

TUOMO HEINONEN

RISK MANAGEMENT SYSTEM FOR MEDICAL STANDALONE

SOFTWARE

Master of Science Thesis

Examiner: Prof. Jari Hyttinen

Examiner and topic approved in

the Computing and Electrical Engi-

neering Council meeting on 9 No-

vember 2011

ii

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
HEINONEN, TUOMO: Risk Management System for Medical Standalone Soft-
ware
Master of Science Thesis, 66 pages, 9 Appendix pages
December 2011
Major: Medical Informatics
Examiner: Prof. Jari Hyttinen
Supervisor: Dr. Samuli Niiranen
Keywords: MDD, CE mark, standalone software, ISO 14971, IEC 62304, ISO
13485, medical standalone software, risk management system, usability

According to update of Medical Device Directive (MDD) by European Union in 2007,

the software as such can be a medical device. The direct consequence of the change of

the directive is, that now depending on the intended use of software, the software might

be regulated according to the MDD. If the software is classified to be a medical device,

manufacturer has to fulfill the requirements of MDD to get CE mark for software. Most

of the requirements are fulfilled by using three standards: IEC 62304 Software life cycle

processes, ISO 14971 Application of risk management to medical devices and ISO

13485 Quality management systems.

The purpose of the thesis is to discuss the influence of regulation to medical device,

classified as software, globally and in Europe and also the influence of three mandatory

standards. The risk management standard is processed in more detail and the develop-

ment of risk management system is based on it. The risk management system was con-

structed according to characteristics of medical standalone software. The goal of the

thesis was to model the risk factors in the software environment and build the risk man-

agement system around the model.

The risk management system is based on the Risk factors model, which is developed in

this thesis. In the model, the use of software was divided into seven factors that together

or alone could contribute a hazardous situation in using the software. The developed

risk management system consisted of four parts: preliminary planning, software devel-

opment, post-production use and operation, and production and post-production infor-

mation collecting system.

The risk management system is one of the essential requirements to launch new medical

device. For a software, which is classified as a medical device there is no established a

way to fulfill the regulative requirements of risk management system, because the

change in the MDD is new. The thesis presents one approach to fulfill the requirements

and produce more safe software.

iii

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
HEINONEN, TUOMO: Riskienhallintajärjestelmä lääkinnälliselle erillisohjelmis-
tolle
Diplomityö, 66 sivua, 9 liitesivua
December 2011
Pääaine: Lääketieteellinen informatiikka
Tarkastaja: Professori Jari Hyttinen
Ohjaaja: Tekniikan tohtori Samuli Niiranen
Avainsanat: MDD, CE merkki, erillisohjelmisto, ISO 14971, IEC 62304, ISO
13485, lääkinnällinen erillisohjelmisto, riskienhallintajärjestelmä, käytettävyys

Euroopan unionin uuden vuonna 2007 lääkinnällisistä laitteista annetun direktiivin mu-

kaan ohjelmistot voidaan katsoa sellaisenaan lääkinnällisiksi laitteiksi. Suora seuraus

direktiivistä on se, että riippuen ohjelmiston käyttötarkoituksesta, ohjelmisto voidaan

säädellä lääkintälaitedirektiivin mukaan. Mikäli ohjelmisto luokitellaan lääkintälaitteek-

si, valmistajan tulee täyttää lääkintälaitedirektiivin vaatimukset saadakseen ohjelmistol-

le CE-merkin. Suurin osa vaatimuksista voidaan täyttää soveltamalla kolmea standardia:

IEC 62304 Ohjelmiston elinkaariprosessit, ISO 14971 Riskienhallinnan menetelmä lää-

kintälaitteisiin ja ISO 13485 Laatujärjestelmät.

Diplomityön tarkoitus on käsitellä regulaation merkitystä ohjelmistoiksi luokiteltujen

lääkintälaitteiden osalta globaalisti ja Euroopassa sekä kolmen pakollisen standardin

merkitystä. Riskienhallintastandardiin keskitytään tarkemmin ja se toimii pohjana ris-

kienhallintajärjestelmälle. Riskienhallintajärjestelmä rakennettiin lääkinnällisen erillis-

ohjelmiston erityispiirteiden mukaisesti. Tavoitteena oli mallintaa riskitekijät ohjelmis-

toympäristössä ja rakentaa riskienhallintajärjestelmä mallin ympärille.

Riskienhallintajärjestelmä perustuu Riskitekijä-malliin, joka on kehitetty diplomityössä.

Mallissa erillisohjelmiston käyttö jaetaan seitsemään tekijään, jotka yhdessä tai erikseen

voivat aiheuttaa vaarallisen tilanteen ohjelmistoa käytettäessä. Kehitetty riskienhallinta-

järjestelmä koostuu neljästä osasta, jotka ovat alustava suunnittelu, ohjelmiston kehitys,

tuotannon jälkeinen käyttö ja toiminta, ja tuotannon ja tuotannon jälkeisen informaation

keräysjärjestelmä.

Riskienhallintajärjestelmä on yksi välttämättömistä vaatimuksista uuden lääkintälaitteen

markkinoille tuomiseen. Lääkintälaitteeksi luokitellulle ohjelmistolle ei ole olemassa

vakiintunutta tapaa täyttää säädetyt riskienhallintajärjestelmän vaatimukset, koska lää-

kintälaitedirektiivimuutos on uusi. Diplomityö esittää erään lähestymistavan täyttää

vaatimukset ja tuottaa turvallisempi ohjelmisto.

iv

PREFACE

I spent the July in office writing my master thesis. Most of other co-workers were on

holiday, so the coffee was solely mine and the silence forced me to write intensively.

Due to good pre-work, the writing process was quite smooth.

The process of constructing this thesis was extremely interesting. I had an awesome

opportunity to write my master thesis for a company, which really needed the outcome

of my work. That made it possible for me to study also a completely new industry.

I want to thank Dr. Samuli Niiranen about the discussions we had. Professor Jari Hyt-

tinen and professor Ilkka Korhonen gave also invaluable feedback that made it possible

to improve the outcome.

Finally, I want to thank my wife Minna, who supported me to finish my studies and

patiently tolerated the hours I was studying and working.

--

Tampere, July 2011

Tuomo Heinonen

v

Contents

Abstract ... ii

Abbreviations And acronyms .. vii

1 Introduction ... 1

1.1 Purpose of thesis ... 2

1.2 Structure of the thesis .. 2

2 Quality Development in Software Qndustry ... 4

2.1 Scope of Analysis and Definition of Terms .. 4

2.2 History of Software Engineering .. 5

2.3 Software Industry .. 13

3 Regulation in the Field of Medical Devices .. 17

3.1 Meaning of Regulation .. 17

3.2 Regulation Globally .. 20

3.3 Regulation in European Union for Medical Devices Containing Software 24

3.3.1 ISO 13485 - Quality Management System .. 24

3.3.2 IEC 62304 - Software Life Cycle Processes 24

3.3.3 ISO 14971 – Application of Risk Management to Medical Devices 25

3.4 Regulation in Finland .. 26

3.5 Summary of the Historical and Regulative Aspects 26

4 Development of the Risk Management System for Medical Stand-alone Software ...

 ... 28

4.1 Terms and Definitions ... 28

4.2 The Nature of the Faults in Medical Device Software 29

4.3 Medical Standalone Software ... 30

4.4 General Principles of the Risk Management System 32

4.5 Risk Factors Model for Medical Standalone Software 36

4.5.1 Intended Use .. 37

4.5.2 Unintended use .. 38

4.5.3 Misuse .. 38

4.5.4 Incorrect Specification ... 39

4.5.5 Incorrect Implementation ... 39

4.5.6 Software Failure ... 40

4.5.7 Software Working Properly ... 40

4.5.8 Summary .. 41

4.6 Risk Assessment ... 41

4.7 Risk Controlling .. 42

4.7.1 Usability Engineering as a Risk Controlling Method 43

4.8 Production and post-production information .. 46

5 The Developed Risk Management System ... 47

5.1 Developed Risk Management System .. 47

vi

5.1.1 Risk Management Process ... 48

5.1.2 Production and post-production information collecting system 52

5.1.3 Risk Assessment and Risk Controlling Methods 53

5.2 Case: How to Use the Risk Management System ... 56

5.3 Assessment of Risk Management System... 57

6 Discussion ... 58

6.1 Benefits of Regulation... 58

6.2 Usability Engineering in Risk Management ... 59

6.3 Post-production Operation .. 59

6.4 Risk Management Development in the Future.. 59

6.4.1 Some Difficulties Relating to Risk Management 59

6.4.2 Standard for Medical Standalone Software Development 60

6.4.3 Risk Factors Model .. 60

7 Conclusion .. 62

References ... 63

vii

ABBREVIATIONS AND ACRONYMS

CE mark Manufacturer’s declaration that the product meets require-

ments of the directive.

DMR Device Master Record

FDA Food and Drug Administration

GHTF Global Harmonization Task Force

HCI Human Computer Interaction

IEC International Electrotechnical Commission

ISO International Organization for Standardization

LIS Laboratory Information system

LEO Lyons Electric Office

MDD Medical Device Directive by European Union

MHLW Minister of Health, Labor and Welfare

OOPSLA Object-Oriented Programming, System, Languages, and

Applications

QMS Quality Management System

PACS Picture Archiving and Communication System

SABRE Semi-Automated Business Research Environment

SAGE Semi-Automated Ground Environment

SFDA State Food and Drug Administration

SOUP Software of unknown provenance

TDP Therapeutic Products Directorate

TGA Therapeutic Goods Administration

TR Technical Report

UML Unified Modeling Language

WHO World Health Organization

XP Extreme Programming

1

1 INTRODUCTION

Software engineering industry is a rapidly expanding industry (Boehm 2006, p. 12). It is

not an easy task to describe what is software engineering because of many types of

software engineering. Boehm (2006, p. 12) lists dichotomies like large or small, com-

modity or custom, embedded or user-intensive and casual-use or mission-critical.

It seems that variation and expanding creates challenges in emerging methods that can

be used to apply theory to practice fast enough. However, Yang and Mei claim that

quality and productivity of software engineering have increased and at the same time

cost and risk have been decreased. In China software engineering started in 1980 and in

1999 revenue of Chinese software industry was 5.3 billion USD and in 2004 it was al-

ready 27.8 billion USD (Yang and Mei 2006, p. 2). Even though Yang and Mei’s study

is related to China, it shows the spirit of software engineering. There is no limit in ex-

panding.

Naturally, in the beginning electrical engineering was in bigger role than software engi-

neering. For example war industry has been the pioneer developing systems consist of

hardware and software. There was a project called Semi-Automated Ground Environ-

ment (SAGE) for U.S. and Canadian air defense. The project introduced sequenced wa-

terfall type software engineering model (Boehm 2006, p. 13; Everet et al. 1957; King

2010). Also in the medical device industry, medical devices were mostly hardware. Lat-

er, more software involved and medical device systems became more complex.

Medical devices have public interest because of intended use of medical devices is to

cure people by affecting to human’s physical or mental state. Thus governments became

aware about the risks involved in medical devices. European Union harmonized laws

concerning medical devices in 1993 (Council Directive 1993). Major change happened

in medical device industry in 2007, when software alone was interpreted as a medical

device (Council Directive 2007). Still, there are few contradictions concerning this in-

terpretation, such as calling software as a device even it is clear that software is only a

data consist of combinations of “0” and “1”.In standards it is also assumed that the med-

ical system consist of both hardware and software. After all, it is not totally clear what is

appropriate for standalone software and what is for embedded system. For software

manufactures it is really a moment of thinking how to apply standards economically and

same time the safety of patient is increased.

 2

1.1 Purpose of thesis

Starting point of this thesis is to determine the situation in the field of medical devices

considering a standalone software system. In this thesis it is discussed about the systems

relating to medical device industry from viewpoint of software. Scope is an administra-

tive one, covering software engineering history and regulation that together have pro-

duced several standards for regulation purposes. Generally, three complementary stand-

ards have to be adopted so that CE mark can be granted and CE mark is important be-

cause without it manufacturer cannot put product to market (Council Directive 2007).

Proper topic of this thesis is to create a risk management system according to risk man-

agement (ISO 14971:2007). Risk management system will be established from scratch

and applied to company environment. Risk management is an essential part of quality

system and software life cycle and thus significantly important to work properly.

This thesis is written in co-operation with company that produces medical standalone

software and there is yet no risk management system in place. Thus there is a strong

practicality in addition to academic work. As standards focused to the systems con-

tained both hardware and software, the situation in the scope of this thesis is totally dif-

ferent. That is because of standalone software that is manufactured in the company and

the requirements for manufacturing process or risk management process don’t meet the

reality.

The two main problems discussed in this thesis are the following:

1. The first one is more general concerning to everything discussed in this the-

sis. It’s about clarifying the reasons why and how European Union wants not

only embedded software but all software subordinate to regulation in the

field of medical devices.

2. The second and more explicit one is that how it is possible and above all

practical to apply risk management system described in risk management

standard to software system (ISO 14971:2007).

The first problem is more general and is discussed mainly in chapter 2 and 3 that to-

gether presents the history of software engineering and the regulation of medical soft-

ware. Those two chapters trying to answer the question why the regulation is like what

it is now. Chapter 4 builds the basis for risk management system and the answer for the

second question. Finally chapter 5 presents the answer to the second question.

1.2 Structure of the thesis

Chapter 2 discusses about history of software engineering. Stress has been given to

quality approach because fundamental idea behind all software engineering is in the end

the quality of software. Point of view of software industry is also included.

 3

Chapter 3 discusses the regulation in the field of medical devices. First the meaning of

regulation is defined generally: why and what is regulated. Then the regulation is

viewed globally. Regulation relating to European Union and CE mark is examined par-

ticular. Also local laws in Finland have been reviewed briefly, partly because it’s the

common way to act in European Union regarding to directives. All standards that relate

to CE mark are also presented. Finally there is made a summary of historical and regula-

tive aspects of the field of medical devices.

Chapter 4 presents the scientific side of development of risk management system. First

is presented the characteristics of medical standalone software and risk management

that relates to it. Then there is presented the risk factors model, which is used to identify

hazardous situations relating to medical standalone software. Finally the chapter 4 de-

scribes the essential requirements of risk management system.

Chapter 5 presents the developed risk management system and assessment of it. Also a

case is presented concerning to use of risk management system.

Chapter 6 discusses a little about the future of the industry and also about how appropri-

ate all standards are for standalone software to apply. In the end is presented the possi-

bilities of future research.

Chapter 7 presents the conclusion of this thesis.

4

2 QUALITY DEVELOPMENT IN SOFTWARE

QNDUSTRY

2.1 Scope of Analysis and Definition of Terms

Mahoney presents three disciplines that are concerned to be computer-related: 1) elec-

trical engineering 2) computer science and 3) software engineering (Mahoney 1988).

Each of disciplines is central and it’s difficult to examine them separately because of

their influence to each other. However, in this thesis only discipline of software engi-

neering is concerned and perspective is limited mostly to quality. From the viewpoint of

regulator, software certification has concentrated to processes because it is difficult to

measure software (Tripp 1996, p. 146).

