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ABSTRACT 
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Master’s Degree Programme in Automation Technology 
SUOMINEN OLLI: Optimal Measurement Scheduling in LQG Systems 
Master of Science Thesis, 36 pages 
- 2011 
Major: Measurement and Information Technology 
Examiners: Professor Risto Ritala, Professor Robert Piché 
Keywords: Optimal control, measurement, linear quadratic Gaussian, Kalman 
filter, dynamic programming, value iteration 
 
Optimal control mathematically defines a policy so that the state of a system fulfills a 
certain performance criterion. Measurements provide an often incomplete method of 
observing the state of a stochastic process. When presented with a set of measurement 
alternatives the measurements must be chosen to enable optimal control of the process. 
In  this  thesis  we  seek  to  find  a  way of  choosing  optimal  measurements  from a  set  of  
discrete measurement alternatives in discrete time linear quadratic Gaussian systems 
(LQG). 

The first part of the thesis presents the Kalman filter used to update information on 
the state of the system recursively. The Kalman filter relies on conditional probabilities 
and Bayes’ rule. Information on the state is represented with the Gaussian distribution. 
The  second  part  of  the  thesis  derives  the  optimal  control  policies  by  first  applying  
dynamic programming to a system where the state is known without uncertainty. This is 
expanded on by considering a system where measurements are used to provide 
information  on  the  state.  The  derivation  of  the  optimal  control  policy  provides  the  
objective function for the measurement problem, which may be analyzed separately 
from the control problem. 

Two procedures for choosing the optimal measurement are presented. The first 
chooses a short prediction time for which an optimal measurement sequence is found by 
evaluating all possible sequences. The first measurement is performed and this 
procedure is repeated at each time step. This provides a local on-line solution to the 
measurement problem. The second procedure uses value iteration to optimize the 
measurement decisions. The space of the measurement problem is approximated with a 
finite grid. In this case the value function converges to the infinite horizon optimal value 
function. This method provides a global measurement policy off-line. Numerical studies 
are performed on three different systems to show the applicability of the optimization 
procedures.  
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TIIVISTELMÄ 
 
TAMPEREEN TEKNILLINEN YLIOPISTO  
Automaatiotekniikan koulutusohjelma 
SUOMINEN, OLLI: Mittausten optimaalinen ajoittaminen LQG systeemeissä 
Diplomityö, 36 sivua 
- 2011 
Pääaine: Mittausinformaatiotekniikka 
Tarkastaja: professori Risto Ritala, professori Robert Piché 
Avainsanat: Optimisäätö, mittaus, lineaari-kvadraatti-gaussinen, Kalman 
suodatus, dynaaminen ohjelmointi 
 
Optimisäädössä määritetään säätöpolitiikka matemaattisesti täyttämään tietty 
tavoitekriteeri. Stokastisen prosessin tilaa mitataan säätöä varten. Jos 
mittausvaihtoehtoja on useampi on optimaalinen mittaus määritettävä säädön parhaan 
suorituskyvyn takaamiseksi. Tässä työssä pyritään valitsemaan optimaalinen mittaus 
joka hetkellä diskreetistä joukosta mittausvaihtoehtoja diskreettiaikaisessa lineaari-
kvadraatti-gaussisessa järjestelmässä. 

Työn ensimmäisessä osassa esitetään Kalman suodatus, jonka avulla tietoa 
prosessin tilasta voidaan rekursiivisesti päivittää. Kalman suodatus johdetaan 
esittämällä sen perustana toimivat ehdollinen todennäköisyys ja Bayesin sääntö. Tietoa 
prosessin tilasta kuvataan Gaussin jakauman avulla. Työn toisessa osiossa johdetaan 
säätöpolitiikka prosessin tilalle ensin tilanteessa, jossa prosessin tila tiedetään ilman 
epävarmuutta. Samaa ongelmaa tarkastellaan tilanteessa, jossa prosessin tilasta saadaan 
tietoa epävarmojen mittausten avulla. Tämän johdon avulla saadaan määritettyä 
tavoitefunktio mittauksen valinnalle. Tilan ja mittauksen säätöä voidaan tässä 
tapauksessa tarkastella erikseen.  

Työssä esitetään kaksi optimointimenetelmää mittauksen valinnalle. Ensimmäisessä 
valitaan lyhyt ennustusaika, jonka kaikkia mahdollisia mittaussekvenssejä 
tarkastelemalla valitaan optimaalinen. Tästä sekvenssistä ensimmäinen mittaus 
suoritetaan ja seuraavalla ajanhetkellä optimointi toistetaan. Tämän menetelmän avulla 
saadaan lokaalisti optimaalinen mittaus valittua prosessin ajon aikana. Vaihtoehtoisesti 
mittausongelman optimaalinen arvofunktio määritetään koko mittausongelman 
avaruudessa. Arvofunktio konvergoituu tässä tapauksessa äärettömän horisontin 
tapaukseen. Tämän menetelmän avulla saadaan globaali mittauspolitiikka määritettyä 
ennen ajoa. Menetelmien toimivuus varmistetaan tarkastelemalla numeerisesti kolmea 
erilaista järjestelmää. 
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1 INTRODUCTION 

1.1 Background of the Thesis 

The use of automation systems is prevalent throughout all facets of modern life. A 
central question in systems research has always been how to control a system. Ever 
since the 1950s optimal control theory has been an important part of control systems 
theory. Optimal control constitutes a way of deriving mathematically the optimal 
control policies when considering a certain performance criterion. 

Consider the task of navigating a ship from one port to the next. The ship’s starting 
location may be considered its initial state in the system and reaching the destination 
port the goal. The controller is able to determine the ship’s motion by manipulating its 
rudder and engine output. There exist an infinite number of routes which realize the end 
goal. Some are, however, not realistic due to technical and physical limitations. The 
available routes are restricted to areas with water deep enough for the ship. The ship’s 
rudder has a maximum angle and the engine’s power is limited which present 
limitations on the control resources available to the controller. The goal for the 
controller is to determine the best plan of action whose optimality is defined by for 
example, the shortest travel time, least fuel expenditure or a combination of these. 

The dynamic properties of the system determine how control influences the 
evolution of the system state. A chemical process is influenced by concentrations of the 
ingredients, temperature and catalysts among other variables. The controller uses these 
properties  with  a  physical  model  to  predict  the  state  of  the  system under  each  plan  of  
action. The time horizon of the prediction affects the optimization and depends on the 
problem. A chemical process may reach a terminal state at some time horizon or one 
may want to continue the process indefinitely.  

