

RUPESH DEV

UI TEST AUTOMATION IN SYMBIAN CAMERA SOFTWARE

DEVELOPMENT

Master of Science Thesis

Examiners: Professor Jarmo Harju
 Adjunct Professor Mika Katara
Examiners and topic approved in the
Faculty of Computing and Electrical
Engineering Council meeting on
04.05.2011

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
DEV, RUPESH: UI Test Automation in Symbian Camera Software Development
Master of Science Thesis, 52 pages, 2 Appendix pages
June 2011
Major: Communications Engineering
Examiners: Professor Jarmo Harju, Adjunct Professor Mika Katara
Keywords: GUI Automation, Model based testing, Symbian devices

Software testing is one of the most cost-intensive tasks in the modern software

production process. Software testing needs to be effective not only at finding the

defects, but also in performing the tests as quickly and cheaply as possible. Automation

in software testing has been used widely to achieve faster test results in limited time and

effort.

This thesis tries to demonstrate model based testing (MBT) approach as one of the

most promising automation methods developed in recent times. Model based testing is a

relatively new software test automation methodology that automates not only the test

execution, but also the test generation. The basic idea is to create formal test models

which possess the logic of the system to be tested and generate tests based on the

models.

This thesis also presents an implementation of a model based approach in

automating the software tests. Scope of the thesis is to carry out only UI related test

automation. The target system to conduct the test runs is Symbian OS. In the case

studies section, the entire procedure of automating the test cases has been explained.

Only camera and messaging related test cases have been automated so far. The end

devices selected for executing the test runs are Nokia smartphones, namely N8 and E7.

This thesis also analyzes potential problems in deploying model based approach in

wider scale and at the same time also proposes an intermediate solution for deploying it

in industries within small teams. At the end, the thesis concludes by recommending

ways to implement MBT approach in other mobile software platform like Windows

Phone.

III

ACKNOWLEDGEMENTS

This thesis work has been accomplished with joint cooperation of Nokia Corporation

and TEMA toolset development group in Tampere University of Technology. I would

like to express my sincere thanks to all the people who contributed their valuable time

and guidance to make this thesis work implementable.

First and foremost I owe my deepest gratitude to my supervisor Mika Katara, whose

supervision and support from the preliminary to the concluding level enabled me to

develop an understanding of the subject. I also express my heartfelt thanks to my

manager Petri Soininen from Nokia Corporation for his encouragement and assistance

on providing resources for the thesis. I am also thankful to Professor Jarmo Harju for

counseling and advising me during thesis writing.

My special thanks to Antti Jääskeläinen, Tommi Takala, and Henri Heiskanen for

helping me to sort out complexities related to TEMA toolset. From Nokia side, I am

equally thankful to Petri Kiiskinen whose help and guidance with Testability driver tool

is appreciable. Also vote of thanks to Ville Ilvonen for making it possible to reach out

Testability driver team. I am equally grateful to all of my teammates in Nokia, mainly

Sachin Nayak for providing me all kinds of moral support and advice throughout the

thesis completion. I am equally indebted to Pekka Kauppila for his support and

guidance during initial phase of the thesis. I am indebted to many of my colleagues for

supporting me in numerous ways. Especially Kati Pyhälä, Tomi Pihlainen, and Kari

Jussila for inspiring me and appreciating the thesis work. I am also thankful to Euan

Barron for his suggestions during thesis finalizing.

Finally I want to thank my parents; Mother, Brother, and late Father for their

blessings and love to stand with me against each obstacle. I am grateful to God, the

creator and the guardian to whom I owe my very existence. Also, I am thankful to my

girl friend for her understanding and moral support during thesis writing.

Rupesh Kumar Dev

10
th

 May 2011

IV

CONTENTS

1. Introduction ... 1

2. Software Testing and Test Automation... 3

2.1. Software Testing in General.. 3

2.2. Software Testing in context of Camera ... 6

2.2.1. Stress Testing .. 6

2.2.2. Parallel Testing.. 7

2.2.3. Long Period Testing (LPT) ... 7

2.3. Classic methods in Software Test Automation ... 8

2.3.1. Manual Testing Process .. 9

2.3.2. Capture/Replay Testing Process ... 10

2.3.3. Script Based Automation Process ... 10

2.3.4. Keyword-Driven Automation Process .. 11

2.4. Model Based Testing (MBT) .. 12

2.4.1. Offline approach.. 12

2.4.2. Online approach .. 14

2.5. Test Automation: Potential Challenges and MBT Benefits 15

3. UI level Automation: Smartphones ... 17

3.1. Goals Set ... 18

3.2. Tools Used .. 19

3.1.1. Testability Driver (TD) ... 19

3.1.2. TEMA Toolset .. 21

4. Methodology: Building Automation Test Bed .. 24

4.1. Test Modeling and Execution Environment ... 24

4.1.1. Model Designer ... 24

4.1.2. TEMA Web GUI ... 27

4.2. TEMA Test engine .. 30

4.3. TEMA-TD Adapter ... 31

4.4. TD Visualizer and SUT ... 31

5. Case Study ... 34

5.1. Case Study I: Image Capture and Video Recording 34

5.2. Case Study II: Multi-Phone Messaging .. 42

5.3. Analysis of Results .. 46

6. Conclusion .. 48

References ... 50

Appendix A: Sample Log file ... 53

V

ABBREVIATIONS AND DEFINITIONS

Action machine A model component that describes the functionality of the

SUT at the level of action words.

Action word A high-level action executable by the SUT, implemented

with keywords.

BBT Black Box Testing.

Coverage language The syntax of forming coverage requirements.

Coverage requirement A formal test objective that defines the ending criteria of a

test run and acts also as a guideline to the guidance

algorithm with respect to the actions to be executed in order

to fulfill the ending criteria.

Data table A data structure containing the external data to use in data

statements in TEMA models.

GUI Graphical User Interface.

Initialization machine A model component that defines necessary initialization

procedures for the SUTs.

Localization data GUI texts in some specific language.

LPT Long Period Testing.

MBT Model Based Testing.

MeeGo Linux-based open source mobile operating system project.

OS Operating System.

Refinement machine A model component that contains keywords implementing

action words.

SMS Short Message Service.

 VI

SUT System under Test.

SW Software.

Symbian An Operating system used for mobile phones, owned by

Nokia Corporation.

Symbian S^3 Latest Symbian operating system version, officially released

in Q4 2010.

TD Testability Driver, an open source test automation tool

owned by Nokia.

TEMA Test modeling using Action Words, a model based testing

tool.

Test model A formal model that describes the functionality of the SUT

in model based testing.

Test modeler A person who builds a model for test execution.

Ubuntu An operating system based on the Debian GNU/Linux.

UI User Interface.

USB Universal Serial Bus.

Use case An action sequence that an actor performs within a system

to accomplish a particular goal.

WLAN Wireless Local Area Network

1

1. Introduction

“In business, the competition will bite you if you keep running; if you stand still, they

will swallow you. “ – William Knudsen [1]

Unlike other fields which are more predictable, technology is moving rapidly, and its

developmental pace has been exponential. Whether it is small thumb shape flash disk

replacing a huge storage disk drive; or a small cell phone performing thousand times

better than a giant handset, technological change has already witnessed several new

dimensions in this dynamic era.

Emergence of the Internet and its wide use has united the whole world into a single

global village. It has made people more aware of new technologies which have raised

demands as well as choices. To meet the demands, satisfy consumers, and not to get lost

in a crowd of competitors, one must produce user friendly, reliable, qualitative and low

cost products, whether it is hardware, software or a mix of both. For that, new

technology, methodology, tools and processes must be adopted which can fulfil the

needs and the requirements of users to stay ahead in the race.

 Automation in SW testing is one of such methodologies. Automating software

testing can significantly reduce the effort required for adequate testing, or significantly

increase the testing which can be done in limited time. Tests can be run in minutes that

would take hours to run manually. Automated tests are repeatable, using exactly the

same inputs in the same sequence, something that cannot be guaranteed with manual

testing.

The main purpose of this thesis is to implement model based testing for automating

the software testing procedure. For this, a model based test tool TEMA has been used

along with a keyword based test tool Testability driver. Both test tools perform together

to automate test steps on SUTs. The SUTs used in testing are Symbian smartphones,

namely E7 and N8. For test automation purpose, this thesis mainly targets the cases

related to Camera and Messaging. For example: most basic use of camera to capture

images, recording videos etc. is automated. In addition this thesis aims to work with two

entirely different test automation tools, and demonstrates the way to establish a

communication channel between them. This thesis work provides an overall idea of test

automation; showing model based testing approach to be one of the most efficient and

viable approaches for UI automation in the context of Nokia smartphones.

1. Introduction 2

 By the end of this thesis, a reader will have an overall idea of how to make use of

model based approach and what new changes need to be done to update and improve

the current practice of keyword based automation.

The thesis comprises of six different chapters. Chapter 2 describes different test

approaches and their definitions. It includes some specific testing types that would be

used as an example for UI automation, for example: long period testing, and parallel

testing. It also explains about the model based test design and the corresponding

automation tool designed for it. Benefits and challenges of implementing automation

with model based testing will be also mentioned in short.

Chapter 3 describes the goals set before commencing the real test run. It describes

the automation tool being used, and explains the technical knowhow of these tools. A

detailed explanation on these tools is elaborated, along with the possible flaws in each

of them. The functional architecture of these tools is also shown together with some

screenshots of the GUI interfaces being used to analyze the scripts and results obtained.

Chapter 4 describes methods followed to perform the model based testing. It

describes the model‟s structure and execution as a whole. It also explains about

execution logic used, Linux host setup technicalities, SUT setup preconditions, tool

setup practice, and finally adapter‟s role is described in a practical way.

Chapter 5 shows the real implementation on the target environment set, as defined in

the chapter 4. Single/SUT test cases as well as multi/SUT test cases have been

automated with different test case scenarios. Alternative keyword based script for the

same cases have been also kept for comparison. Only the cases related to camera image

and video captures will be within target. Thorough analysis of results will be discussed

comparing the models and keywords.

The conclusions are in Chapter 6. This chapter includes information on how further

development of this thesis project can be achieved and tuned to achieve better

performance.

Appendix A is located at the end of the thesis. It shows information on a sample log

file generated during the text execution.