Software engineering means according to IEEE 610.12 following: “The application of

a systematic disciplined, quantifiable approach to the development, operation, and

maintenance of software”. Software engineering is more than only programming the

software. It includes the whole software life cycle. Depending on the nature of produced

software, different parts of life cycle presented in definition are emphasized. In the later

presented Nato conference the software engineering was described as a work and man-

agement of programmers.

Quality in software engineering is understood according to IEEE 610.12 as following:

“1) The degree to which a system, component, or process meet specified requirements,

2) the degree to which system, component, or process meets customer or user need or

expectations and 3) quality comprises all characteristics and significant features of a

product or an activity which relate to the satisfaction of given requirements.” Simpli-

fied, software quality depends on how the software fulfills its requirements. However,

there are two targets that the software has to meet, requirements and customers. Even

though the software meets specified requirements, the requirements don’t necessary

satisfy the user’s expectations. It may be because of poor quality but also because of

poor design. Thus, it is a good custom to keep in touch with the customers and com-

municate about customer’s needs and expectations. Traditionally it’s understood that

software quality is equal to product quality but later the focus shifted to systems devel-

opment quality (Chiravuri 2003, p. 53). In other words focus is shifted from result to

process.

Reliability means an ability to perform intended functions of software and hardware as

expected without any failures.

 5

Efficiency means the fulfillment of a purpose without wasting resources. There are also

several other quality factors. However it’s not always possible to specify certain quality

factors in an unambiguous way (Sommerville 2001).

Usability is associated with five attributes: learnability, efficiency, memorability, errors

and satisfaction. Learnability means that the system should be easy to learn. Efficiency

means that the system should be efficient to use, and high level of productivity is possi-

ble after learning the system. Memorability means that the system should be easy to

remember. Errors means that the system should have a low error rate and if users make

errors they can easily recover from them. Satisfaction means that the system should be

pleasant to use. (Nielsen 1993).

Selected Sources

Main sources that have been used are listed here. Selection was made according to the

academic position of author and the specified field of software engineering.

Boehm (2006): Barry Boehm started as a programmer in 1955. He is professor emeritus

in the University of Southern California.

Brooks (1986): Frederick Brooks’s publication “There is no silver bullet” is a classic in

the field of software engineering.

Caminer (2001): David Caminer was working for Lyons in the time LEO was built,

thus having first-hand information about the case.

Mahoney (1988): Michael S. Mahoney was a professor of history in Princeton. He di-

vided his research between development of mathematical sciences and the recent history

of computing and information (Princeton 2008).

2.2 History of Software Engineering

This chapter presents the history of software engineering. All chosen milestones influ-

enced the different industries somehow significantly by software. There are addressed

equally to methods, papers and software projects. The meaning was to show the diversi-

ty of software engineering by selecting different industries that contributed to software

engineering.

 6

1951 LEO

1959 SAGE

1960 SABRE

1960's
software crisis

1970 Waterfall
model

1985-87
Therac-25

1986 No
silver bullet

1986
OOPSLA

1996 ISO
13485

1950-1959 1960-1969 1970-1979 1980-1989 1990-1999

1999 XP

1987 ISO
9000

Figure 1: Milestones relating to history of software engineering from perspective of medical software from

1951 to 1999.

In Figure 1 all the chosen milestones are presented. Different milestones do not relate

straightforwardly to each another.

1951 Lyons Electric Office

The company Joe Lyons founded in 1894 was first a teashop, and later on they built a

chain of teashops. Next step was to install advanced bakery machinery. To be produc-

tive, they needed more output than for the bakery itself. In a few years every shop was

stocking Lyons products. However, expansion brought some problems, e.g. how to or-

ganize nationwide distribution, how to control all movements of goods or how to keep

account huge amount of small transactions. Thus, they recruited John Simmons from

Cambridge University in 1923, and Lyons started mechanize their office. Later on there

came up an idea of building a computer, LEO. (Caminer 2001).

LEO was carried out in November 1951 being ready to use and two years later full-scale

LEO business machine was ready. It was recognized as the first computer that ran busi-

ness application. The application was based on two management techniques introduced

by John Simmons. The first one was internal market where there were several units that

had their own cost center. The second one was standard costing calculation. LEO raised

also the level of reliability comparing to the state of art. (Caminer 2001).

In 1954, after the completion of LEO 1, it was also able to handle all payrolls in Lyons.

(Caminer 2001). Handling payrolls and book-keeping related applications are also more

general the first applications in the business environment.

 7

1959 SAGE - Semi-Automated Ground Environment

Boehm describes SAGE project the most ambitious information processing project of

the 1950’s. There were together radar engineers, communication engineers, computer

engineers and nascent software engineers developing the system. Boehm estimates, that

there were thousands of programmers participating the project. The purpose of SAGE

was to detect, track and prevent aircrafts to bombing the land. (Boehm 2006).

Boehm claims that by 1960’s people found out that software phenomenology differed

from hardware phenomenology and many software applications became more people

intensive than hardware intensive. Thus also SAGE was more dominated by psycholo-

gists addressing attention to HCI issues than by radar engineers (Boehm 2006). There

were two direct HCI contributions: interactive CRT displays and light-pen I/O devices

(King 2010).

Figure 2: The SAGE software development process in 1956 (Boehm 2006).

 8

Figure 2 presents the software development process that was used in SAGE project in

1956. It is very similar comparing to later presented Royce’s waterfall development

model or V-model.

SAGE led to broader development of computing field and new applications of infor-

mation technology e.g. SABRE. Also IBM benefited a lot from SAGE with the product

IBM Systems/360. Project SAGE was shut down in 1980’s. (King 2010).

1960 SABRE - Semi-Automated Business Research Environment

In 1953, president of American Airlines and senior sales representative for IBM had a

conversation about travel industry and the idea for a data processing system sparked.

Six years later American Airlines and IBM jointly announced their plans to develop

SABRE. (Sabre holdings 2011).

SABRE was the first passenger reservation system in airline industry and at the same

time it was the first real-time business application. The system automated one of the

Sabre’s key business areas. The system was also a drastic technological leap forward for

the airline industry. (Sabre holdings 2011).

1960’s Software Crisis

There are three essential occurrences that can be found to lead to software crisis:

1. Hardware capabilities increased, which led to the act that the complexity of

software increased.

2. Hardware cost decreased and cost of creating and maintaining software in-

creased.

3. Software systems grew too large, and complexity of managing large groups of

programmers led to failures.

For electronics industry it was possible to expand the limits of speed and memory setted

by vacuum-tube circuitry and same time drastically lower the cost of hardware (Ma-

honey 1988). That was one of the reasons why programming could take practical ad-

vantage of research into programming languages and compilers (Mahoney 1988). It’s

obvious that when the cost of hardware gets lower and with the same time tools are im-

proved, it’s possible to do more complex software and it takes more labor. When more

labor involves and constructed software is more complicated, also costs increase.

Large programming projects were behind schedule, over budget and below specifica-

tions. Because the situation was like that all over the industry, Nato Science Committee

convened an international conference to address it. (Mahoney 1988).

Conference was held in Germany in 1968. There were both programmers and program-

ming work managers. Participants agreed that the situation is a software crisis. As a

 9

solution, participants accepted new discipline of software engineering without defining

its content. Even in conference held in Rome in 1969, participants were not able to

reach consensus about the core techniques of this new. Software engineering as a term

is accepted to describe the work and management of programmers. (Haigh 2010). The

term software engineering was chose before the conference in 1967 as a deliberately

provocative term, implying the need to be based on theoretical foundations and practical

disciplines (Naur and Randel 1969).

By the early 1970’s the US Department of Defense, the single largest procurer of soft-

ware of United States, had declared a major stake in the development of software engi-

neering as a body of methods and tools for reducing the costs and increasing the relia-

bility of large programs (Mahoney 1988). That was e.g. SAGE. Mahoney claims that

efforts to define the content of software engineering constituted much of the history of

computing during the 1970’s (Mahoney 1988). Later, in 1986 Brooks published an arti-

cle where he spoke out his opinion that there is no single technique that could drastical-

ly reduce costs.

1970 Waterfall Model

Winston W. Royce wrote in 1970 his article “Managing the development of large soft-

ware systems” (Royce 1970). In that article he presents the waterfall model, which is

still the fundamental basis for the software engineering.

There are several rules by Royce for software development:

1. Complete program design before analysis and coding begins.

2. Documentation must be current and complete.

3. Do the job twice if possible.

4. Testing must be planned, controlled and monitored.

5. Involve the customer. (Royce 1970).

Even though through the software crisis it came clear that there are essential differences

between software engineering and electrical engineering Royce combines both branches

in his waterfall model. E.g. rule 3 is understandable, because it is not possible to do eve-

rything right and completed at the first time. Actually, this is the major problem nowa-

days, because software systems are very large and at the first time there is not enough

information for constructing without mistakes. However rarely nothing is started again,

but fixing existing one. Later introduced spiral development method tries to enhance

this aspect.

 10

Figure 3: Waterfall software development mode from W. Royce (Royce 1970)

Figure 3 presents the waterfall development model for software. There are presented

two times phases from preliminary program design to usage because of rule 3.

1985 – 1987 Therac-25

Therac-25 was a radiation therapy machine controlled by software and was used to treat

people who had cancer. Six patients got massive overdoses of radiation because of a

software error. Investigation revealed that in some circumstances machine display indi-

cated no dose given and that was why operators repeated overdoses. The result of the

excessive radiation exposure was the death of three patient. (Kopec and Tamang 2007;

Leveson and Turner 1993).

Leveson and Turner claim that the Therac-25 accidents were the most serious computer-

related accidents in the history until 1993 (Leveson and Turner 1993). The accidents

probably contributed also to regulation and are one of the reasons why risk management

is seen so important.

1986 No Silver Bullet

Fred Brooks has written an article “No silver bullet” in1986. In that article he tries to

indicate the problems of software engineering. Brooks use the metaphor of werewolves

which transform from familiar into horror and with bullets of silver it’s possible to mag-

ically lay them to rest forever.

The main message from Brooks is that there is no technology or management technolo-

gy that alone promises even one order-of-magnitude improvement within a decade in

 11

productivity, in reliability or in simplicity (Brooks 1986). There are several interesting

parts of this message. First of all, it includes the aspects that are in definition of software

engineering including both programming work and management work. Secondly, there

are presented concepts like productivity, reliability and simplicity. Productivity and reli-

ability are those essential concepts of software industry that are pursued. The new con-

cept is simplicity that is definitely a countermove to complexity, to which software was

going from the 1960’s.

Brooks claims that there is wished a silver bullet at least by non-technical managers that

would make software cost drop down as rapidly as hardware costs do (Brooks 1986).

Brooks approach the answer for this demand through the nature of software. He presents

that there is no problem in software progress speed but in extremely high speed in com-

puter hardware progress (Brooks 1986).

Brooks also claims that a hard part of constructing software is the specification, design

and testing of this conceptual construct. There are always syntax errors, but the most

significant ones are conceptual errors in most systems. The easy part is representing and

testing the fidelity of the representation by labor. (Brooks 1986).

Brooks (1986) presents four inherent properties of modern software system:

1. complexity

2. conformity

3. changeability

4. invisibility

Complexity of software is essential property, and it is not increasing linearly with size.

Complexity develops unreliability because of difficulty to enumerate all the possible

states of a program. In management side complexity causes the difficulty to communi-

cate among team members. Also, conformity to other interfaces increases complexity.

The software is constantly subject to pressure for change partly because it is so easy and

because it embodies the function that is sensitive to the pressure for change. Software is

not easy to visualize, because the reality of software is not inherently embedded in

space (Brooks 1986).

In trying to capture software to geometrical form, there will be various graphs superim-

posed on upon another. Graphs may represent control flow, data flow, dependency pat-

tern, time sequence or name-space relations. However, all these graphs are not hierar-

chical. (Brooks 1986).

 12

1986 Oopsla

The first Object-oriented programming, system, languages, and applications OOPSLA

conference was held in 1986. Later Oopsla introduced many well-known methodologies

like Agile or UML. (Oopsla 2011).

1987 ISO 9000 Quality Management standard Series

There were many quality problems during the World War II in the Great Britain. Bombs

went off in factories and solution to it was to require factories to document all their

manufacturing processes and keep records that they had followed the processes. Stand-

ard was called BS 5750. (ISO Quality Services). According to John Seddon, British

Government persuaded ISO to adopt BS 5750 as an international standard in 1987

(Seddon 2000). However, in 1987 was released ISO 9000:1987, which was delivered

from BS 5750. There were also other defense standards that influenced ISO 9000:1987

(ISO Quality Services). The newest version of this standard is ISO 9000:2005. ISO

9001:2000 combines ISO 9001, ISO 9002 and ISO 9003 into same standard. The new-

est version is ISO 9001:2008.

ISO 90003:2004 includes guidelines for the application of ISO 9001:2000 for software.

Last guidelines for software were done in 2004. It can be claimed that those guidelines

are not following the latest trends of software industry anymore.

1996 Quality Management Standard ISO 13485

In the field of medical devices there is a standard ISO 13485:2003 which has same ele-

ments than ISO 9001. The main differences between ISO 13485 and ISO 9001 are some

conceptual goals. ISO 13485 is harmonized with ISO 9001 having same structure.

(Basler and Pizinger 2004).

EN 46001, which is an application of ISO 9001:1994 to medical device manufacturers,

became the route to achieve CE mark in European Union. In 1996, ISO issued ISO

13485:1996, “Quality systems – Medical devices – particular requirements for the ap-

plication of ISO 9001”. (Basler and Pizinger 2004).

In 2000, when ISO 9001 was revised, continuous improvement, customer satisfaction

and training effectiveness came to that standard. Because this new standard was indus-

try nonspecific, many regulatory agencies didn’t accept it. The new standalone standard

ISO 13485 was approved in 2003 and became mandatory in 2006. There are some dif-

ferences to ISO 9001, such as continuous improvement or customer satisfaction. Those

concepts are not appropriate to heavily regulated medical device industry. (Basler and

Pizinger 2004).

 13

1999 Extreme Programming

Extreme programming (XP) is designed to work with projects of following demands:

1. The project can be done by teams of two to ten programmers.

2. There should not be sharp constraints in the project.

3. Tests can be done by a reasonable job in fraction of a day.

Some characteristics that distinguished it from other methodologies are its early and

continuing feedback from short cycles, incremental planning approach and flexibly to

responds changing business needs. (Beck 1999).

XP is reliant on automated tests, customers to monitor the progress of development, oral

communication, evolutionary design process, and close collaboration of programmers.

(Beck 1999).

There are four control variables:

1. Cost

2. Time

3. Quality

4. Scope

It’s possible to pick up any three of the variables to being controlled. XP’s solution is to

make all four variables visible. After that it is possible to consciously decide which var-

iables to control. (Beck 1999).

