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Finite element simulation is a convenient tool for optimising a stamping process. By

using it in the design process, the quality of the product can be improved without the

expense of constructing a physical model for experimental testing. This thesis was

made for the purpose of studying the theory of �nite element stamping simulation

so that it could be implemented to study a simulation of a speci�c stamping process

performed on a 30 millimeter thick steel plate. The thesis is focused on the numerical

�nite element simulation of stamping, not on the practical applications of performing

these forming processes.

The literature study part of this thesis is mainly focused on the sources of non-

linearity and the solution methods for integrating the nonlinear dynamic equa-

tions. The nonlinearity is caused by metal plasticity, large displacements/strains

and changing contact conditions. The practical simulation part is performed with

Abaqus �nite element analysis software suite using both Abaqus/Standard and

Abaqus/Explicit codes. A simpli�ed two-dimensional (2D) plane strain model is

compared to a more costly, but more thorough, three-dimensional (3D) model. The

explicit and implicit solution methods are compared with the di�erent models. Also,

a parametrical study on the material properties is performed with the 2D model.

It was found that the studied stamping process is unlikely to succeed in practice

without major improvements on the geometry design of the tooling. The 2D model

misses important details when compared to the 3D model although o�ering signi�-

cant reduction in computational time. Therefore, it is recommended for use only in

the initial design process for optimisation purposes. The 3D model is recommended

for use in an almost complete design process to verify the results and to further

improve the design. Complicated contact conditions caused the simulations with

the shell element model to break down so that the simulation had to be performed

with a solid continuum element model. The advantages of the explicit solution in

the 3D model and the advantages of the implicit solution in the 2D model were

recognized. The implicit dynamic solution o�ers advantages over the static implicit

procedure by improved convergence of the iterations when hard contact is modelled.

The choice of material model is also an important aspect in the simulation.
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Elementtimenetelmäsimulointi on hyödyllinen apuväline metallilevyn kylmämuo-

vausprosessin suunnittelussa. Simuloinnin avulla muovausprosessin optimoinnista

on mahdollista saada halpa verrattuna siihen, että muovauskomponenteista valmis-

tettaisiin fyysiset mallit koeperäiseen suunnitteluun. Tämä työ on tehty metalli-

levyn kylmämuovausprosessin elementtimenetelmäsimuloinnin teorian ymmärtämi-

seksi ja teorian soveltamiseksi tietyn taivutusvaltaisen levymuovausprosessin simu-

loinnin tutkimiseen. Työ keskittyy levymuovauksen numeeriseen simulointiin, ei sii-

hen kuinka muovaus käytännössä suoritetaan.

Kirjallisuustutkimusosassa esitetään muovausprosessin elementtimalliin liittyviä

epälineaarisuuksia ja ne huomioon ottavia ratkaisumenetelmiä. Näitä epälineaari-

suuksia ovat metallien plastinen käyttäytyminen, vaihtuvat kontaktiolosuhteet se-

kä suuret siirtymät ja venymät. Käytännön simultointiosuus suoritetaan Abaqus-

ohjelmistolla käyttäen sekä Abaqus/Standard- että Abaqus/Explicit-koodia. Yksin-

kertaistettua kaksiulotteista (2D) tasovenymämallia verrataan laskennallisesti kal-

liimpaan, mutta perusteellisempaan kolmiulotteiseen (3D) malliin. Eksplisiittistä ja

implisiittistä ratkaisumenetelmää verrataan keskenään jo mainituilla eri malleilla.

Myös parametritutkimus suoritetaan materiaaliominaisuuksille tasovenymämallissa.

Työssä huomattiin, että tutkittua muovausprosessia ei todennäköisesti voida suo-

rittaa ilman suuria parannuksia työkalujen geometriaan. 2D-malli ei huomaa kaikkia

tärkeitä yksityiskohtia verrattaessa 3D-malliin. Toisaalta 2D-malli on laskennallises-

ti huomattavasti tehokkaampi, ja siksi sitä suositellaan vain alustavaan suunnitte-

luun muovausprosessin optimoimiseksi. 3D-mallia suositellaan käytettäväksi lähes

valmiissa suunnitteluprosessissa tulosten varmistamiseksi ja suunnitelman paranta-

miseksi entisestään. Monimutkaiset kontaktiolosuhteet aiheuttivat kuorielementti-

mallille ongelmia, joten simulointi täytyi suorittaa kontinuumielementeillä. Ekspli-

siittisen ratkaisumenetelmän edut 3D-mallissa ja implisiittisen ratkaisumenetelmän

edut 2D-mallissa huomattiin. Implisiittinen dynaaminen ratkaisumenetelmä tarjoaa

etuja implisiittiseen staattiseen ratkaisumenetelmään nähden parantamalla iteroin-

nin konvergointia, kun kontakti mallinnetaan kovana. Materiaalimallin valinta on

myös tärkeä yksityiskohta simuloinnissa.
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1. INTRODUCTION

1.1 Stamping process

Stamping refers to a variety of sheet metal forming processes, e.g. blanking, emboss-

ing, bending, �anging and coining [1, p. 393]. In the context of this thesis, stamping

refers to a bending-dominated cold forming process where a blank is formed into a

speci�c shape using the tooling: a punch and a die. Stamping is usually performed

on sheet metal pieces especially in the automotive industry, see e.g. [2]. The term

sheet metal refers to pieces that are less than 6 millimeters in thickness, a thicker

piece is considered plate [1, p. 320]. This thesis is focused on a bending-dominated

stamping process of a steel plate with a thickness of 30 mm. The plate to be formed

is referred to as blank throughout the majority of this thesis. The goal of this thesis

is to study the theoretical background of metal cold forming and to use the theo-

retical knowledge to study this speci�c forming process and compare the solution

methods and modelling considerations.

Illustrative �gure demonstrating the stamping process in the context of this thesis

is presented in �gure 1.1. On the left side of the �gure the undeformed blank is placed

on top of the die with the punch above both before the forming process. On the

right side of the �gure the punch has been moved down and the blank has been

formed by the punch by forcing it into the die cavity.

Figure 1.1: Stamping process

This problem is dominated by bending deformation. Sheet metal forming pro-
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cesses usually involve stretching and bending deformation of the blank. However,

the stretching part is not easily applicable to this forming process as it would require

extremely high forces to stretch a plate 30 mm thick. The stretching deformation of

the blank during the forming process is usually applied by blank holders in a deep

drawing process, see e.g. [2]. No blank holders are present in this thesis.

If the geometry of the die cavity would present the desired shape of the �nal

product, problems may be introduced because of the elastic properties of the mate-

rial. After the blank is formed and the tooling is removed, the stresses present in

the blank, caused by the tools forming it, will cause the blank to deform from the

desired geometry to a state in which the internal stresses are in static equilibrium.

This undesired deformation caused by the relaxation of the stresses after the removal

of tools is called the springback e�ect. The springback has to be accounted for in

the geometry design of the tooling and process parameter selection to optimise the

shape of the �nal product.

1.2 Stamping simulation

A stamping process can be simulated using �nite element analysis software to cal-

culate the deformation of the blank and to study the e�ect of changing forming

parameters. This is called stamping simulation. It provides an economic alterna-

tive for optimising the stamping process without the expense of manufacturing an

actual physical tool. The �nite element model used in the simulation has to be ac-

curate in describing the actual physical phenomena involved in a stamping process

for obtaining reliable simulation results.

The stamping process involves geometrically large and materially plastic defor-

mations as well as discontinuous contacts between the tools and the work piece.

Therefore, the problem involves high nonlinearity and it has to be solved by using

a nonlinear solution method. The solution for the �nite element analysis problem

has to be obtained incrementally in a large number of time steps. This introduces

signi�cant amount of computational e�ort into the simulation. The methods for

obtaining the simulation results are discussed in the theory part of this thesis.

High tooling velocities cause e�ects that are more di�cult to control in the form-

ing process. Such e�ects are, for instance, dynamic impact forces and rate-dependent

plasticity. Therefore, the stamping process is usually performed at low enough tool

velocities so that the dynamic and inertial e�ects are neglible. These kind of low

velocity processes should be simulated as a quasistatic process, in which the velocity

and acceleration terms are not of importance. The simulation can then be performed

with a truly static solution procedure although the dynamic solution methods may

provide some advantages in the simulation as will be discussed in this thesis.

To minimize unwanted surface wearage and surface traction, lubrication between
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the tooling and the blank will have to be used. The lubrication also transfers heat

caused by friction and plastic dissipation away from the blank. For quasistatic

processes, the heat formed in a stamping process is usually assumed to not have a

signi�cant e�ect on the material properties of the tooling and the blank. For this

reason, this thesis does not discuss any thermomechanical e�ects on the simulation.

A small exception to this is the study on the preheating of the blank, where the

temperature e�ects are only included in the material parameters, to see the e�ects

on the forming parameters.

1.3 Notes on the thesis structure

This thesis was performed for the purpose of studying �nite element simulation of

a speci�c thick steel plate stamping process. The study is performed by trying

out di�erent modelling considerations and solution procedures and comparing their

e�ciency and accuracy. The thesis can roughly be divided into two parts, the theory

part and the practical simulation part.

The chapters 2 to 4, after this introduction chapter, is a literature study on the

governing theory of metal cold forming �nite element simulation. This includes

the nonlinearities involved in the �nite element model, to which metal plasticity

and contact modelling are devoted their own chapters, and the nonlinear solution

methods including the explicit and implicit procedures. It also involves a short

discussion on the choice of the elements.

The 5th chapter introduces the simulation model for the practical simulation part

which is performed with the Abaqus FEA (�nite element analysis) software suite.

The implicit Abaqus/Standard code and the explicit Abaqus/Explicit code require

di�erent modelling considerations and both of them will be discussed in this chapter.

The preprocessing of the model and postprocessing of the results were performed

with Abaqus/CAE (CAE = Complete Abaqus Environment) version 6.10-1.

The 6th chapter follows the study on the actual simulation part. The results

of the simulation performed with the model introduced in chapter 5 are presented.

Some adjustments that the simulation results suggested are applied to the simulation

model and a parametrical study on the material properties at di�erent temperatures

is performed.

The results will be further analysed in chapter 7. This includes the comparison of

the e�ciency and accuracy of the solution methods and the simpli�ed models. Some

of the initial simulation results with di�erent material model will also be compared

to the �nal simulation results.

Chapter 8 includes the conclusions based on the chapters 6 and 7 and presents

the true outcome of this thesis in a summary form.
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2. FINITE ELEMENT METHOD

2.1 Dynamic equilibrium equation

The displacement-based �nite element method is a numerical method used for me-

chanical structural analysis. It is based on a mesh discretization of the structure to

be analysed by dividing it into a series of smaller regions called elements. These ele-

ments are connected to each other at points called nodes. The displacement �eld of

the element-�lled domain is then approximately solved using the sti�ness properties

involved. It is assumed that the reader is familiar with the basics of the �nite ele-

ment method in mechanical analysis and this section is not meant to be a thorough

introduction to it. More about the governing theory can be read from the source

literature, such as [3] or [4].

The governing equation for structural dynamics, derivation can be read from [3,

p. 375], is

[M]Ü + [C]U̇ + [K]U = Rext (2.1)

[M]Ü + [C]U̇ + Rint = Rext (2.2)

where [M] is the mass matrix, [C] the damping matrix and [K] the sti�ness matrix

of the structure. Rext is the vector of external nodal forces and U is the vector of

nodal displacements with its corresponding time derivatives nodal velocity U̇ and

nodal acceleration Ü. Rint in the latter equation is the vector of internal nodal

forces de�ned by the equation

Rint =
∑
e

rint =
∑
e

∫
V e

[B]TσdV (2.3)

in which [B] is the strain-displacement matrix of the used element, σ is the true

(Cauchy) stress tensor of a material point in Voigt notation, see e.g. [5, p. 615],

and V e is the element volume. rint is the element internal nodal force vector and e

below the summation sign implies the summation of the forces over all elements in

the model. The latter form of the equation (2.2) is convenient with certain solution

procedures considering nonlinear problems where [K] changes between time steps.

The di�erent solution procedures will be discussed shortly in greater detail.
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The global sti�ness matrix [K] is calculated by summation of the individual

element sti�ness matrices [k] as de�ned by the equation

[K] =
∑
e

[k] =
∑
e

∫
V e

[B][D][B]dV (2.4)

where [D] is the material matrix which relates the stress and the strain, it will

be discussed further in the section considering elastoplastic material. The material

matrix accounts for the material nonlinearities. The integration of the equation

(2.4) is performed by means of numerical integration, see e.g. [4, pp. 274].

The stress displacement matrix [B] used in equations (2.4) and (2.3) is constant

in traditional small-displacement analysis but varies between the increments of the

nonlinear solution when the deformations and displacements are large.

The global mass matrix and global damping matrix are assumed to remain con-

stant in this thesis. The damping matrix is often dropped from the equation because

of the di�culties in quantifying actual physical damping.

2.2 Direct integration of the equation of motion

Direct integration methods can be used to time integrate the governing dynamic

equation to determine the structures dynamic response. In direct integration, the

dynamic response history of the structure is determined by dividing the time period

of interest into multiple small increments and advancing step-by-step in time eval-

uating the response at each step. Two methods for the integration will be used in

this thesis, one is an explicit central-di�erence method, and the other is an implicit

Euler backward method. The number of the time step, also called time increment,

will be denoted with the subscript n throughout this thesis.

2.2.1 Explicit direct integration

Explicit integration methods use only variables known from the current increment

n to determine the kinematic state of the system at the next increment n+ 1. The

time step that is used when advancing from n to n+ 1 is denoted here as ∆tn+1.

An explicit central-di�erence integration rule is often used in solving the equation

of motion (2.1). With the velocity terms lagging by half a time increment, the

displacements for n+ 1 are solved from the equations

U̇n+ 1
2

= U̇n− 1
2

+
∆tn+1 + ∆tn

2
Ün (2.5)

Un+1 = Un + ∆tn+1 U̇n+ 1
2

(2.6)
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and the initial condition (n=0) can be taken as

U̇− 1
2

= U̇0 −
∆t1
2

Ü0

The nodal acceleration vector is solved from the governing dynamic equation

Ün = [M]−1
(
Rext

n − [C]U̇n− 1
2
−Rint

n

)
(2.7)

where [M] is usually taken as the lumped mass matrix of the structure. The equa-

tion (2.7) is easy to solve because the lumped mass matrix is a diagonal matrix,

and therefore, it is trivial to determine its inverse. The use of the lumped mass

matrix reduces the computational cost signi�cantly. See [3, pp. 380-383] for more

information on lumping the mass matrix of an element.

Some computational cost involved in this method is introduced by the element-

wise evaluation of rint from (2.3) because of the nonlinear plastic stress-strain re-

lationship involved in some parts of the model in a metal forming simulation. The

computational procedure for determining the stress state in elements exhibiting plas-

tic behaviour will be discussed later in the section concerning elastoplastic material.

The same order of quadrature in the element sti�ness matrix integration is needed

for the evaluation of rint also. Therefore, reduced integration elements are often

used in the method. For a fully integrated linear quadrilateral element with 4

integration points, reduced integration reduces the number of integration points

to 1. In this case, the calculation time is reduced to 1/4 compared to the full

integration. There is some problems involved with the use of reduced integration

elements, these are discussed later on when considering the element selection for the

stamping simulation.

Stable time step size

The explicit central-di�erence integration is stable only when su�ciently small time

increments are used. The maximum stable time increment size is estimated by the

Courant criterion as

∆tmax =
Lmin
c

(2.8)

in which Lmin is the smallest characteristic element length and c is the speed of

sound in the material. The speed of sound in the material can be calculated from

the Young's Modulus E and the density ρ of the material, c =
√

E
ρ
. The criterion

is based on the assumption that the time increment must be smaller than the time

it takes for information to travel between adjacent nodes in the �nite element mesh

[3, p. 413]. This criterion implies that the approximate size of the maximum step

in sheet forming for most metallic materials is on the order of 10ns-2µs [6, p. 141].
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Because of this extremely small time increment, it is not computationally e�cient

to model the forming process in its natural time period.

Increasing the tool velocity or scaling the mass of the blank to a larger value

can be used to increase the stable time step size in the simulation. Both of these

techniques also increase the inertia forces of the blank, which might not correspond

the physical nature of the stamping process. Therefore, for a quasistatic simulation,

a check has to be made that the kinetic energy Ekin of the blank does not exceed

no more than a small percentage of the blank's internal energy Eint throughout the

majority of the simulation process. The energies are de�ned by the equations

Ekin =
1

2
U̇T [M]U̇ Eint =

∑
e

∫
V e

σTεdV e

where internal energy includes the applied elastic strain energy and the energy dis-

sipated by plastic behaviour.

2.2.2 Implicit direct integration

Implicit methods require iterations for equilibrium after each time increment. Com-

pared to a time increment calculated by an explicit method, the calculation time

for an implicit increment is usually much longer. On the other hand, most implicit

methods are unconditionally stable. This means that the time increment is not

limited by numerical stability, only accuracy of the solution introduces limits to the

increment size: some details on the loading path might be missed if the size of the

used increment is too large. The iteration procedure also ensures that the internal

and external forces are in balance after each increment. The subscript n + 1 is

dropped here from the time increment ∆t to make the presentation more simple.

A backward Euler scheme can be used for solving the acceleration vector at the

end of the step from the equation (2.1). This requires the forming of the global mass

matrix for determining the corrected displacements at each iteration. The backward

Euler operator yields approximations for the displacements and velocities as

U̇n+1 = U̇n + ∆tÜn+1 (2.9)

Un+1 = Un + ∆tU̇n+1 (2.10)

Solving for the nodal velocities and accelerations from these approximations as func-
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tions of the displacements yields

U̇n+1 =
1

∆t
(Un+1 −Un) (2.11)

Ün+1 =
1

∆t2
(Un+1 −Un)− 1

∆t
U̇n (2.12)

Placing these approximations to the governing dynamic equation (2.1), requiring

the equation to be satis�ed at n+ 1 and denoting ∆Un+1 = Un+1 −Un yields

[M](
1

∆t2
∆Un+1 −

1

∆t
U̇n) + [C](

1

∆t
∆Un+1) + Rint

n+1 −Rext
n+1 = 0 (2.13)

Here the nodal force vectors Rint and Rext are dependent of the displacements at

n + 1. Let us denote the residual of this equation (2.13) as Ḡ and linearize it with

respect to the displacement with the introduction of the global tangent sti�ness

matrix

[Kt]
i =

∂Rint

∂Un+1

|Ui
n+1

(2.14)

a global Newton-Raphson iterative scheme for the displacements at n + 1 is then

obtained as (
1

∆t2
[M] +

1

∆t
[C] + [Kt]

i

)
∆Ui+1

n+1 = Ḡi
n+1 (2.15)

Ui+1
n+1 = Ui

n+1 + ∆Ui+1
n+1 (2.16)

where i refers to the iteration step. Initial conditions are obtained from the values

at step n and the residual is de�ned by the equation

Ḡi
n+1 = −[M]

(
1

∆t2
∆Ui

n+1 −
1

∆t
U̇n

)
− [C]

(
1

∆t
∆Ui

n+1

)
−
(
Rint

)i
n+1

+
(
Rext

)i
n+1

Note that the global tangent sti�ness matrix [Kt] depends on the displacements

Ui
n+1 and has to be compiled at each iteration step from the equation (2.4) with the

current corrected displacement values. The iteration procedure is carried out until

the residual or the change in the displacement is smaller than a speci�ed tolerance.

