

        TestLog.WriteLine("MPP reached {0}%", MPP); 

        TestLog.WriteLine("Time needed for that was {0} seconds", 

        (i*2+18)); 

        Assert.IsTrue(true); 

        return; 

    } 

} 

MPP = (MPPT_check * 100) >> 24; 



 43 

 

TestLog.WriteLine("MPP reached {0}%", MPP); 

// set inverter Enable off 

testerAPI.Write32("u32_phndl_InverterEnable", 0); 

// return false when the MPP (100%) was not reached 

Assert.IsTrue(false, "Inverter did not reach the max power point in 

about 1 min"); 

} 

 

Program 6.3. A test script for tracking the maximum power point. 

 

 

As well as the tests for grid connections, also the test for maximum power point 

required transforming iq-numbers to integers. Testlog-command enables writing notes 

of the progress of a test, which can be read in test reports.  

6.3 Batch scripts 

Batch files are executable files that contain text commands, which can be executed by 

the command line interpreter. In this implementation, batch files were utilized as build 

tools to be called by Jenkins. Each Jenkins build job has its own batch file which 

describes what is to be performed and in which order. 

A test filter was created for specifying which tests are intended to be run. In this 

manner, the whole set of tests does not have to be run every time. The filter provides a 

reasonable solution in situations, where the whole set of tests would take hours to run 

and the development team would need faster feedback from certain tests. 

As already seen in the test scripts introduced in this chapter, the possibility to 

categorize tests is provided. When the batch-file for running the system tests is called in 

Jenkins build, the intended test categories can be provided as parameters for the batch 

file. If no parameters are provided, the whole set of tests will be run. The created filter is 

then given to Gallio Echo as a parameter when Gallio Echo is called. Other parameters 

given to Gallio Echo are report type, report folder, report name format, show report, and 

the dll-file that includes the tests. Show report –parameter is given when the reports are 

wanted to be shown after running tests. The created batch script for running Gallio Echo 

with the filter is presented in Program 6.4. 
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@echo off 

::-------------------------------------------------------------------- 

:: Batch file for running simple tests with Gallio Echo 

:: Author: Janne Sjögren 

:: Filter options: 

:: Filter is needed to specify which tests will be run by giving the 

:: specific categories as parameters. All tests will be run when no 

:: parameters are given. 

::-------------------------------------------------------------------- 

set reportType=mhtml 

set reportFolder=C:\TestReports_SFCO_01 

set file=C:\PVS300_SystemTests\bin\Debug\SystemTests.dll 

:: filter * means running all the tests 

set filter="*" 

:: If command line parameters are given, go to one 

if "%1" NEQ "" goto one  

::If no command line parameters are given,use default filter,go to two 

goto two 

:one 

set filter=Category: 

set var=false 

:again 

if "%1" == "" goto two 

if %var% == true (set filter=%filter%,%1) else (set filter=%filter%%1) 

set var=true 

shift 

goto again 

:two 

set filterFormatted=%filter::=_% 

echo Filter used is %filter%  

Gallio.echo %file% /sr /rt:%reportType% /rd:%reportFolder% /rnf:% 

filterFormatted%-{0}-{1} /f:%filter%  

echo Test report is saved in folder %reportFolder% 

:end 

 

Program 6.4. A batch script with the filter for running tests with Gallio Echo. 
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7 FUTURE PROSPECTS 

This chapter discusses the development prospects of the created automated software 

testing system. Since the automated software testing system was created into the project 

starting from the very beginning, and the time reserved for the thesis was limited, plenty 

of ideas occurred were not yet implemented. However, the system will remain under 

constant development also after finishing this thesis. 

Since version control system is a competent practice for conserving data, the 

contents of the repository located on the continuous integration server should be 

carefully considered. In this implementation, source code, binary files, test files and 

batch files were conserved in the repository. In addition, all the computer programs 

required to create the test environment, could be conserved in another repository. When 

new developers join the development team, the software would be easily available along 

with the source code and other data. This would also ensure that all the developers have 

the same versions of the programs, which is important when creating common testing 

environment for the developers. 

As mentioned before, the objective of the thesis was to create an automated testing 

system for executing system tests since the project was already in the maintenance 

phase. In the future, automating also the unit tests should be considered when new 

projects are initiated because they are able to find problems early in the development 

cycle. Especially, since the unit tests are best to write before writing the actual code. 

Hence, also the use of test-driven development as the software development process 

should be considered. At the same time, test-driven development would function as the 

design and documentation method. Unit tests are relatively fast tests compared to 

system tests since they only test functions or simple parts of the code. Therefore, they 

would provide an appropriate test cycle before executing system tests. Of course, also 

integration tests would offer benefits in finding bugs early in the development process. 