It seems that some techniques in XP are founded in early 1950’s when computers were

slow and it took a lot of money to use a computer. Boehm describes how the high hour

price taught good practices like desk checking, buddy checking, and executing software

manually before running it (Boehm 2006). XP makes it even more extreme by pair pro-

gramming. (Beck 1999).

2.3 Software Industry

Software is essentially used for modeling physical world problems (Yang and Mei

2006). There are various problems and many ways to categorize them. What makes

software industry so special is that software is found from everywhere. As it was seen in

case of conference sponsored by Nato there were many industries with similar problems

than software. Even though it is possible to use software for many purposes, there is no

difference in development process. This phenomenon is demonstrated also by Leo,

which was made for bakery industry for management accounting purposes and after few

years SAGE, which was made for military purposes and SABRE which was essentially

based on SAGE but which was used for travel industry.

 14

Software engineering has developed rapidly. In 1950, there was a handful of specially

designated machines and a handful of specially trained programmers but by 1955 there

were about a 1000 general-purpose computers requiring about 10000 programmers and

by 1960 the number of devices had increased fivefold, but the need of programmers had

increased sixfold (Mahoney). Today even the amount of programming languages and

different programming environments is a vast.

Technology Driven Industry

There are four driving forces of software technology recognized by Yang and Mei

(2006):

1. Utilizing hardware capabilities better.

2. Pursuing a computing model that is both expressive and natural.

3. Making heterogeneity possible and facilitating interoperation.

4. Abstracting commonalities to promote reuse. (Yang and Mei 2006).

Hardware develops faster than software. That makes it possible to reach more and more

complex information systems because there is more calculating power to run them. At

the same time better computing models has to be pursued so that they could facilitate

software development and maintenance. At the same time also tools improved, making

it possible to benefit about improved computing models.

Because of the free trade the heterogeneity of software gains. In some fields like

healthcare there are several big companies that manufacture incompatible products e.g.

in Finland there are several EPRs used by hospitals. Even though it is not possible, gain-

ing co-operation with different companies in the same field could really emerge better

software.

Inside the company there are chances to promote reuse of software components, but it is

more difficult to do with other companies. However, open source and licensing have

been getting more popular last years and maybe in the future there are even more ab-

stract classes that can be used commercial, for example in markets of user interface

components there already are multiple alternatives to choose.

Project Management

All the driving forces identified by Yang and Mei (2006) were positively driven forces.

There are also other forces that influence software industry, mostly negatively. The big-

ger the project is the bigger is complexity. There are also easily more delays because the

forecasting is not possible to do accurately with the big and complex projects. The same

problems exist from 1970’s to this day. Some humorous folklore in software industry is

that initial software project time budget should multiply by pi and add 30% (Haikala

 15

2006). It’s partly true because it’s not easy to foresee how long the development of a

computer system takes even though all budgets and timetables exist.

Making software is always a project, even though it’s not ending like orthodox project

but it needs patches and fixes after release. Management of programmers as it was pre-

sented in 1968 is essential part of project management. There are nowadays also other

aspects but still the basis for software engineering is management of labor and work.

However, nowadays also business aspects are more and more involved in the project

management.

Development models are quite much involved to project management. One of the pur-

poses of the project management is to produce an environment where it easy and possi-

ble for software engineers to develop software. In 1970’s it became clear that develop-

ment of software is fundamentally different than development of hardware. New meth-

ods and tools have been developed, but there are still the same fundamental principles

of development models that were introduced in 1956 and in 1970.

Programming languages

Raccoon has divided programming languages to statement-oriented, function-oriented,

module-oriented, object-oriented and framework-oriented programming languages

(Raccoon 1997). Classification is straightforward even though framework-oriented pro-

gramming is kind of special case of object-oriented programming. The main difference

between framework-oriented development and traditional development is that in

framework-oriented development there is no need to create everything from scratch but

there are artifacts available (Flores 2008). Also the difference between module-oriented

and object-oriented exists, but it is more like an interphase of transformation from func-

tion-oriented to object-oriented. Out of this clarification are graphical programming

languages e.g LabVIEW, even though they are partly located in framework-oriented

programming.

Evolution of programming languages produced more complex and larger software sys-

tems. High-level programming languages made it possible to think bigger entities. Also

programming environments consisted of tools that together helped programmers to im-

prove their productivity (Raccoon 1997, p. 93). Finally, object-oriented languages al-

lowed building software systems that consist of other systems, and because of interfac-

es, it was possible to do packages of entities and make them to interact. In 1988 Ma-

honey presented that three of the most commonly used languages are also among the

oldest: Fortran, Cobol and Lisp (Mahoney 1988). Those all were high level program-

ming languages. In the beginning of 1980’s Ada was introduced by United States De-

partment of Defense. Ada is also standardized in ISO 8652. Ada has many safety-

critical support features. The first programming language that was considered to be ob-

ject-oriented was Simula67 (Raccoon 1997, p. 90).

 16

Figure 4: Some aspects of development of object-oriented programming languages (Ryder, Soffa and Burnett

2005).

Figure 4 presents various concepts like reuse, component interface and inheritance that

made possible to develop large software system. In 1980’s, before the article of Brooks

there were Ada and C++ that really made different to software developing. Those lan-

guages were so high level languages that it was possible to develop new methods for

software engineering. Still, Brooks wrote his article and tried to argument why it’s not

possible to invent a method that could change the direction of industry.

 17

3 REGULATION IN THE FIELD OF MEDICAL

DEVICES

3.1 Meaning of Regulation

Regulatory systems are intended to ensure a high level of protection of public health and

safety (Australian Regulatory Guidelines for Medical Devices 2010). There are three

key elements in medical device regulation to protect public health:

1. Safety

2. Effectiveness

3. The quality of products (Miura 2007; Global Harmonization Task Force 2011).

Runciman et al. claim that safety is just one dimension of the quality in healthcare and

there are also dimensions like access, timeliness, efficacy, efficiency, appropriateness

and acceptability. (Runciman et al. 2006). Runciman et al. probably observe the quality

from the larger viewpoint of the whole healthcare industry.. However, the same dimen-

sions are important regardless the taxonomy used.

Safety is the major concern in the field of medical devices. In Europe safety is stressed

quite solemnly by dedicating complete standard for the risk management system. There

are also instructions in software life cycle standards about risk management.

What Is Regulated

Figure 5 presents the phases of regulation by government. Figure 6 presents the roles of

stakeholders relating those phases presented in Figure 5. There is also presented product

stages that are under the regulation.

Figure 5: Phases of government regulations (WHO 2003).

 18

Figure 6: Roles in government regulations (WHO 2003).

The content of regulation depends on the region where the medical devices are manu-

factured and intended to sell. If those regions are different, a manufacturer has to fulfill

all the requirements even though the regulation is based on totally different system. Lat-

er in chapter 3.2, regulators in some of the large regions are presented.

Regulation vs. Standards

From the viewpoint of industry, difference between regulation and standards is present-

ed in Figure 7.

Standard Regulation

Voluntary Mandatory

Provide sufficient information Minimum requirements based on estab-

lished technology

Certification is based on the result of audit Nonconformity against regulation is viola-

tion

Is developed for voluntary use Development more difficult

Figure 7: Selected differences between standard and regulation from industry viewpoint from conference

paper (Miura 2007).

As it can be seen in Figure 7, standard is voluntary and regulation is always mandatory.

What is significant to notice is that standard is developed for voluntary use. Of course

there are all standards in the field of medical devices constructed thinking about regula-

tion purpose. However, it’s very complicated to write detailed standard for devices that

vary from simple thermometer with a few code lines to large standalone software sys-

tems.

World Health Organization has presented four purposes and benefits for standards:

1. Providing reference criteria for a product, process or service.

2. Providing information for enhancing safety, reliability and performance.

3. Assuring consumers about reliability or other characters

4. Giving consumers more choice by allowing one firm’s products to be substituted

for, or combined with, those of another. (World Health Organization 2003).

 19

Giving some benefits, there are also some problems that relate to standards. The regula-

tion of medical devices is often complicated by legal technicalities. Also legal terms and

their meanings are sometimes non-uniform even within one regulatory system. (World

Health Organization 2003).

Development of a standard

There are few models used to describe standardization process. World Health Organiza-

tion has introduced a process of twelve steps that is presented in Figure 8. International

Organization for Standardization has presented a process of six steps.

Figure 8: Standardization process (World Health Organization 2003).

To be a good standard, four attributes for developing process are identified:

1. The development has been overseen by a recognized body

2. The development process has been open to input from all interested parties and

the resulting document based on consensus.

 20

3. Good technical standards are based on consolidated results of science, technolo-

gy and experience.

4. Standards do not hinder innovations and must be periodically reviewed to re-

main in tune with technological advances. (World Health Organization 2003).

3.2 Regulation Globally

Figure 9: Medical device regulatory landscape (Shenvi 2010).

Figure 9 presents the quality management systems that are used in different regions. In

China the State Food and Drug Administration formulate policies and programs on the

administration of medical devices (SFDA 2011). ISO 13485 is used also in other coun-

tries.

The Global Harmonization Task Force

Purpose of GHTF is to unify all continents to similar standards. The organization was

conceived in 1992 and it is a voluntary group of representatives from national medical

device regulatory authorizes and the regulated industry. The founding members are rep-

resentatives from Europe, the United States of America, Canada, Japan and Australia.

(Global Harmonization Task Force 2011).

The following requirements and practices are promoted by GHTF:

1. Promote the safety, effectiveness/performance and quality of medical devices.

2. Encourage technological innovation.

3. Foster international trade.

 21

4. Serve as an information change forum. (Global Harmonization Task Force

2011).

Australia

Therapeutic Goods Administration administrates the federal Therapeutic Goods Act

1989. Medical devices are regulated under that act. (Jamieson 2001). The Australian

regulatory guideline for medical devices is developed to:

1. Provide guidance to assists manufacturers of medical devices in meeting the

regulatory requirements.

2. Help ensure that medical device applications to the TGA meet all the necessary

legislative requirements.

3. Enhance the clarity and transparency of the processes. (Australian Regulatory

Guidelines for Medical Devices 2010).

The guideline has two parts: pre-market and post-market. Medical devices cannot be

imported, supplied in, or exported from Australia unless they are accepted to the Aus-

tralian Register of Therapeutic Goods. In a post-market, when medical device is accept-

ed to ARTG the device must continue to meet all the regulatory, safety and performance

requirements. (Australian Regulatory Guidelines for Medical Devices 2010).

Canada

Health Canada is a federal department that reviews medical devices to assess their safe-

ty, effectiveness and quality before being authorized for sale in Canada. The Therapeu-

tic Products Directorate (TPD) has a role as the federal regulatory authority in Canada.

It applies the medical device regulation under the authority of the Food and Drugs Act.

(Health Canada 2011).

The TPD plays also a role in monitoring medical devices after they are licensed to en-

sure safety and effectiveness (Health Canada 2011).

Europe

European Union has decided that all medical devices in Europe must compliance with

Medical Device Directive. The directive is applicable for medical devices that are de-

fined as follow:

“Any instrument, apparatus, appliance, software, material or other article, whether used

alone or in combination, including the software intended by its manufacturer to be used

specifically for diagnostic and/or therapeutic purposes and necessary for its proper ap-

plication, intended by the manufacturer to be used for human beings for the purpose of:

- diagnosis, prevention, monitoring, treatment or alleviation of disease,

 22

- diagnosis, monitoring, treatment, alleviation of or compensation for an

injury or handicap,

- investigation, replacement or modification of the anatomy or of a physio-

logical process,

- control of conception,

and which does not achieve its principal intended action in or on the human body by

pharmacological, immunological or metabolic means, but which may be assisted in its

function by such means;” (Council Directive 2007/47/EEC).

M
an

u
fa

ct
u

re
r

C
la

ss

I

II

III

EC Declaration of conformity (VII)

IIa

IIb

Manufacturer
choose

EC Declaration of
conformity (VII)

M
an

u
fa

ct
u

re
r

ch
o

o
se

Full quality assurance system (II)

Examination of the design
of the product (II, 4)

EC Type
examination (III)

Manufacturer
choose

EC verification (IV)

Production quality assurance
(V)

Product quality assurance
(VI)

CE

M
an

u
fa

ct
u

re
r

ch
o

o
se

EC verification (IV)

Production quality assurance
(V)

EC Type examination
(III)

Figure 10: Alternative routes for manufacturer to get a CE mark (Pöyhönen and Hukki 2004).

Figure 10 presents the alternative routes to get a CE mark. With CE mark manufacturer

can place the product on the market. The device class I, II, or III depends the manufac-

tured medical device.

In Europe, ISO 13485 is accepted to be used as a quality system standard. There are

accredited Notified Bodies that are objective side in the process of getting CE mark.

Japan

Minister of Health, Labor, and Welfare (MHLW) is the authority in Japan. In 2002

MHLW passed legislation to revise Pharmaceutical Affairs Law to harmonize it more

closely with those in EU, Australia, Canada, and the US. In 2005 MHLW established

Pharmaceuticals and Medical Devices Agency to create a more efficient and transparent

review process. (D’Eramo 2007).

Japan’s Pharmaceuticals and Medical Devices Agency conducts inspections for foreign

companies. Passing those inspections is essential to get medical device registered in

Japan. There are two main inspections: accreditation inspection and QMS compliance

 23

inspection. For accreditation inspection manufacturers are required the submission of

several documents relating to: information on the staff, information on the product and

information on the manufacturing site. The QMS compliance inspection is tied to manu-

facturing site. If the QMS is approved, it expires after five years and manufacturer must

apply a renewal. (Gross and Minot 2007).

The Japanese QMS is similar to ISO 13485. The key difference between ISO

13485:2003 and Japanese QMS is the production and maintenance of a document called

Device Master Record. The purpose of DMR is to detail the relationship between the

individual product’s specification and overall quality system. (Gross and Minot 2007).

In the industry side in 1984, Japan Federation of Medical Devices Associations was

founded. JFMDA has contributed to the improvement of welfare and health care. There

are four main functions in JFMDA: 1) government relations 2) information services 3)

study and research activities and 4) international affairs. JFMDA consists of 20 associa-

tions representing about 5000 companies and over 130 individual companies are regis-

tered to sponsor JFMDA’s activities. One aspect of JFMDA’s vision is that they want to

ensure further safety of medical devices. (JFMDA 2011).

United States

The Food and Drug Administration is responsible for supervision of medical devices in

US. The FDA Modernization Act of 1997 was legislation focused reforming the regula-

tion of food, medical products and cosmetics. The FDAMA focused to risk-based regu-

lation in case of medical devices. In 2007, the Food and Drug Administration Amend-

ments Act was reauthorized and expanded the Medical Device User Fee and Moderniza-

tion Act. (FDA 2011).

Medical devices are classified into Class I, II, and III. Most of Class I devices are ex-

empt from Premarket Notification 510(k). Most of Class II devices require 510(k) and

most of Class III devices require Premarket Approval. The quality system is regulated

under 21 CFR Part 820. (FDA 2011).