The accelerations and velocities can then be solved from (2.11) with the use of the

iterated displacements at n and the displacements from step n+ 1.

No contact conditions is assumed in (2.15). Let us compile the matrix that has

to be inverted in (2.15) into a single matrix as

[Kimpl]
i =

1

∆t2
[M] +

1

∆t
[C] + [Kt]

i (2.17)

In implicit methods, no real advantage is gained when using the lumped mass matrix
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because of the summation of the mass matrix to the damping matrix and the tangent

sti�ness matrix in (2.17). The matrix obtained by this summation has to be inverted

to gain the iterative corrections to the displacements. Even though the damping

matrix could be diagonal, the sti�ness matrix is not. Therefore, the consistent mass

matrix is used. It is de�ned by the equation

[M] =
∑
e

∫
V e

ρ[N]T [N]dV (2.18)

where [N] is a matrix consisting of the shape functions that interpolate the displace-

ments inside the element. The consistent mass matrix is more bene�cial to accuracy

than the lumped mass matrix when used with implicit methods [3, p. 425].

The backward Euler operator is mainly intended for quasistatic simulations in

which an essentially static solution is desired [7, sect. 6.3.2]. In transient dynamic

simulations, the Hilbert-Hughes-Taylor α-method should be used [8]. It is a gener-

alization of the Newmark method [9, p. 29].

2.2.3 Selection of the direct integration method

Stability and economy of the solution are important aspects when choosing between

the direct integration methods. When the explicit method is used, the number of

increments needed for the solution is signi�cantly larger than that of the implicit

method. On the other hand, the calculation time for one increment is signi�cantly

smaller when using the explicit method. Implicit method also requires much more

computer storage space than the explicit method because the global sti�ness matrix

has to be formed at each iteration.

Contact algorithm failure or convergence issues may arise when using the im-

plicit method, especially when the problem involves a large number of equations

to be solved. Smaller increments would be bene�cial from the convergence point

of view. On the other hand, smaller increments reduce computational e�ciency.

Also, for sheet metal and plate forming problems, the sti�ness matrix can become

ill-conditioned because the blank has much lower sti�ness in the thickness direction

than in other directions of the plate [6, p. 141]. The computational cost of the

solution in the implicit method increases more than linearly with the problem size.

The explicit dynamic method is well suitable for dynamic impact problems with

relatively small time periods. It can also be used for problems that can be modelled

as quasistatic. For quasistatic problems, it is not computationally e�cient to model

the process in its natural time period as already mentioned. Also, when the forming

process is modelled with the explicit method in a large time period, round-o� errors

may arise. Therefore, increase of the tool speed and mass scaling are important
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techniques in quasistatic problems. An advantage of the explicit method in large

problems is that the computational cost increases only linearly with the problem

size.

A problem considering the springback calculation with the explicit method is

the fact that the blank will not be in equilibrium state after the �nal increment.

After removal of the tool contacts, the blank will be oscillating dynamically. It

would take a long time for the oscillation to damp out if the springback would be

calculated by means of the explicit method. The plastic strains are not a�ected by

this oscillation so that the path to the �nal stress state after springback will not be

of interest. Therefore, it is convenient to model the springback with a true static

implicit method in which the acceleration and velocity are not taken into account.

This is also the case for the implicit dynamic method. The solution procedure for

the implicit static method is similar to that of the implicit dynamic method and is

obtained by dropping the terms involving [M] and [C] from the equations (2.13)-

(2.15) including the equation for the residual.

2.3 Element selection

The displacement �eld in an element is interpolated by the shape functions of each

node and the nodal displacements. The shape function of an element node is formu-

lated in such way that it has a value of 1 at its corresponding node and zero value

at other nodes of the element.

2.3.1 Isoparametric formulation

Isoparametric elements use same shape functions to interpolate the nodal coordi-

nates and the displacements. The formulation is performed in the local reference

coordinates ξ,η and ζ of every element. These coordinates map the physical element

into a reference element which has a shape of a square for rectangular quadrilateral

elements and a cube for hexahedral elements. This allows for the physical elements

to have more �exible shapes. The coordinate transformation to the actual physical

coordinates is performed with the use of a Jacobian matrix [J]. Thus, the element

sti�ness matrix is calculated by means of numerical integration from

[k] =

∫
V e

[B][D][B]dV =

−1∫
−1

−1∫
−1

−1∫
−1

[B][J]−1[D][B][J]−1Jdξdηdζ (2.19)

where J is the determinant of the Jacobian matrix. See e.g. [3, p. 205-219] or

[10, p. 104-109] for more information on the isoparametric shape functions and the

Jacobian matrix.
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2.3.2 Order of interpolation and numerical integration

Fully integrated elements

First-order elements use linear interpolation and only have nodes at the corners of

the element. Second-order elements use quadratic interpolation and have nodes at

the corners as well as nodes on the midsides. The fully integrated versions of solid

continuum elements as planar cases can be seen in �gure 2.1 where ξ and η refer

to the reference coordinates in two dimensions. For the three-dimensional case, the

parallel projection along each of the axis of the master element should look as the

one seen in �gure 2.1, with the addition of a third reference coordinate ζ.

Figure 2.1: Fully integrated �rst-order (left) and second-order (right) elements in 2D

The Gauss integration point locations are illustrated as the circles inside the

element and the node locations are illustrated as the points connected by the lines

illustrating the element edges in �gure 2.1. Full integration means that the order of

numerical integration is su�cient to integrate the sti�ness of the element exactly for

an undistorted element [3, p. 223]. Thus, when the element is fully integrated, order

2 Gauss rule is used for the �rst-order elements and order 3 Gauss rule for the second-

order elements. The number of nodes for a �rst-order element in two dimensions

and three dimensions are 4 and 8, respectively. The second-order element has 8

nodes in two dimensions and 20 nodes in three dimensions.

Actually the second-order element introduced here is a serendipity element. An

alternate Lagrange element in two dimensions would have internal nodes also [3, p.

97], and internal nodes as well as surface nodes in three dimensions. An advantage

of the serendipity elements is that the size of the element matrices become smaller

while the internal nodes of second-order Lagrange elements would not contribute to

the element connectivity.
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Reduced integration elements

Reduced integration means that the order of numerical integration is one order less

than that of the full integration. It can be advantageous to use this integration order

because of the displacement formulation resulting in an overestimation of the system

sti�ness [4, p. 282]. Also, there are some problems involved with the use of fully

integrated elements that will be discussed later on in this thesis. See �gure 2.2 for an

illustration of the reduced integration quadrilateral elements in a two-dimensional

case.

Figure 2.2: Reduced integration �rst-order (left) and second-order (right) elements in 2D

With the �rst-order element, the number of integration points has decreased to

1 from 4 and 8 in the two-dimensional and three-dimensional cases, respectively,

when compared to the fully integrated version. With the second-order element, the

number of integration points has decreased to 4 from 9 in the two-dimensional case

and 8 from 27 in the three-dimensional case.

2.3.3 Element families

Two kinds of element families will be used in this thesis. The �rst one is the family

of solid continuum elements which is the most used element family in this thesis. It

has displacement degrees of freedom only and is intended for modelling a material

continuum.

The other family is the family of shell elements. These structural elements may

be used for modelling a structure with one dimension signi�cantly smaller than the

others. They use plane stress formulation but di�er from the plane stress solid

continuum elements in the way that they have rotational degrees of freedom in

addition to the displacement degrees of freedom to model out-of-plane bending.

Thus, out-of-plane loading is accounted for in their formulation also. The directions

on the shell surface coinciding with the plane stress directions are referred to as
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membrane directions. For more information on these elements, see for example [4,

p. 251] or [3, p. 561-588].

2.3.4 Locking and spurious modes

Modelling bending with solid continuum elements

If bending-related problems are to be modelled with solid continuum elements, spe-

cial care has to be taken on the selection of the elements. The problems involved

are related to phenomena called shear locking and hourglassing.

First-order fully integrated solid continuum elements exhibit shear locking when

used in a bending-related problem. Shear locking means that the model behaves

overly sti� when compared to the physical nature of the problem. This is because of

the element formulation: the element detects nonphysical shear stresses at integra-

tion points so that the energy that should be used for bending the element is gone to

shear deformation. Therefore, �rst-order fully integrated solid elements should not

be used in regions of the model that are subjected to bending. Shear locking can

be avoided using reduced integration elements, although they have another problem

involved in bending-related problems called hourglassing.

First-order reduced integration elements exhibit hourglassing in a

bending-dominated problem if the element mesh is too coarse. The element does

not detect bending strain because only one integration point is used in the element.

If only one element through the thickness of the structure is used, the integration

point lies on the neutral axis of the bending strain and will not detect bending strain

at all. This is a zero-energy deformation mode, also called a spurious mode, and

it would lead to an overly �exible behaviour of the structure. Hourglassing can be

compensated by improving mesh density: multiple elements through the thickness

of a bending-dominated region will give more accurate results related to the bending

strains. Methods called hourglass control is often used in �rst-order reduced integra-

tion element formulations. Some of them include hourglass shape/base vectors that

are used to de�ne a set of hourglass-resisting forces that try to control the hourglass

modes, see for example [11]. For a more detailed demonstration of these spurious

modes, see e.g. [3, p. 223-227].

Modelling incompressible materials with solid continuum elements

Fully integrated elements may also su�er from volumetric locking when modelled

with a nearly incompressible material, such as rubber or a metal experiencing large

plastic strains. This is because the interpolation functions are not properly able to

approximate a strain �eld that preserves the volume of the element. The volumetric

strain that might occur at an integration point causes a very high contribution to
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virtual power. This problem can not be avoided by re�ning the mesh but it can be

avoided by using �rst-order reduced integration elements with one integration point

so that the incompressibility constraints can be met.

2.4 Finite strain

The commonly known in�nitesimal strain theory bases its formulations on the as-

sumption of small displacements and strains. In in�nitesimal strain theory, the

di�erence between the initial and current con�guration is minimal and the respec-

tive coordinates need not to be distinguished. However, when the �nite element

problem involves large displacements and strains, the �nite strain theory should be

used. This calls for the use of two di�erent coordinates, the material coordinates

and the spatial coordinates, to ensure a clear distinction between the undeformed

and deformed con�gurations.

This section is based on continuum mechanics theory but it is included in the

�nite element method chapter as the theory is applicable to the �nite element dis-

cretization also. In �nite element applications the measures presented here have to

be treated incrementally.

2.4.1 Material and spatial coordinates

The material point (referred here also to as particle) deformation gradient [F] in

matrix form is de�ned by the equation

[F] =
∂x

∂X
(2.20)

where X and x are the coordinate vectors of the material point at the reference po-

sition and at the current position, respectively. The reference position coordinates

are Lagrangian coordinates, also called material coordinates, of the particle and the

current position coordinates are the particle's Eulerian coordinates, also called spa-

tial coordinates. The coordinate system of Lagrangian coordinates moves with the

particle during deformation while Eulerian coordinates measure the current position

of the particle with the coordinate system staying �xed in space.

The history of the current location of the particle can be written in equation form

as

x = x (X, t) (2.21)

The current displacement of the particle can then be de�ned as u = x (X, t) −X.

The initial reference coordinates can be taken as the spatial coordinates at t = 0,

mathematically written as x (X, 0) = X.
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2.4.2 Stretch ratio

Denoting an in�nitesimal gauge length of a material �ber in an arbitrary direction

at the initial position as dX, the in�nitesimal reference length of the �ber dL and

its current length dl are de�ned by the equations

dL =
√
dXTdX and dl =

√
dxTdx

By using the mapping (2.21), we can write

dx = [F]dX (2.22)

A stretch ratio λs for the in�nitesimal gauge length can then be de�ned by the

equation

λs =
dl

dL
=

√
dXT [F]T [F]dX

dXTdX
(2.23)

where the connection in equation (2.22) was used for dl.

2.4.3 Polar decomposition of the deformation gradient

According to the polar decomposition theorem [12, p. 463], the deformation gradient

(2.20) can be composed into a symmetric pure stretching part and an orthogonal

rigid body rotation part as

[F] = [R][U] = [V][R] (2.24)

where [R] is the pure rigid body rotation matrix, [U] is the right stretch matrix

and [V] the left strain matrix. The two forms of the equation exist because every

homogeneous deformation can be decomposed into a stretch followed by a rotation,

or into a rotation followed by a stretch. [U] is used when pure stretching precedes

the rotation and [V] is used when pure stretching follows the rotation. The stretch

matrices have the same eigenvalues λsi but the eigenvectors di�er: If we denote the

eigenvectors of [U] as φi, the eigenvectors for [V] are obtained by using the rotation

matrix as [R]φi. The equation (2.24) distuingishes the straining part of the motion,

described by [U] or [V], from the rigid body rotation part of the motion described

by [R]. The rigid body translation is not important in this context since the relative

motion of adjacent material points, which is the deformation of the material, is only

of interest when linking the kinematics of the motion to the constitutive behaviour

of the material. The constitutive behaviour of an elastoplastic material is discussed

in chapter 3 of this thesis.
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The following relations [13, p. 52] exist in the polar decomposition theorem:

[U]2 = [F]T [F], [V]2 = [F][F]T , [V] = [R][U][R]T and [V]2 = [R][U]2[R]T

[U]2 and [V]2 are called the right and the left Cauchy-Green deformation tensors,

respectively. The eigenvalues for [U]2 and [V]2 are squares of the principal stretches

(λsi )
2 associated with the principal directions φi or [R]φi, respectively. The tensorial

square roots of these tensors are obtained by means of spectral decomposition as

[U] =
3∑
i=1

λsiφiφ
T
i and [V] =

3∑
i=1

λsi ([R]φi) ([R]φi)
T (2.25)

This requires the solving of the squares of the principal stretches with the asso-

ciated principal directions as the (right or left) Cauchy-Green deformation tensor

eigenvalues from

det([F]T [F]− (λs)2[I]) = 0 or det([F][F]T − (λs)2[I]) = 0 (2.26)

and the eigenvectors from

[F]T [F]φ = (λs)2φ or [F][F]T ([R]φ) = (λs)2 ([R]φ) (2.27)

The rotation matrix can be obtained from (2.24) as

[R] = [F][U]−1 = [V]−1[F] (2.28)

The determination of the inverses of the stretch matrices is trivial because the stretch

matrices are constructed from their eigenvalues and eigenvectors (2.25). The inverses

are obtained by replacing λsi with (λsi )
−1 in equations (2.25).

The strain state of the material point can be determined from the stretch matrix

by attaching it into a coordinate system. Di�erent formulations for strain tensors

exist, some of them will be discussed next. The Lagrangian description (in reference

coordinates) with the right stretch matrix [U] will be used.

2.4.4 Strain tensors

A general formula for Lagrangian strain tensors [E](m) can be de�ned by the equation

[E](m) =
1

2m

(
[U]2m − [I]

)
where [I] is the identity matrix. For m = 1 this is the Green-Lagrangian strain

tensor, and for m = 1
2
this is the Biot strain tensor. A particular case of interest in
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problems involving material nonlinearity is the limit case when m = 0:

[H] = lim
m→0

1

2m

(
[U]2m − [I]

)
= ln [U] (2.29)

where [H] is called the logarithmic strain tensor (also natural/true/Hencky strain).

This tensor reserves the tension/compression-symmetry, volumetric-deviatoric de-

composition is additive with it, and two subsequent transformations are additive

when the principal stretch directions are the same [12, p. 466].

The Green-Lagrangian strain tensor is computationally more e�cient than the

logarithmic strain tensor because it can be computed directly from the deformation

gradient without the need of the polar decomposition solution for the principal

stretches and their directions [14, p. 35]. However, the logarithmic strain measure

is more suitable for metal plasticity and the Green-Lagrangian strain measure should

only be used when the strains are small (rotations can be large).

By using the principal stretches, the principal logarithmic strains are obtained

from the equation

εi = lnλsi (2.30)

and the corresponding principal directions are φi. This de�nes the strain state of

the material point completely.
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3. ELASTOPLASTIC MATERIAL

3.1 Uniaxial behavior

A uniaxial stress-strain curve describing the behavior of structural steel is presented

in �gure 3.1.

Figure 3.1: Typical σε curve for structural steel

A speci�c curve for a given material can be obtained by means of a tensile test.

The test is performed by slowly extending the material specimen and measuring the

tensile force and the specimen length. More about these tests can be read from [15].

The material exhibits linear elastic behavior when the value of stress σ is less

than the yield limit σy of the material. This linear elastic behaviour can be seen in

�gure 3.1 as phase 1. Elastic behaviour means that if the load would be removed

and the stress would decrease to zero value, the total strain would also return to zero
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value, in other words, the strain is fully reversible. The linear elastic stress-strain

relationship is known as Hooke's law and it can be expressed as a function

σ = Eε (3.1)

in which the slope of the curve E is the Young's modulus of the material and ε is

the total uniaxial strain. The yield limit is usually preceded by a proportional limit

beyond which the response is still elastic but not linear. The values of the yield

limit and the proportional limit do not usually di�er much [16, p. 8], and therefore,

the proportional limit is not presented in �gure 3.1.

Mild steel also exhibits a lower yield limit seen as the drop in the value of σ

after the upper yield limit has been reached. Lower yield limit can be used as a

conservative value for the yield limit of the material if it is not supposed to yield.

When the stress reaches the yield strength, the material yields and irreversible

deformations occur. When the material has yielded, the total strain consists of an

irreversible plastic part εp and a reversible elastic part εe, incrementally written as

dε = dεe + dεp (3.2)

In phase 2 of the curve, the strain grows without any increase in stress. This

behaviour is referred to as plastic �ow [16, p. 8]. The equation (3.2) could also be

written in rate form but the incremental presentation is used here as the plasticity

in this thesis is assumed to be rate-independent.

The plastic �ow is followed by phase 3 in which the material exhibits work hard-

ening. This means that the value of stress increases as a function of strain during

yielding.

If the load is removed (phase 4), the stress as well as the elastic strain will decrease

to zero, but the irreversible plastic strain εp4−5 will remain. Upon reloading in phase

5, the material exhibits linear elastic behavior until the stress reaches the point

between phases 3-4, which is the new yield limit. The value of the yield strength

has increased because of work hardening.

The unloading curve during phase 4 is only approximately linear. Therefore, a

closed hysteresis loop remains between the curves of phase 4 and the linear reloading

curve of phase 5. The area of the loop is related to the plastic dissipation energy lost

in the process. This phenomenon is important only in cyclic loading that involves

plastic behaviour and is not discussed in this context further.