Measurements provide a way for the controller to determine the state of a system 
and to compensate for unpredictable circumstances. The cruise control of a car knows 
the appropriate throttle level which sustains the given velocity on level ground. An 
uphill or downhill incline will however affect the speed. By measuring the speed the 
controller is able to modify the throttle level to achieve the desired result. Measurements 
often  provide  only  incomplete  information  about  the  true  state  of  the  system  and  the  
controller must form an estimate of the system state. 

Making a measurement may have a cost, and the control must decide if the 
measurement is worth performing. Measurement cost may arise if personnel are 
required or the measurement method consumes some chemical or other resources. For 
example, X-ray diffraction is a common laboratory measurement in metalworking 
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which determines stress levels in processed metals, unobservable otherwise. Most x-ray 
devices require a technician to prepare the sample and to manipulate the device. Etching 
is required if information on the internal stress levels is to be obtained thus destroying 
the sample. 

Many systems contain multiple mutually exclusive measurement options amongst 
which  one  must  be  chosen  to  support  control  actions.  For  example,  a  driver  chooses  
which direction to look when driving a car. Additionally the driver may wish to look at 
the speedometer or fuel gauge. An additional example can be found in the process 
industries where measurement systems exist that analyze multiple sampling lines and 
only one analysis may be made at a time.  

One of the fundamental optimal control problems is the problem of a linear system 
perturbed by additive Gaussian noise, in which information on the true state of the 
system is incomplete, and in which the objective is to minimize a quadratic function of 
the system state. Control of these linear-quadratic Gaussian (LQG) systems under rather 
general assumptions separates into an estimation and regulation problem. This property 
of LQG systems is referred to as the separation principle.   

The optimal control in LQG systems is derived with dynamic programming. 
Dynamic programming was first formulated by Richard E. Bellman [1]. Dynamic 
programming solves a complex multistage control problem by analyzing the problem 
one stage at a time. The optimal solutions are combined to form the complete solution. 

The optimal control for time-invariant systems where no optimization horizon is 
determined may be solved with dynamic programming. The value function determining 
the value of the optimal objective function over the whole state space is iterated until it 
converges.  This method is referred to as value iteration. 

1.2 Objectives of the Thesis 

The problem of a discrete time LQG system which has a discrete set of measurement 
choices to choose between is the core problem considered in this work. The optimal 
control problem pertaining to the regulation of the system has been studied 
comprehensively [2]. We show the derivation of the optimal control policies with regard 
to the control and measurement choice. 

The optimal measurement policy is fundamentally different from the regulation 
problem as it is not analytically solvable. We show that the objective function relating 
to the measurement problem seeks to minimize a combination of the estimation error 
and the incurred costs.  

Two methodologies to solve the measurement problem are presented. Because of its 
structure both methods are approximate. The first method works by considering only a 
limited  time  horizon.  It  works  by  predicting  the  evolution  of  the  system  at  each  time  
step to find the optimal measurement sequence. The first control is used from the 
sequence and the optimization is repeated at the next time step. Thus this method 
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provides a control valid only in the present system state and requires the control to be 
calculated on-line. This is the solution procedure as presented by Meier et al. [3,4]. 

In the second method we apply value iteration to the measurement problem. This 
allows us to calculate the policy before any application, i.e. off-line. The value iteration 
method seeks to provide a measurement policy for all possible cases. The space of the 
measurement problem is approximated with a finite grid. 

1.3 Contents of the Thesis 

The basic theory pertaining to the estimation of a system state through use of 
measurements needs to be shown before deriving the optimization procedures. Chapter 
2 reviews the estimation procedure applied in linear Gaussian systems. Bayes’ theorem 
and conditional probabilities are used to update information on the state of a system. 
The estimation uses the Gaussian probability distribution to represent the information 
on the state. These lead to the recursive estimation procedure, the Kalman filter. 

Chapter 3 derives the optimization procedure by applying dynamic programming. 
We  start  by  applying  dynamic  programming  to  a  system  where  the  state  is  known  
without uncertainty. This is expanded to the case where measurements are used to 
observe the state. Finally we present how value iteration may be applied to the 
measurement problem. 

The optimization is applied to three different process control problems in Chapter 4 
with numerical simulation in Matlab [5]. We start with a simple problem with a one-
dimensional state space. The structure of the optimal measurement policy is then shown 
in a two-dimensional problem. Finally the on-line solution is applied to a four-
dimensional control problem. 

Chapter  5  summarizes  and  concludes  the  thesis  with  a  final  comparison  of  the  
optimization procedures. Possible future work and improvements are also discussed. 
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2 BACKGROUND: ESTIMATION 

This chapter derives the recursive estimation procedure used to update the information 
on the process state as new measurements become available. The process is defined in 
discrete time with the linear relation: 

= + +  
where  denotes the state at the th time step,  the control and  additive 
disturbances, distributed identically and independently. The state is not necessarily 
directly observable. The measurements  are defined with the linear relation: 

= +  
where  are additive disturbances, distributed identically, mutual independently and 
independently of . Here the disturbances are modeled with Gaussian distributions. 
This allows the information on the state to be presented with the Gaussian distribution. 
The information prior to a measurement and the information provided by a 
measurement are combined with Bayes’ theorem. 

2.1 Conditional Probability and Bayes’ Theorem 

The conditional probability ( | ) is the probability of event  occurring given the 
occurrence of some other event . Conditional probability can be defined through the 
joint probability ( , ) of  and  occurring as: 
 ( | ) =

( , )
( ) where ( ) > 0 (1)  

Consider now that we receive a measurement  and wish to infer information on the 
state . Using conditional probabilities this may be done with Bayes’ theorem: 
 ( | ) =

( | ) ( )
( )  (2)  

The prior distribution ( ) represents the information on the state before receiving 
the observations. The conditional distribution ( | ) is referred to as the measurement 
model. It models the causal but noisy or inaccurate relationship between the state and 
measurements. The posterior distribution ( | ) represents the information when all the 
data in the observations and information prior to the observations is used. 
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 The divisor ( ) is a normalization factor which ensures that the total probability is 
1. It may be written as: 
 ( ) = ( | ) ( )  (3)  

As  an  example  consider  the  problem  of  estimating  today’s  temperature.  From  the  
previous years’ temperature data a prior distribution ( ) for temperature may be 
formed. The process of taking a temperature reading can be modeled with a 
measurement model ( | ). The knowledge of today’s temperature ( | ) is updated 
with Bayes’ theorem when a temperature reading is available. Furthermore, the new 
posterior distribution can be used to form the prior for the problem of estimating 
tomorrow’s temperature. 