 3

2. Software Testing and Test Automation

“Testing is a process of gathering information by making observations and comparing

them to expectations.” (Dale Emery and Elizabeth Hendrickson) [2]

Testing is an inevitable part of the software engineering process. The purpose of

software testing is to find faults in the software and to verify that the developed product

fulfils the requirements set at the beginning of the software process. Software testing

can be both manual and automated. Manual testing could be appropriate to some

designated test sets and domains, but it fails behind especially when the same tests need

to be executed quite often and for a long period of time. This results in manual testing

being more time consuming and an expensive activity.

Software testing accounts for a large percentage of effort in the software

development process which requires systematic planning, execution and control to make

it more productive. It is a broad area, which involves many other technical and non-

technical sectors, such as specification, design and implementation, maintenance,

process and management issues in software engineering.

2.1 Software Testing in General

In general, the organizations perform software testing to identify defects in the software.

Defects in software testing can be defined as variance from requirement or user

expectation. There are several methods in software testing which can be followed to

discover the possible defects in software.

 Software testing has been categorized into many forms and types depending on the

need and variation of test cases. A section below describes various kinds of testing

strategies through Figure 2.1. In the figure, one axis shows the scale of the System

under Test (SUT), ranging from small units up to the whole system. Another axis shows

the different characteristics that we may want to test, including the most common

functional testing. The third axis shows the kind of information we use to design the

tests.

2. Software Testing and Test Automation 4

Unit

 Integration

System

 Pre-Integration

Test scales

Test Characterstics

Functional

Robustness

Capacity

Usability

Test System

Requirements

(Black box)

Test flow

Scripting

(White box)

Model Based Testing

 Figure 2.1: Different kinds of Testing, adapted from [3]

Classification based on Scale of the System under Test (SUT)

Unit Testing

White-box testing methodology applies to unit testing in which functionality of code is

tested generally at function and/or class level. Developers write the code to test and

verify the functionality of a piece of software.

Component Testing

Test method where each component/subsystem is tested separately.

2. Software Testing and Test Automation 5

Integration Testing

Integration testing is a testing method in which modules are combined and tested as a

group. Modules are typically code modules, individual applications, client and server

applications on a network, etc. Integration testing follows unit testing and precedes

system testing. [4.]

System Testing

System testing falls within black-box testing and is done to ensure that the entire

software system is in compliance with the requirements specification. It does not require

any knowledge of inner design (logic and/or code) of the system. [5; 4.]

Classification based on Characteristics to test

Functional Testing

Testing the features and operational behavior of a product to ensure they correspond to

its specifications. Testing that ignores the internal mechanism of a system or component

and focuses solely on the outputs generated in response to selected inputs and execution

conditions. [4.]

Robustness Testing

Robustness testing aims at finding errors in the system under invalid conditions, such as

unexpected inputs, unavailability of dependent applications, and hardware or network

failures. [6, p. 6]

Performance Testing

Performance testing is done to verify and validate systems response, quality and

reliability. The system is tested in various scenarios to check its speed and to determine

that how much stress or load the system can stand [4]. Power consumption testing is one

of the examples, which is one of the important things in the smartphone business.

Usability Testing

Usability testing focuses on finding user interfaces problems, which may make the SW

difficult to use or may cause the users to misinterpret the output. [6, p. 6]

Classification based on test design information

Black Box Testing (BBT)

Black Box Testing is a testing strategy based on requirements and specifications. Black

box testing requires no knowledge of internal paths, structures, or implementation of the

software

2. Software Testing and Test Automation 6

under test. This testing methodology looks at what are the available inputs for an

application and what the expected outputs are that should result from each input. [7.]

 An example of a black box testing process would be a test automation tool used by a

tester. A tester uses the test automation tool with the pre-written test scripts and

executes them. But, a tester does not necessarily understand any inherent technicalities

about the tool and script being used.

White Box Testing

White Box Testing is a testing strategy based on internal paths, code structures, and

implementation of the Software under Test. White box testing generally requires

detailed programming skills in most of the cases. [7.]

 An example of a white box testing process would be the same test automation tool

used by a programmer. A programmer has an understanding of the inherent

implementation details and also possesses knowledge of test scripting. He/she can

visualize the working phenomenon of a test script easily and also update it according to

the requirements.

Grey Box Testing

Grey box testing is a software testing technique that uses a combination of black box

testing and white box testing. Grey box testing is not a complete BBT, because the

tester does know some of the internal workings of the software under test. In grey box

testing, the tester applies a limited number of test cases to the internal workings of the

software under test. In the remaining part of the grey box testing, one takes a black box

approach in applying inputs to the software under test and observing the outputs. [8.]

The following section elaborates three different types of system testing approaches;

on which automation works were done extensively while preparing this thesis. This

form of testing are carried out in a daily or weekly basis to hunt the potential bugs in the

SW itself. Also, hardware related issues sometimes affect the execution of SW testing.

Below, these testing methods are mentioned in short, and will be elaborated more in

context of real test cases discussed in Chapter 4, and 5.

2.2 Software testing in context of Camera

In general, when a new Camera SW is released, it undergoes many different kinds of

testing practices. Some of such prominent testing methods executed for camera SW are

mentioned below. These methods are explained on the basis of how it is utilized while

testing corresponding camera related tests.

2.2.1 Stress testing

Stress tests force programs to operate under limited resource conditions. The goal is to

push the upper functional limits of a program to ensure that it can function correctly and

2. Software Testing and Test Automation 7

handle error conditions gracefully. Examples of resources that may be artificially

manipulated to create stressful conditions include memory, disk space, and network

bandwidth. [9.]

Practical Use Case: “Capturing many images in different light conditions, without any

storage media inside a phone”.

2.2.2 Parallel Testing

Parallel testing involves testing multiple products or subcomponents simultaneously.

The main purpose to conduct the parallel testing is to check the concurrency issues. For

example: a testing that involves starting a music player followed by opening a camera

application. When two or more applications are opened simultaneously, none of them

should get affected. It implies that one of the applications must remain opened in the

background.

Also the majority of nonparallel test systems test only one product or subcomponent

at a time, leaving expensive test hardware idle more than 50 percent of the test time.

Thus, with parallel testing, we can increase the throughput of manufacturing test

systems without spending a lot of money to duplicate and fan out additional test

systems. [9.]

Practical Use Case: “Recording videos and capturing images simultaneously in two

different Devices Under test (DUT), each having different SW versions”.

2.2.3 Long Period Testing

Long period testing is sort of a performance testing, where DUTs are automated to run

for infinitely long time. Devices are tested for longer period to investigate on the issues

like memory leaks, software freezing, and hardware failure. These issues otherwise can

never be seen during normal testing period. LPT has become a regular target of

automation for every SW company to assess the performance of SW beforehand.

Practical Use Case: “Capturing many Images and videos in a loop until the memory

card/storage media gets full i.e. running test for more than 24 hours”.

Among three different testing approaches mentioned above, only parallel testing and

long period testing will be considered as per the scope of this thesis. The case studies in

Chapter 5 of this thesis describe the methods used in carrying out these testing

strategies. Basically camera related test cases including image captures and video

recordings fall in the category of long period testing, whereas multi-phone messaging is

a good example of parallel testing.

Next section describes different methods of test automation used in practice.

http://www.onestoptesting.com/parallel-testing/introduction.asp

2. Software Testing and Test Automation 8

2.3 Classic methods of SW Test Automation

This section describes several classic testing processes that are widely used in SW

industry. We will start describing manual testing process followed by several testing

processes that use automated test execution. A diagram will be used to elaborate each

testing process, and notations used in these process diagrams are shown in Figure 2.2.

Some of the notations that are used to define the diagrams are as follows:

Manual Tester

Test Designer

Programmer/Debugger

Informal Document

Formal Document

Report

Manual process

Automated process

Automated interaction

Test Modeler
Scripts

Manual interaction

 Figure 2.2: Notations used in process diagrams, adapted from [6, p. 20]

2. Software Testing and Test Automation 9

Manual Tester: Manual testers perform SW testing activities manually. They put

themselves as an end user, and use most of all features of the application to ensure

correct behavior. To ensure completeness of testing, the testers often follow a written

test plan that leads them through a set of important test cases.

Test Designer: The Test Designer role is responsible for defining the test approach and

ensuring its successful implementation. The role involves identifying the appropriate

techniques, tools and guidelines to implement the required tests, and to give guidance

on the corresponding resources requirements for the test effort. [10.]

Test Modeler: The Test Modeler builds the logic behind the models. A well balanced

model in-line with the requirements of the project is needed. He/She possess a skill of

creating a model. The models need to be uploaded successfully to automate the test

cases later.

Programmer/Debugger: Programmer works on creating a script, execute them, check

the results, and if not appropriate updates the script again. He/She also has a deep

knowledge on technical knowhow of the tools being used for automation. A Debugger

analyzes through the test report generated during test execution. These test reports are

basically the logs which record all events being executed.

2.3.1 Manual Testing Process

Manual testing is an earliest style of testing which is still used widely. The test design is

done manually based on informal requirements documents. The test plan gives high-

level overview of the testing objectives.

The output of the design stage is a human-readable document that describes the

desired test cases. The test execution is also done manually as shown in Figure 2.3. For

each test case, the manual tester follows the step of that test case, interacts directly with

the SUT, compares the SUT output with the expected output, and records the test

verdict.

This manual test execution process is repeated each time a new release of the SUT

needs to be tested. This can become a boring and time consuming task if performed

repeatedly. Since there is no automation of the test execution, the cost of testing each

SUT release is constant and large. In fact, the cost of repeating manual test execution is

so high that, to keep testing costs within budget, it is often necessary to cut corners by

reducing the number of tests that are executed. This can result in SW being delivered

with incomplete testing, introducing significant risk regarding product maturity,

stability, and robustness.

2. Software Testing and Test Automation 10

Complete

Project

Information
Test Plan

Manual Test

Cases

SUT

Test Design

Test Case

Execution
Test Report

Complete

Project

Information
Test Plan

Test Cases

SUT

Test Design

Test Case

Execution
Test Report

Capture-Replay tool Scripts

Figure 2.3: Manual testing process (left) and a Capture/Replay testing process (right),

adapted from [6, p. 21]

The figure above depicts the differences in the manual and capture/replay testing

process. Details of capture/replay testing process are explained in a section below.