After the new yield limit has been reached, further plastic straining coupled with

work hardening of the material occurs as seen in phase 6 of �gure 3.1. This phase

continues until the stress reaches the ultimate strength of the material σu and a neck

begins to form in the tensile specimen. This is followed by an instable decrease in
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the cross-sectional area of the tensile specimen. The necking can be seen as phase 7

in �gure 3.1. The necking stage is followed by the fracture of the tensile specimen

at which the strain is speci�ed by the fracture strain εf .

The previously introduced measures of stress and strain are related to the initial

geometry of the tensile specimen and do not take the changes in the cross-sectional

area nor the stress/strain localisation into account. Alternative measures for stress

and strain and a short introduction to a method for obtaining the true stress at the

necking phase are discussed next.

3.1.1 Strain measures in tensile tests

The engineering strain εe corresponds to the engineering stress σe and these measures

are de�ned by the equations

εe =
ln − l0
l0

and σe =
P

A0

(3.3)

where A0 is the initial stress-free cross-sectional area, ln the current length and l0

the initial stress-free length of the tensile specimen. P is the axial force acting on

the tensile specimen. These are the strain and stress measures used in �gure 3.1.

The true stress is de�ned by the current area A of the tensile specimen by the

equation

σtrue =
P

A
(3.4)

The tensile specimen will exhibit reduction in its cross-sectional area already at

the elastic stage of the test through the Poisson e�ect. This reduction is not as

drastic as the reduction in the specimen cross-sectional area when the material

yields. Therefore, the engineering stress could be used within the linear elastic

region without signi�cant error for metals, but if the material yields, the true stress

measure should be used.

The plastic deformation of metallic materials is usually assumed not to change the

volume of the sample. By taking this assumption into account and assuming that

the reduction of the cross-sectional area caused by the elastic strain is negligible,

we can write a connection A0l0 = Aln which leads to the equation connecting the

engineering stress and the true stress

σtrue = σe(1 + εe) (3.5)

This equation holds until the neck forms in the tensile specimen when the stress/strain

has not localized at the necking area. In the necking stage one would need more ac-

curate measurement of the localized deformation at the neck. This could be achieved

by means of optical strain measurement and digital image analysis, see e.g. [17, p.
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78].

A strain measure often used in conjuction with the true stress is the logarith-

mic strain εlog, also called the true strain. It takes the incremental strain as the

incremental increase in the length of the tensile specimen dln divided by the current

length of the specimen

εlog =

ln∫
l0

1

ln
dln = ln(

ln
l0

) (3.6)

An equation connecting the logarithmic strain and the engineering strain can be

obtained by comparing the equations (3.3) and (3.6), and noting that ∆l = ln − l0,
as

εlog = ln(
ln
l0

) = ln(
l0 + ∆l

l0
) = ln(1 + εe) (3.7)

This connection together with equation (3.5) can be used for obtaining a true stress

/ true strain relation when the tensile test results are reported in terms of the

engineering stress and engineering strain. The engineering and logarithmic strain

measures are almost equal at small strains.

The presented stress measures were assumed to be distributed uniformly in the

cross sectional cut of the tensile specimen. In a nonuniform case, the theoretical

value of the stress at a material point is de�ned as

σ = lim
∆A→0

∆P

∆A
(3.8)

This is taken only as a theoretical de�nition as it is very di�cult to measure ∆P

and ∆A independently. Only the average stress at the cross-sectional area cut can

be determined experimentally by means of a traditional tensile test.

At the necking phase, more accurate measurement of the local cross-sectional area

reduction is needed because of the localisation of the stress and the strain. Also,

the stress state is not uniaxial in the formed neck anymore. A correction method

for handling the stress multiaxiality in the necking phase is discussed next.

3.1.2 Bridgman correction method

In the necking stage, the state of stress changes from the simple uniaxial stress

state to a more complex triaxial or biaxial stress state. This complex state of stress

depends on the geometry of the tensile specimen. For the necking stage of the tensile

test, neither of the simple uniaxial stress/strain measures are accurate. Bridgman's

correction method [18] is commonly used to obtain a correction in the uniaxial stress

state for a rod-shaped tensile specimen in the necking stage.

The Bridgman correction method assumes a uniform strain distribution in the
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minimum cross-sectional area and that a longitudinal grid line on the tensile speci-

men is assumed to deform into a curve at the neck with its curvature ρr de�ned by

the function
1

ρr
=

r

aR

where r is the radius of the actual cross section (not at the neck), a is the radius of

the smallest cross section (at the neck) and R is the radius of curvature of at the

neck on the surface of the tensile specimen. Also, the ratio of principal stresses are

assumed to remain constant during the loading.

By using these assumptions, the radial stress σr and the axial stress σa in the

neck of the tensile specimen can then be de�ned by the equations

σr =
σav(

1 + 2R
a

)
 ln

(
a2+2aR−r2

2aR

)
ln
(
1 + a

2
R
)


σa =
σav(

1 + 2R
a

)
1 + ln

(
a2+2aR−r2

2aR

)
ln
(
1 + a

2R

)


where σav is the average axial true stress de�ned by the current minimum cross-

sectional area of the tensile specimen, assuming the stress to be uniformly distributed

in the cross-sectional area. The shear stresses disappear at the smallest cross section

and an equivalent uniaxial von Mises stress can then be calculated from the stress

components as

σtrue =

[(
1 +

2R

a

)
ln
(

1 +
a

2R

)]−1

σav (3.9)

This method requires a series of tests involving di�erent loadings to determine the

measures R and a. These measures are di�cult to measure with su�cient accuracy.

Therefore, the method is quite complicated to use in practice.

This correction method should only be applied to round tensile specimens, see e.g.

[19] for information for the case of �at tensile bars. For �at tensile bars, two types

of necking must be considered. The other one is di�use necking, which is similar to

the necking of round tensile specimens, and the other one is called localized necking

where the neck is a narrow band at an angle to the specimen axis at the di�used

neck. The localized neck often follows the di�used neck and it makes the thickness

along the necking band shrink rapidly. See [20] for an illustrative presentation on

this subject. It is theoretically possible, but very di�cult and expensive in practice,

to obtain a correction method for the �at tensile bars also.
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3.2 Yield function

The uniaxial yield criterion has to be generalized for a multiaxial case also. This

generalization is handled in the form of a yield function.

The theoretical yielding of a material can be determined from a set of material

parameters and the stress state of the material point of interest. Therefore, the yield

criterion can be expressed with a mathematical function f called the yield function

as

f(σ, b1, b2, ...) ≤ 0 (3.10)

in which σ is a vector consisting of all stress components of a material point in a

chosen coordinate system and bi are material parameters. The criterion implies that

yielding is present in the material point if f > 0 and it is in an elastic state if f ≤ 0.

3.2.1 von Mises yield function for isotropic material

The stress state of a single material point can be expressed with principal stresses

σi and their corresponding principal direction vectors ni, i = 1, 2, 3 for a 3D stress

case. For an isotropic material, the material properties are identical in all directions.

Therefore, no direction vectors are needed to determine the yielding of an isotropic

material. A common yield function used for modelling of isotropic metallic materials

is the von Mises yield function which can be expressed with the principal stresses

and a single material parameter as

f = (σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 − 6b2 (3.11)

The von Mises yield criterion assumes that the yielding of the material is independent

of the hydrostatic stress component of the stress state of a material point [16, p.

72]. The criterion is based on the assumption that distortional energy has reached

a critical value when yielding is occurring.

The parameter b can be determined using the yield strength σy from uniaxial

test results of the material. When the material yields in a uniaxial tensile test,

the values of the stress components are σ1 = σy and σ2 = σ3 = 0. Substituting

the corresponding stress values into the yield function (3.11) and solving for b, the

material parameter is obtained as b = 1√
3
σy. The von Mises yield criterion can now

be expressed as a function of the principal stresses and the uniaxial yield strength

of the material

f = (σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 − 2(σy)2 (3.12)

The von Mises yield function forms a convex yield surface when f = 0 is plotted
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in the principal stress space. The surface can be described as an in�nite length

cylinder with its axis on the line σ1 = σ2 = σ3. A cut of the surface on the plane

stress (σ3 = 0) plane can be seen in �gure 3.2a and 3.2b is the parallel projection of

the surface along the σ1 = σ2 = σ3-axis (also known as π plane projection).

Figure 3.2: von Mises yield surface

For easier comparison between the stress state and the yield strength, a von Mises

equivalent stress σvm is used. It can be expressed as a function of the stress state as

σvm =

√
1

2
(σ1 − σ2)2 +

1

2
(σ2 − σ3)2 +

1

2
(σ1 − σ3)2 (3.13)

By incorporating it into the yield function f = σvm − σy and comparing this to

the yield criterion (3.10), it can be seen that the material is assumed to yield when

σvm > σy.

3.2.2 Quadratic Hill yield function for anisotropic material

The von Mises yield criterion assumes isotropic material properties. Often the man-

ufacturing process of a sheet metal or a plate involves methods, such as cold rolling

or hot rolling, that produce anisotropic material properties to the blank. In these

cases the use of an anisotropic yield function for determining the onset of yielding

should be considered. Hill [21] proposed an anisotropic yield function which can

be written for an orthotropic material with three mutually orthogonal planes of

symmetry in the form

f = F (σ22−σ33)2 +G(σ33−σ11)2 +H(σ11−σ22)2 +2Lτ 2
23 +2Mτ 2

31 +2Nτ 2
12−1 (3.14)

where σ11,σ22 and σ33 are the normal stresses coinciding the axes of anisotropy, not

to be confused with the principal stresses, and the shear stresses τ23, τ31 and τ12 are
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taken with respect to these axes as well. F ,G,H,L,M and N are constants de�ned

by the equations

F =
1

2

[
1

(σy22)2
+

1

(σy33)2
− 1

(σy11)2

]
, L =

1

2(τ y23)2
,

G =
1

2

[
1

(σy33)2
+

1

(σy11)2
− 1

(σy22)2

]
, M =

1

2(τ y31)2
,

H =
1

2

[
1

(σy11)2
+

1

(σy22)2
− 1

(σy33)2

]
and N =

1

2(τ y12)2

where σyii and τ
y
ij are experimentally determinable yield strengths in the correspond-

ing directions. This requires for the determination of six material parameters.

The Hill yield criterion is pressure independent and predicts the same yield

strength in tension and compression. It reduces to the von Mises yield criterion

when σy11 = σy22 = σy33 =
√

3τ y and τ y23 = τ y31 = τ y12 = τ y, then F = G = H = 0.5 and

L = M = N = 1.5.

More general yield functions for orthotropic anisotropy are the Ho�man criterion

and Tsai-Wu criterion [12, p. 352].

3.3 Flow rule

The direction of the increment of plastic strain dεp in the stress space must also be

de�ned for a multiaxial case. This de�nition is made in the form of a �ow rule which

can be expressed in equation form as

dεp = dι
∂Q

∂σ
(3.15)

Where dι is the increment of a scalar that de�nes the size of the plastic strain and

Q is the plastic potential function.

An associative �ow rule often used in conjuction with the von Mises yield surface

de�nes the direction of plastic straining to be normal to the yield surface, which is

the case when the yield function is used as the plastic potential function, Q = f in

(3.15). This associates the �ow rule to the yield function.

The condition for plastic �ow can be de�ned as dι > 0 while f = 0. No plastic

straining occurs (dι = 0) if f ≤ 0.
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3.4 Equivalent plastic strain

A scalar measure equivalent to the plastic strain state of a material point can be

obtained, see e.g. [16, p. 258], incrementally as

dεp =

√
2

3
(dεp)Tdεp (3.16)

where εp is called equivalent plastic strain. When this is integrated through the

loading path, we get the form

εp =

t∫
0

√
2

3
(dεp)Tdεp dt (3.17)

A measure called plastic strain magnitude is de�ned as

ε̂p =

√
2

3
(εp)Tεp (3.18)

The equivalent plastic strain (3.17) is a measure that considers the path of the

plastic straining by integrating it through the loading path. The plastic strain

magnitude (3.18) depends only on the current plastic strain state. For monotonous

plastic straining these measures are equal.

3.5 Hardening Laws

Work hardening in a uniaxial problem was introduced earlier in the thesis. The e�ect

of the work hardening on the yield surface must be speci�ed also. The hardening

law speci�es the changes in the con�guration and size of the yield surface during

yielding.

Isotropic hardening law is simple and easy-to-use. It is well suitable for cases with

monotonous loading but it should not be used in situations in which the loading

directions vary. The e�ect of isotropic hardening on von Mises yield surface can be

seen in �gure 3.3a in the plane stress cut of the yield surface. The radius of the von

Mises yield surface cylinder with a center axis of σ1 = σ2 = σ3 expands uniformly

during yielding. The hardening law can be incorporated into the yield function as

f (σ, σy) = 0 (3.19)

where the value of the current yield strength σy depends on the value of equivalent
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Figure 3.3: Hardening laws

plastic strain εp (3.17), written in equation form as

σy = σvm(εp) (3.20)

This can be obtained from the uniaxial σεp material test curve by setting σ = σvm

and εp = εp. The σε
p curve is obtained from the σε curve using the additive strain

decomposition (3.2) with the Hooke's law (3.1) connection for the elastic part of

strain.

When the loading directions vary, the use of a kinematic hardening law should

be considered. It accounts for the Bauschinger e�ect, which means the reduction

of the absolute value of the compressive yield stress when the tensile yield stress is

increased by work hardening. Figure 3.3b demonstrates the e�ect of the kinematic

hardening law on the von Mises yield surface. It accounts for the Bauschinger e�ect

ideally as the yield surface translates as a rigid body in the stress space during

yielding. The kinematic hardening law can be incorporated to the yield function

with the use of a vector α called back-stress, which consists of the coordinates of

the yield surface center, as

f(σ −α) = 0 (3.21)

where value of α depends on the plastic strain. Ziegler's hardening rule [16, p. 248]

can be used for simple linear work hardening. It de�nes the increment of back-stress

in the direction of the reduced stress vector σ −α by the function

dα = Ep
1

σy
(σ −α)dεp (3.22)

where Ep is the constant plastic modulus (from the uniaxial σεp curve) for a given
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material. σy is the yield strength of the material.

Mixed hardening [16, p. 249] combines these two hardening laws simultaneously.

3.6 Calculation of stresses

The stresses are usually calculated at the element integration points and can be

extrapolated from these points to other points in the element as well. It has been

suggested that the stresses may be most accurate at the integration points of an

element [22].

In small-displacement problems the strain state at a material point of interest used

for the stress calculations is obtained from the local element nodal displacements u

with the use of the element stress-displacement matrix as

ε = [B]u (3.23)

In �nite strain problems the incremental strain ∆ε can be calculated from the polar

decomposition of the incremental deformation gradient [23, sect. 1.4.3], and in

some cases, making some approximations on the rotation of the principal axes of

strain during the increment [23, sect. 3.2.2]. For �nite strain problems involving

large plastic strains as well as large elastic strains, a multiplicative decomposition of

the elastic and the plastic parts of the deformation gradient (2.20) should be used,

see e.g. [24, p. 300]. However, with small elastic strains characteristic for metal

plasticity, the more simple additive decomposition (3.2) (holds also for multiaxial

case) can be used with little or no e�ect on the numerical solution [25, p. 162] or [5,

p. 248]. The stress-displacement matrix for each increment could be compiled for

these cases also, then the material matrix would be a function of the shape functions

and the current position of the material point [B] = [B](x,N).

If the yield function at an integration point (calculated from the current yield limit

and the stress state of the material point) at the end of an increment is less than zero,

f ≤ 0, the material point is assumed to be in a linear elastic state and the stress

state is obtained from the equations of the linear elasticity region. Elastoplastic

region is entered when the stress state, calculated from the displacements/strains

by using the linear elasticity equations, is situated outside the linear elastic region

de�ned by the yield surface, this can be expressed with the use of the yield function

as f > 0. Di�erent methods for the stress state calculation have to be used for these

two di�erent cases. Both of them will be discussed next.
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3.6.1 Linear elastic region

When the material point is in a linear elastic state, the stress state of the point can

be calculated from the matrix/vector-equation

σ = [D]ε (3.24)

in which [D] is the elasticity matrix. This equation can be written for an isotropic

material in a cartesian xyz-coordinate system as

σx

σy

σz

τxy

τyz

τxz


=



2µ̃+ λ̃ λ̃ λ̃ 0 0 0

λ̃ 2µ̃+ λ̃ λ̃ 0 0 0

λ̃ λ̃ 2µ̃+ λ̃ 0 0 0

0 0 0 µ̃ 0 0

0 0 0 0 µ̃ 0

0 0 0 0 0 µ̃





εx

εy

εz

γxy

γyz

γxz


(3.25)

where λ̃, µ̃ are Lamé constants de�ned by the equations

λ̃ = K − 2G

3
=

Eν

(1 + ν)(1− 2ν)
and µ̃ = G =

E

2(1 + ν)

where ν is the Poisson ratio, K is the bulk modulus and G is the shear modulus of

the material. This generalizes the Hooke's law (3.1) for a multiaxial case.

3.6.2 Elastoplastic region

When yielding occurs, the nonlinear plastic stress-strain relationship behaviour

makes the stress calculation more complicated. The stress state is obtained by a lo-

cal Newton-Raphson iteration procedure making sure that the nonlinear σε-relation

obtained from material tests is satis�ed at the material point. An implicit Euler

method for determining the plastic stress state will be introduced here. The stress

indicating that yielding has occurred f > 0 obtained from the linear elastic region

equations is referred here to as trial stress.

Approximation for the change in plastic strain and a requirement for the stress

not to leave the yield surface at the end of a time step result in the equations

∆εn+1 − [D]−1∆σn+1 −∆ι
∂f

∂σ
|n+1 = 0 (3.26)

fn+1 = 0 (3.27)

where an associative �ow rule is used in the approximation of the increase in plastic

strain. ∆εn+1 and ∆σn+1 are changes in the total strain vector and stress vector
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when advancing from step n to n+1, respectively. The �rst equation can be regarded

as a strain balance equation as ∆εn+1 = ∆εen+1 + ∆εpn+1, see equation (3.2). The

second equation requires for the stress to lie on the yield surface at the start of the

step n+ 1.

By di�erentiation of the equations (3.26) and (3.27) keeping in mind that ∆εn is

a known constant, a Newton-Rhapson iteration formula is obtained in matrix form

as [
[D]−1 + ∆ι ∂

2f
∂σ2

∂f
∂σ

∂f
∂σ

T −Ep

]k
n+1

[
dσk

dιk

]
= −

[
ḡk

fk

]
where ḡ is the residual of the equation (3.26) calculated at each iteration step from

ḡ = −∆εkn+1 + [D]−1∆σkn+1 + ∆ι
∂f

∂σ
|kn+1 (3.28)

and k is the index for the iteration step. The lower right element of the coe�cient

matrix is obtained by assuming that the yield function is dependent on harden-

ing and Ep is the plastic modulus corresponding to linear kinematic hardening or

isotropic hardening. For nonlinear isotropic hardening with a non-constant plastic

modulus, this could be taken as the slope of the σεp curve with the current equivalent

stress/strain values. The hardening behaviour has to be included in the calculation

of the yield function f also.