2.2 The Gaussian Distribution 

Bayesian inference provides the method for computing the posterior distribution for any 
model. However, often the calculations are very demanding and unsolvable analytically. 
The relevant distributions may be approximated with some simpler and more easily 
handled distributions. A typical choice is the Gaussian distribution. 

A justification for the choice of the Gaussian distribution is that it maximizes 
entropy thus minimizing the prior information built into the choice of distribution, if 
only mean and covariance of the random variable are known. Choosing the Gaussian 
distribution is also convenient as it allows for comparatively easy calculations. 
Furthermore the Central Limit Theorem states that under very general conditions given 

 independent random variables the distribution of their sum approaches a Gaussian 
distribution as  grows without limit [6, pp.214-219]. Thus the Gaussian distribution is 
a natural choice for modeling many different phenomena. 

A -dimensional vector random variable  is multivariate Gaussian distributed, 
denoted  ~ (x; ), if its probability density function is given as 
 

( ) =
1

(2 ) / | | / exp
1
2

( ) ( )  (4)  

A multivariate Gaussian distribution is fully parameterized by its mean vector 
 and covariance matrix . The covariance matrix must be positive-

semidefinite. | | denotes the determinant of the covariance matrix. 
The multivariate Gaussian distribution is a continuous probability distribution and 

identifies the probability of the value falling in an infinitesimal interval ( , + ). In 
the  same  way  as  any  probability  distribution  the  sum  of  all  possible  states,  here  the  
integral of the multivariate Gaussian distribution over the whole sample space, equals 1. 
This is ensured by the normalization factor, the prefactor to the exponential expression 
in Equation (4).  
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By denoting the th element of  as , the , th element of the covariance matrix 
may be expressed as: 
 , = ( { })  (5)  

Equation (5) with =  is referred to as the variance  of  the  th element and 
describes the uncertainty of the element. The greater the variance is, the wider the 
probability distribution.  Figure 1 illustrates how a change in the parameters influences 
the form of the probability density function in a univariate case.  

 
Figure 1: Two univariate Gaussian probability density functions with different 

parameters. 
 
Joint probabilities are useful when combining information. Some of their properties 

are expressed as in the following two results. Let the joint probability of the random 
variables  and  be: 

~ ; ,  

Assuming  is nonsingular, the marginal and conditional distributions of  are: 
 ~ ( ; , ) 

| ~ ( ; + ( ), ) 
(6)  

Additionally let ~ ( ; , ) and the conditional distribution | ~ ( ; +
, ) then the joint probability of  and  is: 

 ~ ; + ,
+

 (7)  
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2.3 Linear Gaussian Processes 

To carry out the intended analysis and optimization of the system we must present the 
definitions and assumptions related to the behavior of the system. This subsection 
presents the assumed transition, control and observation models. 

Any analysis of a system relies on a definition of the process state. The state may be 
a number, collection of numbers or a function that describe the behavior of the system. 
The state space consists of all values of the system state. For example the position of an 
object may be described by its three-dimensional coordinates. In some cases this may 
not be sufficient and can be expanded, for example, by including the orientation angles 
of the object to the state space. To describe the motion of the object, the state space 
would also include the linear and angular velocities of the object. Such a definition 
would constitute a continuous state space as the state variables are real-valued. 

A discrete-time dynamic system can be defined in terms of states , controls 
 and random disturbances  referred to as the process noise. The 

subscript denotes the time instant and runs from 0 to a terminal time horizon . The 
special case of a linear system is considered: 
 = + +  (8)  

The matrices  of size  and  of size  are assumed given. The matrices 
will be assumed constant if the time index is omitted. The disturbances  are assumed 
to be independent random vectors with a known probability distribution. Here we 
assume a Gaussian -dimensional distribution ( ; 0, ). The process noise is 
assumed to be independent of the state  and control . 

We consider the case in which the state is not directly observable. The measurement 
model  of  Equation  (9)  specifies  the  observation’s  relation  to  the  state  and  the  
uncertainty in the observation. Any observation on the state  provides data  which 
is on average linearly related to the state by the matrix ( ) and perturbed by an 

additive Gaussian white noise ( ). The superscript ( ) is used to differentiate 
between different measurements. Thus = 1,2, … depending on how many different 
measurements there are to choose from.  
 = ( ) + ( ) (9)  

The measurement disturbances ( ) are assumed to be independent random vectors 

with the distribution ( ); 0, ( ) . Thus the distribution of the measurement 

noise depends on which of the measurements is chosen. 
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With these assumptions the transition and measurement models can be described by 
the distributions:  
 ( | , ) = ( ; + , ) (10)  

 ( )( | ) = ( ; ( ) , ( )) (11)  

2.4 The Kalman Filter 

The Kalman filter is an efficient, optimal and recursive state estimation method for 
systems described by Equations (10) and (11) [7]. The Kalman filter works by 
predicting a value, estimating the uncertainty of the predicted value, and combining the 
prediction with the measured value. In essence it provides a weighted average where the 
weights are derived from the uncertainty. Though not originally defined with the 
Bayesian approach, the derivation of the filtering equations may be performed with 
application of Bayes’ theorem [8]. 

First we note that the linear Gaussian system defines a Markov process. A Markov 
process is a sequence of random variables { , , , … } in which the probability of a 
transition to state =  depends only on the state = , not on earlier states. 
The fact that the transition does not depend on any history of the system before its 
arrival in  is referred to as the Markov property. The Markov property is defined as: 
 ( | , , … , ) = ( | ) (12)  

Further the measurements  are assumed conditionally independent given . Thus 
the measurements are independent of past measurements { , , … , = : } or 
past values of the state { , , … , = : }: 
 ( | : , : ) = ( | ) (13)  

To derive the Kalman filter formulation we start by assuming that at time  the 
available control and measurement history results in an estimate for the state of the 
form: 
 ( | : , : ) = ; | , ( | )  (14)  

The control  is applied but before the measurement  is taken we wish to form 
information on the state . Due to the Markov property of the system we may write 
the joint probability of  and  as: 
 ( , | : , : ) = ( | , ) ( | : , : ) (15)  

The first probability distribution ( | , ) is provided as Equation (10) and 
the second ( | : , : ) is the assumed information. Using Equation (7) the joint 
probability is: 
 ( , | : , : )

= ;
|

| + ,
( | ) ( | )

( | ) ( | ) +
 (16)  
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The distribution for  is the marginal distribution given by integrating over . 
By Equation (6): 
 ( | : , : ) = ( , | : , : )

= ; | + , ( | ) +

= ; | , ( | )  

(17)  

The last row defines the notation for the predicted distribution parameters. The 
above is referred to as the prediction step as the state is predicted with information prior 
to time + 1.  