2.3.2 Capture/Replay Testing Process

Capture/Replay testing attempts to reduce the cost of the test re-execution by capturing

the interactions with the SUT during one test execution session and then replaying those

interactions during later test execution sessions. But test cases are still designed

manually.

Difference to manual testing with this approach is that a manual tester need not

necessarily test the repetitive test cases unless the SW interface or any other parameters

like UI has changed in SUT. The interaction with a SUT is managed by a tool, namely

capture/replay tool. When a new SW release must be tested, this tool can attempt to

rerun all the recorded tests and report which ones fail. To rerun each recorded test, the

tools send the recorded inputs to the SUT and then compare the new output with the

recorded outputs from the original test execution. Figure 2.3 describes Capture/Replay

testing process. [6.]

Flaws: Performance of Capture/Replay testing process is very fragile in nature.

Change in layout of window can diminish every test cases designed so far.

2.3.3 Script Based automation process

Script based automation uses test scripts to automate the test execution in a SUT as

shown in Figure 2.4. A test script can contain one or more test cases specification inside

2. Software Testing and Test Automation 11

it. In terms of camera based test automation, it can be launching a camera, capturing an

image, switching to video mode, tapping the screen etc.

The test scripts may be written in some standard programming or scripting

language. A scripting language is a set of commands for controlling some specific

software applications, hardware or operating system. The script based testing approach

solves the test execution problem by automating it. Each time that we want to rerun the

tests for regression testing, this can be done for free by just running the test scripts

again.

However, this increases the test maintenance problem because the test scripts must

evolve not only when some requirements change, but also whenever some

implementation details change. (For example: when some parameters change in the API

used to stimulate the SUT). In technical terms, we define it as Lack of Abstraction in the

recorded tests.

2.3.4 Keyword-Driven Automation process

Keyword-Driven Automation targets to overcome the maintenance problems in the

script based automation by raising the abstraction level of the test cases.

Complete

Project

Information
Test Plan

Test Cases

SUT

Test Design

Test

Implementation

Scripts

Automation Tool

Test Report

Complete

Project

Information
Test Plan

Test Cases

SUT

Test Design

Scripts

Automation Tool

Test Report

Test

Implementation

Test

Automation

Adapter

Figure 2.4: Script based (left) and keyword-driven automation process (right), adapted

from [6, p. 23]

http://en.wikipedia.org/wiki/Command_(computing)
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Operating_system

2. Software Testing and Test Automation 12

 Keyword driven automation involves using sequence of action keywords in the test

cases, in addition to data. As shown in Figure 2.4, the code adapter acts as an interface

between script and test execution tool. Adapter allows the tool to translate a sequence of

keywords and data values into executable tests. One example of keyword-based testing

automation is Testability driver, which is a tool open sourced by Nokia. It can be used

for test automation for Qt applications running on several platforms which has Qt

installed.

Testability driver has class library implemented in Ruby [11] language and provides

access to communicate with the target SUT in Ruby. Action keywords written in Ruby

have less dependency with the type of design or UI interfaces of the SUT. Hence, the

same script in Ruby can be used repeatedly for different SUTs or release versions

resulting on high level of abstraction of the test cases. This eventually reduces the

maintenance problems because the test cases can often be adapted to new version of

SUT environment.

Despite of all those higher abstraction, keyword-based automation process still

involves manual participation to some extent. For example: Test data are designed

manually, as well as verification of test coverage with respect to requirements has to be

done and maintained manually.

In the upcoming sections, the possible problems in automation and its solutions will

be discussed.

2.4 Model Based Testing

Model based testing is the automatic generation of efficient test procedures/vectors

using models of system requirements and specified functionality. [12.]

Unlike previously mentioned automation processes, with Model Based Testing both test

generation and test execution are automated. The test designer writes an abstract model

of the SUT, and then the MBT tool generates a set of tests with that model.

 The MBT can be divided into two different categories; online and offline testing.

Offline testing signifies test suite generation from the model and its later execution. The

export format of generated test cases depends on the used execution tool, and can be, for

example a test script. In the online test generation approach, tests are generated and

executed in same time. With online testing, it is possible to react to continual changes,

and make autonomous decisions. This makes it possible to test non-deterministic

systems and run infinite test runs. [13; 14.]

2.4.1 Offline approach

With offline MBT approach, test generation and execution are carried out separately.

Offline MBT testing process is described in Figure 2.5. The target system‟s behavior is

2. Software Testing and Test Automation 13

described in an informal requirements document. A model for test generation is made

from the requirement specification. The model is imported to the test generator. The test

generator generates test suites from the model with test requirements. Test requirements

are entered to a test executor. The test executor runs test cases against the SUT and

makes a report from the results. The executor is usually an external tool. [15; 16]

 Offline MBT test suites can be stored and run anytime without regenerating the test

suite. Therefore, it is possible to use the generated test suite for regression testing. When

the program changes one only needs to change the model and regenerate a test suite. An

offline MBT generator generates abstract test cases, which have to be made executable

before running them. Test cases are made executable so that the generation tool writes

tests in a format acceptable to the execution tool and the test execution tool then runs

tests against SUT. Therefore tests are made executable partly in generator and partly in

executor. The main thing is that performed test executions can be fully reused in the

same test execution platform. [17.]

System

Requirements

Model

SUT

 2. Build Model

 3. Test Generation

4. Concretization and Execution

Ofline

MBT tool

1. Test Requirements

 5. Test report
Test Report

Test Requirements

Test Suite

Test Execution

Figure 2.5: Offline model based testing approach, adapted from [6; 15]

2. Software Testing and Test Automation 14

2.4.2 Online approach

Model based approach employs online model based testing approach. It signifies that,

UI level automation performed in this thesis will use online based approach of MBT.

 With online model based testing, a model is created based on system and program

requirements. Then the model and test requirements are imported to the MBT tool. In

online MBT, a test generator and an executor are found in the same tool, because of the

possibility to make tests generation and execution at a same time. Before online MBT

can be started, the adaptation layer has to be implemented. The online adaptation layer

joins the SUT and MBT tester together. When the designed model gets uploaded, both

the test generation and execution is done by online MBT tool. Later, only after

implementing adapter application, it is possible to start the test run. The online MBT

tool performs test execution continuously after tests are generated, which means

forwarding one-step in the model, running that step immediately in the SUT and

analyzing the result. If the result differs from what it is expected, based on the model,

the test fails. [17.]

 Figure 2.6 describes the method of online model based testing approach.

System

Requirements

Model

SUT

Adapter

 2. Build Model

 3. Test Generation

4. Concretization and Execution

(Online

MBT) tool

1. Test Requirements

 5. Test report

Test Requirements

Test Report

Figure 2.6: Online model based testing approach, adapted from [6; 15.]

2. Software Testing and Test Automation 15

 Compared to the offline approach, the main advantages of online MBT are running

infinite test suites and testing non deterministic systems. The online model based testing

approach is connected directly and continuously to the model and this makes it possible

to react continuously to changes and perform autonomous decision-making. Therefore,

testing of non-deterministic systems is possible. By using online testing, it is possible

also to make the testing session as long as required, or until the program crashes. This is

especially useful when there is a need to test for example, memory leaks over a long

period. [16.]

2.5 Potential Challenges and bottlenecks

Despite of numerous benefits of test automation explained in above sections, we often

encounter very impractical and serious testing issues while executing the test cases. The

manual testing plays its role in such cases. In today‟s context of testing, combination of

both manual and automation in testing is inevitable to make sure that the errors do not

run out of the grip and potential bugs can be hunted down.

Some of the challenges/bottlenecks with test automation methods are mentioned

below [18; 19.]:

1. Expert workforce needed: It requires a special skill set to work with, write, and

manage the test scripts. The people with these skills are often difficult to find and

expensive to hire. They also need regular training to keep up to date with new

techniques. This chaos may increase more when, there is only one expert in the team,

and he is involved in different teams.

2. Tools complexity: Automation tools might possess some hidden defects and hence

follows an incremental procedure of tuning. Moreover, there may be some hidden

preconditions to setup these tools, which are not possible to communicate through

installation directory or wikis. On such situations, creating automated testing scripts is

very cumbersome and complex. It can take a team of people months and even years to

set up properly.

3. Maintenance issues: Basically, automation in GUI testing depends very much on the

way UI software has been designed. UI design keeps on changing every now and then,

and developers will not finalize it until the best design is assured. Every time when the

UI design changes, the scripts that were written to originally test the application have to

be re-written for the changes. This is a time consuming task and can often take longer

than manually testing the application in the first place.

4. Resistive to change: In practice, not all test combinations can be executed by the

automation tools. There could be thousands of test combinations possible. And as

explained earlier, UI design keeps on changing a lot, which forces the test engineers to

change the script accordingly. Hence, to change such a large number of scripts in short

time period continuously is not an easy task. There is always some limitation to the

number and types of test cases to be selected.

 2. Software Testing and Test Automation 16

5. Reliability factor: There are certain situations, where even in failure cases we cannot

get any information from the logs generated by the automation tools. For example:

while testing phone through automation tool, if device reboots or resets automatically,

there could be numerous reasons behind it. And such critical behaviors could not be

tracked by these automation tools. There we need manual participation to dig out the

core issues, and try out other tracing methods.

Amidst the various problems mentioned above, the concept of test automation using

model based approach offers several benefits in testing process. In short, we can

summarize the benefits of MBT as follows. [19.]

1. Easy maintenance: All models can use the same test driver scheme to produce test

script for the requirements captured in each model. When the changes in UI design

occurs, only the logic of model needs to be changed, while when the test environment

changes, the test engineer just modifies the test driver scheme.

2. Earlier and More Fault Detection: Model based testing not only automates test

execution, but also automates test generation. In practice it means that the tests are

generated and executed within same frame of time. This increases the chance of finding

bugs in earlier phase already [20, p. 10]. With MBT, most of the bugs are found already

in the modeling phase. Finding bugs in earlier phase helps developers to fix the bugs

earlier too.

3. Traceability: Most of the MBT tools also provide the traceability from the tests to

the requirements. This function makes the detection of the source of the faults easier.