Let us drop the iteration index k from the equations (3.29)-(3.30) except for the

iterative corrections dι and dσ to clarify the presentation. By denoting [D∗] =

[[D]−1 + ∆ιk ∂
2f
∂σ2 ]−1 and solving for dιk and dσk from the pair of equations above,

the iterative corrections for the scalar and the stress are obtained as

dιk =
f − ∂f

∂σ

T
[D∗]ḡ

∂f
∂σ

T
[D∗] ∂f

∂σ
+ Ep

(3.29)

and

dσk = −[D∗]ḡ − [D∗]
∂f

∂σ
dιk (3.30)

The update formulas and the initial conditions for the iteration are

∆ιk+1 = ∆ιk + dιk , ∆ι0 = 0

∆σk+1
n+1 = ∆σkn+1 + dσk , ∆σ0

n+1 = [D]∆ε0
n+1

The yield function, the stress gradients of the yield function and the residual vector

ḡ can then be calculated with these updated values for the next iteration step.

The iteration is continued until the yield function f and the strain residual ḡ are

su�ciently small.
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When the iteration �nishes, the updated values for the stress and the plastic

strain increase are obtained from the equations

σn+1 = σn + ∆σn+1 (3.31)

εpn+1 = εpn + [D]−1∆σn+1 (3.32)

When using the implicit method for the direct integration of equation (2.1), this

local plastic stress iteration procedure is carried out at each global iteration step for

the element integration points with stresses that exceed the yield limit. When the full

Newton-Raphson iteration is used for the global iteration, the global sti�ness matrix

has to be updated for every iteration step. A material matrix that is consistent with

the implicit Euler algorithm can be obtained as [26, p. 233]

[Dimpl] = [D∗]−
[D∗] ∂f

∂σ
∂f
∂σ

T
[D∗]

∂f
∂σ

T
[D∗] ∂f

∂σ
− Ep

(3.33)

It is used for the calculation of [K] from equation (2.4). When the approximation

made in this method approaches zero, ∆ιn → 0 in [D∗], then [D∗] = [D] and thus

(3.33) is the equation for the di�erential elastoplastic stress-strain matrix.

The algorithm presented here is called a closest-point projection method [12, p.

410]. It projects the stress into a point on the yield surface that is closest to the

trial stress. It also has to be noted that some modi�cations for the stress return

algorithm may have to be made if it is to be used in a plane stress case, see e.g. [24,

p. 126].
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4. CONTACT

4.1 Contact detection

Master-slave (node-to-segment) algorithm is widely used for contact detection in

�nite element analysis. It is based on the speci�cation of regions, surfaces, that

are likely to interact with each other during the simulation. Dividing the model

into these speci�ed surfaces is computationally e�cient, only the parts of the model

likely to establish contact have to be monitored throughout the analysis for contact

detection.

The principal idea of the master-slave algorithm is to specify two surfaces, a

master surface and a slave surface. The slave surface will be subordinated to the

master surface. If the master surface is element-based, it is de�ned by the facets

connecting the nodes of the elements. The slave surface is merely de�ned as a set

of nodes when node-to-surface discretization is used. Contact is detected only when

the slave surface nodes penetrate the master surface facets. Master surface nodes

can penetrate the imaginary slave surface facets without contact being detected as

illustrated in �gure 4.1 where a master surface node has penetrated the slave surface

facets but not the slave surface nodes. The slave surface facets are imaginary in the

sense that the slave surface is de�ned merely as a set of nodes, and therefore, no

facets exist on the slave surface.

Figure 4.1: Pure master-slave node-to-surface contact

Some guidelines for selecting the slave and the master surface are as follows:
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• Rigid surface must be the master surface

• Node-based surface has to be the slave surface

• Slave surfaces must be attached to deformable bodies

• Smaller surface should be the slave surface

• The surface with sti�er behaviour (materially as well as geometrically) should

be the master surface

• The slave surface should have a �ner mesh than the master surface

The previously introduced basic idea of the master-slave algorithm was based on

the use of pure master-slave weighting with node-to-surface discretization for demon-

stration purposes. The presented guidelines are especially important for this case.

More accurate and sophisticated techniques are also available in FEA softwares, such

as Abaqus [7]. The selection of the discretization method, contact surface weight-

ing, constraint enforcement method and sliding formulation all have in�uence on the

accuracy of the results and the computational e�ciency of the simulation. These

will be discussed later on in this section. Alternate techniques concerning surface

discretization and surface weighting will decrease the importance of the presented

guidelines.

4.2 Contact weighting

The previously introduced pure master-slave contact (one pass) calculates the con-

tact condition only once, and therefore, the master surface nodes can penetrate the

slave surface without any opposing force if the mesh used in the model is too coarse.

There is also an alternate method called balanced master-slave contact (two pass)

weighting. It calculates the contact condition twice, switching the master-slave con-

�guration opposite for the second calculation. The �nal contact con�guration is

then determined by applying a weighted average of these two results. The balanced

contact weighting minimizes the possibility of contact penetration but is compu-

tationally more expensive because the contact calculations have to be performed

twice.

The balanced master-slave weighting is well suitable for an explicit �nite element

code when two deformable surfaces contact each other. Possible overconstraint issues

in an implicit analysis typically make the choice of pure master-slave weighting more

suitable [7, sect. 32.1.1].
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4.3 Contact discretization

The previously introduced node-to-surface discretization is the formulation used by

Abaqus/Explicit.

In addition to the node-to-surface discretization, Abaqus/Standard o�ers a surface-

to-surface contact discretization that considers also the slave surface shape. The

contact conditions are calculated with an averaging integral over regions near the

slave nodes. The averaging regions for each slave node is approximately centered at

the slave node so that the adjacent slave nodes are also considered in the contact

constraint calculation. Contact direction is de�ned by an average normal of the

slave surface in the surrounding region of the slave node.

Surface-to-surface discretization provides smoother and better results in contact

pressure and stresses compared to the more discrete node-to-surface discretization.

It also minimizes the possibility of large penetrations of the master surface nodes

into the slave surface. When mesh densities are similar, surface-to-surface contact

is not as sensitive on the choice of master and slave surface as node-to-surface

discretization. For a �ne mesh, the results between these two discretization methods

will probably not di�er much, but for a coarse mesh the di�erence is evident.

4.4 Contact constraint enforcement

The detected contact conditions add constraint terms into the equilibrium equa-

tions. The con�guration of the surfaces and the forces between the surfaces are then

determined by enforcing these contact constraints. Two kinds of principal ideas

for contact constraint enforcement are commonly used in �nite element analysis

problems. These are the Lagrange multiplier method and the penalty method.

4.4.1 Principal idea of contact constraint enforcement

A demonstration of the contact constraint enforcement with the Lagrange multiplier

and penalty methods in a simple problem is illustrated in �gure 4.2a where a point

mass m is supported by a spring with a sti�ness k attached to a rigid support at the

top. A gravity �eld with a downward acceleration of g is present. The gap between

the rigid surface at the bottom and the point mass is denoted here as h. If h > 0,

contact is not present and if h ≤ 0, contact is present. The solution for the force

equilibrium is trivial for h > 0 but boundary nonlinearity arises when h ≤ 0. In

the following, let us assume that the contact constraint is active, in other words,

contact has been detected: h ≤ 0, mg ≥ kh.

In case of the Lagrange multiplier method in �gure 4.2b, the equilibrium equation
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Figure 4.2: A single degree of freedom contact gap problem

is written as [
k 1

1 0

][
u

λ

]
=

[
mg

h

]
(4.1)

where λ is the Lagrange multiplier that has to be solved for. In this simple case

it is simply the contact reaction force easily solved from P = λ = kh −mg. This

method adds additional variables to the equilibrium equations and is therefore com-

putationally more costly but it enforces the contact condition exactly.

The solution with the penalty method in �gure 4.2c can be described as adding of

a spring between the point mass and the rigid surface at the bottom. The equilibrium

equation is then written as

(k + kp)u = mg (4.2)

where kp is the penalty sti�ness of the spring which de�nes how strictly the constraint

is enforced. Overall, the constraint is enforced in an approximate fashion. If the

value of kp is too large, it may produce convergence di�culties, and if it is too small,

overclosure between the point mass and the bottom surface will occur as seen in

4.2c.

A constraint enforcement method called the augmented Lagrange method is also

in use. It is similar to the Lagrange method but penalty terms are added to it. In

general, this results in improved convergence rates when compared to the Lagrange

method but is computationally more costly than the simple penalty method. See

for example [14, p. 126] for more information on the augmented Lagrange method.

The constraint enforcement in this simple demonstrative case was easy to cal-

culate. However, this is not the case when the contact involves multi-dimensional

deformable bodies and multiple contact constraints to be enforced during an incre-

ment. Demonstration on the di�erence of the explicit and implicit method concern-
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ing contact constraint enforcement is presented next.

4.4.2 Finite element method implementation

Algorithms for frictionless contact in �nite element simulations are introduced here.

Some discussion on the inclusion of friction will follow later on. Also, this thesis is

focused on quasistatic �nite element simulation so that the impact phenomena is

not considered here.

Let us assume in the following that the active set of contact constraints is deter-

mined for the increment or iteration step. The contact problem can then be stated

in the form

[M]Ü + [C]U̇ + Rint −Rext = 0 (4.3)

and [Gc] ≥ 0 (4.4)

where the single contributions of nodes/facets are combined in the contact residual

matrix [Gc] which is dependent of the displacement �eld. In the case of the simple

problem with one degree of freedom introduced in the previous subsection, [Gc]

would simply be Gc(u) = u−h ≥ 0. However, in a more general context the matrix

is nonlinear with respect to the displacement �eld. It relates the kinematic gap

variables to the global �nite element solution.

The nonlinear equation system derived from a minimum of potential energy prin-

ciple [14, p. 330] for the contact problem residuals results for the Lagrange multiplier

method as

Ḡ + [Cc]TΛ = 0 (4.5)

[Gc] = [0] (4.6)

and for the penalty method as

Ḡ + kp[C
c]T [Gc] = 0 (4.7)

where Ḡ is the residual introduced in section 2.2.2 and [Cc] is the constraint con-

tribution matrix that can be de�ned as a partial derivative of the contact residual

matrix as

[Cc] =
∂[Gc]

∂U
(4.8)

see [14, ch. 9] for more information on how to compile it for di�erent discretiza-

tions in large displacement problems. The constraint contribution matrix is also

dependent of the nodal displacements. Λ is a vector of Lagrange multipliers that

are added to the system of equations for every constraint degree of freedom.
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Contact constraint enforcement in explicit method

The penalty method can fairly easily be implemented to the explicit method. Only

the contact contribution terms of the penalty method have to be added to the

equilibrium equation at the start of each step which yields, for the equation (2.7),

the form

Ün = [M]−1
(
Rext

n − kp[Cc]T [Gc]− [C]U̇n− 1
2
−Rint

n

)
(4.9)

where the penalty sti�ness kp is assumed to be the same for all constraints.

The Lagrange multiplier method can not be directly applied to the explicit

method because there is no mass associated with the Lagrange multipliers. How-

ever, di�erent predictor/corrector-type algorithms can be constructed to enforce the

contact constraints exactly. These kind of algorithms use, at �rst, an unconstraint

predictor step after which the corrector step is performed so that the constraint is

enforced exactly at the end of the time step.

One of this type of predictor/corrector-algorithm can be constructed by ful�lling

the rate of the constraint ġN = 0, see [14, p. 353]. This idea leads to an additional

system of equations

∆tn+1 + ∆tn
2

[Cc][M]−1[Cc]TΛ = [Cc]

[
U̇n− 1

2
+

∆tn+1 + ∆tn
2

[M]−1 (Rext −Rint
)
n

]
from where the vector of Lagrangian multipliers Λ can be solved iteratively, see

e.g. [27]. The coe�cient matrix on the left side is not generally diagonal. The

assumption made in this method is that the gap and gap rate lead to the same

contact constraint matrix since velocities and displacements use the same shape

functions for the interpolation.

Contact constraint enforcement in implicit method

It is assumed here that the update of the active set of contact constraints is per-

formed within each step of the global Newton-Raphson iteration.

The Lagrange multiplier method requires additional variables Λ for the iteration

procedure. Let us compile a vector w = [UTΛT ]T consisting of the nodal displace-

ments and the lagrange multipliers to make the presentation more compact and

drop the subscript for the time increment n + 1 from the following. The Lagrange

multiplier method leads to the following iterative scheme:

[KLM](wi)∆wi+1 = ḠLM(wi) (4.10)

wi+1 = wi + ∆wi+1 (4.11)
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where

[KLM] =

[
[Kimpl]

i + [Kc
t ]
i [Cc]iT

[Cc]i [0]

]
(4.12)

and

ḠLM =

[
Ḡi − [Cc]iTΛi

−[Gc]i

]
(4.13)

where [Kimpl] and Ḡ are presented in section 2.2.2 where no contact conditions were

assumed to be present. The matrix [Kc
t ] is obtained by linearization of the product

of the constraint matrix and the vector of Lagrange multipliers with respect to the

displacement �eld [14, p. 331] as

[Kc
t ] =

∂[Cc]

∂U
Λ (4.14)

and it disappears for a linear problem. All the other matrices in (4.12)-(4.13) depend

on the displacements.

The iterative scheme for the penalty method is

[KP](Ui)∆Ui+1 = ḠP(Ui) (4.15)

Ui+1 = Ui + ∆Ui+1 (4.16)

where the tangent matrix obtained from the linearization of the residual function is

[KP] = [Kimpl]
i + kp

(
[KcP

t ]i + [Cc]iT [Cc]i
)

(4.17)

and the residual function is

ḠP = Ḡi − [Cc]iT [Gc]i (4.18)

Here the matrix [KcP
t ] obtained from the linearization of the variational potential

energy function [14, p. 331] as

[KcP
t ] =

∂[Cc]

∂U
[Gc] (4.19)

also disappears for a linear problem. Here only the displacements which are the

primary variables enter the formulation and no additional Lagrange multipliers is

needed.
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4.5 Finite sliding formulation

Finite sliding is a general, but a computationally expensive formulation. In �nite

sliding formulation, the node can contact any of the facets on the other surface.

The formulation allows for arbitrary separation, sliding, and rotation of the surfaces.

However, it is assumed that the relative tangential motion of the two surfaces in one

increment does not signi�cantly exceed the facet size of the master surface. This

usually is not a problem when the explicit direct integration method, characterized

by small increments, is used. For the implicit method, this has to be accounted

for. This formulation can be used in a geometrically nonlinear analysis as well as a

geometrically linear analysis. The latter one being in situations with �nite sliding

between two sti� bodies not undergoing large rotations.

If node-to-surface discretization with �nite-sliding formulation is used, slave nodes

might get stuck at sharp corners of the master surface. At the corner points, the

master surface normal is discontinuous. Therefore, for attaining realistic sliding

conditions, smoothing has to performed for the master surface corners. Some tech-

niques for surface smoothing, such as Hermite, Bézier and spline polynomials, can

be read from [14, p. 279-302].

Other computationally more simple formulations for sliding between the contact

surfaces are for example small sliding and in�nitesimal sliding & rotation in Abaqus

[7, sect. 33.2.2]. In the small sliding formulation, every slave node acts with its

respective tangent plane on the master surface. The tangent plane orientation is

de�ned by shape functions at an anchor point and the normals of the master surface

nodes. These master surface nodal normals are calculated as an average of the

adjacent element face normals. This means that the tangent planes for contact

are usually only an approximation of the mesh geometry. Therefore, it has to be

noted that for attaining good results, the tangent planes must approximate the

mesh geometry well throughout the analysis. Nonlinear geometric e�ects are taken

into account in the small sliding formulation in the way that the tangent plane

orientation is updated during the analysis. The tangent plane rotates �xed to the

master surface.

The in�nitesimal sliding formulation ignores geometrically nonlinear e�ects, and

therefore, only small displacements are allowed when it is used. It di�ers from the

small sliding formulation only in the manner that the local tangent plane orientations

are not updated during analysis. Both absolute motions and relative motions of the

surfaces should remain small in the model when this formulation is used.
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4.6 Contact tracking algorithm

The active set of contact constraints has to be determined at each increment in a

�nite sliding formulation. This can be done by measuring the minimum distance

gaps for each slave node and the master surface by means of contact tracking. This

works well for quasistatic problems.

When the slave surface nodes can contact any one of the master surface facets, a

large proportion of the computational cost involved in a �nite sliding simulation is

introduced by the contact tracking algorithm which tracks the motion of the surfaces.

The tracking algorithm is usually divided into global and local contact searches for

improved computational e�ciency. The global search is responsible for most of the

computational cost involved in a contact tracking algorithm, even though a bucket

sorting algorithm or other spatial search algorithms [14, p. 315], which sorts the

potential master surface facets for each slave node can be used to minimize the

computational cost of the global search.

The tracking algorithms used in small sliding/deformation problems is computa-

tionally less expensive. In these formulations, the global search can be performed

only once at the beginning of the simulation to determine the nearest master surface

facets for the slave surface nodes.

For demonstration purposes, let us introduce the Abaqus/Explicit �nite-sliding

tracking algorithm as presented in [7, sect. 33.2.2]:

A global contact search for the nearest master surface facet of each slave node is

performed �rst. The algorithm can then track the master surface node which is the

node on the master surface facet that is nearest to the slave node. A local contact

search is then performed in subsequent increments until the next global search. It

locally searches only the facets attached to the previously tracked master surface

node for the nearest master surface facet. Then the nearest master surface node

is tracked and updated if necessary. If the new tracked master surface node is not

the same as the previously determined, a new local search will be performed. The

local search will stop only when the new tracked master surface node is the same as

the previously tracked node. The global search is performed once in one hundred

increments by default in Abaqus/Explicit. The frequency of the global search can

also be manually adjusted, although reducing the increment size will signi�cantly

increase the computational cost of the simulation.

4.7 Friction

Because of the di�culties in predicting actual friction forces accurately in a metal

forming simulation, a constant Coulomb friction coe�cient is often used in mod-

elling the frictional behaviour. The Coulomb friction law for a slip case de�nes
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the magnitude of the tangential traction forces between two surfaces caused by the

relative tangential motion of these surfaces as

tT = −µ|pN |
ġT

||ġT||
(4.20)

where µ is the friction coe�cient and |pN | the magnitude of contact pressure acting

normal and into the surface. ġT is the rate of the tangential gap vector which

de�nes the direction of relative motion. The shear stress caused by friction between

the contacting two surfaces is in the opposite direction of the motion.

A stick condition has to be distuingished here. This is applied when two surfaces

do not slide with respect to each other. This is the case when the contact pressure

has not exceeded a certain limit. The stick condition for the tangential motion of

the surfaces can be expressed in equation form as

ġT = 0 and gT = 0 (4.21)

where gT is the tangential gap in vector form. Equation (4.21) de�nes the rate of

the tangential gap to be zero.