Conclusion

Figure 11 presents the conclusion of different regions and the quality systems used

there.

Region Organization Act Quality system

regulation

Australia TGA Therapeutic Goods Act ISO 13485

Canada TPD Food and Drugs Act ISO 13485

 24

Europe EC Unit F3,

N.B.

Medical Device directive ISO 13485

Japan MHLW PAL Japanese QMS

United States FDA FDAMA, MDUFMA 21 CFR 820 QSR

Figure 11: What is the regulation for medical devices in different regions.

Japan and United States are using their own quality system regulation. However, the

actual content of quality system regulation is quite similar in all the regions. Organiza-

tion refers to the authority of region who supervises the compliance of regulation. In the

all other regions there is a law that determines the content of regulation. In Europe the

situation is a little different because the directive only guides the local lawmaker. How-

ever, e.g. in Finland the local law refers straight to MDD.

3.3 Regulation in European Union for Medical Devices
Containing Software

There are three standards that together satisfy the requirements for CE mark. This chap-

ter introduces standards briefly. Structures of standards are presented in appendices.

Risk management standard ISO 14971 will be the basis for risk management system

that is constructed in chapter 4 and 5. For those medical devices that do not contain

software, IEC 62304 is not used. Instead, there are IEC 60601 standard family for that

kind of medical devices.

3.3.1 ISO 13485 - Quality Management System

Quality management system is based on the management commitment, from where is

e.g. quality policy presented. Management also must to address needed recourses. By

default QMS covers the whole company and all the functions, but it is possible to ex-

clude some parts.

In QMS customers are very important and the products have to fulfill the requirements

of customer. QMS states in the high level the production process but especially in the

case of software, the software life cycle processes standard is used.

Structure of the standard is presented in Appendix 1.

3.3.2 IEC 62304 - Software Life Cycle Processes

Software development plan defines the software development life cycle model. The

standard supports all kind of life cycle models e.g. waterfall development model, V de-

velopment model and agile development models. However, applying an agile develop-

 25

ment model is not simple because of requirements for software requirements, imple-

mentation, testing and traceability.

The software life cycle covers the software development, maintenance, risk manage-

ment, configuration management and problem resolution processes. Risk management

process is overlapping with SIO 14971, but also appends some software-related details.

Structure of the standard is presented in Appendix 2.

Criticism

The industry side has negative criticism for this standard. For example company Sakura

Finetek Japan presents that IEC 62304 is too aggressive and complicated for regulatory

requirements. To fulfill all the requirements is huge burden especially for small manu-

facturers. They claim that it is not suitable for regulatory audit criteria. (Miura 2007).

More generally, the problem with IEC 62304 and ISO 14971 is that they are not devel-

oped for complex software systems though they might work well with simple software

systems.

3.3.3 ISO 14971 – Application of Risk Management to Medical Devices

Risk management is an essential part of quality management system.

Risk analysis Risk evaluation Risk control
Evaluation of

overall residual risk
acceptability

Risk
management

report

Production and post-production information

Figure 12: Risk management system according to ISO 14971.

Figure 12 presents the parts of risk management system according to ISO 14971. Pro-

duction and post-production information shall be collected in all phases of medical de-

vice life cycle.

Risk management has to be done in all phases of software development. There has to be

risk management plan including the risk management and verification activities, review

requirements, and the personnel involving the risk management activities and the pro-

cess. Also the production and post-production information collecting system is ad-

dressed in the risk management plan. The outcome of risk management process is risk

management file.

Structure of the standard is presented in Appendix 3.

 26

3.4 Regulation in Finland

The Medical Device directive is implemented in Finland’s legislation and updated on

June 2010. The purpose of the law is to sustain and develop the safety and use of medi-

cal device. (L 24.6.2010/629).

According to Valvira, the National Supervisory Authority for Welfare and Health, the

medical devices containing software that are placed on the market before 1.7.2010 are

not automatically in the scope of the law, if no modifications are done to software.

(Valvira 2011).

All over the European Union the regulation in the field of medical device is similar

comparing to Finland. That is because of the directive, which has to be implemented in

all the member countries to local legislation.

Valvira’s purpose is to supervise and provide guidance to healthcare providers. The

medical devices must be accepted and registered to Valvira’s register. (Valvira 2011).

Depending on the device class the manufacturer might be forced to use Notified Body.

The company may choose among all the accredited Notified Bodies. In Finland there is

a company called VTT Expert Services Oy as a Notified Body.

3.5 Summary of the Historical and Regulative Aspects

The software engineering industry is a rapidly expanding industry. In 60 years software

engineering has revolutionized also all the other industries by bringing the software

tools into use. In 1951, LEO was used to business management to make national wide

distribution of bakery goods possible.

In 1960’s, the SAGE project introduced the usability aspects of software development.

There was used also a software development model similar to waterfall model intro-

duced by Royce in 1970. SAGE was used later as a basis for passenger reservation sys-

tem SABRE for American Airlines.

In 1968, a conference was organized due to software crisis. Conference was sponsored

by NATO and gathered many professionals together. After the conference term software

engineering was used. The term was developed to be a little bit provocative implying

the need to be based on theoretical foundations and practical disciplines.

In 1986 Brooks published an article, where he claimed that there is no single technolog-

ical solution for the problems that were identified early in the 1960’s software crisis. In

1987 ISO 9000 series was founded. It is the basis for quality management systems like

ISO 9001 or ISO 13485.

 27

Regulation in healthcare exists to provide safety for citizens. Regulation is in form of

standards that have to be applied by the manufacturer of a medical device. Because of

GHTF, which was established in 1992, the regulation in all large regions of the world is

quite similar. Safety, performance and quality of medical devices are seen important all

over the world. It’s significant to notice that after Therac-25 accidents in 1985-1987 a

lot of development in the field of medical device regulation was done. Only five years

after the last death of a patient, the GHTF was established. After seven years, in 1994,

there was an application of quality system for medical devices, and after nine years in

1996 the quality system for medical devices ISO 13485 was established.

 28

4 DEVELOPMENT OF THE RISK MANAGE-

MENT SYSTEM FOR MEDICAL STAND-

ALONE SOFTWARE

4.1 Terms and Definitions

It’s important to notice that in chapter 4 and 5 the term medical standalone software is

used to separate it from the medical device. Current legislation makes no difference

between pure standalone software and software that is used with hardware. However

there are essential problems to apply current standards and principles as such for

standalone software.

Harm: “physical injury, damage, or both to the health of people or damage to property

or the environment” (IEC 62304).

Hazard: “potential source of harm” (IEC 62304).

Hazardous situation: “circumstances in which people, property, or the environment are

exposed to one or more hazards” (ISO 14971).

Intended use is a regulative term for describing how the software should be used. In-

tended use is the key for classifying the software in different classes as described in

Figure 10.

Medical standalone software means software system that is developed for medical

purposes. Medical standalone software could be used to manage medical information or

assist physicians in decision making e.g. laboratory information system or other infor-

mation systems. Standalone software that is intended to be used with some hardware,

which operates to patient, is not medical standalone software.

Misuse is a regulative term intended to mean incorrect or improper use of the medical

device (ISO 14971).

Risk: “combination of the probability of occurrence of harm and the severity of that

harm” (IEC 62304).

SOUP is a third party software component that is used in a medical device (IEC 62304).

 29

4.2 The Nature of the Faults in Medical Device Software

Wallace and Kuhn (2001) have analyzed the causes why manufacturers had to recall the

medical devices included software back. Their analysis included two datasets from 1983

to 1991 and from 1992 to 1997. The total amount of software recalls from 1983 to 1997

was 383, but because of limited information, only 342 failures were discussed in their

study. (Wallace and Kuhn 2001).

The study identified the fault classes of medical devices containing software and generic

problems for each type. They also proposed prevention and detection methods for each

generic problem. Figure 13 presents those the fault classes. Wallace and Kuhn asked the

two obvious questions: “Why are logic and calculation the prevalent types?” and “What

can prevent or detect them before product release?” (Wallace and Kuhn 2001).

In Wallace and Kuhn study the configuration management was only 1 % share of all

faults and initialization and interface related faults were each 2 % share of all faults. The

third largest fault class was change impact with only 6 % share. It can be seen that most

relevant faults really are the first and the second one.

Figure 13: Fault class distribution (Wallace and Kuhn 2001)

 30

In the study, no distinction was made between different types of software. Most proba-

bly the medical devices of the study weren’t information systems. However, the pro-

posed principles are practical for all software because of the generalization of fault clas-

ses and problems. Proposed prevention and detection methods of fault classes are pre-

sented in Appendix 4.

Size of different classes may be only directional. At least in omission, logic and calcula-

tion classes the source may be locating in the requirement specification. Requirements

class demonstrates the need to develop, verify and validate a requirement specification.

(Wallace and Kuhn 2001).

Logic problems might have resulted from incorrect, incomplete, or inconsistent re-

quirements or designs. The source of the problems could have been requirements, de-

sign, or code. (Wallace and Kuhn 2001). They presented design and code review as a

prevention method. Also walkthrough the software implementation against design was

suggested. Being a major fault class, most of the problems could have been solved by

rigorous software development process.

There are also few fault classes that do not relate in any way to the information system.

Fault tolerance class relates to safety-critical systems that should tolerate abnormal or

anomalous conditions. Timing class relates to real-time applications.

It is significant to notice that review of the artifact is suggested almost in all fault clas-

ses either as a prevention method or as a detection method. Even though there are some

technical solutions to prevent data faults like data validation, still most of the prevention

methods are relating to development process phases and not to any technical solution.

That is significant also when risk control measurements are considered.

4.3 Medical Standalone Software

The threat of injuries or death characterizes medical device and also medical standalone

software. Without any connection to individual human no threats appear either. That

makes the difference between medical standalone software and other software in regular

use. For example, in the industry of electrical devices there are strict regulations how to

build a device that uses electric power. CE marks are used in that industry too. The rea-

sons are same than in medical device industry: to minimize the threat of injuries or

death of human beings. From that viewpoint it is understandable why also standalone

software in medical device industry wanted to put under the regulation.

Differences between Standalone Software and Embedded Software

Generally, software can be divided to two different categories: standalone software and

embedded software. Embedded software is in interaction with hardware and together

with hardware it consists of embedded system. The embedded system specifies the

 31

functionality of the embedded software. The functionality of the embedded software is

essential for using the embedded system properly. In the medical device industry, em-

bedded systems consist of the hardware providing a medical functionality and the assist-

ing software in it. Standalone software is a software system that is used either alone or

with some electric machine providing a medical functionality.

Medical standalone software can be a large information system that is e.g. used to con-

sultative purposes. Medical standalone software can be used over the Internet by a web

browser or as standalone software running in the user’s workstation. The difference

between standalone software and medical standalone software is that medical

standalone software is alone both the system and software system, but standalone soft-

ware can be part of system that consists of standalone software and some medical pur-

pose hardware.

Few examples of medical standalone software and medical device with embedded soft-

ware are presented in Figure 14.

Medical standalone software Medical devices with embedded software

or with standalone software

 Laboratory information system

(LIS)

 Glucose meter

 Cardiology information system  Digital ECG

 Picture archiving and communica-

tion systems (PACS)

 Blood pressure monitor

 Radiology information systems  Coagulation meter

Figure 14: Dichotomy between medical devices with medical standalone software and medical device with

embedded software is listed in the table by two columns.

Differences between Software and Hardware in Risk Management

ISO 14971 is made for all medical devices. Later, when more software appeared, the

ISO 14971 was still instructed to be used also with software even though it was not de-

signed to it. Because of differences between software and hardware, sometimes it is

difficult to apply ISO 14971 literally. There is IEC/TR 80002-1, which is technical re-

port for guidance on the application of ISO 14971 to medical device software. Even

though there are many improvements and a lot of help to understand how to apply

standard to the software, still medical standalone software aspect is missing. The reason

for that probably is that in the time the TR 80002-1 was completed there were no exam-

ples from real life how to apply ISO 14971 to medical standalone software. Because of

the long preparation time for the technical report, not all the MDD changes affected to

final technical report.

 32

 Software Hardware

Major common hazard Error (bug) Not common hazard

Location of the hazard Unknown Known

Risk assessment Difficult Not difficult

Drastic risk control Eliminate error Reduce risk for each hazard

Risk control timing All stages Early stage

ISO 14971 Difficult to apply as it is Should be applied

Figure 15: Selected differences between software and hardware from industry viewpoint from conference

paper (Miura 2007).

Figure 15 presents the built-in perception that is in software life cycle standard and risk

management standard relating to risk control timing. Both of the standards and later TR

80002-1 explain that developing architecture is the most significant stage to control risk.

In software and especially in standalone software the architecture is important but in

most cases not much can be done in that phase alone. Like Miura presents, common

hazards in software are bugs and the architecture does not affect at all to those hazards.

Also Human-Computer Interaction (HCI) has to be considered even more carefully than

with no standalone software contained medical devices.

4.4 General Principles of the Risk Management System

Safety of Medical Device

Ensuring the safety is a top priority in the field of medical devices. According to WHO

the safety and performance of a medical device depends on two critical and one im-

portant element. The critical elements are product and use, and the important element is

representation of the product. (World Health Organization 2003).

Figure 16: Elements of medical device safety (WHO 2003).

 33

Pre-market review contributes to product control and post-market surveillance so that

medical device in use is safe and effective (World Health Organization 2003). As it was

presented in Figure 5 and Figure 6, the manufacturer is responsible for the product in

the pre-market phase and user is managing the post-market phase. Representation of

product to user is controlled through labeling and training (World Health Organization

2003). Representation is important, because the user might not have enough information

about the medical device without training. In case of software, the labeling is placed to

user manual or into the software, for example as a form of information boxes.

Sommerville presents three complementary ways to achieve safety in software:

1. hazard avoidance

2. hazard detection and removal

3. damage limitation

The system should be designed so that hazards are avoided. If hazards still exist, the

system should be designed so that hazards are detected and removed before they result

in accidents. If an accident could happen, the system should include protection features

that minimize the damage that might result from the accident. (Sommerville 2001). The

first and the second way are related to product element, and the third way is more relat-

ed to the use element.

Risk acceptability

A medical device must be safe to use before it can be purchased. The risk management

standard ISO 14971 is developed for that purpose. The main idea in IEC 14971 is that

potential harms must be minimized. For this purpose, three levels for risks are present-

ed:

1. Function level

2. Function in system

3. System

In function level the risk is identified. For all identified risks, risk control measures are

considered. Whether it is possible or not to implement needed risk control measure,

there still is the residual risk in the system. If it is possible to eliminate the risk com-

pletely, of course there is no residual risk in that case.

In the second level the residual risk shall be evaluated. If the residual risk is not ac-

ceptable, manufacturer shall perform risk/benefit analysis. However, in this level the

residual risk is examined in system level. The questions that can be asked are: is the

function really needed in the system, or what can be done to minimize the influence of

identified risk to the surroundings.

 34

In the system level, the whole medical device shall be evaluated. The overall residual

risk must be acceptable before the medical device can be purchased. At this level, the

residual risks have to be evaluated together to finding out if the system is safe enough to

use.