The test set should be expanded to encompass code coverage. By executing code 

coverage tests, information on how extensively the software has been tested, can be 

achieved. Only by testing the whole software, not only some parts of it, a decent 

confidence on the functionality of the software can be reached. Some code coverage 

software for .NET framework exists, but the subject was left outside this thesis due to 

time constraints. In addition to code coverage, also appropriate coding style verification 

could be included in the testing cycle. 

Reviewing the code could very likely decrease errors in the code. The other 

software developers of the team should perform this before new source code is pushed 

to the main repository on continuous integration server. Reviewing would not only 
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function as an effective practice for identifying defects in the code, but also as a practice 

for recommending improvements in the realization of the code. However, further 

research is needed to generate a functioning practice for implementing reviews. 

There were no professional testers in the development team during the execution of 

this thesis. As testing is a very important task in the development process, education for 

the testing people should be considered. Furthermore, a respondent for the testing 

system and for its development should be contemplated. 

The hardware of the testing system is planned to be expanded in the future. Thus, 

functioning of the solar inverter will not only be tested by programming artificial 

simulations with computer, but by using physical magnitudes. This means that the 

system will cover the entire solar inverter. Therefore, operational tests can be 

programmed also by using real voltage magnitudes executed by power sources and grid 

simulators. This will also make the decision on the location of the testing system more 

important, since safety will have to be reconsidered. 

Although this thesis was introduced when the project was already in the 

development phase, the created automation system will remain in the development team 

also when new projects are initiated. This will provide new opportunities for the 

development of the testing system, as new features that improve the verification of the 

functionality of the product, are valuable when the testing system develops along with 

the software.  
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8 SUMMARY 

The purpose of this thesis was to design and implement an automated testing system for 

solar inverter software in order to make software testing more effective and to release 

testers from tedious software testing tasks. The idea was to investigate modern solutions 

to create a highly potential testing system for running tests automatically. The system 

was intended to create so that it will be easily upgraded in the future as well. 

Options for different parts of the system were searched from literature and Internet. 

The resulting system consisted of three fundamental parts: test automation framework, 

continuous integration tool and version control system, each of them playing an 

important role in the system. Test automation framework provides an environment in 

which the tests can be programmed and executed. The continuous integration tool 

provides the possibility to perform certain tasks in specific order continuously or in 

periodical basis as it also enables sending immediate feedback of the test results. The 

version control system allows having back-ups of all the important files that are 

conserved in it. Through version control the software developers are able to collaborate 

across space and time since they all can access to the version control system. The 

utilization of version control system also enables the integration tool to run the tests 

every time a change is committed to the mainline of the repository. 

As the automated testing system was created, some fundamental tests for verifying 

the correct function of the solar inverter were programmed. These tests were related to 

the grid connection and disconnection occasions. They were created to ensure that the 

most important functions are not compromised as new software updates occur. 

The created automated testing system was taken into operation. It provides fluent 

running of tests as it provides feedback of the test results to the software developers. 

Based on feedback from the development team, it provides an environment for running 

tests automatically in competent manner thus making the software development more 

effective. Furthermore, the created system enables having always the latest up-to-date 

software under version control ready to be tested.  

The system can be developed into many directions in the future. Many features for 

ensuring good software quality can be adapted. Also, not only performing system level 

tests, but also unit and integration tests will be considered. The possibilities provided by 

automation will bring a lot of savings in time and in resources. Hence, the possibilities 

will remain under close investigation. However, development of the testing system as 

well as improving the set of tests more comprehensive will continue after finishing this 

thesis. Especially, involving physical magnitudes to the testing system will take place in 

near future. 



 48 

 

SOURCES 
 

[1] Asikainen, A. 2006. Software testing of frequency converter, Lappeenranta, 

Lappeenranta University of Technology. 95 p. (in Finnish) 

 

[2] Beizer, B., 1990. Software testing techniques. 2nd Edition. USA. International 

Thomson Computer Press. 550 p. 

 

[3] Broekman, B., Notenboom, E., P. 2003. Testing Embedded Software. 1. Edition, 

Great Britain. 348 p. 

 

[4] Cervantes, A. 2009. Exploring the use of a test automation framework. IEEE 

Aerospace conference 2009, California Institute of Technology, Pasadena, CA, 

Jet Propulsion Lab. 1-9 p. 