The test engineers can quickly find out the part causing the fault.

4. Reduced Testing Cost and Time: Using MBT tools, test cases generation and

execution time can be reduced significantly. The requirements change only requires

change in the model and that helps in saving a lot of time as compared to the manual

design of the test cases.

This chapter described on how test automation works in general, how it differs in

execution and where it needs to be addressed on some specific situations. Also, the

importance of using MBT approach was explained. The upcoming part is centered on

the implementation strategies, and more practical issues involved with deploying model

based concept are explained.

 17

3. UI level Automation: Smartphones

A smartphone is a mobile phone that offers more advanced computing ability and

connectivity than a contemporary feature phone. [21]

Smartphones can be regarded as handheld computers integrated with a mobile

telephone. They allow the user to run and preemptively support multitasking

applications that are native to the underlying hardware. A smartphone runs complete

operating system software providing a platform for application developers. Some

examples of operating systems are Symbian, Android, Windows Phone, iOS etc.

This chapter describes on automation practices followed prior to thesis

implementation. UI level Automation comprises execution of several test cases that are

related to UI Software design. UI Software design for a smartphone is a broad field, and

entails many components and applications inside it. For example: Camera, Messaging,

Music (Audio, Video), Web Applications, TV applications etc.

This thesis focuses mainly on UI level automation based on camera specific to

Nokia smartphones using Symbian S^3 OS.

 The next section describes on goals set. Before delving deep into those, it is wise to

have a look on what tools are being used with our approach. Following three

independent tools are being used:

 Testability Driver (TD): Ruby [11] based test automation tool using

keywords/scripts owned by Nokia. The Linux version of TD is open source and free

to use for development and testing.

 TEMA: Python and Java based GUI automation toolset for model based testing.

Also an open source tool owned and licensed by Tampere University of

Technology. This tool executes the model and makes it run with SUT.

 TEMA-TD Adapter: Making synchronization between above tools. Adapter holds

logic of bridging a communication gap between these two automation tools.

More information on above tools is explained in upcoming sections.

3. UI level Automation: SMARTPHONES 18

3.1 Goals set

The goals set for this thesis can be summarized in reference to Figure 3.1. They are as

follows:

1. Executing models on Ruby based automation tool (TD) directly, and automate the

test execution (basically Camera based tests).

2. Use of TD in Linux for Symbian devices. (TD tool in Linux is developed for MeeGo

devices only). Goal was to try using the tool for Symbian device, for example Nokia

N8.

3. Executing same models in Multiple SUTs at a same time.

4. Communicate with SUT easily through IP address/WLAN.

 Figure 3.1: Automation Test Bed architecture

 3. UI level Automation: SMARTPHONES 19

The test bed architecture shows the functional implementation of the test automation

approach. The three tools mentioned in the beginning of the Chapter 3 are visualized in

Figure 3.1. The goal is to use these tools and automate the software testing in SUTs

directly. Before performing the test run, models are designed using Model Designer

tool, and are uploaded to TEMA Web GUI. The coverage requirements for the test

generation are also defined in Web GUI. Coverage requirements not only define the

ending criteria for a test run, but also influence the test execution and the direction in

which the execution tends in a given state. After having all the target roles defined and

devices assigned, follows the test execution part. For this, Web GUI instructs TEMA

test engine to initiate the test runs. TEMA test engine in turn listens to a port for a

connection with adapter.

Adapter is an application that holds XML file for SUT definitions, and can check

whether SUTs are ready for test execution or not. When SUTs get ready, the adapter

application establishes connection with them and informs TEMA test engine. On

receiving the connection information from adapter, TEMA test engine starts to run the

server, which in turn executes the models. The phase of communication between

adapter and SUT takes place through IP address generated by qttas server application

running in both SUT and host. SUT when ready gets connected to WLAN. Afterwards,

qttas server running in SUT generates IP address connection details. This IP address

information is stored in XML file inside the host, which is fetched by adapter before a

test run is started.

3.2 Tools used

This section talks about the automation tools involved in more descriptive terms.

3.2.1 Testability Driver (TD)

Testability driver is a testing tool open sourced and owned by Nokia. It has been used

for automation purpose, basically with Qt applications running on any platform that

runs Qt. Platforms that have been successfully used are: Linux, Windows, Mac,

Symbian, and MeeGo. [22.]

The basic architecture of Testability driver as shown in Figure 3.2 is explained

below.

1. Language

Ruby language is supported as script by Testability driver. Ruby is expressive, and easy

to learn quickly.

2. Agent

Agent is the component that runs on the SUT and handles the communication between

the applications and testing framework.

3. UI level Automation: SMARTPHONES 20

OS
Ruby VM

P
la

in
 s

c
rip

t

T
e

s
tU

n
it

rS
p

e
c

C
u

c
u

m
b

e
r

Testability Driver

Visualizer

QT

OS

Testability Plugin

QT

QT app

Agent

(QTTAS server)

XML over TCP/IP

Host SUT

 Figure 3.2: Testability driver Architecture, adapted from [22]

3. Testability plugin

This library will be loaded by started applications. This will give access into process of

the tested application.

4. Communication

Agent communicates with testing framework using XML over TCP/IP address. XML

files contain the information regarding SUT and the type of communication being used

by SUT to connect to TD. Several methods like USB, Bluetooth, and IP address can be

used for communication.

5. TDriver ruby library

This is a class library implemented in Ruby language and provides access to

communicate with the target SUT in Ruby language.

6. Visualizer

Visualizer is an application that visualizes the application under testing. It helps to find

out the objects in the application and also the properties for each object. The Visualizer

application with a SUT‟s home screen captured is shown in Figure 3.3. In Image view

section, the view in SUT gets captured to Visualizer. On the right hand side, there is

more information about the type of objects being opened in Home screen. Lower part of

Visualizer contains code editor, where scripts can be written and executed in SUT.

 3. UI level Automation: SMARTPHONES 21

 Figure 3.3: Visualizer mapped with SUT‟s home screen view

 More information about Visualizer will be discussed in Section 4.4.

3.2.2 TEMA Toolset

TEMA Toolset is a package targeted for easier deployment of MBT in the domain of

smartphone application GUI testing. This toolset is developed and owned by Tampere

University of Technology, Department of Software Systems. The methodology is based

on long-term research on MBT and practical case-studies with industrial partners. The

features of TEMA‟s two-tier modeling approach include the ability to reuse high-level

models as the basis of test generation among different smartphone platforms. [23.]

The practical product of TEMA project is a set of tools designed for creation and

execution of model based tests. The toolset can be divided in five distinct parts, and its

structure is illustrated in Figure 3.4 inside a dotted box.

3. UI level Automation: SMARTPHONES 22

Model

Designer

TEMA Web

GUI

Test

Configurer

TEMA Test

Engine

Model

Composer

TEMA-TD

Adapter

Model Utilities

Video

Recorder
Debug Tools

Test

Configuration

Configured

Model

Test Model

Test Log

Test Run

Footage

Test Execution

Script

Test

Debugger

Chief

Tester

Keyword Execution

Test Generation

Test Modeling

Test Design

Test Debugging

Test

Controller

Diagram symbols

Tool Artifact
Data

Control Uses

Model Library

Refinement

Machines

Action

Machines

Data

Tables

Localization

Tables

External Test Tool

Testability Driver

Visualizer

QTTas Server

SUT 1

SUT N

Test

Modeler
Test

Designer

Test

Engineer

 Figure 3.4: Test tool architecture, adapted from [24]

The first part is Test Modeling where models and its corresponding data tables,

localization tables etc. are created. Second part is Test Design and Control where tests

are launched and observed. The third part consists of Test Generation that is responsible

for assembling the tests and controlling their execution. Fourth part is keyword

execution which holds the logic of binding SUT and Engine, and communicates them

with help of keywords. Fifth part is Test Debugging, which deals with analyzing the test

log generated after test execution.

Test Modeling is done with a design tool, Model Designer. It is a tool for creating

action machines, corresponding refinement machines, and data tables. Action machine

is a model component that describes the functionality of the SUT at the level of action

words. Similarly, Refinement machine is a model component that contains keyword

implementations for action words. Keywords are low-level GUI events, used for

implementing action words. [20, p. 11]

For example: the event of launching camera, if categorized to model based

components, will look as follows:

 Action word: aw_LaunchCamera

 Keyword: kw_LaunchApp „cameraapp.exe‟

3. UI level Automation: SMARTPHONES 23

Data table is a data structure containing the external data to use in data statements.

Whereas localization table is a data structure that contains localization data. Thus the

output of Model Designer in first part is basically a well balanced model where required

steps of automation are recorded in terms of states, in structure of Finite State Machine.

After model designing part, next is to design how to control the testing of these

models. For this, it contains a Web GUI which is used basically to launch the test runs.

The step on setting up the test is to specify a coverage requirement which defines what

must be done in order to complete a test. After that, other parameters of test are set, such

as number of SUTs, number of adapters used, types of SUT, as well as the algorithm to

be used in test generation. Combined, the coverage requirement and the other

parameters can define very different test runs, from executing use case to running the

test case randomly as stress testing. All this information is sent to the test generation

part, which starts running the test. As the execution proceeds, all significant events will

be captured into a test log. The Web GUI observes the log and provides a real-time

feedback on the test run.

After setting up test run through Web GUI, a test controller instructs test engine to

initiate test generation. For this, test controller first checks the coverage requirement it

received, from Web GUI and determines what model components are required for the

test run. These are passed to Model Composer, which combines them into a single test

model. This test model is handled by test engine, which determines the next steps based

on parameters received from test control. Both test control and test engine report the

progress of the test run into a test log. [24, p. 18]

When test engine starts to execute the test run, basically keywords gets executed

through models. Test engine relays them to the adapter application, and waits for the

response on connection to SUTs. The adapter in turn, checks the XML file for SUT

definitions and establishes a connection with SUTs. The adapter tool not only converts

keywords into the form understood by the SUT, but also manages the gradual execution

of complex keywords and returns data on whether the keyword execution was

successful or not back to test engine. For this thesis, we have used two Symbian based

SUTs, and these SUTs in the first hand are known only to adapter.