Risk Management Report

Risk management report concludes the risk management process. In the report manufac-

turer shall carry out a review of the process. There are several important things to en-

sure:

1. The risk management plan has been appropriately implemented.

2. The overall residual risk is acceptable.

3. Appropriate methods are in place to obtain relevant production and post-

production information.

Part one requires to reviewing the risk management file against the risk management

plan and checking that all the requirements presented in the risk management file have

been fulfilled. Part three requires the existence of the production and post-production

information collecting system.

Traceability

Traceability is an essential dimension of a risk management system. Traceability makes

it possible to be sure that the development process is complete. However, traceability is

very difficult to do because of the massive amount of artifacts, combining both risk

management artifacts and software engineering artifacts. The matrix that has to be pro-

duced is vast and requires unambiguous identification system.

In risk analysis there shall be documented the following trail according to ISO 14971:

1. From the hazard to foreseeable sequence of events

2. From the foreseeable sequence of events to hazardous situation

3. From hazardous situation to harm

Risk management standard is not the only one that gives instructions to risk manage-

ment. In software life cycle processes standard there are also several mentions about

risk management. The following trail relating to hazard shall be documented according

to IEC 62304:

1. From the hazardous situation to software item

2. From the software item to specific software cause

3. From the software cause to the risk control measure

4. From the risk control measure to the verification of the risk control measure.

 35

Traceability from viewpoint of risk management

So
ft

w
ar

e
en

gi
n

ee
ri

n
g

Tuomo Heinonen

SW Item Causeincludes

Risk control
measure

SW
requirements

composes

specifies

controls cause

Figure 17: Traceability and factors from software engineering viewpoint

Figure 17 presents how the required trail relates to software specification and imple-

mentation. There are two aspects in risk management: traceability and risk control

measures. Risk management system should take care of traceability. From the viewpoint

of risk management there are several aspects that make things difficult. There can be

errors everywhere and the error is difficult to find. Also the need of risk control measure

might be difficult to realize and after realizing in some cases even more difficult to im-

plement effectively.

Software Safety Classification

Software safety classification is actually not the task of the risk management system.

The purpose of the classification is to affect the development process of the software

and is regulated in the software development life cycle standard.

According to IEC 62304, software architecture can be divided into software items.

Those items should be decomposed into further items. When it is not possible to de-

compose a software item into further items, the last item is called software unit. Every

software item should have its own safety class.

The safety classes are defined as follows:

Class A: No injury or damage to health is possible.

Class B: Non-serious injury is possible

Class C: Death or serious injury is possible

Decomposing and classification is a top-down method. Manufacturer shall first assign

safety class to software system. After decomposing software system into software items

each software item inherits the safety classification of the original software item or sys-

tem. Items may be, however, classified separately if the item is segregated. In that case

segregation has to be implemented by hardware and manufacturer has to document the

rationale that explains the segregation.

 36

The safety class affects the development of the software item. Class A software item

may be developed with less documentation than class C software item. Actually, the

safety class is basis for whole IEC 62304 standard and relating to every requirement of

that standard there is defined to which classes the requirement concern.

In case of medical standalone software it is not possible to do any hardware segregation.

Also, because medical standalone software handle only patient data, all functionalities

relate somehow to patients, whether directly or indirectly.

4.5 Risk Factors Model for Medical Standalone Software

It’s critical for medical standalone software that no hazardous situations are introduced.

Unfortunately, it is not possible to guarantee that. It is mainly because there are too

many factors and even more actors who use the software.

The software life cycle standard IEC 62304 is used as a starting point to classify the

potential risk factors relating to medical standalone software. In the standard there are

five potential causes of software item contributing to a hazardous situation presented:

1. Incorrect or incomplete specification

2. Software defects in functionality

3. Failure or unexpected results from SOUP

4. Hardware failures or other software defects resulting unpredictable software op-

eration

5. Reasonable foreseeable misuse. (IEC 62304).

In the second situation the term defect when speaking of software is difficult to under-

stand. The most probably it refers to incorrect implementation. The third situation relat-

ing to unexpected operation of SOUP is difficult for software manufacturer to ensure.

SOUP is always developed by someone else and it is not always possible to get any

anomaly list published by supplier of the SOUP.

A model was created concerning to risk factors in medical standalone software, based

on those five situations. Figure 18 presents the model that describes how the use of

medical standalone software can be understood and how the possible threat of harm will

emerge. It is important to notice that there are usually one or more human decisions

before any contact to patient. Some medical standalone software systems, however, can

have straight contact to patient by SMS or email. In those cases there is only one human

that is the patient not the physician to make the decision whether to believe the software

or not.

 37

Risk Factors Model

Ex
te

rn
al

 a
ct

o
rs

So
ft

w
ar

e
Se

q
u

en
ce

 o
f

ev
en

ts

Tuomo Heinonen

Intended use

Software
specification

error

Software
failure

Software
working
properly

Hazardous
situation

Patient death or
injury

Human
decisions

MisuseUnintended use

Software
implementation

error

Figure 18: Factors in software risk management.

Figure 18 presents the potential sources of hazard and sequences of event leading to

hazardous situation and harm. Potential sources of hazard are:

1. Intended use

2. Unintended use

3. Misuse

4. Incorrect specification

5. Incorrect implementation

6. Software failure

7. Software working properly

The use of software is divided in three groups and the operation of software is divided

in four groups from the viewpoint of hazardous situation. External actors could be either

humans or machines.

All of the factors can contribute a hazardous situation, whether alone or in combination

with others.

4.5.1 Intended Use

Intended use is defined in standard ISO 14971 as a use for which a product, process or

service is intended according to the specifications, instructions and information provid-

ed by the manufacturer (IEC 14971).

 38

Intended use is equal with the case where the software is working properly, emphasizing

the interfaces. Intended use itself of course is not a source of hazardous situation and is

necessary for using software.

However, intended use is important from the viewpoint of regulation. Intended use de-

fines the class of medical device and the direct consequence is that intended use defines

whether the software is medical at all. Another point of view, the regulator might ex-

clude the software from medical devices according to intended use.

4.5.2 Unintended use

Term unintended use is not based on regulation. Unintended use can be defined as fol-

lowing: using the software as intended but because of some reason, the user fails to use

the software as intended. When intended use means that user uses software correctly

and misuse means incorrect use, unintended use means that user wants to use software

correctly but fails in it.

There are several foreseeable causes for unintended use:

1. Interrupts

2. Tiredness

3. Stress

4. Hurry

5. Carelessness, etc.

Those factors can contribute to the user to do something unintended. The most obvious

reason, how the unintended use could happen is that the user does not recognize some-

thing that is intended to be recognized. Another case could be situation where the user

mixes up something e.g. lines of array.

It is difficult or impossible to prevent all unintended use cases in the software. However,

usability engineering techniques are effective tools to affect user’s actions in positive

way conducting more safe use. Techniques that can be used are presented in the chapter

4.7.1.

4.5.3 Misuse

Misuse is incorrect or improper use of medical standalone software. However, in case of

medical standalone software, misuse is a little ambiguous concept. It is possible to iden-

tify some misuse relating to medical device that is connected to human body, but soft-

ware system is so abstract concept that it makes also the term misuse abstract.

The conceptual problem in misuse with medical standalone software in general is that,

the user inputs data to software and gets some data out. The user cannot control soft-

ware to do things that are against its intended use, but he can input wrong data to soft-

 39

ware, i.e. if it is intended that a user should input his name to a textbox and the user in-

puts his friend’s name instead, the software does not recognize the wrong name, but acts

like the name that was inputted was the user’s own name. Whether this is a misuse or

not, it does not affect the development of the software, because it is not possible to con-

trol this kind of semantic misuse.

On the other hand, there could be some accessories used with medical standalone soft-

ware. In this kind of situation, misuse is related to the use of the interface. If the inter-

face is correctly done, no harm arises, but if it is not, unexpected situation might appear.

4.5.4 Incorrect Specification

If the specification is incorrect, no one can guarantee if hazardous situation occurred

there or not. However, incorrect specification is difficult to recognize. Customer re-

quirements and software requirements should be consistent. It is actually a classic prob-

lem in software engineering that customer and manufacturer do not understand each

other.

Often the situation is that customer wants a new feature to be implemented. The hazard-

ous situation might appear, if the requirements are understood incorrectly and customer

does not recognize it.

Also, as it was presented in chapter 4.2, the logic and calculation fault classes might

have their source in the incorrect specification. It means that the incorrect specification

factor might be really important to realize and to consider, because the specification

defines the outcome of software development process.

4.5.5 Incorrect Implementation

In the field of software engineering, the incorrect implementation is very common prob-

lem. The complex software systems contain huge amount of code lines and only one

mistake is needed for incorrect implementation. Snooke (2004) presents three possible

implementation errors:

1. Logical

2. Algorithmic

3. Semantic.

In general, the incorrect implementation means that the software is implemented erro-

neous against specification. If the specification is unambiguous, the reason for incorrect

implementation is programmer’s mistake.

As it was presented in chapter 4.2, the largest fault class was logic faults. Requirements,

design or code has the source of logic faults. Actually, design and code are in the scope

of incorrect implementation. Design and code review are prevention methods for logic

 40

faults. Walkthrough the implementation against the specification was also suggested as

a prevention method. Code reading, inspection and testing were suggested as a detection

method.

4.5.6 Software Failure

Even though software failure is mentioned as one of the causes for hazardous situation,

there is nothing that can be done for it in software development process. That is, be-

cause software cannot fail in the context of medical standalone software. In general,

content of software failure is also quite difficult to define. According to Snooke three

causes of failure for software:

1. Abnormal input value to the software

2. Failure in the hardware that affects to software

3. Logical, algorithmic or semantic error in the implementation. (Snooke 2004).

It’s possible to ensure that no abnormal values are inputted. If abnormal values, howev-

er, are inputted, whether it is a software failure or incorrect specification is more diffi-

cult question. To be consistent, it is defined to be a cause of incorrect specification be-

cause specification defines software.

Hardware failures, instead, relate more to embedded software development process than

medical standalone software development process, and nonetheless, it is very difficult to

get ready for hardware failures within software development process and in most cases

it is even impossible. For medical standalone software, hardware failures are, however,

responsible of operation administrator.

Snooke presents also the error in the implementation as a software failure. However, in

this thesis it is divided to be in its own category. There might be a correct implementa-

tion of an algorithm in a software but that algorithm is not specified in the specification.

In that situation it is clearly incorrect implementation against specification instead of a

software failure. The difference between software failure and implementation error is

that cause of the software failure is not because of the programmer but implementation

error is.

4.5.7 Software Working Properly

There might be some hazardous situations either because of residual risk or unforeseea-

ble risk. That is because of the nature of medical device. There are three causes to that:

1. Hazardous situation is not foreseeable and thus no risk control measure is possi-

ble to implement.

2. There is no need for risk control measure, because the identified risk was ac-

ceptable after evaluation.

 41

3. There is a risk control measure implemented. Whether the residual risk was ac-

ceptable after the evaluation or after the risk/benefit analysis, the residual risk

still exists.

4.5.8 Summary

The seven factors were identified that can contribute to hazardous situation. To prevent

hazards to happen, all the factors shall be eliminated, because there are several combi-

nations that can produce hazardous situation, but even one factor can produce it. The

risk management system should consider all of these factors somehow.

It is obvious that there is no way to eliminate intended use or the state where software is

working properly, even though they might contribute to a hazardous situation. These

two factors shall be considered at least in the documents relating to medical standalone

software. The software failure is difficult to eliminate, because it does not include in the

development process of the medical standalone software. However, the factor shall be

considered in the use of medical standalone software.

4.6 Risk Assessment

There are risks in different levels relating to medical standalone software. For example

software units, items and system could all be contributing to a hazardous situation.

Following risk analysis methods described in Figure 19 are identified in ISO 14971. Not

all of those methods are applicable to standalone software risk analysis. Methods have

been chosen to standard obliviously because of covering all the stages of development.

Method Development stage What can be found?

PHA Early in the development pro-

cess.

Identify hazards, hazardous situations,

and events causing harm.

FTA Early in the development stages. Identification and prioritization of haz-

ards.

FMEA,

FMECA

Design matures. Identification of effect or consequences

of individual components.

HAZOP,

HACCP

Latter stages of the development. To verify and then optimize design con-

cepts or changes.

Figure 19: Risk analysis methods presented in standard ISO 14971.

 42

What makes software so special is that there are not only different development phases

but also different layers in the product. Different methods should be applied to different

layers in the software to control and analyze the risks.

Also the persons that relate to risk analysis activities do matter. Lindholm and Höst

made a study, where group of physicians, group of developers, and group of medical

device developers analyzed risks individually regarding to new patient monitoring sys-

tem risk scenario. The assumption was that multiple roles will affect the list of identi-

fied risks and the list will be more complete. The research conducted conclusion that the

different experiences affect the risk identification and prioritization of the risks. Howev-

er, there wasn’t distinct difference in the kind of identified risks between those groups,

expect that physicians did not identify any risk relating to development risk. (Lindholm

and Höst 2009).

4.7 Risk Controlling

The standard ISO 14971 presents three risk control options. Those three options are

listed in the priority order:

1. Inherent safety by design

2. Protective measures in the medical device itself or in the manufacturing process

3. Information for safety

According to Technical Report, the first option could involve:

- Eliminating unnecessary features

- Changing the software architecture to avoid hazardous situations

- Simplifying the user interface to reduce the probability of human errors in use

- Specifying software design rules to avoid software anomalies.

With standalone software it is difficult to apply the changing of the software architec-

ture. Of course something can be done, but there is not much difference with different

architectures from the viewpoint of safety. In some cases the attention to safety might

produce even more complex architecture. The simplifying of the user interface relates

directly to unintended use factor, and software design rules specification relates directly

to incorrect implementation factor. (Technical Report 2009).

In the second option, the protective measures in the medical device itself are almost

impossible to apply with medical standalone software. The Technical report clarifies

that protective measure should be independent of the function to which it is applied.

This can be done if hardware protective measure is applied to software. If the protective

measure is implemented in software and applied to software, it is important to avoid

multiple failures arising from one cause. Using software as a risk control measure is not

helping to prevent implementation errors because it is not possible to be sure that im-

 43

plemented risk control measure does not have another implementation error. (Technical

report 2009). Protective measures in the manufacturing process are not described in

detail in the Technical Report, but those can be used in incorrect specification factor and

incorrect implementation factor. Rigorous manufacturing process is thus acceptable risk

control measure.

The third option is always possible in case of software. According to Technical report,

information for safety could mean everything between simple on-screen warnings and

complex user manuals with defined training courses in case of software. The complexity

of such written material can be reduced by good user interface design. (Technical Re-

port 2009)

4.7.1 Usability Engineering as a Risk Controlling Method

Usability Engineering

In the field of usability engineering there is a lot of research done and conducted to usa-

bility engineering principles and guidelines. During last ten years usability has got in-

creasing attention also in the context of information systems in healthcare.