The inclusion of friction complicates the calculation of the contact conditions.

For a frictional case in the implicit method, the tangential constraints have to be

included in the iteration also. This leads [14, p. 357] in the penalty method described

in 4.4.2 to a tangent matrix and a residual vector as follows:

[KP] = [Kimpl] + [Kcp
T ]

T
+ kp[C

c]T [Cc] + F[Cc
T] (4.22)

GP = Ḡ + kp[C
c]T [Gc] + tT

T [Cc
T] (4.23)

where [Cc
T] is the tangential constraint contribution matrix and [Kcp

T ] contains the

contributions from the linearization of both of the terms including [Cc
T] and [Cc]

in the residual vector (4.23). The vector F results from the linearization of the

tangential stresses tT with respect to the displacement �eld. The tangential stresses

depend on the state of stick and slip as will be discussed next.

The friction force vector tT in (4.23) has to be compiled from single contribu-

tions of the frictional forces where the stick and slip state at each node have to

be distuingished. A technique analogous to the return mapping algorithm of non-

associative plastic stress calculations can be read from [14, p. 360]. The tangential

total slip gT is divided here into a stick (elastic) gst
T and a slip (plastic) gsl

T part

gT = gst
T + gsl

T (4.24)

where the tangential traction depends on the stick part. The stick condition can be
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chosen to be ful�lled only approximately to smooth the nonlinearity involved, this

leads to the regularization of Coulomb law [14, p. 78]. And thus, for an isotropic

friction case, we have the connection

tT = cTgst
T (4.25)

where cT is the stick (elastic) constant which relates the traction force and the

stick part of the tangential gap. For the Coulomb law, the local integration of the

frictional interface law can be written explicitly [14, p. 362]

tTn+1 = µpNn+1n
tr
Tn+1 (4.26)

gsl
Tn+1 = gsl

Tn +
1

cT

(
||ttr

Tn+1|| − µpNn+1

)
ntr

Tn+1 (4.27)

(4.28)

where ||ttr
Tn+1|| is the norm of the trial tangential traction vector de�ned by the

equation

ttr
Tn+1 = tTn + cT∆gTn+1 (4.29)

where it was assumed that the whole step would be in stick state. ntr
T is the direction

of the trial traction.

The implementation to the Lagrange multiplier method will not be discussed here.

It is often formulated in a way that the Lagrange multiplier method is formulated

in the normal direction only and the tangential direction is handled by means of the

penalty method introduced here [14, p. 357].
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5. SIMULATION MODEL

5.1 Model geometry

5.1.1 Full geometry of the tools and the blank

Figure 5.1: Full model geometry

The complete geometry of the tools and the blank can be seen in �gure 5.1.

The part geometries were imported to Abaqus/CAE from a step (.step) �le. The

initial geometry of the blank in xyz-coordinates is x = 2282mm, y = 30mm and

z = 1300mm, see �gure 5.1 for the coordinate axes.

The dimensions of the die and the punch can be seen in �gure 5.2. All of the

dimensions are in millimeters. The curved side wall geometry with changing radius

was a nurb which are not supported for dimensioning in Abaqus/CAE. Therefore,

its accurate dimensions can not be shown in the �gure and only its shape seen in

the �gure is taken as a su�cient presentation of its geometry. Furthermore, only the

dimensions directly related to the shape of the �nal product and the tool stresses

of interest are presented. The other dimensions are not of importance at this stage

of a simulation design process. The angle measure shown in the die dimensions
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is the angle between a tangent of the arc of the smallest bend radius curve and a

horizontally aligned line. It is the same for the smallest punch bend radius curve.

Figure 5.2: Die (left) and punch (right) dimensions in millimeters

The z-dimension of the punch is 1600mm and the z-dimension of the die (the

bottom plate of the die is not included) is 1500 mm. The die geometry was not

the same on all xy-plane cuts as seen in �gure 5.1 but this is not of importance

as the z-direction variation of the geometry is not taken into account in any of the

simulations, see the simulation models that will be introduced next and the section

introducing the meshes used in the simulations for more information.

The desired shape of the blank after forming is taken to coincide with the die

cavity shape.

5.1.2 3D model

As the geometry as well as the punch movement are assumed to be symmetric

throughout the process with respect to two planes, the xy-plane and the yz-plane,

only one fourth of the geometry has to be modelled, see left side of the �gure 5.3 for

an illustration of this model. This simpli�cation requires symmetry boundary con-

ditions on the symmetry planes. Also, the punch pressing force has to be multiplied

by a factor of 4 as only fourth of the plate sti�ness is resisting the force.

This model is used for 3D simulations with rigid tools. Therefore, the only regions

of the tools, which are of importance in this model, are the tool surfaces that will

establish contact with the blank.

5.1.3 Plane strain model

The geometry was also modelled as a planar geometry. A symmetry plane exists

also for this model so that only half of the planar geometry has to be modelled, see
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Figure 5.3: Models

right side of �gure 5.3. The planar geometry was taken from the middle cut of the

geometry on the xy-plane. Plane strain conditions εz = γyz = γxz = 0 were assumed

for the planar model as the z-direction dimension of the plate is large compared to

the thickness direction. This assumption holds quite well for the middle cut but

might miss some details on the edges that are parallel to the xy-plane. This model

is used for most of the simulations and parametrical studies because of its superior

computational e�ciency when compared to the 3D model.

The blank and the punch geometries were the same on all xy-plane cuts but the

die geometry di�ered, see �gure 5.3. Therefore, it has to be kept in mind that

this planar geometry results in a more sti� response from the die when modelled as

deformable than that of the 3D model geometry would. The tools were modelled as

deformable only with this plane strain model.

The plane strain thickness was assigned in the section properties as 650 mm

corresponding to the z-direction thickness of the quarter symmetry model for easier

comparison purposes between the models. This requires for the same multiplication

of a factor of 4 on the pressing force as with the quarter-symmetry 3D model.

5.2 Analysis types

5.2.1 Explicit dynamic analysis for forming

The Abaqus/Explicit code uses the central di�erence-operator, which was introduced

in the theory part of the thesis, to calculate the dynamic response of the structure.

Abaqus/Explicit will automatically calculate the minimum time step size with
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a procedure based on the Courant criterion (2.8). The code uses dilatational wave

speed cd in place of the speed of sound in the material c introduced in the theory

chapter. Dilatational wave speed is de�ned for an isotropic material by the equation

cd =

√
λ̃e + 2µ̃e

ρ
(5.1)

where λ̃e and µ̃e are e�ective Lamé constants, see [23, sect. 2.4.5]. An analytical

upper bound expression for the maximum eigenvalue of the element de�nes the

characteristic length for an element type. For example, a 4-node reduced integration

quadrilateral with the uniform strain formulation has a characteristic length of

Le =
A√
BiBi

(5.2)

where A is the element area and Bi is the element gradient operator [23, sect. 3.2.4].

Damping related with the volumetric straining is introduced by means of bulk

viscosity in Abaqus/Explicit [23, sect. 2.4.5]. It improves the modeling of high-

speed dynamic events and is not part of the constitutive response of the material.

Therefore, it will not be of much importance in this context and the default bulk

viscosity coe�cients are used in the simulations.

Computational e�ciency of the simulation is improved by adjusting the time scale

of the process to as small value as possible without introducing any notable inertia

e�ects to the simulation. This is obtained by performing the simulation with di�er-

ent time scales with a relatively coarse mesh and checking the ratio of the kinetic

energy of the blank with respect to the internal energy of the blank. The Abaqus

convention for the total internal energy is ALLIE and for the total kinetic energy

it is ALLKE. In the rigid tool simulations these energies are completely de�ned by

the blank as no mass is associated with the rigid tools. The ALLKE/ALLIE ratio

is not allowed to exceed a large percentage, typically less than 10% [7, sect. 6.3.3],

throughout the majority of the simulation. A time period of 0.5 seconds was found

to be appropriate based on this guideline.

5.2.2 Implicit dynamic analysis for forming

A quasi-static application option for the implicit solution was selected. It uses the

backward Euler operator, which was introduced in the theory chapter, to obtain

an implicit solution to the dynamic equibrium equations at each increment. This

application option is intended for quasistatic simulations, includes high numerical

dissipation and seems to be more rapid in convergence when compared to the other

application options that use the Hilbert-Hughes-Taylor α method. The quasi-static
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application option may require considerable numerical dissipation at some parts of

the simulation to obtain convergence.

The time increment size is controlled automatically with the chosen application

type in Abaqus/Standard by reducing the size when the iteration is diverging or

su�ering from low convergence rate and increasing the size fairly aggressively when

the iteration has converged rapidly in previous increments. A total of 5 cutbacks on

the increment size at each increment is allowed, otherwise the simulation will break

down. The automatic time increment size control is based on the half-increment

residuals [23, sect. 2.2.1].

5.2.3 Static analysis for springback

The springback was solved with the general static analysis type after the forming

process. A static general step can be created after the implicit dynamic analysis

step as both analysis types use the implicit Abaqus/Standard code.

When the explicit method is used for the forming part of the simulation, a static

general step can not be created after the explicit dynamic step. This is because the

explicit dynamic analysis uses Abaqus/Explicit code and the static general analysis

uses Abaqus/Standard code. The material state has to be imported to another

Abaqus/CAE model with the same blank geometry as an initial state from the end

of the explicit dynamic analysis. A static analysis is then performed with the initial

state de�ned as a prede�ned �eld for the blank.

5.3 Material model

The deformable tools were modelled as linear elastic material with the following

properties:

E = 200GPa ν = 0.3 ρ = 7800
kg

m3

The plate material was modelled with the same density and linear elastic prop-

erties as the tools, but in this case, the plasticity model needed to be included as

well. The following material parameters from a tensile test are given:

σy = 426MPa σu = 565MPa εm = 0.25 εu = 0.15

where εm is the engineering strain at break measured from the unstressed length of

the tensile specimen after the test, and εu is the necking strain, which is the value

of strain corresponding to the ultimate stress.

The chosen plasticity model uses associative �ow rule with von Mises yield cri-

terion and isotropic hardening unless otherwise mentioned. Abaqus always assumes
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the logarithmic elastic strain to be small so that the additive strain rate decom-

position can be used [23, sect. 1.4.4]. In the Abaqus plasticity models, the total

strain for solid continuum elements is de�ned by an integral over the rate of de-

formation. This integral is calculated approximately by using a central-di�erence

scheme and by approximating the rigid body rotations during the increment, for

further information see [23, sect. 3.2.2]. The material matrix is approximated also.

The approximations made in the formulation provide improved convergence but may

cause some problems with anisotropic plastic behavior, such as kinematic hardening,

when large strains and rotations are present [23, sect. 3.2.2].

The uniaxial plasticity data has to be converted to the true stress and logarithmic

plastic strain measures. The formulas for conversion are

σtrue = σe(1 + εe) and εplog = ln(1 + εe)−
σtrue
E

(5.3)

The engineering strain value of interest is the necking strain that corresponds to the

ultimate stress value, and therefore, εe = εu is used in (5.3). The strain value is used

to obtain an approximate linear work hardening curve for the material data input

as no further information of the stress-strain curve is available. Thus, the values

obtained from the given material parameters for data input are

σy = 427MPa at εplog = 0 and σu = 650MPa at εplog = 0.14

This corresponds to a plastic modulus of approximately Ep = 1.6GPa. With this

input in Abaqus, the uniaxial plasticity curve input would be ideally plastic (no

work hardening, Ep = 0) after the strain exceeds 0.14. This is not the case in reality

(see section 3.1) as the localization of stresses at the necking stage is not properly

measured with the given material parameters. Therefore, an approximation of the

behaviour after εplog = 0.14 is obtained by keeping the plastic modulus constant until

the strain exceeds a value of 1. Thus, the �nal material data for the simulation is

input as

σy = 427MPa at εplog = 0 and σu = 2061MPa at εplog = 1

The material parameters are only an approximation of the true material behavior.

The properties of the steel blanks can vary signi�cantly as they are often sold with a

high probability guarantee on the strength of the material. The material properties

are to be modi�ed to perform some parametrical studies on them. This is also

an important aspect if one is to choose methods such as preheating of the plate to

decrease the sti�ness and the yield strength of the blank during the forming process.
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5.4 Boundary conditions

5.4.1 Rigid tool model

The die was �xed in space with all degrees of freedom constrained at the rigid body

reference point.

A displacement boundary condition corresponding to the punch movement along

the negative direction of the y-axis of 601.5mm was set for the punch. All other

degrees of freedom were constrained at the rigid body reference point. This displace-

ment boundary condition advanced the kinematic state of the punch incrementally

causing contact conditions between the punch and the top surface of the blank.

These contact conditions together with the contact conditions between the blank

bottom surface and the die forced the blank to be formed. A smooth step amplitude

curve was applied for the movement of the punch to reduce the propagation of stress

waves at the start and the end of the simulation. The smooth step amplitude curve

is a �fth-order polynomial �t with zero velocity in the start and in the end, see �gure

5.4 for the punch displacement as a function of time.

Figure 5.4: Smooth step amplitude curve

The springback step included the symmetry boundary conditions on the blank

and one node �xed in the y-direction at the cut of the symmetry planes on the top

surface of the blank. The tools were either �xed at their positions or removed from

the assembly for the springback step.
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5.4.2 Deformable tool model

The symmetry boundary conditions on the symmetry planes had to be set for all

of the part instances: the punch, the die and the blank. The symmetry boundary

conditions smooth the master surface at the symmetry plane by constructing a

parabolic curve segment between the end segment and the re�ection of the end

segment about the symmetry plane [7, sect. 34.1.1]. This smoothing procedure is

especially important in node-to-surface discretization.

The displacement boundary condition corresponding to the punch movement was

set in similar way as in the rigid tool model. This time it was set for all of the nodes

on the punch top surface as no rigid body reference point existed.

The die was �xed on the bottom edge with all degrees of freedom constrained.

The springback was achieved similarly to that of the rigid tool model.

5.5 Meshing and elements

5.5.1 Blank partitioning and mesh

The blank was partitioned into three regions as shown in �gure 5.5.

Figure 5.5: Blank partitioning

This was done because the blank mesh needed di�erent �neness in di�erent re-

gions to obtain accurate results. The region to the left, adjacent to the symmetry

plane, is the region of most interest. It is subjected to most plastic straining in

the model. The region in the middle requires some mesh �neness while the region

to the right is not subjected to signi�cant stress nor straining and requires only a

reasonably coarse mesh.

The mesh of the blank in the plane strain model will be referred throughout this

thesis to as: element edge length at the region to the left / element edge length at

the region to the right. The middle region is a transition region between these two

regions with quad-dominated free mesh technique. A demonstration for a 5/10-mesh

on the plane strain model blank can be seen in �gure 5.6.

Figure 5.6: 5/10-mesh on the blank
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5.5.2 Explicit method elements

Solid continuum elements

It is only possible to use �rst-order quadrilateral and hexahedral elements in the

explicit dynamic procedure based on the Abaqus/Explicit code. For this bending-

dominated forming problem, it is clear that �rst-order fully integrated solid contin-

uum elements should not be used because of the overly sti� behaviour these elements

exhibit due to shear locking. As stated in the theory chapter, �rst-order reduced

integration elements avoid this problem but care has to be taken when using these

elements because of the hourglass modes. With a su�ciently large number of ele-

ments through the thickness of the plate this will not be a problem. An enhanced

hourglass control option is selected for this simulation to ensure a consistent calcu-

lation of the forces when importing the material state between Abaqus/Explicit and

Abaqus/Standard for the springback analysis. It has to be checked after the analysis

that the arti�cial strain energy caused by the forces used in hourglass control does

not exceed 1% of the total internal energy of the plate [28, A2.23].

The �rst-order reduced integration solid continuum elements in Abaqus have a

uniform strain formulation rather than calculating the strain at the Gauss point in

the center of the element. This is better for accuracy when the elements are skewed

[23, sect. 3.2.4].

Shell elements

The blank was also modelled with shell elements with the 3D model in explicit

analysis.

The shell elements used are doubly-curved S4R 4-node �rst-order reduced inte-

gration conventional shell elements and its fully integrated version S4. These are

general-purpose shell elements that are suitable for thin and thick shell problems.

The thickness change is allowed in their formulation as a function of in-plane defor-

mation through an e�ective section Poisson's ratio [23, sect. 3.6.1]. The membrane

kinematics of the fully integrated version S4 is based on an assumed strain formu-

lation [23, sect. 3.6.5] which should provide accurate solutions for in-plane bending

behaviour. No hourglass control is needed in the bending nor membrane response of

the S4 element. These elements are suitable for large-strain analysis by accounting

for �nite membrane strains and arbitrary large rotations.

The default settings for the section Poisson's ratio was used. To capture the

nonlinear material behavior appropriately, the section had to be integrated during

the analysis and the Simpson integration rule with 7 through-thickness integration

points is selected.

The conventional shell elements discretize a reference mid-surface only so that
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the plate thickness has to be input in the section properties.

5.5.3 Implicit method elements

In the implicit dynamic analysis with the Abaqus/Standard code, it is possible to use

second-order solid continuum quadrilateral/hexahedral elements. These elements do

not exhibit hourglass modes, and therefore, a smaller number of elements is needed

through the plate thickness. The larger number of element integration points o�er

also strain/stress values that can be regarded as more accurate with use of fewer

elements.

The second-order elements in Abaqus are always integrated by the Gauss quadra-

ture [23, sect. 3.2.4]. The reduced integration second-order elements CPE8R and

C3D20R are chosen for this simulation as second-order fully integrated elements

start to develop volumetric locking when the plastic strains are on the order of the

elastic strains. The reduced integration second-order elements su�er from volumetric

locking only after large amounts of plastic strain has occurred and this is often seen

as an hourglass-like mode in the mesh. This can be avoided by re�ning the mesh

in regions subjected to large plastic straining. The presence of volumetric locking

can be checked by a quilt-style contour plot of the pressure stress which shows a

checkerboard pattern with signi�cant changes in the values of adjacent integration

points if volumetric locking is occurring [7, sect. 25.1.1].

5.5.4 Tool meshes

The tools were modelled as discrete rigid with R2D2 2-node rigid link elements in

the plane strain model. The mesh in the round corners was �ned with a total of ten

R2D2 elements over the radius to capture the round geometry su�ciently well. The

rigid elements in the 3D model were R3D4 four-node bilinear quadrilaterals as the

tool surfaces in the 3D model needed shell-like shape from the geometry. The shell

element models and the implicit solid continuum model used 8 R3D4 elements and

the explicit solid continuum used 10 R3D4 elements over the radius of the tools.

The tools were modelled as deformable only in the implicit analysis with the

plane strain model. The elements used for the tool meshes were the same CPE8R

elements as was used for the blank. The tool meshes used for the simulation can be

seen in �gure 5.7. Minimum element side length is 4 mm. Number of elements in

the die mesh is 3521 and in the punch mesh 1837.