Practically, we had an external test tool called Testability driver, which is basically a

keyword based automation tool using Ruby Language. TEMA, on the other hand being

a MBT tool, was having totally different technical implementation. On such situations,

the role of adapter becomes crucial. When the models get executed completely, test log

can be downloaded from test engine, where the information of keyword execution and

their status are recorded.

 24

4. Methodology: Building Automation Test Bed

As discussed in the earlier chapters, this thesis implements the model based testing

concept with two different test tools and one adapter application in hand. This chapter

will show the methodology followed in building a test bed structure. Building a test bed

structure here mainly implies use of a Model Designer, Web GUI, test engine and SUTs

along with external test tool; Testability driver. In addition this chapter will put more

focus on screenshots of the components and tools used in the test.

4.1 Test Modeling and Execution Environment

Models creation and their execution are important phases of model based testing

concept. In short, Model Designer tool allows creating a model and the execution of

model is accomplished by using TEMA Web GUI. From our thesis scope point of view,

we will focus mainly on the implementation part with the help of GUI design. A model

targeted for two SUTs will be created, followed by an explanation of action machines

and refinement machines implementation.

4.1.1 Model Designer

Model Designer, as defined in Section 3.2.2, is the primary model creation tool in the

TEMA toolset. A few of its tasks are allowing the creation of model components and

data tables to be used for test automation, management of the model library, generation

of the utility components required in model composition, and assembly of the

components for test runs.

A GUI design of Model Designer is shown in Figure 4.1. The upper left part of the

figure shows the domain under which the product has been created with. The name

Symbian refers to the domain in the context of Figure 4.1. The lower left part of the

Model Designer contains a section that displays sequence of actions and corresponding

attributes used while creating action machine and refinement machine designs.

4. Methodology: Building Automation Test Bed 25

Figure 4.1: Model Designer UI design

The center part of Figure 4.1 shows the action machine implementation. Before

discussing on action machines and refinement machines, it is wiser to first see how

Model Designer tool is used to create a new model package. The procedure goes as

follows: A domain is created first, followed by the product family. Inside product

family we can have one or more products depending upon the requirements. In our case,

we created two products inside a product family. Similarly after creating a new product,

we can assign a new Concurrent unit. Inside each Concurrent unit, there are action

machines and refinement machines. Figure 4.2 shows a structure of the domain created

with Model Designer.

A point worth noting in Figure 4.2 is the SUT definitions. There are two different

SUTs being used namely sut_qt and sut_qt2. They differ by unique id value. More

explanation on SUT definitions could be seen from Chapter 5 of this thesis, where SUT

being used in test runs will be shown along with the underlying details.

4. Methodology: Building Automation Test Bed 26

 Figure 4.2: Symbian Domain and its structure in Model Designer

As an important component of a Model Designer, we have a sample action machine

and refinement machine created. As shown in Figure 4.3, each action started with aw is

basically an action word. Action machine holds the execution logic of the individual

events recorded inside a test case, and thus sequences followed in action machine

implementation are strictly followed during execution. In practice it means that action

related to CloseMessaging will start only after messaging application is opened. And

this execution sequence is held by action machine.

 Figure 4.3: Sample action machine design

4. Methodology: Building Automation Test Bed 27

 Figure 4.4: Sample refinement machine design

Refinement machine on the other hand deals with keywords, and possess detailed

explanation on each action words associated with action machine. For example: while

executing model package, when action word awLaunchMessaging is witnessed, it

switches to corresponding refinement machine implementation and initiate the set of

action to be executed for that action word.

As shown in Figure 4.4, when action word awLaunchMessaging is invoked, it is

implemented in refinement machine with three sequences in row:

start_awLaunchMessaging, kw_LaunchApp „mce.exe‟, and end_awLaunchMessaging.

The refinement action that launches the messaging application and is understandable

to SUT is the keyword kw_LaunchApp „mce.exe‟.

Thus after creating a model package bundled with requirements in terms of state, the

next step is executing these model followed by the test generation phase. This initiation

is carried out by TEMA Web GUI. We will discuss the role of Web GUI next.

4.1.2 TEMA Web GUI

Within TEMA tool set, Web GUI holds the responsibility of launching the test runs,

when model package gets uploaded. Before the launching of test runs, Web GUI needs

to follow the sequence of activities, for example: the loading the model package,

selecting the test mode, defining target roles, data table selection etc. Web GUI also

checks whether other parameters of the test are set, such as number of SUT, number of

adapters used, types of SUT, as well as the algorithm to be used in test generation.

4. Methodology: Building Automation Test Bed 28

At first, a coverage requirement must be specified in order to define the desired areas to

test in the test run, i.e., what must be carried out to complete the test run successfully.

Figure 4.5, shows the way of specifying coverage requirement through the mode

selection in Web GUI. Typically, the coverage requirement is a logical expression

composed of actions that are interconnected with logical operators such as 'AND', 'OR'

and 'THEN'. The order of executing these actions, action words and keywords in

practice, can be further modified with parentheses. However, the coverage language

also admits of the presentation of coverage requirements in the form of regular

expressions, enabling the execution of aforementioned long-period tests by, for

instance, executing all actions of the test model, resulting in a virtually endless test run.

[20, p. 14]

 Figure 4.5: Coverage requirement through mode selection

In Figure 4.6, two SUTs with different device definitions which were created in

model package are being assigned the target roles, before pushing them to test runs.

Also the number of adapters running for the automation purpose makes sense. For our

case, we had only one adapter running for translating keywords from model to SUT.

Once the device assignment is successful, device settings are saved, and Web GUI

reaches to the phase of test run. All these saved contents initiating test runs are recorded

in test log, which can be downloaded after test run is finished.

4. Methodology: Building Automation Test Bed 29

 Figure 4.6: TEMA Web GUI assigning role to two different SUTs

Figure 4.7 shows Web GUI launching a test run. It can be seen that there is a long

list of actions that Web GUI performs before initiating test runs. There is a choice

before commencing test run regarding display of executed events. For example, if you

want to see only keyword related events, you can simply check the show keywords box.

 Figure 4.7: Web GUI launching a test run

4. Methodology: Building Automation Test Bed 30

4.2 TEMA Test engine

After a test run gets started, test engine plays a central role in the generation of tests.

But before that, the system checks if a test configuration is created successfully or not.

If a test is successfully configured, it goes on composing a model successfully. Next is

to execute the generated test run in SUTs. At first test engine sends a query to adapter.

Since, adapter holds a file with SUT definitions, whenever SUTs get ready, adapter can

be used to bind these SUTs ready for execution. Figure 4.7 shows adapter waiting for a

connection from clients.

Once adapter realizes SUTs to be up and running, it creates a communication pipe

between test engine and SUTs directly. The moment adapter gets connected with a

Client (SUTs), test engine becomes active and test execution gets started. As shown in

Figure 4.8, every time when a test engine executes the tests, it is verified by adapter to

check if the keywords get executed to clients (SUTs) or not.

After the test run finishes or when it is stopped, the log file can be downloaded from

the GUI. This log will contain the detailed information on different events execution.

 Figure 4.8: Test engine executing keywords on SUTs

4. Methodology: Building Automation Test Bed 31

4.3 TEMA-TD Adapter

In the course of the test run, keywords are executed in the test model and these

keywords are further relayed to the SUT by test engine. Adapter plays a role to translate

the keywords in between and verify that the SUT has successfully executed them.

Furthermore, the adapter tool not only converts keywords into the form understood by

the SUT, but also manages the gradual execution of some more complex keywords and

naturally returns data on whether the keyword execution was successful or not back to

test engine. [20, p. 18]

 Figure 4.9: Adapter initializing SUT

The name TEMA-TD refers to the test tools, and adapter communicates with SUTs

to bridge the gaps of these tools. Figure 4.9 shows adapter adding the SUT to check if

SUT is ready and running. The sign > shows that SUT was added successfully with

device name sut_qt. More SUTs can be added the same way, just by specifying different

device names in parallel.

4.4 TD Visualizer and SUT

Visualizer is purely a TD based tool. It is used basically to show the SUT to the user in

a similar fashion as TD perceives it. Visualizer shows how a SUT is composed of test

objects and where particular test objects can be found on the UI. Also attributes,

behaviors, methods and Qt object API are shown. Visualizer also helps scripting by

providing an UI for creating attribute based object identification strings. Visualizer

consists of three main parts: Image view, Object tree, and Properties window. [26.]

Image view part is responsible for capturing screen view of SUT being connected at

certain point of time. If there are more than one SUT being used, then SUT that is

selected as active connection will be mapped in Image view. In Figure 4.10, Image

view part is situated on upper left part of Visualizer, and messaging application has

been mapped in Image view for sut_qt. This is because sut_qt is selected as an active

connection, and the messaging application of a SUT is launched.

4. Methodology: Building Automation Test Bed 32

 Figure 4.10: TD Visualizer components interacting with SUT

Object tree, situated in the upper middle part of Visualizer, depicts the hierarchy of

GUI objects of the SUT. Selecting an object in the tree will highlight it in the image

view. Right clicking on items brings up a context menu with further options.

Properties window on the other hand shows a list of objects and their types. This list

contains only those objects which are currently being opened with active connection in

Image view. In the upper rightmost side of Visualizer, the properties window also

shows more details about the selected object in tabs, including Attributes, Methods and

Signals for Qt SUT. The Methods tab shows the proper semantics of using attributes

while scripting with TD.

The Visualizer also includes a ruby code editor that will help on writing and fixing

automated tests. Code editor section lies on lower half part of Visualizer. The purpose

of Visualizer code editor is to integrate test script coding and SUT inspection into one

application. Having built-in code editor allows TD-specific features, as well as inserting

data from SUT into editor directly without using clipboard. [27.]

4. Methodology: Building Automation Test Bed 33

 Figure 4.11: Code editor executing script

Figure 4.11 shows the code editor starting to run the Ruby script. When a script is

run through code editor, a script console appears which shows the progress of test script

and reports failure if some problem occurs during script run. While script is being

executed, the Image view in Visualizer shows the screen capture in Figure 4.11. More

information on installation of Visualizer and script in Ruby with TD can be seen at [27].