Also the technical report mentioned user interface multiple times. Actually, all of the

three risk controlling options included a mention about the user interface and usability.

Guidelines for Usability Engineering of Clinical Information Systems

One usability program was made within MIRACLE project by Philips Medical Sys-

tems. Program included heuristic evaluation, two usability tests and weekly interviews

with participants. The program resulted following guidelines for conducting usability

programs co-operation with medical professionals:

1. Focus user requirements-gathering on user goals and tasks

2. Perform heuristic evaluation of the software to identify and correct obvious

problems before usability testing

3. Budget extra time and recourses for participant recruiting, scheduling and orien-

tation, both early and throughout the project

4. Provide the most accurate, up-to-date data as possible, even in the test setting

5. Use methodologies that permit some flexibility in study design or implementa-

tion. (Rosenbaum, Hinderer and Scarborough 1999).

Usability Attributes and Their Relation to Risk Management

These attributes are at same time the characteristics of medical device mentioned in 4.2

(ISO 14971). Also the definition of usability is part of that. Actually there are main lev-

els from the definition of usability and second-levels from these attributes.

 44

Attribute Relation to Risk Management

Learnability - Employees should learn the system as fast as possible; oth-

erwise something important might not be recognized in the

use of medical standalone software that contribute a hazard-

ous situation.

- Production is going on without learning phase, so for the

new employee there is no time to spend to learn the system.

- Physicians and other staff might be unwilling to spend their

time receiving training (Rosenbaum, Hinderer and Scar-

borough 1999)

Efficiency - Psychological issue if the system is too slow: users become

frustrated.

- If the system is too slow, users might start thinking that the

system is somehow broken and do something unpredictable

and unintended.

- Risk is not easily measurable

- Included in regulation

Memorability - A holiday can’t cause the situation where employee forgets

how to use the system.

- Proper training might be missing.

- It might not be possible to spend much time reading manual.

Errors - The possibility not to recognize the error might cause a

threat for patient safe.

- Employees do not have spare time to re-do things

Satisfaction - Psychological issue: user becomes frustrated.

- Risk is not quantifiable and not measurable.

Figure 20: Usability attributes and their relation to risk management.

Figure 20 presents usability attributes and their relation to risk management. The stand-

ard IEC 62366 “Application of usability engineering to medical devices” also discusses

about usability issues relating to software and expands the risk management standard

ISO 14971.

Use of Usability Heuristics

Usability heuristics can be defined as a basis for a systematic inspection of a user inter-

face to find its usability problems (Nielsen 1993).

 45

A heuristic evaluation was done in MIRACLE project independently by three usability

specialist in the beginning of the program. It was possible to identify obvious usability

problems and recommend changes to the user interface. (Rosenbaum, Hinderer and

Scarborough 1999).

There are several usability heuristics to use. Nielsen presents following ten usability

heuristics (Nielsen 2003):

1. Simple and Natural Dialogue

 User interfaces should be simplified as much as possible, because it is possi-

ble to misunderstand everything.

 There should be exactly the information the user needs and no more.

 Colors should only be used to categorize, differentiate and highlight, not to

give information.

2. Speak the User’s Language

 Terminology in the user interfaces should be based on the user’s language

and not on system-oriented terms.

3. Minimize User’s Memory Load

 Software should take over the burden of memory from the user as much as

possible.

4. Consistency

 The same information should be presented in the same location on all

screens and should be formatted in the same way to facilitate recognition.

5. Feedback

 The system should continuously inform the user about what it is doing.

 Feedback is especially important in case of long response times.

 Informative feedback should be given in case of system failure.

6. Clearly Marked Exits

 The system should offer the user an easy way out from as many situations as

possible.

7. Shortcuts

 It should be possible for the experienced user to perform frequently used op-

erations especially fast.

8. Good Error Messages

 Error messages present opportunities for helping the user understand the sys-

tem better.

9. Prevent Errors

 Better than having a good error messages would be to avoid the error situa-

tion in the first place.

10. Help and Documentation

 Fundamental truth is that most of the users don’t read manuals.

 46

4.8 Production and post-production information

There shall be established, documented and maintained a system for the production and

post-production phases of medical device according to ISO 14971.

There are also other requirements for the system:

1. Manufacturer shall collect and review information about medical device or simi-

lar devices in the production and post-production phases.

2. Manufacturer should consider the mechanisms by which information is collected

and processed. The operator or the user might generate this information. Infor-

mation might be generated by those accountable for the installation, use and

maintenance of the medical device.

3. Manufacturer should collect and review publicly available information about

similar medical device on the market.

4. Manufacturer should consider new or revised standards.

Collected and reviewed information shall be evaluated for possible relevance to safety.

Manufacturer should consider at least following conditions in the evaluation:

1. Previously unrecognized hazards or hazardous situations are present.

2. The estimated risks arising from a hazardous situation are no long acceptable.

If any of the above conditions occur, manufacturer shall do following actions:

1. The impact on previously implemented risk management activities shall be eval-

uated.

2. The impact on previously implemented risk management activities shall be fed

back as an input to the risk management process.

3. A review of the risk management file for the medical device shall be conducted;

the impact on previously implemented risk control measures shall be evaluated,

if there is a potential that the residual risks or its acceptability has changed.

 47

5 THE DEVELOPED RISK MANAGEMENT

SYSTEM

5.1 Developed Risk Management System

The risk management system affects the whole lifecycle of medical standalone software.

In the beginning, customer requirements are collected and analyzed in case of foreseea-

ble hazards. In the software development phase the risk management system affects to

process itself, architecture and function development. After release post-production use

and operation phase will be applied. When a new product develpment is starting accord-

ing to this risk management system, the information should be produced from the whole

life cycle of medical device.

The risk management system has to cooperate with different functions of company re-

lating to software manufacturing. Manufacturer might be responsible for post-

production operation of the software system. The environment, where the medical

standalone software is running on, might be e.g. one kind of cloud service or simple

workstation. Within this thesis the post-production phase is not covered, even though

Figure 26 presents a possible draft about the post production phase. The risk manage-

ment standard does not specify if the post-production operation is in scope of risk man-

agement system activities or not.

Figure 21 presents the developed risk management system that consists of four phases:

preliminary planning, software development, post-production use and operation, and

production and post-production information collecting system. Each of the phases re-

lates to some manufacturing phase in the company. The production and post-production

information collecting system presented in Figure 27 collects information as presented

in chapter 4.8.

 48

Figure 21: Developed risk management system.

Risk management system is developed in accordance of ISO 14971. It means that all the

requirements of that standard, presented in chapter 3.3.3, are fulfilled. The traceability is

handled by using a matrix, where all information about risk assessment and risk control-

ling are placed.

Production and post-production information collecting system is used as a hub that con-

nects all the parts of risk management process together. The production and post-

production information collecting system can be used also to deliver information be-

tween different company functions.

5.1.1 Risk Management Process

Risk management process consists of three parts: Part A, Part B, and Part C. It is simple

to have one risk management process containing different procedures in different phas-

es. Otherwise three processes shall be considered. In Part A and Part C the standard ISO

14971 is applied as appropriate, but in Part B all the requirements are fulfilled.

Part A is about preliminary planning. In this phase no line of source code is written. Part

A is active in the planning phase of a new product. The risks that are analyzed and iden-

 49

tified are more business risks, and not risks relating to hazardous situation and harm.

However, some important knowledge might emerge that is used by software develop-

ment team.

Part B is about software development. In that phase all the software is developed and

released. That phase has to be integrated to software development model tightly.

Part C is about post-production use and operation. That phase is active after software

release.

Part A: Preliminary planning

In this phase the project is starting and customer requirements are asked. The risks in-

volved here are more business risks than patient risks. However, the characteristics re-

lated to safety and hazard identification is started in this phase, because those can serve

in Part B when software architecture is started to develop and customer requirements

are started to interpret to software specification. Figure 22 presents the Part A.

Risk management process: Part A

P
re

lim
in

a
ry

 p
la

n
n

in
g

S
o

ft
w

a
re

 d
e

v
e

lo
p

m
e

n
t

te
a

m

Document

intended use

and misuse

Identify

characteristics

related to

safety

B
u

s
in

e
s
s
 t
e

a
m

Risk analysis

Risk evaluation

Q
u

a
lit

y
 m

a
n

a
g

e
m

e
n

t

Identify

hazards

Consider risk

controlling

options

Risk control

measure

effectiveness

verification

Implement risk

controlling

measure

Figure 22: Risk management process: Part A

Inputs: Customer requirements

 50

Outputs: Risk assessment and proposed risk controlling measures of business risks. Pre-

liminary risk analysis of software development relating to Part B.

Part B: Software development

This phase includes the software development process from software requirements

analysis to software release. Software development phase begins from constructing of

software specifications from scratch. All the risks involved in this phase are patient

risks.

The structure of Part B demonstrates the three levels of risks, and how the risks flow

from function level to system level. The B-1 presented in Figure 23 is for the function

level risks, the B-2 presented in Figure 24 is for the function in system level risks, and

the B-3 presented in Figure 25 is for the system level risks.

Risk management process: Part B-1

M
a

n
u

fa
c
tu

ri
n

g
 l
if
e

 c
y
c
le

S
o

ft
w

a
re

 d
e

v
e

lo
p

m
e

n
t

te
a

m

Q
u

a
lit

y
 m

a
n

a
g

e
m

e
n

t

Risk analysis
Risk control

option analysis

Risk control

measure

effectiveness

verification

Risk evaluation

Risk evaluation:

need for risk

control?

YesYes

NoNo

Is required risk

reduction

practcable?

YesYes

Risk evaluation:

need for risk

control?

NoNo

YesYes

NoNo

Risk evaluation

Residual risks

Review the

effects of the

risk control

measure

Figure 23: Risk management process: Part B-1

Risk management process: Part B-2

M
a

n
u

fa
c
tu

ri
n

g
 l
if
e

 c
y
c
le

Q
u

a
lit

y
 m

a
n

a
g

e
m

e
n

t

Risk/benefit

analysis

Residual risks

Is residual risk

judged acceptable?

NoNo

Is residual risk

judged acceptable?

YesYes

YesYes

Shall residual risk

be disclosed?

Disclose the

residual riskYesYes

NoNo

Residual risks

NoNo

Figure 24: Risk management process: Part B-2

 51

Risk management process: Part B-3

M
a

n
u

fa
c
tu

ri
n

g
 l
if
e

 c
y
c
le

Q
u

a
lit

y
 m

a
n

a
g

e
m

e
n

t

Risk/benefit

analysis

Residual risks

Is overal residual

risk judged

acceptable?

YesYes

Is overall residual

risk acceptable?

Disclose the

residual riskYesYes

NoNo

Risk

evaluation:

Overall

residual risk

NoNo

Record the risk

management

report

Figure 25: Risk management process: Part B-3

Inputs: Preliminary risk analysis from Part A.

Outputs: Risk assessment and risk control measures, risk management report and

risk/benefit analysis.

Part C: Post-production use and operation

This phase includes software operation environment. In this phase software is released,

and risk management process concentrates to hazards, which might contribute a soft-

ware failure. The risks involved here are both business risks and patient risks. Figure 26

presents the post-production use and operation phase.

Risk management process: Part C

P
o

s
t-

p
ro

d
u

c
ti
o

n
 u

s
e

 a
n

d
 o

p
e

ra
ti
o

n

D
e

liv
e

ry
 t
e

a
m

Risk analysis

Risk evaluation

Q
u

a
lit

y
 m

a
n

a
g

e
m

e
n

t

Consider risk

controlling

options

Risk control

measure

effectiveness

verification

Implement risk

controlling

measure

Is required risk

reduction

practicable?

YesYes

NoNo

Figure 26: Risk management process: Part C-1

Inputs: Documentation created for post-production use and operation.

Outputs: Risk assessment and risk controlling measures.

 52

5.1.2 Production and post-production information collecting system

Production and post-production information collecting system is developed based on the

requirements relating to IEC 14971. Information flow to information collecting system

includes all phases relating to medical device manufacturing, and also the information

that is possible to get outside of the company. Also, new or revisited standards are ob-

served. The information collecting system is presented in Figure 27.

Risk management process: Production and post-production information collecting system

M
a

n
u

fa
c
tu

ri
n

g
 l
if
e

 c
y
c
le

P
ro

d
u

c
ti
o

n
 p

h
a

s
e

Q
u

a
lit

y
 m

a
n

a
g

e
m

e
n

t

Information

collector

P
o

s
t-

p
ro

d
u

c
ti
o

n
 p

h
a

s
e

E
x
te

rn
a

lit
y
 c

o
lle

c
te

d

in
fo

rm
a

ti
o

n

Watch

standards

relating to

manufacturing

Available

information

about similar

devices on the

market

Review

collected

information

Information

about medical

device or

similar devices

Evaluate

information for

relevance to

safety

Risk

management

activity

evaluation

Risk

management

file review

Defined conditions

occur?

YesYes

Information

about medical

device or

similar devices

Delivery team

Figure 27: Production and post-production information collecting system.

The instance of the production and post-production information collecting system is

quite difficult to emerge. In interphase the information collecting system constructed so

that company use old active reporting systems and only defines the information streams

relating to those old systems. Later, all the separate reporting systems can rationally be

replaced with one system if needed. The system should be able to handle all the infor-

mation streams relating to the medical device and its lifecycle.

 53

5.1.3 Risk Assessment and Risk Controlling Methods

Chapter 4.5 presents the factors that could contribute hazardous situations in case of

medical standalone software. Those factors can appear alone or in combinations. For

total safety, all of those factors have to be prevented or somehow be treated. This chap-

ter presents how to get prepared against them.

Not all of these factors are appropriate to every risk management phases. Figure 28 pre-

sents for each factor, in which phase the factor is applicable and will be considered.

Generally, the factors in the phases are divided according to possibility of risk control

activities. If the factor is not possible to control in the phase, it is not applicable. If the

factor can be controlled in the phase, it is applicable.

Factor Preliminary

planning

Software

development

Post-production

use and operation

Intended use Applicable Applicable N/A

Unintended use Applicable Applicable N/A

Misuse Applicable Applicable N/A

Incorrect specifica-

tion

Applicable Applicable N/A

Incorrect imple-

mentation

N/A Applicable N/A

Software failure N/A N/A Applicable

Software working

properly

N/A Applicable N/A

Figure 28: Risk factors that should be considered in risk analysis in presented phases.

It is significant to notice that even though risk factor is applicable in some phase, it is

not always active there. For example, incorrect specification is applicable in software

development phase only when new customer requirements are given or the specification

against customer requirements is changed. That is because specification has to be com-

pared against customer requirements, which is the input to correct specification.

In the preliminary planning phase, there is no software development as such. That is

why implementation, failure and software working properly are not applicable there. Of

course there can be some ideas about possible failures, but actually those are imple-

mented in post-production use and operation phase. Or there might appear intended use

 54

that could contribute hazardous situation, but in the fact there is no software developed

so the factor cannot be applicable.