5.6 Contact modelling

In �gure 5.8 the contact surface de�nitions on the punch bottom surface and the die

top surface can be seen as the red lines on the corresponding edges.
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Figure 5.7: The tool meshes for the initial results with implicit method

Figure 5.8: Surface de�nitions on the tools

The plate had two contact surfaces: one on the top of the plate and one on the

bottom of the plate as seen in �gure 5.9.

For the 3D model, the surface de�nitions are obtained by extending these lines in

the direction of z-axis. It was especially important for the 3D-model not to de�ne

the surfaces in the areas that were not likely to establish contact in the simulation

because of the reduced computational cost in contact tracking.
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Figure 5.9: Surface de�nitions on the blank

Two contact pairs are de�ned in the model. The punch surface and the top

surface of the plate form one, and the other is formed by the die surface and the

bottom surface of the plate. The tool surfaces were de�ned as master surfaces and

the plate surfaces were de�ned as slave surfaces. The contact pairs were active only

for the forming part of the simulation and inactive for the springback step.

Finite sliding option was chosen for the simulation as the plate surfaces experience

signi�cant sliding with respect to the tool master surfaces during the simulation.

Unless otherwise mentioned, the constraint enforcement methods for the simula-

tions were selected in the way that they would capture the shape of the �nal product

accurately. In Abaqus/Standard this was accomplished by choosing the augmented

Lagrange method option, which seemed to yield as accurate results with improved

convergence when compared to the more strict direct method. In Abaqus/Explicit

the kinematic method option was chosen. Penalty methods seemed to allow too

large penetrations between the surfaces. The pressure-overclosure relationship was

chosen as hard contact in Abaqus/Standard.

The contact discretization option was chosen as surface-to-surface contact in

Abaqus/Standard and pure node-to-surface contact in Abaqus/Explicit.

The tangential friction behavior was modelled as isotropic with a constant slip

rate independent Coulomb friction coe�cient. The frictional constraints were im-

posed by means of the penalty sti�ness method in Abaqus/Standard. This allows a

small amount of relative motion between the surfaces when the surfaces should be

sticking. This is to improve the convergence of the iterations [7, sect. 33.1.5]. The

default value of 0.005 for slip tolerance was used. In Abaqus/Explicit the frictional

constraints were imposed by means of the kinematic method, which is the default

method for contact pairs.

5.7 Consistent units

The Abaqus software does not have a built-in unit system, except for rotation degrees

of freedom and angles. Therefore, the units have to be input into the software

ensuring that they use a consistent unit system. The unit system used in these

simulations is SI(mm), see the table 5.1.

All data is input in these units to the software and these are also the units for the

results unless otherwise mentioned. However, some of the units are converted to the
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Table 5.1: Consistent units

Quantity SI(mm)

Length mm
Force N
Mass tonne (103kg)
Time s
Stress MPa (N/mm2)
Energy mJ (10−3J)
Density tonne/mm3

standard SI units in the written part of the thesis because of their more common

and well-known usage.
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6. SIMULATION RESULTS

6.1 Results of the initial model

The initially provided geometry was designed in the way that the punch would thin

the plate at the sides in the end. In other words, the punch geometry had an overlap

of 5 mm with the plate at the sides of the punch if the punch would be assigned the

whole punch depth. This is illustrated in �gure 6.1 where half of the tools (cut on

the symmetry plane) is illustrated as the gray areas and the pro�le of the desired

shape of the formed plate is illustrated by the red lines. Pay attention to the overlap

between the punch (upper tool) and the right side of the desired shape.

Figure 6.1: Overlap between the punch and the desired shape

6.1.1 Explicit analysis precision and e�ciency

At an early stage of the simulations it turned out that the single precision accuracy

used in analysis resulted in inaccurate displacements for the punch. This is seen as

an extreme situation in �gure 6.2 where the nodal displacements are also calculated

with insu�cient precision resulting in element distortion.

When double precision was used in the analysis, this problem disappeared. Abaqus

manual mentions that double precision should be used in an analysis with more than

300 000 increments or with time increment size less than 10−6s [7, sect. 6.1.1]. The

time increment in the 1/5-mesh (see section 5.5.1) model was approximately 10−7s

and the number of increments it took to complete the analysis was 5 243 109. Even
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Figure 6.2: Single precision explicit analysis results with 1/5 mesh

with 10 elements through the thickness (3/5-mesh) the number of increments was

over a million (1 445 332) and the time increment approximately 3.5 ∗ 10−7. It was

quite clear that double precision should be used to obtain accurate results in this

simulation.

The small time increment also led to lengthy computation times so that the im-

plicit analysis was considered to be more suitable for studying the initial results. The

implicit analysis with the Abaqus/Standard code o�ered second-order elements. A

comparison between the computational times of the explicit model with a 1.5/5-mesh

of CPE4R-elements and the implicit model with a 3/5-mesh of CPE8R-elements

performed with the rigid tool model showed that the implicit analysis was approxi-

mately one third faster than the explicit analysis. The implicit model also ensured

that the force equilibrium was in balance after each step. Some techniques for accel-

erating the explicit analysis solution and comparison between the implicit analysis

results will be discussed later.

6.1.2 Implicit analysis initial results

For the reasons stated, the results for the initial model are obtained by means of

the implicit analysis performed with the Abaqus/Standard code. The 3/5-mesh of

CPE8R-elements is used in these studies.

When the tools were modelled as rigid, the previously mentioned overlap of the

initial geometry caused the plate to get compressed between the punch and the

blank at the sides in the end so that its thickness reduced 5 mm. This required,

even with frictionless contact, high pressing force of 360000kN from the punch.

When the tools were modelled as deformable, it was quite clear that the tools

will have trouble withstanding the stresses in the process when the initial geometry

of the model is used, as seen in the �gure below where the gray area refers to a von
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Mises equivalent stress value larger than 800 MPa.

Figure 6.3: von Mises equivalent stresses in the tools with the initial geometry

The tools also deformed because of the high forces so that the whole punch

depth at the bottom of the punch was not achieved. This resulted in an insu�cient

deformation considering the desired shape of the blank as seen in �gure 6.4

Figure 6.4: Blank con�guration after forming step with the initial model geometry when
the tools were modelled as deformable

When the plate was thinned on the sides, the normal forces acting between the

contact surfaces got very high which resulted in high friction forces when a friction
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coe�cient of 0.1 was used in the model. When the tools were modeled as rigid, this

was unrealistic and produced extremely high friction forces acting on the contact

surfaces. Deformable tools gave the plate more space between the tools so that the

friction forces were lowered. However, this implied that some ratio of the input

energy put into the process had gone into the strain energy of the tools. The

deformation of tools is not desired as almost all of the input energy should be used

to deform the blank.

The needed pressing forces for each of the studied three cases are presented in

�gure 6.5. The rigid tool model with a friction coe�cient of 0.1 resulted in an

extremely high pressing force.

Figure 6.5: Needed pressing force for the initial model with rigid tools

The previously mentioned problems indicate that the initial geometry is unlikely

to succeed. A decision was made not to study this geometry any further.

6.2 Modi�ed punch geometry

An obvious way to improve the geometry was to remove the overlap from the punch

geometry. This was done by o�setting the side geometry of the punch 5 mm inwards

as seen as the dimensioned sketch on the bottom region of the punch in �gure 6.6.

Only the dimensions that have a signi�cant e�ect on the simulation results are

shown.
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Figure 6.6: Modi�ed punch geometry

6.2.1 Implicit analysis results with no overlap

When the simulation was performed with the deformable tool model, a coe�cient of

friction of 0.1 and this modi�ed punch geometry, the results showed that the needed

pressing force was lowered to approximately 114000kN . The pressing forces for each

of the three studied cases can be seen in �gure 6.7.

Figure 6.7: Needed pressing force for the modi�ed punch geometry
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However, the stresses in the tools were most likely still too high for them to

withstand, see �gure 6.8.

Figure 6.8: von Mises equivalent stresses in the tools with the modi�ed punch geometry

The reason for the radical increase of the needed pressing force in the end of the

forming process is the short lever arm that arises when the blank gets in contact

with the die bottom, see �gure 6.9. The lever arm between the die side wall and the

die bottom gets shorter and shorter towards the end.

Figure 6.9: Blank con�gurations at t = 0.25s (right) and t = 0.45s (left)
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6.2.2 Mesh density for parametrical studies

The model was tested for the e�ect of mesh density variations on the springback

and the needed pressing force.

Only the meshes of the left side and the middle side were modi�ed in these

studies, the mesh density of the right side was kept constant. This was because the

maximum amount of springback will be because of the bottom curve of the part

near the symmetry plane that magni�es the e�ect to the upper part.

The model was �rst simulated with no friction between the contact interfaces

with meshes of 1/5, 2/5, 3/5, 4/5 and 5/5. The springback displacements along the

path of the bottom of the plate for di�erent meshes are plotted in �gure 6.10.

Figure 6.10: Springback displacements for the bottom edge of the plate with di�erent
meshes, frictionless model and millimeters as units

Considering springback, the thing that varied most between these meshes was

the springback of the free end. The springback of the bending deformations get

magni�ed in it. All the results after springback with di�erent meshes were less than

3 millimeters from each other. The shape of the curves is pretty much the same,

only amplitude changes with di�erent mesh densities.

The simulation with the �nest mesh of 1/5 took 12793 seconds of user time. User

time is the CPU time spent on the execution of an Abaqus process and excludes the

CPU time spent by the operating system working for the Abaqus process. Therefore,

it is a good measure of the spent CPU time for the calculations of the �nite element

method solution. The user times percentually to that of the simulation with 1/5

mesh and the maximum pressing forces with di�erent meshes are combined in the

table 6.1.

The pressing force for the mesh of 5/5 is higher than some of the �ner meshes.

This is assumed to be because of an insu�cient accuracy of the mesh to follow the

loading path and the hardening behaviour involved.
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Table 6.1: CPU user times and pressing forces for di�erent mesh densities, frictionless
model

mesh User time / % pressing force / MN

1/5 100 101
2/5 29 96
3/5 20 93
4/5 19 92
5/5 6 97

See �gure 6.11 for a demonstration of the complete con�guration of the 1/5 mesh

model before and after springback. The half-symmetry blank is rotated −90◦ about

the z-axis for space-saving purposes.

Figure 6.11: Blank con�guration after springback (green), before springback (white) and
the desired shape (red pro�le)

The 2/5 implicit CPE8R model is found to be appropriate for the parametrical

studies because of its assumed su�cient accuracy and computational e�ciency. The

user time for the simulation with the selected 2/5-mesh model was 3708 seconds.

The needed pressing force varied between the chosen 2/5 model and the �nest 1/5

model but this was not of considerable importance as the parameter modi�cations

that were to be applied to the process are used only to see the e�ect of these changes

on the springback and pressing force. The 2/5-mesh is assumed to capture the e�ects

of these parameter changes su�ciently well.

The meshes were tested also with a Coulomb friction coe�cient of 0.1 only to

see that the friction did not a�ect the springback signi�cantly, see �gure 6.12. In

fact, the springback displacement values decreased a bit when the simulation was

performed with the friction model.

The user times percentually to that of the 1/5-mesh frictionless model and the

computed pressing forces for three of the �nest meshes are combined in table 6.2.

The user time for the chosen 2/5-mesh model increased 33% to 4946 seconds

when penalty friction was added to the contact behaviour. The needed pressing

force increased 23%.
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Figure 6.12: Springback displacements for the bottom edge of the plate with di�erent
meshes, friction coe�cient of 0.1 between the contact surfaces and millimeters as units

Table 6.2: CPU user times and pressing forces for di�erent mesh densities, model with
penalty friction of 0.1

mesh User time / % pressing force / MN

1/5 173 132
2/5 39 124
3/5 25 118

6.2.3 Explicit analysis mass scaling

The computational disadvantages of the explicit analysis were evident. The decision

for the time scale of 0.5 seconds was based on the guideline that the kinetic energy

should not exceed 10 % of the total internal energy throughout the majority of the

simulation. The ratio did exceed this guideline in the beginning but was reduced

quite quickly to approximately 3 % at t=0.1s. The kinetic energy in the beginning

was caused by the rigid body motion of the large region on the right side of the

modelled plate. This region was not subjected to any plastic straining nor signi�cant

stresses at that time, and therefore, might not be of much interest when considering

an acceptable quasistatic solution. See �gure 6.13 for the con�guration of the model

at t=0.1s.

The time period of 0.5 seconds most probably yielded results accurate enough

concerning the quasistatic solution but this time period with the true density of

the material were computationally ine�cient. Therefore, a study was made on the

possibilities of mass scaling in increasing the computational e�ciency of the solution

without loosing the accuracy on the model. The study was made with the 1/5-mesh

of CPE4R elements.
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Figure 6.13: Con�guration at t=0.1s with a total time scale of 0.5s

Mass scaling and increasing the tool velocity have the same e�ects on the solution

time unless the model includes rate-dependent materials or damping, which is not

the case in the current simulation model. From the computational e�ciency point-

of-view, scaling the mass by a factor of sm corresponds to a time scaling factor of
1√
sm

in a simulation with unscaled density of the material. This corresponds to a

factor of
√
sm on the punch speed. The mass scaling is performed by modifying

the material density. The equivalent plastic strain keeps track of the history of the

plastic straining (see equation (3.17)), and therefore, it is assumed to be a good

measure of the deformation throughout the loading history. The in�uences of the

scaling on the amount of springback and needed pressing force are also of interest.

The mass scaling factors sm were set to 2, 4, 9 and 16, these would correspond

to a speed-up of the tool velocity of
√

2, 2, 3 and 4, respectively. See table 6.3 for

the corresponding densities.

Table 6.3: Densities for di�erent mass scaling factors

sm 1 2 4 9 16

ρ / kg
m3 7800 15600 31200 70200 124800

The results for the kinetic energy and the ALLKE/ALLIE-ratio can be seen in

�gure 6.14. The needed pressing force increased with the increase in the mass of the

blank as seen in �gure 6.15 where the pressing forces for each di�erent mass scaling

factors are plotted at t = 0.375− 0.5s where the forces di�ered the most.

The equivalent plastic strains (PEEQ in Abaqus convention) at the bottom part

of the plate were found to not di�er much with di�erent mass scaling factors. The

maximum values were near the bend radius and di�ered 0.521− 0.539. No notable
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Figure 6.14: The kinetic energy and the ratio of kinetic energy / total internal energy with
di�erent mass scaling factors, color codes in the next �gure

Figure 6.15: Needed pressing forces with di�erent mass scaling factors at t=0.375-0.5s

di�erence could be seen in the PEEQ contour plots between the results obtained

with di�erent scaling factors. Therefore, the PEEQ contour plot could be unsuitable

to study the e�ects of mass scaling.

See �gure 6.16 the springback nodal displacements on the bottom of the plate.

This time the path de�nition is the true distance of the bottom edge nodes in the

deformed con�guration, which results in some distortion when compared to those of

the section 6.2.2. However, the shape of the curves should be quite similar. These

springback displacements did not completely de�ne the blank con�guration after the

springback because the con�gurations before springback di�ered. See �gure 6.17 for
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Figure 6.16: Springback displacements for di�erent mass scaling factors

di�erences in the blank con�guration before springback with the same color codes

as in �gures 6.14 and 6.15.

Figure 6.17: Blank con�gurations before springback with di�erent mass scaling factors

The distance at the free end of the plate before springback was about 14mm in

magnitude when the model with no mass scaling was compared to the one with

most mass scaled. The distance with the mass scaling factor of 2 was less than

1mm, 4mm with mass scaling factor of 4, and 7mm for the mass scaling factor of 9.

Based on these results, the mass scaling factor of 2 was found to be suitable

for the speed-up of the computation in further studies. This is assumed to be of

su�cient accuracy, although the springback di�ered about 2mm in the x-direction,

the di�erence in pressing force was negliglible. The possibilities of mass scaling

could further be broadened by only scaling the mass of the regions which include

the smallest elements, because the step size of the explicit procedure is de�ned by

the properties of the smallest element in the mesh, but the scaling done here is taken

to be of su�cient computational e�ciency for the purposes of this thesis.

The springback displacements seemed to di�er from those obtained with the

second-order elements CPE8R in the implicit mesh density study. Some further

studying on the reasons for this is discussed next.
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6.2.4 Di�erence in springback between explicit and implicit

procedures

The simulation was ran as an implicit procedure with �rst-order CPE4R elements

for comparison purposes. The results for di�erent meshes are seen in �gure 6.18.

Figure 6.18: Implicit method springback comparison with di�erent meshes of �rst-order
and second-order reduced integration elements

The results with CPE4R 1/5-mesh are similar with the explicit and implicit pro-

cedures. It seems that the CPE8R results model the bending stresses at the middle

region better than the CPE4R elements, because of their higher order interpola-

tion, and this results in more accurate springback displacements. This conclusion

was based on the fact that both of the elements seemed to converge to the same

springback displacements, see the red and blue curves in �gure 6.18.

It was also noticed that the CPE8R 2/10-mesh yielded similar results with the

CPE8R 2/5-mesh concerning the springback displacements. The pressing force be-

tween these meshes did not di�er no more than 600kN . Therefore, the 2/10 mesh

was chosen for the parametrical studies.

6.2.5 Explicit analysis hourglass control option comparison

Abaqus analysis manual mentions that the used enhanced hourglass control option

can cause overly sti� behavior in bending problems that involve plastic yielding [7,
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sect. 22.1.4] which is exactly the case in the current simulation. Therefore, the

enhanced hourglass control option was compared to other hourglass control options

available in Abaqus/Explicit. This study was done with a coarse mesh with only 5

elements through the thickness of the plate as seen in �gure 6.19.

Figure 6.19: Coarse mesh for hourglass control method comparison

It seemed that the enhanced hourglass control was the method that di�ered the

most from all of these as seen in �gure 6.20. The forces are plotted only at t =

0.375 − 0.5 seconds where the most of the di�erence is observed. The use of the

Figure 6.20: Hourglass control option comparison with coarse mesh

enhanced hourglass control yielded a bit more sti� response than the other hourglass

control methods when considering the pressing force. Also, the enhanced hourglass

control option created the most arti�cial strain energy to control the hourglass

modes.

The viscous hourglass control option is the most computationally e�cient option

but it is not recommended for low frequency dynamic or quasistatic problems be-

cause the static-like loading causes the hourglass modes to excessively deform due

to the lack of nominal sti�ness [7, sect. 24.1.4]. The combined hourglass control

option is a weighted method including both viscous and sti�ness method and thus
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is not of much interest in this context. Therefore, these options were dropped and

a further study was made with a mesh of 1/5 with the enhanced, relax sti�ness

and the sti�ness hourglass control options to see if the di�erence would be clear

even with a �ner mesh. The relax sti�ness option is the default option for the used

element and material in Abaqus/Explicit and it is based on the integral viscoelastic

approach [7, sect. 24.1.4]. Sti�ness option uses arti�cial sti�ness coe�cients to cal-

culate the hourglass resisting forces and is recommended for quasistatic as well as

transient simulations. The enhanced option is a re�nement of the sti�ness method

in which the arti�cial sti�ness coe�cients are obtained from a three-�eld variational

principle. It is based on the enhanced assumed strain and physical hourglass control

methods proposed in [29, 30, 31, see [23, sect. 3.2.4]].