At time + 1 a measurement  is recieved and we wish to update the estimate 
of the state given all the information now available. We may apply Bayes’ theorem and 
recalling that the measurements were assumed conditionally independent write: 
 ( | , : , : ) = ( | ) ( | : , : )

= ( , | : , : ) (18)  

where  is the appropriate normalization factor. The distributions are the measurement 
model, Equation (11), and the predictive estimate for the state specified by Equation 
(17). We may again form the joint probability of  and  which by Equation (7) 
is: 
 

( , | : , : ) = ;
|

( )
|

,  

( | ) ( | ) ( )

( ) ( | ) ( ) ( | ) ( ) + ( )
 

(19)  

Using the notation: 
( ) = ( ) ( | ) ( ) ( ) 

( ) ( | ) ( ) ( )  
By Equation (6) the conditional distribution is given as: 

 ( | , : , : ) 

= ; | + ( ) ( )
|

( | )

( ) ( ) ( )  

(20)  

This provides the updated information about the state as  is independent of . 
Thus we may write the prediction step as: 

 | = | +  

( | ) = ( | ) +  
(21)  
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And the update step: 
 | = | + ( ) ( )

|  

( | ) = ( | ) ( ) ( ) ( )  
(22)  

where |  is the resulting state estimate and ( | ) its uncertainty. If a 

measurement is not available, the update step may be left out. ( ) is referred to as 
the Kalman gain as it governs how the difference between actual measurement data and 
the expected measurement prior to the actual measurement is incorporated into the 
estimate. 

These two steps provide the optimal filtering equations of the Kalman filter 
provided that initial information on the state is available. 

It is noteworthy that the ensuing covariance ( | ) of the estimate is 
independent of the control . This may be shown by examining the prediction step. Let 

 and  have the following linear relation to : 
= + +  

= +  
By the joint distribution and marginal distribution the predictive covariance ( | ) 

of  and ( | ) of  are the same: 
( | ) ( | ) = ( | ) ( ) 

In the update step only the measurement covariance influences ( | ) thus the 
value of  does not influence the uncertainty of the estimate. The covariance is also 
independent of the realized value of . 
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3 BACKGROUND: OPTIMAL CONTROL 

The performance of a process is evaluated and optimized with regard to an objective 
function. The objective may be, for example, to maximize utility, minimize costs or 
keep the process state close to a given setpoint. In optimal control the goal is to derive 
an optimal policy which maps any value of the state to the control which best fulfills the 
given objective.  

The linear Gaussian system presented above is considered with a quadratic cost 
function. The optimal control law may be solved by applying dynamic programming. 
The control is solved analytically. The measurement selection and control problems 
separate and may be analyzed independently. 

3.1 Dynamic Programming 

Dynamic programming is used to solve multistage planning problems. The dynamic 
programming approach breaks the multistage problem into a recursive algorithm using 
functional equations.  

The goal in dynamic programming is to minimize the accumulating cost defined by  
 

( ) = min
{ }

( , , )  

subject to = ( , , ) 

(23)  

( , , ) denotes the instantaneous cost functions. The complete sequence of 
controls { }  is  to  be  minimized.  The  transition  from  one  state  to  the  next  is  
restricted by the transition function = ( , , ) defined by the dynamics of 
the process. Here the cost is considered up to a terminal horizon . Because of 
uncertainty in the future state of the system or as a modeling of impatience, immediate 
costs may be valued more than future costs. This devaluation of future costs is modeled 
by the parameter  referred to as the discount factor, with 0 < 1. The minimization 
task is expressed by the following sum where in the case of a stochastic process the 
expectation must be considered. 

The founding block for the optimization procedure is provided by Bellman’s 
Principle of Optimality [9,p.15]. It states: “Whatever the initial state and decision are, 
the remaining decisions must constitute an optimal policy with regard to the state 
resulting from the initial decision.” 
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The dynamic programming approach works by defining a sequence of functions 
{ ( )} . First ( ) is  defined  as  the  value  function  for  all  states   which 
minimizes the expected immediate cost at the last time instant: 

( ) = min { ( , , )} 

Next the problem is considered at time 1: 
( ) = min

,
( , , ) + { ( , , )}

= min ( , , ) + min { ( , , )}  

Written in this form we may note that the latter minimization has already been 
solved and write: 

( ) = min ( , , ) + { ( )}  

( ) provides the optimal cost-to-go. The general iteration for the functions 
( ) is: 

 ( ) = min ( , , ) + { ( )}  (24)  

Finally the minimum value of ( ) is given by ( ).  
Equation (24) is the basic functional equation used to solve dynamic programming 

problems. By considering the multistage problem one stage at a time the optimization is 
clearly less complex. Alternatively the functional equation can be written with forward 
induction where rather than the optimal cost-to-go the optimal prior cost is considered. 
A more thorough derivation and discussion of the previous equation may be found, for 
example, in [9,pp.1-15]. The solution provided by the dynamic programming approach 
is not guaranteed to be unique but its optimality is ensured. 

 The major problem now is how to exactly compute the iterative step between the 
functions ( ). It is clearly impossible or very demanding to tabulate values for every 

 in each step even for a finite set of values. The simplest solution is to define a finite 
grid from which values are interpolated in some manner. However, some problems 
exhibit properties that make an analytical solution possible. 

The main source of complexity is in the dimension of the state variable where 
adding a state variable makes the problem exponentially more complex. This is referred 
to as the curse of dimensionality.  