Software failure is the only one in the post-production use and operation phase that is

applicable. Of course other factors can be appeared in the post-production use and

operation phase, but the corrective actions can be done for them only in software devel-

opment phase. Vice versa the hardware-related things that are caused by software fail-

ure factor can be considered in post-production use and operation phase and not in the

other phases.

5.1.3.1 Intended Use

Risk analysis

This risk factor includes all those hazards that are not foreseeable or are relating some-

how to characteristics of medical standalone software.

When constructing a software specification, intended use shall be considered in case of

hazards. However, hazards relating to intended use are those that are identified in case

of unintended use.

Risk control measures

This factor’s risk control measures are used to disclose the residual risk.

Instructions and information shall be placed to the user manual and help section in the

software, in order to inform, motivate and enable the user to use the device safely.

5.1.3.2 Unintended Use

Risk analysis

Usability principles shall be applied over the software user interface trying to find usa-

bility problems that could contribute a sequence of events resulting in a hazardous situa-

tion.

Foreseeable hazards: poor usability containing complicated and unnatural dialogue, not

speaking the user’s language, user memory load, inconsistency, no feedback, unclearly

marked exits, no shortcuts, bad error messages, no error prevention, and no help nor

documentation.

Risk control measures

Proposed modifications to user interface based on applied usability heuristics.

 55

5.1.3.3 Misuse

Risk analysis

There are no general foreseeable hazards relating to misuse.

Risk control measures

If it is possible to identify some misuse, the risk control measures that can be used are

the same than in case of intended use.

5.1.3.4 Incorrect Specification

Risk analysis

Formal risk analysis is not appropriate for this risk factor.

Foreseeable hazards: customer requirements are different comparing to software re-

quirements; customer wants new functionality that is wrongly specified by manufactur-

er.

Risk control measures

Requirement and design review: reviewing customer requirements to software require-

ments in case of differences or inconsistencies.

Traceability between customer requirements, software specification, software imple-

mentation, and testing.

5.1.3.5 Incorrect Implementation

Risk analysis

Formal risk analysis is not appropriate for this risk factor.

Foreseeable hazards: incorrect implementation.

Risk control measures

Rigorous software development process that includes validation activities, verification

activities, and testing activities.

Unit testing and integration testing. There should be testing scenarios at least for critical

components of the software.

Design and code review: reviewing design against software specification and code

against software specification and design.

Walk through the software implementation against design.

 56

5.1.3.6 Software Failure

Risk analysis

For software failure factor suitable risk analysis tools are FTA or PHA.

Foreseeable hazards: hardware break (memory, cpu, hard disk), wrong operation set-

tings.

Risk control measures

General system administration and configuration activities (duplicated hardware, back-

ups, etc.).

5.1.3.7 Software Working Properly

Same principles shall be applied than in case of intended use. The difference between

this risk factor and intended use is that this is from the viewpoint of the software and

intended use is more from the viewpoint of user.

5.2 Case: How to Use the Risk Management System

The risk management system process activities must be trained for employees. The risk

management system is integrated as a part of the quality management system and thus

before training, the guideline for risk management process must be made. The basic

principle is that employees should follow the instructions presented in the quality man-

agement system.

According to the risk factor model, all the possible risk factors shall first be considered

relating to developed software system. The results of the consideration shall be recorded

to risk management file. Here is presented how to apply afterwards risk management

system for medical standalone software.

It is not possible to identify the foreseeable misuse. That is because of the applied defi-

nition of misuse. Also software failure factor is not considered, because of the develop-

ment phase of the software system.

Both incorrect specification and incorrect implementation is not possible to consider.

The software is developed by using the software development model that might not be

as strict as it is instructed in the new risk management system. However, not much can

be done for that. Incorrect specification is also quite difficult to consider, because the

traceability exists only partly, and in few years the customer requirements are merged to

the software specification.

 57

Intended use and the state where software is working properly will be considered while

finalizing the user manual. Also, with all the produced specification after the starting

point of risk management system, these two factors could be considered.

Unintended use is the only factor that could be considered immediately. The analysis

can be conducted by using Nielsen’s ten heuristics presented in chapter 4.7.1. The soft-

ware architecture allows analyzing the user interface components separately. It is easy

to do in the beginning a heuristics evaluation for user interface components separately.

5.3 Assessment of Risk Management System

There are several important attributes relating to risk management system. The purpose

of the risk management system and other regulation is to ensure and provide safety,

effectiveness and quality for the medical device. The most important objective of risk

management system is to ensure safety.

To assess the risk management system in accordance to this particular objective is ex-

tremely difficult. The testing environment should contain two similar medical device

development processes, with and without the risk management system. The extreme

assessment of the results of those two development processes is not possible to do. All

that matters is minimizing the injuries of the patients. However, this is not possible to

test.

Some assessments could be done by examining the identified hazardous situations and

the risk controlling measures relating to them. However, in this thesis it is not possible

to do any tests, where two adjacent risk management systems would be used. There is

no truthful way to assess, how the developed risk management system really assists the

safety development of the medical device or how reliable it is regarding to risk reduc-

tion.

In the chapter 4 the nature and principles of the risk management system are presented

and in chapter 5 presents the developed risk management system. The risk management

system was developed according to the principles that were presented in the chapter 4.

As it was described in chapter 5.2, not all the parts of developed risk management sys-

tem were possible to implement or to use. However, the objective assessment of those

parts that were possible to implement and use, is not possible to conduct.

 58

6 DISCUSSION

6.1 Benefits of Regulation

Big Companies

Development that has been described in this thesis might cause a situation where small

companies lose some of their advantage in agility. That might be caused because of ful-

filling all requirements from regulation needs some employees that are especially dedi-

cated to do quality and regulation related things.

The question that arises is why European Union wanted all the companies in software

industry that develop medical software under the control. For big companies it is clear

that the more regulation there is, the more difficult for small competitors it is to do

business. Another point of view, the more regulation produces most probably more safe

software.

However, it seems clear that those big companies who afford to put people doing risk

and quality management and whose processes are already in order will benefit about

this regulation. It may be even so that in some cases the big companies need not to have

necessarily to change anything because they might already have the essential require-

ments fulfilled.

Patients

Regulation forces companies to do their best effort to make all software safe. Before

MDD 2007 there was a small gap for those software systems that were not in straight

contact with patients. There was not any regulation for finding out the possible risks and

fix them. For example, a laboratory information system assists doctors to choose right

drugs for patients. If the system has some problem, it makes it possible to prescribe

wrong drugs.

Society

When all companies in medical devices field including software system manufactures

have to apply for CE mark in Europe to launch their software product, it is definitely

nice for hospitals both in public and private sector to know by sure that the system they

are going to buy is accepted by public authority.

 59

6.2 Usability Engineering in Risk Management

Now there is in one mention about usability engineering in the software requirements

chapter in the standard IEC 62304. As it was presented in this thesis, usability has to

have much more attention in software development of medical standalone software. For

example Philips has already in 1999 give attention (Rosenbaum, Hinderer and Scar-

borough 1999) to usability and they found out essential principles for development of

medical standalone software. Actually, the need is identified for framework to identify,

classify and prioritize errors in the healthcare context (Sarnikar and Murphy 2009).

There is a mention about usability engineering in IEC 62304. The standard references to

another standard IEC 60601-1-6 which is replaced with IEC 62366. Regarding to what

is discussed in chapter 4.7.1, one possible branch of developing is to require fulfilling

standard IEC 62366 because it is huge impact to safety of medical standalone software.

6.3 Post-production Operation

According to ISO 14971 the requirements of the standard are applicable to all stages of

the life-cycle of medical device. This is the only reference to operation stage of medical

device and actually the standard assumes that after release the manufacturer is not in

responsible for the medical device operation phase. That indicates, for example, the

need to do risk management report before release and after that only production and

post-production system collects information that should be considered.

In Finnish legislation there is mentioned in 12 § that manufacturer is responsible for

design, manufacturing, packaging and marking of the medical device. There is no men-

tion about post-product operation.

It seems that everything depends on contract between manufacturer and the medical

care provider that uses the medical device. The contract should consider about the situa-

tion where patient risk appear.

6.4 Risk Management Development in the Future

6.4.1 Some Difficulties Relating to Risk Management

There are quite many difficulties incorporated to risk management system. The major

difficulty is that risk management system is separated from the software development

model. However, in real life the risk management system is still in close relationship

with the software development model. One solution to this problem is to combine soft-

ware life cycle processes standard and risk management standard to one standard for

medical standalone software.

 60

The second difficulty in general is the traceability. Even though traceability is possible

to do, the benefit of it might stay minimal. This is not the problem of any standard, but

as long as traceability is required, there should be some solution to administrate the

traceability. The trivial solution is that some company manufacturers the software for

medical standalone software requirement management. However, the traceability is still

an important risk control measure relating to incorrect specification.

Relating to the secondly identified difficulty, the lack of requirement management is an

actual source of hazards. In that management system there should be also the configura-

tion management. What is even more challenging is to apply agile methods in develop-

ing of medical standalone software.

6.4.2 Standard for Medical Standalone Software Development

Current standards are not appropriate enough for special requirements of medical

standalone software. Especially the software life cycle processes standard IEC 62304 is

not developed for standalone software that is operated by manufacturer after release.

The software safety classification that was presented in chapter 4.4 is a rational way to

apply different levels of rigorous for software development processes. Unfortunately, in

case of medical standalone software, the classification is totally irrelevant. As it was

said, no hardware segregation is possible to do.

In the future, there must be a specified standard for medical standalone software devel-

opment. The standard should be in close relationship with the risk management. The

incorrect implementation factor in risk factors model is managed by rigorous software

development process. The software safety classification would make sense, if the rigor-

ous level of software development could relate the software item development as it is

also in current standard. In future, there should not be any requirement of hardware seg-

regation. The difference between embedded software and standalone software is that in

standalone software the risk does not flow to other software items.

One possible way to analyze the software item is to construct some formula with two

attributes: the amount of people who are related to development process of specified

software item, and the amount of sequential software items.

6.4.3 Risk Factors Model

As it was said already, all of the factors of risk factors model can contribute a hazardous

situation whether alone or in combination with others. Further studies should be con-

ducted at least with following:

1. What are the most usual combinations of risk factors?

 61

2. How the risk management system could affect to clinical decision making to

prevent medical errors relating to medical standalone software.

3. Usability studies among health care staff to identify and learn the most severe

problems.

The Risk factors model does not deeply concentrate to post-production use and opera-

tion. Further studies should be conducted in accordance to be sure the real effects of

post-production phase to medical standalone software safety.

 62

7 CONCLUSION

There were two purposes for doing this master thesis. The first one was to find out what

the reasons are for European Union to put all the software under the regulative control

and how they are doing it. The second one was to develop a risk management system

for medical standalone software.

To reach the first goal, first the history of software engineering and quality develop-

ment, and the regulation for medical devices was viewed. The case like Therac-25 defi-

nitely affected to development of regulation somehow. The Global Harmonization Task

Force was conceived to uniform the regulation system, but also to serve as a discussion

forum.

The second goal was more specific. Chapter 4 presents the aspects relating to risk man-

agement system. The detailed attention was given to medical standalone software and

its differences to other medical device. The detailed information was received from

study concerning the recalls of medical devices containing software.

The risk factor model was developed in this thesis. With this model it was possible to

divide possible causes of medical standalone software. Also according to the model, it

was possible to study the possible risk control measures. The major finding within this

thesis was the use of usability engineering to control risks in medical standalone soft-

ware.

Finally, the developed risk management system for medical standalone system consists

of four parts: preliminary planning, software development, post-production use and op-

eration, and production and post-production information collecting system. The first

three parts constitute the risk management process.

The developed risk management system was taken in place after it was completed. Until

now, no feedback has emerged yet. The assessment of the risk management system,

partly because of that, is quite challenging.

During the project it became clear that risk management standard is not specified for

medical standalone software. The most probably in the future a new risk management

standard takes place. The standard should be specified for medical standalone software,

and the best solution would be, if the risk management standard and the software life

cycle processes standard were merged into one standard.

 63

REFERENCES

Australian Regulatory Guidelines for Medical Devices. 2010. Therapeutic Goods Ad-

ministration. Referenced 25.7.2011 from http://www.tga.gov.au/pdf/devices-argmd.pdf.

Basler, R., Pizinger, R. 2004. The Arrival of ISO 13485:2003 – New standard shifts

quality system from procedure-based to process-based. Medical Product Outsourcing.

Referenced 12.7.2011 from http://www.fdatraining.com/Noblitt-Rueland_ISO13485-

2003_Part1.pdf and http://www.fdatraining.com/Noblitt-Rueland_ISO13485-

2003_Part2.pdf.

Beck, K. 1999. Extreme Programming Explained. First edition. ISBN: 0201616416, p.

224.

Boehm, B. 2006. A View of 20th and 21st Century Software Engineering. In Proc.

ICSE’06. ACM Press. pp. 12-29.

Brooks, F. 1986. No silver bullet – Essence and accidents in software engineering. Pro-

ceedings of the IFIP Tenth World Computing Conference. H.-J. Kugler, ed, Elsevier

Science B.V.,Amsterdam, NL. pp. 1069-76.

Caminer, D. 2001. LEO and the Computer Revolution. In Conference Proceeding of the

Business Computing the Second 50 years. The Guildhall Conference for business lead-

ers. Referenced 6.7.2011 from http://is2.lse.ac.uk/leo/archive/caminer.pdf.

Chiravuri, A., Ambrose, P. 2003. Investigating the effects of downsizing on software

professionals' self-efficacy and its consequences on software development quality. In

Proceedings of the 2003 SIGMIS conference on Computer personnel research: Freedom

in Philadelphia--leveraging differences and diversity in the IT workforce (SIGMIS CPR

'03). ACM, New York, NY, USA, pp. 52-57.

Council Directive 1993/42/EEC. Medical Device Directive.

Council Directive 2007/47/EEC. Medical Device Directive.

D’Eramo, P. 2007. Japan's Pharmaceutical Affairs Law (PAL): Opportunities and Chal-

lenges. Referenced 25.7.2011 from

http://www.ispe.org/cs/regulatory_review_archive/february_2007_japans_pharmaceutic

al_affairs_law_pal_opportunities_and_challenges.

Everett, R. R., Zraket, C. A., Benington, H. D. 1957. SAGE: a data-processing system

for air defense. In Papers and discussions presented at the December 9-13, 1957, eastern

joint computer conference: Computers with deadlines to meet (IRE-ACM-AIEE '57

(Eastern)). ACM, New York, NY, USA, pp. 148-155.

 64

FDA. 2011. U.S. Food and Drug Administration. Referenced 25.7.2011 from

http://www.fda.gov.

Flores, N., Aguiar, A. 2008. Patterns for understanding frameworks. In Proceedings of

the 15th Conference on Pattern Languages of Programs (PLoP '08). ACM, New York,

NY, USA, Article 8, p. 11.

Global Harmonization Task Force. 2011. Welcome to the Global Harmonization Task

Force Website. Referenced 12.7.2011 from http://www.ghtf.org/.