 34

5. CASE STUDIES

After building test bed for the model based implementation and having tested the

connection to SUT through adapter in interactive mode, the challenge was to be able to

execute the entire model (which basically comprises several keyword implementations)

on SUT. For this purpose, we chose two real test use cases to automate. One was related

to Camera, where Image capture and Video recording were automated for a long period

testing. And another was related to messaging, where multi-phone messaging activity

was automated. This part of thesis will contain explanation on specific procedure

followed such as: SUT definitions, adapter implementation, action machine design,

refinement machine design, and TEMA test engine implementation.

5.1 Case Study I: Image capture and Video recording

Automating the use cases of Image capture and Video recording incurs series of test

steps. The decomposed steps are mentioned below.

(A) Image capture use case possesses following finer steps:

 (i) Launch Camera.

 (ii) Press Capture button or tap capture icon.

 (iii) Press or tap „Back‟.

(B) Video recording use case possess following finer details:

 (i) Launch Camera.

 (ii) Tap on Video recorder icon.

 (iii) On video mode, press capture button or tap capture icon.

With above mentioned test steps, it is clear that the model based implementation

needs to automate these steps and it should be executed successfully in SUT(s). In other

words, these steps are the user requirements that are supposed to be automated. Thus,

the first step is to design a model through a Model Designer tool that can incorporate all

those test steps in one bundle.

5. CASE STUDIES 35

 Figure 5.1: Action machine design using Model Designer

Designing a model here mainly includes designing of action machine and

refinement machine. Figure 5.1 shows the action machine design that possesses

execution logic to automate the image capturing and video recording steps.

Action machine contains series of action words starting with a suffix aw. Each

action words are meaningful in the sense, whenever the test engine witnesses any action

words, it processes the action and the results are seen in SUT. Figure 5.1 shows that

execution of awLaunchCamera results on launching the camera, and awCloseCamera

closes the camera. As mentioned in Section 4.1.1, action machine also tells about the

order of execution that the test steps should follow. For example: action word

awTakePicture should be executed only after successful execution of action word

awLaunchCamera, and that sort of logic is set with action machine design. Next is

refinement machine design, which actually deals with keywords and behaves according

to action machine design.

5. CASE STUDIES 36

 Figure 5.2: Refinement machine design using Model Designer

As shown in Figure 5.2, refinement machine basically elaborates each action

corresponding to action words. Refinement machine specifies the order of keyword

execution corresponding to each action words. Hence, implementation of refinement

machines becomes straight forward if we have robust action machine design. On the

other hand, the figure shows states where transitions are implemented using specific

coordinate values. For example: the keyword kw_ExecOnSut tap_screen 20,570 has

been used in specific for certain transitions. This coordinate values can change rapidly

with each new SW releases, and in such cases the new models needs to be created again.

This can simply increase the number of states exponentially high, which might be

difficult to maintain in the long run. For our thesis scope, this problem can be overcome

by using a suitable adapter application, which enhances the possibilities of using wider

range of keywords. Based on this an efficient model can be designed, that requires less

maintenance and is not affected by frequent UI changes in SW releases. Section 4.1.1

showed some more explanation of sample refinement machine design.

 After designs are ready, a model package comprising these designs in bundle is

extracted and fed to Web GUI, to get ready with test execution and generation. Web

GUI is a tool that enables launching of test runs. Before launching test runs, a series of

activities are performed. At first the extracted model package needs to be uploaded

through Web GUI. Figure 5.3 shows a glance of how uploading is done.

5. CASE STUDIES 37

 Figure 5.3: Model package uploaded through Web GUI

There could be multiple model packages in the list, each containing different model

implementation. In our case, the name of model package extracted was Symbian_final,

which contained the model design for automating both the Imaging and Messaging use

cases. After successfully uploading the model, a coverage requirement must be

specified in order to define the desired areas to test in the test run, i.e., what must be

carried out to complete the test run successfully. Section 4.1.2 can be referred to see

how the coverage requirements are set through mode selection.

 Following the mode selection phase, the next action that Web GUI performs is

defining the target roles. Figure 5.4 shows method of defining target role to a single

product.

 Figure 5.4: Defining a single target role to a product

5. CASE STUDIES 38

 Figure 5.5: Defining multi-target roles to products

This involves assigning a certain device type a specific target role. In our case, we had a

model created for two products, namely N8, and E7. N8 was modeled for Image

capturing and Video recording purposes, whereas, E7 for messaging automation.

 Web GUI on the other hand can also accommodate more target roles, if more than

one products needs to be tested. In this case, we add one more target role, and select a

different device type.

 From our thesis scope point of view, we will assign two target roles to the same

device type, so that there is uniformity in execution. For example in Figure 5.5, the

device type N8 has been chosen for two different target roles.

Main goal to perform this action is to see whether one model can be executed to

more than one device at the same time or not. Also with Web GUI the need of creating

two device types arises because we have two SUTs implemented for automating Image

capturing and Video recording cases namely sut_qt and sut_qt2. Each of the device type

created can be assigned to any of those SUTs. Next is to select applications to each

target role, as shown in Figure 5.6.

 Figure 5.6: Selecting applications for target roles

5. CASE STUDIES 39

 Only camera application is seen in Figure 5.6 because model package designed

includes only camera application implementation for product N8. After selecting

applications for each target roles, next step is to assign a device to each of the target

roles so that the selected application could be run on the assigned device. Figure 5.7

shows the method of assigning a device to each target role.

 Figure 5.7: Device assignment to each target roles

 In the Figure 5.7, the two different target roles have been assigned to two devices,

sut_qt and sut_qt2. After successful device assignment, the Web GUI prepares the test

configuration package from the series of actions performed earlier. This test

configuration package is fed to the test engine, and the test engine initiates the execution

of test models in real. And to implement test execution in real SUT, we need to make

sure that the SUTs are up and running.

 But, there is a barrier in communication between SUT and test engine, as they are

implemented under different technical variations. Hence, we have used adapter to

bridge the technical gaps between test engine and SUT. Adapter can track and verify

that SUTs are up and running, and in other hand test engine can track adapter.

Hence, following three actions must be verified to get succeed in executing models

in real.

(i) SUTs are defined in XML definitions in Host.

(ii) Adapter checks and gets connected with SUTs.

(iii) Test engine executes, and finds adapter connected to SUTs.

Figure 5.8 shows XML file used for SUT definitions. This file holds the definitions for

one SUT, in this case sut_qt. This XML file resides in Host side, and is accessed by

adapter later when the connection to SUT is needed before test execution. Host keeps

5. CASE STUDIES 40

connection with SUTs through IP address. For that, both SUT and host has qttas server

running in common. When SUT is ready to be tested, the qttas server is started in SUT,

and it generates IP address on the screen. This IP address is unique, and does not match

with any other IP addresses.

 Figure 5.8: SUT definitions in XML

If more SUTs are to be tested, each of them has to have qttas server running so as to

generate IP address and get ready to be connected to host. The IP address generated in

individual SUTs must be recorded in the file as shown in Figure 5.8. To include more

SUTs in test runs, we need separate definitions with unique Id (for example: sut_qt2)

and unique IP address.

 Next, adapter will check if the SUTs are connected or not. Figure 5.9 shows an

adapter getting connected to SUTs.

In Figure 5.9, adapter successfully adds sut_qt and sut_qt2 in the connection list.

Also, using adapter console, keywords can be executed directly in interactive mode.

This is useful in the first round to test whether adapter connection with SUT was really

successful or not. After successful binding of adapter with SUTs, test engine execution

becomes meaningful. Now we can track back to the above mentioned three actions back

to back. First, SUT definitions are ready. Second, adapter gets connected to SUTs

already. Now, the only action needed is test engine starting the test runs.

With first and second actions being successful, execution of test engine goes straight

way. That is, when a test run is executed by test engine, it first checks adapter regarding

SUTs connection. Figure 4.7 in Chapter 4 can be referred to visualize how the test

engine waits for adapter connection with SUTs. Since, adapter is already connected, test

engine starts performing test execution, and as a result the keywords that were modeled

in model package start to execute in real SUTs.

 Figure 5.9: Adapter connecting with SUTs

5. CASE STUDIES 41

 Figure 5.10: Test engine executing model package contents

Figure 5.10 shows test engine successfully executing the models. It shows the

console of Web GUI, consisting of series of events executed by test engine along with

adapter‟s verification of SUT connections. When the execution ends, either successfully

or with failure, it stops test engine, which needs to be started later again to resume the

execution process. Test engine records details of execution in a log file, which can be

downloaded after the end of test execution. The generated log file is shown in Appendix

section. Nokia E7 and N8 were tested as a sample SUT for this model test execution as

shown in Figure 5.11.

 Figure 5.11: SUTs (Nokia E7 and N8) used in Test Execution

5. CASE STUDIES 42

 It is important to mention here that to execute the same model in different SUTs; the

SUTs should have same baseline software. For example, it means if a model for image

capture is designed for a product N8, then to be able to execute the same very model

also in another product (e.g. E7), there should be similarity in GUI design related to

camera operation. Support for multiple SUT execution with a single model not only

helps on faster bug finding, but also saves time, and repetitive test runs can be made

easily. And especially the Nokia‟s smartphone including N8 and E7 use similar camera

UI designs. Hence, reusability factor grows much higher.

5.2 Case Study II: Multi-phone Messaging

Multi-phone messaging is one of the popular use cases tested in UI level automation to

ensure whether a phone can handle multiple tasks concurrently or not. Basically idea is

to automate the process of sending SMS and receiving it successfully. Hence, basically

the design of this use case needs at least two SUTs, one working as sender, and the

other as receiver. For this case study, we will only discuss on designs of action machine

and refinement machines. Rest the test launching and execution mechanism is similar to

earlier case study. That is after model package is ready; the three actions mentioned

earlier needs to be fulfilled prior to initiating test run which involves role of test engine,

adapter, and SUT definitions.

 Figure 5.12 shows the structure of a multi-phone messaging model comprising

individual action machine and refinement machine design for both sender and receiver.

Designing a model for sender requires relatively more steps in comparison to the

receiver. The reason is because the sender is involved in many different actions like

writing a text message, allocating the receiver‟s name, and initiating the sending

process. Whereas, receiver simply receives the text message and verifies it. This

verification message is recorded in log and/or also possible to see in Web GUI console.