The complexity of the problem also increases with the length of the time horizon. 
When only limited resources are available in optimizing a system to some time horizon 

, it is possible to form an approximate procedure which at some time  performs the 
optimization up to time horizon < . At time + 1 the same optimization is 
performed up to + 1. At each time instant only the first control is used. In process 
control this idea forms the basis for Model Predictive Control [10,11]. 
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3.2 Linear Quadratic Gaussian Systems and Dynamic 
Programming 

In LQG systems the cost function is defined as a quadratic function. The goal is to 
minimize the sum: 
 

( ) ( ) +  (25)  

The matrices  and  are weighting matrices of appropriate size which are 
assumed positive semidefinite symmetric and positive definite symmetric respectively. 
The weighting matrices are specified when designing the system and define which 
system state dimensions are seen as important in relation to each other. The quadratic 
function is often used in the formulation of regulator problems [12,p.130]. For example 
a regulator may be used to control the voltage to govern engine speed. It expresses the 
desire to keep the state close to a given trajectory { , , … }. The quadratic cost 
function penalizes large deviations from the set point more than smaller deviations. 

We begin  by  deriving  the  solution  in  terms  of  a  system where  the  current  state  is  
known exactly. Here we assume that the goal is to keep the state close to the origin.  
 

min
{ }

+  

subject to = + +  

where ; 0, ( ) , = 0  

(26)  

Equation (26) reiterates the complete optimization problem where all the matrices 
defining the system dynamics { , }  and cost function { , }  are known, in 

addition to the covariance ( ) of the process noise. The process noise is assumed to be 
independent of the state and control. 

The goal is to find an optimal control policy ( ) which maps values of the state 
 to values of : 

 = ( )  

We will prove inductively that any ( ) function of the dynamic programming 
approach is a quadratic function of the form: 
 ( ) = +  (27)  

where  is symmetric positive semidefinite and the scalar  independent of the state 
and control. 

For = , ( ) is: 
 ( ) = min { + } (28)  

The quadratic form  is strictly positive for all 0 as  was assumed 
positive definite symmetric. Thus the optimal control  is simply = 0. 
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This means that the function ( ) is quadratic: 
( ) =  

For the inductive step we assume ( ) is of the quadratic form of Equation 
(27) such that for ( ) we have the form: 

( ) = min + + { ( )}

= min { + + { } + } 

For the inner term: 
{ }

= { } { }
+ {( { }) ( { })} 

As { } = 0 and given the value of : 
{ } = +  

Thus: 
{( { }) ( { })} = { } 

By differentiating with respect to  and setting the derivative to zero, gives: 
( + )  

Thus the optimal control  is: 
( + )  

Substituting the expression of  for  gives the required quadratic form: 
 ( ) = +  

where = +
+  

= +  

(29)  

Thus the assumed quadratic form holds for any . 
This provides the optimal control law ( ) as the linear relation: 

 ( ) =  

where = +  
(30)  

The recursion for matrices : 
 =  

= + +  
(31)  

We shall use the trace function denoted tr( ) to further simplify the expression. The 
trace function has the property: tr( ) = tr( ) = tr( ). 

As  is clearly a symmetric square matrix, we may write: 

{ } = {tr( )} = {tr( )} = tr ( )  

 
 



15 
 

The optimal cost is provided by the last step, if the initial state and its covariance are 

distributed as ; ( ) , and is: 

 
( ) = + tr ( ) + tr ( )   

In this case the final cost function in itself is not required as the calculation of the 
matrices  provides all the information needed to determine the control. The optimal 
control law may be seen as a feedback controller. This is illustrated in Figure 2. The 
current state determines the control and thus provides the next state. 

 
Figure 2: Linear feedback structure of the optimal control 

 
The following generalizes this approach to deal with the case where the current state 

is not exactly known. 

3.3 Imperfect State Information 

In the previous section it was assumed that the controller has direct access to the state. 
A  common  problem  is  to  find  a  similar  derivation  for  the  problem  where  state  
information is not perfect. As previously mentioned in the linear Gaussian model these 
observations are modeled with a linear measurement model. The observations  are 

perturbed by the zero mean Gaussian noise ( ) whose covariance matrix ( ) is 
known. This noise is also assumed independent of the state, control and process noise. 
Each measurement choice is associated with a positive scalar cost given by the function 

( ). The linear relation is: 
 = ( ) + ( ), = 0, … , 1 

where ( )~ 0, ( ) , ( ) = 0  

( ) > 0 

( ) > 0 

(32)  
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We seek to minimize the sum: 
 

min
{ } ,{ }

+ + ( )  

subject to = + + , ; 0, ( )  

(33)  

With these assumptions the state information is obtained recursively with the 
Kalman filter. We assume that at each time  the measurement data { }  is available. 
At each time instant  the measurement to be performed at time + 1 is chosen. The 

estimate for the state at time  { } is denoted |  and its covariance ( | ). We 

assume the initial state information is  ; |
( | ) . Thus the value function, in 

general depending on current state information is given as a function of the mean and 

covariance, |
( | ) .  

We use the following result where we assume the measurement data at time  has 
been obtained. 

{ } = { } { } + {( { }) ( { })}
= { } { } + tr( {( { })( { }) })

= | | + tr ( | )  

The first function for the dynamic programming approach is given as follows if we 
assume the measurement at time  is  taken  and  no  more  measurements  are  to  be  
performed: 
 

| , ( | ) = min( { + })

= min | | + + tr ( | )  
(34)  

The optimal control is clearly = 0. The value is quadratic in terms of the 
estimate and has an additional scalar term that results from the estimation error.  

We seek to prove that the functions |
( | )  remain quadratic for all , as in 

the case of perfect state information. Thus we assume: 
 | , ( | ) = | | + ( | )  (35)  

Where  is symmetric semidefinite and the function ( | )  scalar and 

independent of the control. 
The iteration is: 

 
| , ( | )

= min
,

+ ( )

+ | , ( | )  

(36)  

where |
( | )  needs to be evaluated.  
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From the Kalman filter equations it is known that: 

| = | + ( ) ( )
|  

The distribution for  is known by Equation (19) to be: 

; ( )
| , ( ) ( | ) ( ) ( )  

where ( | ) = ( | ) + ( ) 
This means that given a fixed |  and taking  as a random variable: 

| = | = | +  

| | | |

= ( )

( )
|

( ) ( )
|

= tr ( ) ( ) ( | ) ( ) ( ) ( )  

Thus: 
 

| , ( | )

= min
,

+ + ( )

+ | | + ( | )

= min | | + | + | +

+ + tr ( | )

+ min ( )

+ tr ( ) ( ) ( | ) ( )

+ ( ) ( ) + ( | )  

(37)  

By differentiating with respect to  and setting the derivative to zero: 
( + ) |  

Thus the optimal control  is: 
( + ) |  

The resulting uncertainty ( | ) depends on the measurement to be chosen: 
( | ) ( | )

( | ) ( ) ( ) ( | ) ( )

( ) ( ) ( | ) 

where ( | ) = ( | ) + ( ) 
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Substituting the optimal control into Equation (37) and rearranging the terms gives:  
 

| , ( | )

= | + |

| + |

+ tr ( | )

+ min tr ( ) ( ) ( | ) ( )

+ ( ) ( ) + ( ) + ( | )  

(38)  

Finally the recursion is: 
 

| , ( | ) = | | + ( | )  
where = +

( + )  
=  

and = tr ( | )

+ min ( )

+ tr ( ) ( ) ( | ) ( )

+ ( ) ( ) + ( | )  

= tr ( | )  

(39)  

We have shown that the evolution of the estimation covariance ( | ) is independent 
of the control thus allowing us to conclude the inductive step. 