The results for the comparison between these three methods with the �ner mesh

can be seen in �gure 6.21. The color codes are the same as in �gure 6.20. The

Figure 6.21: Enhanced, relax sti�ness and sti�ness option comparison with 1/5 mesh

ALLAE/ALLIE-ratio was decreased to a neglible value with every option so that

the pressing forces as well were technically the same. Only relax sti�ness gave a bit

higher pressing force of 1000kN in the end. For a mesh this �ne, the hourglass control

option selection does not have any signi�cant e�ect on the results. The possible e�ect

on the results can be viewed by the ALLAE/ALLIE-ratio: as it becomes small, so

does the e�ect of the hourglass control option choice on the results.

The ALLAE/ALLIE-ratios for di�erent number of elements through the plate

thickness with the enhanced hourglass control option can be seen in �gure 6.22.

The corresponding meshes are, from the most �ne to the most coarse, 1/5, 1.5/5,

2/5, 3/5 and the coarsest is the one seen in �gure 6.19. One can see that the ratio

reduces to less than 1 % with about 15 CPE4R elements through the thickness of

the plate at the region of most interest. However, this is not the case for a more
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Figure 6.22: The ratio of arti�cial strain energy to total strain energy with di�erent number
of elements through the thickness of the plate (tt) in the region of most interest

�exible material model as will be discussed in the result analysis chapter.

6.3 3D model results

6.3.1 Shell element model

The simulation was performed with a shell element model in Abaqus/Explicit be-

cause of the computational advantage of their plane stress formulation when com-

pared to the 3D stress elements. Also, shell elements model bending accurately with

only one element through the thickness.

The shell elements �rst tried in the simulation were S4R �rst-order reduced inte-

gration shell elements. The simulation broke down at t = 0.4647s. This was the case

even when the contact constraint enforcement method was changed to the penalty

method to allow some penetration between the tools and the blank. The fully in-

tegrated S4 shell elements were also tried only to see the same kind of breakdown

in the simulation at t = 0.48s. The region which made the simulation break down

is seen in �gure 6.23 where the most distorted elements are located at the bend

radius. The edges visible in the �gure are at the symmetry planes. The contour plot

in these �gures is of equivalent plastic strain on the top surface of the shell. The

meshes used in the simulations of �gure 6.23 included 18280 elements for the S4R

case and 10835 elements for the S4 case. The minimum element size at the bend

radius is 2x4 for the S4R case and 3x6 for the S4 case with the smaller dimension
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Figure 6.23: Overly distorted elements with the conventional shell model with S4R (left)
and S4 (right) elements

coinciding, in the initial con�guration, with the x-axis which can be seen in �gure

5.1.

The problems in this conventional shell model are assumed to be because of the

complex two-sided contact conditions that arise in the end of the simulation.

6.3.2 Solid continuum 3D stress elements

Some more modi�cations to the mesh of the 3D model had to be done to make the

model computationally reasonable when the plate was modelled with solid contin-

uum elements. The meshes for the 3D models can be seen in appendix A.1 for the

implicit procedure with 32266 C3D20R elements and 146632 nodes and appendix

A.2 for the explicit procedure with 216389 C3D8R elements and 238293 nodes. A

relatively small number of wedge elements are included in both meshes to smooth

the mesh transition: 6 second-order wedge elements for the implicit mesh and 533

�rst-order reduced integration wedge elements for the explicit mesh. The explicit

mesh has at least 10 elements through the thickness of the plate in regions where

the bending deformation happens, and thus, is assumed to more accurately capture

the springback behaviour than the mesh used in section 6.2.4 for the plane strain

model.

Implicit procedure

The complex contact conditions in the end of the forming process made the 3D

implicit model converge very slowly. The penalty contact constraint enforcement

method was selected to improve the convergence, and the punch displacement was

set to be ramped up to ensure that the amplitude curve did not a�ect the built-in

automatic increment size control of Abaqus/Standard.



6. Simulation results 73

The needed pressing force in this analysis was 123000kN with the frictionless

model. The pressing force got higher than that of the plane strain model results.

The reason for this can be seen in �gure 6.24 where the free edge (parallel to xy-

plane) of the plate is seen in the boxed regions. The bending deformation around

the axis parallel to z-axis caused compression stress in the x-direction on the top

surface of the plate and tension stress in the x-direction on the bottom surface of

the plate. This caused, through the Poisson e�ect, bending at the free edge of the

plate around an axis parallel to x-axis. See the boxed regions in the �gure 6.24

for the deformation caused by this bending. The fact that also the new bending

deformation had to be bent straight added some extra forces to resist the punch

movement in the end of the forming process.

Figure 6.24: Undesired bending deformation at the free edge of the plate bottom part
before it gets in contact with the die cavity bottom at t = 0.85s (the total time scale for
forming is 1s here)

This implicit 3D model took several days to complete even when the simulation

was ran on multiple processors. The springback step failed with no increments taken.

More discussion on the results with the implicit analysis can be found in the result

analysis chapter section concerning the comparison between the dynamic and static

implicit procedures.

Explicit procedure

The explicit procedure was performed with a mass scaling factor of 2 on the whole

blank to make the model computationally e�cient without loosing signi�cant accu-

racy, see section 6.2.3.

The 3D model with C3D8R elements resulted in a need for the pressing force as

high as 132000kN with no friction and 184000kN with a friction coe�cient of 0.1 in

the contact pairs. The mesh seemed to be su�ciently �ne with the ALLAE/ALLIE

ratio lower than 1 % throughout the analysis. However, it was found that the
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kinematic contact constraint enforcement method coupled with the the small contact

area between the top surface of the plate and the punch radius caused hourglass-like

patterns in the mesh when the plate got in contact with the die bottom, see �gure

6.25 where the contour plot of arti�cial strain magnitude in the element for the

whole element (ELASE) is plotted on the left side and contact pressure (CPRESS)

contour plot on the surface nodes on the right side. The hourglass patterns are in

the bend curve triggered by point loads caused by the small area of contact between

the punch and the blank. The ELASE contour plot does not completely describe the

regions where the most arti�cial strain energy is created as the value is integrated

over an element and the element sizes di�er. The hourglass patterns were more

clearly seen in the model with no friction.

Figure 6.25: Hourglass patterns in the minimum radius bend curve region with the explicit
3D model and kinematic contact constraint enforcement, contours of ELASE (left) and
CPRESS (right)

The hourglass patterns reduced when the penalty contact constraint enforcement

method was chosen to allow a small amount of penetration between the punch and

the blank top contact surfaces. This distributes the contact forces between the

blank and the punch to a larger area on the blank mesh. Some hourglass patterns

could still be seen in the mesh although greatly reduced from the solution with the

kinematic contact constraint enforcement method, see appendix A.3 for close-ups

at the bend curve region adjacent to the symmetry plane. This resulted, with the

friction model, in a pressing force of approximately 164000kN . For the frictionless

model, the pressing force with the penalty method was 121000kN .

The forces obtained from each of the performed simulations with penalty/kinematic

contact constraint enforcement and frictionless/friction models at t = 0.375 − 0.5s

can be seen in �gure 6.26.

Even though the penalty method reduces the hourglass patterns at the inside bend

radius, it does not capture the shape of the bend accurately and results in a lower

need for the pressing force when compared to the kinematic constraint enforcement
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Figure 6.26: Explicit 3D model pressing forces with di�erent contact constraint enforce-
ment method and friction models

method. The hourglassing phenomena should lead to an overly �exible behavior of

the structure, and thus, it is debatable which of these methods should be used for

the simulation.

The springback displacements of the model with penalty contact constraint en-

forcement were similar to those of the kinematic, only slightly lower in value. This

is because of the small penetration between the surfaces that the penalty method

allowed at the bend curve. The springback displacements at the bottom surface

of the plate for the frictionless/friction models with kinematic contact constraint

enforcement can be seen in appendices A.4 and A.5. The springback contour plots

for the penalty constraint enforcement can be seen in appendices A.6 and A.7. The

z-direction springback was negligible with a maximum value of −0.36mm. The fric-

tion model springback was again quite similar to the frictionless model but were

a little lower in value with the maximum magnitude value di�ering about 1.5mm

with both models in x-direction. The x-direction springback seemed to be similarly

distributed in the xy-plane cuts of the plate quarter.

6.4 Material parameter modi�cations

6.4.1 Preheating the plate

The parametrical studies were performed using the implicit dynamic procedure with

the CPE8R 2/10-mesh seen in �gure 6.27.

The reduction factors for the material properties at di�erent temperatures are

obtained from source [32, p. 282]. These are the test results for structural steel
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Figure 6.27: CPE8R 2/10-mesh for the parametrical studies

S355J2H.

As no data for the shape of the hardening curve is provided, the hardening is

again modelled as linear by using the same reduction factor on the plastic modulus

Ep as is used for the elastic modulus E. Although the proportional limit also varies

in the test results of the article, it is not taken into account so that the stress/strain

curve input is still bilinear.

The material property modi�cations for di�erent temperatures T are compiled in

the following table:

Table 6.4: Assumed material properties at di�erent temperatures

T / ◦C E / GPa σy / MPa Ep / MPa σ at εp = 1 / MPa

20 200 427 1634 2061
200 180 414 1471 1885
300 160 406 1307 1713
400 140 363 1144 1507
500 120 278 980 1258
600 62 137 507 644

The needed pressing forces obtained from the studies are compiled in the table

6.5. The needed pressing force decreases with increasing temperature as the yield

strength and the plastic modulus decrease.

Table 6.5: Needed pressing force at di�erent temperatures with frictionless/friction models

T / ◦C µ = 0 µ = 0.15

20 96 000 kN 137 000 kN
200 92 000 kN 128 000 kN
300 85 000 kN 120 000 kN
400 76 000 kN 110 000 kN
500 62 000 kN 89 000 kN
600 34 000 kN 48 000 kN

The springback displacements increase as the Young's modulus decreases and the

springback decreases as the yield strength decreases. This is because the elastic

part of the strain, which tries to relax after tool removal, is directly related to the
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Young's modulus and the stress value in the form of Hooke's law, see equations (3.1)

or (3.24). See �gure 6.28 for the x- and y-components of springback displacements at

the bottom edge of the plate. The results are from the simulations without friction.

The springback behaved similarly with the friction model.

Figure 6.28: Springback displacements along the path of the bottom of the plate at di�erent
temperatures

The elastic relaxation is dependent on the ratio of Young's modulus to the yield

strength. It increases with the σy

E
ratio which is directly related to the amount of

the elastic strain. The springback is directly related to this ratio near the symmetry

plane. However, the relaxations at the di�erent bend curves get magni�ed into

other regions and result in di�erent con�gurations of the blank. Therefore, it has

to be kept in mind that the geometry of the blank a�ects the springback also. This

explains why the springback of the material properties at T = 600◦C yielded the

largest magnitude of springback displacement although the σy

E
ratio is larger with

the material properties at T = 20◦C.

6.4.2 Plate anisotropy

The bending of sheet steel is usually performed in the way that the bending axis

is perpendicular to the rolling direction. This is because the formability (fracture

strain εf , see �gure 3.1) in the rolling direction is assumed to be higher than in the

direction perpendicular to the rolling direction. The yield strength ratios at di�erent

directions with respect to the rolling direction were obtained from source [33] as
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the test results for microalloyed S355N steel. The direction 11 coincides with the

rolling direction, 22 with the transverse direction and 33 with the through thickness

direction. The ratios are compiled in table 6.6 where σ0 is the yield strength of the

uniaxial material data that is input to Abaqus as the uniaxial stress/strain curve,

which is taken here as the value of the yield strength in direction 11.

Table 6.6: Yield ratios for anisotropy

direction σy11/σ
0 σy22/σ

0 σy33/σ
0 τ y12/τ

0 τ y23/τ
0 τ y31/τ

0

ratio 1 1.10 1.08 1 1 1

As no test results were available for the shear yield strength ratios, the ratios

are input here with a value of 1. This is the quadratic Hill yield criteria with an

associative �ow rule and an isotropic hardening law. The elastic part of the behavior

is assumed to be isotropic.

An explicit procedure with a 3D model with no friction and the penalty contact

constraint enforcement resulted in a pressing force of 120000kN . The pressing force

value was practically the same as with the isotropic model. One would have thought

that the slightly higher yield stresses in the transverse as well as the thickness

direction would have increased the need for the pressing force. However, most of the

deformation in the simulation happens in the material 1 direction (x-axis direction

in initial con�guration) which is perpendicular to the axis of the majority of the

bending. The slightly lower result for the pressing force in the anisotropic model

120000kN when compared to that of the isotropic model 121000kN is assumed to

be because of the di�erences in the behavior of the penalty sti�nesses of the contact

constraint enforcement.

The springback values did not di�er signi�cantly from those obtained with the

isotropic material model although the x-direction springback is not as evenly dis-

tributed on the xy-plane cuts of the blank as with the other models, see appendix

A.8 for the x- and y-direction springbacks on the bottom surface of the blank. z-

direction springback was again negligible with a maximum value of −0.37mm.
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7. RESULT ANALYSIS

7.1 Implicit static vs. dynamic analysis for forming

The simulations for the forming process in Abaqus/Standard were performed with

the implicit dynamic procedure with quasi-static application option which uses the

backward Euler time integrator. The reason for this was that, with the 2D model, the

implicit dynamic analysis seemed to converge better in the global Newton-Raphson

iterations than the truly static analysis.

7.1.1 Forming step

The static frictionless plane strain analysis with 2/5-mesh of 3208 CPE8R elements

broke down at t = 0.3945 where the time increment size had to be cut down 5 times

with no convergence achieved. The blank con�guration at this time can be seen in

�gure 7.1. It can be seen that some complexity in the contact conditions arise at

Figure 7.1: Blank con�guration at the breakdown of the static analysis, t = 0.3945

this time of the simulation.

The friction model, however, completed with both analysis types. A comparison

between the analysis types for the plane strain model with a friction coe�cient of

0.1 is presented in the table 7.1. The frictionless 3D model results with penalty

contact constraint method is also compiled into this table.
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Table 7.1: Implicit static and dynamic analysis comparison

analysis type user time / s increments iterations

static 2D friction 0.1 6679 1091 6093
dynamic 2D friction 0.1 4946 1134 5880
static 3D frictionless 1.763 ∗ 106 873 5232

dynamic 3D frictionless 1.891 ∗ 106 902 5155

In the 2D model, the number of increments taken with the dynamic analysis is

a bit larger than that of the static analysis, but the number of iterations is about

200 lower. The reason for the more rapid convergence in the dynamic plane strain

analysis is assumed to be because of the numerical damping that the inertia terms

provide in the global iterations when hard contact is being modelled.

However, the static procedure took less user time to complete with the 3D model.

This is assumed to be because of the penalty contact constraint enforcement method

used with the 3D model. A plane strain frictionless model with a 2/5-mesh and

penalty contact constraint enforcement backs up this assumption: both analysis

types complete, and the user time with the static procedure is 433s and with the

dynamic procedure it is 468s.

The reason for the more rapid convergence and stability of the dynamic method

with the augmented Lagrange method can be demonstrated by comparing the matri-

ces which have to be inverted in the global Newton-Raphson iteration of the implicit

procedure:

[Kdyn] =
1

∆t2
[M] + [Kt] (7.1)

[Ksta] = [Kt] (7.2)

where [Kdyn] is the same matrix as the one introduced in equation (2.15) in the the-

ory chapter, excluding the damping term as no external damping was included in the

simulations. These are the matrices that have to be summed into the linearizations

of the contact contribution matrices introduced in section 4.4.2. Some modes that

are singular for the matrix [Ksta] used in the static procedure are not singular for

the matrix used in the dynamic procedure [Kdyn] which includes the inertia term.

The contribution of inertia increases in [Kdyn] when the time increment size reduces

because of the coe�cient 1
∆t2

in the mass matrix term. This further stabilizes the

iteration when a cutback on the increment occurs. The relaxed tolerances of the

penalty contact constraint enforcement lower the need of numerical stabilization,

and thus, converge better with the static procedure. The inclusion of the inertia
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term also stabilizes rigid body modes that can occur in the contacting bodies.

The penalty constraint enforcement method is more rapid in convergence than

the augmented Lagrange method in both procedures but fails to accurately capture

the shape at the bend radius as seen in �gure 7.2. The default penalty sti�ness could

Figure 7.2: Blank con�guration after forming at the steepest bend radius with penalty
contact constraint enforcement

be manually modi�ed to a larger value to capture the shape at the bend radius more

accurately, although this would require some additional time to �nd out a suitable

combination of computational e�ciency and solution accuracy.

7.1.2 Springback step

The springback step in the dynamic implicit procedure broke down with no incre-

ments taken after �ve cutbacks on the automatic incrementation. The springback

step did complete with the static analysis but yielded unaccurate results, see �g-

ure 7.3 for the con�guration of the blank after springback. This springback is not

physically reasonable nor consistent with other simulation results.

However, the springback step did complete with both analysis types, with the

same initial increment size, when a new analysis was performed where the initial

state of the blank was input as a prede�ned �eld imported from the end of the

forming step of the implicit analyses. This is exactly the same technique as the one

used for springback analysis when the forming is performed with the explicit proce-

dure. This import analysis yielded physically reasonable results for the springback

displacements. The springback obtained with this procedure after the static implicit

forming procedure is similar to that after the dynamic implicit forming procedure

with a maximum di�erence of only 0.9mm in the x-direction. See appendix A.9 for

the springback displacements on the bottom surface of the plate obtained when the

forming was performed with the implicit dynamic procedure with penalty contact
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Figure 7.3: The erroneous con�guration after springback with the completely static solution
procedure

constraint enforcement. The z-direction springback was negligible with a maximum

value of −0.35mm.

When the springback step is included in the same analysis as the forming step,

the springback convergence issues are assumed to be because of the ramp amplitude

for the punch displacement over the forming step, which might cause problems

in subsequent steps when the boundary conditions are removed [7, sect. 6.1.1].

Thus, the smooth step amplitude curve for forming is recommended for the implicit

analysis also if the springback is to be included as a step after the forming step

although coarse meshes with the plane strain model seemed to converge even when

the ramp step was used.

7.2 A note on the hardening law

The isotropic hardening law was chosen for the simulations. This meant that the

yield surface at each material calculation point would uniformly expand in every

direction in the stress space during yielding, see section 3.5.

However, the direction of the plastic straining changes in some parts of the plate in

the end when the plate gets in contact with the die bottom. This is demonstrated

in �gure 7.4 where the contours of equivalent plastic strain (PEEQ) and plastic

strain magnitude (PEMAG in Abaqus convention) are plotted in the end of the

forming step. PEMAG is calculated from the current state of plastic strain and

PEEQ is calculated by following the path of the plastic straining so that it increases

monotonously even if the direction of the plastic straining changes. Both are scalar

measures of the plastic strain, see section 3.4. The values are the same up to

approximately t = 0.42s.