 

[5] Chacon, S. 2011. Git: The fast version control system. [WWW].[Cited 

30/6/2011]. Available at: http://git-scm.com/about 

 

[6] Dustin, E., Garrett, T., Gauf, B. 2009. Implementing automated software testing: 

How to save time and lower costs while raising quality, Boston, Pearson 

Education, Inc. 340 p. 

 

[7] Duvall, P.M., Matyas, S., Glover, A. 2010. Continuous Integration: Improving 

software quality and reducing risk, Boston, Pearson Education. 283 p. 

 

[8] End to end testing: Regression testing. [WWW]. [Cited 13/6/2011]. Available at: 

http://www.endtoendtesting.com/index.php?page=regression-testing 

 

[9] Gallio. 2010. [WWW]. [Cited 2/9/2011] Available at: http://www.gallio.org/ 

 

[10] Heath, S. 2003. Embedded system design. 2. Edition, Burlington, MA, Newnes. 

430 p. 

 

[11] Humble, J., Farley, D. 2010. Continuous Delivery: reliable software releases 

through build, test, and deployment automation, Boston, MA, Pearson 

Education, 463 p. 

 

[12] Janzen, D.S., Saiedian, H. 2006. On the influence of test-driven development on 

software design, IEEE Software engineering education and training, Kansas 

University, Lawrence, KS. 141-148 p. 

 



 49 

 

[13] Koopman, P. 1996. Embedded system design issues. [WWW]. [Cited 

25/7/2011]. Available at: 

http://www.ece.cmu.edu/~koopman/iccd96/iccd96.html 

 

[14] Kwok, D. 2011. Derek Kwok‟s blog: blog about software development, 

techniques and discoveries; Jenkins and Github. [WWW]. [Cited 1/9/2011] 

Available at: http://www.xairon.net/2011/03/jenkins-and-github-continuous-

integration/ 

 

[15] Mallwitz, R., Engel, B. 2010. Solar power inverters, IEEE Integrated power 

electronics systems (CIPS), Niestetal, Germany, SMA Solar Technology AG. 1-

7 p. 

 

[16] Microsoft: Visual Studio. 2011. [WWW]. [Cited 2/9/2011] Available at: 

http://msdn.microsoft.com/en-us/vstudio/ 

 

[17] Microsoft: .NET Framework highlights. 2011. [WWW]. [Cited 2/9/2011] 

Available at: http://msdn.microsoft.com/en-us/netframework/ 

 

[18] National Instruments: Maximum power point tracking. 2011. [WWW]. [Cited 

2/9/2011] Available at: http://zone.ni.com/devzone/cda/tut/p/id/8106 1.9.2011 

 

[19] Sangwan, R.S., Laplante, P.A. 2006. Test-driven development in large projects. 

IEEE IT Professional, University Park, PA, Pennsylvania State University, Great 

Valley Sch. Of Graduate Professional Studies, 25-29 p. 

 

[20] Satalkar, B. 2011. Buzzle.com: Software testing techniques. [WWW]. [Cited 

8/9/2011]. Available at: http://www.buzzle.com/articles/software-testing-

techniques.html 

 

[21] Siniaalto M., Abrahamsson, P. 2007. A comparative case study on the impact of 

test-driven development on program design and test coverage, IEEE Empirical 

software engineering and measurement, Oulu, VTT Tech. Res. Centre of 

Finland. 275-284 p. 

 

[22] Software testing fundamentals: Unit testing.  2011. [WWW]. [Cited 6/6/2011]. 

Available at: http://softwaretestingfundamentals.com/unit-testing/   

 

[23] Software testing fundamentals: Integration testing.  2011. [WWW].[Cited 

6/6/2011]. Available at: http://softwaretestingfundamentals.com/integration-

testing/ 

 

 



 50 

 

[24] Software testing fundamentals: System testing.  2011. [WWW].[Cited 6/6/2011]. 

Available at: http://softwaretestingfundamentals.com/system-testing/ 

 

[25] Srinivasan, J., Dobrin, R., Lundquist, K. 2009. ‟State of the art‟ in using agile 

methods for embedded system development, IEEE Computer software and 

application conference, Vasteras, Sweden, Malardalen University. 522-527 p. 

 

[26] Steele, O. 2011. Oliver Steele: Languages of the real and artificial, Commit 

policies. [WWW].[Cited 29/7/2011]. Available at: 

http://osteele.com/archives/2008/05/commit-policies 

 

[27] Target, The-software-experts: Software process modules. [WWW]. [Cited 

20/6/2011]. Available at: http://www.the-software-experts.de/e_dta-sw-

process.htm 

 

 

 

 

 

 