The optimal control law ( ) is the linear relation: 
 ( ) = |  

where = +  
(40)  

The  relation  to  the  optimal  control  law  of  the  previous  chapter,  Equation  (30),  is  
apparent. The difference is in that instead of the exact value of the state variable, its 
estimate is used.  
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As previously if we assume the initial state estimate distributed as 

; |
( | )  the optimal cost is: 

| , ( | ) = | | + tr ( | ) + tr ( | )

+ ( ) + tr ( | )

+ tr ( ) ( ) ( | ) ( )

+ ( ) ( )  

(41)  

The structure of the optimal controller is summarized in Figure 3. This is similar to 
Figure 2 except it contains an additional layer in the measurement and estimation. The 
estimator uses the previous control to perform the prediction and the received 
measurement to update the estimate.  

 
Figure 3: Structure of the optimal controller when an estimator is used to determine 

the state through measurements 
 

That the choice of measurement does not affect the optimal control law and that the 
estimation error is independent of the control is an important property of LQG systems. 

3.4 Separation Principle 

The fact that the estimation and control problems may be viewed independent of each 
other in the LQG system is referred to as the separation principle. The first proof was 
given in [13], soon after the formulation of the Kalman filter. 

This result implies that the optimal structure of the controller may be seen as a 
combination of the optimal filter and a deterministic controller. The two parts can be 
designed independently. The optimal estimator then feeds the estimate of the state to the 
optimal controller which may be designed as in the perfect information case. Thus the 
estimator forecasts the evolution of the state and the controller uses the estimate without 
taking into account any risks associated with it. 
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The separation of the control and estimation problems also leads to the result that 
the measurement optimization i.e. minimization of the estimation error may be 
performed offline. This is apparent if one examines the evolution of the estimation 
covariance which is a deterministic problem, i.e. independent on the measurement data, 
with regard to the choice of measurement. 

3.5  Value Iteration 

The problem structure where the number of decision stages is infinite or at least a very 
large number for which an infinite-horizon approximation is appropriate can be 
analyzed with value iteration. This means that the optimization is to be performed into 
the distant future where the exact decision horizon may not be known. Contrary to the 
previous system models, here we assume that the model, cost per stage and all random 
disturbance statistics are time-invariant. This does not mean that the process itself is a 
stationary stochastic process. 

The minimization task is of the following form: 
 

( ) = min
{ }

( , , )  

subject to = ( , , ) 

(42)  

 The value function iteration { ( )} , which describe the expected optimal value 
to be gained from optimal actions in the future, converges as .  However,  it  is  
clear that the analysis cannot be started as before from the last time instant. The 
assumption that the system equations are time-invariant means that first only the 
immediate cost is considered. Then considering a value function one step into the future 
means that the previous value function describes the value from which the optimum for 
the future rewards can be calculated. The iteration is: 

( ) = min { ( , , )} 

( ) = min ( , , ) + { ( )}  

… 
( ) = min ( , , ) + { ( )}  

The value function considered at each iteration takes into consideration a time 
horizon one step longer than the previous one. This is continued until a sufficient 
approximation of the infinite horizon case is obtained. 

Often the value function is formed as a tabulation of the optimal values for the state 
space. A one step look-a-head approach may be used if the control is not directly saved 
when iterating the value functions. When a state is reached at a time instant the control 
is found by solving the value function iteration once with the optimal cost-to-go solved 
earlier. 
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The LQG system where the system dynamics { , }, the weighting matrices { , } 
and the distribution parameters of the process covariance { } are fixed for all  may 
be solved using value iteration. This allows the measurement problem to be solved a 
priori. 

The iteration may be directly taken from the previous solution of the dynamic 
programming approach to the imperfect state knowledge problem. Here we assume no 
measurement is to be performed in the future when no time steps are remaining. For the 
first step: 

| , ( | ) = |
( )

| + tr ( | ) , where = 0 and ( ) =  

A set of functions ( | )  is defined that provides the value related to the 

measurement optimization. For the first iteration ( | )  is: 
( | ) = tr ( | )  

Then any value function is given as: 
 | , ( | ) = |

( )
| + ( | )  

( ) = + ( ) ( ) + ( ) ( )  

= + ( ) ( )
| = |  

(43)  

( )  will with a few assumptions approach a stationary value as  [12, 

pp.202-203]. ( ) may then be substituted with the stationary value ( ). The algebraic 
Riccati equation may be used to solve ( ) from the equality:  

( ) = + ( ) ( ) + ( ) ( )  
The measurement problem is iterated as: 

 ( | ) = tr ( | )

+ min ( )

+ tr ( ) ( | ) ( ) ( ) ( | ) ( )

( ) ( ) ( | ) + ( | )  

where ( | ) = ( | ) +  
( | ) = ( | ) ( | ) ( ) ( ) ( | ) ( ) + ( ) ( ) ( | ) 

(44)  

Thus the measurement problem presents a functional equation where an analytical 
solution is not possible in this form. In this work we approximate the functions ( ) by 
a grid over the space of the covariance. Each element of the state space has a variance 

and a correlation with all other elements. An -dimensional state space will have ( ) 
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variances and correlations that need to be discretized. Any value that falls between 
points may be approximated to the nearest value or interpolated. 

Value iteration is often used in conjunction with partially observable Markov 
decision processes [14,15]. There the state space is discrete which allows for the state 
information, also called the state belief, to be presented by a piecewise linear function. 
In continuous state spaces the problem is substantially more difficult.  
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4 RESULTS 

This chapter first describes some of the issues in the implementation of the above 
optimization methods. These are then applied to the optimization of measurement 
sequences in a simple one-dimensional system. We expand on this by optimizing the 
measurement sequence of a more complex two-dimensional system. Finally the on-line 
solution method is applied to a system with a four-dimensional state space and two 
measurement alternatives. 