Because of the changes in the direction of plastic straining, a linear kinematic

hardening law was tested also. The simulation with CPE8R 1/5-mesh frictionless

model resulted in a need for the pressing force of approximately 14 % lower than
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Figure 7.4: The change in the direction of plastic straining illustrated in plane strain model
solution with PEEQ and PEMAG contours in the end of the forming step

that of the simulation with isotropic hardening. This means that the pressing force

was lowered from 100500kN to 86500kN by changing the isotropic hardening law to

linear kinematic hardening. The di�erent hardening law also resulted in a whole dif-

ferent kind of springback as seen in �gure 7.5. The con�gurations before springback

did not di�er.

Figure 7.5: The blank con�gurations after springback with isotropic hardening (green) and
kinematic hardening (violet) and the desired shape (red pro�le)

The kinematic hardening law was included here merely as a demonstration for a

di�erent hardening model. The used linear kinematic hardening law in Abaqus is

physically reasonable only for small strains of approximately less than 5 % [7, sect.

20.2.2]. Also, the approximations made in the solid continuum element formulation

used in Abaqus is not suitable for large strains with the kinematic hardening model

[23, sect. 3.2.2]. According to [12, p. 324], the hardening behavior of most materials

seems to be a combination of kinematic and isotropic hardening. Sometimes the

yield surface seems to change shape as well, see [12, p. 510].

The most a�ected regions by the change in the direction of the plastic strain is

on the outer edge of the plate at the yz-plane of symmetry and on the bottom

surface. This fact should be taken into account when considering the material

strength properties after the forming is performed. See �gure 7.6 for the contour
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plots of PEEQ and PEMAG on the 3D model with the implicit procedure.

Figure 7.6: PEEQ (left) and PEMAG (right) contour plots on the implicit 3D model

A way of getting rid of the undesired plastic deformation near the symmetry

plane would be to clamp the blank to stay in contact with the punch bottom sur-

face throughout the forming process. However, this can be fairly challenging to

implement in practice.

7.3 2D/3D model comparison

The results of the 3D model showed that the deformation was not the same on all

xy-plane cuts. However, the 2D plane strain model was computationally superior

when compared to the 3D model. Thus, the plane strain model results need to be

compared to the 3D model more precisely.

7.3.1 Plane strain assumption

The z-direction strain contour plot of the friction 3D model explicit procedure with

penalty contact constraint enforcement can be seen in �gure 7.7 before and after the

plate establishes contact with the die bottom. The corresponding contour plots of

other models show the same behavior.

It is clear that the plane strain assumption does not hold well at the free edge of the

plate. The strain components at the integration point of an element adjacent to both

of the symmetry plane cuts and on the bottom surface of the plate are presented

in the left side of the �gure 7.8. Here the logarithmic strain components are pre-

sented in Abaqus convention (LE11=εx, LE22=εy, LE33=εz, LE12=γxy, LE23=γyz,

LE13=γxz). The strain components at the integration point of an element adjacent

to the xy-plane of symmetry, in the bend curve, and on the bottom surface of the
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Figure 7.7: contour plots of z-direction logarithmic strain at t = 0.4s (left) and t = 0.5s
(right)

Figure 7.8: Strain components near the bottom surface of the plate adjacent to both
symmetry plane cuts (left) and adjacent to xy-plane symmetry cut at the bending curve
(right)

plate, is presented on the right side of the �gure 7.8. It can be seen that the plane

strain assumption holds well for these integration points. The only signi�cant strain

components are εx, εy and γxy. The results are quite similar for the top surface of

the plate with the strain components only changing directions to the opposite. The

case is the same for the majority of the blank xy-cuts, see appendix A.10 for contour

plots of the other strain components at t = 0.4s and t = 0.5s.

7.3.2 Springback and pressing force di�erence

The 3D model simulation results were compared to the plane strain model by per-

forming plane strain model simulations with the same analysis parameters as the

3D model simulations. The mesh of the 2D model was taken as the xy-plane cut of

the 3D model mesh.
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Punch geometry di�erence between the models

The punch geometry modi�cation, see �gure 6.7, led to an inconsistency between

the punch geometries of the 3D and 2D model by a user mistake. The x-direction

width of the punch geometry used in the 3D model was larger than that of the plane

strain model. The punch geometry for the 3D model is obtained by translating the

2D model punch side wall nurb, seen as the red line in �gure 7.9, 0.00411mm to the

positive x-direction. The rest of the punch side geometry is not of interest here as

it does not establish contact with the blank. The di�erence between the geometries

Figure 7.9: The punch side wall geometry

was minimal but it led to notable di�erences in the results.

The springback for both of these punch geometries simulated as frictionless plane

strain models can be seen in �gure 7.10. The word �exact� refers here to the simu-

lation with the punch geometry used in the 3D simulations, and �old� refers to the

punch geometry used in all of the previous plane strain simulations in this thesis,

excluding the initial geometry.

One can see that the nature of the springback di�ers between these punch geome-

tries quite much. The pressing forces were 22000kN lower in the friction (coe�cient

0.1) model and 10000kN lower in the frictionless model with the old geometry. This

was because the blank was not compressed as much as with the exact geometry.

The compression of the blank between the tools is an important aspect in the

simulation when the tools are modelled as rigid and the punch movement is set as

a displacement boundary condition. This can lead to unrealistic results when the

blank gets compressed between the tools. In real life, the tools would most probably

deform and give the blank more space between them. However, the �exact� punch

geometry for the plane strain model will be used next in the comparison between
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Figure 7.10: 2D model springback comparison between di�erent punch geometries

the 3D and 2D models because it is consistent with the 3D model punch geometry.

Springback

As discussed earlier, the penalty contact constraint enforcement with the default

penalty sti�ness seemed to capture the shape of the bend curve inaccurately in the

plane strain model, see �gure 7.2. This made the springback lead to erroneous

results. In fact, the maximum springback displacements with the penalty contact

constraint enforcement in the 2D model was in di�erent direction when compared

to the other simulation results. For this reason, the implicit plane strain model with

penalty contact constraint enforcement is not included in these comparisons. The

penetration problem with penalty contact constraint enforcement did not seem to

be as severe with the implicit 3D model.

See �gure 7.11 for the springback displacements in x-direction for the 3D implicit

models, the frictionless 3D explicit models and the explicit frictionless 2D models.

The dashed black curve is the springback of the implicit 2D model with augmented

Lagrange contact constraint enforcement for comparison purposes. The 3D model

springbacks are taken from the blank bottom surface at a line coinciding with the

xy-plane of symmetry. The displacements are plotted as a function of the true

distance path of the nodes along the bottom of the plate starting from the node at

the yz-plane of symmetry.

The springback curves after the explicit solution procedure at distance 600mm−
1200mm along the path are not straight lines, although the springback curves after

implicit solution procedure are. This is assumed to be because of undesired inertia

contribution of the explicit solution to the blank. The mass scaling factor might

be too large after all. However, a compromise between the computational e�ciency
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Figure 7.11: 2D/3D model springback comparison between frictionless models

and accuracy had to be made. See section 6.2.3 for the e�ect of mass increase in

the springback.

The friction model springbacks are smaller than in the frictionless model because

of the contributions of surface friction stresses resisting the blank movement. The

area for the surface stresses is larger between the die and the blank than between

the punch and the blank, and thus, the friction force contribution on the bottom of

the blank is higher. These friction forces made the blank con�gurations di�er about

1mm at most in the end of the forming step (but before springback step) between

the frictionless and the friction models. The �nal con�gurations after springback

are less than 1mm from each other for both constraint enforcement cases. Thus,

the springback is even less dependent on the friction than the springback contour

plots in the appendices imply. For this reason, the friction model springback is not

included in �gure 7.11.

Needed pressing force

The results showed that the need for the pressing force was 10000kN higher in the

3D model with the frictionless model and 42000kN higher with a friction coe�cient

of 0.1. The reason for this is the extra bending deformation that the 3D model was

able to capture at the free edge of the plate, see �gure 6.24. This extra deformation

had to be bent straight also in the end of the forming step. Also, the isotropic

hardening law had already work hardened the bottom of the outer edge before the

plate got in contact with the die bottom so that the plastic deformation in the other

direction needed high pressing forces. The pressing forces started to signi�cantly

di�er at approximately t = 0.48s, see �gure 7.12.
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Figure 7.12: 2D/3D model pressing force comparison

The smoother response of the 3D pressing force is because of the lower frequency

of history output data points for the punch pressing force.

7.4 Solution method e�ciency comparison

The 2D model had a smaller number of equations to be solved and more simple 2D

contact conditions so that the implicit procedure with the second-order elements

seemed to be more e�cient for this procedure. Also, the springback step could

be completed within the same analysis with no additional import analysis. The

small element side length, needed with the �rst-order reduced integration elements

through the plate thickness to make the ALLAE/ALLIE ratio small enough, made

the time increment size for the explicit procedure ine�cient in the 2D model.

A 3D model comparison between the explicit procedure with kinematic contact

constraint enforcement and the implicit static procedure with penalty contact con-

straint enforcement is presented in table 7.2. Both simulations did not include

friction. The times are presented here only for the forming step as a successful

springback analysis takes only a relatively small amount of time: about 15 minutes

after the explicit procedure and about 10 minutes after the implicit procedure.

The element and node numbers include the rigid tool elements which do not

contribute to the sti�ness or mass matrices. See section 6.3.2 for the number of

elements and nodes in the blank with both procedures.

In �nite sliding contact involving a rigid body, Abaqus/Standard automatically

creates contact elements by using the information provided in the contact pair def-

initions. These contact elements are excluded in table 7.2 as they only measure the

normal and tangential gaps associated with the contact de�nitions at their integra-
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Table 7.2: Implicit / Explicit procedure comparison for 3D model

analysis type implicit static explicit dynamic / kinematic

Number of elements 37699 222496
Number of nodes 152037 243841

total number of variables 679512 731532
CPU time 489h / user time 188h / CPU time

tion points [23, sect. 5.1.3] and are used for the contact calculations together with

the Lagrange multipliers or penalty sti�nesses. The number of elements and nodes

of these internal elements generated for contact are 74464 and 148928, respectively.

The CPU time for the explicit dynamic procedure is obtained by modi�cation

from the dat-�le created by Abaqus and is approximately the wallclock time it took

to complete the job multiplied by the number of CPUs (8) the job was ran with. This

is not the complete truth of the computation time as the threads multiprocessing

mode was used which decomposes the whole structure into 8 (number of CPUs more

generally) separate domains which still share some nodes with each other so that the

CPUs must communicate with each other during the simulation. The multiplication

factor of 8 is thus questionable.

Even with these di�culties in comparing the solution procedures in mind, one

can still state that the explicit procedure is more e�cient in a large 3D problem,

which involves some complexity on the contact conditions, than the implicit method.

This advantage is because of the highly e�cient solving of the global equations at

each increment without the need to assemble the global sti�ness matrix for iteration

procedures. Also, the severe contact nonlinearity is more easily solvable with the

small time increments characteristic for an explicit solution. It still has to be kept

in mind that the Abaqus/Standard code provides a larger variety of usable elements

including the second-order solid continuum elements and could provide better results

with fewer elements than the Abaqus/Explicit code.

The CPU times, measured with similar technique as in 7.2, for the other 3D

model simulations are as follows: frictionless implicit dynamic procedure and penalty

contact constraint enforcement - 525h, frictionless explicit procedure with penalty

contact constraint enforcement - 182h, explicit procedure with a friction coe�cient

of 0.1 and kinematic contact constraint enforcement - 228h, explicit procedure with

a friction coe�cient of 0.1 and penalty contact constraint enforcement - 202h.

The explicit procedure could be made even more e�cient by scaling only the mass

of the regions with the smallest elements in the mesh. Initial studies suggest that

the inertia contribution of the coarse part of the mesh is signi�cant to the pressing

force and the springback.
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7.5 Di�erent material model

At an early stage of the simulation studies, the material model was input to Abaqus

as

σy = 426MPa at εplog = 0 and σu = 565MPa at εplog = 0.22314

where the stresses were input as the engineering stresses from the test results and

the plastic strain at σu was taken as the true strain measure of εm = 0.25 which is

the engineering strain at break measured from the unstressed length of the tensile

specimen after the tensile test has been performed. With this input, the plastic

behaviour of the material was ideally plastic after the plastic strain had exceeded

0.22314. This together with a lower plastic modulus led to the fact that the material

model used in the simulations of chapter 6 was a more sti� (and most likely more

accurate as well) material model.

An interesting detail in the simulations performed with this material model was

the large amount of arti�cial strain energy created, which is discussed next.

7.5.1 Hourglassing problems

When the simulation was performed with the explicit dynamic procedure with this

material and the enhanced hourglass control option, hourglassing seemed to be a

true problem. Di�erent �neness was applied to the blank mesh to reduce the AL-

LAE/ALLIE ratio. The arti�cial strain energy magnitude in the element for the

whole element, ELASE, was requested as a �eld output variable to see the regions

of the blank where the most of the arti�cial strain energy was created. Obviously

most of the energy was created in the area near the symmetry plane which was

subjected to most of the bending deformation as seen in �gure 7.13.

The ALLAE/ALLIE ratio of this model is plotted with di�erent number of ele-

ments through the thickness of the plate in �gure 7.14.

The lowest ratio was achieved when a new partition was made halving the area of

most interest. 60 elements were assigned through the thickness in the new partition

reaching 75 mm from the symmetry plane. This resulted in a ratio less than 1%

throughout the majority of the forming process. However, the area subjected to

most of bending changed when the plate got in contact with the die bottom and

resulted in a peak of arti�cial strain energy in the area where only 30 elements

through thickness was used. This made the ratio peak above 1 % for a short period

at approximately t = 0.4s. The large number of elements and equations to be solved

coupled with the small element side length and the double precision used in analysis

resulted in computational ine�ciency.
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Figure 7.13: ELASE at the bottom part of the plate at t=0.325s with 30 elements through
thickness in the area of most bending

Figure 7.14: ALLAE/ALLIE-ratio with di�erent number of elements through the plate
thickness

When the arti�cial strain energies created in the simulations of the 3/5 mesh

models were compared, it seemed that the amount of ALLAE created with the

more �exible model was signi�cantly higher than that of the model with more sti�

material properties, see �gure 7.15 for the comparison.

Similar tests comparing the hourglass control methods in Abaqus/Explicit with

this material model as those performed in chapter 6 are presented in appendix A.11.

The coarse mesh comparison is performed with the same coarse mesh as in chapter
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Figure 7.15: ALLAE with di�erent material models, enhanced hourglass control option
and 3/5 mesh

6, see �gure 6.19. The enhanced option di�ers even more than with the results

obtained in chapter 6.

It seems that the enhanced hourglass control creates more hourglass-controlling

forces with �exible plastic behaviour. This should be taken into account when

choosing the hourglass control option and considering the energy balance checks

with a �exible plastic material model.

The enhanced hourglass control option is recommended for import analyses be-

tween Abaqus/Explicit and Abaqus/Standard for ensuring the correct calculations

of the hourglass controlling forces. This is because the option is available for hour-

glass control in both codes. It seems, however, that the import analysis can be done

without the simulation breaking down by using the other hourglass control options

as well, although this might result in inaccuracy considering the calculations of the

hourglass controlling forces between the analyses.

Further studying the theoretical background of the hourglass control methods

could explain the di�erences between these results, see section 6.2.5 for a brief

introduction on the methods. However, this study would be beyond the scope of

this thesis.
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8. CONCLUSIONS

The literature commonly available for stamping processes is focused on sheet metal

forming with thinner blanks and more simple contact conditions. For sheet metal

or plate bending, the common applications are more simple, e.g. bending along one

axis only. The two-sided contact conditions and multiple bend curvature make the

case simulated in this thesis more complicated.

Based on the simulation results, major improvements may have to be done to the

forming process design for the process to become achievable. The needed pressing

force and the stresses in tools should be lowered signi�cantly. These improvements

could be some radical changes to the tooling geometry or a new approach to the

problem such as hot forming. It is left for future research to �nd the optimal design

solution to this speci�c forming process as the main objective of this thesis was not

to �nd this solution but rather to study the simulation of this case to compare the

di�erent solution and modelling considerations.

The most important conclusions based on the results of the simulations are as

follows:

1. The implicit dynamic procedure is more e�cient than the explicit procedure

with the plane strain model of this thesis

2. The explicit dynamic procedure is more e�cient than the implicit dynamic

procedure in large 3D problems with complexity on the contact conditions

because there is no need to form and invert the global tangent sti�ness matrix

for the global iterations and the contact calculations are simpli�ed

3. The implicit dynamic procedure with the backward Euler operator o�ers an

advantage over the implicit static procedure by o�ering improved convergence

in the global iterations when hard contact is being modelled

4. It is important for forming simulations with rigid tools and two-sided contact

conditions that the blank does not get compressed between the tools when the

punch movement is set as a displacement boundary condition

5. The enhanced hourglass control option in Abaqus can cause problems with a

�exible plasticity model
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A guideline for future work would be to try to optimize the process with the plane

strain model because of its superior computational e�ciency when compared to the

3D model. It has to be kept in mind that the model may give lower need for the

pressing force than the more thorough 3D model. However, this does not matter at

this stage of the design process as the pressing force and the stresses in the tools

should be lowered signi�cantly.

It would be advantageous if the plastic deformation would be subjected only to

the regions of the blank that are essential for the �nal product shape. This is not

the case with the current design, see section 7.2. Also, the contact forces between

the punch and the blank could be distributed to a larger area for easier control on

the process and lower contact pressure stresses.

In the simulation part, it would be interesting to see the e�ect of increasing the

number of rigid elements at the smallest punch radius to capture the actual shape of

the tool even more accurately. The number of elements used in the simulations was

based on the guideline that the slave surface should have a �ner mesh. However,

only the penetration of master nodes into the slave surface introduces a limit to this

case.

The inclusion of fracture criteria for the material in the simulation could also be

considered. In sheet metal or plate bending, the fracture of the blank usually starts

at the outer minimum bend radius and the formability is usually expressed with a

minimum bend radius value [34, p. 660]. However, the change in the plastic strain

directions in this simulation make the prediction of formability complicated.
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A. APPENDICES

A.1 Implicit 3D model mesh
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A.2 Explicit 3D model mesh
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A.3 Hourglass patterns in explicit 3D mesh

Figure A.1: kinematic contact constraint enforcement

Figure A.2: penalty contact constraint enforcement
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A.4 Explicit dynamic frictionless kinematic springback
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A.5 Explicit dynamic kinematic friction coe�cient of 0.1 spring-

back
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A.6 Explicit dynamic frictionless penalty springback
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A.7 Explicit dynamic penalty friction coe�cient of 0.1 spring-

back
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A.8 Explicit anisotropic model springback
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A.9 Implicit dynamic frictionless penalty springback
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A.10 Other strain components on the 3D model
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A.11 Hourglass control method comparison with a more �ex-

ible plasticity model

Figure A.3: Coarse mesh, see �gure 6.19

Figure A.4: 1/5 mesh with enhanced, relax sti�ness and sti�ness options