Figure 5.12: Structure of a Multi-phone Messaging model

5. CASE STUDIES 43

Figure 5.13: Action machine design for Sender

Action machine implementation is shown in Figure 5.13. This design simply

contains the upper level action words that tell about the logic of messaging to be

followed. This is refined into more detailed form in Figure 5.14 with the refinement

machine design.

Figure 5.14 shows refinement of action words into more detailed form. This

refinement action will be targeted to only one SUT that has been chosen as Sender. In

this case, sut_qt3 has been chosen for sender role. Hence execution of the model will

first target the sender, and in sender side message gets typed, composed, and sent to the

receiver. Receiver on the other hand, upon receiving a message, launches the inbox and

opens the message. In this case, sut_qt4 is the receiver.

5. CASE STUDIES 44

Figure 5.14: Refinement machine design for Sender

Thus, the implementation of action machine design for receiver contains action

words involving launch of messaging and opening message inside phone inbox as

shown in Figure 5.15.

 Figure 5.15: Action machine design for receiver

5. CASE STUDIES 45

 Figure 5.16: Refinement machine design for Sender

Refinement machine for receiver will hold the logic to implement the action words

in the above figure. Action word awReceiveMessage is refined further into smaller

actions. It consists of actions like opening inbox, message, and then verifying back

about message details. Figure 5.16 shows the refinement machine implementation for

receiver. The design of implementation is quite similar to sender, only verification part

is bit different.

5.3 Analysis of Results

The two case studies performed can be used as a reference to evaluate the goals set in

Section 3.1. The analysis of test results is based on how well the test methodology

mentioned in Chapter 4 addresses on achieving the goals.

The main goal achieved was the successful execution of a single model to multiple

SUTs at the same time. In other words, we were able to execute one or more use cases

on two different phones simultaneously. The entire test run performed were divided in

three different combinations. First combination included only testing of camera based

actions.

5. CASE STUDIES 46

Second combination included only messaging related tasks. And with third one both

combinations were tested jointly.

 Camera based test run automated the actions like image capturing and video

recording in a loop. The test run successfully captured 1000 still images and around 800

videos in three hours. No problems were seen during test execution, and test run went

smoothly. Similarly, messaging related test run automated the text message sending

procedure. One of the SUT composed the text message, and sent to the other SUT. The

other SUT checked message and sent back the received confirmation. This test run

basically focused on the use of parallel testing. The most productive test combination

included both camera and messaging in a single test run. The choice of selection for

executing either of them was random. Most surprisingly, the execution of these two

different test combinations went fine.

 Another important finding of the case study was implementation of connection

method between SUT and adapter using IP address. In general, when such automation

practices are carried out, we make use of connection methods like mini USB cable,

Bluetooth etc. But, these connection methods might cause chaos when there are more

SUTs to be tested and you have limited Mini-USB cables, or suppose if the host does

not support the Bluetooth connection at all, then it could really be difficult. We have

used IP address settings as connection method in our implementation, which simply

requires WLAN settings as default. When SUTs got connected to WLAN, the qttas

server was activated which in turn produced unique IP addresses, and these IP addresses

were assigned to individual SUTs during test execution.

Similarly, with this case study we have successfully tested the interoperability

between two different test tools. TEMA tool which is basically responsible for model

design and execution worked with a keyword driven test tool TD. In fact, SUTs that

were executing models are aligned to work only with TD and related keywords

according to their origin. Also, an implementation that we achieved through the case

studies was use of TD in Linux for Symbian Devices. TD tool in Linux is mainly

developed for testing MeeGo devices only. We were able to use this MeeGo based test

tool successfully for Symbian devices. With this implementation, the entire goals that

we planned were achieved.

Despite of many such benefits in automation practices with TEMA toolset, there are

still some areas where improvements could be made. One such area is model package

management. When multiple model packages are uploaded, sometimes the deletion of

certain uploaded models is not possible. The system throws an error saying that the

models cannot be deleted and it is being used by the test engine in some way. This issue

of deletion is not a blocker of test runs though. The reason is because it does not affect

the performance of the system and test execution at all. But definitely the fix for such

issues are expected in the upcoming releases of TEMA toolset.

Moreover, with the case studies we have seen relatively small models in use, where

test execution with TEMA stands good. But in large scale automation phases where

multiple tests runs needs to be carried out, where size of models can grow huge; the

5. CASE STUDIES 47

overall performance of the test execution might be of greatest concern. On the other

hand, there are enough evidences of TEMA being used for executing much complex and

large cases too. One such use of TEMA toolset can be seen from [24, p. 44-46]. This

kind of extensive long period testing is a regular practice followed in companies these

days to find out the bugs.

 48

6. Conclusion

Model based testing, though being a promising test automation methodology, has not

been favored yet in mainstream automation strategies in companies. The reasons could

be several, from inherent difficulty of adopting completely new ideas in organizations to

the lack of suitable tools for designing test models and generating tests. From our case

studies it is quite evident that online approach to model based testing could be a very

useful tool for carrying out long period testing, parallel testing and testing related to

memory leaks. Also the maturity in test modeling possessed by Model Designer looks

quite promising. This has definitely put model based testing in front row and justified

the reason behind its popularity.

From the company‟s perspective, model based testing with TEMA could be a good

candidate tool for industrial adoptions, provided that certain modifications are done in

the existing system. A few of those possible modifications are mentioned here as

recommendations. These recommendations are purely based on the experience gained

during the thesis completion. First and foremost, the installation of TEMA toolset

should be easier and straight forward. During installation of this toolset there were many

dependencies to be followed strictly, and it had a fair chance of user getting lost into

details. It would be good to have a single setup file that consists of all the needed

information, and one time installing should do the work. Another challenge to model

based testing approach is the complexity of a Model Designer tool itself. One needs to

follow the documentation and rules strictly before starting to use Model Designer. If the

task of designing model is simple and understandable, the extra cost to manage the

modeling part can be minimized. It is because model creation and execution could be

efficient if the testers possess some skills of test scripting and automation beforehand.

Thus, it signifies that the plain testers to perform model creation need trainings and it

can be tedious job sometimes to find such people. Another possibility to solve this issue

could be assigning a separate role of „test modeler‟ inside a workgroup.

 Similarly, models themselves have also some drawbacks. The biggest one of those is

the explosion of state-space needed. Even a simple application can contain so many

states that the maintenance of the model becomes difficult and tedious task. This issue

could be very critical, as it can have an impact to the stability of the tool itself. Thus,

more robustness could be achieved if we can overcome the issues of maintainability.

Finally, an adapter application should be written effectively. Effective here signifies that

a test modeler should be able to utilize maximum set of keywords implementation in a

model, when an external test tool is involved in test execution.

6. Conclusion 49

 The scope of implementing model based testing is not limited to any particular

platform or operating system. More work should be done to implement MBT in new

SW platforms. The implementation method followed in this thesis through case studies

could be a good example of implementing MBT in new platforms or operating systems

in coming days. One such new area of test automation would be Windows Phone in near

future. Nokia has already announced on endorsing Windows Phone as a primary OS in

their upcoming phones. It means there would be a need of significant level of testing

once a new product gets finalized. Various UI level automation practices could be

adopted. Once UI design for Windows Phone gets finalized, the milestone of

implementing MBT could be achieved by following three specific steps. First, we need

to build a test plugin which runs on both host and phone (for example: qttas server with

QT in case of Symbian OS). This test plugin will help in generating IP address in SUT

which in turn gets recorded to XML file of a host. Second, we can quickly write an

adapter application that will contain the definitions for SUT and logic for executing

keywords etc. Third, SUTs are flashed with proper SW releases and are running with

stable UI ready for being tested.

 Having said a lot about model based testing, this thesis also analyzed the practical

benefits and risks associated with its use. The most effective way to proceed with MBT

deployment at this phase could be introducing this testing paradigm through small pilots

and providing education and training about the tools to the target people.

 50

REFERENCES

[1] Quality quotes collection. [www] Accessed: 26
th

 December 2010. Web:

http://www.worldofquotes.com/topic/Quality/1/index.html.

[2] Dale Emery and Elizabeth Hendrickson. Quoted from an article in Software

Testing. Published: July 2, 2007. [www] Accessed: 2
nd

 January 2011. Web:

http://software-testing-zone.blogspot.com/2007/07/software-testing

definition.html.

[3] Jan Tretmans. Conference presentation in “Introduction to Model Based

Testing”. Slide page 8. [www] Accessed: 27
th

 January 2011. Web:

http://www.cs.ru.nl/~tretmans/.

[4] Software QA and Testing Resource Center. Article in Software QA interview

questions and answers. [www] Accessed: 3
rd

 January 2011. Web:

http://sqa.fyicenter.com/FAQ/Software-QA-Testing/.

[5] ApTest (software testing specialists). Article in “Types of Software Testing”.

 [www] Accessed: 1
st
 February 2011. Web: http://www.aptest.com/testtypes.html.

[6] Mark Utting and Bruno Legeard. A book titled Practical Model based Testing- A

 Tools Approach. Morgan Kaufmann, 2007.

[7] RedStone Software Inc. Article in “Black-box vs. White-box Testing: Choosing

the Right Approach to Deliver Quality Applications”. [www] Accessed: 1
st

January 2011.

 Web: http://www.testplant.com/download_files/BB_vs_WB_Testing.pdf.

[8] Rob Davis PE. Article on “Grey Box Testing”. Accessed: 1
st
 January 2011. Web:

http://www.robdavispe.com/free2/software-qa-testing-test-tester-2210.html.

[9] DACS Gold. Model Based Testing. Published: October, 2010 Vol. 13 No.3.

Accessed: 2
nd

 February 2011.

http://www.worldofquotes.com/topic/Quality/1/index.html
http://software-testing-zone.blogspot.com/2007/07/software-testing%20definition.html
http://software-testing-zone.blogspot.com/2007/07/software-testing%20definition.html
http://www.testdag.nl/images/2010/docs/3_dutchtestingday_jan%20tretmans_introduction%20to%20mbt.pdf
http://www.testdag.nl/images/2010/docs/3_dutchtestingday_jan%20tretmans_introduction%20to%20mbt.pdf
http://www.cs.ru.nl/~tretmans/
http://sqa.fyicenter.com/FAQ/Software-QA-Testing/
http://www.aptest.com/testtypes.html
http://www.testplant.com/download_files/BB_vs_WB_Testing.pdf
http://www.robdavispe.com/free2/software-qa-testing-test-tester-2210.html

REFERENCES 51

[10] Software Testing Forum, Article in “Manual and Automation testing Challenges”,

Accessed: 2
nd

 January 2011. Web: http://www.softwaretestinghelp.com/manual-

and-automation-testing-challenges/.