4.1 On-line Solution 

The on-line solution to the control and measurement problem works by calculating the 
value of all measurement sequences from any time  to +  where the estimate and 
uncertainty are known at time 1. The control is simply found by iterating the 
matrices  and using Equation (40). The measurement problem, however, is solved by 
calculating all values of the measurement sequence up to the specified time horizon. 
From the solution the first measurement is performed and at the next time + 1 the 
same optimization is performed up to + 1 + . This is the solution structure presented 
by Meier et al [3,4].  

This solution is computationally hard as there exist  different possibilities for the 
measurement sequence where  denotes the amount of different measurement choices. 
However, in calculating the value of a new measurement sequence we may use previous 
results to somewhat reduce the quantity of computations to be performed. Only the last 
measurement choice which leads to a new measurement sequence is changed. Denoting 
the time instance of the changed measurement choice as , the covariance at +
1 remains unchanged and only the new covariances up to +  need to be calculated. 
Thus we apply  updates to the covariances to find all values of the sequences in 
the specified time horizon. This is in comparison to  updates to the covariance if all 
sequences were to be cycled through from beginning to end. 

The length of the prediction horizon is restricted by the computation time available 
between measurement instances. Thus this is an approximate solution which however 
approaches the infinite horizon solution when the discount factor is suitably small. 
Additionally, the measurement problem leads to a repeating sequence of optimal 
measurement choices as the updating of the covariance is in fact a deterministic 
problem. 
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4.2 Off-line Solution 

The measurement problem is alternatively solved with the described value iteration 
method. This method is also approximate as the resulting value function is nonlinear 
and the space defined by the covariance must be approximated by a finite grid. In 
comparison to the method above the approximation is not in the horizon length but in 
the discretization of the covariance. For example, in a 2-dimensional state space the 
covariance associated with state information may be written as 

( | ) = . 

 denotes the variance of the first state variable and  the correlation between the 
two variables with [ 1,1]. The maximum and minimum variances to be taken into 
account depend on the system specifications. These are given by finding values of the 

state information covariance ( | ) as .  These  values  are  solved  by  simple  
iteration or using the Riccati equation where only one of the measurement choices is 
used. Values must be extrapolated if the system is defined such that the uncertainty does 
not converge.  

The choice of how grid points are spaced is affected by calculation and memory 
restrictions. Let  denote the amount of grid points in the space of each variable of an 

-dimensional state space. Altogether there are ( )/  points at which the 
minimization task must be solved. At any iteration step the previous grid has to be saved 
as well as the new resulting grid. These extreme memory requirements are the main 
hindrance in the implementation of the value iteration method. 

The main benefit in comparison to the on-line solution is that the value function may 
be calculated a priori. There is no need to do costly optimizations between 
measurements as the algorithm provides a look-up-table of optimal measurement 
decisions.  

4.3 One-dimensional State Space 

The two solution procedures are used in the control of the following one-dimensional 
system. The system dynamics and costs are: 

= 0.9, = 0.6, = 0.1, = 1, = 1, = 0.9 
The initial state, estimate and uncertainty are: 

= | = 10, ( | ) = 0.01 
The choice of measurement is made between the following two alternatives: 

( ) = 0.5, ( ) = 1, (1) = 0.1 
( ) = 0.03, ( ) = 1, (2) = 0.19 

The cheaper less exact measurement would be expected to be used when the state 
information uncertainty is low and the costlier measurement when information must be 
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improved more. The on-line method is used with a prediction horizon of 10. In this case 
the two methods lead to the very similar results as the discount factor is quite low. 

The minimum and maximum values for the discretization of the estimation 
uncertainty are given by solving the following for : 

=  
( ) ( ) ( ) ( ) ( )  

The minimum is given by repeated use of measurement 2: ( ) = 0.0240. The 

maximum is given by repeated use of measurement 1: ( ) = 0.1557. This interval is 
discretized into 1000 equally distanced points. The value function for the measurement 
problem is initialized with:  

( ) = tr( ) 
The value function converges in under 200 iterations. We use the sum of the 

differences between ( ) and ( ) to gauge the convergence. The value of the 

resulting ( | , )  is interpolated linearly at each grid point when calculating 

( ). The decision boundary above which measurement 2 is used is = 0.1490.  
Figure  4  shows  the  result  of  a  simulation  of  the  system  over  50 time steps. 

Measurement 1 is used until the estimate uncertainty exceeds the decision boundary 
after which measurement 2 is used once. The dotted line in the second graph of Figure 4 
shows the boundary above which measurement 2 is used. 
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Figure 4: Simulation result. The first figure shows the state estimate and received 

measurement values. The second shows the estimation uncertainty. The dotted line 
shows the decision boundary. 

 
The repeating structure of the optimal measurement sequence is apparent from the 

above figure. This structure could be exploited in cases where computational resources 
are very limited in implementation. However, during application of the optimization 
procedures the value iteration method already provides a computationally less expensive 
method. The following example provides an example of the off-line method applied to a 
more complex system. 
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4.4 Two-dimensional State Space 

The second example system where measurement optimization is applied has two state 
variables. The system dynamics are: 

= 0.7 0.01
0 0.4 , = 1 0

0 1 , = 0.2025 0
0 0.15  

The weighting matrices: 

= 1 0
0 5 , = 20 0

0 12  

The initial state and estimate: 

= | = 10
15 , ( | ) = 0.1 0

0 0.1  

The measurement choice is made between three alternatives. The first two 
measurements are used to measure only one variable at a time whereas the third is able 
to measure both at once. In this system the correlation between the variables remains 
small and the first two measurements provide very little information on the variable that 
they are not directly related to. The three measurement alternatives are defined as 
follows: 

( ) = 0.03, ( ) = [1 0], (1) = 0.005 
( ) = 0.055, ( ) = [0 1], (2) = 0.028 

( ) = 0.04 0.02
0.02 0.04 , ( ) = 1 0

0 1 , (3) = 0.055 
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Figure 5 depicts the resulting measurement policy where the correlation coefficient 
is 0. This policy has been calculated with a discount factor of = 0.9 and is the result 
after 25 iterations. The figure depicts a slice of the three-dimensional grid where each 
variable in the uncertainty space was discretized into 101 equidistant points. Value 
function interpolation was performed with linear interpolation. The variances have been 
calculated from values of 0.01 to 1. The third measurement is used when information is 
needed on both variables. The third measurement choice is not present if the variables 
correlate because then a measurement on one variable gives information on the other.  