Gross, A., Minot, J. 2007. Japanese Audits and Accreditation for Foreign Medical De-

vice Manufacturers. Referenced 21.7.2011 from

http://www.medicaldevices.org/sites/default/files/JapanAuditLayoutOct07_000.pdf.

Haigh, T. 2010. Dijkstra’s Crisis: The End of Algol and Beginning of Software Engi-

neering, 1968-72. Draft for discussion in SOFT-EU Project Meeting. Referenced 8.7.

from http://www.tomandmaria.com/tom/Writing/DijkstrasCrisis_LeidenDRAFT.pdf.

Health Canada. 2011. Health Canada. Referenced 25.7.2011 from http://www.hc-

sc.gc.ca/index-eng.php.

IEC 62304:2006 Medical device software – Software life cycle processes.

ISO 13485:2003 Medical devices – Quality management systems – Requirement for

regulatory purposes.

ISO 14971:2007 Medical devices – Application of risk management to medical devices.

ISO Quality Services. Referenced 5.7.2011 from

http://www.isoqsltd.com/html/iso_history.html.

JFMDA. 2011. The Japan Federation of Medical Devices Associations. Referenced

7.7.2011 from http://www.jfmda.gr.jp/e/.

King, J. L. 2010. Project SAGE, a half-century on. Interactions 17, 5, pp. 53-55.

Kopec, D., Tamang, S. 2007. Failures in Complex Systems: Case Studies, Causes, and

Possible Remedies. Inroads – The SIGCSE Bulletin 39. 2. Pp. 180-184.

L 24.6.2010/629. Laki terveydenhuollon laitteista ja tarvikkeista.

Leveson, N., Turner, C. 1993. An Investigation of the Therac-25 Accidents. IEEE

Computer. 26. 7. Pp. 18-41.

 65

Lindholm, C., Höst, M. 2009. Risk Identification by Physicians and Developers - Dif-

ferences Investigated in a Controlled Experiment. SEHC’09, May 18-19. Vancouver,

Canada. Pp. 53-61.

Mahoney, M. 1988. The History of Computing in the History of Technology. Annals of

the History of Computing 10, pp. 113-125.

Miura, S. 2007. Industry view point on software. 11
th

 Conference of the Global Harmo-

nization Task Force. Referenced 5.7.2011 from

http://www.ghtf.org/meetings/conferences/11thconference/E/MIURA.pdf.

Naur, P., Randell, B.1969. Software Engineering – Report on a conference sponsored by

the Nato Science Committee. Referenced 11.7.2011 from

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

Oopsla. 2011. Oopsla history. Referenced from http://www.oopsla.org/oopsla-history/.

Princeton. 2008. Michael S. Mahoney, historian of science and devoted faculty member,

dies. Referenced 11.7.2011 from

http://www.princeton.edu/main/news/archive/S21/70/15G51/index.xml?section=topstori

es.

Pöyhönen, I., Hukki, K. 2004. Development of risk-informed requirements specification

process of software.Espoo. VTT. Research Notes 2263. p. 47.

Raccoon, L. B. S. 1997. Fifty years of progress in software engineering. Software engi-

neering notes 22, 1, pp. 88-104.

Rosenbaum, S., Hinderer, D., Scarborough, P. 1999. How usability Engineering Can

Improve Clinical Information System. Reprint of paper delivered at UPA 99, sponsored

by the Usability Professional’s Association. p. 5. Referenced 18.7.2011 from

http://www.teced.com/PDFs/upa99sr.pdfo.

Royce, W. 1970. Managing the development of large software systems. Proceedings,

IEEE WESCON, August 1970, pp. 1-9.

Ryder, B., Soffa, M., Burnett, M. 2005. The Impact of Software Engineering Research

on Modern Programming Languages. ACM Transactions on Software Engineering and

Methodology 14. 4. pp 431–477.

Sabre Holdings. 2011. Sabre history. Referenced 7.7.2011 from http://www.sabre-

holdings.com/aboutUs/history.html.

Sarnikar, S., Murphy, M. 2009. A Usability Analysis Framework for

Healthcare Information Technology. Sprouts: Working Papers on Information Systems.

9. 62. Referenced 18.7.2011 from http://sprouts.aisnet.org/9-62.

 66

Seddon, J. 2000. The quality you can’t feel. The Observer. Sunday 19 November. Ref-

erenced 5.7.2011 from

http://www.guardian.co.uk/money/2000/nov/19/workandcareers.madeleinebunting.

SFDA. 2011. State Food and Drug Administration. Referenced 12.7.2011 from

http://eng.sfda.gov.cn.

Shenvi, A. 2010. Medical Software: A Regulatory Process framework. ISEC’10, Febru-

ary. Mysore, India. pp. 119-124.

Slaughter, S. A., Harter, D. E., Krishnan, M. S. 1998. Evaluating the cost of software

quality. Communication of the ACM 41, 8. pp. 67-73.

Sommeville, I. 2001. Software engineering. Pearson education, 6 ed., p. 693.

Technical report. 2009. IEC/TR 80002-1 Medical device software – Part 1: Guidance on

the application of ISO 14971 to medical device software. IEC, Geneva, Switzerland.

Tripp, L. L.1996. International standards on system and software integrity. Stand-

ardView 4, 3, pp. 146-150.

Wallace, D., Kuhn, R. 2001. Failure Modes in Medical Device Software: an Analysis of

15 Years of Recall Data, International Journal of Reliability, Quality, and Safety Engi-

neering. 8. 4. pp. 351-171.

Valvira. 2011. Valvira – National Supervisory Authority for Welfare and Health. Refer-

enced 26.7.2011 from http://www.valvira.fi.

World Health Organization. 2003. Medical Device Regulation – Global overview and

guiding principles. ISBN 9241546182. Referenced from

http://www.who.int/medical_devices/publications/en/MD_Regulations.pdf

Yang, F., Mei, H. 2006. Development of software engineering: co-operative efforts

from academia, government and industry. In Proceedings of the 28th international con-

ference on Software engineering (ICSE '06). ACM, New York, NY, USA, pp. 2-11.

 67

APPENDICES

 APPENDIX 1: ISO 13485 – Quality Management Systems

 APPENDIX 2: IEC 62303 – Software Life Cycle Processes

 APPENDIX 3: ISO 14971 – Application of Risk Management to Medical

Devices

 APPENDIX 4: Summary of fault classes, generic problems, prevention and

detection methods (Wallace and Kuhn 2001).

 68

APPENDIX 1

Chapter 4: Quality Management System

In this chapter general requirements and documentation requirements are presented.

Chapter 5: Management Responsibility

Management responsibility includes:

1. Management commitment

2. Customer focus

3. Quality policy

4. Planning

5. Responsibility, authority and communication

6. Management review

Chapter 6: Resource Management

Resource management includes:

1. Provision of resources

2. Human resources

3. Infrastructure

4. Work environment

Chapter 7: Product Realization

Product realization includes:

1. Planning of product realization

2. Customer-related processes

3. Design and development

4. Purchasing

5. Production and service provision

6. Control of monitoring and measuring devices

Chapter 8: Measurement, analysis and improvement

Measurement, analysis and improvement include:

1. General

2. Monitoring and measurement

3. Control of nonconforming product

4. Analysis of data

5. Improvement

 69

APPENDIX 2

Chapter 4: General Requirements

IEC 62304 presents that manufacturer shall apply a risk management process complying

with ISO 14971 and shall demonstrate the ability to provide medical device software

that consistently meets customer requirement and applicable regulatory requirements. In

practice requirements mean that both standards ISO 14971 and ISO 13485 shall be ap-

plied.

The standard also defines a software safety class. There are three classes: A, B and C.

Class A means that no injury or damage to health is possible and class C means that

death or serious injury is possible. Safety class instructs what requirements must be per-

formed in life cycle processes.

Chapter 5: Software Development Process

There are several activities to do:

1. Software development planning

2. Software requirement analysis

3. Software architectural design

4. Software detailed design

5. Software unit implementation and verification

6. Software integration testing

7. Software system testing

8. Software release

Chapter 6: Software Maintenance Process

Software maintenance process consists of several activities:

1. Establish software maintenance plan

2. Problem and modification analysis

3. Modification implementation

Modification implementation includes practically software development process activi-

ties 2-8. According to IEC 62304 forewords activity 2 is not belonging to modification

implementation. However, only in the case of implementation error there is no need for

activity 2 of software development process. In other cases the specification is changed

somehow.

Chapter 7: Software Risk Management Process

Software risk management process consists of several activities:

 70

1. Analysis of software contributing to hazardous situations

2. Risk control measures

3. Verification of risk control measures

4. Risk management of software changes

Chapter 8: Software Configuration Management Process

Software configuration management process consists of several activities:

1. Configuration identification

2. Change control

3. Configuration status accounting

Chapter 9: Software Problem Resolution Process

Software problem resolution process consists of several activities:

1. Prepare problem reports

2. Investigate the problem

3. Advise relevant parties

4. Use change control process

5. Maintain records

6. Analyze problems for trends

7. Verify software problem resolution

8. Test documentation contents

 71

APPENDIX 3

Chapter 3: General Requirements for Risk Management System

General requirements consist of several components:

1. Risk management process

2. Management responsibilities

3. Qualification of personnel

4. Risk management plan

5. Risk management file

Risk management plan explains how manufacturer arranges risk management system.

Risk management file is the essential part of risk management system. Risk manage-

ment file contains all the records produced by activities of the risk management process.

Chapter 4: Risk Analysis

Risk analysis consists of several components:

1. Identification of intended use and characteristics of medical device

2. Foreseeable misuse

3. Identification of hazards

4. Risk estimation

Chapter 5: Risk Evaluation

Risk evaluation is decision whether risk reduction is needed or not. The criteria defined

in risk management plan shall be used.

Chapter 6: Risk control

Purpose of risk controlling is to choose risk control measurements that reduce the risk to

be acceptable. Risk controlling consists of several components:

1. Risk control option analysis

2. Implementation of the risk control measure

3. Residual risk evaluation

4. Risk and benefit analysis

5. Risks arising from risk control measures

6. Completeness of risk control

Chapter 7: Evaluation of Overall Residual Risk Acceptability

 72

The overall residual risk has to be evaluated in order to ensure that medical device is

safe to use. The overall residual risk should be acceptable using the criteria defined in

risk management plan.

If the overall residual risk is not acceptable using the criteria, manufacturer should view

the overall residual risk from broader perspective. If the research conducts the conclu-

sion that overall residual risk is acceptable and medical device is safe to use, manufac-

turer may disclose the overall residual risk.

Chapter 8: Risk Management Report

Before releasing the medical device for commercial use, manufacturer shall carry out a

report of the risk management process. That report should include at least the infor-

mation that risk management plan is appropriately implemented, the overall residual

risk is acceptable and appropriate methods are in place to obtain relevant production and

post-production information.

Chapter 9: Production and post-production information

There shall be established, documented and maintained a system for the production and

post-production phases of medical device. The system shall collect and review infor-

mation about medical device or similar devices.

 73

APPENDIX 4

Fault class Generic problem Prevention Detection

Calculation  Constants incor-

rectly coded

 Precision problem

 Code review

 Code reading

 Low level

design review

 Code reading

 Inspection

 Unit test

Change impact  Logic

 No verification

against original de-

sign specification

 Traceability

analysis

 Change im-

pact analysis

 Inspection

 Regression

test

 Traceability

analysis

Configuration man-

agement

 Incorrect configu-

ration for non-

domestic systems

 Software incompat-

ible with other

components

 Use of CM

tools

 Traceability

analysis

 Verify usage

of Cm tools

for all changes

 Inspection of

requirements

for component

interfaces

 Verification of

changes

 Regression

test

Data  System failed due

to invalid input da-

ta

 Inconsistency of

data retrieved from

database and that

expected by the

program

 Database corrup-

tion

 Assertion for

invalid values

 Checks for

ranges that

imply incor-

rect data

 Design: set

criteria of in-

put data vali-

dation

 Code: imple-

mentation of

input data val-

idation

 Assertions on

validity of da-

 Review for

completeness

of data speci-

fication

 Review that

all data speci-

fications are

included in the

user instruc-

tions

 Inspection

 Test against

invalid data

 Testing fo-

cused on data

retrieval

 74

ta retrieved

from database

 Database ad-

ministration

 Error handing

routine in

software

Fault tolerance  Excessive use of

the program causes

failure

 Incorrect action

due to unexpected

condition

 Incorrect action

due to operator er-

ror

 Fault toler-

ance such as

warnings to

operators

 Fault toler-

ance to pro-

tect against

human error

 Stress/volume

test

 Test against

boundary and

abnormal con-

ditions

Initialization  Lack of initializa-

tion of the runtime

environment

 Executing the

software first time

it fails to store nec-

essary initialization

values

 Use assertions

for initializa-

tion

 Document

initial condi-

tions for both

initial run and

consecutive

run

 Inspections

 Code review

 Test against

initial condi-

tions

 Stress test

Interface  Software does not

properly interface

with external de-

vice or other soft-

ware component

 Trace re-

quirements

through de-

sign through

code

 Examine the

specification

for each inter-

face

 Inspections

 Reviews

 Integration

test

Logic  Incomplete or in-

correct control log-

ic

 Improper handling

of boundary condi-

tions

 Improper data vali-

dation

 Programming error

 Design review

 Walk through

the software

implementa-

tion against

design

 Verify logic

for all condi-

tions

 Code review

 Code review

 Inspection

 Testing

 75

Omission  Vital system func-

tion are missing

 Lack of documen-

tation

 Improper docu-

mentation

 Trace re-

quirements

through de-

sign through

code

 Trace into

user and test

documenta-

tion

 Proper release

procedure

 Traceability

 Inspections,

reviews exam-

ining tracea-

bility of func-

tions

 System test

 Verify com-

pleteness by

examining

trace

 Inspection

Other  Out of compliance

with the perfor-

mance standard

 A typographic error

in software algo-

rithm causes in-

compatibility be-

tween two devices

 Simulation

 Design review

 Code review

 Code reading

against algo-

rithm specifi-

cations

 Performance

test

 Unit testing

 Walkthrough

Quality assurance  Test plan was not

implemented or ex-

ecuted appropriate-

ly

 Regression test was

not performed on

modified software

 No validation be-

fore initial release

 No validation on

software changes

 Project man-

agement over-

sight

 Change im-

pact analysis

 Specified pro-

cedures re-

garding test-

ing before

product re-

lease

 Project status

review

 QA process

checks

Requirements  Exceptional condi-

tions were not

specified in the re-

quirement specifi-

cation

 Functions missing

in the requirement

specification

 Modeling

 Analysis

 Traceability

 Requirement

review

 Design review

 Interface anal-

ysis

 Requirement

review

 Design review

 System test

Timing  Real time clock  Simulation  Timing analy-

 76

was not accurate

 Scheduled event

did not occur due

to timer failure

 Design review

 Code review

 Fault toler-

ance

sis

 Integration

test

 System test