[11] Ruby Community. An open source programming language. [www] Accessed: 5
th

February 2011. Web: http://www.ruby-lang.org/en/.

[12] Bruno Legeard and Mark Utting. “Model Based Testing-Next Generation

 Functional Software Testing”.Vol.12, No.4, Published: January 2010. Accessed:

 5
th

 February 2011.

[13] Utting, M. (2005) Position paper: Model based testing. In: Verified Software:

Theories, Tools, Experiments, October 10–13, Zurich. Accessed: 5
th

 May 2011.

Web: http://www.cs.waikato.ac.nz/~marku/papers/utting_mbt_position.pdf.

[14] Schulz, S., Honkola, J. & Huima, A. (2007). Towards model based testing with

architecture models. In: 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems, March 26–29,

Tucson, AZ, U.S.A.

[15] Olli-Pekka Puolitaival. Article in Model based Testing tools. VTT, Technical

Research Centre of Finland. [www] Accessed: 25
th

 February 2011. Web:

http://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf.

[16] Utting, M., Pretschner, A. & Legeard, B. (2006). A taxonomy of model based

 testing. Working Paper Series ISSN 1170-487X. Working Paper: 04/2006.

[17] Olli-Pekka Puolitaival. Adapting model based testing to agile context. VTT

 Publications 694. Master´s Thesis, Oulu University, 2008.

[18] Rational Software Corporation. Article in “Role: Test Designer". [www]

Accessed: 9
th

January 2011.

 Web: http://rup.hops-fp6.org/process/workers/wk_tstds.htm.

[19] Origsoft, original software. Article in “Relieving the Software Testing

Bottleneck”. [www] Accessed: 10
th

 January 2011.

 Web: http://www.origsoft.com/solutions/relieving-testing-bottlenecks/.

[20] Henri Heiskanen. “Debug Support for model based GUI testing”. Master‟s thesis,

Tampere University of Technology, 2009.

http://www.softwaretestinghelp.com/manual-and-automation-testing-challenges/
http://www.softwaretestinghelp.com/manual-and-automation-testing-challenges/
http://www.ruby-lang.org/en/
http://www.cs.waikato.ac.nz/~marku/papers/utting_mbt_position.pdf
http://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf
http://www.cs.waikato.ac.nz/pubs/wp/2005/uow-cs-wp-2005-02.pdf
http://rup.hops-fp6.org/process/workers/wk_tstds.htm
http://www.origsoft.com/solutions/relieving-testing-bottlenecks/

REFERENCES 52

 [21] Wikipedia. An article in Smartphone. [www] Accessed: 10th January 2010. Web:

http://en.wikipedia.org/wiki/Smartphone

 [22] Forum.Nokia portal. Introduction to TDriver. [www] Accessed: 22
nd

February

 2011. Web: http://projects.forum.nokia.com/Testabilitydriver.

 [23] TEMA development team in Tampere University of Technology, Department of

Software Systems. Introduction to TEMA Toolset. [www] Accessed: 25
th

 January

2011. Web: http://tema.cs.tut.fi/intro.html.

 [24] Antti Jääskeläinen. “Design, implementation and use of a test model library for

 GUI testing of smartphone applications,” Doctoral dissertation, Tampere

 University of Technology, Tampere, Finland, Jan. 2011, number 948 in

 publications.

[25] Mikko Satama, Event Capturing Tool for Model based GUI Test Automation.

Master's thesis, Tampere University of Technology, September 2006.

[26] Forum.Nokia portal. Introduction to Visualizer Code Editor. [www] Accessed:

 23
rd

 February 2011. Web: http://projects.forum.nokia.com/Testabilitydriver.

[27] Forum.Nokia portal. Wiki page for Tdriver. [www] Accessed: 1
st
 March 2011.

Web: https://projects.forum.Nokia.com/Testabilitydriver/wiki/TDriverHelp.

http://en.wikipedia.org/wiki/Smartphone
http://projects.forum.nokia.com/Testabilitydriver
http://tema.cs.tut.fi/intro.html
http://projects.forum.nokia.com/Testabilitydriver
https://projects.forum.nokia.com/Testabilitydriver/wiki/TDriverHelp

 53

APPENDIX A: SAMPLE LOG FILE

When model execution by test engine stops, ends or gets completed, the log files are

generated and can be downloaded for further debugging purpose. Log files records the

individual information regarding model execution. This section of appendix shows the

sample of such log file generated while test execution was in run.

Starting testing: Thu Apr 28 08:54:12 2011

Creating test configuration ... Done

Composing model ... Done

Engine parameters

--model=parallellstsmodel:combined-rules.ext

--guidance=randomguidance

--guidance-args=randomseed:406190073

--coveragereq=

--Adapter-args=port:9092

--Adapter=socketserverAdapter

--testdata=file:sut_qt.td,file:sut_qt2.td,

--actionpp=localspp

--actionpp-args=file:sut_qt.td:N8.csv,lang:sut_qt.td:en

--verify-states=1

.END engine parameters

0428085413.532 Logger: FDLogger prepared for run 2011-04-28-08-54-13

0428085413.532 InitEngine: Initializing

0428085413.537 ParallelLstsModel: Model component 0 loaded from

'sut_qt2/rm/camera%20-%20Camera_cases-rm.lsts.nolayout'

0428085413.538 ParallelLstsModel: Model component 1 loaded from

'sut_qt2/rm/TaskSwitcherGEN-rm.lsts.nolayout'

0428085413.539 ParallelLstsModel: Model component 2 loaded from

'sut_qt2/camera%20-%20Camera_cases-awgt.lsts'

0428085413.539 ParallelLstsModel: Model component 3 loaded from

'sut_qt2/TaskSwitcherGEN-awgt.lsts'

0428085413.540 ParallelLstsModel: Model component 4 loaded from

'sut_qt/rm/camera%20-%20Camera_cases-rm.lsts.nolayout'

0428085413.541 ParallelLstsModel: Model component 5 loaded from

'sut_qt/rm/TaskSwitcherGEN-rm.lsts.nolayout'

0428085413.542 ParallelLstsModel: Model component 6 loaded from

'sut_qt/camera%20-%20Camera_cases-awgt.lsts'

0428085413.543 ParallelLstsModel: Model component 7 loaded from

'sut_qt/TaskSwitcherGEN-awgt.lsts'

0428085413.543 ParallelLstsModel: Model component 8 loaded from

'TargetSwitcher-awgt.lsts'

0428085413.544 ParallelLstsModel: Model component 9 loaded from

'TargetSwitcher-rm.lsts'

0428085413.545 ParallelLstsModel: Model component 10 loaded from

'Synchronizer-awgt.lsts'

0428085413.545 ParallelLstsModel: Model component 11 loaded from

'Synchronizer-rm.lsts.nolayout'

0428085413.552 DummyCoverage: Initialized

A. SAMPLE LOG FILE 54

0428085413.553 ParallelLstsModel: Action words: sut_qt2/camera%20-

%20Camera_cases:end_awTakePicture sut_qt2/camera%20-

%20Camera_cases:end_awChangeMode

TargetSwitcher:end_awActivate<sut_qt2> sut_qt/camera%20-

%20Camera_cases:end_awBackFromPicture Synchronizer:end_awVerifysut_qt

TargetSwitcher:end_awActivate<sut_qt> Synchronizer:end_awVerifysut_qt2

sut_qt2/camera%20-%20Camera_cases:end_awLaunchCamera sut_qt/camera%20-

%20Camera_cases:end_awLaunchCamera sut_qt/camera%20-

%20Camera_cases:end_awTakePicture sut_qt/camera%20-

%20Camera_cases:end_awChangeMode sut_qt2/camera%20-

%20Camera_cases:end_awExitChangeMode sut_qt/camera%20-

%20Camera_cases:end_awExitChangeMode sut_qt2/camera%20-

%20Camera_cases:end_awBackFromPicture sut_qt2/camera%20-

%20Camera_cases:end_awCloseCamera sut_qt/camera%20-

%20Camera_cases:end_awCloseCamera

0428085413.553 TestData: Initialized, initial symbols: first, any,

next

0428085413.554 TestData: Loaded from 'sut_qt.td' symbols sut_qt

0428085413.555 TestData: Loaded from 'sut_qt2.td' symbols sut_qt2

0428085413.555 TestData: Ready to run with 5 symbols.

0428085413.555 Guidance: Using parameters {'randomseed': 406190073}

0428085413.582 LocalizationPP: Reading data from file 'N8.csv'.

0428085413.582 LocalizationPP: Found languages: en

0428085413.582 LocalizationPP: The language of device 'sut_qt' changed

to 'en'

0428085413.582 LocalizationPP: 0 data rows read.

0428085413.582 LocalizationPP: Localization index has now 0 values.

0428085413.583 LocalizationPP: The language of device 'sut_qt' changed

to 'en'

0428085413.583 Adapter: Using parameters {'bindaddr': '', 'maxlen':

5000, 'port': 9092, 'timeout': None}

0428085413.583 Adapter: Initializing socket.

0428085413.583 Adapter: Waiting for a connection from a client.

0428085436.898 Adapter: A client ('127.0.0.1', 44595) connected.

0428085436.898 InitEngine: Starting initialization, going through 0

model(s).

0428085436.898 InitEngine: Initialization done.

0428085436.899 TestEngine: Local time zone UTC+3.0

0428085436.899 TestEngine: Testing starts from state (0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0)

0428085436.901 TestEngine: Step : 1 Covered: 0.0000 % Next:

WAKEtgtsCANWAKE<sut_qt2>

0428085436.901 TestEngine: Executing: WAKEtgtsCANWAKE<sut_qt2>

0428085436.901 TestEngine: New state: (0, 0, 0, 2, 0, 0, 0, 0, 1, 0,

0, 0)

0428085436.903 TestEngine: Step : 2 Covered:

The list of events will keep on growing until the test execution ends.

……………………………………The End………………………………………………