 
Figure 5: Optimal measurement policy as calculated after 25 iterations 

 
The optimal measurement sequence in fact only makes use of the first two 

measurement alternatives. The second alternative is used at every third time step. The 
resulting measurement sequence is shown in Figure 6. 
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Figure 6: Measurement choices 

 

 
Figure 7: Simulation result. True state and estimate over 50 time steps 

 
Figure 7 shows the simulated system over 50 time steps. The state reaches the goal 

quickly. However, the weighting matrices lead to the control of the second variable 
being quicker as any deviation in the second variable leads to a higher penalty. 

The same results are reached with the on-line solution. Precalculation of the 
measurement policy provides information on the exact structure of the measurement 
problem in many cases. This could be used to aid in the tuning of control systems. The 
main hindrance is presented by the time needed to perform the calculations.  
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4.5 Four-dimensional State Space 

The off-line solution becomes impossible to calculate with a gridded solution in higher 
dimensions. However, the on-line solution performs well if the amount of 
measurements is kept low. Let us define a discrete time four-dimensional process where 
the first two state variables describe the position , , ,  of a moving agent in a two-
dimensional coordinate system at time . The remaining two variables define the 
velocities , , ,  in the direction of the two axes such that the state vector is: 

= , , , , .  
The dynamic model is defined as:  

= + +  

where =
1 0
0 1

0.5 0
0 0.5

0 0
0 0

1 0
0 1

, =

0
0
1
0

0
0
0
1

,  

~

0
0
0
0

,
0.0008 0

0 0.0021
0.0025 0

0 0.0063
0.0025 0

0 0.0063
0.0100 0

0 0.0250

 

The control affects the velocity in the directions of each axis in the two-dimensional 
space. The system is to choose between two measurement choices. The first 
measurement  measures  the  position  of  the  agent  in  the  first  coordinate  axis  and  the  
second measurement in the second coordinate axis.  

( ) = 0.5, ( ) = [1 0 0 0], (1) = 0.1 
( ) = 0.5, ( ) = [0 1 0 0], (2) = 5 

The weights for the cost function are defined as: 

=
0.5 0
0 0.5

0 0
0 0

0 0
0 0

5 0
0 5

, = 20 0
0 20  

The measurement problem is solved with a prediction horizon of 10 and the 
discount factor is = 0.9. The initial state and estimate is defined as follows with the 
goal being to reach and to stay at the origin. 

= | =

50
50
75
30

, ( | ) =
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

 

Figure 8 shows the first two components of the state vector after a simulation of 75 
time steps. The estimate is able to follow the true trajectory quite well. The control 
works well as there is no overshoot after the origin is reached. 
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Figure 8: Simulation result. The first two components of the true state and state 
estimate after a simulation of 75 time steps. 

 
The measurement sequence reaches a stationary policy after a short time. The 

measurement choices are shown in Figure 9. After an initial settling period, the second 
measurement is used only every sixth time step.  
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Figure 9: Measurements as chosen by the on-line solution 

 
Though the on-line solution does not provide any insight into the structure of the 

measurement problem it provides a potential practical implementation. The on-line 
solution proves practical in systems with a large state space. 
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5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis analyzed the problem of how to find an optimal measurement sequence in a 
discrete-time linear quadratic Gaussian system when presented with a discrete set of 
measurement alternatives. LQG-systems are popular in process control applications and 
often have many alternative measurements available. The optimization procedures 
presented provide a basis for optimal control of the measurement process in conjunction 
with traditional optimal control. 

The problem was presented by first deriving the Kalman filter which is used to 
recursively update the information on the state of the system. The Gaussian distribution 
is used to represent the information on the system state. By repeated use of Bayes’ 
theorem and conditional probabilities new information is combined with any old 
information. 

The quadratic objective function was presented in the linear Gaussian case. 
Dynamic programming shows that this leads to a control policy as a linear function of 
the state estimate. The derivation further provides the objective for the measurement 
decision. The separation principle which provides for the separate examination of the 
control and measurement problems was explained. The measurement problem was 
solved first by considering all possible resulting measurement sequences and finding the 
optimal sequence. This approach approximates the optimal sequence in considering 
only a short prediction horizon. Alternatively the measurement problem was considered 
with value iteration which uses a discrete grid to represent the relevant uncertainty 
space. The first solution needs to be used on-line whereas the value iteration method 
provides a policy off-line. 

The two different approaches in finding an optimal measurement sequence were 
applied to three different process control problems. The first problem was a process 
with a one-dimensional state and two measurement alternatives. With the studied 
parameters the two approaches lead to identical measurement sequences.  

The advantages of the off-line value iteration method were illustrated with an 
example having a two-dimensional state space. The value iteration provides insight into 
the structure of the measurement policy. This can be seen as a potential tool in 
designing control and measurement systems. Most importantly the policy may be 
calculated in advance. Thus the computational load during application is very low. 
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The problem with implementation of the value iteration method is that its 
complexity grows quickly with the dimensionality of the state space. This was evident 
in the last example in which the on-line solution was used in the control of a system 
with a four-dimensional state space. This example showed the versatility of the on-line 
solution. The computational complexity of the on-line solution does not grow as quickly 
with the state space dimensionality as that of value iteration method. The solution is 
found for a short prediction horizon from which only the first decision is implemented. 
This is repeated at each time step. Often the optimal measurement sequence repeats 
itself after an initial settling period and this can be used to decrease the computational 
load of the method during application.  

The procedures presented provide a theoretical basis for measurement optimization 
in LQG-systems.     

5.2 Future Work 

The assumption of the system being LQG in this thesis is rather restrictive and more 
complex system structures need to be considered in future. These include systems in 
which constraints are set for the control or state space. As a result the separation 
principle will no longer be valid so that the measurement and control problems need to 
be considered jointly. Nonlinear systems and/or non-quadratic objective functions 
present potential research areas for measurement optimization. 

The measurement optimization procedure is a subproblem within measurement 
system design. This pertains not to the problem of finding the best measurement 
sequence but to the problem of defining the measurements to best measure the system 
state. 

Efficient methods for solving optimal value functions can also be found in literature 
about partially observable Markov decision processes. These methods deal with highly 
complex structures very close to the considered problem. However, when applying them 
the need for discretization may be a limiting factor. 
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